Compare commits

...

7384 Commits

Author SHA1 Message Date
71ec123853 fix 2024-04-17 06:58:18 +02:00
b01a38ea92 fix 2024-04-17 06:49:53 +02:00
0fc7d0a935 fix 2024-04-17 06:21:36 +02:00
3fb7ce8d59 fix 2024-04-17 06:21:14 +02:00
8d5f4516b7 fix 2024-04-17 06:19:41 +02:00
03e9e96232 fix 2024-04-17 06:14:26 +02:00
487505ff45 Allow for str versions of dicts based on typing (#30227)
* Bookmark, initial impelemtation. Need to test

* Clean

* Working fully, woop woop

* I think working version now, testing

* Fin!

* rm cast, could keep None

* Fix typing issue

* rm typehint

* Add test

* Add tests and make more rigid
2024-04-16 08:15:09 -04:00
b86d0f4eca FIX: Fix 8-bit serialization tests (#30051)
* fix 8-bit serialization tests

* add more clarification

* Update src/transformers/quantizers/quantizer_bnb_8bit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-16 12:28:10 +02:00
ddf5f2588f FIX: Fix corner-case issue with the important models workflow (#30212)
* Update push-important-models.yml

* dummy commit

* Update modeling_bark.py

* test

* test

* test

* another test

* another test

* test

* final test

* final test

* test

* another test

* test

* test

* another test

* test llama

* revert everything

* remove echo
2024-04-16 11:15:57 +01:00
cbc2cc187a More fixes for doctest (#30265)
* fix

* update

* update

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-16 11:58:55 +02:00
51bcadc10a Update ko/_toctree.yml (#30062)
* fix: update `ko/_toctree.yml`

* fix: update ko/_toctree.yml

* Update docs/source/ko/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: delete `perf_infer_gpu_many`

* fix: Replace untranslated docs with `in_translation`

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: Replace untraslated docs with `in_translation`

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-04-15 10:42:46 -07:00
5be21302ad Remove incorrect arg in codellama doctest (#30257)
Remove incorrect arg in codellama docstring
2024-04-15 18:31:23 +01:00
8127f39624 [Docs] Update recurrent_gemma.md for some minor nits (#30238)
Update recurrent_gemma.md
2024-04-15 18:30:59 +02:00
6b78360e6d Add Idefics2 (#30253)
* Initial add model additions

* Test

* All weights loading

* Can perform full forward pass

* Local and remote the same

* Matching local and remote

* Fixup

* Idefics2Model importable; fixup docstrings

* Don't skip by default

* Remove deprecated use_resampler arg

* Remove self.config

* DecoupledLinear takes config

* Tidy up

* Enable eager attention and tidy up

* Most tests passing

* Update for batch of processed images

* Add image processor

* Update doc pages

* Update conversion script

* Remove erroneous breakpoint

* Remove accidendtal spelling change

* Update to reflect changes on hub - make generate work

* Fix up

* Image processor tests

* Update tests

* Add a processor

* Add a processor

* Update convert script

* Update modeling file - remove fixmes

* Bug fix

* Add processing test

* Use processor

* Fix up

* Update src/transformers/models/idefics2/modeling_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update src/transformers/models/idefics2/modeling_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Fix test

* Update config - PR comments and defaults align with checkpoint

* Reviewer comments

* Add copied froms for flahs attention

* Update src/transformers/models/idefics2/modeling_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove qk_layer_norm and freeze_layers functionality

* Fix

* Remove freeze_layer options from config

* Sync with upstream main

* Fix attention shapes siglip

* Remove Llava-next refs - TO REBASE

* Use AutoModel for text model

* Add comment to explain vision embeddings

* Fix issue with tie_word_embeddings

* Address review comments

* Fix and fix up

* Chat templates for idefics

* Fix copies

* Fix

* Add layer norms to FA2

* Fix tests

* Apply suggestions from code review

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Fix

* Review comments

* Update src/transformers/models/idefics2/modeling_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update inputs merger

* Merge weights in correct order

* Update convert script

* Update src/transformers/models/idefics2/processing_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update template

* Model code examples (fix idefics too)

* More review comments

* Tidy up

* Update processing

* Fix attention mask preparation

* Update inputs_merger inputs

* Vectorize inputs_merger

* Update src/transformers/models/idefics2/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/idefics2/modeling_idefics2.py

* Review comments

* saying bye to the `qk_layer_norms`

* Simplify

* Update latents

* Remove erroneuous readme changes

* Return images when applying chat template

* Fix bug - prompt images are for a single sample

* Update src/transformers/models/idefics2/modeling_idefics2.py

* image splitting

* fix test

* some more comment

* some comment

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/idefics2/image_processing_idefics2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update processor

* Update model tests

* Update src/transformers/models/idefics2/processing_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update src/transformers/models/idefics2/processing_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Don't add BOS in template

* Update src/transformers/models/idefics2/processing_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Remove index in examples

* Update tests to reflect #13

* Update src/transformers/models/idefics2/processing_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* PR comment - consistent typing

* Update readme and model doc

* Update docs

* Update checkpoint references

* Update examples

* Fix and update tests

* Small addition

* Update tests - remove copied from as no ignore placement copy could be found

* Update example

* small fixes

* Update docs/source/en/model_doc/idefics2.md

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update docs/source/en/model_doc/idefics2.md

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update README.md

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Connector model as bridge

* Fix up

* Fix up

* Don't pass model inputs for generation kwargs update

* IDEFICS-2 -> Idefics2

* Remove config archive name

* IDEFICS-2 -> Idefics2

* Add back llava-next

* Update readmes

* Add requirements for processor tester

* Use custom convert_to_rgb to avoid possible BC

* Fix doc example

* Fix doc example

* Skip model doc tests - as model to large

* More doc example - account for image splitting

* Update src/transformers/image_transforms.py

* Fix config doctest

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Victor SANH <victorsanh@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-04-15 17:03:03 +01:00
667939a2d3 [tests] add the missing require_torch_multi_gpu flag (#30250)
add gpu flag
2024-04-15 16:30:52 +01:00
440bd3c3c0 update github actions packages' version to suppress warnings (#30249)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-15 15:08:09 +02:00
LZR
766810153b round epoch only in console (#30237) 2024-04-15 13:53:21 +01:00
fe2d20d275 Fix doctest more (for docs/source/en) (#30247)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-15 14:10:59 +02:00
ec344b560d Separate out kwargs in processor (#30193)
* Separate out kwargs in processor

* Fix up
2024-04-15 12:36:50 +01:00
fc8eda36c5 fix: Fixed type annotation for compatability with python 3.8 (#30243)
* Fixed type annotation for compatability with python 3.8

* Fixed unsorted imports.
2024-04-15 12:31:37 +01:00
b6b6daf2b7 Refactor doctest (#30210)
* fix

* update

* fix

* update

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-15 13:20:36 +02:00
b3595cf02b fix: Replaced deprecated typing.Text with str (#30230)
typing.Text is deprecated. Use str instead
2024-04-15 12:18:37 +01:00
f010786218 Set pad_token in run_glue_no_trainer.py #28534 (#30234) 2024-04-15 11:39:10 +01:00
06b1192768 fix: Replace deprecated assertEquals with assertEqual (#30241)
Replace deprecated assertEquals with assertEqual.
2024-04-15 09:36:06 +01:00
8fd2de933c Add test for parse_json_file and change typing to os.PathLike (#30183)
* Add test for parse_json_file

* Change Path to PathLike

* Fix `Import block is un-sorted or un-formatted`

* revert parse_json_file

* Fix ruff format

* Add parse_json_file test
2024-04-15 09:34:36 +01:00
b109257f4f Fixed config.json download to go to user-supplied cache directory (#30189)
* Fixed config.json download to go to user-supplied cache directory.

* Simplied implementation suggested by @amyeroberts
2024-04-12 18:03:49 +01:00
db7d155444 Fix/Update for doctest (#30216)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-12 18:59:45 +02:00
4f7b434acb Update modeling_bark.py (#30221)
Change .view() to .reshape() to prevent errors on non-contiguous tensors
2024-04-12 17:03:38 +01:00
bf9a7ab932 Fix RecurrentGemmaIntegrationTest.test_2b_sample (#30222)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-12 17:53:25 +02:00
65657d5d8a fix fuyu doctest (#30215)
* fix doctest

* fix example

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-12 17:45:15 +02:00
ac33aeeeee fix typo (#30220) 2024-04-12 15:41:35 +01:00
caa5c65db1 fix: Replaced deprecated logger.warn with logger.warning (#30197)
* Fixed deprecated logger.warn by using logger.warning

* Reformatted using ruff.
2024-04-12 10:21:24 +01:00
c82b38a3e2 Fix pipeline logger.warning_once bug (#30195)
Fix warning bug
2024-04-12 09:34:45 +01:00
2c66600c3f ENH: [CI] Add new workflow to run slow tests of important models on push main if they are modified (#29235)
* v1

* v1

* more changes

* more models

* add more markers

* swtich to A10

* use cache

* Update .github/workflows/push-important-models.yml

* Update .github/workflows/push-important-models.yml

* Update modeling_llama.py

* test

* test

* another test

* test

* test

* attempt to fix

* fix

* try automatic tagging

* fix

* alternative approach for collecting

* fix

* fix

* fix

* test

* fix

* fix

* test

* revert some changes

* fix

* fix

* fix

* final push

* fix

* revert

* test new slack message

* oops

* Update send-slack.yml

* test

* test re-usable workflow in steps

* Update action.yml

* test

* another test

* test

* another test

* test

* another test

* another test (hopefully last one)

* attempt to fix

* allez

* removing comma

* test

* another test

* attempt

* test

* test

* test push

* test

* test

* another test

* test

* make it better

* fix commas

* valid json

* test

* another test

* test

* final push

* test

* final push

* more customizable messages

* test

* push

* oops

* another test

* another test

* missing indentation

* more tweaks

* more tweaks

* another test

* another test

* tests

* final push

* use global variables instead

* Update .github/workflows/push-important-models.yml

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* commit to test all models

* issue with arrays

* another test

* attempt to fix failing tests

* Update .github/workflows/push-important-models.yml

* add ssh

* Update .github/workflows/push-important-models.yml

* test

* test

* add install curl

* attempt to fix

* final fix

* test

* test

* test

* fix test

* another test

* add inherit secrets

* push

* revert unneeded changes

* revert

* add env variables

* add pip freeze

* revert change in gemma

* Update .github/workflows/push-important-models.yml

* fix mistral and mixtral

* add pdb

* fix mixtral tesst

* fix

* fix mistral ?

* add fix gemma

* fix mistral

* fix

* test

* anoter test

* fix

* fix

* fix mistral tests

* fix them again

* final fixes for mistral

* fix padding right

* fix whipser fa2

* fix

* fix

* fix gemma

* test

* fix llama

* fix

* fix

* fix llama gemma

* add class attribute

* fix CI

* clarify whisper

* compute_capability

* rename names in some comments

* Add   # fmt: skip

* make style

* Update tests/models/mistral/test_modeling_mistral.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* update

* update

* change branch

* correct workflow

* modify file

* test

* works

* final test

* another fix

* install sudo

* final fix

* add `-y`

* set to `main`

* Update .github/actions/post-slack/action.yml

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* change title

* fixup

* add upload report

* fix

* revert to main

* add empty lines + add comment

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-12 10:01:28 +02:00
0bd58f1ce0 Docs PR template (#30171)
remove maria :(
2024-04-11 09:23:55 -07:00
edf0935dca Falcon: make activation, ffn_hidden_size configurable (#30134)
* Falcon chg

* delta

* Docstring

* Fix import block

* doc

* fix and overwrite
2024-04-11 14:04:46 +01:00
5569552cf8 Update output of SuperPointForKeypointDetection (#29809)
* Remove auto class

* Update ImagePointDescriptionOutput

* Update model outputs

* Rename output class

* Revert "Remove auto class"

This reverts commit ed4a8f549d79cdb0cdf7aa74205a185c41471519.

* Address comments
2024-04-11 14:59:30 +02:00
386ef34e7d [Processor classes] Update docs (#29698)
Update docs
2024-04-11 14:24:38 +02:00
e516d1b19d fix: Fixed ruff configuration to avoid deprecated configuration warning (#30179)
* Fixed deprecated ruff configuration in pyproject.toml file

* reverted un-necessary changes.

* small fix.
2024-04-11 12:47:10 +01:00
58b170cdb1 chore: remove repetitive words (#30174)
Signed-off-by: hugehope <cmm7@sina.cn>
2024-04-11 09:49:36 +01:00
e50be9a058 Guard XLA version imports (#30167) 2024-04-11 04:49:16 -04:00
fbdb978eb5 Fix Llava chat template examples (#30130) 2024-04-11 10:38:24 +02:00
b752ad3019 Adding grounding dino (#26087)
* Fixed typo when converting weigths to GroundingDINO vision backbone

* Final modifications on modeling

* Removed unnecessary class

* Fixed convert structure

* Added image processing

* make fixup partially completed

* Now text_backbone_config has its own class

* Modified convert script

* Removed unnecessary config attribute

* Added new function to generate sub sentence mask

* Renamed parameters with gamma in the name as it's currently not allowed

* Removed tokenization and image_processing scripts since we'll map from existing models

* Fixed some issues with configuration

* Just some modifications on conversion script

* Other modifications

* Copied deformable detr

* First commit

* Added bert to model

* Bert validated

* Created Text and Fusion layers for Encoder

* Adapted Encoder layer

* Fixed typos

* Adjusted Encoder

* Converted encoder to hf

* Modified Decoder Layer

* Modified main decoder class

* Removed copy comments

* Fixed forward from GroundingDINOModel and GroundingDINODecoder

* Added all necessary layers, configurations and forward logic up to GroundingDINOModel

* Added all layers to convertion

* Fixed outputs for GroundingDINOModel and GroundingDINOForObjectDetection

* Fixed mask input to encoders and fixed nn.MultiheadAttention batch first and attn output

* Fixed forward from GroundingDINOTextEnhancerLayer

* Fixed output bug with GroundingDINODeformableLayer

* Fixed bugs that prevent GroundingDINOForObjectDetection to run forward method

* Fixed attentions to be passed correctly

* Passing temperature arg when creating Sine position embedding

* Removed copy comments

* Added temperature argument for position embedding

* Fixed typo when converting weigths to GroundingDINO vision backbone

* Final modifications on modeling

* Removed unnecessary class

* Fixed convert structure

* Added image processing

* make fixup partially completed

* Now text_backbone_config has its own class

* Modified convert script

* Removed unnecessary config attribute

* Added new function to generate sub sentence mask

* Renamed parameters with gamma in the name as it's currently not allowed

* Removed tokenization and image_processing scripts since we'll map from existing models

* Fixed some issues with configuration

* Just some modifications on conversion script

* Other modifications

* Fix style

* Improve fixup

* Improve conversion script

* Improve conversion script

* Add GroundingDINOProcessor

* More improvements

* Return token type ids

* something

* Fix more tests

* More improvements

* More cleanup

* More improvements

* Fixed tests, improved modeling and config

* More improvements and fixing tests

* Improved tests and modeling

* Improved tests and added image processor

* Improved tests inference

* More improvements

* More test improvements

* Fixed last test

* Improved docstrings and comments

* Fix style

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Better naming

* Better naming

* Added Copied statement

* Added Copied statement

* Moved param init from GroundingDINOBiMultiHeadAttention

* Better naming

* Fixing clamp style

* Better naming

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/configuration_grounding_dino.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/convert_grounding_dino_to_hf.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Improving conversion script

* Improved config

* Improved naming

* Improved naming again

* Improved grouding-dino.md

* Moved grounding dino to multimodal

* Update src/transformers/models/grounding_dino/convert_grounding_dino_to_hf.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Fixed docstrings and style

* Fix docstrings

* Remove timm attributes

* Reorder imports

* More improvements

* Add Grounding DINO to pipeline

* Remove model from check_repo

* Added grounded post_process to GroundingDINOProcessor

* Fixed style

* Fixed GroundingDINOTextPrenetConfig docstrings

* Aligned inputs.keys() when both image and text are passed with model_input_names

* Added tests for GroundingDINOImageProcessor and GroundingDINOProcessor

* Testing post_process_grounded_object_detection from GroundingDINOProcessor at test_inference_object_detection_head

* Fixed order

* Marked test with require_torch

* Temporarily changed repo_id

* More improvements

* Fix style

* Final improvements

* Improve annotators

* Fix style

* Add is_torch_available

* Remove type hints

* vocab_tokens as one liner

* Removed print statements

* Renamed GroundingDINOTextPrenetConfig to GroundingDINOTextConfig

* remove unnecessary comments

* Removed unnecessary tests on conversion script

* Renamed GroundingDINO to camel case GroundingDino

* Fixed GroundingDinoProcessor docstrings

* loading MSDA kernels in the modeling file

* Fix copies

* Replace nn.multiheadattention

* Replace nn.multiheadattention

* Fixed inputs for GroundingDinoMultiheadAttention & order of modules

* Fixed processing to avoid messing with inputs

* Added more tips for GroundingDino

* Make style

* Chaning name to align with SAM

* Replace final nn.multiheadattention

* Fix model tests

* Update year, remove GenerationTesterMixin

* Address comments

* Address more comments

* Rename TextPrenet to TextModel

* Rename hidden_states

* Address more comments

* Address more comments

* Address comment

* Address more comments

* Address merge

* Address comment

* Address comment

* Address comment

* Make style

* Added layer norm eps to layer norms

* Address more comments

* More fixes

* Fixed equivalence

* Make fixup

* Remove print statements

* Address comments

* Address comments

* Address comments

* Address comments

* Address comments

* Address comments

* Add comment

* Address comment

* Remove overwriting of test

* Fix bbox_embed

* Improve decoder_bbox_embed_share

* Simplify outputs

* Updated post_process_grounded_object_detection

* Renamed sources to feature_maps

* Improved tests for Grounding Dino ImageProcessor and Processor

* Fixed test requirements and imports

* Fixed image_processing

* Fixed processor tests

* Fixed imports for image processing tests

* Fix copies

* Updated modeling

* Fix style

* Moved functions to correct position

* Fixed copy issues

* Update src/transformers/models/deformable_detr/modeling_deformable_detr.py

Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>

* Keeping consistency custom cuda kernels for MSDA

* Make GroundingDinoProcessor logic clearer

* Updated Grounding DINO checkpoints

* Changed tests to correct structure

* Updated gpu-cpu equivalence test

* fix copies

* Update src/transformers/models/grounding_dino/processing_grounding_dino.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/processing_grounding_dino.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/configuration_grounding_dino.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fixed erros and style

* Fix copies

* Removed inheritance from PreTrainedModel from GroundingDinoTextModel

* Fixed GroundingDinoTextModel

* Fixed type of default backbone config

* Fixed missing methods for GroundingDinoTextModel and Added timm support for GroundingDinoConvEncoder

* Addressed comments

* Addressed batched image processing tests

* Addressed zero shot test comment

* Addressed tip comment

* Removed GroundingDinoTextModel from check_repo

* Removed inplace masking

* Addressed comments

* Addressed comments

* Addressed comments

* Fix copies

* Fixing timm test

* Fixed batching equivalence test

* Update docs/source/en/model_doc/grounding-dino.md

Co-authored-by: Tianqi Xu <40522713+dandansamax@users.noreply.github.com>

* Update docs/source/en/model_doc/grounding-dino.md

Co-authored-by: Tianqi Xu <40522713+dandansamax@users.noreply.github.com>

* Update docs/source/en/model_doc/grounding-dino.md

Co-authored-by: Tianqi Xu <40522713+dandansamax@users.noreply.github.com>

* Addressed more comments

* Added a new comment

* Reduced image size

* Addressed more comments

* Nits

* Nits

* Changed the way text_config is initialized

* Update src/transformers/models/grounding_dino/processing_grounding_dino.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Niels <niels.rogge1@gmail.com>
Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Eduardo Pacheco <eduardo.pacheco@limehome.com>
Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Tianqi Xu <40522713+dandansamax@users.noreply.github.com>
2024-04-11 08:32:16 +01:00
a5e5c92aea Fixed typo in comments/documentation for Pipelines documentation (#30170)
Update feature_extraction.py - Fixed typo in comments/documentation
2024-04-10 14:52:51 -07:00
d71f5b3ea8 Update config class check in auto factory (#29854) 2024-04-10 17:24:32 +01:00
f569172fc2 FIX / bnb: fix torch compatiblity issue with itemize (#30162)
* fix torch compatiblity issues

* fix

* Update src/transformers/modeling_utils.py
2024-04-10 18:12:43 +02:00
4f7a9f9c5c Fix natten install in docker (#30161)
* fix dinat in docker

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-10 17:45:49 +02:00
3280b13260 Fixing a bug when MlFlow try to log a torch.tensor (#29932)
* Update integration_utils.py

Add the case where a tensor with one element is log with Mlflow

* Update src/transformers/integrations/integration_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update integration_utils.py add a whitespace

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-10 16:07:58 +01:00
0fe44059ae Add recurrent gemma (#30143)
* Fork.

* RecurrentGemma initial commit.

* Updating __init__.py.

* Minor modification to how we initialize the cache.
Changing how the config specifies the architecture.

* Reformat code to 4 spaces.
Fixed a few typos.

* Fixed the forward pass.
Still unclear on the cache?

* Fixed the RecurrentGemmaForCausalLM

* Minor comment that we might not need attention_mask and output_attention arguments.

* Now cache should work as well.

* Adding a temporary example to check whether the model generation works.

* Adding the tests and updating imports.

* Adding the example file missing in the previous commit.

* First working example.

* Removing .gitignore and reverting parts of __init__.

* Re-add .gitignore.

* Addressing comments for configuration.

* Move mask creation to `_prepare_inputs_for_generation`.

* First try at integration tests:
1. AttributeError: 'GriffinCausalLMOutput' object has no attribute 'attentions'.
2. `cache_position` not passed

* Transfoering between machines.

* Running normal tests.

* Minor fix.

* More fixes.

* Addressing more comments.

* Minor fixes.

* first stab at cleanup

* more refactoring

* fix copies and else

* renaming and get init to work

* fix causal mask creation

* update

* nit

* fix a hell lot of things

* updates

* update conversion script

* make all keys importable

* nits

* add auto mappings

* properly convert ffw_up and down

* add scaling

* fix generations

* for recurrent dtype

* update

* fix going beyong window

* fixup

* add missing files

* current updates to remove last einops

* finish modeling refactor

* TADA

* fix compile

* fix most failing testt ? ?

* update tests

* refactor and update

* update

* nits, fixup and update tests

* more fixup

* nits

* fix imports

* test format

* fixups

* nits

* tuple typing

* fix code quality

* add model card

* fix doc

* skip most generation tests

* nits

* style

* doc fixes

* fix pr and check_copies?

* last nit

* oupsy

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <hi@lysand.re>

* update

* Update src/transformers/models/recurrent_gemma/convert_recurrent_gemma_to_hf.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update based on review

* doc nit

* fix quality

* quality

* fix slow test model path

* update default dype

* ignore attributes that can be safely ignored in check config attributes

* 0lallalala come on

* save nit

* style

* remove to dict update

* make sure we can also run in float16

* style

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: Aleksandar Botev <botev@google.com>
Co-authored-by: Leonard Berrada <lberrada@users.noreply.github.com>
Co-authored-by: anushanf <anushanf@google.com>
Co-authored-by: botev <botevmg@gmail.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-10 16:59:13 +02:00
33bca5419c Fix typing annotation in hf_argparser (#30156) 2024-04-10 15:58:56 +01:00
0f94e3e152 Fix accelerate kwargs for versions <0.28.0 (#30086)
* fix learning rate display issue in galore optimizer

* fix kwarg in accelerate when using versions < 0.28.0

* this was supposed to be in the other PR whoops
2024-04-10 15:36:43 +01:00
505854f78f [UDOP] Improve docs, add resources (#29571)
* Improve docs

* Add more tips
2024-04-10 16:02:50 +02:00
50c1c19fc7 [UDOP] Fix tests (#29573)
* Fix tests

* Fix tests

* Remove no_split_modules
2024-04-10 15:47:17 +02:00
b7d002bdff Add str to TrainingArguments report_to type hint (#30078)
* Add str to TrainingArguments report_to type hint

* Swap order in Union

* Merge Optional into Union

https://github.com/huggingface/transformers/pull/30078#issuecomment-2042227546
2024-04-10 14:42:00 +01:00
185463784e [tests] make 2 tests device-agnostic (#30008)
add torch device
2024-04-10 14:46:39 +02:00
bb76f81e40 [CI] Quantization workflow fix (#30158)
* fix workflow

* call ci

* Update .github/workflows/self-scheduled-caller.yml

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-04-10 11:51:06 +02:00
56d001b26f Fix and simplify semantic-segmentation example (#30145)
* Remove unused augmentation

* Fix pad_if_smaller() and remove unused augmentation

* Add indentation

* Fix requirements

* Update dataset use instructions

* Replace transforms with albumentations

* Replace identity transform with None

* Fixing formatting

* Fixed comment place
2024-04-10 09:10:52 +01:00
41579763ee Fix length related warnings in speculative decoding (#29585)
* avoid generation length warning

* add tests

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* add tests and minor fixes

* refine `min_new_tokens`

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* add method to prepare length arguments

* add test for min length

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* fix variable naming

* empty commit for tests

* trigger tests (empty)

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-04-10 12:45:07 +05:00
6cdbd73e01 [CI] Fix setup (#30147)
* [CI] fix setup

* fix

* test

* Revert "test"

This reverts commit 7df416d45074439e2fa1b78afd24eacf37ce072f.
2024-04-09 18:10:00 +02:00
21e23ffca7 [docs] Fix image segmentation guide (#30132)
fixes
2024-04-09 09:08:37 -07:00
58a939c6b7 Fix quantization tests (#29914)
* revert back to torch 2.1.1

* run test

* switch to torch 2.2.1

* udapte dockerfile

* fix awq tests

* fix test

* run quanto tests

* update tests

* split quantization tests

* fix

* fix again

* final fix

* fix report artifact

* build docker again

* Revert "build docker again"

This reverts commit 399a5f9d9308da071d79034f238c719de0f3532e.

* debug

* revert

* style

* new notification system

* testing notfication

* rebuild docker

* fix_prev_ci_results

* typo

* remove warning

* fix typo

* fix artifact name

* debug

* issue fixed

* debug again

* fix

* fix time

* test notif with faling test

* typo

* issues again

* final fix ?

* run all quantization tests again

* remove name to clear space

* revert modfiication done on workflow

* fix

* build docker

* build only quant docker

* fix quantization ci

* fix

* fix report

* better quantization_matrix

* add print

* revert to the basic one
2024-04-09 17:10:29 +02:00
6487e9b370 Send headers when converting safetensors (#30144)
Co-authored-by: Wauplin <lucainp@gmail.com>
2024-04-09 17:03:36 +02:00
08a194fcd6 Fix slow tests for important models to be compatible with A10 runners (#29905)
* fix mistral and mixtral

* add pdb

* fix mixtral tesst

* fix

* fix mistral ?

* add fix gemma

* fix mistral

* fix

* test

* anoter test

* fix

* fix

* fix mistral tests

* fix them again

* final fixes for mistral

* fix padding right

* fix whipser fa2

* fix

* fix

* fix gemma

* test

* fix llama

* fix

* fix

* fix llama gemma

* add class attribute

* fix CI

* clarify whisper

* compute_capability

* rename names in some comments

* Add   # fmt: skip

* make style

* Update tests/models/mistral/test_modeling_mistral.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* update

* update

---------

Co-authored-by: Younes Belkada <younesbelkada@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-04-09 13:28:54 +02:00
e9c23fa056 [Trainer] Undo #29896 (#30129)
* Undo

* Use tokenizer

* Undo data collator
2024-04-09 12:55:42 +02:00
ba1b24e07b [Trainer] Fix default data collator (#30142)
* Fix data collator

* Support feature extractors as well
2024-04-09 12:52:50 +02:00
ec59a42192 Revert workaround for TF safetensors loading (#30128)
* See if we can get tests to pass with the fixed weights

* See if we can get tests to pass with the fixed weights

* Replace the revisions now that we don't need them anymore
2024-04-09 11:04:18 +01:00
841e87ef4f Fix docs Pop2Piano (#30140)
fix copies
2024-04-09 14:58:02 +05:00
af4c02622b Add datasets.Dataset to Trainer's train_dataset and eval_dataset type hints (#30077)
* Add datasets.Dataset to Trainer's train_dataset and eval_dataset type hints

* Add is_datasets_available check for importing datasets under TYPE_CHECKING guard

https://github.com/huggingface/transformers/pull/30077/files#r1555939352
2024-04-09 09:26:15 +01:00
4e3490f79b Fix failing DeepSpeed model zoo tests (#30112)
* fix sequence length errors

* fix label column name error for vit

* fix the lm_head embedding!=linear layer mismatches for Seq2Seq models
2024-04-09 12:01:47 +05:30
2f12e40822 [StableLm] Add QK normalization and Parallel Residual Support (#29745)
* init: add StableLm 2 support

* add integration test for parallel residual and qk layernorm

* update(modeling): match qk norm naming for consistency with phi/persimmon

* fix(tests): run fwd/bwd on random init test model to jitter norm weights off identity

* `use_parallel_residual`: add copy pointer to `GPTNeoXLayer.forward`

* refactor: rename head states var in `StableLmLayerNormPerHead`

* tests: update test model and add generate check
2024-04-08 23:51:58 +02:00
8c00b53eb0 Adding mps as device for Pipeline class (#30080)
* adding env variable for mps and is_torch_mps_available for Pipeline

* fix linting errors

* Remove environment overide

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-08 18:07:30 +01:00
7afade2086 Fix typo at ImportError (#30090)
fix typo at ImportError
2024-04-08 17:45:21 +01:00
ef38e2a7e5 Make vitdet jit trace complient (#30065)
* remove controlflows

* style

* rename patch_ to padded_ following review comment

* style
2024-04-08 23:10:06 +08:00
a71def025c Trainer / Core : Do not change init signature order (#30126)
* Update trainer.py

* fix copies
2024-04-08 16:57:38 +02:00
1897874edc Fix falcon with SDPA, alibi but no passed mask (#30123)
* fix falcon without attention_mask & alibi

* add test

* Update tests/models/falcon/test_modeling_falcon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-08 22:25:07 +08:00
1773afcec3 fix learning rate display in trainer when using galore optimizer (#30085)
fix learning rate display issue in galore optimizer
2024-04-08 14:54:12 +01:00
08c8443307 Accept token in trainer.push_to_hub() (#30093)
* pass token to trainer.push_to_hub

* fmt

* Update src/transformers/trainer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* pass token to create_repo, update_folder

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-08 14:51:11 +01:00
0201f6420b [#29174] ImportError Fix: Trainer with PyTorch requires accelerate>=0.20.1 Fix (#29888)
* ImportError: Trainer with PyTorch requires accelerate>=0.20.1 Fix

Adding the evaluate and accelerate installs at the beginning of the cell to fix the issue

* ImportError Fix: Trainer with PyTorch requires accelerate>=0.20.1

* Import Error Fix

* Update installation.md

* Update quicktour.md

* rollback other lang changes

* Update _config.py

* updates for other languages

* fixing error

* Tutorial Update

* Update tokenization_utils_base.py

* Just use an optimizer string to pass the doctest?

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2024-04-08 14:21:16 +01:00
7f9aff910b Patch fix - don't use safetensors for TF models (#30118)
* Patch fix - don't use safetensors for TF models

* Skip test for TF for now

* Update for another test
2024-04-08 13:29:20 +01:00
f5658732d5 fixing issue 30034 - adding data format for run_ner.py (#30088) 2024-04-08 12:49:59 +01:00
d16f0abc3f [tests] add require_bitsandbytes marker (#30116)
* add bnb flag

* move maker

* add accelerator maker
2024-04-08 12:49:31 +01:00
5e673ed2dc updated examples/pytorch/language-modeling scripts and requirements.txt to require datasets>=2.14.0 (#30120)
updated requirements.txt and require_version() calls in examples/pytorch/language-modeling to require datasets>=2.14.0
2024-04-08 12:41:28 +01:00
836e88caee Make MLFlow version detection more robust and handles mlflow-skinny (#29957)
* Make MLFlow version detection more robust and handles mlflow-skinny

* Make function name more clear and refactor the logic

* Further refactor
2024-04-08 12:20:02 +02:00
a907a903d6 Change log level to warning for num_train_epochs override (#30014) 2024-04-08 10:36:53 +02:00
1ed93be48a [Whisper] Computing features on GPU in batch mode for whisper feature extractor. (#29900)
* add _torch_extract_fbank_features_batch function in feature_extractor_whisper

* reformat feature_extraction_whisper.py file

* handle batching in single function

* add gpu test & doc

* add batch test & device in each __call__

* add device arg in doc string

---------

Co-authored-by: vaibhav.aggarwal <vaibhav.aggarwal@sprinklr.com>
2024-04-08 10:36:25 +02:00
1fc34aa666 doc: Correct spelling mistake (#30107) 2024-04-08 08:44:05 +01:00
76fa17c166 Fix whisper kwargs and generation config (#30018)
* clean-up whisper kwargs

* failing test
2024-04-05 21:28:58 +05:00
9b5a6450d4 Fix auto tests (#30067)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-05 17:49:46 +02:00
d9fa13ce62 Add docstrings and types for MambaCache (#30023)
* Add docstrings and types for MambaCache

* Update src/transformers/models/mamba/modeling_mamba.py

* Update src/transformers/models/mamba/modeling_mamba.py

* Update src/transformers/models/mamba/modeling_mamba.py

* make fixup

* import copy in generation_whisper

* ruff

* Revert "make fixup"

This reverts commit c4fedd6f60e3b0f11974a11433bc130478829a5c.
2024-04-05 16:19:54 +02:00
b17b54d3dd Refactor daily CI workflow (#30012)
* separate jobs

* separate jobs

* use channel name directly instead of ID

* use channel name directly instead of ID

* use channel name directly instead of ID

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-05 15:49:51 +02:00
17cd7a9d28 Fix torch.fx symbolic tracing for LLama (#30047)
* [WIP] fix fx

* [WIP] fix fx

* [WIP] fix fx

* [WIP] fix fx

* [WIP] fix fx

* Apply changes to other models
2024-04-05 15:14:09 +02:00
48795317a2 [test fetcher] Always include the directly related test files (#30050)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-05 14:30:36 +02:00
de11d0bdf0 Update quantizer_bnb_4bit.py: In the ValueError string there should be "....you need to set llm_int8_enable_fp32_cpu_offload=True...." instead of "load_in_8bit_fp32_cpu_offload=True". (#30013)
* Update quantizer_bnb_4bit.py

There is an mistake in ValueError on line 86 of quantizer_bnb_4bit.py. In the error string there should be "....you need to set `llm_int8_enable_fp32_cpu_offload=True`...." instead of "load_in_8bit_fp32_cpu_offload=True". I think you updated the BitsAndBytesConfig() arguments, but forgot to change the ValueError in quantizer_bnb_4bit.py.

* Update quantizer_bnb_4bit.py

Changed ValueError string "...you need to set load_in_8bit_fp32_cpu_offload=True..." to "....you need to set llm_int8_enable_fp32_cpu_offload=True...."
2024-04-05 14:04:50 +02:00
4207a4076d [bnb] Fix offload test (#30039)
fix bnb test
2024-04-05 13:11:28 +02:00
1ab7136488 [Trainer] Allow passing image processor (#29896)
* Add image processor to trainer

* Replace tokenizer=image_processor everywhere
2024-04-05 10:10:44 +02:00
d704c0b698 Fix mixtral ONNX Exporter Issue. (#29858)
* fix mixtral onnx export

* fix qwen model
2024-04-05 09:49:42 +02:00
79d62b2da2 if output is tuple like facebook/hf-seamless-m4t-medium, waveform is … (#29722)
* if output is tuple like facebook/hf-seamless-m4t-medium, waveform is the first element

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>

* add test and fix batch issue

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>

* add dict output support for seamless_m4t

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
2024-04-05 09:26:44 +02:00
8b52fa6b42 skip test_encode_decode_fast_slow_all_tokens for now (#30044)
skip test_encode_decode_fast_slow_all_tokens for now

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-05 09:07:41 +02:00
24d787ce9d Add whisper to IMPORTANT_MODELS (#30046)
Add whisper

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-05 09:06:40 +02:00
517a3e670d Refactor Cohere Model (#30027)
* changes

* addressing comments

* smol fix
2024-04-04 12:46:20 +02:00
75b76a5ea4 [ProcessingIdefics] Attention mask bug with padding (#29449)
* Defaulted IdeficsProcessor padding to 'longest', removed manual padding

* make fixup

* Defaulted processor call to padding=False

* Add padding to processor call in IdeficsModelIntegrationTest as well

* Defaulted IdeficsProcessor padding to 'longest', removed manual padding

* make fixup

* Defaulted processor call to padding=False

* Add padding to processor call in IdeficsModelIntegrationTest as well

* redefaulted padding=longest again

* fixup/doc
2024-04-04 10:11:09 +01:00
4e6c5eb045 Add a converter from mamba_ssm -> huggingface mamba (#29705)
* implement convert_mamba_ssm_checkpoint_to_pytorch

* Add test test_model_from_mamba_ssm_conversion

* moved convert_ssm_config_to_hf_config to inside mamba_ssm_available check

* fix skipif clause

* moved skips to inside test since skipif decorator isn't working for some reason

* Added validation

* removed test

* fixup

* only compare logits

* remove weight rename

* Update src/transformers/models/mamba/convert_mamba_ssm_checkpoint_to_pytorch.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* nits

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-04 09:29:32 +01:00
03732dea60 Enable multi-device for efficientnet (#29989)
feat: enable mult-idevice for efficientnet
2024-04-03 20:54:34 +01:00
863e2562d8 Make clearer about zero_init requirements (#29879)
* Docstring to note about zero init

* Check for accelerate

* Change conditional return

* Tweak

* Add new accelerate-specific zero3 check

* Fix import

* Revert to RTFM

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-03 13:37:52 -04:00
695d823323 [Main CIs] Fix the red cis (#30022)
* fix

* sort imports
2024-04-03 19:34:39 +02:00
c10b5dd25e Superpoint imports fix (#29898)
quick fix
2024-04-03 18:32:01 +01:00
34bfe95af5 [docs] Fix audio file (#30006)
new audio file
2024-04-03 10:05:15 -07:00
cc75f1ac73 Fix vipllava for generation (#29874)
* fix vipllava generation

* consistent llava code

* revert llava tests changes
2024-04-03 17:00:08 +01:00
240e10626b Fix probability computation in WhisperNoSpeechDetection when recomputing scores (#29248)
* Fix is_scores_logprobs in WhisperNoSpeechDetection

* Add test_whisper_longform_no_speech_detection

* Fix typo
2024-04-03 17:53:07 +02:00
bcd42c4af9 Fix kwargs handling in generate_with_fallback (#29225)
* Fix generate_with_fallback **kwargs

* Change pop to get

* Delete keys from kwargs to prevent overriding generation_config

* Revert to passing kwargs by reference, but make a (shallow) copy

* dict -> copy.copy

* Add test_whisper_longform_multi_batch_beam
2024-04-03 17:51:03 +02:00
851f253f4d Fix Qwen2Tokenizer (#29929)
qwen2: fixed tokens starting with # in slow tokenizer; add tests

Co-authored-by: jklj077 <17811943+jklj077@users.noreply.github.com>
2024-04-03 17:42:43 +02:00
17b06e2c66 Fix Swinv2ForImageClassification NaN output (#29981)
To address the issue of NaN logit outputs for certain combinations
of the `image_size`, `patch_size` and `depths` configuration
parameters, an assertion was made to ensure that the resulting
`window_size` field in the model's Self Attention class is greater
than 1, preventing divisions by zero in the normalization of
`relative_coords_table`.

Fix: #28675
2024-04-03 14:54:45 +01:00
81642d2b51 Make EncodecModel.decode ONNX exportable (#29913)
* fix encodec onnx export for musicgen

* simplification

* fix quality

* better style
2024-04-03 17:11:01 +08:00
b44df05bc0 Update tests/utils/tiny_model_summary.json (#29941)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-03 09:25:01 +02:00
fce52cefa7 Fix remove_columns in text-classification example (#29351) 2024-04-02 19:15:27 +02:00
5080ab12c8 Generate: fix logits processors doctests (#29718)
* fix norm

* fix logits processors doctests
2024-04-02 17:18:31 +01:00
9b0a8ea7d1 Hard error when ignoring tensors. (#27484) (#29906)
* Hard error when ignoring tensors. (#27484)

* [WIP] Hard error when ignoring tensors.

* Better selection/error when saving a checkpoint.

- Find all names we should normally drop (those are in the transformers
  config)
- Find all disjoint tensors (for those we can safely trigger a copy to
  get rid of the sharing before saving)
- Clone those disjoint tensors getting rid of the issue
- Find all identical names (those should be declared in the config
  but we try to find them all anyway.)
- For all identical names:
  - If they are in the config, just ignore them everything is fine
  - If they are not, warn about them.
- For all remainder tensors which are shared yet neither identical NOR
  disjoint. raise a hard error.

* Adding a failing test on `main` that passes here.

* We don't need to keep the subfolder logic in this test.

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add small tests.

* Dead variable.

* Fixup.

* Fixing tied_Weights_keys on generic models.

* Fixup + T5 encoder/decoder tying (with different layers)

* Code quality.

* Dynamic member.

* trigger

* Fixing encoder name for other types of encoder/decoder combos.

* Fix scoping.

* Update .github/workflows/self-scheduled.yml

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fixing the tied_weights after the call.

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-02 16:59:05 +02:00
15cd68713d Fix skip_special_tokens for Wav2Vec2CTCTokenizer._decode (#29311)
* Fix skip_special_tokens process for Wav2Vec2CTCTokenizer._decode

* Fix skip_special_tokens for Wav2Vec2CTCTokenizer._decode

* Exclude pad_token filtering since it is used as CTC-blank token

* Add small test for skip_special_tokens

* Update decoding test for added new token
2024-04-02 16:55:11 +02:00
cb5927ca8f [Docs] Make an ordered list prettier in add_tensorflow_model.md (#29949) 2024-04-02 12:37:56 +01:00
0d04b1e25a Add Flash Attention 2 support to Musicgen and Musicgen Melody (#29939)
* add FA2 to o.g Musicgen

* make style

* add FA2 support to Musicgen Melody

* add generation FA2 tests to o.g Musicgen

* make style and fix copies

* add Musicgen to FA2 docs + deprecate list

* add sdpa supports to Musicgen's

* make style and fix copies

* refactor attention implementation arguments

* add Copied from to sdpa tests

* add copied form in sdpa tests melody

* add copied for FA2 generation tests

* add FA2 inference copied from

* make style
2024-04-02 11:23:49 +01:00
fed27ffc7e Adding FlaxNoRepeatNGramLogitsProcessor (#29677)
* fix issue with logit processor in beam search in Flax

* adding FlaxNoRepeatNGramLogitsProcessor class + unit test

* style correction and code verification

* add FlaxNoRepeatNGramLogitsProcessor to the test_processor_list and test_processor_list_jitted tests

* fix an issue where ngrams are banned only if they appear ==1 time + update description of get_previous_ngrams

* replace non-jit compatible masking of ngrams that are not yet generated with jittable version

* Revert "fix issue with logit processor in beam search in Flax"

This reverts commit 09b70d7e4dc32d0cc4db61af09a835a9cd238b50.

* add FlaxNoRepeatNGramLogitsProcessor to _get_logits_processor

* change the method of casting to boolean of banned tokens indices

* fix code style

* remove some useless operations + significantly faster computation of update indices using jax.lax.fori_loop

* remove useless loop iterations

* set some variables that were calculated and used multiple times

* fix format
2024-04-02 11:39:33 +02:00
33288ff150 [bnb] Fix bug in _replace_with_bnb_linear (#29958)
fix bug
2024-04-02 11:18:03 +02:00
416711c3ea Fix 29807 sinusoidal positional encodings in Flaubert, Informer and XLM (#29904)
* Fix sinusoidal_embeddings in FlaubertModel

* Fix for Informer

* Fix for XLM

* Move sinusoidal emb for XLM

* Move sinusoidal emb for Flaubert

* Small cleanup

* Add comments on tests code copied from

* Add with Distilbert->
2024-04-02 10:27:26 +02:00
83b26dd79d [generate] fix breaking change for patch (#29976)
* fix bug and add tests

* nit

* otherway to get the cur len instead of attention mask

* more places where this might have been broken

* nit

* oups

* inputs_embeds vs input_embeds

* test generated outptus

* style

* nit

* fix

* skip failing biogpt
2024-04-02 09:51:45 +02:00
096f304695 [docs] Big model loading (#29920)
* update

* feedback
2024-04-01 18:47:32 -07:00
c9f6e5e351 Generate: move misplaced test (#29902) 2024-04-01 12:45:25 +01:00
e4f5b57a3b [tests] fix the wrong output in ImageToTextPipelineTests.test_conditional_generation_llava (#29975)
bug fix
2024-04-01 13:08:39 +02:00
fa2c49b00b Fix copies main ci (#29979)
* fix copies

* nit

* style

* Update utils/check_copies.py
2024-04-01 12:43:58 +02:00
569f6c7d43 Fix FA2 tests (#29909)
* fix FA2 tests

* refactor inference test name
2024-04-01 07:51:00 +00:00
3b8e2932ce Rework tests to compare trainer checkpoint args (#29883)
* Start rework

* Fix failing test

* Include max

* Update src/transformers/trainer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-30 22:19:17 -04:00
6e584070d4 [BC] Fix BC for AWQ quant (#29965)
fix awq quant
2024-03-30 19:37:25 +01:00
46d636818b Update model card and link of blog post. (#29928)
* Update qwen2_moe.md

* update link of blogpost.

* fixup

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
2024-03-30 17:49:03 +01:00
f6701bc664 Reset alarm signal when the function is ended (#29706)
Fixes #29690
2024-03-30 17:41:27 +01:00
e644b60038 fix: get mlflow version from mlflow-skinny (#29918)
Co-authored-by: Alexander Jipa <azzhipa@amazon.com>
2024-03-30 17:38:29 +01:00
156d30da94 Add warning message for run_qa.py (#29867)
* improve: error message for best model metric

* update: raise warning instead of error
2024-03-30 17:02:31 +01:00
6fd93fe93a Fix rope theta for OpenLlama (#29893)
fix: rope_theta for open llama
2024-03-30 16:30:52 +01:00
5ad7f17002 Super tiny fix 12 typos about "with with" (#29926)
* with with

* style
2024-03-29 14:31:31 +00:00
43d17c1836 Mark test_eager_matches_sdpa_generate flaky for some models (#29479)
* fix

* revert for qwen2

* revert for qwen2

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-29 11:51:20 +01:00
ba56ed0869 Update installs in image classification doc (#29947)
Trainer with PyTorch now requires accelerate to be installed.

Partly resolves huggingface/transformers#29174
2024-03-28 14:26:27 -07:00
536ea2aca2 [LlamaSlowConverter] Slow to Fast better support (#29797)
* fix

* fix test

* style

* nit

* rather rely on concert token to id

* fix quality

* Update src/transformers/convert_slow_tokenizer.py
2024-03-28 16:19:32 +01:00
e203646871 Fix doc issue #29758 in DebertaV2Config class (#29842)
Fix doc issue in DebertaV2Config class

Co-authored-by: Vinayakk Garg <vigar@akamai.com>
2024-03-28 14:49:57 +00:00
2bbbf1be5b [BC] Fix BC for other libraries (#29934)
* fi xbc?

* nit
2024-03-28 15:13:23 +01:00
4df5b9b4b2 Allow GradientAccumulationPlugin to be configured from AcceleratorConfig (#29589)
* add gradient_accumulation_kwargs to AcceleratorConfig

* add suggestions from @muellerzr to docstrings, new behavior and tests

* Documentation suggestions from @muellerz

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* addressed @muellerzr comments regarding tests and test utils

* moved accelerate version to top of file.

* @muellerzr's variable fix

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* address @amyeroberts. fix tests and docstrings

* address @amyeroberts additional suggestions

---------

Co-authored-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-03-28 14:01:40 +00:00
a2a7f71604 [ TokenizationLlama] fix the way we convert tokens to strings to keep leading spaces 🚨 breaking fix (#29453)
* nit

* update test and fix test

* fixup
2024-03-28 13:58:40 +01:00
e677479c81 [Mamba] from pretrained issue with self.embeddings (#29851)
* nit

* update

* oups

* Update src/transformers/models/mamba/modeling_mamba.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-03-28 13:54:51 +01:00
441de62f49 RoPE models: add numerical sanity-check test for RoPE scaling (#29808)
* add hard rope scaling test

* make fixup

* quick rope scaling tests

* add copy statements
2024-03-28 11:25:50 +00:00
aac7099c92 add functions to inspect model and optimizer status to trainer.py (#29838)
* add functions to get number of params which require grad, get optimizer group for parameters and get learning rates of param groups to trainer.py

* add tests and raise ValueError when optimizer is None

* add second layer to test and freeze its weigths

* check if torch is available before running tests

* use decorator to check if torch is available

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix test indentation

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-03-28 10:37:16 +00:00
855b95ce34 Safe import of LRScheduler (#29919)
* Safe import of LRScheduler

* Update src/transformers/trainer_pt_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/trainer_pt_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix up

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-28 09:54:51 +00:00
c9d2e855ea Add beam search visualizer to the doc (#29876) 2024-03-28 09:54:08 +00:00
248d5d23a2 Tests: replace torch.testing.assert_allclose by torch.testing.assert_close (#29915)
* replace torch.testing.assert_allclose by torch.testing.assert_close

* missing atol rtol
2024-03-28 09:53:31 +00:00
7c19fafe44 [doc] fix some typos and add xpu to the testing documentation (#29894)
fix typo
2024-03-28 09:42:49 +00:00
22d159ddf9 Adding Flash Attention 2 Support for GPT2 (#29226)
* First commit to add flash attention 2 for GPT-2

* more improvements

* Make GPT2 pass tests and fixed Decison Transformers copies

* Fixed missing arg

* fix copies

* Added expected speedup

* Update src/transformers/models/gpt2/modeling_gpt2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt2/modeling_gpt2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt2/modeling_gpt2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Added test

* Fixed attn attribute

* Update docs/source/en/model_doc/gpt2.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt2.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update Decision transformer attentions

* More updates

* Passing tests

* Fix copies

* Fix copies part 2

* Decision transformer updates

* Update src/transformers/models/gpt2/modeling_gpt2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix copies

* Decision transformer not supporting flash attn

* Addressed comments

* Addressed comments

* Addressed comments

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-28 09:31:24 +00:00
3a7e68362b [pipeline]. Zero shot add doc warning (#29845)
* add doc warning

* fix build pr
2024-03-28 09:10:26 +01:00
543889f3f6 [GptNeox] don't gather on pkv when using the trainer (#29892)
don't gather on pkv when using the trainer
2024-03-28 08:56:53 +01:00
b256516a8c [make fix-copies] update and help (#29924)
* add some help

* style
2024-03-28 08:56:14 +01:00
d9dc993fdd Fix typo in T5Block error message (#29881) 2024-03-28 03:30:29 +01:00
a25037beb9 MixtralSparseMoeBlock: add gate jitter (#29865)
This commit adds gate jitter to MixtralSparseMoeBlock's input data
before passing it through the MoE layer, if turned on.
2024-03-27 16:14:26 +01:00
75769744e9 add Cambricon MLUs support (#29627)
* add Cambricon MLUs support

* fix mlu device rng state

* up for quality check

* up mlu to support fp16

* fix mlu device dependency error

* fix mlu device dependency error

* enable mlu device for bf16

* fix mlu device memory tracker
2024-03-27 15:54:28 +01:00
0efcf32351 Move eos_token_id to stopping criteria (#29459)
* add eos stopping criteria

* minor fix

* Update tests/generation/test_stopping_criteria.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* check eos is not None and fix tests

* make style and fixup

* Update src/transformers/generation/stopping_criteria.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/generation/test_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/generation/test_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/generation/stopping_criteria.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/generation/stopping_criteria.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/generation/stopping_criteria.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* camel case everywhere

* call stopping criteria list for candidate ids

* make style  and fixup

* Empty commit

* Empty commit to pass flaky test

* set max length in PromptLookupCandidateGenerator

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* lets fix this typo in docs

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* update PR

* empty commit

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-27 12:18:10 +00:00
31c575bcf1 fix fuyu device_map compatibility (#29880)
fix foward
2024-03-27 10:18:48 +01:00
4d8427f739 Reimplement "Automatic safetensors conversion when lacking these files" (#29846)
* Automatic safetensors conversion when lacking these files (#29390)

* Automatic safetensors conversion when lacking these files

* Remove debug

* Thread name

* Typo

* Ensure that raises do not affect the main thread

* Catch all errors
2024-03-27 08:58:08 +01:00
a81cf9ee90 Fix 29807, sinusoidal positional encodings overwritten by post_init() (#29813)
* Check for requires_grad when initing weights

* Add unit test

* Move sinusoidal positional encoding generation after post_init()

* Add modules to skip init list

* Move create_sinusoidal_embeddings to _init_weights
2024-03-27 06:28:00 +01:00
cefb819f7a Mamba slow_forward gradient fix (#29563)
* FIX: Cached slow forward in mamba
- additionally added mamba cached test
- added unused test (mamba causal lm forward and backward)
- fixed typo: "causl" --> "causal"

* formatting

* fix: use real `slow_forward` call instead of torch module's

* add shape assertion for mixer block test

* adjust shape assertion
2024-03-27 04:52:12 +01:00
1c39974a4c Add Qwen2MoE (#29377)
* add support for qwen2 MoE models

* update docs

* add support for qwen2 MoE models

* update docs

* update model name & test

* update readme

* update class names & readme & model_doc of Qwen2MoE.

* update architecture name

* fix qwen2_moe tests

* use Qwen2Tokenizer instead of Qwen2MoeTokenizer

* update modeling_qwen2_moe.py

* fix model architecture

* fix qwen2_moe tests

* use Qwen2Tokenizer instead of Qwen2MoeTokenizer

* update modeling_qwen2_moe.py

* fix model architecture

* fix style

* fix test when there are sparse and non sparse layers

* fixup

* Update README.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

* fixup

* add archive back

* add support for qwen2 MoE models

* update docs

* update model name & test

* update readme

* update class names & readme & model_doc of Qwen2MoE.

* update architecture name

* fix qwen2_moe tests

* use Qwen2Tokenizer instead of Qwen2MoeTokenizer

* update modeling_qwen2_moe.py

* fix model architecture

* fixup

* fix qwen2_moe tests

* use Qwen2Tokenizer instead of Qwen2MoeTokenizer

* fix style

* fix test when there are sparse and non sparse layers

* fixup

* add archive back

* fix integration test

* fixup

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-27 02:11:55 +01:00
8e08acad6b Support num_attention_heads != num_key_value_heads in Flax Llama Implementation (#29557)
* fix tinyllama flax modelling

* rename vars to minimize changes

* move

* formatting

* remove unused var
2024-03-27 02:08:43 +01:00
f01e1609bf Set custom_container in build docs workflows (#29855) 2024-03-26 14:46:02 +01:00
07d79520ef Disable AMD memory benchmarks (#29871)
* remove py3nvml to skip amd memory benchmarks

* uninstall pynvml from docker images
2024-03-26 14:43:12 +01:00
ef60995858 Add cosine_with_min_lr scheduler in Trainer (#29341)
* Add cosine_with_min_lr scheduler

* Update error message for missing min_lr or min_lr_rate
2024-03-26 13:57:07 +01:00
998b5bb56f Allow bos_token_id is None during the generation with inputs_embeds (#29772)
* update

* add ut

* update
2024-03-26 12:51:00 +00:00
b9ceb03df8 [docs] Indent ordered list in add_new_model.md (#29796) 2024-03-26 12:03:39 +00:00
de81a677c4 Fix header in IFE task guide (#29859)
Update image_feature_extraction.md
2024-03-26 12:32:37 +01:00
b32bf85b58 Replace 'decord' with 'av' in VideoClassificationPipeline (#29747)
* replace the 'decord' with 'av' in VideoClassificationPipeline

* fix the check of backend in VideoClassificationPipeline

* adjust the order of imports

* format 'video_classification.py'

* format 'video_classification.py' with ruff

---------

Co-authored-by: wanqiancheng <13541261013@163.com>
2024-03-26 10:12:24 +00:00
b5a6d6eeab Add warnings if training args differ from checkpoint trainer state (#29255)
* add warnings if training args differ from checkpoint args stored in trainer_state.json

* run formatting and styling

* add a test

* format and styling

---------

Co-authored-by: Jonathan Flynn <jonl.flynn@guardian.co.uk>
2024-03-26 07:13:13 +01:00
7eb3ba8224 remove quotes in code example (#29812)
Co-authored-by: Johannes <johannes.kolbe@tech.better.team>
2024-03-25 13:26:54 +00:00
e3e16ddc3c [revert commit] revert 00a09ed448082da3d6d35fb23a37b7d04f7b4dcd 2024-03-25 22:01:01 +09:00
00a09ed448 fix 😭 2024-03-25 21:57:31 +09:00
8e9a2207b3 Populate torch_dtype from model to pipeline (#28940)
* Populate torch_dtype from model to pipeline

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* use property

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* lint

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* Remove default handling

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

---------

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
2024-03-25 10:46:40 +01:00
afe73aed54 Fix the behavior of collecting 'num_input_tokens_seen' (#29099)
fix the behavior of collecting 'num_input_tokens_seen'

See https://github.com/huggingface/transformers/issues/28791 for more details.
2024-03-25 10:43:46 +01:00
39114c0383 Remove static pretrained maps from the library's internals (#29112)
* [test_all] Remove static pretrained maps from the library's internals

* Deprecate archive maps instead of removing them

* Revert init changes

* [test_all] Deprecate instead of removing

* [test_all] PVT v2 support

* [test_all] Tests should all pass

* [test_all] Style

* Address review comments

* Update src/transformers/models/deprecated/_archive_maps.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/deprecated/_archive_maps.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* [test_all] trigger tests

* [test_all] LLAVA

* [test_all] Bad rebase

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-25 10:33:38 +01:00
76a33a1092 model_summary.md - Restore link to Harvard's Annotated Transformer. (#29702)
* model_summary.md - Add link to Harvard's Annotated Transformer.

* model_summary.md - slight wording change + capitalize name of the paper

* model_summary.md - moves the Annotated Transformer link in a praenthesis next to the link to the original paper (great idea, stevhliu!)

* model_summary.md - moves the Annotated Transformer link in a praenthesis next to the link to the original paper (commit pt. 2, accidentally removed "has" in pt. 1)
2024-03-23 18:29:39 -07:00
dafe370255 [DOCS] Fix typo for llava next docs (#29829)
Fix typo for llava next docs
2024-03-23 11:32:31 -07:00
c5f0288bc7 [SuperPoint] Fix doc example (#29816)
[SuperPoint] Fix doc example
2024-03-22 16:04:30 +00:00
7e1413d16a Complete security policy with mentions of remote code (#29707)
* Security policy

* Apply suggestions from code review

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>
Co-authored-by: Michelle Habonneau <83347449+Michellehbn@users.noreply.github.com>

* Update SECURITY.md

Co-authored-by: Diogo Teles Sant'Anna <diogoteles@google.com>

---------

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>
Co-authored-by: Michelle Habonneau <83347449+Michellehbn@users.noreply.github.com>
Co-authored-by: Diogo Teles Sant'Anna <diogoteles@google.com>
2024-03-22 14:13:18 +01:00
2e7cb46f85 [cleanup] vestiges of causal mask (#29806)
nit
2024-03-22 12:25:40 +00:00
884b2215c3 replaced concatenation to f-strings to improve readability and unify … (#29785)
replaced concatenation to f-strings to improve readability and unify with the rest code
2024-03-22 12:23:16 +00:00
34e07f4ba8 Generate: remove unused attributes in AssistedCandidateGenerator (#29787)
remove unused attrs
2024-03-22 12:20:32 +00:00
e85654f5ec rm input dtype change in CPU (#28631)
* rm input dtype change in CPU

* add warning when use CPU low-precision

* rm useless logging
2024-03-22 12:02:43 +00:00
13b23704a8 Correct llava mask & fix missing setter for vocab_size (#29389)
* correct llava mask

* fix vipllava as wlel

* mask out embedding for padding tokens

* add test

* fix style

* add setter

* fix test on suggestion
2024-03-22 19:57:08 +08:00
aa17cf986f Enable AMD docker build CI (#29803)
* enable amd ci

* remove unnecessary clean up
2024-03-22 11:56:47 +01:00
347916130c Fix type hint for train_dataset param of Trainer.__init__() to allow IterableDataset. Issue 29678 (#29738)
* Fixed typehint for train_dataset param in Trainer.__init__().  Added IterableDataset option.

* make fixup
2024-03-22 10:46:14 +00:00
e68ff30419 [quality] update quality check to make sure we check imports 😈 (#29771)
* update quality check

* make it nice

* update

* let's make sure it runs and we have the logs actually

* update workflow

* nits
2024-03-22 10:11:59 +01:00
fadb053379 Change in-place operations to out-of-place in LogitsProcessors (#29680)
* change in-place -> out-of-place

* add tests

* add more tests

* naming consistency

* fix doctest

* forgot min-length processors

* empty

* Revert "fix doctest"

This reverts commit 4772768457f9bc057f1d4d9d67ea94eb7224eb8d.

* revert change in docstring

* Update tests/generation/test_logits_process.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/generation/test_logits_process.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-21 16:37:33 +00:00
b469ebc5cf Prepend bos token to Blip generations (#29642)
* prepend "bos" to blip generation

* minor changes

* Update src/transformers/models/blip_2/modeling_blip_2.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/instructblip/modeling_instructblip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add generation tester mixin

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-21 16:33:18 +00:00
ee38fc31fb Llama: always convert the causal mask in the SDPA code path (#29663)
* always convert the mask

* rebase and fix copies
2024-03-21 16:30:18 +00:00
5ffef2a978 Generate: remove legacy generation mixin imports (#29782) 2024-03-21 16:28:25 +00:00
ef6e371dba Add support for torch_dtype in the run_mlm example (#29776)
feat: add support for torch_dtype

Co-authored-by: Jacky Lee <jackylee328@gmail.com>
2024-03-21 15:09:35 +00:00
10d232e88e Add deterministic config to set_seed (#29778)
* Add deterministic config

* Add note on slowdown

* English fails me again
2024-03-21 11:07:39 -04:00
f0bfb150fe Silence deprecations and use the DataLoaderConfig (#29779)
* Remove deprecations

* Clean
2024-03-21 10:26:51 -04:00
de627f5a14 Cast bfloat16 to float32 for Numpy conversions (#29755)
* Cast bfloat16 to float32 for Numpy conversions

* Add test
2024-03-21 14:04:11 +00:00
73a73b415e [LlavaNext] Fix llava next unsafe imports (#29773)
* path llava-next

* styling

* styling
2024-03-21 13:47:58 +01:00
2ddceef9a2 Fix docker image build for Latest PyTorch + TensorFlow [dev] (#29764)
* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-21 13:14:29 +01:00
fd734be1b6 fix issue with logit processor during beam search in Flax (#29636)
fix issue with logit processor in beam search in Flax
2024-03-21 11:27:03 +00:00
691c3d7325 Allow -OO mode for docstring_decorator (#29689)
Fixes
```
  File "/nix/store/rv8xdwghdad9jv2w86b8g08kan9l6ksm-python3.11-transformers-4.38.2/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py", line 987, in <module>
    class AutoConfig:
  File "/nix/store/rv8xdwghdad9jv2w86b8g08kan9l6ksm-python3.11-transformers-4.38.2/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py", line 1011, in AutoConfig
    @replace_list_option_in_docstrings()
     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/nix/store/rv8xdwghdad9jv2w86b8g08kan9l6ksm-python3.11-transformers-4.38.2/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py", line 966, in docstring_decorator
    lines = docstrings.split("\n")
            ^^^^^^^^^^^^^^^^
AttributeError: 'NoneType' object has no attribute 'split'
```
2024-03-21 11:18:17 +00:00
9556054fb2 OWL-ViT box_predictor inefficiency issue (#29712)
* Calculating box_bias at the start once, then reusing it at inference

* Updating the compute_box_bias function for backwards compatibility

* Caching compute_box_bias function

* Bux fix

* Update owlv2 accordingly to ensure repo consistency

* Co-authored by: nvbinh15 <binh.pdc01@gmail.com>

* Fixup changes

* Made copied code consistent

* Co-authored by: nvbinh15 <binh.pdc01@gmail.com>

---------

Co-authored-by: Nguyen Van Binh <>
Co-authored-by: Nguyen Van Binh <binh.pdc01@gmail.com>
2024-03-21 11:17:45 +00:00
0639034a26 Fixed typo in quantization_config.py (#29766)
Update quantization_config.py

Fixed typo for clarity and correctness.

previous: input time
current: input type
// changed time to type to fix the typo
2024-03-21 11:02:53 +00:00
5d1a58a646 [docs] Remove redundant - and the from custom_tools.md (#29767)
[docs] Remove redundant  and  from custom_tools.md
2024-03-21 10:56:40 +00:00
ff841900e4 [BC 4.37 -> 4.38] for Llama family, memory and speed (#29753)
* attempt to fix

* the actual fix that works with compilation!

* this?

* temporary update

* nit?

* dispatcg to memory efficient?

* update both models that have static cache support

* fix copies fix compile

* make sure fix

* fix cohere and gemma

* fix beams?

* nit

* slipped through the cracks

* nit

* nits

* update

* fix-copies

* skip failing tests

* nits
2024-03-20 23:47:01 +01:00
8dd4ce6f2c [BitsAndBytesConfig] Warning for unused kwargs & safety checkers for load_in_4bit and load_in_8bit (#29761)
* added safety checkers for load_in_4bit and load_in_8bit on init, as well as their setters

* Update src/transformers/utils/quantization_config.py

typo correction for load_in_8bit setter checks

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-03-20 18:37:28 +00:00
17e4467f0e Fix docker image build (#29762)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-20 19:17:26 +01:00
c78f57729f Update test reqs to include sentencepiece (#29756)
* Update test reqs

* Clean
2024-03-20 15:53:42 +00:00
d91fd7f92c Add LLaVa-1.6, bis (#29586)
* First draft

* Fix tests, add docs

* Improve docstrings

* Fix test

* Address comments

* Address comments

* Remove vocab_size attribute

* Remove batch_size

* Address comment

* Add image processor tests

* Support fx

* Update docstring

* Add support for 34b

* Convert 34b model

* Add integration tests

* Update checkpoints

* Convert vicuna-13b, remove doc tests

* Remove script

* Remove file

* Address comments

* Improve docstrings

* Deprecate vocab_size

* Remove aspect_ratio_setting

* Address comments

* Update READMEs

* Add tips about chat templates

* Fix tests

* Deprecate vocab_size safely

* Update tests

---------

Co-authored-by: Amy Roberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-20 15:51:12 +00:00
9d999481b2 Add correct batched handling for apply_chat_template (#29222)
* Add correct batched handling for apply_chat_template

* Fix warning method

* Add error for incompatible options

* expand tests

* Add a skip for markuplm

* Add skips for other layout models

* Skip for LayoutLMv2

* Slightly update the warning message

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* typo fix

* Update docstring for conversation kwarg

* Update return docstring

* Remove the warning, improve error message

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/test_tokenization_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/test_tokenization_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove return_dict=None

* Fix up some merge cruft

* More merge cruft

* Add another skip

* Add another skip

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-20 15:50:22 +00:00
3c17c529cc SuperPointModel -> SuperPointForKeypointDetection (#29757) 2024-03-20 15:41:03 +00:00
1248f09252 v4.40.0.dev.0 2024-03-20 23:31:47 +09:00
11ef35e828 Support sharded safetensors in TF (#29350)
* Initial commit (still lots of unfinished bits)

* (Still untested) add safetensors sharding to save_pretrained

* Fix savetensors saving, update default shard size to match PT

* Add proper loading of TF-format safetensors

* Revert default size in case that changes things

* Fix incorrect index name

* Update loading priority

* Update tests

* Make the tests a little more stringent

* Expand tests

* Add sharded cross-test

* Fix argument name

* One more test fix

* Adding mlx to the list of allowed formats

* Remove irrelevant block for safetensors

* Refactor warning logging into a separate function

* Remove unused skip_logger_warnings arg

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Move function def

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-20 14:22:35 +00:00
870bbb4c6b fix jinja2 package version check (#29754) 2024-03-20 13:51:16 +00:00
76b3b20fb2 Update Mamba types and pass through use_cache attr to MambaModel (#29605)
* Update docstring for RMSNorm

* Update cache_params object to correct MambaCache type

* Update docstrings and type info

* Pass through use_cache

* ruff

* Reformat with 119 char limit per line (thanks Arthur)

* Pass through use_cache specifically to the backbone rather than all keyword arguments

* Update src/transformers/models/mamba/modeling_mamba.py

* Update src/transformers/models/mamba/modeling_mamba.py

* Update src/transformers/models/mamba/modeling_mamba.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/mamba/modeling_mamba.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tab

* Update src/transformers/models/mamba/modeling_mamba.py

* Update src/transformers/models/mamba/modeling_mamba.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-20 13:53:22 +01:00
776c9d3af8 [Tests] Remove unused code (#29737)
Remove unused code
2024-03-20 13:26:00 +01:00
a1a7454107 fix galore layerwise with frozen params (#29743) 2024-03-20 11:06:52 +01:00
8692aa88e2 fixed the issue of DPO trainer that using one node and mutiple GPUs and set the device_map='auto' (#29695)
* fixed the issue of DPO trainer that using one node and mutiple GPUs

* before update, add the assert

* run the ruff formatter

* Update src/transformers/trainer.py

Thank you.

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* remember to do make style and make quality before commit

* Update src/transformers/trainer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-20 10:05:28 +00:00
243d0de997 Larger runner on CircleCI (#29750)
larger runner

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-20 10:02:11 +01:00
1a5c500f12 Tests: Musicgen tests + make fix-copies (#29734)
* make fix-copies

* some tests fixed

* tests fixed
2024-03-20 08:45:53 +01:00
66ce9593fd Fix check_copies not capturing the diff in model/paper title and link (#29724)
* fix

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-19 18:52:36 +01:00
4294f0c358 Llama: partial 4d masks (#29731)
* partial 4d masks

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-19 17:32:01 +00:00
425ba56cdf Clean-up generation tests after moving methods to private (#29582)
* clean-up tests

* refine comments

* fix musicgen tests

* make style

* remove slow decorator from a test

* more clean-up

* fix other failing tests
2024-03-19 17:03:31 +00:00
56baa03380 Implementation of SuperPoint and AutoModelForKeypointDetection (#28966)
* Added SuperPoint docs

* Added tests

* Removed commented part

* Commit to create and fix add_superpoint branch with a new branch

* Fixed dummy_pt_objects

* Committed missing files

* Fixed README.md

* Apply suggestions from code review

Fixed small changes

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Moved ImagePointDescriptionOutput from modeling_outputs.py to modeling_superpoint.py

* Removed AutoModelForKeypointDetection and related stuff

* Fixed inconsistencies in image_processing_superpoint.py

* Moved infer_on_model logic simply in test_inference

* Fixed bugs, added labels to forward method with checks whether it is properly a None value, also added tests about this logic in test_modeling_superpoint.py

* Added tests to SuperPointImageProcessor to ensure that images are properly converted to grayscale

* Removed remaining mentions of MODEL_FOR_KEYPOINT_DETECTION_MAPPING

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fixed from (w, h) to (h, w) as input for tests

* Removed unnecessary condition

* Moved last_hidden_state to be the first returned

* Moved last_hidden_state to be the first returned (bis)

* Moved last_hidden_state to be the first returned (ter)

* Switched image_width and image_height in tests to match recent changes

* Added config as first SuperPointConvBlock init argument

* Reordered README's after merge

* Added missing first config argument to SuperPointConvBlock instantiations

* Removed formatting error

* Added SuperPoint to README's de, pt-br, ru, te and vi

* Checked out README_fr.md

* Fixed README_fr.md

* Test fix README_fr.md

* Test fix README_fr.md

* Last make fix-copies !

* Updated checkpoint path

* Removed unused SuperPoint doc

* Added missing image

* Update src/transformers/models/superpoint/modeling_superpoint.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Removed unnecessary import

* Update src/transformers/models/superpoint/modeling_superpoint.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Added SuperPoint to _toctree.yml

---------

Co-authored-by: steven <steven.bucaillle@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Steven Bucaille <steven.bucaille@buawei.com>
2024-03-19 14:43:02 +00:00
2f9a3edbb9 [GemmaConverter] use user_defined_symbols (#29473)
* use user_defined_symbols

* fixup

* nit

* add a very robust test

* make sure all models are tested with the `pretrained_tokenizer_to_test`

* should we make sure we test all of them?

* merge

* remove the id

* fix test

* update

* ousies

* oups

* fixup

* fix copies check

* remove `pretrained_tokenizer_to_test`
2024-03-19 15:13:56 +01:00
8e2fc52ea3 [Gemma] final fixes to the modeling (#29729)
* gelu_pytorch_tanh

* Force config.hidden_act to be approx gelu

* Gemma bug fixes

* force_use_exact_gelu

* Update configuration_gemma.py

* Update modeling_gemma.py

* update

* update for simpler handling

* nit

* nit

* fixpup

* update

* also update the jax modeling!

* add `"gelu_pytorch_tanh": partial(nn.gelu, approximate=True),`

* fixup

* fix order

* act vs act_fn

---------

Co-authored-by: Daniel Han <danielhanchen@gmail.com>
2024-03-19 14:47:42 +01:00
229ac72b1e [tests] add more tests to NOT_DEVICE_TESTS (#29670)
* add more tests

* remove 2 tests

* add more tests
2024-03-19 12:44:30 +00:00
f6261d7d81 FEAT / Optim: Add GaLore optimizer (#29588)
* add galore v1

* add import

* add tests and doc

* fix doctest

* forward contrib credits from discussions

* forward contrib credits from discussions

* Apply suggestions from code review

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* fix failing tests'

* switch to `optim_target_modules` and clarify docs

* more clarification

* enhance lookup logic

* update a test to add peak memory

* add regex, all-linear and single string support

* add layer-wise optimization through DummyOptimizers and LRSchedulers

* forward contrib credits from discussions and original idea

* add a section about DDP not supported in layerwise

* Update src/transformers/trainer.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* fix self

* check only if layer_wise

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* oops

* make use of intervals

* clarify comment

* add matching tests

* GaLoRe -> GaLore

* move to `get_scheduler`

* add note on docs

* add a warning

* adapt a bit the docs

* update docstring

* support original API

* Update docs/source/en/trainer.md

* slightly refactor

* Update docs/source/en/trainer.md

Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix args parsing and add tests

* remove warning for regex

* fix type hint

* add note about extra args

* make `is_regex` return optional

---------

Co-authored-by: Maxime <maximegmd @users.noreply.github.com>
Co-authored-by: Wing Lian <winglian @users.noreply.github.com>
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: hiyouga <hiyouga@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
2024-03-19 11:40:23 +01:00
484e10f7f2 Use logging.warning instead of warnings.warn in pipeline.__call__ (#29717)
* Use logging.warning instead of warnings.warn in pipeline.__call__

* Update src/transformers/pipelines/base.py
2024-03-19 09:23:22 +00:00
838b87abe2 Update the pipeline tutorial to include gradio.Interface.from_pipeline (#29684)
* Update pipeline_tutorial.md to include gradio

* Update pipeline_tutorial.md

* Update docs/source/en/pipeline_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/pipeline_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/pipeline_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/pipeline_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update pipeline_tutorial.md

* Update docs/source/en/pipeline_tutorial.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-18 09:17:41 -07:00
c852d4fba6 FIX [bnb] Make unexpected_keys optional (#29420)
* make `unexpected_keys` optional

* push

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-18 15:50:56 +01:00
87e2ea33aa Fix filter_models (#29710)
* update

* update

* update

* check

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-18 14:32:42 +01:00
c43b380e70 Add MusicGen Melody (#28819)
* first modeling code

* make repository

* still WIP

* update model

* add tests

* add latest change

* clean docstrings and copied from

* update docstrings md and readme

* correct chroma function

* correct copied from and remove unreleated test

* add doc to toctree

* correct imports

* add convert script to notdoctested

* Add suggestion from Sanchit

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* correct get_uncoditional_inputs docstrings

* modify README according to SANCHIT feedback

* add chroma to audio utils

* clean librosa and torchaudio hard dependencies

* fix FE

* refactor audio decoder -> audio encoder for consistency with previous musicgen

* refactor conditional -> encoder

* modify sampling rate logics

* modify license at the beginning

* refactor all_self_attns->all_attentions

* remove ignore copy from causallm generate

* add copied from for from_sub_models

* fix make copies

* add warning if audio is truncated

* add copied from where relevant

* remove artefact

* fix convert script

* fix torchaudio and FE

* modify chroma method according to feedback-> better naming

* refactor input_values->input_features

* refactor input_values->input_features and fix import fe

* add input_features to docstrigs

* correct inputs_embeds logics

* remove dtype conversion

* refactor _prepare_conditional_hidden_states_kwargs_for_generation ->_prepare_encoder_hidden_states_kwargs_for_generation

* change warning for chroma length

* Update src/transformers/models/musicgen_melody/convert_musicgen_melody_transformers.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* change way to save wav, using soundfile

* correct docs and change to soundfile

* fix import

* fix init proj layers

* remove line breaks from md

* fix issue with docstrings

* add FE suggestions

* improve is in logics and remove useless imports

* remove custom from_pretrained

* simplify docstring code

* add suggestions for modeling tests

* make style

* update converting script with sanity check

* remove encoder attention mask from conditional generation

* replace musicgen melody checkpoints with official orga

* rename ylacombe->facebook in checkpoints

* fix copies

* remove unecessary warning

* add shape in code docstrings

* add files to slow doc tests

* fix md bug and add md to not_tested

* make fix-copies

* fix hidden states test and batching

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-03-18 13:06:12 +00:00
bf3dfd1160 CI / generate: batch size computation compatible with all models (#29671) 2024-03-18 11:36:00 +00:00
00c1d87a7d [docs] Spanish translation of attention.md (#29681)
* add attention to es/ and edit es/_toctree.yml

* translate attention.md

* fix transformers

* fix transformers
2024-03-15 11:55:35 -07:00
5011908e10 Revert "Fix wrong condition used in filter_models" (#29682)
Revert "Fix wrong condition used in `filter_models` (#29673)"

This reverts commit 174aecd099764920cf173703961d99d814fe9a75.
2024-03-15 18:59:37 +01:00
4e98d59443 [FIX] Fix speech2test modeling tests (#29672)
* fix speech_to_test generation tests

* Add details to comment

* Update tests/models/speech_to_text/test_modeling_speech_to_text.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-15 17:58:11 +00:00
9e4df7c424 Generate: replace breaks by a loop condition (#29662)
* replace breaks by a loop condition

* Update src/transformers/generation/utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-15 17:49:41 +00:00
28de2f4de3 [Quantization] Quanto quantizer (#29023)
* start integration

* fix

* add and debug tests

* update tests

* make pytorch serialization works

* compatible with device_map and offload

* fix tests

* make style

* add ref

* guard against safetensors

* add float8 and style

* fix is_serializable

* Fix shard_checkpoint compatibility with quanto

* more tests

* docs

* adjust memory

* better

* style

* pass tests

* Update src/transformers/modeling_utils.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* add is_safe_serialization instead

* Update src/transformers/quantizers/quantizer_quanto.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* add QbitsTensor tests

* fix tests

* simplify activation list

* Update docs/source/en/quantization.md

Co-authored-by: David Corvoysier <david.corvoysier@gmail.com>

* better comment

* Update tests/quantization/quanto_integration/test_quanto.py

Co-authored-by: David Corvoysier <david.corvoysier@gmail.com>

* Update tests/quantization/quanto_integration/test_quanto.py

Co-authored-by: David Corvoysier <david.corvoysier@gmail.com>

* find and fix edge case

* Update docs/source/en/quantization.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* pass weights_only_kwarg instead

* fix shard_checkpoint loading

* simplify update_missing_keys

* Update tests/quantization/quanto_integration/test_quanto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* recursion to get all tensors

* block serialization

* skip serialization tests

* fix

* change by cuda:0 for now

* fix regression

* update device_map

* fix doc

* add noteboon

* update torch_dtype

* update doc

* typo

* typo

* remove comm

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: David Corvoysier <david.corvoysier@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Younes Belkada <younesbelkada@gmail.com>
2024-03-15 11:51:29 -04:00
f02aea2737 Rename glue to nyu-mll/glue (#29679)
* Update run_glue.py

* Update run_glue.py

* Update run_glue_no_trainer.py
2024-03-15 16:35:02 +01:00
03847ef451 fix: typos (#29653)
Signed-off-by: guoguangwu <guoguangwug@gmail.com>
2024-03-15 15:02:50 +00:00
174aecd099 Fix wrong condition used in filter_models (#29673)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-15 15:38:36 +01:00
272f48e734 [tests] ensure device-required software is available in the testing environment before testing (#29477)
* gix

* fix style

* add warning

* revert

* no newline

* revert

* revert

* add CUDA as well
2024-03-15 14:28:52 +00:00
8a3cfaac0d Fix AutoformerForPrediction example code (#29639)
Removed static_real_features from AutoformerForPrediction example code

Signed-off-by: Maciej Torhan <maciek97x@gmail.com>
2024-03-15 14:21:47 +00:00
c1993e68b8 [tests] remove deprecated tests for model loading (#29450)
* gix

* fix style

* remove equivalent tests

* add back for image_processor

* remove again
2024-03-15 14:18:41 +00:00
0e4a1c3401 Cohere Model Release (#29622)
* Cohere Model Release (#1)

Cohere Model Release

* Remove unnecessary files and code (#2)

Some cleanup

* Delete cohere-model directory (#3)

* Make Fix (#5)

* Pr fixes (#6)

* fixes for pr

* pr fixes for the format

* pr fixes for the format

* src/transformers/models/auto/tokenization_auto.py

* Tokenizer test (#8)

* tokenizer test

* format fix

* Adding Docs and other minor changes (#7)

* Add modeling tests (#9)

* Smol Fix (#11)

* tokenization tests are fixed

* format fixes

* fix pr doc tests

* fix pr doc tests

* fix pr doc tests

* fix pr style check

* small changes in cohere.md

* FIX: Address final comments for transformers integration (#13)

* fix modeling final nits and add proper test file

* for now leave empty tests

* add integration test

* push new test

* fix modeling cohere (#14)

* Update chat templates to use the new API (#15)

---------

Co-authored-by: ahmetustun <ahmetustun89@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2024-03-15 14:29:11 +01:00
53d891247b Pipeline: use tokenizer pad token at generation time if the model pad token is unset. (#29614) 2024-03-15 13:00:18 +00:00
c47fcd0830 Trainer: fail early in the presence of an unsavable generation_config (#29675) 2024-03-15 12:59:10 +00:00
f62407f788 Extend import utils to cover "editable" torch versions (#29000)
* Extend import utils to cover "editable" torch versions

* Re-add type hint

* Remove whitespaces

* Double quote strings

* Update comment

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Restore package_exists

* Revert "Restore package_exists"

This reverts commit 66fd2cd5c33d1b9a26a8f3e8adef2e6ec1214868.

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2024-03-15 12:34:48 +00:00
56b64bf1a5 Inaccurate code example within inline code-documentation (#29661)
* docs:inaccurate_code_example

* Inaccurate code example within inline code-documentation
2024-03-14 19:59:32 +00:00
48fbab7330 Allow apply_chat_template to pass kwargs to the template and support a dict of templates (#29658)
* Allow apply_chat_template to pass kwargs to the template

* Fix priority for template_kwargs

* Fix docstring

* style fix

* Add the option for the model to have a dict of templates

* Error message cleanup

* Add test for chat template dicts

* Simplify the chat template dict test and apply it to all tokenizers in self.get_tokenizers()

* Save chat template dicts as lists with fixed key names

* Add test for serialization/reloading

* Add require_jinja just to be safe, even though I don't think we use it
2024-03-14 18:23:14 +00:00
23db187d92 Generate: handle cache_position update in generate (#29467) 2024-03-14 16:35:31 +00:00
7b87ecb047 Fix PVT v2 tests (#29660)
* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-14 17:00:32 +01:00
2cc3cc835f Add dataset_revision argument to RagConfig (#29610)
* add arg

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-14 16:48:11 +01:00
956f44f11a Fix TPU checkpointing inside Trainer (#29657)
Manually call sync step
2024-03-14 15:43:16 +00:00
c9e3c0b454 [PEFT] Fix save_pretrained to make sure adapters weights are also saved on TPU (#29388)
* Fix for saving ad
apter weights when using PEFT

* Change supported-classes to PushToHubMixin
2024-03-14 11:30:19 +00:00
b4b96251cd Add newly added PVTv2 model to all README files. (#29647)
Add newly added models to all README files.

Also fix one relative path in README_ru.md.
2024-03-14 10:54:17 +00:00
f738ab3b5d [docs] Remove broken ChatML format link from chat_templating.md (#29643)
* remove ChatML link from en/

* remove ChatML link in ja/

* remove ChatML link in zh/
2024-03-13 13:04:51 -07:00
1fc505b816 Add PvT-v2 Model (#26812)
* Added pytests for pvt-v2, all passed

* Added pvt_v2 to docs/source/end/model_doc

* Ran fix-copies and fixup. All checks passed

* Added additional ReLU for linear attention mode

* pvt_v2_b2_linear converted and working

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* PvT-v2 now works in AutoModel

* Reverted batch eval changes for PR

* Expanded type support for Pvt-v2 config

* Fixed config docstring. Added channels property

* Fixed model names in tests

* Fixed config backbone compat. Added additional type support for image size in config

* Fixed config backbone compat

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* Set key and value layers to use separate linear modules. Fixed pruning function

* Set AvgPool to 7

* Fixed issue in init

* PvT-v2 now works in AutoModel

* Successful conversion of pretrained weights for PVT-v2

* Successful conversion of pretrained weights for PVT-v2 models

* Added pytests for pvt-v2, all passed

* Ran fix-copies and fixup. All checks passed

* Added additional ReLU for linear attention mode

* pvt_v2_b2_linear converted and working

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* Set key and value layers to use separate linear modules. Fixed pruning function

* Set AvgPool to 7

* Fixed issue in init

* PvT-v2 now works in AutoModel

* Successful conversion of pretrained weights for PVT-v2

* Successful conversion of pretrained weights for PVT-v2 models

* Added pytests for pvt-v2, all passed

* Ran fix-copies and fixup. All checks passed

* Added additional ReLU for linear attention mode

* pvt_v2_b2_linear converted and working

* Reverted batch eval changes for PR

* Updated index.md

* Expanded type support for Pvt-v2 config

* Fixed config docstring. Added channels property

* Fixed model names in tests

* Fixed config backbone compat

* Ran fix-copies

* Fixed PvtV2Backbone tests

* Added TFRegNet to OBJECTS_TO_IGNORE in check_docstrings.py

* Fixed backbone stuff and fixed tests: all passing

* Ran make fixup

* Made modifications for code checks

* Remove ONNX config from configuration_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Use explicit image size dict in test_modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Make image_size optional in test_modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove _ntuple use in modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove reference to fp16_enabled

* Model modules now take config as first argument even when not used

* Replaced abbreviations for "SR" and "AP" with explicit "spatialreduction" and "averagepooling"

* All LayerNorm now instantiates with config.layer_norm_eps

* Added docstring for depth-wise conv layer

* PvtV2Config now only takes Union[int, Tuple[int, int]] for image size

* Refactored PVTv2 in prep for gradient checkpointing

* Gradient checkpointing ready to test

* Removed override of _set_gradient_checkpointing

* Cleaned out old code

* Applied code fixup

* Applied code fixup

* Began debug of pvt_v2 tests

* Leave handling of num_labels to base pretrained config class

* Deactivated gradient checkpointing tests until it is fixed

* Removed PvtV2ImageProcessor which duped PvtImageProcessor

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* Set key and value layers to use separate linear modules. Fixed pruning function

* Set AvgPool to 7

* Fixed issue in init

* PvT-v2 now works in AutoModel

* Successful conversion of pretrained weights for PVT-v2

* Successful conversion of pretrained weights for PVT-v2 models

* Added pytests for pvt-v2, all passed

* Added pvt_v2 to docs/source/end/model_doc

* Ran fix-copies and fixup. All checks passed

* Added additional ReLU for linear attention mode

* pvt_v2_b2_linear converted and working

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* PvT-v2 now works in AutoModel

* Reverted batch eval changes for PR

* Expanded type support for Pvt-v2 config

* Fixed config docstring. Added channels property

* Fixed model names in tests

* Fixed config backbone compat. Added additional type support for image size in config

* Fixed config backbone compat

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* Set key and value layers to use separate linear modules. Fixed pruning function

* Set AvgPool to 7

* Fixed issue in init

* PvT-v2 now works in AutoModel

* Successful conversion of pretrained weights for PVT-v2

* Successful conversion of pretrained weights for PVT-v2 models

* Added pytests for pvt-v2, all passed

* Ran fix-copies and fixup. All checks passed

* Added additional ReLU for linear attention mode

* pvt_v2_b2_linear converted and working

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* Set key and value layers to use separate linear modules. Fixed pruning function

* Set AvgPool to 7

* Fixed issue in init

* PvT-v2 now works in AutoModel

* Successful conversion of pretrained weights for PVT-v2

* Successful conversion of pretrained weights for PVT-v2 models

* Added pytests for pvt-v2, all passed

* Ran fix-copies and fixup. All checks passed

* Added additional ReLU for linear attention mode

* pvt_v2_b2_linear converted and working

* Reverted batch eval changes for PR

* Expanded type support for Pvt-v2 config

* Fixed config docstring. Added channels property

* Fixed model names in tests

* Fixed config backbone compat

* Ran fix-copies

* Fixed PvtV2Backbone tests

* Added TFRegNet to OBJECTS_TO_IGNORE in check_docstrings.py

* Fixed backbone stuff and fixed tests: all passing

* Ran make fixup

* Made modifications for code checks

* Remove ONNX config from configuration_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Use explicit image size dict in test_modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Make image_size optional in test_modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove _ntuple use in modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove reference to fp16_enabled

* Model modules now take config as first argument even when not used

* Replaced abbreviations for "SR" and "AP" with explicit "spatialreduction" and "averagepooling"

* All LayerNorm now instantiates with config.layer_norm_eps

* Added docstring for depth-wise conv layer

* PvtV2Config now only takes Union[int, Tuple[int, int]] for image size

* Refactored PVTv2 in prep for gradient checkpointing

* Gradient checkpointing ready to test

* Removed override of _set_gradient_checkpointing

* Cleaned out old code

* Applied code fixup

* Applied code fixup

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* PvT-v2 now works in AutoModel

* Ran fix-copies and fixup. All checks passed

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* PvT-v2 now works in AutoModel

* Reverted batch eval changes for PR

* Fixed config docstring. Added channels property

* Fixed config backbone compat

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* PvT-v2 now works in AutoModel

* Ran fix-copies and fixup. All checks passed

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* PvT-v2 now works in AutoModel

* Fixed config backbone compat

* Ran fix-copies

* Began debug of pvt_v2 tests

* Leave handling of num_labels to base pretrained config class

* Deactivated gradient checkpointing tests until it is fixed

* Removed PvtV2ImageProcessor which duped PvtImageProcessor

* Fixed issue from rebase

* Fixed issue from rebase

* Set tests for gradient checkpointing to skip those using reentrant since it isn't supported

* Fixed issue from rebase

* Fixed issue from rebase

* Changed model name in docs

* Removed duplicate PvtV2Backbone

* Work around type switching issue in tests

* Fix model name in config comments

* Update docs/source/en/model_doc/pvt_v2.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Changed name of variable from 'attn_reduce' to 'sr_type'

* Changed name of variable from 'attn_reduce' to 'sr_type'

* Changed from using 'sr_type' to 'linear_attention' for clarity

* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py

Removed old code

* Changed from using 'sr_type' to 'linear_attention' for clarity

* Fixed Class names to be more descriptive

* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py

Removed outdated code

* Moved paper abstract to single line in pvt_v2.md

* Added usage tips to pvt_v2.md

* Simplified module inits by passing layer_idx

* Fixed typing for hidden_act in PvtV2Config

* Removed unusued import

* Add pvt_v2 to docs/source/en/_toctree.yml

* Updated documentation in docs/source/en/model_doc/pvt_v2.md to be more comprehensive.

* Updated documentation in docs/source/en/model_doc/pvt_v2.md to be more comprehensive.

* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py

Move function parameters to single line

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py

Update year of copyright to 2024

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py

Make code more explicit

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Updated sr_ratio to be more explicit spatial_reduction_ratio

* Removed excess type hints in modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Move params to single line in modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Removed needless comment in modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update copyright date in pvt_v2.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Moved params to single line in modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Updated copyright date in configuration_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Cleaned comments in modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Renamed spatial_reduction Conv2D operation

* Revert "Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
"

This reverts commit c4a04416dde8f3475ab405d1feb368600e0f8538.

* Updated conversion script to reflect module name change

* Deprecated reshape_last_stage option in config

* Removed unused imports

* Code formatting

* Fixed outdated decorators on test_inference_fp16

* Added "Copied from" comments in test_modeling_pvt_v2.py

* Fixed import listing

* Updated model name

* Force empty commit for PR refresh

* Fixed linting issue

* Removed # Copied from comments

* Added PVTv2 to README_fr.md

* Ran make fix-copies

* Replace all FoamoftheSea hub references with OpenGVLab

* Fixed out_indices and out_features logic in configuration_pvt_v2.py

* Made ImageNet weight conversion verification optional in convert_pvt_v2_to_pytorch.py

* Ran code fixup

* Fixed order of parent classes in PvtV2Config to fix the to_dict method override

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-13 19:05:20 +00:00
fe085560d0 Fix multi_gpu_data_parallel_forward for MusicgenTest (#29632)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-13 19:12:20 +01:00
5ac264d8a8 Fix batching tests for new models (Mamba and SegGPT) (#29633)
* fix batchinng tests for new models

* Update tests/models/seggpt/test_modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-13 17:52:49 +00:00
31d01150ad Refactor TFP call to just sigmoid() (#29641)
* Refactor TFP call to just sigmoid()

* Make sure we cast to the right dtype
2024-03-13 17:51:13 +00:00
a7e5e15472 [tests] make test_trainer_log_level_replica to run on accelerators with more than 2 devices (#29609)
add new arg
2024-03-13 17:44:35 +00:00
3b6e95ec7f [Mask2Former] Move normalization for numerical stability (#29542)
* Move normalization for numerical stability

* Apply suggestions from code review

Remove useless x=x line

* PR comment - normalize later to preserve var name meaning
2024-03-13 16:40:14 +00:00
350c5d1566 Add support for FSDP+QLoRA and DeepSpeed ZeRO3+QLoRA (#29587)
* fsdp+qlora related changes

* fixes

* Update quantization_config.py

* support fsdp+qlora and dsz3+qlora

* Update quantization_config.py

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* handle fsdp+qlora and dsz3+qlora correctly while model loading

* fix param count

* quality

* fsdp related changes

* fsdp changes only when using LoRA/QLoRA

* add accelerate version check

* refactor, update min accelerate version and add tests

1. Update minimum accelerate version to 0.26.0
2. Clean the trainer wrt accelerate version checks
3. FSDP refactor and test for fsdp config
4. use `itemsize` instead of `dtype2bytes` dict

* fix test

* Address comments

Co-Authored-By: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* fix the conditional flag

* fix conditional flag

* address comments

Co-Authored-By: Zach Mueller <7831895+muellerzr@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Zach Mueller <7831895+muellerzr@users.noreply.github.com>
2024-03-13 22:03:02 +05:30
d3801aae2e [docs] Spanish translate chat_templating.md & yml addition (#29559)
* torchscript and trainer md es translation

* corrected md es files and even corrected spelling in en md

* made es corrections to trainer.md

* deleted entrenamiento... title on yml

* placed entrenamiento in right place

* translated es chat_templating.md w/ yml addition

* requested es changes to md and yml

* last es changes to md
2024-03-13 09:28:11 -07:00
b340d90738 [PyTorch/XLA] Fix extra TPU compilations introduced by recent changes (#29158)
* tmp

* Remove debug step

* Fix a typo

* Move to is_torch_xla_available
2024-03-13 15:30:32 +00:00
1e21c4fbe0 Llama: allow custom 4d masks (#29618) 2024-03-13 15:07:52 +00:00
88a4f68fe5 [MaskFormer, Mask2Former] Use einsum where possible (#29544)
* Use einsum where possible

* Fix
2024-03-13 14:52:37 +00:00
624788570c Fix minor typo: infenrece => inference (#29621) 2024-03-13 14:49:09 +00:00
fafe90930d [generate] deprecate forced ids processor (#29487)
* [generate] deprecate forced ids processor

* add todo

* make message clearer
2024-03-13 20:10:02 +05:30
11bbb505c7 Adds pretrained IDs directly in the tests (#29534)
* Adds pretrained IDs directly in the tests

* Fix tests

* Fix tests

* Review!
2024-03-13 14:53:27 +01:00
38bff8c84f Warn about tool use (#29628)
* Warn against remote tool use

* Additional disclaimer

* Update docs/source/en/custom_tools.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-13 14:53:13 +01:00
4afead8a1c [Whisper] Deprecate forced ids for v4.39 (#29485)
deprecate old funcs
2024-03-13 19:14:19 +05:30
9acce7de1c Core: Fix copies on main (#29624)
fix fix copies
2024-03-13 09:16:59 +01:00
be3fd8a262 [Flash Attention 2] Add flash attention 2 for GPT-J (#28295)
* initial implementation of flash attention for gptj

* modify flash attention and overwrite test_flash_attn_2_generate_padding_right

* update flash attention support list

* remove the copy line in the `CodeGenBlock`

* address copy mechanism

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add GPTJ attention classes

* add expected outputs in the gptj test

* Ensure repo consistency with 'make fix-copies'

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-13 08:43:00 +01:00
d522afea13 [Gemma] Supports converting directly in half-precision (#29529)
* Update convert_gemma_weights_to_hf.py

* Update src/transformers/models/gemma/convert_gemma_weights_to_hf.py

* fixup
2024-03-12 22:44:49 +01:00
d47966536c Examples: check max_position_embeddings in the translation example (#29600)
check max_position_embeddings
2024-03-12 18:58:12 +00:00
6b660d5ed5 Fix: handle logging of scalars in Weights & Biases summary (#29612)
fix: handle logging of scalars in wandb summary

fixes:  #29430
2024-03-12 18:26:09 +00:00
8e64ba2890 Add tests for batching support (#29297)
* add tests for batching support

* Update src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/test_modeling_common.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/test_modeling_common.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/test_modeling_common.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* fixes and comments

* use cosine distance for conv models

* skip mra model testing

* Update tests/models/vilt/test_modeling_vilt.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* finzalize  and make style

* check model type by input names

* Update tests/models/vilt/test_modeling_vilt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fixed batch size for all testers

* Revert "fixed batch size for all testers"

This reverts commit 525f3a0a058f069fbda00352cf202b728d40df99.

* add batch_size for all testers

* dict from model output

* do not skip layoutlm

* bring back some code from git revert

* Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* clean-up

* where did minus go in tolerance

* make whisper happy

* deal with consequences of losing minus

* deal with consequences of losing minus

* maskformer needs its own test for happiness

* fix more models

* tag flaky CV models from Amy's approval

* make codestyle

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-12 17:46:19 +00:00
11163fff58 Fix typo ; Update quantization.md (#29615)
Update quantization.md
2024-03-12 16:32:50 +00:00
a15bd3af4e Update flava tests (#29611)
* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-12 17:04:53 +01:00
df1542581e Set env var to hold Keras at Keras 2 (#29598)
* Set env var to hold Keras at Keras 2

* Add Amy's update

* make fixup

* Use a warning instead
2024-03-12 13:49:57 +00:00
b6404866cd Update legacy Repository usage in various example files (#29085)
* Update legacy Repository usage in `examples/pytorch/text-classification/run_glue_no_trainer.py`

Marked for deprecation here https://huggingface.co/docs/huggingface_hub/guides/upload#legacy-upload-files-with-git-lfs

* Fix import order

* Replace all example usage of deprecated Repository

* Fix remaining repo call and rename args variable

* Revert removing creation of gitignore files and don't change research examples
2024-03-12 13:20:49 +00:00
f1a565a39f Implemented add_pooling_layer arg to TFBertModel (#29603)
Implemented add_pooling_layer argument
2024-03-12 13:01:55 +00:00
50ec493363 Fix typo (determine) (#29606)
* Fix type (determine)

* ruff

* Update src/transformers/models/mamba/configuration_mamba.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-12 12:56:51 +00:00
81ec8028f9 Stop passing None to compile() in TF examples (#29597)
* Fix examples to stop passing None to compile(), rework example invocation for run_text_classification.py

* Add Amy's fix
2024-03-12 12:22:29 +00:00
73efe896df Fix minor typo: softare => software (#29602) 2024-03-12 10:39:56 +00:00
6cc5411d81 Fix Fuyu doc typos (#29601)
fix fuyu docs
2024-03-12 10:16:21 +00:00
b382a09e28 Experimental loading of MLX files (#29511)
* Experimental loading of MLX files

* Update exception message

* Add test

* Style

* Use model from hf-internal-testing
2024-03-11 18:42:06 +00:00
73a27345d4 Tiny improvement for doc (#29581)
* Update add_new_model.md

* Update docs/source/en/add_new_model.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-11 17:43:35 +00:00
b45c0f55e0 Fixed broken link (#29558)
Fixed broken link for Resources -> Token Classification -> Finetuning BERT for named-entity
2024-03-11 17:26:38 +00:00
c1e478aa7f Add missing localized READMEs to the copies check (#29575)
* Add missing localized READMEs to the copies check

* Run check to resolve all inconsistencies
2024-03-11 17:17:42 +00:00
47c9570903 fix error: TypeError: Object of type Tensor is not JSON serializable … (#29568)
fix error: TypeError: Object of type Tensor is not JSON serializable trainer

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-03-11 17:15:36 +00:00
e5eb55b88b Don't use a subset in test fetcher if on main branch (#28816)
save ci life

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-11 16:58:06 +01:00
dd1c905215 [Docs] Fix FastSpeech2Conformer model doc links (#29574)
[Docs] Fix FastSpeech2Conformer links
2024-03-11 14:14:03 +00:00
873d9bb3cc Make torch xla available on GPU (#29334)
* add USE_TORCH_XLA env

* rename torch_tpu to torch_xla

* better is_torch_xla_available; fix some fsdp and performance issues

* fix format

* fix bug when pjrt_device is cpu

* fix bug

* fix the deprecation handling

---------

Co-authored-by: anw90 <ang868@gmail.com>
Co-authored-by: wangang.wa <wangang.wa@alibaba-inc.com>
2024-03-11 14:07:16 +00:00
9a3f4d4daf Bark model Flash Attention 2 Enabling to pass on check_device_map parameter to super() (#29357)
* Fixing error #29332. The _check_and_enable_flash_attn_2() method receives a check_device_map parameter and fails.

* style fixup
2024-03-11 12:44:12 +00:00
6d67837f06 Add Fill-in-the-middle training objective example - PyTorch (#27464)
* add: initial script to train clm fim

* fix: if training model from scratch, new tokens will be added and embeddings resized

* fix: fixed attention_mask errors when generating FIM data

* fix: file formatted using black

* add: run_fim_no_trainer.py and fixed some comments in run_fim.py

* add: added fim examples to the README.md and ran code fixup

* fix: little bug in both fim training scripts

* fix: remove comment from notebook and added a note on fim related params

* fix: minor typo in README

* add: suggested minor changes to README and run_fim.py

* add: gradient_accumulation_steps and gradient_checkpointing args

* add: improved model embedding resizing

* add: pad_to_multiple_of and attn_implementation params

* add: requested minor changes

* add: deepspeed zero compatibility

* add: resize embeddings layer with zero3 support for fim model initialization
2024-03-11 12:14:02 +00:00
d80c9a3497 [Docs] fixed minor typo (#29555) 2024-03-11 11:05:16 +00:00
4f27ee936a [Mamba doc] Post merge updates (#29472)
* post merge update

* nit

* oups
2024-03-11 09:46:24 +01:00
0290ec19c9 feat: use warning_advice for tensorflow warning (#29540)
feat: use `warning_advice` instead of tensorflow warning
2024-03-08 17:27:30 +00:00
469c13280d Fix eval thread fork bomb (#29538)
* Fix eval thread fork bomb

* Keep eval dl persistent and prepare after so free_memory doesn't destroy it

* Add note

* Quality
2024-03-08 11:04:18 -05:00
3f6973db06 [tests] use the correct n_gpu in TrainerIntegrationTest::test_train_and_eval_dataloaders for XPU (#29307)
* fix n_gpu

* fix style
2024-03-08 10:52:25 -05:00
1ba89dc2d2 Fix WhisperNoSpeechDetection when input is full silence (#29065)
fix total silence input with no_speech_threshold
2024-03-08 14:31:05 +00:00
697f05bab3 fix typos in FSDP config parsing logic in TrainingArguments (#29189)
fix FSDP config
2024-03-08 08:36:30 -05:00
608fa5496c Make sliding window size inclusive in eager attention (#29519)
* Make sliding window size inclusive in eager attention

* Fix tests
2024-03-08 12:53:17 +00:00
f386c51ad9 StableLM: Fix dropout argument type error (#29236)
* fix stablelm dropout argument type error

* fix docs of _flash_attention_forward

* fix all docs of _flash_attention_forward

* fix docs of _flash_attention_forward in starcoder2

---------

Co-authored-by: oliang <oliang@tencent.com>
2024-03-08 11:58:25 +00:00
1ea3ad1aec [tests] use torch_device instead of auto for model testing (#29531)
* use torch_device

* skip for XPU

* Update tests/generation/test_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-08 11:21:43 +00:00
14536c339a Typo fix in error message (#29535) 2024-03-08 11:20:31 +00:00
8ee1d47203 fix image-to-text batch incorrect output issue (#29342)
* fix image-to-text batch incorrect output issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add ci test

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>

* update ci test

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
2024-03-08 11:11:10 +00:00
8e589c83b6 [tests] add the missing require_sacremoses decorator (#29504)
* add sacremoses check

* fix style

* for FlaubertTokenizer

* HerbertTokenizer fix

* add typeHint

* Update src/transformers/testing_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make less skipped

* make quality

* remove import

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-08 10:13:54 +00:00
bc764f4263 Generate: left-padding test, revisited (#29515)
* left-padding test revisited

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-08 10:06:46 +00:00
631fa7bf6b Typo in mlx tensor support (#29509)
Potential typo in mlx support
2024-03-08 09:47:44 +00:00
b338a6c3b8 Fix VisionEncoderDecoder Positional Arg (#29497)
* 🐛 Fix vision encoder decoder positional arg

*  Add test for VisionEncoderDecoder with LayoutLMv3 encoder

---------

Co-authored-by: Nick DeGroot <1966472+nickthegroot@users.noreply.github.com>
2024-03-07 20:45:51 +00:00
ddf177ee4a Set inputs as kwarg in TextClassificationPipeline (#29495)
* Set `inputs` as kwarg in `TextClassificationPipeline`

This change has been done to align the `TextClassificationPipeline` with the rest of the pipelines, and to be able to e.g. `pipeline(**{"inputs": "text"})` which wouldn't be possible since the `*args` were being used instead.

* Add `noqa: C409` on `tuple([inputs],)`

Even though is discouraged by the linter, the cast `tuple(list(...),)` is required here, as otherwise the original list in `inputs` will be transformed into a `tuple` and the elements 1...N will be ignored by the `Pipeline`

* Run `ruff format`

* Simplify `tuple` conversion with `(inputs,)`

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2024-03-07 20:43:57 +00:00
4ed9ae623d test_generation_config_is_loaded_with_model - fall back to pytorch model for now (#29521)
* Fall back to pytorch model for now

* Fix up
2024-03-07 17:30:28 +00:00
45c0651090 Add support for metadata format MLX (#29335)
Add support for loading safetensors files saved with metadata format mlx.
2024-03-07 14:51:59 +01:00
923733c22b Flava multimodal add attention mask (#29446)
* flava multimodal add attn mask

* make style

* check mask is not None
2024-03-07 12:45:47 +01:00
9288e759ad fix: Avoid error when fsdp_config is missing xla_fsdp_v2 (#29480)
Signed-off-by: Ashok Pon Kumar Sree Prakash <ashokponkumar@gmail.com>
2024-03-07 12:44:23 +01:00
f6133d767a Revert "Automatic safetensors conversion when lacking these files (#2… (#29507)
Revert "Automatic safetensors conversion when lacking these files (#29390)"

This reverts commit a69cbf4e64c7bc054d814d64f6877180f7cd3a25.
2024-03-07 12:12:41 +01:00
ffe60fdcd6 v4.39 deprecations 🧼 (#29492) 2024-03-07 10:44:43 +00:00
979fccc90f Enable BLIP for auto VQA (#29499)
* Enable BLIP for auto VQA

* Make style

* Add VQA to BLIP pipeline tests
2024-03-07 10:28:01 +01:00
d45f47ab7f Fix: Disable torch.autocast in RotaryEmbedding of Gemma and LLaMa for MPS device (#29439)
* Fix: Disable torch.autocast in RotaryEmbedding of Gemma and LLaMa for MPS devices

* Update src/transformers/models/gemma/modeling_gemma.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update llama ang gemma rope use cpu in mps device

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-07 00:57:22 +01:00
2a939f20ff Substantially reduce memory usage in _update_causal_mask for large batches by using .expand instead of .repeat [needs tests+sanity check] (#29413)
* try to fix gemma mem use

* fix: handle attention mask dim==2 case

* remove logits=logits.float()

* clean up + add llama

* apply formatting

* readability edit: swap order of items being multiplied

* revert change unrelated to PR

* revert black autoformat

* switch to one .to

* Accept style edits

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-07 00:56:25 +01:00
965cf67769 Fix TextGenerationPipeline.__call__ docstring (#29491) 2024-03-06 09:03:55 -08:00
19fb1e22d2 added the max_matching_ngram_size to GenerationConfig (#29131)
* added the max_matching_ngram_size parameter into the GenerationConfig, for the PromptLookupCandidateGenerator

* switched back to keyword arguments

* added PromptLookupCandidateGenerator docstring for its parameters

* ruff reformat

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-06 15:06:45 +00:00
ddb4fda3cb Generate: torch.compile-ready generation config preparation (#29443) 2024-03-06 14:28:45 +00:00
9322576e2f Fix test failure on DeepSpeed (#29444)
* Fix test failure

* use item
2024-03-06 07:11:53 -05:00
0a5b0516f8 Avoid dummy token in PLD to optimize performance (#29445) 2024-03-06 11:19:47 +00:00
700d48fb2d Generate: get generation mode from the generation config instance 🧼 (#29441) 2024-03-06 11:18:35 +00:00
41f7b7ae4b Generate: add tests for caches with pad_to_multiple_of (#29462) 2024-03-06 10:57:04 +00:00
2890116ab7 Fix TrainingArguments regression with torch <2.0.0 for dataloader_prefetch_factor (#29447)
* Fix TrainingArguments regression with torch <2.0.0 for dataloader_prefetch_factor

dataloader_prefetch_factor was added to TrainingArguments in #28498 with the default value None, but  versions of torch<2.0.0 do not accept None and will raise an error if num_workers == 0 and prefetch_factor != 2

* Add is_torch_available() check

* Use is_torch_greater_or_equal_than_2_0

add back check for dataloader_prefetch_factor
2024-03-06 09:44:08 +00:00
b27aa206dd [docs] Add starcoder2 docs (#29454)
* add accelerate docs

* Apply suggestions from code review

Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>

* Update starcoder2.md

* add correct generation

---------

Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>
2024-03-06 06:58:37 +01:00
2a002d073a [Docs / Awq] Add docs on exllamav2 + AWQ (#29474)
* add docs on exllamav2 + AWQ

* Update docs/source/en/quantization.md
2024-03-06 06:30:47 +01:00
00bf44270f [FIX] offload_weight() takes from 3 to 4 positional arguments but 5 were given (#29457)
* use require_torch_gpu

* enable on XPU

* fix
2024-03-06 03:58:42 +01:00
7b01579f73 🌐 [i18n-KO] Translated generation_strategies.md to Korean (#29086)
* Update ko _toctree.yml

* Create ko: generation_strategies.md

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2024-03-05 15:47:33 -08:00
638c423c89 [i18n-zh] Translate add_new_pipeline.md into Chinese (#29432)
* [i18n-zh] Translate add_new_pipeline.md into Chinese

* apply suggestions from Fan-Lin
2024-03-05 09:19:00 -08:00
a69cbf4e64 Automatic safetensors conversion when lacking these files (#29390)
* Automatic safetensors conversion when lacking these files

* Remove debug

* Thread name

* Typo

* Ensure that raises do not affect the main thread
2024-03-05 13:37:55 +01:00
9c5e560924 Update pytest import_path location (#29154)
* Update to pull function from proper lib

* Fix ruff formatting error

* Remove accidently added file
2024-03-05 12:23:34 +00:00
8f3f8e6766 Fix bug with passing capture_* args to neptune callback (#29041)
* Fix bug with passing capture_* args to neptune callback

* ruff happy?

* instantiate (frozen)set only once

* code review

* code review 2

* ruff happy?

* code review
2024-03-05 11:54:00 +00:00
fb1c62e973 [Add Mamba] Adds support for the Mamba models (#28094)
* initial-commit

* start cleaning

* small nits

* small nits

* current updates

* add kernels

* small refactoring little step

* add comments

* styling

* nit

* nits

* Style

* Small changes

* Push dummy mambda simple slow

* nit

* Use original names

* Use original names and remove norm

* Updates for inference params

* Style nd updates

* nits

* Match logits

* Add a test

* Add expected generated text

* nits doc, imports and styling

* style

* oups

* dont install kernels, invite users to install the required kernels

* let use use the original packages

* styling

* nits

* fix some copieds

* update doc

* fix-copies

* styling done

* nits

* fix import check

* run but wrong cuda ress

* mamba CUDA works :)

* fix the fast path

* config naming nits

* conversion script is not required at this stage

* finish fixing the fast path: generation make sense now!

* nit

* Let's start working on the CIs

* style

* better style

* more nits

* test nit

* quick fix for now

* nits

* nit

* nit

* nit

* nits

* update test rest

* fixup

* update test

* nit

* some fixes

* nits

* update test values

* fix styling

* nit

* support peft

* integrations tests require torchg

* also add slow markers

* styling

* chose forward wisely

* nits

* update tests

* fix gradient checkpointing

* fixup

* nit

* fix doc

* check copies

* fix the docstring

* fix some more tests

* style

* fix beam search

* add init schene

* update

* nit

* fix

* fixup the doc

* fix the doc

* fixup

* tentative update but slow is no longer good

* nit

* should we always use float32?

* nits

* revert wrong changes

* res in float32

* cleanup

* skip fmt for now

* update generation values

* update test values running original model

* fixup

* update tests + rename inference_params to cache_params + make sure training does not use cache_params

* small nits

* more nits

* fix final CIs

* style

* nit doc

* I hope final doc nits

* nit

* 🫠

* final touch!

* fix torch import

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Apply suggestions from code review

* fix fix and fix

* fix base model prefix!

* nit

* Update src/transformers/models/mamba/__init__.py

* Update docs/source/en/model_doc/mamba.md

Co-authored-by: Lysandre Debut <hi@lysand.re>

* nit

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-03-05 20:01:06 +09:00
87a0783dde Generate: inner decoding methods are no longer public (#29437) 2024-03-05 10:27:36 +00:00
4d892b7297 [Udop imports] Processor tests were not run. (#29456)
* fix udop imports

* sort imports
2024-03-05 11:01:08 +01:00
57d007b912 Revert-commit 0d52f9f582efb82a12e8d9162b43a01b1aa0200f (#29455)
* style

* revert with RP

* nit

* exact revert
2024-03-05 10:39:42 +01:00
0d52f9f582 more fix 2024-03-05 18:27:25 +09:00
132852203a [UdopTokenizer] Fix post merge imports (#29451)
* update

* ...

* nits

* arf

* 🧼

* beat the last guy

* style everyone
2024-03-05 09:42:52 +01:00
fa7f3cf336 [tests] enable test_pipeline_accelerate_top_p on XPU (#29309)
* use torch_device

* Update tests/pipelines/test_pipelines_text_generation.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix style

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-05 09:16:05 +01:00
ebccb09169 [docs] Update starcoder2 paper link (#29418)
Update starcoder2 paper link
2024-03-05 08:57:33 +01:00
bd891aed01 Fix max length for BLIP generation (#29296)
* fix mal_length for blip

* update also min length

* fixes

* add a comment

* Update src/transformers/models/instructblip/modeling_instructblip.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/blip_2/modeling_blip_2.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* make fixup

* fix length when user passed

* remove else

* remove brackets

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-03-05 08:18:22 +01:00
4fc708f98c Exllama kernels support for AWQ models (#28634)
* added exllama kernels support for awq models

* doc

* style

* Update src/transformers/modeling_utils.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* refactor

* moved exllama post init to after device dispatching

* bump autoawq version

* added exllama test

* style

* configurable exllama kernels

* copy exllama_config from gptq

* moved exllama version check to post init

* moved to quantization dockerfile

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-03-05 03:22:48 +01:00
81c8191b46 FIX [Generation] Fix some issues when running the MaxLength criteria on CPU (#29317)
fix the bitwise or issue
2024-03-05 02:29:19 +01:00
e947683294 [Docs] Spanish Translation -Torchscript md & Trainer md (#29310)
* torchscript and trainer md es translation

* corrected md es files and even corrected spelling in en md

* made es corrections to trainer.md

* deleted entrenamiento... title on yml

* placed entrenamiento in right place
2024-03-04 13:57:51 -08:00
836921fdeb Add UDOP (#22940)
* First draft

* More improvements

* More improvements

* More fixes

* Fix copies

* More improvements

* More fixes

* More improvements

* Convert checkpoint

* More improvements, set up tests

* Fix more tests

* Add UdopModel

* More improvements

* Fix equivalence test

* More fixes

* Redesign model

* Extend conversion script

* Use real inputs for conversion script

* Add image processor

* Improve conversion script

* Add UdopTokenizer

* Add fast tokenizer

* Add converter

* Update README's

* Add processor

* Add fully fledged tokenizer

* Add fast tokenizer

* Use processor in conversion script

* Add tokenizer tests

* Fix one more test

* Fix more tests

* Fix tokenizer tests

* Enable fast tokenizer tests

* Fix more tests

* Fix additional_special_tokens of fast tokenizer

* Fix tokenizer tests

* Fix more tests

* Fix equivalence test

* Rename image to pixel_values

* Rename seg_data to bbox

* More renamings

* Remove vis_special_token

* More improvements

* Add docs

* Fix copied from

* Update slow tokenizer

* Update fast tokenizer design

* Make text input optional

* Add first draft of processor tests

* Fix more processor tests

* Fix decoder_start_token_id

* Fix test_initialization

* Add integration test

* More improvements

* Improve processor, add test

* Add more copied from

* Add more copied from

* Add more copied from

* Add more copied from

* Remove print statement

* Update README and auto mapping

* Delete files

* Delete another file

* Remove code

* Fix test

* Fix docs

* Remove asserts

* Add doc tests

* Include UDOP in exotic model tests

* Add expected tesseract decodings

* Add sentencepiece

* Use same design as T5

* Add UdopEncoderModel

* Add UdopEncoderModel to tests

* More fixes

* Fix fast tokenizer

* Fix one more test

* Remove parallelisable attribute

* Fix copies

* Remove legacy file

* Copy from T5Tokenizer

* Fix rebase

* More fixes, copy from T5

* More fixes

* Fix init

* Use ArthurZ/udop for tests

* Make all model tests pass

* Remove UdopForConditionalGeneration from auto mapping

* Fix more tests

* fixups

* more fixups

* fix the tokenizers

* remove un-necessary changes

* nits

* nits

* replace truncate_sequences_boxes with truncate_sequences for fix-copies

* nit current path

* add a test for input ids

* ids that we should get taken from c9f7a32f57440d90ff79890270d376a1cc0acb68

* nits converting

* nits

* apply ruff

* nits

* nits

* style

* fix slow order of addition

* fix udop fast range as well

* fixup

* nits

* Add docstrings

* Fix gradient checkpointing

* Update code examples

* Skip tests

* Update integration test

* Address comment

* Make fixup

* Remove extra ids from tokenizer

* Skip test

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update year

* Address comment

* Address more comments

* Address comments

* Add copied from

* Update CI

* Rename script

* Update model id

* Add AddedToken, skip tests

* Update CI

* Fix doc tests

* Do not use Tesseract for the doc tests

* Remove kwargs

* Add original inputs

* Update casting

* Fix doc test

* Update question

* Update question

* Use LayoutLMv3ImageProcessor

* Update organization

* Improve docs

* Update forward signature

* Make images optional

* Remove deprecated device argument

* Add comment, add add_prefix_space

* More improvements

* Remove kwargs

---------

Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-04 18:49:02 +01:00
ed74d97871 DeformableDETR support bfloat16 (#29232)
* Update ms_deform_attn_cuda.cu

* Update ms_deform_attn_cuda.cuh

* Update modeling_deformable_detr.py

* Update src/transformers/models/deformable_detr/modeling_deformable_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update modeling_deformable_detr.py

* python utils/check_copies.py --fix_and_overwrite

* Fix dtype missmatch error

* Update test_modeling_deformable_detr.py

* Update test_modeling_deformable_detr.py

* Update modeling_deformable_detr.py

* Update modeling_deformable_detr.py

* Support DeformableDETR with bfloat16

* Add test code

* Use AT_DISPATCH_FLOATING_TYPES_AND2

Use AT_DISPATCH_FLOATING_TYPES_AND2

* Update tests/models/deformable_detr/test_modeling_deformable_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/deformable_detr/test_modeling_deformable_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix not found require_torch_bf16 function

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-04 14:18:09 +00:00
bcd23a54f1 Avoid edge case in audio utils (#28836) 2024-03-04 13:24:40 +00:00
7941769e55 Fix grad_norm unserializable tensor log failure (#29212)
* Fix grad_norm unserializable tensor log failure

* Fix origin of grad_norm logs to be in deepspeed get_global_grad_norm()
2024-03-04 13:12:35 +00:00
1681a6d452 🚨 Fully revert atomic checkpointing 🚨 (#29370)
Fully revert atomic checkpointing
2024-03-04 06:17:42 -05:00
8ef9862864 Fix OneFormer post_process_instance_segmentation for panoptic tasks (#29304)
* 🐛 Fix oneformer instance post processing when using panoptic task type

*  Add unit test for oneformer instance post processing panoptic bug

---------

Co-authored-by: Nick DeGroot <1966472+nickthegroot@users.noreply.github.com>
2024-03-04 11:04:49 +00:00
81220cba61 Fix: Fixed the previous tracking URI setting logic to prevent clashes with original MLflow code. (#29096)
* Changed logic for setting the tracking URI.

The previous code was calling the `mlflow.set_tracking_uri` function
regardless of whether or not the environment variable
`MLFLOW_TRACKING_URI` is even set. This led to clashes with the original
MLflow implementation and therefore the logic was changed to only
calling the function when the environment variable is explicitly set.

* Check if tracking URI has already been set.

The previous code did not consider the possibility that the tracking URI
may already be set elsewhere and was therefore (erroneously) overriding
previously set tracking URIs using the environment variable.

* Removed redundant parentheses.

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix docstring to reflect library convention properly.

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix docstring to reflect library convention properly.

"Unset by default" is the correct expression rather than "Default to `None`."

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-04 10:53:58 +00:00
5e4b69dc12 Convert SlimSAM checkpoints (#28379)
* First commit

* Improve conversion script

* Convert more checkpoints

* Update src/transformers/models/sam/convert_sam_original_to_hf_format.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Rename file

* More updates

* Update docstring

* Update script

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-04 11:51:16 +01:00
c38a12270a Workaround for #27758 to avoid ZeroDivisionError (#28756) 2024-03-04 10:23:40 +01:00
704b3f74f9 Add mlx support to BatchEncoding.convert_to_tensors (#29406)
* Add mlx support

* Fix import order and use def instead of lambda

* Another fix for ruff format :)

* Add detecting mlx from repr, add is_mlx_array
2024-03-04 10:19:13 +01:00
39ef3fb248 [Mixtral] Fixes attention masking in the loss (#29363)
Fix mixtral load balancing loss

Co-authored-by: dingkunbo <dingkunbo@baidu.com>
2024-03-04 09:08:56 +01:00
38953a75c1 update path to hub files in the error message (#29369)
update path to hub files

need to add `tree/` to path to files at HF hub.
see example path:
`https://huggingface.co/meta-llama/Llama-2-7b-hf/tree/main`
2024-03-04 08:26:01 +01:00
aade711d1e [tests] enable automatic speech recognition pipeline tests on XPU (#29308)
* use require_torch_gpu

* enable on XPU
2024-03-04 08:24:38 +01:00
831bc25d8f Correct zero division error in inverse sqrt scheduler (#28982)
* Correct zero division error in inverse sqrt scheduler

* default timescale to 10_000
2024-03-01 17:04:40 +00:00
1a7c117df9 Fix deprecated arg issue (#29372)
* Fix deprecated arg issue

* Trainer check too

* Check for dict or dataclass

* Simplify, make config always AcceleratorConfig

* Upstream to Trainer
2024-03-01 12:00:29 -05:00
cec773345a Fix llama + gemma accelete tests (#29380) 2024-03-01 10:32:36 -05:00
15f8296a9b Support subfolder with AutoProcessor (#29169)
enable subfolder
2024-03-01 10:29:21 +00:00
f1b1379f37 [YOLOS] Fix - return padded annotations (#29300)
* Fix yolos processing

* Add back slow marker - protects for pycocotools in slow

* Slow decorator goes above copied from header
2024-03-01 09:42:13 +00:00
0a0a279e99 🚨🚨[Whisper Tok] Update integration test (#29368)
* [Whisper Tok] Update integration test

* make style
2024-03-01 09:22:31 +00:00
e7b9837065 [Llama + AWQ] fix prepare_inputs_for_generation 🫠 (#29381)
* use the generation config 🫠

* fixup
2024-03-01 08:59:26 +01:00
50db7ca4e8 FIX [quantization / ESM] Fix ESM 8bit / 4bit with bitsandbytes (#29329)
* fix ESM 8bit

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-01 03:01:53 +01:00
2858d6c634 Fix Base Model Name of LlamaForQuestionAnswering (#29258)
* LlamaForQuestionAnswering self.transformer->self.model

* fix "Copied from" string

* Llama QA model: set base_model_prefix = "transformer"
2024-03-01 02:58:19 +01:00
5ee0868a4b Expose offload_buffers parameter of accelerate to PreTrainedModel.from_pretrained method (#28755)
Expose offload_buffers parameter to from_pretrained method
2024-03-01 02:12:51 +01:00
0ad770c373 Fix @require_read_token in tests (#29367) 2024-02-29 11:25:16 +01:00
bb4f816ad4 Patch YOLOS and others (#29353)
Fix issue
2024-02-29 11:09:50 +01:00
44fe1a1cc4 Avoid using uncessary get_values(MODEL_MAPPING) (#29362)
* more fixes

* more fixes

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-29 17:19:17 +08:00
b647acdb53 FIX [CI] require_read_token in the llama FA2 test (#29361)
Update test_modeling_llama.py
2024-02-29 04:49:01 +01:00
8d8ac9c2df FIX [CI]: Fix failing tests for peft integration (#29330)
fix failing tests for peft integration
2024-02-29 03:56:16 +01:00
1aee9afd1c FIX [CI / starcoder2] Change starcoder2 path to correct one for slow tests (#29359)
change starcoder2 path to correct one
2024-02-29 03:52:13 +01:00
2209b7afa0 [i18n-zh] Sync source/zh/index.md (#29331)
* [i18n-zh] Sync source/zh/index.md

* apply review comments
2024-02-28 09:41:18 -08:00
49204c1d37 Better SDPA unmasking implementation (#29318)
* better unmask imple

* comment

* typo

* bug report pytorch

* cleanup

* fix import

* add back example

* retrigger ci

* come on
2024-02-28 16:36:47 +01:00
f54d82cace [CI] Quantization workflow (#29046)
* [CI] Quantization workflow

* build dockerfile

* fix dockerfile

* update self-cheduled.yml

* test build dockerfile on push

* fix torch install

* udapte to python 3.10

* update aqlm version

* uncomment build dockerfile

* tests if the scheduler works

* fix docker

* do not trigger on psuh again

* add additional runs

* test again

* all good

* style

* Update .github/workflows/self-scheduled.yml

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* test build dockerfile with torch 2.2.0

* fix extra

* clean

* revert changes

* Revert "revert changes"

This reverts commit 4cb52b8822da9d1786a821a33e867e4fcc00d8fd.

* revert correct change

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-02-28 10:09:25 -05:00
554e7ada89 check if position_ids exists before using it (#29306)
Co-authored-by: Joao Gante <joao@huggingface.co>
2024-02-28 14:56:25 +00:00
d3a4b47544 RoPE loses precision for Llama / Gemma + Gemma logits.float() (#29285)
* Update modeling_llama.py

Llama - Force float32 since bfloat16 loses precision on long contexts

* Update modeling_llama.py

* Update modeling_gemma.py

Fix RoPE and logits.float()

* @torch.no_grad()

* @torch.no_grad()

* Cos, Sin to float32

* cos, sin to float32

* Update src/transformers/models/gemma/modeling_gemma.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Resolve PR conflicts

* Fix RoPE for llama

* Revert "Fix RoPE for llama"

This reverts commit b860a22dab9bb01cd15cb9a3220abeaefad3e458.

* Fix RoPE for llama

* RoPE device

* Autocast device type

* RoPE

* RoPE isinstance

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-02-28 15:16:53 +01:00
7628b3a0f4 Idefics: generate fix (#29320) 2024-02-28 11:34:54 +00:00
2ce56d35f6 Disable Mixtral output_router_logits during inference (#29249)
* Set output_router_logits=False in prepare_inputs_for_generation for mixtral

* Add output_router_logits=False to prepare_inputs_for_generation for mixtral

* Fix style
2024-02-28 11:16:15 +01:00
8a8a0a4ae0 [Llama ROPE] Fix torch export but also slow downs in forward (#29198)
* remove control flow

* update gptneox

* update ....

* nits

* Actually let's just break. Otherwise we are silently failing which imo is not optimal

* version BC

* fix tests

* fix eager causal

* nit

* add a test

* style

* nits

* nits

* more nits for the test

* update and fix

* make sure cuda graphs are not skipped

* read token is needed for meta llama

* update!

* fiixup

* compile test should be slow

* fix thet fix copies

* stle 🫠
2024-02-28 10:45:53 +01:00
7c87f3577e [T5 and Llama Tokenizer] remove warning (#29346)
* remove warning

* add co-author

* update

---------

Co-authored-by: hiaoxui <hiaoxui@users.noreply.github.com>
2024-02-28 10:41:58 +01:00
a52888524d [require_read_token] fix typo (#29345)
fix wrapper
2024-02-28 10:13:57 +01:00
e715c78c66 Remove numpy usage from owlvit (#29326)
* remove numpy usage from owlvit

* fix init owlv2

* style
2024-02-28 09:38:44 +01:00
ad00c482c7 FIX [Gemma / CI] Make sure our runners have access to the model (#29242)
* pu hf token in gemma tests

* update suggestion

* add to flax

* revert

* fix

* fixup

* forward contrib credits from discussion

---------

Co-authored-by: ArthurZucker <ArthurZucker@users.noreply.github.com>
2024-02-28 06:25:23 +01:00
bd5b986306 simplify get_class_in_module and fix for paths containing a dot (#29262) 2024-02-28 03:10:36 +01:00
63caa370e6 Starcoder2 model - bis (#29215)
* Copy model

* changes

* misc

* fixes

* add embed and residual dropout (#30)

* misc

* remove rms norm and gated MLP

* remove copied mentions where its not a copy anymore

* remove unused _shape

* copied from mistral instead

* fix copies

* fix copies

* add not doctested

* fix

* fix copyright

* Update docs/source/en/model_doc/starcoder2.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/starcoder2/configuration_starcoder2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/starcoder2/configuration_starcoder2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix doc

* revert some changes

* add fa2 tests

* fix styling nit

* fix

* push dummy docs

---------

Co-authored-by: Joel Lamy-Poirier <joel.lamy-poirier@servicenow.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-02-28 01:24:34 +01:00
83ab0115d1 [i18n-zh] Translate fsdp.md into Chinese (#29305)
* [i18n-zh] Translate fsdp.md into Chinese

Signed-off-by: windsonsea <haifeng.yao@daocloud.io>

* apply suggestions from Fan-Lin

---------

Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2024-02-27 11:26:57 -08:00
227cd54aa5 Fix a few typos in GenerationMixin's docstring (#29277)
Co-authored-by: Joao Gante <joao@huggingface.co>
2024-02-27 18:15:43 +00:00
ddf7ac4237 Token level timestamps for long-form generation in Whisper (#29148) 2024-02-27 18:15:26 +00:00
8a1faf2803 Add compatibility with skip_memory_metrics for mps device (#29264)
* Add compatibility with mps device

* fix

* typo and style
2024-02-27 09:58:43 -05:00
5c341d4555 Use torch 2.2 for deepspeed CI (#29246)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-27 17:51:37 +08:00
63a0c8f1cb [tests] enable benchmark unit tests on XPU (#29284)
* add xpu for benchmark

* no auto_map

* use require_torch_gpu

* use gpu

* revert

* revert

* fix style
2024-02-27 09:44:48 +00:00
6d3b643e2a Fix attn_implementation documentation (#29295)
fix
2024-02-27 10:43:01 +01:00
83e366bfd4 Image Feature Extraction docs (#28973)
* Image Feature Extraction docs

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update image_feature_extraction.md

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Address comments

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update image_feature_extraction.md

* Update image_feature_extraction.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Maria Khalusova <kafooster@gmail.com>
2024-02-27 09:39:58 +00:00
e3fc90ae68 Cleaner Cache dtype and device extraction for CUDA graph generation for quantizers compatibility (#29079)
* input_layernorm as the beacon of hope

* cleaner dtype extraction

* AQLM + CUDA graph test

* is available check

* shorter text test
2024-02-27 09:32:39 +01:00
a3f9221a44 Add generate kwargs to VQA pipeline (#29134) 2024-02-27 03:03:00 +01:00
871ba71dfa GenerationConfig validate both constraints and force_words_ids (#29163)
GenerationConfig validate both options for constrained decoding: constraints and force_words_ids
2024-02-27 01:43:52 +01:00
3fcfbe7549 Adding SegGPT (#27735)
* First commit

* Improvements

* More improvements

* Converted original checkpoint to HF checkpoint

* Fix style

* Fixed forward

* More improvements

* More improvements

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Remove asserts

* Remove unnecessary attributes

* Changed model name to camel case

* Improve forward doc

* Improve tests

* More improvements

* Fix copies

* Fix doc

* Make SegGptImageProcessor more flexible

* Added few-shot test

* Fix style

* Update READMEs and docs

* Update READMEs

* Make inputs required

* Add SegGptForImageSegmentation

* Make tests pass

* Rename to out_indicies

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Fixed naming convention

* Copying SegGptMlp from modeling_sam.py

* Some minor improvements

* Remove mlp_ratio

* Fix docstrings

* Fixed docstring match

* Objects defined before use

* Storing only patch_size and beta for SegGptLoss

* removed _prepare_inputs method

* Removed modified from headers

* Renamed to output_indicies

* Removed unnecessary einsums

* Update tests/models/seggpt/test_modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/seggpt/test_modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/seggpt/test_modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fixing issues

* Raise error as soon as possible

* More fixes

* Fix merge

* Added palette to SegGptImageProcessor

* Fixed typo

* Fixed shape typo

* Added permute before doing palette to class mapping

* Fixed style

* Fixed and added tests

* Fixed docstrings

* Matching SegFormer API for post_processing_semantic_segmentation

* Fixed copies

* Fixed SegGptImageProcessor to handle both binary and RGB masks

* Updated docstrings of SegGptImageProcessor

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/seggpt.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/configuration_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/convert_seggpt_to_hf.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/seggpt/test_image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/seggpt/test_modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Object definitions above & fix style

* Renamed output_indices to intermediate_feature_indices

* Removed unnecessary check on bool_masked_pos

* Loss first in the outputs

* Added validation for do_normalize

* Improved SegGptImageProcessor and added new tests

* Added comment

* Added docstrings to SegGptLoss

* Reimplemented ensemble condition logic in SegGptEncoder

* Update src/transformers/models/seggpt/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/seggpt/convert_seggpt_to_hf.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/seggpt/configuration_seggpt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Updated docstrings to use post_process_semantic_segmentation

* Fixed typo on docstrings

* moved pixel values test to test_image_processing_seggpt

* Addressed comments

* Update src/transformers/models/seggpt/configuration_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/configuration_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Updated docstrings for SegGptLoss

* Address comments

* Added SegGpt example to model docs

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* moved patchify and unpatchify

* Rename checkpoint

* Renamed intermediate_features to intermediate_hidden_states for consistency

* Update src/transformers/models/seggpt/configuration_seggpt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Replaced post_process_masks for post_process_semantic_segmentation in the docs

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels <niels.rogge1@gmail.com>
Co-authored-by: Eduardo Pacheco <eduardo.pacheco@limehome.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-26 18:17:19 +00:00
3b8c053631 Fixed Deformable Detr typo when loading cuda kernels for MSDA (#29294) 2024-02-26 17:24:30 +00:00
a44d2dc3a9 [i18n-zh] Translated task/asr.md into Chinese (#29233)
* [zh] Translate a task: asr.md

Signed-off-by: windsonsea <haifeng.yao@daocloud.io>

* apply suggestions from Fan-Lin

---------

Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2024-02-26 08:53:05 -08:00
c29135046a [i18n-vi] Translate README.md to Vietnamese (#29229)
* Add Tiếng Việt language support

* Add Vietnamese translation link to README.md

* update README_vi.md
2024-02-26 08:42:46 -08:00
734eb25476 🌐 [i18n-ZH] Translate chat_templating.md into Chinese (#28790)
* [Pix2struct] Simplify generation (#22527)

* Add model to doc tests

* Remove generate and replace by prepare_inputs_for_generation

* More fixes

* Remove print statements

* Update integration tests

* Fix generate

* Remove model from auto mapping

* Use auto processor

* Fix integration tests

* Fix test

* Add inference code snippet

* Remove is_encoder_decoder

* Update docs

* Remove notebook link

* Release: v4.28.0

* Revert (for now) the change on `Deta` in #22437 (#22750)

fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Patch release: v4.28.1

* update zh chat template.

* Update docs/source/zh/chat_templating.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/zh/_toctree.yml

Co-authored-by: Michael <haifeng.yao@daocloud.io>

* Update docs/source/zh/chat_templating.md

Co-authored-by: Michael <haifeng.yao@daocloud.io>

* Update docs/source/zh/chat_templating.md

Co-authored-by: Michael <haifeng.yao@daocloud.io>

* Update docs/source/zh/chat_templating.md

Co-authored-by: Michael <haifeng.yao@daocloud.io>

* Update docs/source/zh/chat_templating.md

Co-authored-by: Michael <haifeng.yao@daocloud.io>

* Update docs/source/zh/chat_templating.md

Co-authored-by: Michael <haifeng.yao@daocloud.io>

* Update docs/source/zh/chat_templating.md

Co-authored-by: Michael <haifeng.yao@daocloud.io>

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Michael <haifeng.yao@daocloud.io>
2024-02-26 08:42:24 -08:00
b43340455d [i18n-zh] Translated torchscript.md into Chinese (#29234)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2024-02-26 08:27:47 -08:00
9f7535bda8 [docs] Spanish translation of tasks_explained.md (#29224)
* Add tasks_explained.md to es/

* Fix little typo in en/ version

* translate speach/audio section

* translate part of vision computer section | fix little typo in en/

* Fix little typo in en/

* Translate vision computer section | remove ** ** to * * in both files

* Translate NLP section | fix link to task/translation in en/

* Updete link in es/tasks_summary.md

* Fix task_summary title link
2024-02-26 08:18:15 -08:00
8f2f0f0f85 Track each row separately for stopping criteria (#29116) 2024-02-26 16:06:16 +00:00
ece1b62b93 Generate: v4.38 removals and related updates (#29171) 2024-02-26 13:36:12 +00:00
24d59c7969 Use torch.bool instead of torch.int64 for non-persistant causal mask buffer (#29241)
use torch.bool instead of torch.int64
2024-02-26 14:06:43 +01:00
7c4995f93d Add feature extraction mapping for automatic metadata update (#28944)
* add feature extraction mapping

* added prefix

* ruff check

* minor fix

* Update modeling_auto.py

* fix typo

* remove prefix to make variable public/importable

* Update src/transformers/models/auto/modeling_auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fixes

* addressed comments

* nit

* fix-copies

* remove from tests

* this should fix

* Update tests/models/convnextv2/test_modeling_convnextv2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* nits

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-26 10:35:37 +00:00
2a7746c4d1 Add non_device_test pytest mark to filter out non-device tests (#29213)
* add conftest

* fix

* remove deselected
2024-02-26 11:05:49 +01:00
93f8617afd Use DS_DISABLE_NINJA=1 (#29290)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-26 17:41:01 +08:00
9fe360883e Cache is_vision_available result (#29280)
Cache `is_vision_available`

This check is used quite often during process in image models and can take up a serious amount of time compared to the other processing steps.
2024-02-26 09:01:45 +00:00
c8d98405a8 Use torch 2.2 for daily CI (model tests) (#29208)
* Use torch 2.2 for daily CI (model tests)

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-23 21:37:08 +08:00
371b572e55 Allow remote code repo names to contain "." (#29175)
* stash commit

* stash commit

* It works!

* Remove unnecessary change

* We don't actually need the cache_dir!

* Update docstring

* Add test

* Add test with custom cache dir too

* Update model repo path
2024-02-23 12:46:31 +00:00
89c64817ce [Doc] update model doc qwen2 (#29238)
* update model doc qwen2

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-02-23 10:43:31 +01:00
3f60d11a87 Improve _update_causal_mask performance (#29210)
* Fix issue 29206

* Fix style
2024-02-23 10:40:44 +01:00
75ed76ecea Fix missing translation in README_ru (#29054)
* Fix missing translation in README_ru

* Update README_ru.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

---------

Co-authored-by: Maria Khalusova <kafooster@gmail.com>
2024-02-23 09:26:21 +01:00
4524494072 fix(mlflow): check mlflow version to use the synchronous flag (#29195)
* fix(mlflow): check mlflow version to use the  flag

* fix indent

* add log_params async and fix quality
2024-02-23 09:19:51 +01:00
2cc8cf6ce7 Fix torch.compile with fullgraph=True when attention_mask input is used (#29211)
* fix torch.export.export for llama

* do not change doc title

* make fix copies
2024-02-22 16:40:06 +01:00
dabe855668 [Mistral, Mixtral] Improve docs (#29084)
* Improve docs

* Improve chat template
2024-02-22 11:48:01 +01:00
2a9b1f80c4 [Gemma] Fix eager attention (#29187)
* fix modelling code

* add tests

* fix tests

* add some logit tests

* style

* fix fix
2024-02-22 01:07:52 +01:00
fc37f38915 Add training version check for AQLM quantizer. (#29142)
* training version check

* warn old aqlm

* aqlm 1.0.2 real

* docs
2024-02-21 17:09:36 +01:00
ae49b218c3 FIX [Gemma] Fix bad rebase with transformers main (#29170)
fix bad rebase
2024-02-21 14:56:34 +01:00
594c1277b2 [ gemma] Adds support for Gemma 💎 (#29167)
* inital commit

* update

* update conversion checkpoint

* update conversion script

* nits

* some fixes

* nits

* merge

* fix permute

* nits

* fix

* nits

* nits

* nits

* fix rope

* fix both rope

* nites

* style

* make sure flax works

* fix flax init code

* fix foward

* nits

* print flax generation out

* current code

* nits

* SIIIIIIIIIIIIIIIIIII

* update

* add new tokenizer

* correct fast tokenizer

* fix conversion

* more comments

* fix modeling and conversion

* nits and nits

* nits testing

* add some tokenization tests

* add some edge cases

* add slow tests and fix them

* fixup

* fix copies for modeling

* fix copies

* add 7B slow tests

* fix

* fix

* fix tests

* make tokenizer cis go green

* styling

* last tokenizer nits

* update jax tests

* fix flax for 7b

* add jit testing 🤗

* cleanups

* isolated nit, inv_freq for rotary_emb.inv_freq

* propagate to jax

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* adjust test

* fix conversion script

* change name

* correct file names

* update conversion script

* Fix bos and eos token ids in the model configuration (#3)

* update modelling

* update conversion script

* add static cache for gemma

* fix sdpa generate

* fix batched

* multiple fixes

* fix FA2

* final fix

* Rename a few missing strings and filenames (#4)

* merge with upstream main

* fix copies

* fix copies

* fix fixup

* fix fixup

* fix

* fix

* final tests

* fix fx gemma tests

* fix fx bf16/fp16 tests

* update slow fx tests

* fx slow tests: one logits, one generation

* move jit test standalone

* Apply suggestions from code review

* nits

* tokenizer updates

* more tokenization updates: custom GemmaSentencepieceExtrator

* style

* Update src/transformers/cache_utils.py

* Update src/transformers/models/gemma/__init__.py

* Update tests/models/gemma/test_modeling_flax_gemma.py

* small nits

* style

* update tokenization test

* fix the rotary embedding

* with style

* fix slow tests

* WARNING this commit might be very important for precisions

* Update tests/models/gemma/test_modeling_flax_gemma.py

* Update src/transformers/models/gemma/configuration_gemma.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Update src/transformers/models/gemma/modeling_flax_gemma.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* small nits here and there!

* forgotten nit

* remove on the fly computation of inv_freq

* revert previous change, let's be safe and for now re-compute freq cis to make sure it's in float

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/transformers/models/gemma/convert_gemma_weights_to_hf.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/transformers/models/gemma/convert_gemma_weights_to_hf.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_flax_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_tokenization_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_tokenization_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_tokenization_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_tokenization_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* nit conversion script link

* fix some tests

* add not doctest and pr doctest

* repo consistency

* fix last CIs 🚀

* update all readmes

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-02-21 14:21:28 +01:00
58245ba6fb [Maskformer] safely get backbone config (#29166)
Safe getattr
2024-02-21 13:51:15 +01:00
1d0ea7abe0 support SDPA Attention in stablelm (#29106)
* support SDPA Attention in stablelm

* add integration test

* add fallback for output_attentions

* Update src/transformers/models/stablelm/modeling_stablelm.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/models/stablelm/test_modeling_stablelm.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/stablelm/modeling_stablelm.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* handle non-contiguous states

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-02-21 13:12:49 +01:00
cc4a664baa torch.compile compatibility with generate + static cache (#29114)
* fix compatibility

* working version

* cleanup

* sanity checks

* more sanity

* working version WITH refactor

* working without API change

* cleanup & tests pass

* more cleaning

* fix test

* fix tests

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* smaller comment

* update comment

* update comment

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-02-21 12:19:30 +01:00
3994fa5baf 🚨 Llama: update rope scaling to match static cache changes (#29143) 2024-02-21 09:47:41 +00:00
1a77f07f65 v4.39.dev.0 2024-02-21 15:23:22 +09:00
e770f0316d [pipeline] Add pool option to image feature extraction pipeline (#28985)
* Add pool option

* PR comments - error message and exact outputs check
2024-02-20 20:22:08 +00:00
c47576ca6e Fix drop path being ignored in DINOv2 (#29147)
Fix drop path not being used
2024-02-20 17:31:59 +00:00
3c00b885b9 Added image_captioning version in es and included in toctree file (#29104)
added image_captioning version in es and included in toctree file
2024-02-20 09:13:15 -08:00
857fd8eaab Generate: missing generation config eos token setting in encoder-decoder tests (#29146) 2024-02-20 16:17:51 +00:00
1c81132e80 Raise unused kwargs image processor (#29063)
* draft processor arg capture

* add missing vivit model

* add new common test for image preprocess signature

* fix quality

* fix up

* add back missing validations

* quality

* move info level to warning for unused kwargs
2024-02-20 16:20:20 +01:00
b8b16475d4 [Phi] Add support for sdpa (#29108) 2024-02-20 14:33:12 +01:00
7688d8df84 Save (circleci) cache at the end of a job (#29141)
nice job

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-20 21:31:36 +08:00
ee3af60be0 Add support for fine-tuning CLIP-like models using contrastive-image-text example (#29070)
* add support for siglip and chinese-clip model training with contrastive-image-text example

* codebase fixups
2024-02-20 12:08:31 +00:00
0996a10077 Revert low cpu mem tie weights (#29135)
* Revert "Add tie_weights() to LM heads and set bias in set_output_embeddings() (#28948)"

This reverts commit 725f4ad1ccad4e1aeb309688706b56713070334b.

* Revert "Patch to skip failing `test_save_load_low_cpu_mem_usage` tests (#29043)"

This reverts commit 4156f517ce0f00e0b7842410542aad5fe37e73cf.
2024-02-20 12:06:46 +00:00
15cfe38942 [Core tokenization] add_dummy_prefix_space option to help with latest issues (#28010)
* add add_dummy_prefix_space option to slow

* checking kwargs might be better. Should be there for all spm tokenizer IMO

* nits

* fix copies

* more copied

* nits

* add prefix space

* nit

* nits

* Update src/transformers/convert_slow_tokenizer.py

* fix inti

* revert wrong styling

* fix

* nits

* style

* updates

* make sure we use slow tokenizer for conversion instead of looking for the decoder

* support llama ast well

* update llama tokenizer fast

* nits

* nits nits nits

* update the doc

* update

* update to fix tests

* skip unrelated tailing test

* Update src/transformers/convert_slow_tokenizer.py

* add proper testing

* test decode as well

* more testing

* format

* fix llama test

* Apply suggestions from code review
2024-02-20 12:50:31 +01:00
efdd436663 FIX [PEFT / Trainer ] Handle better peft + quantized compiled models (#29055)
* handle peft + compiled models

* add tests

* fixup

* adapt from suggestions

* clarify comment
2024-02-20 12:45:08 +01:00
5e95dcabe1 [cuda kernels] only compile them when initializing (#29133)
* only compile when needed

* fix mra as well

* fix yoso as well

* update

* rempve comment

* Update src/transformers/models/deformable_detr/modeling_deformable_detr.py

* Update src/transformers/models/deformable_detr/modeling_deformable_detr.py

* opps

* Update src/transformers/models/deta/modeling_deta.py

* nit
2024-02-20 12:38:59 +01:00
a7755d2409 Generate: unset GenerationConfig parameters do not raise warning (#29119) 2024-02-20 11:34:31 +00:00
7d312ad2e9 Llama: fix batched generation (#29109) 2024-02-20 10:23:17 +00:00
ff76e7c212 FIX [bnb / tests] Propagate the changes from #29092 to 4-bit tests (#29122)
* forgot to push the changes for 4bit ..

* trigger CI
2024-02-20 11:11:15 +01:00
1c9134f004 Abstract image processor arg checks. (#28843)
* abstract image processor arg checks.

* fix signatures and quality

* add validate_ method to rescale-prone processors

* add more validations

* quality

* quality

* fix formatting

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix formatting

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix formatting

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix formatting mishap

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix crop_size compatibility

* fix default mutable arg

* fix segmentation map + image arg validity

* remove segmentation check from arg validation

* fix quality

* fix missing segmap

* protect PILImageResampling type

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add back segmentation maps check

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-20 11:05:46 +01:00
f7ef7cec6c FEAT [Trainer / bnb]: Add RMSProp from bitsandbytes to HF Trainer (#29082)
* add RMSProp to Trainer

* revert some change

* Update src/transformers/trainer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-20 02:43:02 +01:00
a7ff2f23a0 Move misplaced line (#29117)
Move misplaced line, improve code comment
2024-02-20 02:24:48 +01:00
9094abe8dc [gradient_checkpointing] default to use it for torch 2.3 (#28538)
* default to use it

* style
2024-02-20 02:23:25 +01:00
49c0b293d2 Fixed nll with label_smoothing to just nll (#28708)
* Fixed nll with label_smoothing to nll

* Resolved conflict by rebase

* Fixed nll with label_smoothing to nll

* Resolved conflict by rebase

* Added label_smoothing to config file

* Fixed nits
2024-02-20 01:52:15 +01:00
4f09d0fd88 storing & logging gradient norm in trainer (#27326)
* report grad_norm during training

* support getting grad_norm from deepspeed
2024-02-19 19:07:41 +00:00
a4851d9477 Fix two tiny typos in pipelines/base.py::Pipeline::_sanitize_parameters()'s docstring (#29102)
* Update base.py

* Fix a typo
2024-02-19 18:50:28 +00:00
5ce90f3212 Bnb test fix for different hardwares (#29066)
* generated text on A10G

* generated text in CI

* Apply suggestions from code review

add explanatory comments

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-02-19 18:04:44 +00:00
08cd694ef0 ENH: added new output_logits option to generate function (#28667)
output_logits option behaves like output_scores, but returns the raw, unprocessed prediction logit scores,
ie. the values before they undergo logit processing and/or warping. The latter happens by default for the
regular output scores.

It's useful to have the unprocessed logit scores in certain circumstances. For example, unprocessed logit scores
are very useful with causallm models when one wants to determine the probability of a certain answer, e.g.
when asking a question with a yes/no answer. In that case getting the next-token probabilities of both "yes" and
"no" (and/or their relative ratio) is of interest for classification. The reason for getting these _before_ logit
processing and/or warping is b/c a) that can change the probabilities or b) reject the tokens of interest / reduce
the number of tokens to just 1.

For an example use-case see paper TabLLM: Few-shot Classification of Tabular Data with Large Language Models
by Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David Sontag.
https://arxiv.org/abs/2210.10723

In addition:
- added dedicated unit test: tests/generation/test_utils/test_return_unprocessed_logit_scores
  which tests return of logics with output_logits=True in generation.
- set output_logits=True in all other generation unit tests, that also have output_scores=True.

Implemented @gante's and @amyeroberts review feedback

Co-authored-by: kx79wq <max.baak@ing.com>
2024-02-19 17:34:17 +00:00
07e3454f03 [Docs] Add resources (#28705)
* Add resource

* Add more resources

* Add resources

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove mention

* Remove pipeline tags

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-19 15:22:29 +01:00
b2724d7b4c change version (#29097)
* change version

* nuke

* this doesn't make sense

* update some requirements.py

* revert + no main

* nits

* change cache number

* more pin

* revert

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-19 22:08:44 +08:00
79132d4cfe Fix a typo in examples/pytorch/text-classification/run_classification.py (#29072) 2024-02-19 13:01:15 +00:00
9830858671 Fix the bert-base-cased tokenizer configuration test (#29105)
Fix test
2024-02-19 13:23:25 +01:00
593230f0a1 fix the post-processing link (#29091)
The link in evaluation was missing a hyphen between post and processing. I fixed this, for English only. Someone with the ability to do a global search/replace should fix the other languages (if indeed they have this issue)/
2024-02-19 10:15:58 +00:00
a75a6c9315 FIX [bnb / tests]: Fix currently failing bnb tests (#29092)
Update test_mixed_int8.py
2024-02-19 10:39:12 +01:00
864c8e6ea3 [Awq] Add peft support for AWQ (#28987)
* add peft support for AWQ

* Update src/transformers/quantizers/quantizer_awq.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-19 01:31:39 +01:00
ce4fff0be7 [Docs] Spanish translation of task_summary.md (#28844)
* Add task_summary to es/_toctree.yml

* Add task_summary.md to docs/es

* Change title of task_summary.md

* Translate firsts paragraphs

* Translate middle paragraphs

* Translte the rest of the doc

* Edit firts paragraph
2024-02-16 15:50:06 -08:00
2f1003be86 Add chat support to text generation pipeline (#28945)
* Add chat support to text generation pipeline

* Better handling of single elements

* Deprecate ConversationalPipeline

* stash commit

* Add missing add_special_tokens kwarg

* Update chat templating docs to refer to TextGenerationPipeline instead of ConversationalPipeline

* Add TF tests

* @require_tf

* Add type hint

* Add specific deprecation version

* Remove unnecessary do_sample

* Remove todo - the discrepancy has been resolved

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/pipelines/text_generation.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-16 16:41:01 +00:00
636b03244c Fix trainer test wrt DeepSpeed + auto_find_bs (#29061)
* FIx trainer test

* Update tests/trainer/test_trainer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-16 10:04:24 -05:00
161fe425c9 Feature: Option to set the tracking URI for MLflowCallback. (#29032)
* Added option to set tracking URI for MLflowCallback.

* Added option to set tracking URI for MLflowCallback.

* Changed  to  in docstring.
2024-02-16 14:47:18 +00:00
be42c24d14 Honor trust_remote_code for custom tokenizers (#28854)
* pass through trust_remote_code for dynamically loading unregistered tokenizers specified by config
add test

* change directories back to previous directory after test

* fix ruff check

* Add a note to that block for future in case we want to remove it later

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2024-02-16 13:40:23 +00:00
4c18ddb5cf auto_find_batch_size isn't yet supported with DeepSpeed/FSDP. Raise error accrodingly. (#29058)
Update trainer.py
2024-02-16 18:11:09 +05:30
b262808656 fix failing trainer ds tests (#29057) 2024-02-16 17:18:45 +05:30
258da40efd fix num_assistant_tokens with heuristic schedule (#28759)
* fix heuristic num_assistant_tokens_schedule

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update utils.py

check that candidate_generator.assistant_model exists since some some speculations (like ngram and PLD) don't have assistant_model attribute

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/generation/test_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fixup

* merge conflict

* fix docstring

* make fixup

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-16 11:44:58 +00:00
0eb408551c Support : Leverage Accelerate for object detection/segmentation models (#28312)
* made changes for object detection models

* added support for segmentation models.

* Made changes for segmentaion models

* Changed import statements

* solving conflicts

* removed conflicts

* Resolving commits

* Removed conflicts

* Fix : Pixel_mask_value set to False
2024-02-16 11:38:59 +00:00
aee11fe427 Fix max_length criteria when using inputs_embeds (#28994)
* fix max_length for inputs_embeds

* make style

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Static Cache: load models with MQA or GQA (#28975)

* fix

* fix tests

* fix tests

* Update src/transformers/generation/utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* more fixes

* make style

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-16 11:25:12 +00:00
8876ce8a5f Update important model list (#29019) 2024-02-16 11:31:51 +01:00
f497f564bb Update all references to canonical models (#29001)
* Script & Manual edition

* Update
2024-02-16 08:16:58 +01:00
1e402b957d add test marker to run all tests with @require_bitsandbytes (#28278) 2024-02-16 01:53:09 +01:00
f3aa7db439 Fix a tiny typo in generation/utils.py::GenerateEncoderDecoderOutput's docstring (#29044)
Update utils.py
2024-02-15 18:12:31 +00:00
b0a7f44f85 Removed obsolete attribute setting for AQLM quantization. (#29034)
removed redundant field
2024-02-15 18:11:13 +00:00
4156f517ce Patch to skip failing test_save_load_low_cpu_mem_usage tests (#29043)
* Patch to skip currently failing tests

* Whoops - wrong place
2024-02-15 17:26:33 +00:00
6d1f545665 FIX: Fix error with logger.warning + inline with recent refactor (#29039)
Update modeling_utils.py
2024-02-15 15:33:26 +01:00
8a0ed0a9a2 Fix copies between DETR and DETA (#29037) 2024-02-15 14:02:58 +00:00
5b6fa2306a DeformableDetrModel support fp16 (#29013)
* Update ms_deform_attn_cuda.cu

* Update ms_deform_attn_cuda.cuh

* Update modeling_deformable_detr.py

* Update src/transformers/models/deformable_detr/modeling_deformable_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update modeling_deformable_detr.py

* python utils/check_copies.py --fix_and_overwrite

* Fix dtype missmatch error

* Update test_modeling_deformable_detr.py

* Update test_modeling_deformable_detr.py

* Update modeling_deformable_detr.py

* Update modeling_deformable_detr.py

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-15 12:31:09 +00:00
83e96dc0ab Add cuda_custom_kernel in DETA (#28989)
* enable graident checkpointing in DetaObjectDetection

* fix missing part in original DETA

* make style

* make fix-copies

* Revert "make fix-copies"

This reverts commit 4041c86c29248f1673e8173b677c20b5a4511358.

* remove fix-copies of DetaDecoder

* enable swin gradient checkpointing

* fix gradient checkpointing in donut_swin

* add tests for deta/swin/donut

* Revert "fix gradient checkpointing in donut_swin"

This reverts commit 1cf345e34d3cc0e09eb800d9895805b1dd9b474d.

* change supports_gradient_checkpointing pipeline to PreTrainedModel

* Revert "add tests for deta/swin/donut"

This reverts commit 6056ffbb1eddc3cb3a99e4ebb231ae3edf295f5b.

* Revert "Revert "fix gradient checkpointing in donut_swin""

This reverts commit 24e25d0a14891241de58a0d86f817d0b5d2a341f.

* Simple revert

* enable deformable detr gradient checkpointing

* add gradient in encoder

* add cuda_custom_kernel function in MSDA

* make style and fix input of DetaMSDA

* make fix-copies

* remove n_levels in input of DetaMSDA

* minor changes

* refactor custom_cuda_kernel like yoso format
0507e69d34/src/transformers/models/yoso/modeling_yoso.py (L53)
2024-02-15 12:09:39 +00:00
f3788b09e1 Fix static generation when compiling! (#28937)
* wow I was scared!

* fix everything

* nits

* make it BC?

* add todo

* nits

* is_tracing should still be used to pass tracing tests

* nits

* some nits to make sure genration works with static cache uncompiled

* fix sdpa

* fix FA2 for both static and dynamic in a better way?

* style

* fix-copies

* fix fix copies

* fix sequential beam searcg

* style

* use `keys_to_ignore`

* nit

* correct dtype inference when init

* :( the fix for FA2 is still not optimal to investigate!

* styling

* nits

* nit

* this might work better

* add comment

* Update src/transformers/models/llama/modeling_llama.py

* "position_ids" -> "cache_position"

* style

* nit

* Remove changes that should no be propagatted just yet

* Apply suggestions from code review

* Styling

* make sure we raise an errir for static cache with FA2 enabled

* move  to the bottom of the signature

* style

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_llama.py

* nit in the name

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-02-15 06:27:40 +01:00
609a1767e8 [CLeanup] Revert SDPA attention changes that got in the static kv cache PR (#29027)
* revert unrelated changes that got in

* style
2024-02-15 00:55:48 +01:00
7a0fccc6eb FIX [Trainer / tags]: Fix trainer + tags when users do not pass "tags" to trainer.push_to_hub() (#29009)
* fix trainer tags

* add test
2024-02-14 23:56:35 +01:00
5f06053dd8 [TPU] Support PyTorch/XLA FSDP via SPMD (#28949)
* Initial commit

* Add guards for the global mesh

* Address more comments

* Move the dataloader into integrations/tpu.py

* Fix linters

* Make karg more explicitly

* Remove the move device logic

* Fix the CI

* Fix linters

* Re-enable checkpointing
2024-02-14 21:44:49 +00:00
0199a484eb Backbone kwargs in config (#28784)
* Enable instantiating model with pretrained backbone weights

* Clarify pretrained import

* Use load_backbone instead

* Add backbone_kwargs to config

* Pass kwargs to constructors

* Fix up

* Input verification

* Add tests

* Tidy up

* Update tests/utils/test_backbone_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-02-14 20:46:44 +00:00
725f4ad1cc Add tie_weights() to LM heads and set bias in set_output_embeddings() (#28948)
* Add tie_weights() to LM heads and set bias in set_output_embeddings()

The bias were not tied correctly in some LM heads, and this change should fix that.

* Moving test_save_and_load_low_cpu_mem_usage to ModelTesterMixin

* Adding _tie_weights() to MPNet and Vilt

* Skip test for low cpu mem usage for Deta/DeformableDetr since they cannot init on meta device

* Rename to test name to save_load to match the convention
2024-02-14 20:39:01 +00:00
3f4e79d29c Mask Generation Task Guide (#28897)
* Create mask_generation.md

* add h1

* add to toctree

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update mask_generation.md

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update mask_generation.md

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Klaus Hipp <khipp@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Klaus Hipp <khipp@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Klaus Hipp <khipp@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

* Update mask_generation.md

* Update mask_generation.md

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Maria Khalusova <kafooster@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Klaus Hipp <khipp@users.noreply.github.com>
2024-02-14 18:29:49 +00:00
354775bc57 Fix flaky test vision encoder-decoder generate (#28923) 2024-02-14 15:40:57 +00:00
0507e69d34 Introduce AcceleratorConfig dataclass (#28664)
* Introduce acceleratorconfig dataclass

* Extra second warn

* Move import

* Try moving import under is_accelerate_available

* Quality

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Clean

* Remove to_kwargs

* Change version

* Improve tests by including dispatch and split batches

* Improve reliability

* Update tests/trainer/test_trainer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fixup tests and review nits

* Make tests pass

* protect import

* Protect import

* Empty-Commit

* Make training_args.to_dict handle the AcceleratorConfig

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-14 10:18:09 -05:00
69ca640dd6 Set the dataset format used by test_trainer to float32 (#28920)
Co-authored-by: unit_test <test@unit.com>
2024-02-14 13:55:12 +00:00
7252e8d937 [Doc] Fix docbuilder - make BackboneMixin and BackboneConfigMixin importable from utils. (#29002)
* Trigger doc build

* Test removing references

* Importable from utils

* Trigger another run on a new commit for testing
2024-02-14 10:29:22 +00:00
1ecf5f7c98 AQLM quantizer support (#28928)
* aqlm init

* calibration and dtypes

* docs

* Readme update

* is_aqlm_available

* Simpler link in docs

* Test TODO real reference

* init _import_structure fix

* AqlmConfig autodoc

* integration aqlm

* integrations in tests

* docstring fix

* legacy typing

* Less typings

* More kernels information

* Performance -> Accuracy

* correct tests

* remoced multi-gpu test

* Update docs/source/en/quantization.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Brought back multi-gpu tests

* Update src/transformers/integrations/aqlm.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update tests/quantization/aqlm_integration/test_aqlm.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

---------

Co-authored-by: Andrei Panferov <blacksamorez@yandex-team.ru>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-02-14 09:25:41 +01:00
63ffd56d02 Add SiglipForImageClassification and CLIPForImageClassification (#28952)
* First draft

* Add CLIPForImageClassification

* Remove scripts

* Fix doctests
2024-02-14 08:41:31 +01:00
de6029a059 Add StableLM (#28810)
* Add `StableLM`

* fix(model): re-create from `huggingface-cli add-new-model-like persimmon`

* fix: re-add changes to address comments

* fix(readme): add links to paper

* fix(tokenization_auto): remove `GPTNeoXTokenizerFastFast` ref

* fix(tests): re-add `@slow` decorator to integration tests

* fix(tests): import slow...

* fix(readme_hd): remove whitespace edit

* fix(tokenizer): auto tokenizer tuple

* skip doctests for `modeling_stablelm`
2024-02-14 07:15:18 +01:00
164bdef8cc ENH [AutoQuantizer]: enhance trainer + not supported quant methods (#28991)
* enhance trainer + not support quant methods

* remove all old logic

* add version
2024-02-14 01:30:23 +01:00
1d12b8bc25 ENH: Do not pass warning message in case quantization_config is in config but not passed as an arg (#28988)
* Update auto.py

* Update auto.py

* Update src/transformers/quantizers/auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/quantizers/auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-14 01:19:42 +01:00
bd4b83e1ba [DETR] Update the processing to adapt masks & bboxes to reflect padding (#28363)
* Update the processing so bbox coords are adjusted for padding

* Just pad masks

* Tidy up, add tests

* Better tests

* Fix yolos and mark as slow for pycocotols

* Fix yolos - return_tensors

* Clarify padding and normalization behaviour
2024-02-13 18:27:06 +00:00
3de6a6b493 Update configuration_llama.py: fixed broken link (#28946)
* Update configuration_llama.py: fix broken link

* [Nit] Explicit redirection not required

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-13 13:02:07 +00:00
3e70a207df Static Cache: load models with MQA or GQA (#28975) 2024-02-13 09:58:19 +00:00
da20209dbc Add sudachi_projection option to BertJapaneseTokenizer (#28503)
* add sudachi_projection option

* Upgrade sudachipy>=0.6.8

* add a test case for sudachi_projection

* Compatible with older versions of SudachiPy

* make fixup

* make style

* error message for unidic download

* revert jumanpp test cases

* format options for sudachi_projection

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* format options for sudachi_split_mode and sudachi_dict_type

* comment

* add tests for full_tokenizer kwargs

* pass projection arg directly

* require_sudachi_projection

* make style

* revert upgrade sudachipy

* check is_sudachi_projection_available()

* revert dependency_version_table and bugfix

* style format

* simply raise ImportError

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* simply raise ImportError

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-02-13 04:47:20 +01:00
b44567538b [NllbTokenizer] refactor with added tokens decoder (#27717)
* refactor with addedtokens decoder

* style

* get rid of lang code to id

* style

* keep some things for BC

* update tests

* add the mask token at the end of the vocab

* nits

* nits

* fix final tests

* style

* nits

* Update src/transformers/models/nllb/tokenization_nllb_fast.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* nits

* style?

* Update src/transformers/convert_slow_tokenizer.py

* make it a tad bit more custom

* ruff please stop
Co-Authored by avidale

<dale.david@mail.ru>

* Update
Co-authored-by: avidale
<dale.david@mail.ru>

* Update
Co-authored-by: avidale <dale.david@mail.ru>

* oupts

* ouft

* nites

* test

* fix the remaining failing tests

* style

* fix failing test

* ficx other test

* temp dir + test the raw init

* update test

* style

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-13 03:49:20 +01:00
d90acc1643 [i18n-de] Translate CONTRIBUTING.md to German (#28954)
* Translate contributing.md to German

* Fix formatting issues in contributing.md

* Address review comments

* Fix capitalization
2024-02-12 13:39:20 -08:00
78ba9f4617 [Docs] Add video section (#28958)
Add video section
2024-02-12 19:50:31 +01:00
fe3df9d5b3 [Docs] Add language identifiers to fenced code blocks (#28955)
Add language identifiers to code blocks
2024-02-12 10:48:31 -08:00
c617f988f8 Clean up staging tmp checkpoint directory (#28848)
clean up remaining tmp checkpoint dir

Signed-off-by: woshiyyya <xiaoyunxuan1998@gmail.com>
2024-02-12 15:47:21 +00:00
136cd893dc Always initialize tied output_embeddings if it has a bias term (#28947)
Continue to initialize tied output_embeddings if it has a bias term

The bias term is not tied, and so will need to be initialized accordingly.
2024-02-12 15:47:08 +00:00
792819f6cf Updated requirements for image-classification samples: datasets>=2.14.0 (#28974)
Updated datasets requirements. Need a package version >= 2.14.0
2024-02-12 14:57:25 +00:00
e30bbb2685 Tests: tag test_save_load_fast_init_from_base as flaky (#28930) 2024-02-12 14:43:34 +00:00
1709886eba [pipelines] updated docstring with vqa alias (#28951)
updated docstring with vqa alias
2024-02-12 14:34:08 +00:00
cf4c20b9fb Convert torch_dtype as str to actual torch data type (i.e. "float16" …to torch.float16) (#28208)
* Convert torch_dtype as str to actual torch data type (i.e. "float16" to torch.float16)

* Check if passed torch_dtype is an attribute in torch

* Update src/transformers/pipelines/__init__.py

Check type via isinstance

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-12 14:04:53 +00:00
ef5ab72f4b [Docs] Update README and default pipelines (#28864)
* Update README and docs

* Update README

* Update README
2024-02-12 10:21:36 +01:00
f278ef20ed [Nougat] Fix pipeline (#28242)
* Fix pipeline

* Remove print statements

* Address comments

* Address issue

* Remove unused imports
2024-02-12 10:21:15 +01:00
58e3d23e97 [i18n-de] Translate README.md to German (#28933)
* Translate README.md to German

* Add links to README_de.md

* Remove invisible characters in README

* Change to a formal tone and fix punctuation marks
2024-02-09 12:56:22 -08:00
d123e661e4 Fix type annotations on neftune_noise_alpha and fsdp_config TrainingArguments parameters (#28942) 2024-02-09 15:42:01 +00:00
ebf3ea2788 Fix a wrong link to CONTRIBUTING.md section in PR template (#28941) 2024-02-09 15:10:47 +00:00
de11e654c9 Fix max_position_embeddings default value for llama2 to 4096 #28241 (#28754)
* Changed max_position_embeddings default value from 2048 to 4096

* force push

* Fixed formatting issues. Fixed missing argument in write_model.

* Reverted to the default value 2048 in the Llama config. Added comments for the llama_version argument.

* Fixed issue with default value value of max_position_embeddings in docstring

* Updated help message for llama versions

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-09 10:24:01 +00:00
2749e479f3 [Docs] Fix broken links and syntax issues (#28918)
* Fix model documentation links in attention.md

* Fix external link syntax

* Fix target anchor names of section links

* Fix copyright statement comments

* Fix documentation headings
2024-02-08 14:13:35 -08:00
d628664688 Support batched input for decoder start ids (#28887)
* support batched input for decoder start ids

* Fix typos

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* minor changes

* fix: decoder_start_id as list

* empty commit

* empty commit

* empty commit

* empty commit

* empty commit

* empty commit

* empty commit

* empty commit

* empty commit

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-02-08 16:00:53 +00:00
cc309fd406 pass kwargs in stopping criteria list (#28927) 2024-02-08 15:38:29 +00:00
0b693e90e0 fix: torch.int32 instead of torch.torch.int32 (#28883) 2024-02-08 16:28:17 +01:00
693667b8ac Remove dead TF loading code (#28926)
Remove dead code
2024-02-08 14:17:33 +00:00
115ac94d06 [Core generation] Adds support for static KV cache (#27931)
Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-02-08 11:50:34 +01:00
4b236aed76 Fix utf-8 yaml load for marian conversion to pytorch in Windows (#28618)
Fix utf-8 yaml in marian conversion
2024-02-08 08:23:15 +01:00
33df036917 [Docs] Revert translation of '@slow' decorator (#28912) 2024-02-08 03:31:47 +01:00
328ade855b [Docs] Fix placement of tilde character (#28913)
Fix placement of tilde character
2024-02-07 17:19:39 -08:00
5f96855761 Add npu device for pipeline (#28885)
add npu device for pipeline

Co-authored-by: unit_test <test@unit.com>
2024-02-07 17:27:01 +00:00
308d2b9004 Update the cache number (#28905)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-07 16:37:09 +01:00
abf8f54a01 ⚠️ Raise Exception when trying to generate 0 tokens ⚠️ (#28621)
* change warning to exception

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* validate `max_new_tokens` > 0 in `GenerationConfig`

* fix truncation test parameterization in `TextGenerationPipelineTests`

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-02-07 13:42:01 +01:00
349a6e8542 Fix Keras scheduler import so it works for older versions of Keras (#28895)
Fix our schedule import so it works for older versions of Keras
2024-02-07 12:28:24 +00:00
d9deddb4c1 fix Starcoder FA2 implementation (#28891) 2024-02-07 14:10:10 +05:30
64d1518cbf fix: Fixed the documentation for logging_first_step by removing "evaluate" (#28884)
Fixed the documentation for logging_first_step by removing evaluate.
2024-02-07 08:46:36 +01:00
1c31b7aa3b [Docs] Add missing language options and fix broken links (#28852)
* Add missing entries to the language selector

* Add links to the Colab and AWS Studio notebooks for ONNX

* Use anchor links in CONTRIBUTING.md

* Fix broken hyperlinks due to spaces

* Fix links to OpenAI research articles

* Remove confusing footnote symbols from author names, as they are also considered invalid markup
2024-02-06 12:01:01 -08:00
40658be461 Hotfix - make torchaudio get the correct version in torch_and_flax_job (#28899)
* check

* check

* check

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-06 21:00:42 +01:00
4830f26965 [Docs] Fix backticks in inline code and documentation links (#28875)
Fix backticks in code blocks and documentation links
2024-02-06 11:15:44 -08:00
a1afec9e17 Explicit server error on gated model (#28894) 2024-02-06 17:45:20 +00:00
89439fea64 unpin torch (#28892)
* unpin torch

* check

* check

* check

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-06 17:21:05 +01:00
76b4f666f5 Revert "[WIP] Hard error when ignoring tensors." (#28898)
Revert "[WIP] Hard error when ignoring tensors. (#27484)"

This reverts commit 2da28c4b41bba23969a8afe97c3dfdcbc47a57dc.
2024-02-06 17:18:30 +01:00
6529a5b5c1 Fix FastSpeech2ConformerModelTest and skip it on CPU (#28888)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-06 11:05:23 +01:00
5346db1684 Raise error when using save_only_model with load_best_model_at_end for DeepSpeed/FSDP (#28866)
* Raise error when using `save_only_model` with `load_best_model_at_end` for DeepSpeed/FSDP

* Update trainer.py
2024-02-06 11:25:44 +05:30
ee2a3400f2 Fix LongT5ForConditionalGeneration initialization of lm_head (#28873) 2024-02-06 04:24:20 +01:00
1ea0bbd73c [Docs] Update project names and links in awesome-transformers (#28878)
Update project names and repository links in awesome-transformers
2024-02-06 04:06:29 +01:00
e83227d76e Bump cryptography from 41.0.2 to 42.0.0 in /examples/research_projects/decision_transformer (#28879)
Bump cryptography in /examples/research_projects/decision_transformer

Bumps [cryptography](https://github.com/pyca/cryptography) from 41.0.2 to 42.0.0.
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/41.0.2...42.0.0)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-02-06 03:53:08 +01:00
2e7c942c81 Adds LlamaForQuestionAnswering class in modeling_llama.py along with AutoModel Support (#28777)
* This is a test commit

* testing commit

* final commit with some changes

* Removed copy statement

* Fixed formatting issues

* Fixed error added past_key_values in the forward method

* Fixed a trailing whitespace. Damn the formatting rules are strict

* Added the copy statement
2024-02-06 03:41:42 +01:00
ac51e59e47 Do not use mtime for checkpoint rotation. (#28862)
Resolve https://github.com/huggingface/transformers/issues/26961
2024-02-06 03:21:50 +01:00
06901162b5 ClearMLCallback enhancements: support multiple runs and handle logging better (#28559)
* add clearml tracker

* support multiple train runs

* remove bad code

* add UI entries for config/hparams overrides

* handle models in different tasks

* run ruff format

* tidy code based on code review

---------

Co-authored-by: Eugen Ajechiloae <eugenajechiloae@gmail.com>
2024-02-05 20:04:17 +00:00
ba3264b4e8 Image Feature Extraction pipeline (#28216)
* Draft pipeline

* Fixup

* Fix docstrings

* Update doctest

* Update pipeline_model_mapping

* Update docstring

* Update tests

* Update src/transformers/pipelines/image_feature_extraction.py

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Fix docstrings - review comments

* Remove pipeline mapping for composite vision models

* Add to pipeline tests

* Remove for flava (multimodal)

* safe pil import

* Add requirements for pipeline run

* Account for super slow efficientnet

* Review comments

* Fix tests

* Swap order of kwargs

* Use build_pipeline_init_args

* Add back FE pipeline for Vilt

* Include image_processor_kwargs in docstring

* Mark test as flaky

* Update TODO

* Update tests/pipelines/test_pipelines_image_feature_extraction.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add license header

---------

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-02-05 14:50:07 +00:00
7addc9346c Correct wav2vec2-bert inputs_to_logits_ratio (#28821)
* Correct wav2vec2-bert inputs_to_logits_ratio

* correct ratio

* correct ratio, clean asr pipeline

* refactor on one line
2024-02-05 13:14:47 +00:00
3f9f749325 [Doc] update contribution guidelines (#28858)
update guidelines
2024-02-05 21:19:21 +09:00
2da28c4b41 [WIP] Hard error when ignoring tensors. (#27484)
* [WIP] Hard error when ignoring tensors.

* Better selection/error when saving a checkpoint.

- Find all names we should normally drop (those are in the transformers
  config)
- Find all disjoint tensors (for those we can safely trigger a copy to
  get rid of the sharing before saving)
- Clone those disjoint tensors getting rid of the issue
- Find all identical names (those should be declared in the config
  but we try to find them all anyway.)
- For all identical names:
  - If they are in the config, just ignore them everything is fine
  - If they are not, warn about them.
- For all remainder tensors which are shared yet neither identical NOR
  disjoint. raise a hard error.

* Adding a failing test on `main` that passes here.

* We don't need to keep the subfolder logic in this test.

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-02-05 09:17:24 +01:00
0466fd5ca2 Ability to override clean_code_for_run (#28783)
* Add clean_code_for_run function

* Call clean_code_for_run from agent method
2024-02-05 03:48:41 +01:00
c430d6eaee [Docs] Fix bad doc: replace save with logging (#28855)
Fix bad doc: replace save with logging
2024-02-05 03:38:08 +01:00
7b702836af Support custom scheduler in deepspeed training (#26831)
Reuse trainer.create_scheduler to create scheduler for deepspeed
2024-02-05 03:33:55 +01:00
ca8944c4e3 Bump dash from 2.3.0 to 2.15.0 in /examples/research_projects/decision_transformer (#28845)
Bump dash in /examples/research_projects/decision_transformer

Bumps [dash](https://github.com/plotly/dash) from 2.3.0 to 2.15.0.
- [Release notes](https://github.com/plotly/dash/releases)
- [Changelog](https://github.com/plotly/dash/blob/dev/CHANGELOG.md)
- [Commits](https://github.com/plotly/dash/compare/v2.3.0...v2.15.0)

---
updated-dependencies:
- dependency-name: dash
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-02-05 03:12:30 +01:00
3d2900e829 Mark test_encoder_decoder_model_generate for vision_encoder_deocder as flaky (#28842)
Mark test as flaky
2024-02-02 16:57:08 +00:00
80d50076c8 Reduce GPU memory usage when using FSDP+PEFT (#28830)
support FSDP+PEFT
2024-02-02 21:18:01 +05:30
f497795948 Use -v for pytest on CircleCI (#28840)
use -v in pytest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-02 16:44:13 +01:00
a7cb92aa03 fix / skip (for now) some tests before switch to torch 2.2 (#28838)
* fix / skip some tests before we can switch to torch 2.2

* style

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-02 14:11:50 +01:00
0e75aeefaf Fix issues caused by natten (#28834)
try

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-02 21:11:48 +09:00
ec29d25d9f Add missing None check for hf_quantizer (#28804)
* Add missing None check for hf_quantizer

* Add test, fix logic.

* make style

* Switch test model to Mistral

* Comment

* Update tests/test_modeling_utils.py

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-02-02 09:34:12 +01:00
1efb21c764 Explicitly check if token ID's are None in TFBertTokenizer constructor (#28824)
Add an explicit none-check, since token ids can be 0
2024-02-02 09:13:36 +01:00
721ee783ca [Docs] Fix spelling and grammar mistakes (#28825)
* Fix typos and grammar mistakes in docs and examples

* Fix typos in docstrings and comments

* Fix spelling of `tokenizer` in model tests

* Remove erroneous spaces in decorators

* Remove extra spaces in Markdown link texts
2024-02-02 08:45:00 +01:00
2418c64a1c [docs] HfQuantizer (#28820)
* tidy

* fix path
2024-02-02 08:22:18 +01:00
abbffc4525 [docs] Backbone (#28739)
* backbones

* fix path

* fix paths

* fix code snippet

* fix links
2024-02-01 09:16:16 -08:00
23ea6743f2 Add models from deit (#28302)
* Add modelss

* Add 2 more models

* add models to tocrree

* Add modles

* Update docs/source/ja/model_doc/detr.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/deit.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/deplot.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix bugs

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-02-01 09:15:55 -08:00
d98591a12b [docs] fix some bugs about parameter description (#28806)
Co-authored-by: p_spozzhang <p_spozzhang@tencent.com>
2024-02-01 16:59:29 +00:00
e19c12e094 enable graident checkpointing in DetaObjectDetection and add tests in Swin/Donut_Swin (#28615)
* enable graident checkpointing in DetaObjectDetection

* fix missing part in original DETA

* make style

* make fix-copies

* Revert "make fix-copies"

This reverts commit 4041c86c29248f1673e8173b677c20b5a4511358.

* remove fix-copies of DetaDecoder

* enable swin gradient checkpointing

* fix gradient checkpointing in donut_swin

* add tests for deta/swin/donut

* Revert "fix gradient checkpointing in donut_swin"

This reverts commit 1cf345e34d3cc0e09eb800d9895805b1dd9b474d.

* change supports_gradient_checkpointing pipeline to PreTrainedModel

* Revert "add tests for deta/swin/donut"

This reverts commit 6056ffbb1eddc3cb3a99e4ebb231ae3edf295f5b.

* Revert "Revert "fix gradient checkpointing in donut_swin""

This reverts commit 24e25d0a14891241de58a0d86f817d0b5d2a341f.

* Simple revert

* enable deformable detr gradient checkpointing

* add gradient in encoder
2024-02-01 15:07:44 +00:00
7bc6d76396 Add tip on setting tokenizer attributes (#28764)
* Add tip on setting tokenizer attributes

* Grammar

* Remove the bit that was causing doc builds to fail
2024-02-01 14:44:58 +00:00
709dc43239 Fix symbolic_trace with kv cache (#28724)
* fix symbolic_trace with kv cache

* comment & better test
2024-02-01 09:45:02 +01:00
eb8e7a005f Make is_torch_bf16_available_on_device more strict (#28796)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-01 09:03:53 +01:00
0d26abdd3a Adding [T5/MT5/UMT5]ForTokenClassification (#28443)
* Adding [T5/MT5/UMT5]ForTokenClassification

* Add auto mappings for T5ForTokenClassification and variants

* Adding ForTokenClassification to the list of models

* Adding attention_mask param to the T5ForTokenClassification test

* Remove outdated comment in test

* Adding EncoderOnly and Token Classification tests for MT5 and UMT5

* Fix typo in umt5 string

* Add tests for all the existing MT5 models

* Fix wrong comment in dependency_versions_table

* Reverting change to common test for _keys_to_ignore_on_load_missing

The test is correctly picking up redundant keys in _keys_to_ignore_on_load_missing.

* Removing _keys_to_ignore_on_missing from MT5 since the key is not used in the model

* Add fix-copies to MT5ModelTest
2024-02-01 03:53:49 +01:00
7b2bd1fbbd [docs] Correct the statement in the docstirng of compute_transition_scores in generation/utils.py (#28786) 2024-01-31 17:07:30 +00:00
4735866141 Split daily CI using 2 level matrix (#28773)
* update / add new workflow files

* Add comment

* Use env.NUM_SLICES

* use scripts

* use scripts

* use scripts

* Fix

* using one script

* Fix

* remove unused file

* update

* fail-fast: false

* remove unused file

* fix

* fix

* use matrix

* inputs

* style

* update

* fix

* fix

* no model name

* add doc

* allow args

* style

* pass argument

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-31 18:04:43 +01:00
95346e9dcd Add artifact name in job step to maintain job / artifact correspondence (#28682)
* avoid using job name

* apply to other files

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-31 15:58:17 +01:00
beb2a09687 DeepSpeed: hardcode torch.arange dtype on float usage to avoid incorrect initialization (#28760) 2024-01-31 14:39:07 +00:00
f7076cd346 Flax mistral (#26943)
* direct copy from llama work

* mistral modules forward pass working

* flax mistral forward pass with sliding window

* added tests

* added layer collection approach

* Revert "added layer collection approach"

This reverts commit 0e2905bf2236ec323163fc1a9f0c016b21aa8b8f.

* Revert "Revert "added layer collection approach""

This reverts commit fb17b6187ac5d16da7c461e1130514dc3d137a43.

* fixed attention outputs

* added mistral to init and auto

* fixed import name

* fixed layernorm weight dtype

* freeze initialized weights

* make sure conversion consideres bfloat16

* added backend

* added docstrings

* added cache

* fixed sliding window causal mask

* passes cache tests

* passed all tests

* applied make style

* removed commented out code

* applied fix-copies ignored other model changes

* applied make fix-copies

* removed unused functions

* passed generation integration test

* slow tests pass

* fixed slow tests

* changed default dtype from jax.numpy.float32 to float32 for docstring check

* skip cache test  for FlaxMistralForSequenceClassification since if pad_token_id in input_ids it doesn't score previous input_ids

* updated checkpoint since from_pt not included

* applied black style

* removed unused args

* Applied styling and fixup

* changed checkpoint for doc back

* fixed rf after adding it to hf hub

* Add dummy ckpt

* applied styling

* added tokenizer to new ckpt

* fixed slice format

* fix init and slice

* changed ref for placeholder TODO

* added copies from Llama

* applied styling

* applied fix-copies

* fixed docs

* update weight dtype reconversion for sharded weights

* removed Nullable input ids

* Removed unnecessary output attentions in Module

* added embedding weight initialziation

* removed unused past_key_values

* fixed deterministic

* Fixed RMS Norm and added copied from

* removed input_embeds

* applied make style

* removed nullable input ids from sequence classification model

* added copied from GPTJ

* added copied from Llama on FlaxMistralDecoderLayer

* added copied from to FlaxMistralPreTrainedModel methods

* fix test deprecation warning

* freeze gpt neox random_params and fix copies

* applied make style

* fixed doc issue

* skipped docstring test to allign # copied from

* applied make style

* removed FlaxMistralForSequenceClassification

* removed unused padding_idx

* removed more sequence classification

* removed sequence classification

* applied styling and consistency

* added copied from in tests

* removed sequence classification test logic

* applied styling

* applied make style

* removed freeze and fixed copies

* undo test change

* changed repeat_kv to tile

* fixed to key value groups

* updated copyright year

* split casual_mask

* empty to rerun failed pt_flax_equivalence test FlaxWav2Vec2ModelTest

* went back to 2023 for tests_pr_documentation_tests

* went back to 2024

* changed tile to repeat

* applied make style

* empty for retry on Wav2Vec2
2024-01-31 14:19:02 +01:00
7a4961007a Wrap Keras methods to support BatchEncoding (#28734)
* Shim the Keras methods to support BatchEncoding

* Extract everything to a convert_batch_encoding function

* Convert BatchFeature too (thanks Amy)

* tf.keras -> keras
2024-01-31 13:18:42 +00:00
721e2d94df canonical repos moves (#28795)
* canonical repos moves

* Style

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2024-01-31 14:18:31 +01:00
bebeeee012 Resolve DeepSpeed cannot resume training with PeftModel (#28746)
* fix: resolve deepspeed resume peft model issues

* chore: update something

* chore: update model instance pass into is peft model checks

* chore: remove hard code value to tests

* fix: format code
2024-01-31 13:58:26 +01:00
65a926e82b [Whisper] Refactor forced_decoder_ids & prompt ids (#28687)
* up

* Fix more

* Correct more

* Fix more tests

* fix fast tests

* Fix more

* fix more

* push all files

* finish all

* make style

* Fix timestamp wrap

* make style

* make style

* up

* up

* up

* Fix lang detection behavior

* Fix lang detection behavior

* Add lang detection test

* Fix lang detection behavior

* make style

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* better error message

* make style tests

* add warning

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-01-31 14:02:07 +02:00
f9f1f2ac5e [HFQuantizer] Remove check_packages_compatibility logic (#28789)
remove `check_packages_compatibility` logic
2024-01-31 03:21:27 +01:00
ae0c27adfa don't initialize the output embeddings if we're going to tie them to input embeddings (#28192)
* test that tied output embeddings aren't initialized on load

* don't initialize the output embeddings if we're going to tie them to the input embeddings
2024-01-31 02:19:18 +01:00
a937425e94 Prevent MLflow exception from disrupting training (#28779)
Modified MLflow logging metrics from synchronous to asynchronous

Co-authored-by: codiceSpaghetti <alessio.ser@hotmail.it>
2024-01-31 02:10:44 +01:00
d703eaaeff [bnb] Fix bnb slow tests (#28788)
fix bnb slow tests
2024-01-31 01:31:20 +01:00
74c9cfeaa7 Pin Torch to <2.2.0 (#28785)
* Pin torch to <2.2.0

* Pin torchvision and torchaudio as well

* Playing around with versions to see if this helps

* twiddle something to restart the CI

* twiddle it back

* Try changing the natten version

* make fixup

* Revert "Try changing the natten version"

This reverts commit de0d6592c35dc39ae8b5a616c27285db28262d06.

* make fixup

* fix fix fix

* fix fix fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-30 23:01:12 +01:00
415e9a0980 Add tf_keras imports to prepare for Keras 3 (#28588)
* Port core files + ESM (because ESM code is odd)

* Search-replace in modelling code

* Fix up transfo_xl as well

* Fix other core files + tests (still need to add correct import to tests)

* Fix cookiecutter

* make fixup, fix imports in some more core files

* Auto-add imports to tests

* Cleanup, add imports to sagemaker tests

* Use correct exception for importing tf_keras

* Fixes in modeling_tf_utils

* make fixup

* Correct version parsing code

* Ensure the pipeline tests correctly revert to float32 after each test

* Ensure the pipeline tests correctly revert to float32 after each test

* More tf.keras -> keras

* Add dtype cast

* Better imports of tf_keras

* Add a cast for tf.assign, just in case

* Fix callback imports
2024-01-30 17:26:36 +00:00
1d489b3e61 Task-specific pipeline init args (#28439)
* Abstract out pipeline init args

* Address PR comments

* Reword

* BC PIPELINE_INIT_ARGS

* Remove old arguments

* Small fix
2024-01-30 16:54:57 +00:00
2fa1c808ae [Backbone] Use load_backbone instead of AutoBackbone.from_config (#28661)
* Enable instantiating model with pretrained backbone weights

* Remove doc updates until changes made in modeling code

* Use load_backbone instead

* Add use_timm_backbone to the model configs

* Add missing imports and arguments

* Update docstrings

* Make sure test is properly configured

* Include recent DPT updates
2024-01-30 16:54:09 +00:00
c24c52454a Further pin pytest version (in a temporary way) (#28780)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-30 17:48:49 +01:00
6f7d5db58c Fix transformers.utils.fx compatibility with torch<2.0 (#28774)
guard sdpa on torch>=2.0
2024-01-30 14:54:42 +01:00
5c8d941d66 Use Conv1d for TDNN (#25728)
* use conv for tdnn

* run make fixup

* update TDNN

* add PEFT LoRA check

* propagate tdnn warnings to others

* add missing imports

* update TDNN in wav2vec2_bert

* add missing imports
2024-01-30 09:33:55 +01:00
866253f85e [HfQuantizer] Move it to "Developper guides" (#28768)
Update _toctree.yml
2024-01-30 07:20:20 +01:00
d78e78a0e4 HfQuantizer class for quantization-related stuff in modeling_utils.py (#26610)
* squashed earlier commits for easier rebase

* rm rebase leftovers

* 4bit save enabled @quantizers

* TMP gptq test use exllama

* fix AwqConfigTest::test_wrong_backend for A100

* quantizers AWQ fixes

* _load_pretrained_model low_cpu_mem_usage branch

* quantizers style

* remove require_low_cpu_mem_usage attr

* rm dtype arg from process_model_before_weight_loading

* rm config_origin from Q-config

* rm inspect from q_config

* fixed docstrings in QuantizationConfigParser

* logger.warning fix

* mv is_loaded_in_4(8)bit to BnbHFQuantizer

* is_accelerate_available error msg fix in quantizer

* split is_model_trainable in bnb quantizer class

* rm llm_int8_skip_modules as separate var in Q

* Q rm todo

* fwd ref to HFQuantizer in type hint

* rm note re optimum.gptq.GPTQQuantizer

* quantization_config in __init__ simplified

* replaced NonImplemented with  create_quantized_param

* rm load_in_4/8_bit deprecation warning

* QuantizationConfigParser refactoring

* awq-related minor changes

* awq-related changes

* awq config.modules_to_not_convert

* raise error if no q-method in q-config in args

* minor cleanup

* awq quantizer docstring

* combine common parts in bnb process_model_before_weight_loading

* revert test_gptq

* .process_model_ cleanup

* restore dict config warning

* removed typevars in quantizers.py

* cleanup post-rebase 16 jan

* QuantizationConfigParser classmethod refactor

* rework of handling of unexpected aux elements of bnb weights

* moved q-related stuff from save_pretrained to quantizers

* refactor v1

* more changes

* fix some tests

* remove it from main init

* ooops

* Apply suggestions from code review

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* fix awq issues

* fix

* fix

* fix

* fix

* fix

* fix

* add docs

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/hf_quantizer.md

* address comments

* fix

* fixup

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* address final comment

* update

* Update src/transformers/quantizers/base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/quantizers/auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

* add kwargs update

* fixup

* add `optimum_quantizer` attribute

* oops

* rm unneeded file

* fix doctests

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-30 02:48:25 +01:00
1f5590d32e Move CLIP _no_split_modules to CLIPPreTrainedModel (#27841)
Add _no_split_modules to CLIPModel
2024-01-30 02:15:58 +01:00
a989c6c6eb Don't allow passing load_in_8bit and load_in_4bit at the same time (#28266)
* Update quantization_config.py

* Style

* Protect from setting directly

* add tests

* Update tests/quantization/bnb/test_4bit.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-01-30 01:43:40 +01:00
cd2eb8cb2b Add French translation: french README.md (#28696)
* doc: french README

Signed-off-by: ThibaultLengagne <thibaultl@padok.fr>

* doc: Add Depth Anything

Signed-off-by: ThibaultLengagne <thibaultl@padok.fr>

* doc: Add french link in other docs

Signed-off-by: ThibaultLengagne <thibaultl@padok.fr>

* doc: Add missing links in fr docs

* doc: fix several mistakes in translation

Signed-off-by: ThibaultLengagne <thibaultl@padok.fr>

---------

Signed-off-by: ThibaultLengagne <thibaultl@padok.fr>
Co-authored-by: Sarapuce <alexandreh@padok.fr>
2024-01-29 10:07:49 -08:00
a055d09e11 Support saving only PEFT adapter in checkpoints when using PEFT + FSDP (#28297)
* Update trainer.py

* Revert "Update trainer.py"

This reverts commit 0557e2cc9effa3a41304322032239a3874b948a7.

* Make trainer.py use adapter_only=True when using FSDP + PEFT

* Support load_best_model with adapter_only=True

* Ruff format

* Inspect function args for save_ load_ fsdp utility functions and only pass adapter_only=True if they support it
2024-01-29 17:10:15 +00:00
da3c79b245 [Whisper] Make tokenizer normalization public (#28136)
* [Whisper] Make tokenizer normalization public

* add to docs
2024-01-29 16:07:35 +00:00
e694e985d7 Fix typo of Block. (#28727) 2024-01-29 15:25:00 +00:00
9e8f35fa28 Mark test_constrained_beam_search_generate as flaky (#28757)
* Make test_constrained_beam_search_generate as flaky

* Update tests/generation/test_utils.py
2024-01-29 15:22:25 +00:00
0f8d015a41 Pin pytest version <8.0.0 (#28758)
* Pin pytest version <8.0.0

* Update setup.py

* make deps_table_update
2024-01-29 15:22:14 +00:00
26aa03a252 small doc update for CamemBERT (#28644) 2024-01-29 15:46:32 +01:00
0548af54cc Enable Gradient Checkpointing in Deformable DETR (#28686)
* Enabled gradient checkpointing in Deformable DETR

* Enabled gradient checkpointing in Deformable DETR encoder

* Removed # Copied from headers in modeling_deta.py to break dependence on Deformable DETR code
2024-01-29 10:10:40 +00:00
f72c7c22d9 PatchtTST and PatchTSMixer fixes (#28083)
* 🐛 fix .max bug

* remove prediction_length from regression output dimensions

* fix parameter names, fix output names, update tests

* ensure shape for PatchTST

* ensure output shape for PatchTSMixer

* update model, batch, and expected for regression distribution test

* update test expected

Signed-off-by: Wesley M. Gifford <wmgifford@us.ibm.com>

* Update tests/models/patchtst/test_modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/patchtst/test_modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/patchtst/test_modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/modeling_patchtsmixer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/patchtsmixer/test_modeling_patchtsmixer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/patchtsmixer/test_modeling_patchtsmixer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* standardize on patch_length

Signed-off-by: Wesley M. Gifford <wmgifford@us.ibm.com>

* Update tests/models/patchtsmixer/test_modeling_patchtsmixer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/patchtsmixer/test_modeling_patchtsmixer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Make arguments more explicit

Signed-off-by: Wesley M. Gifford <wmgifford@us.ibm.com>

* adjust prepared inputs

Signed-off-by: Wesley M. Gifford <wmgifford@us.ibm.com>

---------

Signed-off-by: Wesley M. Gifford <wmgifford@us.ibm.com>
Co-authored-by: Wesley M. Gifford <wmgifford@us.ibm.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-29 10:09:26 +00:00
3a08cc485f [Docs] Fix Typo in English & Japanese CLIP Model Documentation (TMBD -> TMDB) (#28751)
* [Docs] Fix Typo in English CLIP model_doc

* [Docs] Fix Typo in Japanese CLIP model_doc
2024-01-29 10:06:51 +00:00
39fa400969 Fix input data file extension in examples (#28741) 2024-01-29 10:06:31 +00:00
5649c0cbb8 Fix DepthEstimationPipeline's docstring (#28733)
* fix

* fix

* Fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-29 10:42:55 +01:00
243e186efb Add serialization logic to pytree types (#27871)
* Add serialized type name to pytrees

* Modify context

* add serde test
2024-01-29 10:41:20 +01:00
f1cc615721 [Siglip] protect from imports if sentencepiece not installed (#28737)
[Siglip] protect from imports if sentencepiece not installed
2024-01-28 15:10:14 +00:00
03cc17775b Generate: deprecate old src imports (#28607) 2024-01-27 15:54:19 +00:00
a28a76996c Falcon: removed unused function (#28605) 2024-01-27 15:52:59 +00:00
de13a951b3 [Flax] Update no init test for Flax v0.7.1 (#28735) 2024-01-26 18:20:39 +00:00
abe0289e6d [docs] Fix datasets in guides (#28715)
* change datasets

* fix
2024-01-26 09:29:07 -08:00
f8b7c4345a Unpin pydantic (#28728)
* try pydantic v2

* try pydantic v2

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-26 17:39:33 +01:00
3aea38ce61 fix: suppress GatedRepoError to use cache file (fix #28558). (#28566)
* fix: suppress `GatedRepoError` to use cache file (fix #28558).

* move condition_to_return parameter back to outside.
2024-01-26 16:25:08 +00:00
708b19eb09 Stop confusing the TF compiler with ModelOutput objects (#28712)
* Stop confusing the TF compiler with ModelOutput objects

* Stop confusing the TF compiler with ModelOutput objects
2024-01-26 12:22:29 +00:00
a638de1987 Fix weights_only (#28725)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-26 13:00:49 +01:00
d6ac8f4ad2 Initialize _tqdm_active with hf_hub_utils.are_progress_bars_disabled(… (#28717)
Initialize _tqdm_active with hf_hub_utils.are_progress_bars_disabled() to respect HF_HUB_DISABLE_PROGRESS_BARS

It seems like enable_progress_bar() and disable_progress_bar() sync up with huggingface_hub, but the initial value is always True. This changes will make sure the user's preference is respected implicity on initialization.
2024-01-26 11:59:34 +00:00
D
3a46e30dd1 [docs] Update preprocessing.md (#28719)
* Update preprocessing.md

adjust ImageProcessor link to working target (same as in lower section of file)

* Update preprocessing.md
2024-01-26 11:58:57 +00:00
1f47a24aa1 fix: corrected misleading log message in save_pretrained function (#28699) 2024-01-26 11:52:53 +00:00
bbe30c6968 support PeftMixedModel signature inspect (#28321)
* support PeftMixedModel signature inspect

* import PeftMixedModel only peft>=0.7.0

* Update src/transformers/trainer.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* fix styling

* Update src/transformers/trainer.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* style fixup

* fix note

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-26 12:05:01 +01:00
8eb74c1c89 Fix duplicate & unnecessary flash attention warnings (#28557)
* fix duplicate & unnecessary flash warnings

* trigger ci

* warning_once

* if/else order

---------

Co-authored-by: Your Name <you@example.com>
2024-01-26 09:37:04 +01:00
142ce68389 Don't fail when LocalEntryNotFoundError during processor_config.json loading (#28709)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-26 09:02:32 +01:00
2875195887 [docs] Improve visualization for vertical parallelism (#28583)
The documentation says "We refer to this Model parallelism as “Vertical” because of how models are typically visualized.", but then visualizes the model horizontally. This change visualizes the model indeed vertically.
2024-01-25 17:55:11 +00:00
4cbd876e42 [Vilt] align input and model dtype in the ViltPatchEmbeddings forward pass (#28633)
align dtype
2024-01-25 15:03:20 +00:00
24f1a00e4c Update question_answering.md (#28694)
fix typo:

from:

 "model = TFAutoModelForQuestionAnswering("distilbert-base-uncased")"

to:
model = TFAutoModelForQuestionAnswering.from_pretrained("distilbert-base-uncased")
2024-01-25 14:06:38 +00:00
2000095666 Improve Backbone API docs (#28666)
Update backbones.md
2024-01-25 11:51:58 +00:00
7fa4b36eba [chore] Add missing space in warning (#28695)
Add missing space in warning
2024-01-25 09:34:52 +00:00
963db81a5a Add Depth Anything (#28654)
* First draft

* More improvements

* More improvements

* More improvements

* More improvements

* Add docs

* Remove file

* Add copied from

* Address comments

* Address comments

* Address comments

* Fix style

* Update docs

* Convert all checkpoints, add integration test

* Rename checkpoints

* Add pretrained backbone attributes

* Fix default config

* Address comment

* Add figure to docs

* Fix bug thanks to @xenova

* Update conversion script

* Fix integration test
2024-01-25 09:34:50 +01:00
f40b87de0c [docs] Fix doc format (#28684)
* fix hfoptions

* revert changes to other files

* fix
2024-01-24 11:18:59 -08:00
8278b1538e improve efficient training on CPU documentation (#28646)
* update doc

* revert

* typo fix

* refine

* add dtypes

* Update docs/source/en/perf_train_cpu.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_train_cpu.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_train_cpu.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* no comma

* use avx512-vnni

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-01-24 09:07:13 -08:00
5d29530ea2 Improved type hinting for all attention parameters (#28479)
* Changed type hinting for all attention inputs to 'Optional[Tuple[torch.FloatTensor,...]] = None'

* Fixed the ruff formatting issue

* fixed type hinting for all hidden_states to 'Optional[Tuple[torch.FloatTensor, ...]] = None'

* Changed type hinting in these 12 scripts modeling_dpr.py,modeling_nat.py,idefics/vision.py,modeling_tf_dpr.py,modeling_luke.py,modeling_swin.py,modeling_tf_swin.py,modeling_blip.py,modeling_tf_blip.py,modeling_donut_swin.py,modeling_dinat.py,modeling_swinv2.py

* test fail update

* fixed type hinting for these 15 scripts modeling_xlnet.py,modeling_tf_xlnet.py,modeling_led.py,modeling_tf_led.py,modleing_rwkv.py,modeling_dpt.py,modeling_tf_cvt.py,modeling_clip.py,modeling_flax_clip.py,modeling_tf_clip.py,modeling_longformer.py,modeling_tf_longformer.py,modeling_siglip.py,modeling_clap.py,modeling_git.py

* Changed type hinting in these 12 scripts modeling_dpr.py,modeling_nat.py,idefics/vision.py,modeling_tf_dpr.py,modeling_luke.py,modeling_swin.py,modeling_tf_swin.py,modeling_blip.py,modeling_tf_blip.py,modeling_donut_swin.py,modeling_dinat.py,modeling_swinv2.py

* test fail update

* Removed the myvenv file

* Fixed type hinting for these 8 scripts modeling_tvlt.py,modeling_sam.py,modeling_tf_sam.py,modeling_tvp.py,modeling_rag.py,modeling_tf_rag.py,modeling_tf_xlm.py,modeling_xlm.py
2024-01-24 16:47:34 +00:00
738ec75c90 [docs] DeepSpeed (#28542)
* config

* optim

* pre deploy

* deploy

* save weights, memory, troubleshoot, non-Trainer

* done
2024-01-24 08:31:28 -08:00
bb6aa8bc5f Add back in generation types (#28681) 2024-01-24 14:37:30 +00:00
0549000c5b Use save_safetensor to disable safe serialization for XLA (#28669)
* Use save_safetensor to disable safe serialization for XLA

https://github.com/huggingface/transformers/issues/28438

* Style fixup
2024-01-24 11:57:45 +00:00
c5c69096b3 Exclude the load balancing loss of padding tokens in Mixtral-8x7B (#28517)
* fix the function load_balancing_loss_func in Mixtral_Moe to include attention_mask

* format code using black and ruff

* skip computing mask if attention_mask=None

* add tests for load balancing loss Mixtral-Moe

* fix assert loss is different in mixtral_test

* fix pad_leng

* use assertNotAlmostEqual and print to debug

* remove print for debug

* minor updates

* reduce rtol and atol
2024-01-24 10:12:14 +01:00
5f81266fb0 Update README_es.md (#28612)
Fixing grammatical errors in the text
2024-01-23 21:09:01 +00:00
39c3c0a72a fix a hidden bug of GenerationConfig, now the generation_config.json can be loaded successfully (#28604)
* fix a hidden bug of GenerationConfig

* keep `sort_keys=True` to maintain visibility

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update configuration_utils.py

in case `obj` is a list, check the items in the list

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-23 17:48:38 +00:00
ebc8f47bd9 Remove deprecated eager_serving fn (#28665)
* Remove deprecated eager_serving fn

* Fix the input_signature docstring while I'm here
2024-01-23 16:53:07 +00:00
9a4521dd9b Support single token decode for CodeGenTokenizer (#28628)
convert token id to list in .decode()
2024-01-23 16:27:24 +01:00
5b5e71dc41 add dataloader prefetch factor in training args and trainer (#28498)
* add dataloader prefetch factor in training args and trainer

* remove trailing spaces

* prevent dataloader_num_workers == 0 and dataloader_prefetch_factor != None

dataloader_prefetch_factor works only when data is loaded in a different process as the main one. This commit adds the necessary checks to avoid having prefetch_factor set when there is no such process.

* Remove whitespaces in empty line

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-23 15:08:18 +00:00
582d104b93 Fix windows err with checkpoint race conditions (#28637)
Fix windows err
2024-01-23 14:30:36 +01:00
c475eca9cd tensor_size - fix copy/paste error msg typo (#28660)
Fix copy/paste error msg typo
2024-01-23 11:22:02 +00:00
27c79a0fb4 Enable instantiating model with pretrained backbone weights (#28214)
* Enable instantiating model with pretrained backbone weights

* Update tests so backbone checkpoint isn't passed in

* Remove doc updates until changes made in modeling code

* Clarify pretrained import

* Update configs - docs and validation check

* Update src/transformers/utils/backbone_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Clarify exception message

* Update config init in tests

* Add test for when use_timm_backbone=True

* Small test updates

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-23 11:01:50 +00:00
008a6a2208 Enable safetensors conversion from PyTorch to other frameworks without the torch requirement (#27599)
* Initial commit

* Requirements & tests

* Tests

* Tests

* Rogue import

* Rogue torch import

* Cleanup

* Apply suggestions from code review

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* bfloat16 management

* Sanchit's comments

* Import shield

* apply suggestions from code review

* correct bf16

* rebase

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
2024-01-23 10:28:23 +01:00
039866094c integrations: fix DVCLiveCallback model logging (#28653) 2024-01-23 10:11:10 +01:00
1fc1296014 get default device through PartialState().default_device as it has been officially released (#27256)
get default device through `PartialState().default_device` as it has
been officially released
2024-01-23 10:09:31 +01:00
e547458c43 Fix phi model doc checkpoint (#28581)
Co-authored-by: Pashmina Cameron <11311835+pashminacameron@users.noreply.github.com>
2024-01-22 17:15:07 +00:00
590be773e6 [SigLIP] Only import tokenizer if sentencepiece available (#28636)
Only import class if sp available
2024-01-22 15:20:16 +00:00
a35ea570a8 Update image_processing_deformable_detr.py (#28561)
* Update image_processing_deformable_detr.py

* Changes after running make fix-copies
2024-01-22 15:17:39 +00:00
e201864bcb [GPTNeoX] Fix GPTNeoX + Flash Attention 2 issue (#28645)
Update modeling_gpt_neox.py
2024-01-22 15:50:01 +01:00
dafd59512c [Llava] Update convert_llava_weights_to_hf.py script (#28617)
* Update convert_llava_weights_to_hf.py script

* Remove config update of adding padding to `vocab_size` and `text_config.vocab_size` which causes `ValueError` exception.
* Remove keys that ends with `inv_freq` from the state dict.
* Add examples and instructions for creating `model_state_dict.bin` that can be used by the script.

* Update convert_llava_weights_to_hf.py

* Update convert_vipllava_weights_to_hf.py
2024-01-22 15:28:18 +01:00
deb2b59073 Fix lr_scheduler in no_trainer training scripts (#27872)
* Fix lr_scheduler

* Fix lr scheduler
2024-01-22 14:22:18 +00:00
692c3c6b73 Add config tip to custom model docs (#28601)
Add tip to custom model docs
2024-01-22 13:46:04 +00:00
d336c56d94 Avoid root logger's level being changed (#28638)
* avoid root logger's level being changed

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-22 14:45:30 +01:00
bf674153d3 Add missing key to TFLayoutLM signature (#28640)
Fix missing bbox in LayoutLM signature
2024-01-22 13:16:29 +00:00
f0acf7b6d8 Fix id2label assignment in run_classification.py (#28590) 2024-01-22 11:31:31 +00:00
83f9196cc4 [GPTNeoX] Fix BC issue with 4.36 (#28602)
* fix dtype issue

* add a test

* update copied from mentions

* nits

* fixup

* fix copies

* Apply suggestions from code review
2024-01-21 17:01:19 +00:00
3f69f415ad Fix auxiliary loss related code in transformers (#28406)
* [DETA] fix freeze/unfreeze function

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add freeze/unfreeze test case in DETA

* fix type

* fix typo 2

* fix : enable aux and enc loss in training pipeline

* Add unsynced variables from original DETA for training

* modification for passing CI test

* make style

* make fix

* manual make fix

* change deta_modeling_test of configuration 'two_stage' default to TRUE and minor change of dist checking

* remove print

* divide configuration in DetaModel and DetaForObjectDetection

* image smaller size than 224 will give topk error

* pred_boxes and logits should be equivalent to two_stage_num_proposals

* add missing part in DetaConfig

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add docstring in configure and prettify TO DO part

* change distribute related code to accelerate

* Update src/transformers/models/deta/configuration_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/deta/test_modeling_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* protect importing accelerate

* change variable name to specific value

* wrong import

* fix aux_loss in conditional_detr

* add test aux_loss

* add aux_loss test in deta and table_transformer

* fix yolos since it doesn't have auxiliary function

* fix maskformer auxiliary_loss related code

* make style

* change param 'auxiliary_loss' to 'use_auxiliary_loss'

* change param 'auxiliary_loss' to 'use_auxiliary_loss' in tests

* make style & fix-copies, also revert yolos related parameter

* revert variable name 'use_auxiliary_loss' to 'auxiliary_loss' due to DetrConfig

* revert variable name in yolos

* revert maskformer

* add aux_loss test in maskformer

* make style

* Update src/transformers/models/yolos/configuration_yolos.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-19 14:12:01 +00:00
948ffff407 RWKV: raise informative exception when attempting to manipulate past_key_values (#28600) 2024-01-19 14:09:36 +00:00
9efec11400 Fix _speculative_sampling implementation (#28508) 2024-01-19 14:07:31 +00:00
d15781597a Allow add_tokens for ESM (#28535)
* Allow non-special tokens to be added

* Add test, fix token adding code

* Revert changes to id_to_token and token_to_id

* Update the ESM tokenizer to be a bit more standardized

* Update src/transformers/models/esm/tokenization_esm.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-19 12:32:05 +00:00
5b7f4bc6c1 [Llava] Fix convert_llava_weights_to_hf.py script (#28570)
* Update convert_llava_weights_to_hf.py

Fix call to `tokenizer.add_tokens`

* Add special_tokens to tokenizer.add_tokens in convert_vipllava_weights_to_hf.py
2024-01-19 13:31:25 +01:00
faf03541e2 [SigLIP] Don't pad by default (#28578)
First draft
2024-01-19 13:30:00 +01:00
8db64367b2 Fix wrong xpu device in DistributedType.MULTI_XPU mode (#28386)
* remove elif xpu

* remove redudant code
2024-01-19 13:28:53 +01:00
690fe73f20 [Whisper] Finalize batched SOTA long-form generation (#27658)
* finalize

* make fix copies whisper

* [Tests] Make sure that we don't run tests mulitple times

* Update src/transformers/models/whisper/modeling_whisper.py

* [Tests] Make sure that we don't run tests mulitple times

* fix more

* improve

* improve

* improve further

* improve more

* improve

* fix more

* git commit and git push

* fix more

* fix more

* fix more

* New try

* Fix more whisper stuff

* Improve

* correct more

* correct more

* correct more

* Fix some tests

* Add more tests

* correct more

* correct more

* correct more

* push

* correct more

* Fix more

* Better

* without dec mask

* correct more

* clean

* save intermediate

* Fix more

* Fix VAD for large-v2

* Save new

* Correct more

* make cleaner

* correct tests

* correct src

* Finish

* Fix more

* Fix more

* finish

* Fix edge cases

* fix return_dict_in_generate

* fix all tests

* make style

* add docstrings

* add docstrings

* Fix logit processor

* make style

* fix pipeline test

* fix more style

* Apply suggestions from code review

* apply feedback Sanchit

* correct more

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* correct more

* correct more

* correct more

* Fix staticmethod

* correct more

* fix

* fix slow tests

* make style

* fix tokenizer test

* fix tokenizer test

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* finish

* finish

* revert kwargs change

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-19 14:04:17 +02:00
d4fc1eb498 feat: Sequential beam search (#26304) 2024-01-19 11:36:54 +00:00
268fc1fdfa Add w2v2bert to pipeline (#28585)
* generalize asr pipeline to fbank models

* change w2v2 pipeline output

* Update test_pipelines_automatic_speech_recognition.py
2024-01-19 11:25:01 +00:00
b2748a6efd v4.38.dev.0 2024-01-19 10:43:28 +00:00
db9a7e9d3d Don't save processor_config.json if a processor has no extra attribute (#28584)
* not save if empty

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-19 09:59:14 +00:00
772307be76 Making CTC training example more general (#28582)
* add w2v2bert compatibility

* Update examples/pytorch/speech-recognition/run_speech_recognition_ctc.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-18 17:01:49 +00:00
186aa6befe [Whisper] Fix audio classification with weighted layer sum (#28563)
* fix

* tests

* fix test
2024-01-18 16:41:44 +00:00
619ecfe26f [Whisper Tok] Move token ids to CPU when computing offsets (#28485)
* move token ids to cpu

* check for torch attr
2024-01-18 16:12:14 +00:00
0eaa5ea38e [ASR Pipe] Update init to set model type and subsequently call parent init method (#28486)
* add image processor arg

* super

* rm args
2024-01-18 16:11:49 +00:00
c662c78c71 Fix the documentation checkpoint for xlm-roberta-xl (#28567)
* Fix the documentation checkpoint for xlm-roberta-xl

* Improve docstring consistency
2024-01-18 13:47:49 +00:00
0754217c82 Use LoggingLevel context manager in 3 tests (#28575)
* inside with LoggingLevel

* remove is_flaky

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-18 13:41:25 +00:00
d2cdefb9ec Add new meta w2v2-conformer BERT-like model (#28165)
* first commit

* correct default value non causal

* update config and modeling code

* update converting checkpoint

* clean modeling and fix tests

* make style

* add new config parameters to docstring

* fix copied from statements

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* make position_embeddings_type docstrings clearer

* clean converting script

* remove function not used

* clean modeling file

* apply suggestion for test file + add convert script to not_doctested

* modify tests according to review - cleaner logic and more tests

* Apply nit suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add checker of valid position embeddings type

* instantiate new layer norm layer with the right eps

* fix freeze_feature_encoder since it can be None in some cases

* add test same output in convert script

* restore wav2vec2conformer and add new model

* create processor and FE + clean

* add new model code

* fix convert script and set default config parameters

* correct model id paths

* make style

* make fix-copies and cleaning files

* fix copied from statements

* complete .md and fixe copies

* clean convert script argument defaults

* fix config parameters docstrings

* fix config docstring

* add copied from and enrich FE tests

* fix copied from and repo-consistency

* add autotokenizer

* make test input length shorter and change docstring code

* fix docstrings and copied from

* add add_adapter to ASR training example

* make testing of adapters more robust

* adapt to multi adapter layers

* refactor input_values->input_features and remove w2v2-bert feature extractor

* remove pretraining model

* remove depreciated features and useless lines

* add copied from and ignore statements to modeling tests

* remove pretraining model #2

* change import in convert script

* change default in convert script

* update readme and remove useless line

* Update tests/models/wav2vec2_bert/test_processor_wav2vec2_bert.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* refactor BERT to Bert for consistency

* remove useless ignore copy statement

* add persistent to buffer in rotary

* add eps in LayerNorm init and remove copied from

* add adapter activation parameters and add copied from statements

* Fix copied statements and add unitest.skip reasons

* add copied statement in test_processor

* refactor processor

* make style

* replace numpy random by torch rand

* remove expected output CTC

* improve converting script with processor class

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove gumbel class

* remove tests related to previously deleted class

* Update src/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* correct typos

* remove uused parameters

* update processor to takes both text and audio

* update checkpoints

* update expected output and add ctc expected output

* add label_attention_mask

* replace pt with np in processor tests

* fix typo

* revert to behaviour with labels_attention_mask

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-18 13:37:34 +00:00
5d8eb93eee chore: Fix multiple typos (#28574) 2024-01-18 13:35:09 +00:00
8189977885 [Core Tokenization] Support a fix for spm fast models (#26678)
* fix

* last attempt

* current work

* fix forward compatibility

* save all special tokens

* current state

* revert additional changes

* updates

* remove tokenizer.model

* add a test and the fix

* nit

* revert one more break

* fix typefield issue

* quality

* more tests

* fix fields for FC

* more nits?

* new additional changes

* how

* some updates

* the fix

* where do we stand

* nits

* nits

* revert unrelated changes

* nits nits nits

* styling

* don't break llama just yet

* revert llama changes

* safe arg check

* fixup

* Add a test for T5

* Necessary changes

* Tests passing, added tokens need to not be normalized. If the added tokens are normalized, it will the stripping which seems to be unwanted for a normal functioning

* Add even more tests, when normalization is set to True (which does not work 😓 )

* Add even more tests, when normalization is set to True (which does not work 😓 )

* Update to main

* nits

* fmt

* more and more test

* comments

* revert change as tests are failing

* make the test more readble

* nits

* refactor the test

* nit

* updates

* simplify

* style

* style

* style convert slow

* Update src/transformers/convert_slow_tokenizer.py
2024-01-18 12:31:54 +01:00
a1668cc72e Use weights_only only if torch >= 1.13 (#28506)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-18 10:55:29 +00:00
3005f96552 Save Processor (#27761)
* save processor

* Update tests/models/auto/test_processor_auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/test_processing_common.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-18 10:21:45 +00:00
98dda8ed03 Fix Switch Transformers When sparse_step = 1 (#28564)
Fix sparse_step = 1

I case sparse_step = 1, the current code will not work.
2024-01-17 21:26:21 +00:00
fa6d12f74f Allow to train dinov2 with different dtypes like bf16 (#28504)
I want to train dinov2 with bf16 but I get the following error in bc72b4e2cd/src/transformers/models/dinov2/modeling_dinov2.py (L635):

```
RuntimeError: Input type (float) and bias type (c10::BFloat16) should be the same
```

Since the input dtype is torch.float32, the parameter dtype has to be torch.float32...

@LZHgrla and I checked the code of clip vision encoder and found there is an automatic dtype transformation (bc72b4e2cd/src/transformers/models/clip/modeling_clip.py (L181-L182)).

So I add similar automatic dtype transformation to modeling_dinov2.py.
2024-01-17 19:03:08 +00:00
2c1eebc121 Fix SDPA tests (#28552)
* skip bf16 test if not supported by device

* fix

* fix bis

* use is_torch_bf16_available_on_device

* use is_torch_fp16_available_on_device

* fix & use public llama

* use 1b model

* fix flacky test

---------

Co-authored-by: Your Name <you@example.com>
2024-01-17 17:29:18 +01:00
d6ffe74dfa Add qwen2 (#28436)
* add config, modeling, and tokenization

* add auto and init

* update readme

* update readme

* update team name

* fixup

* fixup

* update config

* update code style

* update for fixup

* update for fixup

* update for fixup

* update for testing

* update for testing

* fix bug for config and tokenization

* fix bug for bos token

* not doctest

* debug tokenizer

* not doctest

* debug tokenization

* debug init for tokenizer

* fix style

* update init

* delete if in token auto

* add tokenizer doc

* add tokenizer in init

* Update dummy_tokenizers_objects.py

* update

* update

* debug

* Update tokenization_qwen2.py

* debug

* Update convert_slow_tokenizer.py

* add copies

* add copied from and make style

* update files map

* update test

* fix style

* fix merge reading and update tests

* fix tests

* fix tests

* fix style

* debug a variable in readme

* Update src/transformers/models/qwen2/configuration_qwen2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* update test and copied from

* fix style

* update qwen2 tokenization  and tests

* Update tokenization_qwen2.py

* delete the copied from after property

* fix style

* update tests

* update tests

* add copied from

* fix bugs

* update doc

* add warning for sliding window attention

* update qwen2 tokenization

* fix style

* Update src/transformers/models/qwen2/modeling_qwen2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix tokenizer fast

---------

Co-authored-by: Ren Xuancheng <jklj077@users.noreply.github.com>
Co-authored-by: renxuancheng.rxc <renxuancheng.rxc@alibaba-inc.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-17 16:02:22 +01:00
d93ef7d751 Fixes default value of softmax_scale in PhiFlashAttention2. (#28537)
* fix(phi): Phi does not use softmax_scale in Flash-Attention.

* chore(docs): Update Phi docs.
2024-01-17 14:22:44 +01:00
a6adc05e6b symbolic_trace: add past_key_values, llama, sdpa support (#28447)
* torch.fx: add pkv, llama, sdpa support

* Update src/transformers/models/opt/modeling_opt.py

* remove spaces

* trigger ci

* use explicit variable names
2024-01-17 11:50:53 +01:00
09eb11a1bd [Makefile] Exclude research projects from format (#28551) 2024-01-17 11:59:40 +02:00
f4f57f9dfa Config: warning when saving generation kwargs in the model config (#28514) 2024-01-16 18:31:01 +00:00
7142bdfa90 Add is_model_supported for fx (#28521)
* modify check_if_model_is_supported to return bool

* add is_model_supported and have check_if_model_is_supported use that

* Update src/transformers/utils/fx.py

Fantastic

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-16 17:52:44 +00:00
02f8738ef8 Clearer error for SDPA when explicitely requested (#28006)
* clearer error for sdpa

* better message
2024-01-16 16:10:44 +00:00
fe23256b73 [SpeechT5Tokenization] Add copied from and fix the convert_tokens_to_string to match the fast decoding scheme (#28522)
* Add copied from and fix the `convert_tokens_to_string` to match the fast decoding scheme

* fixup

* add a small test

* style test file

* nites
2024-01-16 16:50:02 +01:00
96d0883103 [TokenizationRoformerFast] Fix the save and loading (#28527)
* cleanup

* add a test

* update the test

* style

* revert part that allows to pickle the tokenizer
2024-01-16 16:37:15 +01:00
716df5fb7e [ TokenizationUtils] Fix add_special_tokens when the token is already there (#28520)
* fix adding special tokens when the token is already there.

* add a test

* add a test

* nit

* fix the test: make sure the order is preserved

* Update tests/test_tokenization_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-16 16:36:29 +01:00
07ae53e6e7 Fix/speecht5 bug (#28481)
* Fix bug in SpeechT5 speech decoder prenet's forward method

- Removed redundant `repeat` operation on speaker_embeddings in the forward method. This line was erroneously duplicating the embeddings, leading to incorrect input size for concatenation and performance issues.
- Maintained original functionality of the method, ensuring the integrity of the speech decoder prenet's forward pass remains intact.
- This change resolves a critical bug affecting the model's performance in handling speaker embeddings.

* Refactor SpeechT5 text to speech integration tests

- Updated SpeechT5ForTextToSpeechIntegrationTests to accommodate the variability in sequence lengths due to dropout in the speech decoder pre-net. This change ensures that our tests are robust against random variations in generated speech, enhancing the reliability of our test suite.
- Removed hardcoded dimensions in test assertions. Replaced with dynamic checks based on model configuration and seed settings, ensuring tests remain valid across different runs and configurations.
- Added new test cases to thoroughly validate the shapes of generated spectrograms and waveforms. These tests leverage seed settings to ensure consistent and predictable behavior in testing, addressing potential issues in speech generation and vocoder processing.
- Fixed existing test cases where incorrect assumptions about output shapes led to potential errors.

* Fix bug in SpeechT5 speech decoder prenet's forward method

- Removed redundant `repeat` operation on speaker_embeddings in the forward method. This line was erroneously duplicating the embeddings, leading to incorrect input size for concatenation and performance issues.
- Maintained original functionality of the method, ensuring the integrity of the speech decoder prenet's forward pass remains intact.
- This change resolves a critical bug affecting the model's performance in handling speaker embeddings.

* Refactor SpeechT5 text to speech integration tests

- Updated SpeechT5ForTextToSpeechIntegrationTests to accommodate the variability in sequence lengths due to dropout in the speech decoder pre-net. This change ensures that our tests are robust against random variations in generated speech, enhancing the reliability of our test suite.
- Removed hardcoded dimensions in test assertions. Replaced with dynamic checks based on model configuration and seed settings, ensuring tests remain valid across different runs and configurations.
- Added new test cases to thoroughly validate the shapes of generated spectrograms and waveforms. These tests leverage seed settings to ensure consistent and predictable behavior in testing, addressing potential issues in speech generation and vocoder processing.
- Fixed existing test cases where incorrect assumptions about output shapes led to potential errors.

* Enhance handling of speaker embeddings in SpeechT5

- Refined the generate and generate_speech functions in the SpeechT5 class to robustly handle two scenarios for speaker embeddings: matching the batch size (one embedding per sample) and one-to-many (a single embedding for all samples in the batch).
- The update includes logic to repeat the speaker embedding when a single embedding is provided for multiple samples, and a ValueError is raised for any mismatched dimensions.
- Also added corresponding test cases to validate both scenarios, ensuring complete coverage and functionality for diverse speaker embedding situations.

* Improve Test Robustness with Randomized Speaker Embeddings
2024-01-16 14:14:28 +00:00
66db33ddc8 Fix mismatching loading in from_pretrained with/without accelerate (#28414)
* fix mismatching behavior in from_pretrained with/without accelerate

* meaningful refactor

* remove added space

* add test

* fix model on the hub

* comment

* use tiny model

* style
2024-01-16 14:29:51 +01:00
002566f398 Improving Training Performance and Scalability Documentation (#28497)
* Improving Training Performance and Scaling documentation by adding PEFT techniques to suggestions to reduce memory requirements for training

* Update docs/source/en/perf_train_gpu_one.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-01-16 11:30:26 +01:00
0cdcd7a2b3 Remove task arg in load_dataset in image-classification example (#28408)
* Remove `task` arg in `load_dataset` in image-classification example

* Manage case where "train" is not in dataset

* Add new args to manage image and label column names

* Similar to audio-classification example

* Fix README

* Update tests
2024-01-16 08:04:08 +01:00
edb170238f SiLU activation wrapper for safe importing (#28509)
Add back in wrapper for safe importing
2024-01-15 19:36:59 +00:00
ff86bc364d improve dev setup comments and hints (#28495)
* improve dev setup comments and hints

* fix tests for new dev setup hints
2024-01-15 18:36:40 +00:00
735968b61c fix: sampling in flax keeps EOS (#28378) 2024-01-15 18:12:09 +00:00
7e0ddf89f4 Generate: consolidate output classes (#28494) 2024-01-15 17:04:08 +00:00
72db39c065 Add a use_safetensors arg to TFPreTrainedModel.from_pretrained() (#28511)
* Add a use_safetensors arg to TFPreTrainedModel.from_pretrained()

* One more catch!

* One more one more catch
2024-01-15 17:00:54 +00:00
78d767e3c8 Fixed minor typos (#28489) 2024-01-15 16:45:15 +00:00
7c8dd88d13 [GPTQ] Fix test (#28018)
* fix test

* reduce length

* smaller model
2024-01-15 11:22:54 -05:00
366c03271e Tokenizer kwargs in textgeneration pipe (#28362)
* added args to the pipeline

* added test

* more sensical tests

* fixup

* docs

* typo
;

* docs

* made changes to support named args

* fixed test

* docs update

* styles

* docs

* docs
2024-01-15 16:52:18 +01:00
a573ac74fd Add the XPU device check for pipeline mode (#28326)
* Add the XPU check for pipeline mode

When setting xpu device for pipeline, It needs to use is_torch_xpu_available to load ipex and determine whether the device is available.

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Don't move model to device when hf_device_map isn't None

1. Don't move model to device when hf_device_map is not None
2. The device string maybe includes the device index, so use 'in'instead of equal

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Raise the error when xpu is not available

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Update src/transformers/pipelines/base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/pipelines/base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Modify the error message

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Change message format.

Signed-off-by: yuanwu <yuan.wu@intel.com>

---------

Signed-off-by: yuanwu <yuan.wu@intel.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-15 15:39:11 +00:00
1b9a2e4c80 [core/ FEAT] Add the possibility to push custom tags using PreTrainedModel itself (#28405)
* v1 tags

* remove unneeded conversion

* v2

* rm unneeded warning

* add more utility methods

* Update src/transformers/utils/hub.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/utils/hub.py

Co-authored-by: Lucain <lucainp@gmail.com>

* Update src/transformers/utils/hub.py

Co-authored-by: Lucain <lucainp@gmail.com>

* more enhancements

* oops

* merge tags

* clean up

* revert unneeded change

* add extensive docs

* more docs

* more kwargs

* add test

* oops

* fix test

* Update src/transformers/modeling_utils.py

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update src/transformers/utils/hub.py

Co-authored-by: Lucain <lucainp@gmail.com>

* Update src/transformers/modeling_utils.py

* Update src/transformers/trainer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add more conditions

* more logic

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lucain <lucainp@gmail.com>
Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
2024-01-15 14:48:07 +01:00
64bdbd888c Don't set finetuned_from if it is a local path (#28482)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-15 11:38:20 +01:00
881e966ace [chore] Update warning text, a word was missing (#28017)
Update warning, a word was missing
2024-01-15 10:08:03 +01:00
121641cab1 Fix paths to AI Sweden Models reference and model loading (#28423)
Fix URL to Ai Sweden Models reference and model loading
2024-01-15 09:09:22 +01:00
bc72b4e2cd Generate: fix candidate device placement (#28493)
* fix candidate device

* this line shouldn't have been in
2024-01-13 21:31:25 +01:00
e304f9769c Adding Prompt lookup decoding (#27775)
* MVP

* fix ci

* more ci

* remove redundant kwarg

* added and wired up PromptLookupCandidateGenerator

* rebased with main, working

* removed print

* style fixes

* fix test

* fixed tests

* added test for prompt lookup decoding

* fixed circleci

* fixed test issue

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/candidate_generator.py

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-13 17:15:58 +00:00
29a2b14206 Change progress logging to once across all nodes (#28373) 2024-01-12 15:01:21 -05:00
2382706a1c Fix docstrings and update docstring checker error message (#28460)
* Fix TF Regnet docstring

* Fix TF Regnet docstring

* Make a change to the PyTorch Regnet too to make sure the CI is checking it

* Add skips for TFRegnet

* Update error message for docstring checker
2024-01-12 17:54:11 +00:00
4fb3d3a0f6 TF: purge TFTrainer (#28483) 2024-01-12 16:56:34 +00:00
afc45b13ca Generate: refuse to save bad generation config files (#28477) 2024-01-12 16:01:17 +00:00
dc01cf9c5e Docs: add model paths (#28475) 2024-01-12 15:25:43 +00:00
d026498830 Generate: deprecate old public functions (#28478) 2024-01-12 15:21:15 +00:00
edb314ae2b Fix torch.ones usage in xlnet (#28471)
Fix xlnet torch.ones usage

Co-authored-by: sungho-ham <sungho.ham@linecorp.com>
2024-01-12 15:31:00 +01:00
c45ef1c0d1 Bump jinja2 from 2.11.3 to 3.1.3 in /examples/research_projects/decision_transformer (#28457)
Bump jinja2 in /examples/research_projects/decision_transformer

Bumps [jinja2](https://github.com/pallets/jinja) from 2.11.3 to 3.1.3.
- [Release notes](https://github.com/pallets/jinja/releases)
- [Changelog](https://github.com/pallets/jinja/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/jinja/compare/2.11.3...3.1.3)

---
updated-dependencies:
- dependency-name: jinja2
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-01-12 15:28:55 +01:00
266c67b06a [Mixtral / Awq] Add mixtral fused modules for Awq (#28240)
* add mixtral fused modules

* add changes from modeling utils

* add test

* fix test + rope theta issue

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add tests

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-12 14:29:35 +01:00
666a6f078c Update metadata loading for oneformer (#28398)
* Update meatdata loading for oneformer

* Enable loading from a model repo

* Update docstrings

* Fix tests

* Update tests

* Clarify repo_path behaviour
2024-01-12 12:35:31 +00:00
4e36a6cd00 Mark two logger tests as flaky (#28458)
* Mark two logger tests as flaky

* Add description to is_flaky
2024-01-12 11:58:59 +00:00
07bdbebb48 [Awq] Add llava fused modules support (#28239)
* add llava + fused modules

* Update src/transformers/models/llava/modeling_llava.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-12 06:55:54 +01:00
995a7ce9a8 Fix broken link on page (#28451)
* [docs] Fix broken link

Signed-off-by: Hankyeol Kyung <kghnkl0103@gmail.com>

* [docs] Use shorter domain

Signed-off-by: Hankyeol Kyung <kghnkl0103@gmail.com>

---------

Signed-off-by: Hankyeol Kyung <kghnkl0103@gmail.com>
2024-01-11 09:26:13 -08:00
143451355c Fix docstring checker issues with PIL enums (#28450) 2024-01-11 17:23:41 +00:00
19e83d174c Doc (#28431)
* update version for cpu training

* update docs for cpu training

* fix readme

* fix readme
2024-01-11 08:55:48 -08:00
59cd9de39d Byebye torch 1.10 (#28207)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-11 16:18:27 +01:00
e768616afa Fix load balancing loss func for mixtral (#28256)
* Correct the implementation of auxiliary loss of mixtrtal

* correct the implementation of auxiliary loss of mixtrtal

* Implement a simpler calculation method

---------

Co-authored-by: zhangliangxu3 <zhangliangxu3@jd.com>
2024-01-11 16:16:12 +01:00
5d4d62d0a2 Correctly resolve trust_remote_code=None for AutoTokenizer (#28419)
* Correctly resolve trust_remote_code=None for AutoTokenizer

* Second attempt at a proper resolution
2024-01-11 15:12:08 +00:00
5509058561 [Phi] Extend implementation to use GQA/MQA. (#28163)
* chore(phi): Updates configuration_phi with missing keys.

* chore(phi): Adds first draft of combined modeling_phi.

* fix(phi): Fixes according to latest review.

* fix(phi): Removes pad_vocab_size_multiple to prevent inconsistencies.

* fix(phi): Fixes unit and integration tests.

* fix(phi): Ensures that everything works with microsoft/phi-1 for first integration.

* fix(phi): Fixes output of docstring generation.

* fix(phi): Fixes according to latest review.

* fix(phi): Fixes according to latest review.

* fix(tests): Re-enables Phi-1.5 test.

* fix(phi): Fixes attention overflow on PhiAttention (for Phi-2).

* fix(phi): Improves how queries and keys are upcast.

* fix(phi): Small updates on latest changes.
2024-01-11 15:58:02 +01:00
d560637885 Optionally preprocess segmentation maps for MobileViT (#28420)
* optionally preprocess segmentation maps for mobilevit

* changed pretrained model name to that of segmentation model

* removed voc-deeplabv3 from model archive list

* added preprocess_image and preprocess_mask methods for processing images and segmentation masks respectively

* added tests for segmentation masks based on segformer feature extractor

* use crop_size instead of size

* reverting to initial model
2024-01-11 14:52:14 +00:00
95091e1582 Set cache_dir for evaluate.load() in example scripts (#28422)
While using `run_clm.py`,[^1] I noticed that some files were being added
to my global cache, not the local cache. I set the `cache_dir` parameter
for the one call to `evaluate.load()`, which partially solved the
problem. I figured that while I was fixing the one script upstream, I
might as well fix the problem in all other example scripts that I could.

There are still some files being added to my global cache, but this
appears to be a bug in `evaluate` itself. This commit at least moves
some of the files into the local cache, which is better than before.

To create this PR, I made the following regex-based transformation:
`evaluate\.load\((.*?)\)` -> `evaluate\.load\($1,
cache_dir=model_args.cache_dir\)`. After using that, I manually fixed
all modified files with `ruff` serving as useful guidance. During the
process, I removed one existing usage of the `cache_dir` parameter in a
script that did not have a corresponding `--cache-dir` argument
declared.

[^1]: I specifically used `pytorch/language-modeling/run_clm.py` from
v4.34.1 of the library. For the original code, see the following URL:
acc394c4f5/examples/pytorch/language-modeling/run_clm.py.
2024-01-11 15:38:44 +01:00
5fd5ef7624 Fix docker file (#28452)
fix docker file

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-11 15:34:05 +01:00
d019acb858 Use python 3.10 for docbuild (#28399)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-11 14:39:49 +01:00
2a85345a23 Optimize the speed of the truncate_sequences function. (#28263)
* change truncate_sequences

* Update tokenization_utils_base.py

* change format

* fix when ids_to_move=0

* fix

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-11 11:42:14 +01:00
66964c00f6 Enable multi-label image classification in pipeline (#28433)
Enable multi-label image classification
2024-01-11 10:29:38 +00:00
8205b2647c Assitant model may on a different device (#27995)
* Assitant model may on a different device

* fix tensor device
2024-01-11 11:24:59 +01:00
cbbe30749b [Whisper] Fix slow test (#28407)
* [Whisper] Fix slow test

* update

* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-10 22:35:36 +01:00
6c78bbcb83 [docstring] Fix docstring for ErnieConfig, ErnieMConfig (#27029)
* Remove ErnieConfig, ErnieMConfig check_docstrings

* Run fix_and_overwrite for ErnieConfig, ErnieMConfig

* Replace <fill_type> and <fill_docstring> in configuration_ernie, configuration_ernie_m.py with type and docstring values

---------

Co-authored-by: vignesh-raghunathan <vignesh_raghunathan@intuit.com>
2024-01-10 18:20:39 +01:00
3724156b4d Fix load correct tokenizer in Mixtral model documentation (#28437) 2024-01-10 18:09:06 +01:00
cef2e40e0f Fix for checkpoint rename race condition (#28364)
* Changed logic for renaming staging directory when saving checkpoint to only operate with the main process.
Added fsync functionality to attempt to flush the write changes in case os.rename is not atomic.

* Updated styling using make fixup

* Updated check for main process to use built-in versions from trainer

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* Fixed incorrect usage of trainer main process checks
Added with open usage to ensure better file closing as suggested from PR
Added rotate_checkpoints into main process logic

* Removed "with open" due to not working with directory. os.open seems to work for directories.

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-01-10 16:55:42 +01:00
fff8ca8e59 update docs to add the phi-2 example (#28392)
* update docs

* added Tip
2024-01-10 16:07:47 +01:00
ee2482b6f8 CI: limit natten version (#28432) 2024-01-10 12:39:05 +00:00
ffd3710391 Fix number of models in README.md (#28430) 2024-01-10 12:11:08 +01:00
6015d0ad6c Support DeepSpeed when using auto find batch size (#28088)
Fixup test
2024-01-10 06:03:13 -05:00
a777f52599 Skip now failing test in the Trainer tests (#28421)
* Fix test

* Skip
2024-01-10 06:02:31 -05:00
4df1d69634 [BUG] BarkEosPrioritizerLogitsProcessor eos_token_id use list, tensor size mismatch (#28201)
fix(generation/logits_process.py): BarkEosPrioritizerLogitsProcessor eos_token_id use list, tensor size mismatch

Co-authored-by: chenhanhui <chenhanhui@kanzhun.com>
2024-01-10 11:46:49 +01:00
932ad8af7a Bump fonttools from 4.31.1 to 4.43.0 in /examples/research_projects/decision_transformer (#28417)
Bump fonttools in /examples/research_projects/decision_transformer

Bumps [fonttools](https://github.com/fonttools/fonttools) from 4.31.1 to 4.43.0.
- [Release notes](https://github.com/fonttools/fonttools/releases)
- [Changelog](https://github.com/fonttools/fonttools/blob/main/NEWS.rst)
- [Commits](https://github.com/fonttools/fonttools/compare/4.31.1...4.43.0)

---
updated-dependencies:
- dependency-name: fonttools
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-01-10 11:22:43 +01:00
701298d2d3 Use mmap option to load_state_dict (#28331)
Use mmap option to load_state_dict (#28331)
2024-01-10 09:57:30 +01:00
0f2f0c634f Fix _merge_input_ids_with_image_features for llava model (#28333)
* fix `_merge_input_ids_with_image_features` for llava model

* Update src/transformers/models/llava/modeling_llava.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* adress comments

* style and tests

* ooops

* test the backward too

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update tests/models/vipllava/test_modeling_vipllava.py

* style and quality

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-01-10 08:33:33 +01:00
976189a6df Fix initialization for missing parameters in from_pretrained under ZeRO-3 (#28245)
* Fix initialization for missing parameters in `from_pretrained` under ZeRO-3

* Test initialization for missing parameters under ZeRO-3

* Add more tests

* Only enable deepspeed context for per-module level parameters

* Enable deepspeed context only once

* Move class definition inside test case body
2024-01-09 14:58:21 +00:00
357971ec36 fix auxiliary loss training in DetrSegmentation (#28354)
* fix auxiliary loss training in detrSegmentation

* add auxiliary_loss testing
2024-01-09 10:17:07 +00:00
8604dd308d [SDPA] Make sure attn mask creation is always done on CPU (#28400)
* [SDPA] Make sure attn mask creation is always done on CPU

* Update docker to 2.1.1

* revert test change
2024-01-09 11:05:19 +01:00
5c7e11e010 update warning for image processor loading (#28209)
* info

* update

* Update src/transformers/models/auto/image_processing_auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-09 08:51:37 +01:00
3b742ea84c Add SigLIP (#26522)
* Add first draft

* Use appropriate gelu function

* More improvements

* More improvements

* More improvements

* Convert checkpoint

* More improvements

* Improve docs, remove print statements

* More improvements

* Add link

* remove unused masking function

* begin tokenizer

* do_lower_case

* debug

* set split_special_tokens=True

* Remove script

* Fix style

* Fix rebase

* Use same design as CLIP

* Add fast tokenizer

* Add SiglipTokenizer to init, remove extra_ids

* Improve conversion script

* Use smaller inputs in conversion script

* Update conversion script

* More improvements

* Add processor to conversion script

* Add tests

* Remove print statements

* Add tokenizer tests

* Fix more tests

* More improvements related to weight initialization

* More improvements

* Make more tests pass

* More improvements

* More improvements

* Add copied from

* Add canonicalize_text

* Enable fast tokenizer tests

* More improvements

* Fix most slow tokenizer tests

* Address comments

* Fix style

* Remove script

* Address some comments

* Add copied from to tests

* Add more copied from

* Add more copied from

* Add more copied from

* Remove is_flax_available

* More updates

* Address comment

* Remove SiglipTokenizerFast for now

* Add caching

* Remove umt5 test

* Add canonicalize_text inside _tokenize, thanks Arthur

* Fix image processor tests

* Skip tests which are not applicable

* Skip test_initialization

* More improvements

* Compare pixel values

* Fix doc tests, add integration test

* Add do_normalize

* Remove causal mask and leverage ignore copy

* Fix attention_mask

* Fix remaining tests

* Fix dummies

* Rename temperature and bias

* Address comments

* Add copied from to tokenizer tests

* Add SiglipVisionModel to auto mapping

* Add copied from to image processor tests

* Improve doc

* Remove SiglipVisionModel from index

* Address comments

* Improve docs

* Simplify config

* Add first draft

* Make it like mistral

* More improvements

* Fix attention_mask

* Fix output_attentions

* Add note in docs

* Convert multilingual model

* Convert large checkpoint

* Convert more checkpoints

* Add pipeline support, correct image_mean and image_std

* Use padding=max_length by default

* Make processor like llava

* Add code snippet

* Convert more checkpoints

* Set keep_punctuation_string=None as in OpenCLIP

* Set normalized=False for special tokens

* Fix doc test

* Update integration test

* Add figure

* Update organization

* Happy new year

* Use AutoModel everywhere

---------

Co-authored-by: patil-suraj <surajp815@gmail.com>
2024-01-08 18:17:16 +01:00
73c88012b7 Add segmentation map processing to SAM Image Processor (#27463)
* add segmentation map processing to sam image processor

* fixup

* add tests

* reshaped_input_size is shape before padding

* update tests for size/shape outputs

* fixup

* add code snippet to docs

* Update docs/source/en/model_doc/sam.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add missing backticks

* add `segmentation_maps` as arg for SamProcessor.__call__()

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-08 16:40:36 +00:00
2272ab57a9 Remove shell=True from subprocess.Popen to Mitigate Security Risk (#28299)
Remove shell=True from subprocess.Popen to mitigate security risk
2024-01-08 14:33:28 +00:00
87a6cf41d0 [AttentionMaskConverter] fix sdpa unmask unattended (#28369)
fix tensor device
2024-01-08 13:33:44 +01:00
98dba52ccd Bugfix / ffmpeg input device (mic) not working on Windows (#27051)
* fix input audio device for windows.

* ffmpeg audio device Windows

* Fixes wrong input device assignment in Windows

* Fixed getting mic on Windows systems by adding _get_microphone_name() function.
2024-01-08 13:32:36 +01:00
7d9d5cea55 remove two deprecated function (#28220) 2024-01-08 11:33:58 +00:00
0c2121f99b Fix building alibi tensor when num_heads is not a power of 2 (#28380)
* Fix building alibi tensor when num_heads is not a power of 2

* Remove print function
2024-01-08 10:39:40 +01:00
Chi
53cffeb33c Enhancing Code Readability and Maintainability with Simplified Activation Function Selection. (#28349)
* Little bit change code in get_activation()

* proper area to deffine gelu_activation() in this two file

* Fix github issue

* Mistake some typo

* My mistake to self using to call config

* Reformat my two file

* Update src/transformers/activations.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/electra/modeling_electra.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/convbert/modeling_convbert.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Rename gelu_act to activatioin

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-08 09:19:06 +01:00
3eddda1111 [Phi2] Add support for phi2 models (#28211)
* modified script and added test for phi2

* changes
2024-01-07 08:19:14 +01:00
4ab5fb8941 chore: Fix typo s/exclusivelly/exclusively/ (#28361) 2024-01-05 13:19:15 -08:00
7226f3d2b0 Update VITS modeling to enable ONNX export (#28141)
* Update vits modeling for onnx export compatibility

* fix style

* Update src/transformers/models/vits/modeling_vits.py
2024-01-05 17:52:32 +01:00
cadf93a6fc fix FA2 when using quantization for remaining models (#28341)
* fix fa2 autocasting when using quantization

* Update src/transformers/models/distilbert/modeling_distilbert.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/distilbert/modeling_distilbert.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-05 16:46:55 +01:00
899d8351f9 [DETA] Improvement and Sync from DETA especially for training (#27990)
* [DETA] fix freeze/unfreeze function

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add freeze/unfreeze test case in DETA

* fix type

* fix typo 2

* fix : enable aux and enc loss in training pipeline

* Add unsynced variables from original DETA for training

* modification for passing CI test

* make style

* make fix

* manual make fix

* change deta_modeling_test of configuration 'two_stage' default to TRUE and minor change of dist checking

* remove print

* divide configuration in DetaModel and DetaForObjectDetection

* image smaller size than 224 will give topk error

* pred_boxes and logits should be equivalent to two_stage_num_proposals

* add missing part in DetaConfig

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add docstring in configure and prettify TO DO part

* change distribute related code to accelerate

* Update src/transformers/models/deta/configuration_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/deta/test_modeling_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* protect importing accelerate

* change variable name to specific value

* wrong import

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-05 14:20:21 +00:00
57e9c83213 Fix pos_mask application and update tests accordingly (#27892)
* Fix pos_mask application and update tests accordingly

* Fix style

* Adding comments

---------

Co-authored-by: Fernando Rodriguez <fernando.rodriguez@nielseniq.com>
2024-01-05 12:36:10 +01:00
03b980990a Don't check the device when device_map=auto (#28351)
When running the case on multi-cards server with devcie_map-auto, It will not always be allocated to device 0,
Because other processes may be using these cards. It will select the devices that can accommodate this model.

Signed-off-by: yuanwu <yuan.wu@intel.com>
2024-01-05 12:21:29 +01:00
5d36025ca1 README: install transformers from conda-forge channel (#28313)
Switch to the conda-forge channel for transformer installation,
as the huggingface channel does not offer the latest version.

Fixes #28248
2024-01-04 09:36:16 -08:00
35e9d2b223 Fix error in M4T feature extractor (#28340)
* fix M4T FE error when no attention mask

* modify logic

* add test

* go back to initial test situation + add other tests
2024-01-04 16:40:53 +00:00
4a66c0d952 enable training mask2former and maskformer for transformers trainer (#28277)
* fix get_num_masks output as [int] to int

* fix loss size from torch.Size([1]) to torch.Size([])
2024-01-04 09:53:25 +01:00
6b8ec2588e [docs] Sort es/toctree.yml | Translate performance.md (#28262)
* Sort es/_toctree.yml like en/_toctree.yml

* Run make style

* Add -Rendimiento y escalabilidad- section to es/_toctree.yml

* Run make style

* Add s to section

* Add translate of performance.md

* Add performance.md to es/_toctree.yml

* Run make styele

* Fix docs links

* Run make style
2024-01-03 14:35:58 -08:00
3ea8833676 Translate contributing.md into Chinese (#28243)
* Translate contributing.md into Chinese

* Update review comments
2024-01-03 14:35:02 -08:00
45b1dfa342 Remove token_type_ids from model_input_names (like #24788) (#28325)
* remove token_type_ids from model_input_names (like #24788)

* removed test that assumed token_type_ids should be present and updated a model reference so that it points to an available model)
2024-01-03 19:26:07 +01:00
d83ff5eeff Add FastSpeech2Conformer (#23439)
* start - docs, SpeechT5 copy and rename

* add relevant code from FastSpeech2 draft, have tests pass

* make it an actual conformer, demo ex.

* matching inference with original repo, includes debug code

* refactor nn.Sequentials, start more desc. var names

* more renaming

* more renaming

* vocoder scratchwork

* matching vocoder outputs

* hifigan vocoder conversion script

* convert model script, rename some config vars

* replace postnet with speecht5's implementation

* passing common tests, file cleanup

* expand testing, add output hidden states and attention

* tokenizer + passing tokenizer tests

* variety of updates and tests

* g2p_en pckg setup

* import structure edits

* docstrings and cleanup

* repo consistency

* deps

* small cleanup

* forward signature param order

* address comments except for masks and labels

* address comments on attention_mask and labels

* address second round of comments

* remove old unneeded line

* address comments part 1

* address comments pt 2

* rename auto mapping

* fixes for failing tests

* address comments part 3 (bart-like, train loss)

* make style

* pass config where possible

* add forward method + tests to WithHifiGan model

* make style

* address arg passing and generate_speech comments

* address Arthur comments

* address Arthur comments pt2

* lint  changes

* Sanchit comment

* add g2p-en to doctest deps

* move up self.encoder

* onnx compatible tensor method

* fix is symbolic

* fix paper url

* move models to espnet org

* make style

* make fix-copies

* update docstring

* Arthur comments

* update docstring w/ new updates

* add model architecture images

* header size

* md wording update

* make style
2024-01-03 18:01:06 +00:00
6eba901d88 fix documentation for zero_shot_object_detection (#28267)
remove broken space
2024-01-03 09:20:34 -08:00
c2d283a64a Bump tj-actions/changed-files from 22.2 to 41 in /.github/workflows (#28311)
Bumps [tj-actions/changed-files](https://github.com/tj-actions/changed-files) from 22.2 to 41.
- [Release notes](https://github.com/tj-actions/changed-files/releases)
- [Changelog](https://github.com/tj-actions/changed-files/blob/main/HISTORY.md)
- [Commits](https://github.com/tj-actions/changed-files/compare/v22.2...v41)

---
updated-dependencies:
- dependency-name: tj-actions/changed-files
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-01-03 09:12:53 +01:00
aa4a0f8ef3 Remove fast tokenization warning in Data Collators (#28213) 2024-01-02 18:32:23 +00:00
5be46dfc09 [Whisper] Fix errors with MPS backend introduced by new code on word-level timestamps computation (#28288)
* Update modeling_whisper.py to support MPS backend

Fixed some issue with MPS backend.

First, the torch.std_mean is not implemented and is not scheduled for implementation, while the single torch.std and torch.mean are.
Second, MPS backend does not support float64, so it can not cast from float32 to float64. Inverting the double() when the matrix is in the cpu fixes the issue while should not change the logic.

* Found another instruction in modeling_whisper.py not implemented byor MPS

After a load test, where I transcribed a 2 hours audio file, I got into a branch that did not fix in the previous commit.
Similar fix, where the torch.std_mean is changed into torch.std and torch.mean

* Update modeling_whisper.py removed trailing white spaces

Removed trailing white spaces

* Update modeling_whisper.py to use is_torch_mps_available()

Using is_torch_mps_available() instead of capturing the NotImplemented exception

* Update modeling_whisper.py sorting the import block

Sorting the utils import block

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-02 16:22:28 +00:00
87ae2a4632 fix bug:divide by zero in _maybe_log_save_evaluate() (#28251)
Co-authored-by: liujizhong1 <liujizhong1@xiaomi.com>
2024-01-02 14:19:42 +00:00
502a10a6f8 Fix trainer saving safetensors: metadata is None (#28219)
* Update trainer.py

* format
2024-01-02 12:58:29 +00:00
cad9f5c6cc Update docs around mixing hf scheduler with deepspeed optimizer (#28223)
update docs around mixing hf scheduler with deepspeed optimizer
2024-01-02 11:48:17 +00:00
3cefac1d97 small typo (#28229)
Update modeling_utils.py
2023-12-26 21:52:10 +01:00
3b7675b2b8 fix FA2 when using quantization (#28203) 2023-12-26 08:36:41 +05:30
fa21ead73d [Awq] Enable the possibility to skip quantization for some target modules (#27950)
* v1

* add docstring

* add tests

* add awq 0.1.8

* oops

* fix test
2023-12-25 11:06:56 +01:00
29e7a1e183 [Llava] Fix llava index errors (#28032)
* fix llava index errors

* forward contrib credits from original implementation and fix

* better fix

* final fixes and fix all tests

* fix

* fix nit

* fix tests

* add regression tests

---------

Co-authored-by: gullalc <gullalc@users.noreply.github.com>
2023-12-22 17:47:38 +01:00
68fa1e855b update the logger message with accordant weights_file_name (#28181)
Co-authored-by: yudong.lin <yudong.lin@funplus.com>
2023-12-22 15:05:10 +00:00
74d9d0cebb Fixing visualization code for object detection to support both types of bounding box. (#27842)
* fix: minor enhancement and fix in bounding box visualization example

The example that was trying to visualize the bounding box was not considering an edge case,
where the bounding box can be un-normalized. So using the same set of code, we can not get
results with a different dataset with un-normalized bounding box. This commit fixes that.

* run make clean

* add an additional note on the scenarios where the box viz code works

---------

Co-authored-by: Anindyadeep <anindya@pop-os.localdomain>
2023-12-22 13:24:40 +00:00
5da3db3fd5 [Whisper] Fix word-level timestamps with bs>1 or num_beams>1 (#28114)
* fix frames

* use smaller chunk length

* correct beam search + tentative stride

* fix whisper word timestamp in batch

* add test batch generation with return token timestamps

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* clean a test

* make style + correct typo

* write clearer comments

* explain test in comment

---------

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-12-22 12:43:11 +00:00
c4df7c1668 Drop feature_extractor_type when loading an image processor file (#28195)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-22 13:19:04 +01:00
bb3bd44739 Fix the check of models supporting FA/SDPA not run (#28202)
* add check_support_list.py

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-22 12:56:11 +01:00
e37ab52dff Bug: training_args.py fix missing import with accelerate with version accelerate==0.20.1 (#28171)
* fix-accelerate-version

* updated with exported ACCELERATE_MIN_VERSION,

* update string in ACCELERATE_MIN_VERSION
2023-12-22 11:41:35 +00:00
c9fb250a25 Add Swinv2 backbone (#27742)
* First draft

* More improvements

* More improvements

* Make all tests pass

* Remove script

* Update image processor

* Address comments

* Use new gradient checkpointing method

* Convert checkpoints, add integration test

* Do not keep aspect ratio for now

* Set keep_aspect_ratio=False for beit, add integration test

* Remove print statement
2023-12-22 11:12:56 +00:00
1ef86c4f56 Fix: [SeamlessM4T - S2TT] Bug in batch loading of audio in torch.Tensor format in the SeamlessM4TFeatureExtractor class (#27914)
* fixes: code fixes on is_batched condition to also check for batched audio data in torch.Tensor format instead of only just checking for batched audio data in np.ndarray format

* Update src/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* refactor: code refactoring to remove torch framework dependency

* docs: updated docstring to add torch tensor compatibility

* test: add test cases to incorporate torch tensor inputs

* test: ran make fix-copies for code conformity

* test: refactor test to separate the test_call into test_call_numpy and test_call_torch

---------

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
2023-12-22 10:47:30 +00:00
548a8f6119 Fix ONNX export for causal LM sequence classifiers by removing reverse indexing (#28144)
* normalize reverse indexing for causal lm sequence classifiers

* normalize reverse indexing for causal lm sequence classifiers

* normalize reverse indexing for causal lm sequence classifiers

* use modulo instead

* unify modulo-based sequence lengths
2023-12-22 10:33:44 +00:00
71f460578d Update docs/source/en/perf_infer_gpu_one.md (#28198)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-22 10:40:22 +01:00
3a8769f6a9 [Docs] Add 4-bit serialization docs (#28182)
* add 4-bit serialization docs

* up

* up
2023-12-22 10:18:32 +01:00
3657748b4d Update YOLOS slow test values (#28187)
Update test values
2023-12-21 18:17:07 +00:00
cd1350ce9b Fix slow backbone tests - out_indices must match stage name ordering (#28186)
Indices must match stage name ordering
2023-12-21 18:16:50 +00:00
260b9d2179 Even more TF test fixes (#28146)
* Fix vision text dual encoder

* Small cleanup for wav2vec2 (not fixed yet)

* Small fix for vision_encoder_decoder

* Fix SAM builds

* Update TFBertTokenizer test with modern exporting + tokenizer

* Fix DeBERTa

* Fix DeBERTav2

* Try RAG fix but it's impossible to test locally

* Actually fix RAG now that I got FAISS working somehow

* Fix Wav2Vec2, add sermon

* Fix Hubert
2023-12-21 15:14:46 +00:00
f9a98c476c [Mixtral & Mistral] Add support for sdpa (#28133)
* some nits

* update test

* add support d\sd[a

* remove some dummy inputs

* all good

* style

* nits

* fixes

* fix more copies

* nits

* styling

* fix

* Update src/transformers/models/mistral/modeling_mistral.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* add a slow test just to be sure

* fixup

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-12-21 12:38:22 +01:00
814619f54f [Whisper] Use torch for stft if available (#26119)
* [Whisper] Use torch for stft if available

* update docstring

* mock patch decorator

* fit on one line
2023-12-21 11:04:05 +00:00
7e93ce40c5 Fix input_embeds docstring in encoder-decoder architectures (#28168) 2023-12-21 11:01:54 +00:00
4f7806ef7e [bnb] Let's make serialization of 4bit models possible (#26037)
* updated bitsandbytes.py

* rm test_raise_* from test_4bit.py

* add test_4bit_serialization.py

* modeling_utils bulk edits

* bnb_ver 0.41.3 in integrations/bitsandbytes.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* @slow reinstated

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* bnb ver 0.41.3 in  src/transformers/modeling_utils.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* rm bnb version todo in  integrations/bitsandbytes.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* moved 4b serialization tests to test_4bit

* tests upd for opt

* to torch_device

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* ruff fixes to tests

* rm redundant bnb version check in mod_utils

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* restore _hf_peft_config_loaded  modeling_utils.py::2188

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* restore _hf_peft_config_loaded  test in modeling_utils.py::2199

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* fixed NOT getattr(self, "is_8bit_serializable")

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* setting model.is_4bit_serializable

* rm separate fp16_statistics arg from set_module...

* rm else branch in integrations::bnb::set_module

* bnb 4bit dtype check

* upd comment on 4bit weights

* upd tests for FP4 safe

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-12-21 11:54:44 +01:00
e268d7e5dc disable test_retain_grad_hidden_states_attentions on SeamlessM4TModelWithTextInputTest (#28169)
disable retain_grad_hidden_states_attentions on SeamlessM4TModelWithTextInputTest
2023-12-21 08:39:44 +01:00
1d77735947 Fix yolos resizing (#27663)
* Fix yolos resizing

* Update tests

* Add a test
2023-12-20 20:55:51 +00:00
45b70384a7 Generate: fix speculative decoding (#28166)
Co-authored-by: Merve Noyan <merveenoyan@gmail.com>
2023-12-20 18:55:35 +00:00
01c081d138 [docs] Trainer docs (#28145)
* fsdp, debugging, gpu selection

* fix hfoption

* fix
2023-12-20 10:37:23 -08:00
ee298a16a2 Align backbone stage selection with out_indices & out_features (#27606)
* Iteratre over out_features instead of stage_names

* Update for all backbones

* Add tests

* Fix

* Align timm backbone behaviour with other backbones

* Fix tests

* Stricter checks on set out_features and out_indices

* Revert back stage selection logic

* Remove out-of-order logic

* Document restriction in docstrings
2023-12-20 18:33:17 +00:00
224ab70969 Update FA2 exception msg to point to hub discussions (#28161)
* Update FA2 exception msg to point to hub discussions

* Use path for hub url
2023-12-20 16:52:16 +00:00
9924df9eb2 Avoid unnecessary warnings when loading CLIPConfig (#28108)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-20 17:24:53 +01:00
7938c8c836 Fix weights not properly initialized due to shape mismatch (#28122)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-20 14:20:02 +01:00
769a9542de move code to Trainer.evaluate to enable use of that function with multiple datasets (#27844)
* move code to Trainer.evaluate to enable use of that function with multiple datasets

* test

* update doc string

* and a tip

* forgot the type

---------

Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
2023-12-20 10:55:56 +01:00
cd9f9d63f1 [gpt-neox] Add attention_bias config to support model trained without attention biases (#28126)
* add attention_bias hparam for a model trained without attention biases

* fix argument documentation error
2023-12-20 10:05:32 +01:00
def581ef51 Fix FA2 integration (#28142)
* fix fa2

* fix FA2 for popular models

* improve warning and add Younes as co-author

Co-Authored-By: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix the warning

* Add Tip

* typo fix

* nit

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-20 14:25:07 +05:30
b134f6857e Remove deprecated CPU dockerfiles (#28149)
Signed-off-by: Abolfazl Shahbazi <abolfazl.shahbazi@intel.com>
2023-12-20 05:51:35 +01:00
38611086d2 [docs] Fix mistral link in mixtral.md (#28143)
Fix mistral link in mixtral.md
2023-12-19 10:34:14 -08:00
23f8e4db77 Update modeling_utils.py (#28127)
In docstring for PreTrainedModel.resize_token_embeddings, correct definition of new_num_tokens parameter to read "the new number of tokens" (meaning the new size of the vocab) rather than "the number of new tokens" (number of newly added tokens only).
2023-12-19 09:07:57 -08:00
4a04b4ccca [Mixtral] Fix loss + nits (#28115)
* default config should not use sliding window

* update the doc

* nits

* add a proper test

* update

* update

* update expected value

* Update src/transformers/tokenization_utils_fast.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* convert to float

* average then N**2

* comment

* revert nit

* good to fo

* fixup

* Update tests/models/mixtral/test_modeling_mixtral.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* revert unrelated change

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-12-19 17:31:54 +01:00
ac974199c8 Generate: speculative decoding (#27979)
* speculative decoding

* fix test

* space

* better comments

* remove redundant test

* test nit

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* PR comments

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-12-19 13:58:30 +00:00
bd7a356135 Update split string in doctest to reflect #28087 (#28135) 2023-12-19 13:55:09 +00:00
5aec50ecaf When save a model on TPU, make a copy to be moved to CPU (#27993)
* When save a model, make a copy to be moved to CPU, dont move the original
model

* make deepcopy inside of _save_tpu

* Move to tpu without copy
2023-12-19 10:08:51 +00:00
4edffda636 [Doc] Fix token link in What 🤗 Transformers can do (#28123)
Fix token link
2023-12-18 15:06:54 -08:00
c52b515e94 Fix a typo in tokenizer documentation (#28118) 2023-12-18 19:44:35 +01:00
a52e180a0f [docs] General doc fixes (#28087)
* doc fix friday

* deprecated objects

* update not_doctested

* update toctree
2023-12-18 10:44:09 -08:00
08a6e7a702 Fix indentation error - semantic_segmentation.md (#28117)
Update semantic_segmentation.md
2023-12-18 12:47:54 -05:00
71d47f0ad4 More TF fixes (#28081)
* More build_in_name_scope()

* Make sure we set the save spec now we don't do it with dummies anymore

* make fixup
2023-12-18 15:26:03 +00:00
0695b2421a Remove warning if DISABLE_TELEMETRY is used (#28113)
remove warning if DISABLE_TELEMETRY is used
2023-12-18 16:18:01 +01:00
7c5408dade Disable jitter noise during evaluation in SwitchTransformers (#28077)
* Disable jitter noise during evaluation

* Update outdated configuration information

* Formatting

* Add new line
2023-12-18 15:08:55 +00:00
a0522de497 fix ConversationalPipeline docstring (#28091) 2023-12-18 15:08:37 +00:00
e6cb8e052a in peft finetune, only the trainable parameters need to be saved (#27825)
to reduce the storage size and also save the time of checkpoint saving while using deepspeed for training

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
2023-12-18 14:27:05 +00:00
7f2a8f92e4 Spelling correction (#28110)
Update mixtral.md

correct minor typo in overview
2023-12-18 14:04:05 +00:00
b8378b658e [Llava / Vip-Llava] Add SDPA into llava (#28107)
add SDPA into llava
2023-12-18 13:46:30 +01:00
e6dcf8abd6 Fix the deprecation warning of _torch_pytree._register_pytree_node (#27803) 2023-12-17 11:13:42 +01:00
f85a1e82c1 4D attention_mask support (#27539)
* edits to _prepare_4d_causal_attention_mask()

* initial tests for 4d mask

* attention_mask_for_sdpa support

* added test for inner model hidden

* added autotest decorators

* test mask dtype to torch.int64

* torch.testing.assert_close

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* torch_device and @torch_gpu in tests

* upd tests

* +torch decorators

* torch decorators fixed

* more decorators!

* even more decorators

* fewer decorators

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-17 11:08:04 +01:00
238d2e3c44 fix resuming from ckpt when using FSDP with FULL_STATE_DICT (#27891)
* fix resuming from ckpt when suing FSDP with FULL_STATE_DICT

* update tests

* fix tests
2023-12-16 19:41:43 +05:30
ebfdb9ca62 [docs] MPS (#28016)
* mps docs

* toctree
2023-12-15 13:17:29 -08:00
0d63d17765 [docs] Trainer (#27986)
* first draft

* add to toctree

* edits

* feedback
2023-12-15 12:06:55 -08:00
1faeff85ce Fix Vip-llava docs (#28085)
* Update vipllava.md

* Update modeling_vipllava.py
2023-12-15 20:16:47 +01:00
ffa04def0e Fix wrong examples in llava usage. (#28020)
* Fix wrong examples in llava usage.

* Update modeling_llava.py
2023-12-15 17:09:50 +00:00
29a1c1b472 Fix low_cpu_mem_usage Flag Conflict with DeepSpeed Zero 3 in from_pretrained for Models with keep_in_fp32_modules" (#27762)
Fix `from_pretrained` Logic
for `low_cpu_mem_usage` with DeepSpeed Zero3
2023-12-15 17:03:41 +00:00
26ea725bc0 Update fixtures-image-utils (#28080)
* fix hf-internal-testing/fixtures_image_utils

* fix test

* comments
2023-12-15 16:58:36 +00:00
1c286be508 Fix bug for checkpoint saving on multi node training setting (#28078)
* add multi-node traning setting

* fix style
2023-12-15 16:18:56 +00:00
dec84b3211 make torch.load a bit safer (#27282)
* make torch.load a bit safer

* Fixes

---------

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2023-12-15 16:01:18 +01:00
74cae670ce Make GPT2 traceable in meta state (#28054)
* Put device in tensor constructor instead of to()

* Fix copy
2023-12-15 15:45:31 +01:00
e2b6df7971 [LLaVa] Add past_key_values to _skip_keys_device_placement to fix multi-GPU dispatch (#28051)
Add past_key_values to _skip_keys_device_placement  for LLaVa
2023-12-15 14:05:20 +00:00
deb72cb6d9 Skip M4T test_retain_grad_hidden_states_attentions (#28060)
* skip test from SpeechInput

* refine description of skip
2023-12-15 13:39:16 +00:00
d269c4b2d7 [Mixtral] update conversion script to reflect new changes (#28068)
* Update convert_mixtral_weights_to_hf.py

* forward contrib credits from original fix

---------

Co-authored-by: thomasw21 <thomasw21@users.noreply.github.com>
2023-12-15 14:05:20 +01:00
70a127a37a doc: Correct spelling mistake (#28064) 2023-12-15 13:01:39 +00:00
c817c17dbe Remove SpeechT5 deprecated argument (#28062) 2023-12-15 12:15:06 +00:00
6af3ce7757 [Flax LLaMA] Fix attn dropout (#28059) 2023-12-15 10:57:36 +00:00
7e876dca54 [Flax BERT] Update deprecated 'split' method (#28012)
* [Flax BERT] Update deprecated 'split' method

* fix copies
2023-12-15 10:57:18 +00:00
e737446ee6 [Modeling / Mixtral] Fix GC + PEFT issues with Mixtral (#28061)
fix for mistral
2023-12-15 11:34:42 +01:00
1e20931765 [FA-2] Fix fa-2 issue when passing config to from_pretrained (#28043)
* fix fa-2 issue

* fix test

* Update src/transformers/modeling_utils.py

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>

* clenaer fix

* up

* add more robust tests

* Update src/transformers/modeling_utils.py

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>

* fixup

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* pop

* add test

---------

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-12-15 11:08:27 +01:00
1a585c1222 Remove warning when Annotion enum is created (#28048)
Remove warning when enum is created
2023-12-14 19:50:20 +00:00
3060899be5 Replace build() with build_in_name_scope() for some TF tests (#28046)
Replace build() with build_in_name_scope() for some tests
2023-12-14 17:42:25 +00:00
050e0b44f6 Proper build() methods for TF (#27794)
* Add a convenience method for building in your own name scope

* Second attempt at auto layer building

* Revert "Second attempt at auto layer building"

This reverts commit e03a3aaecf9ec41a805582b83cbdfe3290a631be.

* Attempt #3

* Revert "Attempt #3"

This reverts commit b9df7a0857560d29b5abbed6127d9e9eca77cf47.

* Add missing attributes that we're going to need later

* Add some attributes we're going to need later

* A fourth attempt! Feel the power flow through you!

* Revert "A fourth attempt! Feel the power flow through you!"

This reverts commit 6bf4aaf3875d6f28485f50187617a4c616c8aff7.

* Add more values we'll need later

* TF refactor that we'll need later

* Revert "TF refactor that we'll need later"

This reverts commit ca07202fb5b7b7436b893baa8d688b4f348ea7b9.

* Revert "Revert "TF refactor that we'll need later""

This reverts commit 1beb0f39f293ed9c27594575e1c849aadeb15c13.

* make fixup

* Attempt five!

* Revert "Attempt five!"

This reverts commit 3302207958dfd0374b0447a51c06eea51a506044.

* Attempt six - this time don't add empty methods

* Revert "Attempt six - this time don't add empty methods"

This reverts commit 67d60129be75416b6beb8f47c7d38d77b18d79bb.

* Attempt seven - better base model class detection!

* Revert "Attempt seven - better base model class detection!"

This reverts commit 5f14845e92ea0e87c598da933bfbfee10f553bc9.

* Another attribute we'll need later

* Try again with the missing attribute!

* Revert "Try again with the missing attribute!"

This reverts commit 760c6f30c5dffb3e04b0e73c34a77d1882a0fef7.

* This is the attempt that will pierce the heavens!

* Revert "This is the attempt that will pierce the heavens!"

This reverts commit c868bb657de057aca7a5260350a3f831fc4dfee6.

* Attempt seven - snag list is steadily decreasing

* Revert "Attempt seven - snag list is steadily decreasing"

This reverts commit 46fbd975deda64429bfb3e5fac4fc0370c00d316.

* Attempt eight - will an empty snag list do it?

* Revert "Attempt eight - will an empty snag list do it?"

This reverts commit 7c8a3c2b083253649569e9877e02054ae5cec67b.

* Fixes to Hubert issues that cause problems later

* Trying again with Conv1D/SeparableConv fixes

* Revert "Trying again with Conv1D/SeparableConv fixes"

This reverts commit 55092bca952bc0f750aa1ffe246a640bf1e2036e.

* Apply the build shape fixes to Wav2Vec2 as well

* One more attempt!

* Revert "One more attempt!"

This reverts commit 5ac3e4cb01b9458cc93312873725f9444ae7261c.

* Another attempt!

* Revert "Another attempt!"

This reverts commit ea16d890e019d7de8792a3b8e72f3b1c02adae50.

* Let's see how many failures we get without the internal build method

* Fix OpenAI

* Fix MobileBERT

* (Mostly) fix GroupVIT

* Fix BLIP

* One more BLIP fix

* One more BLIP fix!

* Fix Regnet

* Finally fully fix GroupViT

* Fix Data2Vec and add the new AdaptivePool

* Fix Segformer

* Fix Albert

* Fix Deberta/DebertaV2

* Fix XLM

* Actually fix XLM

* Fix Flaubert

* Fix lxmert

* Fix Resnet

* Fix ConvBERT

* Fix ESM

* Fix Convnext / ConvnextV2

* Fix SAM

* Fix Efficientformer

* Fix LayoutLMv3

* Fix speech_to_text

* Fix mpnet and mobilevit

* Fix Swin

* Fix CTRL

* Fix CVT

* Fix DPR

* Fix Wav2Vec2

* Fix T5

* Fix Hubert

* Fix GPT2

* Fix Whisper

* Fix DeiT

* Fix the encoder-decoder / dual-encoder classes

* make fix-copies

* build in name scope

* Fix summarization test

* Fix tied weight names for BART + Blenderbot

* Fix tied weight name building

* Fix to TFESM weight building

* Update TF SAM

* Expand all the shapes out into Big Boy Shapes
2023-12-14 15:17:30 +00:00
52c37882fb [Seamless] Fix links in docs (#27905)
* [Seamless] Fix links in docs

* apply suggestions from code review
2023-12-14 15:14:13 +00:00
388fd314d8 Generate: Mistral/Mixtral FA2 cache fix when going beyond the context window (#28037) 2023-12-14 14:52:45 +00:00
0ede762636 Fixed spelling error in T5 tokenizer warning message (s/thouroughly/t… (#28014)
Fixed spelling error in T5 tokenizer warning message (s/thouroughly/thoroughly)
2023-12-14 14:52:03 +00:00
bb1d0d0d9e Fix languages covered by M4Tv2 (#28019)
* correct language assessment  + add tests

* Update src/transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style + simplify and enrich test

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-12-14 14:43:44 +00:00
e2b16485f3 SeamlessM4T: test_retain_grad_hidden_states_attentions is flaky (#28035) 2023-12-14 13:56:03 +00:00
9e5c28c573 Generate: assisted decoding now uses generate for the assistant (#28030)
generate refactor
2023-12-14 13:31:13 +00:00
dde6c427a1 Fix AMD push CI not triggered (#28029)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-14 12:44:00 +01:00
73de5108e1 [core / modeling] Fix training bug with PEFT + GC (#28031)
fix trainign bug
2023-12-14 12:19:45 +01:00
2788f8d8d5 [SeamlessM4TTokenizer] Safe import (#28026)
safe import
2023-12-14 08:46:10 +01:00
131a528be0 well well well (#28011) 2023-12-14 06:51:04 +01:00
17506d1256 add modules_in_block_to_quantize arg in GPTQconfig (#27956)
* add inside_layer_modules arg

* fix

* change to modules_to_quantize_inside_block

* fix

* remane again

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* better docsting

* fix again with less explanation

* Update src/transformers/utils/quantization_config.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* style

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-12-13 14:13:44 -05:00
fe44b1f1a9 Add model_docs from cpmant.md to derformable_detr.md (#27884)
* upfaste

* Update

* Update docs/source/ja/model_doc/deformable_detr.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/data2vec.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/cvt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* add suggestions

* Toctree update

* remove git references

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/decision_transformer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-12-13 10:02:29 -08:00
3ed3e3190c Dev version 2023-12-13 18:29:31 +01:00
815ea8e8a2 [Doc] Spanish translation of glossary.md (#27958)
* Add glossary to es/_toctree.yml

* Add glossary.md to es/

* A section translated

* B and C section translated

* Fix typo in en/glossary.md C section

* D section translated | Add a extra line in en/glossary.md

* E and F section translated | Fix typo in en/glossary.md

* Fix words preentrenado

* H and I section translated | Fix typo in en/glossary.md

* L section translated

* M and N section translated

* P section translated

* R section translated

* S section translated

* T section translated

* U and Z section translated | Fix TensorParallel link in both files

* Fix word
2023-12-13 09:21:59 -08:00
93766251cb Fix bug with rotating checkpoints (#28009)
* Fix bug

* Write test

* Keep back old modification for grad accum steps

* Whitespace...

* Whitespace again

* Race condition

* Wait for everyone
2023-12-13 12:17:30 -05:00
ec43d6870a [CI slow] Fix expected values (#27999)
* fix expected values

* style

* test is slow
2023-12-13 13:37:10 +01:00
749f94e460 Fix PatchTSMixer slow tests (#27997)
* fix slow tests

* revert formatting

---------

Co-authored-by: Arindam Jati <arindam.jati@ibm.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2023-12-13 13:34:25 +01:00
c7f076a00e Adds VIP-llava to transformers (#27932)
* v1

* add-new-model-like

* revert

* fix forward and conversion script

* revert

* fix copies

* fixup

* fix

* Update docs/source/en/index.md

* Apply suggestions from code review

* push

* fix

* fixes here and there

* up

* fixup and fix tests

* Apply suggestions from code review

* add docs

* fixup

* fixes

* docstring

* add docstring

* fixup

* docstring

* fixup

* nit

* docs

* more copies

* fix copies

* nit

* update test
2023-12-13 10:42:24 +01:00
371fb0b7dc [Whisper] raise better errors (#27971)
* [`Whisper`] raise better erros
fixes #27893

* update torch as well
2023-12-13 09:13:01 +01:00
230ac352d8 [Tokenizer Serialization] Fix the broken serialisation (#27099)
* nits

* nits

* actual fix

* style

* ze fix

* fix fix fix style
2023-12-13 09:11:34 +01:00
f4db565b69 fix typo in dvclive callback (#27983) 2023-12-12 16:29:58 -05:00
9936143014 [doc] fix typo (#27981) 2023-12-12 20:32:42 +00:00
78172dcdb7 Fix SDPA correctness following torch==2.1.2 regression (#27973)
* fix sdpa with non-contiguous inputs for gpt_bigcode

* fix other archs

* add currently comment

* format
2023-12-13 00:33:46 +09:00
5e4ef0a0f6 Better key error for AutoConfig (#27976)
* Improve the error printed when loading an unrecognized architecture

* Improve the error printed when loading an unrecognized architecture

* Raise a ValueError instead because KeyError prints weirdly

* make fixup
2023-12-12 14:41:55 +00:00
a49f4acab3 Fix link in README.md of Image Captioning (#27969)
Update the link for vision encoder decoder doc used by
FlaxVisionEncoderDecoderModel link.
2023-12-12 08:07:15 -05:00
680c610f97 Hot-fix-mixstral-loss (#27948)
* fix loss computation

* compute on GPU if possible
2023-12-12 12:20:28 +01:00
4b759da8be Generate: assisted_decoding now accepts arbitrary candidate generators (#27750)
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-12 09:25:57 +00:00
e660424717 fixed typos (issue 27919) (#27920)
* fixed typos (issue 27919)

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-12-11 18:44:23 -05:00
e5079b0b2a Support PeftModel signature inspect (#27865)
* Support PeftModel signature inspect

* Use get_base_model() to get the base model

---------

Co-authored-by: shujunhua1 <shujunhua1@jd.com>
2023-12-11 19:30:11 +00:00
35478182ce [docs] Fused AWQ modules (#27896)
streamline
2023-12-11 10:41:33 -08:00
67b1335cb9 Update bounding box format everywhere (#27944)
Update formats
2023-12-11 18:03:42 +00:00
54d0b1c278 [Mixtral] Change mistral op order (#27955)
up
2023-12-11 19:03:18 +01:00
4850aaba6f fix no sequence length models error (#27522)
* fix no sequence length models error

* block size check

---------

Co-authored-by: Adam Louly <adamlouly@microsoft.com@orttrainingdev9.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
2023-12-11 18:01:26 +00:00
4b4b864224 Fix for stochastic depth decay rule in the TimeSformer implementation (#27875)
Update modeling_timesformer.py

Fixing typo to correct the stochastic depth decay rule
2023-12-11 16:20:31 +00:00
c0a354d8d7 fix bug in mask2former: cost matrix is infeasible (#27897)
fix bug: cost matrix is infeasible
2023-12-11 16:19:16 +00:00
7e35f37071 Fix a couple of typos and add an illustrative test (#26941)
* fix a typo and add an illustrative test

* appease black

* reduce code duplication and add Annotion type back with a pending deprecation warning

* remove unused code

* change warning type

* black formatting fix

* change enum deprecation approach to support 3.8 and earlier

* add stacklevel

* fix black issue

* fix ruff issues

* fix ruff issues

* move tests to own mixin

* include yolos

* fix black formatting issue

* fix black formatting issue

* use logger instead of warnings and include target version for deprecation
2023-12-11 15:51:51 +00:00
39acfe84ba Add deepspeed test to amd scheduled CI (#27633)
* add deepspeed scheduled test for amd

* fix image

* add dockerfile

* add comment

* enable tests

* trigger

* remove trigger for this branch

* trigger

* change runner env to trigger the docker build image test

* use new docker image

* remove test suffix from docker image tag

* replace test docker image with original image

* push new image

* Trigger

* add back amd tests

* fix typo

* add amd tests back

* fix

* comment until docker image build scheduled test fix

* remove deprecated deepspeed build option

* upgrade torch

* update docker & make tests pass

* Update docker/transformers-pytorch-deepspeed-amd-gpu/Dockerfile

* fix

* tmp disable test

* precompile deepspeed to avoid timeout during tests

* fix comment

* trigger deepspeed tests with new image

* comment tests

* trigger

* add sklearn dependency to fix slow tests

* enable back other tests

* final update

---------

Co-authored-by: Felix Marty <felix@hf.co>
Co-authored-by: Félix Marty <9808326+fxmarty@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-11 16:33:36 +01:00
0f59d2f173 Fix AMD scheduled CI not triggered (#27951)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-11 16:22:10 +01:00
417bb91484 In PreTrainedTokenizerBase add missing word in error message (#27949)
"text input must of type" -> "text input must be of type"
2023-12-11 15:12:40 +00:00
5cec306cdc Fix parameter count in readme for mixtral 45b (#27945)
fix parameter count in readme
2023-12-11 14:58:48 +00:00
921a6bf26e Update import message (#27946)
* Update import message

* Update message
2023-12-11 14:58:06 +00:00
44127ec667 Fix test for auto_find_batch_size on multi-GPU (#27947)
* Fix test for multi-GPU

* WIth CPU handle
2023-12-11 09:57:41 -05:00
b911c1f10f Docs for AutoBackbone & Backbone (#27456)
* Initial commit for AutoBackbone & Backbone

* Added timm and clarified out_indices

* Swapped the example to out_indices

* fix toctree

* Update autoclass_tutorial.md

* Update backbones.md

* Update autoclass_tutorial.md

* Add dummy torch input instead

* Add dummy torch input

* Update autoclass_tutorial.md

* Update backbones.md

* minor fix

* Update docs/source/en/main_classes/backbones.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/autoclass_tutorial.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Added illustrations and explained backbone & neck

* Update docs/source/en/main_classes/backbones.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update backbones.md

---------

Co-authored-by: Maria Khalusova <kafooster@gmail.com>
2023-12-11 08:22:17 -05:00
YQ
e49c385266 use logger.warning_once to avoid massive outputs (#27428)
* use logger.warning_once to avoid massive outputs when training/finetuning longformer

* update more
2023-12-11 11:59:29 +00:00
6ff109227b Fix PatchTSMixer Docstrings (#27943)
* docstring corrections

* style make

---------

Co-authored-by: vijaye12 <vijaye12@in.ibm.com>
2023-12-11 11:56:57 +00:00
accccdd008 [Add Mixtral] Adds support for the Mixtral MoE (#27942)
* up

* up

* test

* logits ok

* up

* up

* few fixes

* conversion script

* up

* nits

* nits

* update

* nuke

* more updates

* nites

* fix many issues

* nit

* scatter

* nit

* nuke megablocks

* nits

* fix conversion script

* nit

* remove

* nits

* nit

* update

* oupsssss

* change

* nits device

* nits

* fixup

* update

* merge

* add copied from

* fix the copy mentions

* update tests

* more fixes

* nits

* conversion script

* add parts of the readme

* Update tests/models/mixtral/test_modeling_mixtral.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* new test + conversion script

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Apply suggestions from code review

* fix

* fix copies

* fix copies

* ooops

* fix config

* Apply suggestions from code review

* fix nits

* nit

* add copies

* add batched tests

* docs

* fix flash attention

* let's add more verbose

* add correct outputs

* support router ouptus

* ignore copies where needed

* fix

* cat list if list is given for now

* nits

* Update docs/source/en/model_doc/mixtral.md

* finish router refactoring

* fix forward

* fix expected values

* nits

* fixup

* fix

* fix bug

* fix

* fix dtype mismatch

* fix

* grrr grrr I support item assignment

* fix CI

* docs

* fixup

* remove some copied form

* fix weird diff

* skip doctest fast on the config and modeling

* mark that is supports flash attention in the doc

* update

* Update src/transformers/models/mixtral/modeling_mixtral.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Update docs/source/en/model_doc/mixtral.md

Co-authored-by: Lysandre Debut <hi@lysand.re>

* revert router logits config issue

* update doc accordingly

* Update src/transformers/models/mixtral/convert_mixtral_weights_to_hf.py

* nits

* use torch testing asssert close

* fixup

* doc nits

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-12-11 12:50:27 +01:00
0676d992a5 [from_pretrained] Make from_pretrained fast again (#27709)
* Skip nn.Module.reset_parameters

* Actually skip

* Check quality

* Maybe change all inits

* Fix init issues: only modify public functions

* Add a small test for now

* Style

* test updates

* style

* nice tes

* style

* make it even faster

* one more second

* remove fx icompatible

* Update tests/test_modeling_common.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Update tests/test_modeling_common.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* skip

* fix quality

* protect the import

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-12-11 12:38:17 +01:00
9f18cc6df0 Fix SDPA dispatch & make SDPA CI compatible with torch<2.1.1 (#27940)
fix sdpa dispatch
2023-12-11 18:56:38 +09:00
7ea21f1f03 [LLaVa] Some improvements (#27895)
* More improvements

* Improve variable names

* Update READMEs, improve docs
2023-12-11 10:22:26 +01:00
5e620a92cf Fix SeamlessM4Tv2ModelIntegrationTest (#27911)
change dtype of some integration tests
2023-12-11 09:18:41 +01:00
e96c1de191 Skip UnivNetModelTest::test_multi_gpu_data_parallel_forward (#27912)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-11 09:17:37 +01:00
8d8970efdd [BEiT] Fix test (#27934)
Fix test
2023-12-11 09:17:02 +01:00
235be08569 [DETA] fix backbone freeze/unfreeze function (#27843)
* [DETA] fix freeze/unfreeze function

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add freeze/unfreeze test case in DETA

* fix type

* fix typo 2

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-11 07:57:30 +01:00
df5c5c62ae Fix typo (#27918) 2023-12-09 11:59:24 +01:00
5fa66df3f3 [integration] Update Ray Tune integration for Ray 2.7 (#26499)
* fix tune integration for ray 2.7+

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* add version check for ray tune backend availability

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* missing import

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* pin min version instead

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* address comments

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* some fixes

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* fix unnecessary final checkpoint

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* fix lint

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* dep table fix

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* fix lint

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

---------

Signed-off-by: Justin Yu <justinvyu@anyscale.com>
2023-12-09 11:04:13 +01:00
ffd426eef8 [CLAP] Replace hard-coded batch size to enable dynamic ONNX export (#27790)
* [CLAP] Replace hard-coded batch size to enable dynamic ONNX export

* Add back docstring
2023-12-09 10:39:39 +01:00
80377eb018 F.scaled_dot_product_attention support (#26572)
* add sdpa

* wip

* cleaning

* add ref

* yet more cleaning

* and more :)

* wip llama

* working llama

* add output_attentions=True support

* bigcode sdpa support

* fixes

* gpt-bigcode support, require torch>=2.1.1

* add falcon support

* fix conflicts falcon

* style

* fix attention_mask definition

* remove output_attentions from attnmaskconverter

* support whisper without removing any Copied from statement

* fix mbart default to eager renaming

* fix typo in falcon

* fix is_causal in SDPA

* check is_flash_attn_2_available in the models init as well in case the model is not initialized through from_pretrained

* add warnings when falling back on the manual implementation

* precise doc

* wip replace _flash_attn_enabled by config.attn_implementation

* fix typo

* add tests

* style

* add a copy.deepcopy on the config in from_pretrained, as we do not want to modify it inplace

* obey to config.attn_implementation if a config is passed in from_pretrained

* fix is_torch_sdpa_available when torch is not installed

* remove dead code

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/bart/modeling_bart.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove duplicate pretraining_tp code

* add dropout in llama

* precise comment on attn_mask

* add fmt: off for _unmask_unattended docstring

* precise num_masks comment

* nuke pretraining_tp in LlamaSDPAAttention following Arthur's suggestion

* cleanup modeling_utils

* backward compatibility

* fix style as requested

* style

* improve documentation

* test pass

* style

* add _unmask_unattended tests

* skip meaningless tests for idefics

* hard_check SDPA requirements when specifically requested

* standardize the use if XXX_ATTENTION_CLASSES

* fix SDPA bug with mem-efficient backend on CUDA when using fp32

* fix test

* rely on SDPA is_causal parameter to handle the causal mask in some cases

* fix FALCON_ATTENTION_CLASSES

* remove _flash_attn_2_enabled occurences

* fix test

* add OPT to the list of supported flash models

* improve test

* properly test on different SDPA backends, on different dtypes & properly handle separately the pad tokens in the test

* remove remaining _flash_attn_2_enabled occurence

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/perf_infer_gpu_one.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove use_attn_implementation

* fix docstring & slight bug

* make attn_implementation internal (_attn_implementation)

* typos

* fix tests

* deprecate use_flash_attention_2=True

* fix test

* add back llama that was removed by mistake

* fix tests

* remove _flash_attn_2_enabled occurences bis

* add check & test that passed attn_implementation is valid

* fix falcon torchscript export

* fix device of mask in tests

* add tip about torch.jit.trace and move bt doc below sdpa

* fix parameterized.expand order

* move tests from test_modeling_attn_mask_utils to test_modeling_utils as a relevant test class is already there

* update sdpaattention class with the new cache

* Update src/transformers/configuration_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/bark/modeling_bark.py

* address review comments

* WIP torch.jit.trace fix. left: test both eager & sdpa

* add test for torch.jit.trace for both eager/sdpa

* fix falcon with torch==2.0 that needs to use sdpa

* fix doc

* hopefully last fix

* fix key_value_length that has no default now in mask converter

* is it flacky?

* fix speculative decoding bug

* tests do pass

* fix following #27907

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-09 05:38:14 +09:00
ce0bbd5101 Generate: SinkCache can handle iterative prompts (#27907) 2023-12-08 20:02:20 +00:00
94c765380c fix typo in image_processing_blip.py Wwhether -> Whether (#27899) 2023-12-08 10:32:48 -08:00
d6c3a3f137 [Doc] Spanish translation of pad_truncation.md (#27890)
* Add pad_truncation to es/_toctree.yml

* Add pad_truncation.md to es/

* Translated first two paragraph

* Translated paddig argument section

* Translated truncation argument section

* Translated final paragraphs

* Translated table

* Fixed typo in the table of en/pad_truncation.md

* Run make style | Fix a word

* Add Padding (relleno) y el Truncation (truncamiento) in the final paragraphs

* Fix relleno and truncamiento words
2023-12-08 10:32:18 -08:00
6757ed28ce Allow resume_from_checkpoint to handle auto_find_batch_size (#27568)
* Fuffill request

* Add test

* Better test

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Better test

* Better test

* MOre comments

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-08 11:51:02 -05:00
aa7ab98e72 fix llava (#27909)
* fix llava

* nits

* attention_mask was forgotten

* nice

* :)

* fixup
2023-12-08 17:32:34 +01:00
e0b617d192 Llama conversion script: adjustments for Llama Guard (#27910) 2023-12-08 16:02:50 +01:00
e366937587 Fix 2 tests in FillMaskPipelineTests (#27889)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-08 14:55:29 +01:00
79e7655906 Fix notification_service.py (#27903)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-08 14:55:02 +01:00
3b720ad9a5 mark test_initialization as flaky in 2 model tests (#27906)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-08 14:54:32 +01:00
7f07c356a4 Fix CLAP converting script (#27153)
* update converting script

* make style
2023-12-08 13:48:29 +00:00
b31905d1f6 Fix remaining issues in beam score calculation (#27808)
* Fix issues in add and is_done for BeamHypotheses

* make newly added arguments optional for better compatibility

* Directly use cur_len as generated_len, add note for retrocompatibility

* update test expectation

* make cur_len represents the length of the entire sequence including the decoder prompt

* remove redundant if/else in testing
2023-12-08 14:14:16 +01:00
3ac9945e56 Fix beam score calculation issue for Tensorflow version (#27814)
* Fix beam score calculation issue for tensorflow version

* fix transition score computation error

* make cur_len represent the entire sequence length including decoder prompt
2023-12-08 14:10:13 +01:00
4c5ed1d0c9 fix: non-atomic checkpoint save (#27820) 2023-12-08 14:08:54 +01:00
fe8d1302c7 Added passing parameters to "reduce_lr_on_plateau" scheduler (#27860) 2023-12-08 14:06:10 +01:00
56be5e80e6 Fix: Raise informative exception when prefix_allowed_tokens_fn return empty set of tokens (#27797)
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-08 10:25:49 +00:00
307a7d0be8 [⚠️ removed a default argument] Make AttentionMaskConverter compatible with torch.compile(..., fullgraph=True) (#27868)
* remove bugged torch.float32 default

* add test

* fix tests

* fix test

* fix doc
2023-12-08 18:44:47 +09:00
633215ba58 Generate: New Cache abstraction and Attention Sinks support (#26681)
* Draft version of new KV Caching

This should allow Attention Sinks (https://github.com/tomaarsen/attention_sinks)
/ StreamingLLM (https://arxiv.org/abs/2309.17453) to be easily implemented
in a third-party or in transformers directly

* Address numerous PR suggestions

1. Move layer_idx from cache to ...Attention. Removes confusing set_layer_idx magic.
2. Always convert past_key_values to Cache instance at the start of ...Attention, removes all other isinstance calls.
3. Remove __bool__ and __getitem__ magic as they're confusing.
4. past_key_values.update(key, value, idx) now returns key, value.
5. Add use_legacy_cache flag, defaults to None, i.e. Falsey. This breaks generate for now, until 1) the cache is used is generate() or 2) use_legacy_cache is defaulted to True in generate() until we change it in another PR.
6. Separate key_cache and value_cache.

Some work is still needed to see if the SinkCache can conveniently be implemented with just one update method.

* Implement the SinkCache through backward+forward rotations

* Integrate (Sink)Cache with Llama FA2

* Set use_legacy_cache=True as default, allows for test passes

* Move from/to_legacy_cache to ...Model class

* Undo unnecessary newline change

* Remove copy utility from deprecated OpenLlama

* Match import style

* manual rebase with main

* Cache class working with generate (#1)

* Draft version of new KV Caching

This should allow Attention Sinks (https://github.com/tomaarsen/attention_sinks)
/ StreamingLLM (https://arxiv.org/abs/2309.17453) to be easily implemented
in a third-party or in transformers directly

* Address numerous PR suggestions

1. Move layer_idx from cache to ...Attention. Removes confusing set_layer_idx magic.
2. Always convert past_key_values to Cache instance at the start of ...Attention, removes all other isinstance calls.
3. Remove __bool__ and __getitem__ magic as they're confusing.
4. past_key_values.update(key, value, idx) now returns key, value.
5. Add use_legacy_cache flag, defaults to None, i.e. Falsey. This breaks generate for now, until 1) the cache is used is generate() or 2) use_legacy_cache is defaulted to True in generate() until we change it in another PR.
6. Separate key_cache and value_cache.

Some work is still needed to see if the SinkCache can conveniently be implemented with just one update method.

* Integrate (Sink)Cache with Llama FA2

* Move from/to_legacy_cache to ...Model class

* Undo unnecessary newline change

* Match import style

* working generate

* Add tests; Simplify code; Apply changes to Mistral and Persimmon

* fix rebase mess

* a few more manual fixes

* last manual fix

* propagate changes to phi

* upgrade test

* add use_legacy_cache docstring; beef up tests

* reintroduce unwanted deletes

---------

Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com>

* move import

* add default to model_kwargs.get('use_legacy_cache')

* correct failing test

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* apply PR suggestions

* fix failing test

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Tom Aarsen <37621491+tomaarsen@users.noreply.github.com>

* PR comments

* tmp commit

* add docstrings

* more tests, more docstrings, add to docs

* derp

* tmp commit

* tmp dbg

* more dbg

* fix beam search bug

* cache can be a list of tuples in some models

* fix group beam search

* all but sinkcache integration tests

* fix sink cache and add hard integration test

* now also compatible with input_embeds input

* PR comments

* add Cache support to Phi+FA2

* make fixup

---------

Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-12-08 09:00:17 +01:00
0ea42ef0f9 Translate model_doc files from clip to cpm to JP (#27774)
* Add models

* Add more models

* Update docs/source/ja/model_doc/convnextv2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/convbert.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/codegen.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update translation errors and author names

* link update

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-12-07 11:12:24 -08:00
79b79ae2db Updates the distributed CPU training documentation to add instructions for running on a Kubernetes cluster (#27780)
* Updates the Distributed CPU documentation to add a Kubernetes example

* Small edits

* Fixing link

* Adding missing new lines

* Minor edits

* Update to include Dockerfile snippet

* Add comment about tuning env var

* Updates based on review comments
2023-12-07 10:50:45 -08:00
f7595760ed [docs] Custom semantic segmentation dataset (#27859)
* custom dataset

* fix link

* feedback
2023-12-07 10:47:35 -08:00
58e7f9bb2f Generate: All logits processors are documented and have examples (#27796)
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-07 15:11:35 +00:00
47500b1d72 Fix TF loading PT safetensors when weights are tied (#27490)
* Un-skip tests

* Add aliasing support to tf_to_pt_weight_rename

* Refactor tf-to-pt weight rename for simplicity

* Patch mobilebert

* Let us pray that the transfo-xl one works

* Add XGLM rename

* Expand the test to see if we can get more models to break

* Expand the test to see if we can get more models to break

* Fix MPNet (it was actually an unrelated bug)

* Fix MPNet (it was actually an unrelated bug)

* Add speech2text fix

* Update src/transformers/modeling_tf_pytorch_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/mobilebert/modeling_tf_mobilebert.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update to always return a tuple from tf_to_pt_weight_rename

* reformat

* Add a couple of missing tuples

* Remove the extra test for tie_word_embeddings since it didn't cause any unexpected failures anyway

* Revert changes to modeling_tf_mpnet.py

* Skip MPNet test and add explanation

* Add weight link for BART

* Add TODO to clean this up a bit

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-12-07 14:28:53 +00:00
9f1f11a2e7 Show new failing tests in a more clear way in slack report (#27881)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-07 15:09:30 +01:00
c99f254763 Fix device of masks in tests (#27887)
fix device of mask in tests
2023-12-07 21:34:43 +09:00
fc71e815f6 update version of warning notification for get_default_device to v4.38 (#27848) 2023-12-07 13:25:10 +01:00
5324bf9c07 update create_model_card to properly save peft details when using Trainer with PEFT (#27754)
* update `create_model_card` to properly save peft details when using Trainer with PEFT

* nit

* Apply suggestions from code review

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2023-12-07 17:36:02 +05:30
52746922b0 Allow # Ignore copy (#27328)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-07 10:00:08 +01:00
44b5506d29 [Llava] Add Llava to transformers (#27662)
* add model like

* logits match

* minor fixes

* fixes

* up

* up

* add todo

* llava processor

* keep the processor simple

* add conversion script

* fixup

* fix copies

* up

* add to index

* fix config + logits

* fix

* refactor

* more refactor

* more refactor

* fix copies

* add authors

* v1 tests

* add `LlavaProcessor` in init

* remove unneeded import

* up

* up

* docs

* up

* fix CI

* fix CI

* add attention  mask in test

* make fixup

* remove the vision model

* that' s the dirty way to do it

* nits

* nits

* updates

* add more tests

* add input tests

* fixup

* more styling

* nits

* updates amd cleanup

* fixup the generation expected results

* fix the testing script

* some cleanup and simplification which does not work yet but almost there!

* make correct dispatch operations

* vectorize works for batch of images and text

* last todos

* nits

* update test and modeling code

* remove useless function for now

* fix few issues

* fix generation

* some nits

* add bakllava

* nits

* remove duplicated code

* finis merge

* cleanup

* missed this line

* fill the todos

* add left padding offset

* add left and rignt padding logic

* bool to properly index

* make sure

* more cleanups

* batch is fixed 😉

* add correct device for tensor creation

* fix some dtype missmatch

* ruff

* update conversion script

* Update src/transformers/__init__.py

* fa 2 support + fix conversion script

* more

* correct reshaping

* fix test dict

* fix copies by ignoring

* fix nit

* skip clip vision model

* fixup

* fixup

* LlavaForVisionText2Text -> LlavaForCausalLM

* update

* fix

* raise correct errors

* fix

* docs

* nuke for now

* nits here and there

* fixup

* fix remaining tests

* update LlavaForConditionalGeneration instead of CausalLM

* fixups

* pipeline support

* slow and piepline tests

* supports batch

* nits

* cleanup

* fix first integration tests

* add pad token where needed

* correct etsts

* fixups

* update pipeline testr

* fix quality

* nits

* revert unneeded change

* nit

* use BatchFeature

* from ...feature_extraction_utils import BatchFeature

* nits

* nits

* properly update

* more f*** nits

* fix copies

* comment

* keep slow test slow

* Update src/transformers/models/llava/processing_llava.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add piepline example

* add pixel values in docstrign

* update pr doctest

* fix

* fix slow tests

* remove hack

* fixup

* small note

* forward contrib credits from PR25789

* forward contrib credits from original implementation and work

* add arthur

* Update src/transformers/models/llava/processing_llava.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* update docstring

* nit

* move to not doctested because of timeout issues

* fixup

* add description

* more

* fix-copies

* fix docs

* add beam search

* add more comments

* add typehints on processor

* add speedup plot

* update slow tests and docs

* push test

* push batched test

* fix batched generation with different number of images

* remove benchmark due to a bug

* fix test

* fix copies

* add gcolab demo

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: shauray8 <shauray8@users.noreply.github.com>
Co-authored-by: haotian-liu <haotian-liu@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-12-07 09:30:47 +01:00
0410a29a2d fix: fix gradient accumulate step for learning rate (#27667) 2023-12-07 07:59:26 +01:00
f84d85ba67 [FA-2] Add Flash Attention to Phi (#27661)
* add FA and modify doc file

* test_flash_attn_2_generate_padding_right test overwritten

* comment

* modify persimmon modeling file

* added speedup graph

* more changes
2023-12-07 07:57:48 +01:00
06f561687c [i18n-fr] Translate autoclass tutorial to French (#27659)
* Translation of autoclass tutorial

* Update totree to keep only tutorial section

* Translate title toctree

* Fix typos

* Update review comments
2023-12-07 07:44:14 +01:00
4d806dba8c Fix bug of _prepare_4d_attention_mask (#27847)
* use _prepare_4d_attention_mask

* fix comment
2023-12-07 07:43:04 +01:00
75336c1794 Add Llama Flax Implementation (#24587)
* Copies `modeling_flax_gpt_neo.py` to start

* MLP Block. WIP Attention and Block

* Adds Flax implementation of `LlamaMLP`
Validated with in-file test.
Some slight numeric differences, but assuming it isn't an issue

* Adds `FlaxLlamaRMSNorm` layer
`flax.linen` includes `RMSNorm` layer but not necessarily in all
versions. Hence, we add in-file.

* Adds FlaxLlamaAttention
Copied from GPT-J as it has efficient caching implementation as well as
rotary embeddings.
Notice numerically different, but not by a huge amount. Needs
investigating

* Adds `FlaxLlamaDecoderLayer`
numerically inaccurate, debugging..

* debugging rotary mismatch
gptj uses interleaved whilst llama uses contiguous
i think they match now but still final result is wrong.
maybe drop back to just debugging attention layer?

* fixes bug with decoder layer
still somewhat numerically inaccurate, but close enough for now

* adds markers for what to implement next
the structure here diverges a lot from the PT version.
not a big fan of it, but just get something working for now

* implements `FlaxLlamaBlockCollection`]
tolerance must be higher than expected, kinda disconcerting

* Adds `FlaxLlamaModule`
equivalent PyTorch model is `LlamaModel`
yay! a language model🤗

* adds `FlaxLlamaForCausalLMModule`
equivalent to `LlamaForCausalLM`
still missing returning dict or tuple, will add later

* start porting pretrained wrappers
realised it probably needs return dict as a prereq

* cleanup, quality, style

* readds `return_dict` and model output named tuples

* (tentatively) pretrained wrappers work 🔥

* fixes numerical mismatch in `FlaxLlamaRMSNorm`
seems `jax.lax.rsqrt` does not match `torch.sqrt`.
manually computing `1 / jax.numpy.sqrt` results in matching values.

* [WIP] debugging numerics

* numerical match
I think issue was accidental change of backend. forcing CPU fixes test.
We expect some mismatch on GPU.

* adds in model and integration tests for Flax Llama
summary of failing:
- mul invalid combination of dimensions
- one numerical mismatch
- bf16 conversion (maybe my local backend issue)
- params are not FrozenDict

* adds missing TYPE_CHECKING import and `make fixup`

* adds back missing docstrings
needs review on quality of docstrings, not sure what is required.
Furthermore, need to check if `CHECKPOINT_FOR_DOC` is valid. See TODO

* commenting out equivalence test as can just use common

* debugging

* Fixes bug where mask and pos_ids were swapped in pretrained models
This results in all tests passing now 🔥

* cleanup of modeling file

* cleanup of test file

* Resolving simpler review comments

* addresses more minor review comments

* fixing introduced pytest errors from review

* wip additional slow tests

* wip tests
need to grab a GPU machine to get real logits for comparison
otherwise, slow tests should be okay

* `make quality`, `make style`

* adds slow integration tests
- checking logits
- checking hidden states
- checking generation outputs

* `make fix-copies`

* fix mangled function following `make fix-copies`

* adds missing type checking imports

* fixes missing parameter checkpoint warning

* more finegrained 'Copied from' tags
avoids issue of overwriting `LLAMA_INPUTS_DOCSTRING`

* swaps import guards
??? how did these get swapped initially?

* removing `inv_freq` again as pytorch version has now removed

* attempting to get CI to pass

* adds doc entries for llama flax models

* fixes typo in __init__.py imports

* adds back special equivalence tests
these come from the gpt neo flax tests. there is special behaviour for these models that needs to override the common version

* overrides tests with dummy to see if CI passes
need to fill in these tests later

* adds my contribution to docs

* `make style; make quality`

* replaces random masking with fixed to work with flax version

* `make quality; make style`

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* updates `x`->`tensor` in `rotate_half`

* addresses smaller review comments

* Update docs/source/en/model_doc/llama.md

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* adds integration test class

* adds `dtype` to rotary embedding to cast outputs

* adds type to flax llama rotary layer

* `make style`

* `make fix-copies`

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* applies suggestions from review

* Update modeling_flax_llama.py

* `make fix-copies`

* Update tests/models/llama/test_modeling_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* fixes shape mismatch in FlaxLlamaMLP

* applies some suggestions from reviews

* casts attn output logits to f32 regardless of dtype

* adds attn bias using `LlamaConfig.attention_bias`

* adds Copied From comments to Flax Llama test

* mistral and persimmon test change -copy from llama

* updates docs index

* removes Copied from in tests

it was preventing `make fix-copies` from succeeding

* quality and style

* ignores FlaxLlama input docstring

* adds revision to `_CHECKPOINT_FOR_DOC`

* repo consistency and quality

* removes unused import

* removes copied from from Phi test

now diverges from llama tests following FlaxLlama changes

* adds `_REAL_CHECKPOINT_FOR_DOC`

* removes refs from pr tests

* reformat to make ruff happy

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-12-07 07:05:00 +01:00
7fc80724da Fix beam score calculation issue for JAX version (#27816)
* Fix beam score calculation issue for JAX

* Fix abstract tracer value errors
2023-12-07 06:34:18 +01:00
9660e27cd0 Translating en/model_doc folder docs to Japanese(from blip to clap) 🇯🇵 (#27673)
* Add models

* Add models and update `_toctree.yml`

* Update docs/source/ja/model_doc/chinese_clip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/camembert.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/bros.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/bros.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/blip-2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/camembert.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* solve merge conflicts and update paper titles

* Update docs/source/ja/model_doc/bridgetower.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/canine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/chinese_clip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update the authons name in bros..md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-12-06 10:38:21 -08:00
9270ab0827 [Flash Attention 2] Add flash attention 2 for GPT-Neo-X (#26463)
* add flash-attn-2 support for GPT-neo-x

* fixup

* add comment

* revert

* fixes

* update docs

* comment

* again

* fix copies

* add plot + fix copies

* Update docs/source/en/model_doc/gpt_neox.md
2023-12-06 17:22:32 +01:00
87714b3d11 Avoid class attribute _keep_in_fp32_modules being modified (#27867)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-06 17:19:44 +01:00
d6392482bd removed the delete doc workflows (#27852) 2023-12-06 01:30:56 -08:00
acd653164b Update CUDA versions for DeepSpeed (#27853)
* Update CUDA versions

* For testing

* Allow for workflow dispatch

* Use newer image

* Revert workflow

* Revert workflow

* Push

* Other docker image
2023-12-05 16:15:21 -05:00
ba52dec47f [Docs] Update broken image on fused modules (#27856)
Update quantization.md
2023-12-05 12:33:58 -08:00
da1d0d404f Documentation: Spanish translation of perplexity.mdx (#27807)
* Copy perplexity.md file to es/ folder

* Adding perplexity to es/_toctree.yml

* Translate first section

* Calculating PPL section translate

* Example section translate

* fix translate of log-likehood

* Fix title translate

* Fix \ in second paragraph

* Change verosimilitud for log-likelihood

* Run 'make style'
2023-12-05 10:53:55 -08:00
788730c670 fix(whisper): mutable generation config (#27833) 2023-12-05 19:01:07 +01:00
ac975074e6 Update VitDetModelTester.get_config to use pretrain_image_size (#27831)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-05 16:33:27 +01:00
28e2887a1a ⚠️ [VitDet] Fix test (#27832)
Address test
2023-12-05 16:32:43 +01:00
b242d0f297 [Time series] Add PatchTSMixer (#26247)
* patchtsmixer initial commit

* x,y->context_values,target_values, unittest addded

* cleanup code

* minor

* return hidden states

* model tests, partial integration tests

* ettm notebook temporary

* minor

* config mask bug fix, tests updated

* final ETT notebooks

* add selfattn

* init

* added docstrings

* PatchTSMixerForPretraining -> PatchTSMixerForMaskPretraining

* functionality tests added

* add start and input docstrings

* docstring edits

* testcase edits

* minor changes

* docstring error fixed

* ran make fixup

* finalize integration tests and docs

* minor

* cleaned gitignore

* added dataclass decorator, ran black formatter

* ran ruff

* formatting

* add slow decorator

* renamed in_Channel to input_size and default to 1

* shorten dataclass names

* use smaller model for testing

* moved the 3 heads to the modeling file

* use scalers instead of revin

* support forecast_channel_indices

* fix regression scaling

* undo reg. scaling

* removed unneeded classes

* forgot missing

* add more layers

* add copied positional_encoding

* use patchmask from patchtst

* removed dependency on layers directory

* formatting

* set seed

* removed unused imports

* fixed forward signature test

* adding distributional head for PatchTSMixerForecasting

* add generate to forecast

* testcases for generate

* add generate and distributional head for regression

* raise Exception for negative values for neg binominal distribution

* formatting changes

* remove copied from patchtst and add TODO for test passing

* make copies

* doc edits

* minor changes

* format issues

* minor changes

* minor changes

* format docstring

* change some class names to PatchTSMixer + class name

Transpose to PatchTSMixerTranspose
GatedAttention to PatchTSMixerGatedAttention

* change NormLayer to PatchTSMixerNormLayer

* change MLP to PatchTSMixerMLP

* change PatchMixer to PatchMixerBlock, FeatureMixer to FeatureMixerBlock

* change ChannelFeatureMixer to ChannelFeatureMixerBlock

* change PatchMasking to PatchTSMixerMasking

* change Patchify to PatchTSMixerPatchify

* list to `list`

* fix docstrings

* formatting

* change bs to batch_size, edit forecast_masking

* edit random_masking

* change variable name and update docstring in PatchTSMixerMasking

* change variable name and update docstring in InjectScalerStatistics4D

* update forward call in PatchTSMixerTranspose

* change variable name and update docstring in PatchTSMixerNormLayer

* change variable name and update docstring in PatchTSMixerMLP

* change variable name and update docstring in ChannelFeatureMixerBlock

* formatting

* formatting issues

* docstring issue

* fixed observed_mask type in docstrings

* use FloatTensor type

* formatting

* fix rescaling issue in forecasting, fixed integration tests

* add docstring from decorator

* fix docstring

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/configuration_patchtsmixer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/modeling_patchtsmixer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/configuration_patchtsmixer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/modeling_patchtsmixer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* PatchTSMixerChannelFeatureMixerBlock

* formatting

* ForPretraining

* use num_labels instead of n_classes

* remove commented out code

* docstring fixed

* nn.functional used instead of one letter F

* x_tmp renamed

* one letter variable x removed from forward calls

* one letter variable y removed

* remove commented code

* rename patch_size, in_channels, PatchTSMixerBackbone

* add config to heads

* add config to heads tests

* code reafactoring to use config instead of passing individual params

* Cdocstring fixes part 1

* docstring fixes part 2

* removed logger.debug

* context_values -> past_values

* formatting changes

* pe -> positional_encoding

* removed unused target variable

* self.mode logic fixed

* formatting change

* edit docstring and var name

* change n_targets to num_targets

* rename input_size to num_input_channels

* add head names with prefix PatchTSMixer

* edit docstring in PatchTSMixerForRegression

* fix var name change in testcases

* add PatchTSMixerAttention

* return dict for all exposed classes, test cases added

* format

* move loss function to forward call

* make style

* adding return dict/tuple

* make repo-consistency

* remove flatten mode

* code refactoring

* rename data

* remove PatchTSMixer and keep only PatchTSMixerEncoder

* docstring fixes

* removed unused code

* format

* format

* remove contiguous and formatting changes

* remove model description from config

* replace asserts with ValueError

* remove nn.Sequential from PatchTSMixerNormLayer

* replace if-else with map

* remove all nn.Sequential

* format

* formatting

* fix gradient_checkpointing error after merge, and formatting

* make fix-copies

* remove comments

* reshape

* doesnt support gradient checkpointing

* corect Patchify

* masking updates

* batchnorm copy from

* format checks

* scaler edits

* remove comments

* format changes

* remove self.config

* correct class PatchTSMixerMLP(nn.Module):

* makr fix

* doc updates

* fix-copies

* scaler class correction

* doc edits

* scaler edits

* update readme with links

* injectstatistics add

* fix-copies

* add norm_eps option to LayerNorm

* format changes

* fix copies

* correct make copies

* use parametrize

* fix doc string

* add docs to toctree

* make style

* doc segmenting

* docstring edit

* change forecast to prediction

* edit doc

* doc edits

* remove PatchTSMixerTranspose

* add PatchTSMixerPositionalEncoding and init position_enc

* remove positional_encoding

* edit forecast_masking, remove forecast_mask_ratios

* fix broken code

* var rename target_values -> future_values

* num_features -> d_model

* fix broken code after master merge

* repo consistency

* use postional embedding

* prediction_logits -> prediction_outputs, make fix-copies

* uncommented @slow

* minor changes

* loss first in tuple

* tuple and dict same ordering

* style edits

* minor changes

* dict/tuple consistent enablement

* Update src/transformers/models/patchtsmixer/modeling_patchtsmixer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/models/patchtsmixer/test_modeling_patchtsmixer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/modeling_patchtsmixer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix formatting

* formatting

* usage tip

* test on cpu only

* add sample usage

* change PatchTSMixerForClassification to PatchTSMixerForTimeSeriesClassification

* push changes

* fix copies

* std scaling set to default True case

* minor changes

* stylechanges

---------

Co-authored-by: Arindam Jati <arindam.jati@ibm.com>
Co-authored-by: vijaye12 <vijaye12@in.ibm.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: nnguyen <nnguyen@us.ibm.com>
Co-authored-by: vijaye12 <vijaykr.e@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-05 15:31:35 +01:00
e5c12c03b7 Move tensors to same device to enable IDEFICS naive MP training (#27746) 2023-12-05 15:06:46 +01:00
3e68944cc4 [ClipVision] accelerate support for clip-vision (#27851)
support accelerate for clip-vision
2023-12-05 14:04:20 +01:00
b7e6d120c1 Generate: Update VisionEncoderDecoder test value (#27850)
update test result, due to bug fix in decoder-only beam search
2023-12-05 11:26:59 +00:00
fdb85be40f Faster generation using AWQ + Fused modules (#27411)
* v1 fusing modules

* add fused mlp support

* up

* fix CI

* block save_pretrained

* fixup

* small fix

* add new condition

* add v1 docs

* add some comments

* style

* fix nit

* adapt from suggestion

* add check

* change arg names

* change variables name

* Update src/transformers/integrations/awq.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* style

* split up into 3 different private methods

* more conditions

* more checks

* add fused tests for custom models

* fix

* fix tests

* final update docs

* final fixes

* fix importlib metadata

* Update src/transformers/utils/quantization_config.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* change it to `do_fuse`

* nit

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* few fixes

* revert

* fix test

* fix copies

* raise error if model is not quantized

* add test

* use quantization_config.config when fusing

* Update src/transformers/modeling_utils.py

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2023-12-05 12:14:45 +01:00
df40edfb00 Make image processors more general (#27690)
* Make image processors more general

* Add backwards compatibility for KOSMOS-2

* Remove use_square_size everywhere

* Remove script
2023-12-05 10:45:39 +01:00
96f9caa10b pin ruff==0.1.5 (#27849)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-05 10:17:23 +01:00
235e5d4991 Translate en/tasks folder docs to Japanese 🇯🇵 (#27098)
* Create asr.md

* Create audio_classification.md

* Create document_question_answering.md

* Update document_question_answering.md

* add

* add

* ggg

* gg

* add masked_language_modeling.md

* add monocular_depth estimation

* new

* dd

* add

* add

* cl

* add

* Add Traslation.md

* hgf

* Added docs to Toctree file

* Update docs/source/ja/tasks/asr.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/asr.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/image_classification.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/idefics.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/image_captioning.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Fix docs and revert changes

* Update docs/source/en/tasks/idefics.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/language_modeling.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/language_modeling.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/language_modeling.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/prompting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/masked_language_modeling.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/masked_language_modeling.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/prompting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/object_detection.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/semantic_segmentation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/semantic_segmentation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/token_classification.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/translation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/visual_question_answering.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/summarization.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* changes in review 1 and 2

* add

* Update docs/source/ja/tasks/asr.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/translation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* changes

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update _toctree.yml

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-12-04 14:10:54 -08:00
a502b0d427 translate internal folder files to chinese (#27638)
* translate

* update

* update

---------

Co-authored-by: jiaqiw <wangjiaqi50@huawei.com>
2023-12-04 10:04:28 -08:00
3c15fd1990 [Seamless v2] Add FE to auto mapping (#27829) 2023-12-04 16:34:13 +00:00
1d63b0ec36 Disallow pickle.load unless TRUST_REMOTE_CODE=True (#27776)
* fix

* fix

* Use TRUST_REMOTE_CODE

* fix doc

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-04 16:48:37 +01:00
e0d2e69582 restructure AMD scheduled CI (#27743)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-04 15:32:05 +01:00
e739a361bc single word should be set to False (#27738) 2023-12-04 14:56:51 +01:00
2b5d5ead53 [Hot-Fix][XLA] Re-enable broken _tpu_save for XLATensors (#27799)
* [XLA] Re-enable broken _tpu_save for XLATensors, by explicitly moving to cpu

* linter-fix
2023-12-04 14:56:00 +01:00
1da1302ec8 Flash Attention 2 support for RoCm (#27611)
* support FA2

* fix typo

* fix broken tests

* fix more test errors

* left/right

* fix bug

* more test

* typo

* fix layout flash attention falcon

* do not support this case

* use allclose instead of equal

* fix various bugs with flash attention

* bump

* fix test

* fix mistral

* use skiptest instead of return that may be misleading

* add fix causal arg flash attention

* fix copies

* more explicit comment

* still use self.is_causal

* fix causal argument

* comment

* fixes

* update documentation

* add link

* wrong test

* simplify FA2 RoCm requirements

* update opt

* make flash_attn_uses_top_left_mask attribute private and precise comment

* better error handling

* fix copy & mistral

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/utils/import_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* use is_flash_attn_greater_or_equal_2_10 instead of is_flash_attn_greater_or_equal_210

* fix merge

* simplify

* inline args

---------

Co-authored-by: Felix Marty <felix@hf.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-12-04 21:52:17 +09:00
4d4febb7aa Added test cases for rembert refering to albert and reformer test_tok… (#27637)
* Added test cases for rembert refering to albert and reformer test_tokenization

* removed CURL_CA_BUNDLE='

* Added flag test_sentencepiece_ignore_case and space_between_special_tokens to True

* Overrided test_added_tokens_serialization

* As slow->fast token failed due to the different initialization for [MASK]  for slow and fast, Therefore it required to make the initialization for [MASK] token uniform between fast and slow token

* Added few more test cases in test_encode_decode_round_trip and modefied the slow token (mask_token) to  have AddedToken instance with lstrip=True

* Added few test cases in test_encoder_decoder round trip and also modified slow tokenizer of rembert to have mask_token as AddedToken with lstrip = True

* Cleaned the code and added  fmt: skip to avoid line breaks after make style +  added comments to indicate from the copied test cases

* Corrected few comments

* Fixed quality issue

* Ran fix-copies

* Fixed few minor issues as (make fix-copies) broke few test cases while stripping the text

* Reverted the changes made by repo-consistancy

---------

Co-authored-by: Kokane <kokanen@apac.corpdir.net>
2023-12-04 13:36:57 +01:00
a0f7c4a43d [Whisper] Fix doctest in timestamp logits processor (#27795) 2023-12-04 11:48:21 +00:00
ede09d671d [Seamless v1] Link to v2 docs (#27827) 2023-12-04 11:47:54 +00:00
facc66457e Keypoints 0.0 are confusing ../transformers/models/detr/image_processing_detr.py which are fixed (#26250)
* Keypoints 0.0 is fixed

* fixed keypoints for image_processing_yolos

* fixed keypoints for image_processing_deta

* fixed keypoints for image_processing_deformable_detr

* fixed keypoints for image_processing_conditional_detr

* fixed styles

* Removed Comments

* Removed comment form conditional detr too

* Removed Extra code

* make fix-copes

* Fixed code quality

* keypoints changes
2023-12-04 10:29:12 +01:00
73893df864 Fix Owlv2ModelIntegrationTest::test_inference_object_detection (#27793)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-04 09:45:22 +01:00
5a551df92b Fix TvpModelIntegrationTests (#27792)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-04 09:40:42 +01:00
c0b9db0914 [ModelOnTheFlyConversionTester] Mark as slow for now (#27823)
* mark test as slow for now

* style
2023-12-04 08:33:15 +01:00
269078a7eb Add persistent_workers parameter to TrainingArguments (#27189)
added param

Co-authored-by: Ilya Fedorov <ilyaf@nvidia.com>
2023-12-04 07:43:32 +01:00
a2b1e1df49 Fix typo in max_length deprecation warnings (#27788) 2023-12-04 07:41:50 +01:00
7edf8bfafd Improve forward signature test (#27729)
* First draft

* Extend test_forward_signature

* Update tests/test_modeling_common.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Revert suggestion

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-04 07:38:22 +01:00
bcd0a91a01 [JAX] Replace uses of jax.devices("cpu") with jax.local_devices(backend="cpu") (#27593)
An upcoming change to JAX will include non-local (addressable) CPU devices in jax.devices() when JAX is used multicontroller-style, where there are multiple Python processes.

This change preserves the current behavior by replacing uses of jax.devices("cpu"), which previously only returned local devices, with jax.local_devices("cpu"), which will return local devices both now and in the future.

This change is always safe (i.e., it should always preserve the previous behavior), but it may sometimes be unnecessary if code is never used in a multicontroller setting.

Co-authored-by: Peter Hawkins <phawkins@google.com>
2023-12-04 07:36:29 +01:00
2c658b5a42 [MusicGen] Fix audio channel attribute (#27440)
[MusicGen] Fix mono logit test
2023-12-01 17:10:03 +00:00
abd4cbd775 Better error message for bitsandbytes import (#27764)
* better error message

* fix logic

* fix log
2023-12-01 11:59:14 -05:00
7b6324e18e Make using safetensors files automated. (#27571)
* [WIP] Make using safetensors files automated.

If `use_safetensors=True` is used, and it doesn't exist:

- Don't crash just yet
- Lookup for an open PR containing it.
- If yes, use that instead
- If not, touch the space to convert, wait for conversion to be finished
  and the PR to be opened
- Use that new PR
- Profit.

* Remove the token.

* [Auto Safetensors] Websocket -> SSE (#27656)

* Websocket -> SSE

* Support sharded + tests +cleanup

a

* env var

* Apply suggestions from code review

* Thanks Simon

* Thanks Wauplin

Co-authored-by: Wauplin <lucainp@gmail.com>

* Cleanup

* Update tests

* Tests should pass

* Apply to other tests

* Extend extension

* relax requirement on latest hfh

* Revert

* Correct private handling & debug statements

* Skip gated repos as of now

* Address review comments

Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: Lysandre <lysandre@huggingface.co>
Co-authored-by: Wauplin <lucainp@gmail.com>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
2023-12-01 15:51:10 +01:00
95900916ab Fixes for PatchTST Config (#27777)
* Remove config reference and pass num_patches for PatchTSTforPrediction

* ensure return_dict is properly set

---------

Co-authored-by: Wesley M. Gifford <wmgifford@us.ibm.com>
2023-12-01 14:57:50 +01:00
cf62539a29 [i18n-fr] Translate installation to French (#27657)
* partial traduction of installation

* Finish translation of installation

* Update installation.mdx

* Rename installation.mdx to installation.md

* Typos

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Address review comments

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-01 14:00:07 +01:00
0ad4e7e6da [SeamlessM4Tv2] Fix links in README (#27782)
Fix typo in README
2023-12-01 10:39:33 +01:00
9ddbb696d2 Fix unsupported setting of self._n_gpu in training_args on XPU devices (#27716)
change xpu _n_gpu = 1
2023-12-01 10:34:15 +01:00
29f1aee3b6 Add SeamlessM4T v2 (#27779)
* add working convertion script

* first non-working version of modeling code

* update modeling code (working)

* make style

* make fix-copies

* add config docstrings

* add config to ignore docstrings formatage due to unconventional markdown

* fix copies

* fix generation num_return_sequences

* enrich docs

* add and fix tests beside integration tests

* update integration tests

* update repo id

* add tie weights and make style

* correct naming in .md

* fix imports and so on

* correct docstrings

* fix fp16 speech forward

* fix speechencoder attention

* make style

* fix copied from

* rename SeamlessM4Tv2-v2 to SeamlessM4Tv2

* Apply suggestions on configuration

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove useless public models

* fix private models + better naming for T2U models

* clean speech encoder relative position embeddings

* refactor chunk attention

* add docstrings to chunk attention method

* improve naming and docstrings

* rename some attention variables + add temperature sampling in T2U model

* rename DOCSTRINGS variable names

* make style + remove 2 useless config parameters

* enrich model card

* remove any attention_head reference + fix temperature in T2U

* new fmt and make style

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* rename spkr_id->speaker_id and change docstrings of get_char_input_ids

* simplify v2attention

* make style

* Update seamless_m4t_v2.md

* update code and tests with last update

* update repo ids

* fill article name, abstract andauthors

* update not_doctested and slow_doc tests

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-11-30 20:24:43 +01:00
510270af34 Generate: GenerationConfig throws an exception when generate args are passed (#27757) 2023-11-30 14:16:31 +00:00
fe41647afc uses dvclive_test mode in examples/pytorch/test_accelerate_examples.py (#27763) 2023-11-30 14:52:03 +01:00
62ab32b299 Remove check_runner_status.yml (#27767)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-30 10:17:25 +01:00
083e36923a Fix precision errors from casting rotary parameters to FP16 with AMP (#27700)
* Update modeling_llama.py

* Update modeling_open_llama.py

* Update modeling_gpt_neox.py

* Update modeling_mistral.py

* Update modeling_persimmon.py

* Update modeling_phi.py

* Update modeling_falcon.py

* Update modeling_gpt_neox_japanese.py
2023-11-29 16:30:49 +01:00
af8acc4760 [Time series] Add patchtst (#27581)
* add distribution head to forecasting

* formatting

* Add generate function for forecasting

* Add generate function to prediction task

* formatting

* use argsort

* add past_observed_mask ordering

* fix arguments

* docs

* add back test_model_outputs_equivalence test

* formatting

* cleanup

* formatting

* use ACT2CLS

* formatting

* fix add_start_docstrings decorator

* add distribution head and generate function to regression task

add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput,  PatchTSTForRegressionOutput.

* add distribution head and generate function to regression task

add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput,  PatchTSTForRegressionOutput.

* fix typos

* add forecast_masking

* fixed tests

* use set_seed

* fix doc test

* formatting

* Update docs/source/en/model_doc/patchtst.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* better var names

* rename PatchTSTTranspose

* fix argument names and docs string

* remove compute_num_patches and unused class

* remove assert

* renamed to PatchTSTMasking

* use num_labels for classification

* use num_labels

* use default num_labels from super class

* move model_type after docstring

* renamed PatchTSTForMaskPretraining

* bs -> batch_size

* more review fixes

* use hidden_state

* rename encoder layer and block class

* remove commented seed_number

* edit docstring

* Add docstring

* formatting

* use past_observed_mask

* doc suggestion

* make fix-copies

* use Args:

* add docstring

* add docstring

* change some variable names and add PatchTST before some class names

* formatting

* fix argument types

* fix tests

* change x variable to patch_input

* format

* formatting

* fix-copies

* Update tests/models/patchtst/test_modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* move loss to forward

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* formatting

* fix a bug when pre_norm is set to True

* output_hidden_states is set to False as default

* set pre_norm=True as default

* format docstring

* format

* output_hidden_states is None by default

* add missing docs

* better var names

* docstring: remove default to False in output_hidden_states

* change labels name to target_values in regression task

* format

* fix tests

* change to forecast_mask_ratios and random_mask_ratio

* change mask names

* change future_values to target_values param in the prediction class

* remove nn.Sequential and make PatchTSTBatchNorm class

* black

* fix argument name for prediction

* add output_attentions option

* add output_attentions to PatchTSTEncoder

* formatting

* Add attention output option to all classes

* Remove PatchTSTEncoderBlock

* create PatchTSTEmbedding class

* use config in PatchTSTPatchify

* Use config in PatchTSTMasking class

* add channel_attn_weights

* Add PatchTSTScaler class

* add output_attentions arg to test function

* format

* Update doc with image patchtst.md

* fix-copies

* rename Forecast <-> Prediction

* change name of a few parameters to match with PatchTSMixer.

* Remove *ForForecasting class to match with other time series models.

* make style

* Remove PatchTSTForForecasting in the test

* remove PatchTSTForForecastingOutput class

* change test_forecast_head to test_prediction_head

* style

* fix docs

* fix tests

* change num_labels to num_targets

* Remove PatchTSTTranspose

* remove arguments in PatchTSTMeanScaler

* remove arguments in PatchTSTStdScaler

* add config as an argument to all the scaler classes

* reformat

* Add norm_eps for batchnorm and layernorm

* reformat.

* reformat

* edit docstring

* update docstring

* change variable name pooling to pooling_type

* fix output_hidden_states as tuple

* fix bug when calling PatchTSTBatchNorm

* change stride to patch_stride

* create PatchTSTPositionalEncoding class and restructure the PatchTSTEncoder

* formatting

* initialize scalers with configs

* edit output_hidden_states

* style

* fix forecast_mask_patches doc string

* doc improvements

* move summary to the start

* typo

* fix docstring

* turn off masking when using prediction, regression, classification

* return scaled output

* adjust output when using distribution head

* remove _num_patches function in the config

* get config.num_patches from patchifier init

* add output_attentions docstring, remove tuple in output_hidden_states

* change SamplePatchTSTPredictionOutput and SamplePatchTSTRegressionOutput to SamplePatchTSTOutput

* remove print("model_class: ", model_class)

* change encoder_attention_heads to num_attention_heads

* change norm to norm_layer

* change encoder_layers to num_hidden_layers

* change shared_embedding to share_embedding, shared_projection to share_projection

* add output_attentions

* more robust check of norm_type

* change dropout_path to path_dropout

* edit docstring

* remove positional_encoding function and add _init_pe in PatchTSTPositionalEncoding

* edit shape of cls_token and initialize it

* add a check on the num_input_channels.

* edit head_dim in the Prediction class to allow the use of cls_token

* remove some positional_encoding_type options, remove learn_pe arg, initalize pe

* change Exception to ValueError

* format

* norm_type is "batchnorm"

* make style

* change cls_token shape

* Change forecast_mask_patches to num_mask_patches. Remove forecast_mask_ratios.

* Bring PatchTSTClassificationHead on top of PatchTSTForClassification

* change encoder_ffn_dim to ffn_dim and edit the docstring.

* update variable names to match with the config

* add generation tests

* change num_mask_patches to num_forecast_mask_patches

* Add examples explaining the use of these models

* make style

* Revert "Revert "[time series] Add PatchTST (#25927)" (#27486)"

This reverts commit 78f6ed6c70b29c1560780e3869a7ad4c6b3d2710.

* make style

* fix default std scaler's minimum_scale

* fix docstring

* close code blocks

* Update docs/source/en/model_doc/patchtst.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/patchtst/test_modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/configuration_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix tests

* add add_start_docstrings

* move examples to the forward's docstrings

* update prepare_batch

* update test

* fix test_prediction_head

* fix generation test

* use seed to create generator

* add output_hidden_states and config.num_patches

* add loc and scale args in PatchTSTForPredictionOutput

* edit outputs if if not return_dict

* use self.share_embedding to check instead checking type.

* remove seed

* make style

* seed is an optional int

* fix test

* generator device

* Fix assertTrue test

* swap order of items in outputs when return_dict=False.

* add mask_type and random_mask_ratio to unittest

* Update modeling_patchtst.py

* add add_start_docstrings for regression model

* make style

* update model path

* Edit the ValueError comment in forecast_masking

* update examples

* make style

* fix commented code

* update examples: remove config from from_pretrained call

* Edit example outputs

* Set default target_values to None

* remove config setting in regression example

* Update configuration_patchtst.py

* Update configuration_patchtst.py

* remove config from examples

* change default d_model and ffn_dim

* norm_eps default

* set has_attentions to Trye and define self.seq_length = self.num_patche

* update docstring

* change variable mask_input to do_mask_input

* fix blank space.

* change logger.debug to logger.warning.

* remove unused PATCHTST_INPUTS_DOCSTRING

* remove all_generative_model_classes

* set test_missing_keys=True

* remove undefined params in the docstring.

---------

Co-authored-by: nnguyen <nnguyen@us.ibm.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-29 13:36:38 +01:00
bd50402b56 [docs] Quantization (#27641)
* first draft

* benchmarks

* feedback
2023-11-28 08:41:47 -08:00
f2ad4b537b Docs: Fix broken cross-references, i.e. ~transformer. -> ~transformers. (#27740)
~transformer. -> ~transformers.
2023-11-28 08:40:44 -08:00
dfbd209c25 CLVP Fixes (#27547)
* fixes

* more fixes

* style fix

* more fix

* comments
2023-11-28 17:40:01 +01:00
30e92ea323 Trigger corresponding pipeline tests if tests/utils/tiny_model_summary.json is modified (#27693)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-28 17:21:21 +01:00
0b9c934575 Enforce pin memory disabling when using cpu only (#27745)
if use_cpu: dataloader_pin_memory = False
2023-11-28 17:03:07 +01:00
fdd86eed3b Add madlad-400 MT models (#27471)
* Add madlad-400 models

* Add madlad-400 to the doc table

* Update docs/source/en/model_doc/madlad-400.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fill missing details in documentation

* Update docs/source/en/model_doc/madlad-400.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Do not doctest madlad-400

Tests are timing out.

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-28 13:19:50 +00:00
6336a7f7d6 Log a warning in TransfoXLTokenizer.__init__ (#27721)
* log

* log

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-28 10:44:04 +01:00
93170298d1 Update tiny model creation script (#27674)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-28 10:05:34 +01:00
1fb3c23b41 Add BeitBackbone (#25952)
* First draft

* Add backwards compatibility

* More improvements

* More improvements

* Improve error message

* Address comment

* Add conversion script

* Fix style

* Update code snippet

* Adddress comment

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-28 08:38:32 +00:00
7a757bb694 Fix AMD Push CI not triggered (#27732)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-28 09:30:21 +01:00
2ca73e5ee3 Fixed passing scheduler-specific kwargs via TrainingArguments lr_scheduler_kwargs (#27595)
* Fix passing scheduler-specific kwargs through TrainingArguments `lr_scheduler_kwargs`

* Added test for lr_scheduler_kwargs
2023-11-28 08:33:45 +01:00
0864dd3beb Translate en/model_doc to JP (#27264)
* Add `model_docs`

* Add

* Update Model adoc

* Update docs/source/ja/model_doc/bark.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/beit.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/bit.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/blenderbot.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/blenderbot-small.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update reiew-1

* Update toctree.yml

* translating docs and fixes of PR #27401

* Update docs/source/ja/model_doc/bert.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/bert-generation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update the model docs

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-27 13:19:04 -08:00
cad1b1192b translation main-class files to chinese (#27588)
* translate work

* update

* update

* update [[autodoc]]

* Update callback.md

---------

Co-authored-by: jiaqiw <wangjiaqi50@huawei.com>
2023-11-27 12:36:37 -08:00
74a3cebfa5 Update chat template warnings/guides (#27634)
* Update default ChatML template

* Update docs/warnings

* Update docs/source/en/chat_templating.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Slight rework

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-11-27 18:40:10 +00:00
ce31508134 docs: replace torch.distributed.run by torchrun (#27528)
* docs: replace torch.distributed.run by torchrun

 `transformers` now officially support pytorch >= 1.10.
 The entrypoint `torchrun`` is present from 1.10 onwards.

Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>

* Update src/transformers/trainer.py

with @ArthurZucker's suggestion

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-11-27 16:26:33 +00:00
c832bcb812 Fix owlv2 code snippet (#27698)
* Fix code snippet

* Improve code snippet
2023-11-27 16:29:07 +01:00
334a6d18a1 Modify group_sub_entities in TokenClassification Pipeline to support label with "-" (#27325)
* fix group_sub_entities bug

* add space
2023-11-27 15:25:46 +00:00
59499bbe8b Update forward signature test for vision models (#27681)
* Update forward signature

* Empty-Commit
2023-11-27 15:48:17 +01:00
1d7f406e19 fix assisted decoding assistant model inputs (#27503)
* fix assisted decoding attention_cat

* fix attention_mask for assisted decoding

* fix attention_mask len

* fix attn len

* Use a more clean way to prepare assistant models inputs

* fix param meaning

* fix param name

* fix assistant model inputs

* update token type ids

* fix assistant kwargs copy

* add encoder-decoder tests of assisted decoding

* check if assistant kwargs contains updated keys

* revert test

* fix whisper tests

* fix assistant kwargs

* revert whisper test

* delete _extend funcs
2023-11-27 14:23:54 +00:00
307cf3a2ab Fix oneformer instance segmentation RuntimeError (#27725) 2023-11-27 14:59:59 +01:00
b09912c8f4 Fix mistral generate for long prompt / response (#27548)
* Fix mistral generate for long prompt / response

* Add unit test

* fix linter

* fix linter

* fix test

* add assisted generation test for mistral and load the model in 4 bit + fa2
2023-11-27 10:18:41 +01:00
27b752bcf1 Reorder the code on the Hub to explicit that sharing on the Hub isn't a requirement (#27691)
Reorder
2023-11-27 09:38:18 +01:00
5c30dd40e7 fix warning (#27689) 2023-11-27 09:14:40 +01:00
e11e26df93 Fix Past CI (#27696)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-27 09:11:58 +01:00
f70db28322 Fix sliding_window hasattr in Mistral (#27041)
* Fix sliding_window hasattr in Mistral

* hasattr -> getattr for sliding_window in Mistral

---------

Co-authored-by: Ilya Gusev <ilya.gusev@booking.com>
2023-11-26 16:28:37 +01:00
35551f9a0f Fix TVPModelTest (#27695)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-24 19:47:50 +01:00
Chi
29c94808ea Successfully Resolved The ZeroDivisionError Exception. (#27524)
* Successfully resolved the ZeroDivisionError exception in the utils.notebook.y file.

* Now I update little code mentioned by Peter

* Using Black package to reformat my file

* Now I using ruff libary to reformated my file
2023-11-24 16:55:08 +00:00
c13a43aaf2 Reflect RoCm support in the documentation (#27636)
* reflect RoCm support in the documentation

* Update docs/source/en/main_classes/trainer.md

Co-authored-by: Lysandre Debut <hi@lysand.re>

* fix review comments

* use ROCm instead of RoCm

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-11-25 00:59:17 +09:00
a6d178e238 [DocString] Support a revision in the docstring add_code_sample_docstrings to facilitate integrations (#27645)
* initial commit

* dummy changes

* style

* Update src/transformers/utils/doc.py

Co-authored-by: Alex McKinney <44398246+vvvm23@users.noreply.github.com>

* nits

* nit use ` if re.match(r'^refs/pr/\d*', revision):`

* restrict

* nit

* test the doc vuilder

* wow

* oke the order was wrong

---------

Co-authored-by: Alex McKinney <44398246+vvvm23@users.noreply.github.com>
2023-11-24 16:30:05 +01:00
2098d343cc Fix semantic error in evaluation section (#27675)
Change "convert predictions to logits" to "convert logits to
predictions" to fix semantic error in the evaluation section. Logits
need to be converted to predictions to evaluate the accuracy, not the
other way round
2023-11-24 12:41:16 +01:00
181f85da24 Docs/Add conversion code to the musicgen docs (#27665)
* Update musicgen.md

please make it less hidden

* Add cleaner formatting
2023-11-24 12:34:24 +01:00
80e9f76857 Fix typo in warning message (#27055)
* Fix typo in warning message

The path of `default_cache_path` is hf_cache_home/hub. There is no
directory named transformers under hf_cache_home

* Fix a typo in comment

* Update the version number

v4.22.0 is the earlist version that contains those changes in PR #18492
2023-11-24 12:24:04 +01:00
7293fdc5b9 Deprecate TransfoXL (#27607)
* fix

* fix

* trigger

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <hi@lysand.re>

* tic

* revert

* revert

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-11-24 11:48:02 +01:00
623432dcc9 Skip pipeline tests for 2 models for now (#27687)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-24 09:43:20 +01:00
a761d6e9a0 Refactoring Trainer, adds save_only_model arg and simplifying FSDP integration (#27652)
* add code changes

1. Refactor FSDP
2. Add `--save_only_model` option: When checkpointing, whether to only save the model, or also the optimizer, scheduler & rng state.
3. Bump up the minimum `accelerate` version to `0.21.0`

* quality

* fix quality?

* Revert "fix quality?"

This reverts commit 149330a6abc078827be274db84c8a2d26a76eba1.

* fix fsdp doc strings

* fix quality

* Update src/transformers/training_args.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* please fix the quality issue 😅

* Apply suggestions from code review

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* address comment

* simplify conditional check as per the comment

* update documentation

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2023-11-24 11:40:52 +05:30
b8db265bc6 Update tiny model summary file (#27388)
* update

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-23 21:00:39 +01:00
fe1c16e95a [DPT, Dinov2] Add resources (#27655)
* Add resources

* Remove script

* Update docs/source/en/model_doc/dinov2.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-23 17:44:08 +00:00
b406c4d261 Update TVP arxiv link (#27672)
Update arxiv link
2023-11-23 17:02:16 +00:00
baabd3877a Extended semantic segmentation to image segmentation (#27039)
* Extended semantic segmentation

* Update image_segmentation.md

* Changed title

* Update docs/source/en/tasks/semantic_segmentation.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/tasks/semantic_segmentation.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/tasks/semantic_segmentation.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/tasks/semantic_segmentation.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/tasks/semantic_segmentation.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update semantic_segmentation.md

* Update docs/source/en/tasks/semantic_segmentation.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/semantic_segmentation.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Addressed Niels' and Maria's comments

* Added detail on panoptic segmentation

* Added redirection and renamed the file

* Update _toctree.yml

* Update _redirects.yml

* Rename image_segmentation.md to semantic_segmentation.md

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2023-11-23 15:58:21 +00:00
3bc50d81e6 [FA2] Add flash attention for opt (#26414)
* added flash attention for opt

* added to list

* fix use cache (#3)

* style fix

* fix text

* test fix2

* reverted until 689f599

* torch fx tests are working now!

* small fix

* added TODO docstring

* changes

* comments and .md file modification

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-11-23 10:16:51 +00:00
1ddc4fa60e update d_kv'annotation in mt5'configuration (#27585)
* update d_kv'annotation in mt5'configuration

* update d_kv'annotation in mt5'configuration

* update d_kv'annotation in mt5'configuration
2023-11-23 09:09:56 +01:00
8aca43bdb3 update Openai API call method (#27628)
Co-authored-by: 张兴言 <SENSETIME\zhangxingyan1@cn0214006377l.domain.sensetime.com>
2023-11-22 17:28:27 +01:00
7f6a804d30 Add UnivNet Vocoder Model for Tortoise TTS Diffusers Integration (#24799)
* initial commit

* Add inital testing files and modify __init__ files to add UnivNet imports.

* Fix some bugs

* Add checkpoint conversion script and add references to transformers pre-trained model.

* Add UnivNet entries for auto.

* Add initial docs for UnivNet.

* Handle input and output shapes in UnivNetGan.forward and add initial docstrings.

* Write tests and make them pass.

* Write docs.

* Add UnivNet doc to _toctree.yml and improve docs.

* fix typo

* make fixup

* make fix-copies

* Add upsample_rates parameter to config and improve config documentation.

* make fixup

* make fix-copies

* Remove unused upsample_rates config parameter.

* apply suggestions from review

* make style

* Verify and add reason for skipped tests inherited from ModelTesterMixin.

* Add initial UnivNetGan integration tests

* make style

* Remove noise_length input to UnivNetGan and improve integration tests.

* Fix bug and make style

* Make UnivNet integration tests pass

* Add initial code for UnivNetFeatureExtractor.

* make style

* Add initial tests for UnivNetFeatureExtractor.

* make style

* Properly initialize weights for UnivNetGan

* Get feature extractor fast tests passing

* make style

* Get feature extractor integration tests passing

* Get UnivNet integration tests passing

* make style

* Add UnivNetGan usage example

* make style and use feature extractor from hub in integration tests

* Update tips in docs

* apply suggestions from review

* make style

* Calculate padding directly instead of using get_padding methods.

* Update UnivNetFeatureExtractor.to_dict to be UnivNet-specific.

* Update feature extractor to support using model(**inputs) and add the ability to generate noise and pad the end of the spectrogram in __call__.

* Perform padding before generating noise to ensure the shapes are correct.

* Rename UnivNetGan.forward's noise_waveform argument to noise_sequence.

* make style

* Add tests to test generating noise and padding the end for UnivNetFeatureExtractor.__call__.

* Add tests for checking batched vs unbatched inputs for UnivNet feature extractor and model.

* Add expected mean and stddev checks to the integration tests and make them pass.

* make style

* Make it possible to use model(**inputs), where inputs is the output of the feature extractor.

* fix typo in UnivNetGanConfig example

* Calculate spectrogram_zero from other config values.

* apply suggestions from review

* make style

* Refactor UnivNet conversion script to use load_state_dict (following persimmon).

* Rename UnivNetFeatureExtractor to UnivNetGanFeatureExtractor.

* make style

* Switch to using torch.tensor and torch.testing.assert_close for testing expected values/slices.

* make style

* Use config in UnivNetGan modeling blocks.

* make style

* Rename the spectrogram argument of UnivNetGan.forward to input_features, following Whisper.

* make style

* Improving padding documentation.

* Add UnivNet usage example to the docs.

* apply suggestions from review

* Move dynamic_range_compression computation into the mel_spectrogram method of the feature extractor.

* Improve UnivNetGan.forward return docstring.

* Update table in docs/source/en/index.md.

* make fix-copies

* Rename UnivNet components to have pattern UnivNet*.

* make style

* make fix-copies

* Update docs

* make style

* Increase tolerance on flaky unbatched integration test.

* Remove torch.no_grad decorators from UnivNet integration tests to try to avoid flax/Tensorflow test errors.

* Add padding_mask argument to UnivNetModel.forward and add batch_decode feature extractor method to remove padding.

* Update documentation and clean up padding code.

* make style

* make style

* Remove torch dependency from UnivNetFeatureExtractor.

* make style

* Fix UnivNetModel usage example

* Clean up feature extractor code/docstrings.

* apply suggestions from review

* make style

* Add comments for tests skipped via ModelTesterMixin flags.

* Add comment for model parallel tests skipped via the test_model_parallel ModelTesterMixin flag.

* Add # Copied from statements to copied UnivNetFeatureExtractionTest tests.

* Simplify UnivNetFeatureExtractorTest.test_batch_decode.

* Add support for unbatched padding_masks in UnivNetModel.forward.

* Refactor unbatched padding_mask support.

* make style
2023-11-22 17:21:36 +01:00
4151fbb49c [Whisper] Add sequential longform decoding (#27492)
* [Whisper] Add seq gen

* [Whisper] Add seq gen

* more debug

* Fix whisper logit processor

* Improve whisper code further

* Fix more

* more debug

* more debug

* Improve further

* Add tests

* Prep for batch size > 1

* Get batch_size>1 working

* Correct more

* Add extensive tests

* more debug

* more debug

* more debug

* add more tests

* more debug

* Apply suggestions from code review

* more debug

* add comments to explain the code better

* add comments to explain the code better

* add comments to explain the code better

* Add more examples

* add comments to explain the code better

* fix more

* add comments to explain the code better

* add comments to explain the code better

* correct

* correct

* finalize

* Apply suggestions from code review

* Apply suggestions from code review
2023-11-22 13:27:34 +01:00
b2c63c79c3 Fix max_steps documentation regarding the end-of-training condition (#27624)
* fix max_steps doc

* Update src/transformers/training_args.py [ci skip]

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* propagate suggested change

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-22 12:10:11 +01:00
c651eb23c3 Simplify the implementation of jitter noise in moe models (#27643) 2023-11-22 11:49:40 +01:00
b54993aa94 [dependency] update pillow pins (#27409)
* update pillow pins

* Apply suggestions from code review

* more freedomin pins
2023-11-22 09:40:30 +01:00
c5be38cd27 Fix resize_token_embeddings (#26861) (#26865)
* Fix `resize_token_embeddings` about `requires_grad`

The method `resize_token_embeddings` should keep `requires_grad`
unchanged for all parameters in embeddings.

Previously, `resize_token_embeddings` always set `requires_grad`
to `True`. After fixed, `resize_token_embeddings` copy the
`requires_grad` attribute in the old embeddings.
2023-11-21 17:51:48 +00:00
d2a980ec74 Harmonize HF environment variables + other cleaning (#27564)
* Harmonize HF environment variables + other cleaning

* backward compat

* switch from HUGGINGFACE_HUB_CACHE to HF_HUB_CACHE

* revert
2023-11-21 18:36:26 +01:00
7f04373865 Explicitely specify use_cache=True in Flash Attention tests (#27635)
explicit use_cache=True
2023-11-22 01:53:10 +09:00
c770600fde TVP model (#25856)
* tvp model for video grounding

add tokenizer auto

fix param in TVPProcessor

add docs

clear comments and enable different torch dtype

add image processor test and model test and fix code style

* fix conflict

* fix model doc

* fix image processing tests

* fix tvp tests

* remove torch in processor

* fix grammar error

* add more details on tvp.md

* fix model arch for loss, grammar, and processor

* add docstring and do not regard TvpTransformer, TvpVisionModel as individual model

* use pad_image

* update copyright

* control first downsample stride

* reduce first only works for ResNetBottleNeckLayer

* fix param name

* fix style

* add testing

* fix style

* rm init_weight

* fix style

* add post init

* fix comments

* do not test TvpTransformer

* fix warning

* fix style

* fix example

* fix config map

* add link in config

* fix comments

* fix style

* rm useless param

* change attention

* change test

* add notes

* fix comments

* fix tvp

* import checkpointing

* fix gradient checkpointing

* Use a more accurate example in readme

* update

* fix copy

* fix style

* update readme

* delete print

* remove tvp test_forward_signature

* remove TvpTransformer

* fix test init model

* merge main and make style

* fix tests and others

* fix image processor

* fix style and model_input_names

* fix tests
2023-11-21 16:41:55 +00:00
f5c9738f61 remove the deprecated method init_git_repo (#27617)
* remove deprecated method `init_git_repo`

* make style
2023-11-21 17:09:35 +01:00
0145c6825e Fix tracing dinov2 (#27561)
* Enable tracing with DINOv2 model

* ABC

* Add note to model doc
2023-11-21 14:28:38 +00:00
82cc0a79ac Fix flash attention bugs with Mistral and Falcon (#27625)
* fix various bugs with flash attention

* bump

* fix test

* fix mistral

* use skiptest instead of return that may be misleading

* fix on review
2023-11-21 23:20:44 +09:00
f93c1e9ece Add RoCm scheduled CI & upgrade RoCm CI to PyTorch 2.1 (#26940)
* add scheduled ci on amdgpu

* fix likely typo

* more tests, avoid parallelism

* precise comment

* fix report channel

* trigger docker build on this branch

* fix

* fix

* run rocm scheduled ci

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-21 14:55:13 +01:00
851a4f7088 Idefics: Fix information leak with cross attention gate in modeling (#26839)
* fix image_attention gate in idefics modeling

* update comment

* cleaner gating

* fix gate condition

* create attention gate once

* update comment

* update doc of cross-attention forward

* improve comment

* bring back no_images

* pass cross_attention_gate similarly  to no_images gate

* add information on gate shape

* fix no_images placement

* make tests for gate

* take off no_images logic

* update test based on comments

* raise value error if cross_attention_gate is None

* send cross_attention_gate to device

* Revert "send cross_attention_gate to device"

This reverts commit 054f84228405bfa2e75fecc502f6a96dc83cdc0b.

* send cross_attention_gate to device

* fix device in test + nit

* fill hidden_states with zeros instead of multiplying with the gate

* style

* Update src/transformers/models/idefics/modeling_idefics.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/idefics/modeling_idefics.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-11-21 13:26:01 +01:00
81b7981830 Generate: Update docs regarding reusing past_key_values in generate (#27612) 2023-11-21 10:48:14 +00:00
ade7af9361 [ConvNext] Improve backbone (#27621)
* Improve convnext backbone

* Fix convnext2
2023-11-21 10:14:42 +00:00
0e6794ff1c [core / gradient_checkpointing] add support for old GC method (#27610)
* add support for old GC method

* add also disable

* up

* oops
2023-11-21 11:03:30 +01:00
8eb9e29d8d dvclive callback: warn instead of fail when logging non-scalars (#27608)
* dvclive callback: warn instead of fail when logging non-scalars

* tests: log lr as scalar
2023-11-21 09:29:51 +01:00
38e2633f80 Fix torch.fx import issue for torch 1.12 (#27570)
* Fix torch.fx import issue for torch 1.12

* Fix up

* Python verion dependent import

* Woops - fix

* Fix
2023-11-20 22:22:51 +00:00
f18c95b49c Update Korean tutorial for using LLMs, and refactor the nested conditional statements in hr_argparser.py (#27489)
docs: Update Korean LLM tutorial to use Mistral-7B, not Llama-v1
2023-11-20 17:14:23 +00:00
87e217d065 [Whisper] Add large-v3 version support (#27336)
* Enable large-v3 downloading and update language list

* Fix type annotation

* make fixup

* Export Whisper feature extractor

* Fix error after extractor loading

* Do not use pre-computed mel filters

* Save the full preprocessor properly

* Update docs

* Remove comment

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add alignment heads consistent with each Whisper version

* Remove alignment heads calculation

* Save fast tokenizer format as well

* Fix slow to fast conversion

* Fix bos/eos/pad token IDs in the model config

* Add decoder_start_token_id to config

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-11-20 17:36:48 +01:00
93f2de858b timm to pytorch conversion for vit model fix (#26908)
* timm to pytorch conversion for vit model fix

* remove unecessary print statments

* Detect non-supported ViTs in transformers & better handle id2label mapping

* detect non supported hybrid resnet-vit models in conversion script

* remove check for overlap between cls token and pos embed
2023-11-20 17:00:30 +01:00
e66984f995 [FA-2] Add fa2 support for from_config (#26914)
* add fa2 support for from_config

* Update test_modeling_common.py
2023-11-20 16:45:55 +01:00
f31af3927f [ examples] fix loading jsonl with load dataset in run translation example (#26924)
* Renamed variable extension to builder_name

* If builder name is jsonl change to json to align with load_datasets

* Apply suggestions from code review

Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>

---------

Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
2023-11-20 15:45:42 +01:00
e4280d650c docs: fix 404 link (#27529)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
2023-11-20 12:24:38 +00:00
ee29261555 Add convert_hf_to_openai.py script to Whisper documentation resources (#27590)
Add `convert_hf_to_openai.py` script to Whisper documentation resources.
2023-11-20 08:08:40 +01:00
dbf7bfafa7 Fix idx2sym not loaded from pretrained vocab file in Transformer XL (#27589)
* Load idx2sym from pretrained vocab file in Transformer XL

When loading vocab file from a pretrained tokenizer for Transformer XL,
although the pickled vocabulary file contains a idx2sym key, it isn't
loaded, because it is discarded as the empty list already exists as
an attribute.

Solution is to explicitly take it into account, just like for sym2idx.

* ran make style
2023-11-20 07:56:18 +01:00
dc68a39c81 Adding leaky relu in dict ACT2CLS (#27574)
Co-authored-by: Rafael Padilla <rafael.padilla@huggingface.co>
2023-11-19 12:42:01 -03:00
25b0f2033b Fix broken distilbert url (#27579) 2023-11-18 17:22:52 +00:00
d1a00f9dd0 translate deepspeed.md to chinese (#27495)
* translate deepspeed.md

* update
2023-11-17 13:49:31 -08:00
ffbcfc0166 Broken links fixed related to datasets docs (#27569)
fixed the broken links belogs to dataset library of transformers
2023-11-17 13:44:09 -08:00
638d49983f fixed broken link (#27560) 2023-11-17 08:20:42 -08:00
5330b83bc5 Generate: update compute transition scores doctest (#27558) 2023-11-17 11:23:09 +00:00
913d03dc5e Generate: fix flaky tests (#27543) 2023-11-17 10:15:00 +00:00
d903abfccc Fix AMD CI not showing GPU (#27555)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-17 10:44:37 +01:00
fe3ce061c4 Skip some fuyu tests (#27553)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-17 10:35:04 +01:00
b074461ef0 translate Trainer.md to chinese (#27527)
* translate

* update

* update
2023-11-16 12:07:15 -08:00
93f31e0e78 Updated albert.md doc for ALBERT model (#27223)
* Updated albert.md doc for ALBERT model

* Update docs/source/en/model_doc/albert.md

Fixed Resources heading

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update the ALBERT model doc resources

Fixed resource example for fine-tuning the ALBERT sentence-pair classification.

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/albert.md

Removed resource duplicate

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Updated albert.md doc with reviewed changes

* Updated albert.md doc for ALBERT

* Update docs/source/en/model_doc/albert.md

Removed duplicates from  updated docs/source/en/model_doc/albert.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/albert.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-16 11:44:36 -08:00
12b50c6130 Generate: improve assisted generation tests (#27540) 2023-11-16 18:54:20 +00:00
651408a077 [Styling] stylify using ruff (#27144)
* try to stylify using ruff

* might need to remove these changes?

* use ruf format andruff check

* use isinstance instead of type comparision

* use # fmt: skip

* use # fmt: skip

* nits

* soem styling changes

* update ci job

* nits isinstance

* more files update

* nits

* more nits

* small nits

* check and format

* revert wrong changes

* actually use formatter instead of checker

* nits

* well docbuilder is overwriting this commit

* revert notebook changes

* try to nuke docbuilder

* style

* fix feature exrtaction test

* remve `indent-width = 4`

* fixup

* more nits

* update the ruff version that we use

* style

* nuke docbuilder styling

* leve the print for detected changes

* nits

* Remove file I/O

Co-authored-by: charliermarsh
 <charlie.r.marsh@gmail.com>

* style

* nits

* revert notebook changes

* Add # fmt skip when possible

* Add # fmt skip when possible

* Fix

* More `  # fmt: skip` usage

* More `  # fmt: skip` usage

* More `  # fmt: skip` usage

* NIts

* more fixes

* fix tapas

* Another way to skip

* Recommended way

* Fix two more fiels

* Remove asynch
Remove asynch

---------

Co-authored-by: charliermarsh <charlie.r.marsh@gmail.com>
2023-11-16 17:43:19 +01:00
acb5b4aff5 Disable docker image build job latest-pytorch-amd for now (#27541)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-16 17:00:46 +01:00
6b39470b74 Raise error when quantizing a quantized model (#27500)
add error msg
2023-11-16 10:35:40 -05:00
fd65aa9818 Set usedforsecurity=False in hashlib methods (FIPS compliance) (#27483)
* Set usedforsecurity=False in hashlib methods (FIPS compliance)

* trigger ci

* tokenizers version

* deps

* bump hfh version

* let's try this
2023-11-16 14:29:53 +00:00
5603fad247 Revert "add attention_mask and position_ids in assisted model" (#27523)
* Revert "add attention_mask and position_ids in assisted model (#26892)"

This reverts commit 184f60dcec6f7f664687a9e211e8d2216052b05d.

* more debug
2023-11-16 14:50:39 +01:00
4989e73e2f Update the TF pin for 2.15 (#27375)
* Move the TF pin for 2.15

* make fixup
2023-11-16 13:47:43 +00:00
69c9b89fcb docs: add docs for map, and add num procs to load_dataset (#27520) 2023-11-16 13:16:19 +00:00
85fde09c97 [pytest] Avoid flash attn test marker warning (#27509)
add flash attn markers
2023-11-16 11:13:07 +01:00
1394e08cf0 Support ONNX export for causal LM sequence classifiers (#27450)
support onnx for causal lm sequence classification
2023-11-16 18:56:34 +09:00
06343b0633 translate model.md to chinese (#27518)
* translate model.md to chinese

* apply review suggestion

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-15 16:59:03 -08:00
1ac599d90f Fix offload disk for loading derivated model checkpoint into base model (#27253)
* fix

* style

* add test
2023-11-15 14:58:08 -05:00
b71c38a094 Fix bug for T5x to PyTorch convert script with varying encoder and decoder layers (#27448)
* Fix bug in handling varying encoder and decoder layers

This commit resolves an issue where the script failed to convert T5x models to PyTorch models when the number of decoder layers differed from the number of encoder layers.  I've addressed this issue by passing an additional 'num_decoder_layers' parameter to the relevant function.

* Fix bug in handling varying encoder and decoder layers
2023-11-15 19:00:22 +00:00
2e72bbab2c Incorrect setting for num_beams in translation and summarization examples (#27519)
* Remove the torch main_process_first context manager from TF examples

* Correctly set num_beams=1 in our examples, and add a guard in GenerationConfig.validate()

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-15 18:18:54 +00:00
e6522e49a7 Fixing the failure of models without max_position_embeddings attribute. (#27499)
fix max pos issue

Co-authored-by: Adam Louly <adamlouly@microsoft.com@orttrainingdev9.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
2023-11-15 18:16:42 +00:00
a0633c4483 Translating en/model_doc docs to Japanese. (#27401)
* update _toctree.yml & add albert-autoformer

* Fixed typo in docs/source/ja/model_doc/audio-spectrogram-transformer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Delete duplicated sentence docs/source/ja/model_doc/autoformer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Reflect reviews

* delete untranslated models from toctree

* delete all comments

* add abstract translation

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-15 10:13:52 -08:00
a85ea4b19a Fix wav2vec2 params (#27515)
Fix test
2023-11-15 09:24:03 -05:00
48ba1e074f [ PretrainedConfig] Improve messaging (#27438)
* import hf error

* nits

* fixup

* catch the error at the correct place

* style

* improve message a tiny bit

* Update src/transformers/utils/hub.py

Co-authored-by: Lucain <lucainp@gmail.com>

* add a test

---------

Co-authored-by: Lucain <lucainp@gmail.com>
2023-11-15 14:10:39 +01:00
453079c7f8 🚨🚨 Fix beam score calculation issue for decoder-only models (#27351)
* Fix beam score calculation issue for decoder-only models

* Update beam search test and fix code quality issue

* Fix beam_sample, group_beam_search and constrained_beam_search

* Split test for pytorch and TF, add documentation

---------

Co-authored-by: Xin Qiu <xin.qiu@sentient.ai>
2023-11-15 12:49:14 +00:00
3d1a7bf476 [tokenizers] update tokenizers version pin (#27494)
* update `tokenizers` version pin

* force tokenizers>=0.15

* use  0.14

Co-authored-by: Lysandre <lysandre@huggingface.co>

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-11-15 10:46:02 +01:00
64e21ca2a4 Make some jobs run on the GitHub Actions runners (#27512)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-15 10:43:16 +01:00
1e0e2dd376 [CircleCI] skip test_assisted_decoding_sample for everyone (#27511)
* skip 4 tests

* nits

* style

* wow it's not my day

* skip new failing tests

* style

* skip for NLLB MoE as well

* skip `test_assisted_decoding_sample` for everyone
2023-11-15 10:17:51 +01:00
7ddb21b4db Update spelling mistake (#27506)
thoroughly was misspelled thouroughly
2023-11-15 09:50:45 +01:00
72f531ab6b [Table Transformer] Add Transformers-native checkpoints (#26928)
* Improve conversion scripts

* Fix paths

* Fix style
2023-11-15 09:35:53 +01:00
cc0dc24bc9 [Fuyu] Add tests (#27001)
* Add tests

* Add integration test

* More improvements

* Fix tests

* Fix style

* Skip gradient checkpointing tests

* Update script

* Remove scripts

* Remove Fuyu from auto mapping

* Fix integration test

* More improvements

* Remove file

* Add Fuyu to slow documentation tests

* Address comments

* Clarify comment
2023-11-15 09:33:04 +01:00
186c077513 [CI-test_torch] skip test_tf_from_pt_safetensors and test_assisted_decoding_sample (#27508)
* skip 4 tests

* nits

* style

* wow it's not my day

* skip new failing tests

* style

* skip for NLLB MoE as well
2023-11-15 08:39:29 +01:00
2fc33ebead Track the number of tokens seen to metrics (#27274)
* Add tokens seen

* Address comments, add to TrainingArgs

* Update log

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Use self.args

* Fix docstring

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-14 15:31:04 -05:00
303c1d69f3 Update processor mapping for hub snippets (#27477) 2023-11-14 20:05:54 +00:00
067c4a310d Have seq2seq just use gather (#27025)
* Have seq2seq just use gather

* Change

* Reset after

* Make slow

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Clean

* Simplify and just use gather

* Update tests/trainer/test_trainer_seq2seq.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* gather always for seq2seq

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-14 14:54:44 -05:00
250032e974 Minor type annotation fix (#27276)
* Minor type annotation fix

* Trigger Build
2023-11-14 19:09:21 +00:00
a53a0c5159 Generate: GenerationConfig.from_pretrained can return unused kwargs (#27488) 2023-11-14 18:40:57 +00:00
5468ab3555 Update and reorder docs for chat templates (#27443)
* Update and reorder docs for chat templates

* Fix Mistral docstring

* Add section link and small fixes

* Remove unneeded line in Mistral example

* Add comment on saving memory

* Fix generation prompts linl

* Fix code block languages
2023-11-14 18:26:13 +00:00
fe472b1db4 Generate: fix ExponentialDecayLengthPenalty doctest (#27485)
fix exponential doctest
2023-11-14 18:21:50 +00:00
73bc0c9e88 translate hpo_train.md and perf_hardware.md to chinese (#27431)
* translate

* translate

* update
2023-11-14 09:57:17 -08:00
78f6ed6c70 Revert "[time series] Add PatchTST (#25927)" (#27486)
The model was merged before final review and approval.

This reverts commit 2ac5b9325ed3b54950c6c61fd5838ac6e55a9fe1.
2023-11-14 12:24:00 +00:00
a4616c6767 [Whisper] Fix pipeline test (#27442) 2023-11-14 11:18:26 +00:00
b86c54d9ff Clap processor: remove wasteful np.stack operations (#27454)
remove wasteful np.stack

Np.stack on large 1-D tensor, causing ~0.5s processing time on short audio (<10s). Compared to 0.02s for medium length audio
2023-11-14 10:41:12 +00:00
4309abedbc Add speecht5 batch generation and fix wrong attention mask when padding (#25943)
* fix speecht5 wrong attention mask when padding

* enable batch generation and add parameter attention_mask

* fix doc

* fix format

* batch postnet inputs, return batched lengths, and consistent to old api

* fix format

* fix format

* fix the format

* fix doc-builder error

* add test, cross attention and docstring

* optimize code based on reviews

* docbuild

* refine

* not skip slow test

* add consistent dropout for batching

* loose atol

* add another test regarding to the consistency of vocoder

* fix format

* refactor

* add return_concrete_lengths as parameter for consistency w/wo batching

* fix review issues

* fix cross_attention issue
2023-11-14 09:54:09 +00:00
ee4fb326c7 Fix M4T weights tying (#27395)
fix seamless m4t weights tying
2023-11-14 09:52:11 +00:00
e107ae364e [CI-test_torch] skip test_tf_from_pt_safetensors for 4 models (#27481)
* skip 4 tests

* nits

* style

* wow it's not my day
2023-11-14 10:34:03 +01:00
d71fa9f618 [Peft] modules_to_save support for peft integration (#27466)
* `modules_to_save` support for peft integration

* Update docs/source/en/peft.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* slightly elaborate test

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-14 10:32:57 +01:00
721d1c8ca6 Fix FA2 import + deprecation cycle (#27330)
* put back import

* switch to logger.warnings instead
2023-11-14 09:20:29 +00:00
2ac5b9325e [time series] Add PatchTST (#25927)
* Initial commit of PatchTST model classes

Co-authored-by: Phanwadee Sinthong <phsinthong@gmail.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Vijay Ekambaram <vijaykr.e@gmail.com>
Co-authored-by: Ngoc Diep Do <55230119+diepi@users.noreply.github.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>

* Add PatchTSTForPretraining

* update to include classification

Co-authored-by: Phanwadee Sinthong <phsinthong@gmail.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Vijay Ekambaram <vijaykr.e@gmail.com>
Co-authored-by: Ngoc Diep Do <55230119+diepi@users.noreply.github.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>

* clean up auto files

* Add PatchTSTForPrediction

* Fix relative import

* Replace original PatchTSTEncoder with ChannelAttentionPatchTSTEncoder

* temporary adding absolute path + add PatchTSTForForecasting class

* Update base PatchTSTModel + Unittest

* Update ForecastHead to use the config class

* edit cv_random_masking, add mask to model output

* Update configuration_patchtst.py

* add masked_loss to the pretraining

* add PatchEmbeddings

* Update configuration_patchtst.py

* edit loss which considers mask in the pretraining

* remove patch_last option

* Add commits from internal repo

* Update ForecastHead

* Add model weight initilization + unittest

* Update PatchTST unittest to use local import

* PatchTST integration tests for pretraining and prediction

* Added PatchTSTForRegression + update unittest to include label generation

* Revert unrelated model test file

* Combine similar output classes

* update PredictionHead

* Update configuration_patchtst.py

* Add Revin

* small edit to PatchTSTModelOutputWithNoAttention

* Update modeling_patchtst.py

* Updating integration test for forecasting

* Fix unittest after class structure changed

* docstring updates

* change input_size to num_input_channels

* more formatting

* Remove some unused params

* Add a comment for pretrained models

* add channel_attention option

add channel_attention option and remove unused positional encoders.

* Update PatchTST models to use HF's MultiHeadAttention module

* Update paper + github urls

* Fix hidden_state return value

* Update integration test to use PatchTSTForForecasting

* Adding dataclass decorator for model output classes

* Run fixup script

* Rename model repos for integration test

* edit argument explanation

* change individual option to shared_projection

* style

* Rename integration test + import cleanup

* Fix outpu_hidden_states return value

* removed unused mode

* added std, mean and nops scaler

* add initial distributional loss for predition

* fix typo in docs

* add generate function

* formatting

* add num_parallel_samples

* Fix a typo

* copy weighted_average function, edit PredictionHead

* edit PredictionHead

* add distribution head to forecasting

* formatting

* Add generate function for forecasting

* Add generate function to prediction task

* formatting

* use argsort

* add past_observed_mask ordering

* fix arguments

* docs

* add back test_model_outputs_equivalence test

* formatting

* cleanup

* formatting

* use ACT2CLS

* formatting

* fix add_start_docstrings decorator

* add distribution head and generate function to regression task

add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput,  PatchTSTForRegressionOutput.

* add distribution head and generate function to regression task

add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput,  PatchTSTForRegressionOutput.

* fix typos

* add forecast_masking

* fixed tests

* use set_seed

* fix doc test

* formatting

* Update docs/source/en/model_doc/patchtst.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* better var names

* rename PatchTSTTranspose

* fix argument names and docs string

* remove compute_num_patches and unused class

* remove assert

* renamed to PatchTSTMasking

* use num_labels for classification

* use num_labels

* use default num_labels from super class

* move model_type after docstring

* renamed PatchTSTForMaskPretraining

* bs -> batch_size

* more review fixes

* use hidden_state

* rename encoder layer and block class

* remove commented seed_number

* edit docstring

* Add docstring

* formatting

* use past_observed_mask

* doc suggestion

* make fix-copies

* use Args:

* add docstring

* add docstring

* change some variable names and add PatchTST before some class names

* formatting

* fix argument types

* fix tests

* change x variable to patch_input

* format

* formatting

* fix-copies

* Update tests/models/patchtst/test_modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* move loss to forward

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* formatting

* fix a bug when pre_norm is set to True

* output_hidden_states is set to False as default

* set pre_norm=True as default

* format docstring

* format

* output_hidden_states is None by default

* add missing docs

* better var names

* docstring: remove default to False in output_hidden_states

* change labels name to target_values in regression task

* format

* fix tests

* change to forecast_mask_ratios and random_mask_ratio

* change mask names

* change future_values to target_values param in the prediction class

* remove nn.Sequential and make PatchTSTBatchNorm class

* black

* fix argument name for prediction

* add output_attentions option

* add output_attentions to PatchTSTEncoder

* formatting

* Add attention output option to all classes

* Remove PatchTSTEncoderBlock

* create PatchTSTEmbedding class

* use config in PatchTSTPatchify

* Use config in PatchTSTMasking class

* add channel_attn_weights

* Add PatchTSTScaler class

* add output_attentions arg to test function

* format

* Update doc with image patchtst.md

* fix-copies

* rename Forecast <-> Prediction

* change name of a few parameters to match with PatchTSMixer.

* Remove *ForForecasting class to match with other time series models.

* make style

* Remove PatchTSTForForecasting in the test

* remove PatchTSTForForecastingOutput class

* change test_forecast_head to test_prediction_head

* style

* fix docs

* fix tests

* change num_labels to num_targets

* Remove PatchTSTTranspose

* remove arguments in PatchTSTMeanScaler

* remove arguments in PatchTSTStdScaler

* add config as an argument to all the scaler classes

* reformat

* Add norm_eps for batchnorm and layernorm

* reformat.

* reformat

* edit docstring

* update docstring

* change variable name pooling to pooling_type

* fix output_hidden_states as tuple

* fix bug when calling PatchTSTBatchNorm

* change stride to patch_stride

* create PatchTSTPositionalEncoding class and restructure the PatchTSTEncoder

* formatting

* initialize scalers with configs

* edit output_hidden_states

* style

* fix forecast_mask_patches doc string

---------

Co-authored-by: Gift Sinthong <gift.sinthong@ibm.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Vijay Ekambaram <vijaykr.e@gmail.com>
Co-authored-by: Ngoc Diep Do <55230119+diepi@users.noreply.github.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>
Co-authored-by: Wesley M. Gifford <wmgifford@us.ibm.com>
Co-authored-by: nnguyen <nnguyen@us.ibm.com>
Co-authored-by: Ngoc Diep Do <diiepy@gmail.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-13 19:06:32 +01:00
8017a59091 Fixed typo in pipelines.md documentation (#27455)
Update pipelines.md
2023-11-13 17:50:40 +00:00
eb79b55bf3 Perf torch compile (#27422)
* translate perrf_torch_compile.md

* translate tf_xla.md

* update
2023-11-13 09:46:40 -08:00
7b139023c3 [AWQ ] Addresses TODO for awq tests (#27467)
addresses todo for awq tests
2023-11-13 18:18:41 +01:00
04af4b90d6 Fix Falcon tokenizer loading in pipeline (#27316)
* Improve pipeline tokenizer loading and hope nothing breaks

* Let's try a hacky solution

* Revert the changes to init

* Add a falcon hack to the automapping

* Add a falcon hack to the automapping
2023-11-13 17:01:59 +00:00
1af766e104 Add version check for Jinja (#27403)
* Add version check for Jinja

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fixup

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-13 17:01:30 +00:00
2422c38de6 Add DINOv2 depth estimation (#26092)
* First draft

* Fix style

* More improvements

* Fix tests

* Fix tests

* Convert checkpoint

* Improve DPTImageProcessor

* Remove scripts, improve conversion script

* Remove print statements

* Fix test

* Improve docstring

* More improvements

* Fix style

* Fix image processor

* Add tests

* Address comments

* Address comments

* Make bias backwards compatible

* Address comment

* Address comment

* Address comment

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Address comments

* Add flag

* Add tests

* Make tests smaller

* Use regular BackboneOutput

* Fix all tests

* Update test

* Convert more checkpoints

* Convert giant checkpoints, add integration test

* Rename size_divisibility to size_divisor

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-13 16:20:42 +00:00
3b59621310 Install python-Levenshtein for nougat in CI image (#27465)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-13 16:38:13 +01:00
2dc29cfc98 Fix docstring for gradient_checkpointing_kwargs (#27470)
Docstring entry for `gradient_checkpointing_kwargs` was
`gradient_checkpointing_args`. This is incorrect.
2023-11-13 15:32:03 +00:00
20abdacbef OWLv2: bug fix in post_process_object_detection() when using cuda device (#27468)
* OWLv2: bug fix in post_process_object_detection() when using cuda device

* fix copies issue by fixing original function in owlvit
2023-11-13 15:31:44 +00:00
68ae3be7f5 Fix from_pt flag when loading with safetensors (#27394)
* Fix

* Tests

* Fix
2023-11-13 15:18:19 +01:00
9dc8fe1b32 Default to msgpack for safetensors (#27460)
* Default to msgpack for safetensors

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-13 15:17:01 +01:00
210e38d83f [Llama + Mistral] Add attention dropout (#27315)
* add droppouts

* add the dropout

* add doc in the config

* nits

* fix mistral config

* nits
2023-11-13 14:51:48 +01:00
b97cab7e6d Remove-auth-token (#27060)
* don't use `use_auth_token`internally

* let's use token everywhere

* fixup
2023-11-13 14:20:54 +01:00
8f577dca4f Fixed typo in error message (#27461)
"past key much have a shape" -> "past key must have a shape"
2023-11-13 11:43:01 +00:00
7b998cabee Fix some Wav2Vec2 related models' doctest (#27462)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-13 12:37:46 +01:00
9d87cd2ce2 Fix line ending in utils/not_doctested.txt (#27459)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-13 12:35:51 +01:00
7ee995fd9c Make examples_torch_job faster (#27437)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-10 20:05:05 +01:00
ed115b3473 Normalize floating point cast (#27249)
* Normalize image - cast input images to float32.

This is done if the input image isn't of floating type. Issues can occur when do_rescale=False is set in an image processor. When this happens, the image passed to the call is of type uint8 becuase of the type casting that happens in resize because of the PIL image library. As the mean and std values are cast to match the image dtype, this can cause NaNs and infs to appear in the normalized image, as the floating values being used to divide the image are now set to 0.

The reason the mean and std values are cast is because previously they were set as float32 by default. However, if the input image was of type float16, the normalization would result in the image being upcast to float32 too.

* Add tests

* Remove float32 cast
2023-11-10 15:35:27 +00:00
e1c3ac2551 Add Phi-1 and Phi-1_5 (#26170)
* only dir not even init

* init

* tokenizer removed and reference of codegen added

* modeling file updated a lot remaining app_rotary_emb

* conversion script done

* conversion script fixed, a lot of factoring done and most tests pass

* added token_clf and extractive_QA_head

* integration tests pass

* flash attn tests pass!

* config done

* more docs in modeling file

* some style fix

* style and others

* doc test error fix

* more doc fix

* some attention fixes

* most fixes

* style and other fixes

* docs fix and config

* doc fix

* some comments

* conversion script updated

* conversion script updated

* Revert "conversion script updated"

This reverts commit e92378c54084ec0747041b113083d1746ecb6c7f.

* final comments

* add Phi to language_modeling.md

* edit phi.md file

* rebase and fix

* removed phi-1.5 example

* changed model_type from 'phi'->'mixformer-sequential'

* small change

* small change

* revert \small change

* changed mixformer-sequential->phi

* small change

* added phi-1.5 example instead of phi-1

* doc test might pass now

* rebase and small change

* added the dropout layer

* more fixes

* modified .md file

* very very small doc change
2023-11-10 15:28:30 +00:00
00dc856233 At most 2 GPUs for CI (#27435)
At most 2 GPUs

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-10 16:19:06 +01:00
68afca3e69 [AttentionMaskConverter] ]Fix-mask-inf (#27114)
* fix?

* actual fix

* fixups

* add dataclass to the attention mask converter

* refine testing suite

* make sure there are no overflows

* update the test
2023-11-10 15:22:43 +01:00
7e9f10ac94 Add CLVP (#24745)
* init commit

* attention arch done except rotary emb

* rotary emb done

* text encoder working

* outputs matching

* arch first pass done

* make commands done, tests and docs remaining

* all tests passed, only docs remaining

* docs done

* doc-builder fix

* convert script removed(not relevant)

* minor comments done

* added ckpt conversion script

* tokenizer done

* very minor fix of index.md 2

* mostly make fixup related

* all done except fe and rotary emb

* very small change

* removed unidecode dependency

* style changes

* tokenizer removed require_backends

* added require_inflect to tokenizer tests

* removed VOCAB_FILES in tokenizer test

* inflect dependency removed

* added rotary pos emb cache and simplified the apply method

* style

* little doc change

* more comments

* feature extractor added

* added processor

* auto-regressive config added

* added CLVPConditioningEncoder

* comments done except the test one

* weights added successfull(NOT tested)

* tokenizer fix with numbers

* generate outputs matching

* almost tests passing Integ tests not written

* Integ tests added

* major CUDA error fixed

* docs done

* rebase and multiple fixes

* fixed rebase overwrites

* generate code simplified and tests for AutoRegressive model added

* minor changes

* refectored gpt2 code in clvp file

* weights done and all code refactored

* mostly done except the fast_tokenizer

* doc test fix

* config file's doc fixes

* more config fix

* more comments

* tokenizer comments mostly done

* modeling file mostly refactored and can load modules

* ClvpEncoder tested

* ClvpDecoder, ClvpModel and ClvpForCausalLM tested

* integration and all tests passed

* more fixes

* docs almost done

* ckpt conversion refectored

* style and some failing tests fix

* comments

* temporary output fix but test_assisted_decoding_matches_greedy_search test fails

* majority changes done

* use_cache outputs same now! Along with the asisted_greedy_decoding test fix

* more comments

* more comments

* prepare_inputs_for_generation fixed and _prepare_model_inputs added

* style fix

* clvp.md change

* moved clvpconditionalencoder norms

* add model to new index

* added tokenizer input_ids_with_special_tokens

* small fix

* config mostly done

* added config-tester and changed conversion script

* more comments

* comments

* style fix

* some comments

* tokenizer changed back to prev state

* small commnets

* added output hidden states for the main model

* style fix

* comments

* small change

* revert small change

* .

* Update clvp.md

* Update test_modeling_clvp.py

* :)

* some minor change

* new fixes

* remove to_dict from FE
2023-11-10 13:49:10 +00:00
9dd58c53dd update Bark FA2 docs (#27400)
* update Bark FA2 docs

* update benchmark section

* Update bark.md

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* rephrase

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-11-10 13:40:30 +00:00
fd685cfd59 [Quantization] Add str to enum conversion for AWQ (#27320)
* add str to enum conversion

* fixup

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-10 13:45:00 +01:00
184f60dcec add attention_mask and position_ids in assisted model (#26892)
* add attention_mask and position_ids in assisted model

* fix bug

* fix attention mask

* fix attention_mask

* check assist inputs

* check assist input ids length

* fix assist model type

* set assist attention mask device
2023-11-10 11:05:15 +00:00
cf32c94135 Run all tests if circleci/create_circleci_config.py is modified (#27413)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-09 22:01:06 +01:00
740cd93590 Fix Owlv2 checkpoint name and a default value in Owlv2VisionConfig (#27402)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-09 21:39:03 +01:00
51a98c40ee remove failing tests and clean FE files (#27414)
* remove failing tests and clean FE files

* remove same similar text from tvlt
2023-11-09 18:35:42 +00:00
e38348ae8f Fix RequestCounter to make it more future-proof (#27406)
* Fix RequestCounter to make it more future-proof

* code quality
2023-11-09 18:53:26 +01:00
c8b6052ff6 Final fix of the accelerate installation issue (#27408)
* fix

* [test-all] commit

* fix

* [test-all] commit

* [test-all] commit

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-09 18:52:29 +01:00
c5037b459e Use editable install for git deps (#27404)
* Use editable install

* Full command
2023-11-09 10:20:12 -05:00
cf2a3f37bf Fix fuyu checkpoint repo in FuyuConfig (#27399)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-09 15:47:46 +01:00
3258ff9330 use pytest.mark directly (#27390)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-09 13:32:54 +01:00
791ec370d1 Adds dvclive callback (#27352)
* dvclive trainer callback

* style fixes

* dvclive link fixes
2023-11-09 12:19:31 +00:00
c5d7754b11 device-agnostic deepspeed testing (#27342) 2023-11-09 12:34:13 +01:00
9999b73968 Skip failing cache call tests (#27393)
* Skip failing cache call tests

* Fixup
2023-11-09 11:03:37 +00:00
bc086a2516 Put doctest options back to pyproject.toml (#27366)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-09 11:50:19 +01:00
e9adb0c9cf Change thresh in test (#27378)
Change thresh
2023-11-09 04:44:36 -05:00
085ea7e56c [CodeLlamaTokenizer] Nit, update __init__ to make sure the AddedTokens are not normalized because they are special (#27359)
* make sure tokens are properly initialized for codellama slow

* add m ore pretrained models

* style

* test more tokenizers checkpoints
2023-11-09 10:15:10 +01:00
7ecd229ba4 Smangrul/fix failing ds ci tests (#27358)
* fix failing DeepSpeed CI tests due to `safetensors` being default

* debug

* remove debug statements

* resolve comments

* Update test_deepspeed.py
2023-11-09 11:47:24 +05:30
ced9fd86f5 translate debugging.md to chinese (#27374)
* update

* update
2023-11-08 14:04:06 -08:00
0e402e1478 Update deprecated torch.range in test_modeling_ibert.py (#27355)
* Update deprecated torch.range

* Remove comment
2023-11-08 20:58:36 +01:00
a5bee89c9d Add Flash Attention 2 support to Bark (#27364)
* change handmade attention mask to _prepare_4d_attention_mask

* add flashattention2 support in Bark

* add flashattention2 tests on BarkSemanticModel

* make style

* fix flashattention and tests + make style

* fix memory leak and allow Bark to pass flash attention to sub-models

* make style

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* remove unecessary code from tests + justify overriding

* Update tests/models/bark/test_modeling_bark.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-08 17:06:35 +00:00
ef71673616 translate big_models.md and performance.md to chinese (#27334)
* translate performance.md

* tranlsate performance.md and big_models.md

* update translation

* update review
2023-11-08 08:48:46 -08:00
bd8f45b167 Fix tiny model script: not using from_pt=True (#27372)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-08 17:15:57 +01:00
7b175cfaa7 [Flax Whisper] large-v3 compatibility (#27360) 2023-11-08 15:11:38 +00:00
845aa832b7 Remove unused param from example script tests (#27354)
Unused param
2023-11-08 09:07:32 -05:00
eb30a49b20 Translate index.md to Turkish (#27093)
* Add index.md for tukish language

* Fix index.md (huggingface/transformers#27088)

* Add 'tr' to additional files

* Update docs/source/tr/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update index.md

---------

Co-authored-by: Mert Yanık <mert.yanik@lcwaikiki.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-08 08:35:20 -05:00
f16ff0f07e MusicGen Update (#27084)
* [MusicGen] Add stereo model

* safe serialization

* Update src/transformers/models/musicgen/modeling_musicgen.py

* split over 2 lines

* fix slow tests on cuda
2023-11-08 13:26:02 +00:00
5ef650b0ae Fix Kosmos-2 device issue (#27346)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-08 14:14:45 +01:00
efa57cb234 Fix example tests from failing (#27353)
* Fix example tests from failing

* CHange thresh
2023-11-08 07:45:21 -05:00
b6dbfee0a2 moving example of benchmarking to legacy dir (#27337)
move example of benchmarking to legacy
2023-11-08 09:27:37 +01:00
be74b2ead6 Add numpy alternative to FE using torchaudio (#26339)
* add audio_utils usage in the FE of SpeechToText

* clean unecessary parameters of AudioSpectrogramTransformer FE

* add audio_utils usage in AST

* add serialization tests and function to FEs

* make style

* remove use_torchaudio and move to_dict to FE

* test audio_utils usage

* make style and fix import (remove torchaudio dependency import)

* fix torch dependency for jax and tensor tests

* fix typo

* clean tests with suggestions

* add lines to test if is_speech_availble is False
2023-11-08 07:39:37 +00:00
e264745051 translate model_sharing.md and llm_tutorial.md to chinese (#27283)
* translate model_sharing.md

* translate llm_tutorial.md to chiense

* update wrong translation

* update _torctree.yml

* update typos

* update
2023-11-07 15:34:33 -08:00
f213d5dd8c translate the en tokenizer_summary.md to Chinese (#27291)
* translate the en tokenizer_summary.md to Chinese

* revise WordPiece

* add to source/zh/_toctree.yml
2023-11-07 15:31:51 -08:00
7e1eff7600 Allow scheduler parameters (#26480)
* Allow for scheduler kwargs

* Formatting

* Arguments checks, passing the tests

* Black failed somehow

---------

Co-authored-by: Pierre <pierre@avatarin.com>
2023-11-07 21:40:00 +00:00
ac5d4cf6de FIx Bark batching feature (#27271)
* fix bark batching

* make style

* add tests and make style
2023-11-07 18:32:00 +00:00
8f840edd31 [Whisper] Nit converting the tokenizer (#27349)
* `nospeech` instead of `nocaption` for the no speech token

* oups
2023-11-07 18:43:26 +01:00
cc9f27bb1e Remove padding_masks from gpt_bigcode. (#27348)
Update modeling_gpt_bigcode.py
2023-11-07 17:24:43 +00:00
8c91f15ae5 Resolve AttributeError by utilizing device calculation at the start of the forward function (#27347)
This commit addresses the 'NoneType' object AttributeError within the IdeficsModel forward function. Previously, the 'device' attribute was accessed directly from input_ids, resulting in a potential 'NoneType' error. Now, the device is properly calculated at the beginning of the forward function and utilized consistently throughout, ensuring the 'image_hidden_states' are derived from the correct device. This modification enables smoother processing and compatibility, ensuring the correct device attribution for 'image_encoder_embeddings' in the IdeficsModel forward pass.
2023-11-07 16:26:15 +00:00
Chi
9459d821d1 Remove a redundant variable. (#27288)
* Removed the redundant SiLUActivation class and now use nn.functional.silu directly.

* I apologize for adding torch.functional.silu. I have replaced it with nn.SiLU.

* Remove redundant variable in feature_extraction file
2023-11-07 15:57:48 +00:00
88832c01c8 [Whisper] Add conversion script for the tokenizer (#27338)
* draft

* updates

* full conversion taken from `https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee`

* psuh

* nits

* updates

* more nits

* Add co author

Co-authored-by: Joshua Lochner <admin@xenova.com>

* fixup

* cleanup

* styling

* add proper path

* update

* nits

* don't  push the exit

* clean

* update whisper doc

* don't error out if tiktoken is not here

* make sure we are BC with conversion

* nit

* Update docs/source/en/model_doc/whisper.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* merge and update

* update markdwon

* Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

---------

Co-authored-by: Joshua Lochner <admin@xenova.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-07 15:07:55 +01:00
0ded281557 [FA2] Add flash attention for GPT-Neo (#26486)
* added flash attention for gpt-neo

* small change

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* readme updated

* .

* changes

* removed padding_mask

* Update src/transformers/models/gpt_neo/modeling_gpt_neo.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-07 13:54:01 +00:00
606d90845f Fix Whisper Conversion Script: Correct decoder_attention_heads and _download function (#26834)
* Fix error in convert_openai_to_hf.py: "_download() missing 1 required positional argument: root"

* Fix error in convert_openai_to_hf.py: "TypeError: byte indices must be integers or slices, not str"

* Fix decoder_attention_heads value in convert_openai_to_hf.py.

Correct the assignment for `decoder_attention_heads` in the conversion script for the Whisper model.

* Black reformat convert_openai_to_hf.py file.

* Fix Whisper model configuration defaults (for Tiny).

- Correct encoder/decoder layers and attention heads count.
- Update model width (`d_model`) to 384.

* Add docstring to the convert_openai_to_hf.py script with a doctest

* Add shebang and +x permission to the convert_openai_to_hf.py

* convert_openai_to_hf.py: reuse the read model_bytes in the _download() function

* Move convert_openai_to_hf.py doctest example to whisper.md

* whisper.md: Add an inference example to the Conversion section.

* whisper.md: remove `model.config.forced_decoder_ids` from examples (deprecated)

* whisper.md: Remove "## Format Conversion" section; not used by users

* whisper.md: Use librispeech_asr_dummy dataset and load_dataset()
2023-11-07 13:39:42 +01:00
90b4adc1f1 Generate: skip tests on unsupported models instead of passing (#27265) 2023-11-07 12:08:28 +00:00
26d8d5f211 Fix autoawq docker image (#27339)
* Update Dockerfile

* Update docker/transformers-all-latest-gpu/Dockerfile
2023-11-07 11:21:04 +01:00
da7ea9a4e3 [Whisper] Block language/task args for English-only (#27322)
* [Whisper] Block language/task args for English-only

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-07 10:04:23 +00:00
9beb2737d7 [docs] fixed links with 404 (#27327)
* fixed links with 404

* make style
2023-11-06 19:45:03 +00:00
1b20e2bb42 Fix Kosmos2Processor batch mode (#27323)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-06 19:05:50 +01:00
a6e0d5a219 Fix VideoMAEforPretrained dtype error (#27296)
* Fix dtype error

* Fix mean and std dtype

* make style
2023-11-06 17:20:06 +00:00
e9dbd39263 Update sequence_classification.md (#27281)
I'm adding accelerate as one of the libraries to install because otherwise when running the Trainer, the model errorr out with the error. 

ImportError: Using the `Trainer` with `PyTorch` requires `accelerate>=0.20.1`: Please run `pip install transformers[torch]` or `pip install accelerate -U`

Further context: 
1. I've tried this across different environments so I believe that the environment is not the issue. 
2. I had the latest transformers library version running. 
3. Typically even after install accelerate and import it, it wouldn't resolve the issue until I restart the notebook and try again.
2023-11-06 14:21:48 +00:00
147f774671 [PretrainedTokenizer] add some of the most important functions to the doc (#27313) 2023-11-06 15:11:00 +01:00
1ffc4dee5b enable memory tracker metrics for npu (#27280) 2023-11-06 13:44:21 +00:00
d7dcfa8917 Remove an unexpected argument for FlaxResNetBasicLayerCollection (#27272)
Remove unexpected argument for FlaxResNetBasicLayerCollection
2023-11-06 12:16:03 +00:00
eef7ea98c3 Update doctest workflow file (#27306)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-06 11:27:48 +01:00
d788d37d24 Fix daily CI image build (#27307)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-06 11:27:22 +01:00
b026b5ca6d Fix tokenizer export for LLamaTokenizerFast (#27222)
* fix tokenizer

* fix tokenizer
2023-11-06 10:26:18 +01:00
cc3e478185 translate run_scripts.md to chinese (#27246)
* translate run_scripts.md to chinese

* translate run_scripts.md to chinese

* translate run_scripts.md to chinese
2023-11-03 10:19:41 -07:00
bf7cfac20a translate autoclass_tutorial to chinese (#27269)
* translate autoclass_tutorial.md  to chinese

* translate update
2023-11-03 09:16:55 -07:00
1ac2463dfe [FA2] Add flash attention for for DistilBert (#26489)
* flash attention added for DistilBert

* fixes

* removed padding_masks

* Update modeling_distilbert.py

* Update test_modeling_distilbert.py

* style fix
2023-11-03 16:07:54 +00:00
5964f820db [Docs] Model_doc structure/clarity improvements (#26876)
* first batch of structure improvements for model_docs

* second batch of structure improvements for model_docs

* more structure improvements for model_docs

* more structure improvements for model_docs

* structure improvements for cv model_docs

* more structural refactoring

* addressed feedback about image processors
2023-11-03 10:57:03 -04:00
ad8ff96224 [Docs / SAM ] Reflect correct changes to run inference without OOM (#27268)
Update sam.md
2023-11-03 15:23:13 +01:00
f13f544ad9 Fix switch transformer mixed precision issue (#27220)
* Fix mixed precision error for switch transformer

* Fixup
2023-11-03 14:00:33 +00:00
db69bd88fb Update the ConversationalPipeline docstring for chat templates (#27250)
* Update the ConversationalPipeline docstring now that we're using chat templates

* Direct access to conversation.messages

* Explain the string init
2023-11-03 13:17:46 +00:00
011b15c1c7 [docs] Custom model doc update (#27213)
doc update
2023-11-03 08:03:13 -04:00
af8d1dc309 Avoid many failing tests in doctesting (#27262)
* fix

* update

* update

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-03 12:47:07 +01:00
8f1a43cd91 [PEFT / Tests ] Fix peft integration failing tests (#27258)
fix peft integration issues
2023-11-03 12:23:02 +01:00
05ea7b79e6 Refactor: Use Llama RoPE implementation for Falcon (#26933)
* Use Llama RoPE implementation for Falcon

+ Add copy functionalities

* Use standard cache format for Falcon

* Simplify apply_rotary_pos_emb, copy from Llama

* Remove unnecessary cache conversion test

We don't need to convert any caches anymore!

* Resolve copy complaint
2023-11-03 11:05:55 +00:00
e9a6c72b5e Fuyu protection (#27248) 2023-11-03 08:45:05 +01:00
552ff24488 Fixed base model class name extraction from PeftModels (#27162)
* Fixed base model class name extraction from PeftModels

* Changes to first unwrap the model then extract the base model name

* Changed base_model to base_model.model to stay consistent with peft model abstractions
2023-11-02 20:08:03 +00:00
Chi
4991216841 Removed the redundant SiLUActivation class. (#27136)
* Removed the redundant SiLUActivation class and now use nn.functional.silu directly.

* I apologize for adding torch.functional.silu. I have replaced it with nn.SiLU.
2023-11-02 18:13:57 +00:00
00d8502b7a translate peft.md to chinese (#27215)
* tranlsate peft.md to chinese

* translate peft.md to chinese

* fix missing link
2023-11-02 10:42:29 -07:00
bc78fd1274 Dev version 2023-11-02 18:15:36 +01:00
0ed6729bb1 Enrich TTS pipeline parameters naming (#26473)
* enrich TTS pipeline docstring for clearer forward_params use

* change token leghts

* update Pipeline parameters

* correct docstring and make style

* fix tests

* make style

* change music prompt

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* raise errors if generate_kwargs with forward-only models

* make style

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-11-02 17:06:56 +00:00
147e8ce4ae Remove redundant code from T5 encoder mask creation (#27216)
* remove redundant code

* update

* add typecasting

* make `attention_mask` float again
2023-11-02 16:01:41 +00:00
a6c82d4567 Generate: return past_key_values (#25086) 2023-11-02 15:39:21 +00:00
441c3e0dd2 fix-deprecated-exllama-arg (#27243)
fix-exllama
2023-11-02 11:23:31 -04:00
8801861d2d Fixing m4t. (#27240)
* Fixing m4t.

* Trying to remove comparison ? Odd test failure.

* Adding shared. But why on earth does it hang ????

* Putting back the model weights checks the test is silently failing on
cuda.

* Fix style + unremoved comment.
2023-11-02 15:32:17 +01:00
443bf5e9e2 Fix safetensors failing tests (#27231)
* Fix Kosmos2

* Fix ProphetNet

* Fix MarianMT

* Fix M4T

* XLM ProphetNet

* ProphetNet fix

* XLM ProphetNet

* Final M4T fixes

* Tied weights keys

* Revert M4T changes

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-02 15:03:09 +01:00
4557a0dede Wrap _prepare_4d_causal_attention_mask as a leaf function (#27236)
Wrap _prepare_4d_causal_attention_mask as a leaf function
2023-11-02 12:03:30 +00:00
8a312956fd Fuyu: improve image processing (#27007)
* Fix Fuyu image scaling bug

It could produce negative padding and hence inference errors for certain
image sizes.

* initial rework commit

* add batching capabilities, refactor image processing

* add functional batching for a list of images and texts

* make args explicit

* Fuyu processing update (#27133)

* Add file headers

* Add file headers

* First pass - preprocess method with standard args

* First pass image processor rework

* Small tweaks

* More args and docstrings

* Tidying iterating over batch

* Tidying up

* Modify to have quick tests (for now)

* Fix up

* BatchFeature

* Passing tests

* Add tests for processor

* Sense check when patchifying

* Add some tests

* FuyuBatchFeature

* Post-process box coordinates

* Update to `size` in processor

* Remove unused and duplicate constants

* Store unpadded dims after resize

* Fix up

* Return FuyuBatchFeature

* Get unpadded sizes after resize

* Update exception

* Fix return

* Convert input `<box>` coordinates to model format.

* Post-process point coords, support multiple boxes/points in a single
sequence

* Replace constants

* Update src/transformers/models/fuyu/image_processing_fuyu.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Preprocess List[List[image]]

* Update src/transformers/models/fuyu/image_processing_fuyu.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update to Amy's latest state.

* post-processing returns a list of tensors

* Fix error when target_sizes is None

Co-authored-by: Pablo Montalvo <pablo.montalvo.leroux@gmail.com>

* Update src/transformers/models/fuyu/image_processing_fuyu.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/transformers/models/fuyu/image_processing_fuyu.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/transformers/models/fuyu/image_processing_fuyu.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/transformers/models/fuyu/image_processing_fuyu.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Review comments

* Update src/transformers/models/fuyu/image_processing_fuyu.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix up

* Fix up

---------

Co-authored-by: Ubuntu <ubuntu@ip-172-31-72-126.ec2.internal>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Pablo Montalvo <pablo.montalvo.leroux@gmail.com>

* Fix conflicts in fuyu_follow_up_image_processing (#27228)

fixing conflicts and updating on main

* Revert "Fix conflicts in fuyu_follow_up_image_processing" (#27232)

Revert "Fix conflicts in fuyu_follow_up_image_processing (#27228)"

This reverts commit acce10b6c653dc7041fb9d18cfed55775afd6207.

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-72-126.ec2.internal>
2023-11-02 12:25:41 +01:00
9b25c164bd [core / Quantization] Fix for 8bit serialization tests (#27234)
* fix for 8bit serialization

* added regression tests.

* fixup
2023-11-02 12:03:51 +01:00
c52e429b1c Reproducible checkpoint for npu (#27208)
* save NPU's RNG states when saving a checkpoint and set after all the
data skip phase when resuming training.

* re-trigger ci

* re-trigger ci
2023-11-02 10:27:13 +00:00
7adaefe2bc support bf16 (#25879)
* added bf16 support

* added cuda availability check

* applied make style, quality
2023-11-02 11:05:20 +01:00
af3de8d87c [Whisper, Bart, MBart] Add Flash Attention 2 (#27203)
* add whisper fa2

* correct

* change all

* correct

* correct

* fix more

* fix more

* fix more

* fix more

* fix more

* fix more

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix more

* fix more

* fix more

* fix more

* fix more

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-01 21:03:01 +01:00
3520e37e86 Enable split_batches through TrainingArguments (#26798)
* Enable split_batches through TrainingArguments

* Extra dispatch_batches

* Keep as default false

* Add to docstring

* Add to docstring

* Remove the capturewarnings change

* Comma
2023-11-01 14:42:38 -04:00
95020f208e Fix CPU offload + disk offload tests (#27204)
Fix disk offload tests + weight sharing issues
2023-11-01 19:25:23 +01:00
c9e72f55b2 Add exllamav2 better (#27111)
* add_ xllamav2 arg

* add test

* style

* add check

* add doc

* replace by use_exllama_v2

* fix tests

* fix doc

* style

* better condition

* fix logic

* add deprecate msg

* deprecate exllama

* remove disable_exllama from the linter

* remove

* fix warning

* Revert the commits deprecating exllama

* deprecate disable_exllama for use_exllama

* fix

* fix loading attribute

* better handling of args

* remove disable_exllama from init and linter

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* better arg

* fix warning

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* switch to dict

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* style

* nits

* style

* better tests

* style

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-01 13:09:21 -04:00
239cd0eaa2 Translate task summary to chinese (#27180)
* translate task_summary.md to chinese

* update translation

* update translation

* fix _toctree.yml
2023-11-01 09:28:34 -07:00
1e32b05e06 improving TimmBackbone to support FrozenBatchNorm2d (#27160)
* supporting freeze_batch_norm_2d

* supporting freeze_batch_norm_2d

* including unfreeze + separate into methods

* fix typo

* calling unfreeze

* lint

* Update src/transformers/models/timm_backbone/modeling_timm_backbone.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Rafael Padilla <rafael.padilla@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-01 12:58:35 -03:00
21a2fbaf48 Fix docstring in get_oneformer_resize_output_image_size func (#27207) 2023-11-01 15:31:13 +00:00
f8afb2b2ec Add TensorFlow implementation of ConvNeXTv2 (#25558)
* Add type annotations to TFConvNextDropPath

* Use tf.debugging.assert_equal for TFConvNextEmbeddings shape check

* Add TensorFlow implementation of ConvNeXTV2

* check_docstrings: add TFConvNextV2Model to exclusions

TFConvNextV2Model and TFConvNextV2ForImageClassification have docstrings
which are equivalent to their PyTorch cousins, but a parsing issue prevents them
from passing the test.

Adding exclusions for these two classes as discussed in #25558.
2023-11-01 15:09:55 +00:00
391d14e810 [WhisperForCausalLM] Add WhisperForCausalLM for speculative decoding (#27195)
* finish

* add tests

* fix all tests

* [Assistant Decoding] Add test

* fix more

* better

* finish

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* finish

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-01 16:01:53 +01:00
f9b4bea0a6 Added cache_block_outputs option to enable GPTQ for non-regular models (#27032)
* Added cache_block_outputs option to enable GPTQ for non-regular models

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Fixed style

* Update src/transformers/utils/quantization_config.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-01 14:37:19 +00:00
037fb7d0e1 added unsqueeze_dim to apply_rotary_pos_emb (#27117)
* added unsqueeze_dim to apply_rotary_pos_emb

* Added docstring

* Modified docstring

* Modified docstring

* Modified docstring

* Modified docstring

* Modified docstring

* ran make fix-copies and make fixup

* Update src/transformers/models/llama/modeling_llama.py

Accepting the proposed changes in formatting.

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* incorporating PR suggestions

* incorporating PR suggestions

* incorporating PR suggestions

* incorporating PR suggestions

* ..

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-01 14:16:57 +00:00
f3c1a172bb Fixing docstring in get_resize_output_image_size function (#27191) 2023-11-01 12:42:41 +00:00
636f704d0b Fix the typos and grammar mistakes in CONTRIBUTING.md. (#27193)
Fix the typos and grammar mistakes in CONTRIBUTING.md
2023-11-01 12:42:22 +00:00
71025520bc Fix docstring get maskformer resize output image size (#27196)
* fix docstring in get_maskformer_resize_output_image_size

* fix  functions docstring

* fix 'copied from' functions docstring

* fix docstring

* fix return type

* fix docstring resize
2023-11-01 12:26:14 +00:00
ae093eef01 [core / Quantization ] AWQ integration (#27045)
* working v1

* oops

* Update src/transformers/modeling_utils.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* fixup

* oops

* push

* more changes

* add docs

* some fixes

* fix copies

* add v1 doc

* added installation guide

* relax constraints

* revert

* attempt llm-awq

* oops

* oops

* fixup

* raise error when incorrect cuda compute capability

* nit

* add instructions for llm-awq

* fixup

* fix copies

* fixup and docs

* change

* few changes + add demo

* add v1 tests

* add autoawq in dockerfile

* finalize

* Update tests/quantization/autoawq/test_awq.py

* fix test

* fix

* fix issue

* Update src/transformers/integrations/awq.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/main_classes/quantization.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/main_classes/quantization.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/integrations/awq.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/integrations/awq.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add link to example script

* Update docs/source/en/main_classes/quantization.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add more content

* add more details

* add link to quantization docs

* camel case + change backend class name

* change to string

* fixup

* raise errors if libs not installed

* change to `bits` and `group_size`

* nit

* nit

* Apply suggestions from code review

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* disable training

* address some comments and fix nits

* fix

* final nits and fix tests

* adapt to our new runners

* make fix-copies

* Update src/transformers/utils/quantization_config.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/utils/quantization_config.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/integrations/awq.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/integrations/awq.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* move to top

* add conversion test

* final nit

* add more elaborated test

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-01 09:06:31 +01:00
82c7e87987 device agnostic fsdp testing (#27120)
* make fsdp test cases device agnostic

* make style
2023-11-01 07:17:06 +01:00
7d8ff3629b 🌐 [i18n-ZH] Translate tflite.md into Chinese (#27134)
* docs(zh): translate tflite.md

* docs(zh): add space around links

* Update docs/source/zh/tflite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-31 12:50:48 -07:00
113ebf80ac Safetensors serialization by default (#27064)
* Safetensors serialization by default

* First pass on the tests

* Second pass on the tests

* Third pass on the tests

* Fix TF weight loading from TF-format safetensors

* Specific encoder-decoder fixes for weight crossloading

* Add VisionEncoderDecoder fixes for TF too

* Change filename test for pt-to-tf

* One missing fix for TFVisionEncoderDecoder

* Fix the other crossload test

* Support for flax + updated tests

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Sanchit's comments

* Sanchit's comments 2

* Nico's comments

* Fix tests

* cleanup

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-10-31 19:16:49 +01:00
25e6e9418c Unify warning styles for better readability (#27184) 2023-10-31 18:12:14 +00:00
50378cbf6c device agnostic models testing (#27146)
* device agnostic models testing

* add decorator `require_torch_fp16`

* make style

* apply review suggestion

* Oops, the fp16 decorator was misused
2023-10-31 18:12:14 +01:00
77930f8a01 [docs] Update CPU/GPU inference docs (#26881)
* first draft

* remove non-existent paths

* edits

* feedback

* feedback and optimum

* Apply suggestions from code review

Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
Co-authored-by: Ella Charlaix <80481427+echarlaix@users.noreply.github.com>

* redirect to correct doc

* _redirects.yml

---------

Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
Co-authored-by: Ella Charlaix <80481427+echarlaix@users.noreply.github.com>
2023-10-31 09:44:51 -07:00
6b7f8ff1f3 translate traning.md to chinese (#27122)
* translate traning.md

* update _tocree.yml

* update _tocree.yml

* update _tocree.yml
2023-10-31 08:57:37 -07:00
e22b7ced9a Fix dropout in StarCoder (#27182)
fix dropout in modeling_gpt_bigcode.py
2023-10-31 16:44:57 +01:00
4bb50aa212 [Quantization / tests ] Fix bnb MPT test (#27178)
fix bnb mpt test
2023-10-31 16:25:53 +01:00
05f2290114 Backward compatibility fix for the Conversation class (#27176)
* Backward compatibility fix for the Conversation class

* Explain what's going on in the conditional
2023-10-31 15:12:06 +00:00
309a90664f [FEAT] Add Neftune into transformers Trainer (#27141)
* add v1 neftune

* use `unwrap_model` instead

* add test + docs

* Apply suggestions from code review

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* more details

* fixup

* Update docs/source/en/main_classes/trainer.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* refactor a bit

* more elaborated test

* fix unwrap issue

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-10-31 16:03:59 +01:00
f53041a753 device agnostic pipelines testing (#27129)
* device agnostic pipelines testing

* pass torch_device
2023-10-31 15:46:31 +01:00
08fadc8085 Shorten the conversation tests for speed + fixing position overflows (#26960)
* Shorten the conversation tests for speed + fixing position overflows

* Put max_new_tokens back to 5

* Remove test skips

* Increase max_position_embeddings in blenderbot tests

* Add skips for blenderbot_small

* Correct TF test skip

* make fixup

* Reformat skips to use is_pipeline_test_to_skip

* Update tests/models/blenderbot_small/test_modeling_blenderbot_small.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/blenderbot_small/test_modeling_flax_blenderbot_small.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/blenderbot_small/test_modeling_tf_blenderbot_small.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-10-31 14:20:04 +00:00
a8e74ebdc5 Trigger CI if tiny_model_summary.json is modified (#27175)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-31 14:49:02 +01:00
2963e196ee Add support for loading GPTQ models on CPU (#26719)
* Add support for loading GPTQ models on CPU

Right now, we can only load the GPTQ Quantized model on the CUDA
device. The attribute `gptq_supports_cpu` checks if the current
auto_gptq version is the one which has the cpu support for the
model or not.
The larger variants of the model are hard to load/run/trace on
the GPU and that's the rationale behind adding this attribute.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>

* Update quantization.md

* Update quantization.md

* Update quantization.md
2023-10-31 13:45:23 +00:00
3cd3eaf960 fix: Fix typical_p behaviour broken in recent change (#27165)
A recent PR https://github.com/huggingface/transformers/pull/26579 fixed an edge case out-of-bounds tensor indexing error in TypicalLogitsWarper, and a related behaviour change was made that we thought fixed a long-standing bug w.r.t. the token inclusion cutoff.

However after looking more closely, I am pretty certain that the original logic was correct and that the OOB fix should have been made differently.

Specifically the docs state that it should include the "smallest set of tokens that add up to P or higher" and so `last_ind` should actually be one more than the index of the last token satisfying (cumulative_probs < self.mass).

We still need a max clamp in case that last token is the very last one in the tensor.
2023-10-31 13:09:56 +00:00
b5db8ca66f Add flash attention for gpt_bigcode (#26479)
* added flash attention of gpt_bigcode

* changed docs

* Update src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py

* add FA-2 docs

* oops

* Update docs/source/en/perf_infer_gpu_one.md Last Nit

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

* oops

* remove padding_mask

* change getattr->hasattr logic

* changed .md file

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-31 11:21:02 +00:00
9dc4ce9ea7 Disable CI runner check (#27170)
Disable runner check

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-31 11:59:21 +01:00
14bb196cc8 [doctring] Fix docstring for BlipTextConfig, BlipVisionConfig (#27173)
Update configuration_blip.py

edit docstrings
2023-10-31 10:41:56 +00:00
9234caefb0 [docstring] Fix docstring for AltCLIPTextConfig, AltCLIPVisionConfig and AltCLIPConfig (#27128)
* [docstring] Fix docstring for AltCLIPVisionConfig, AltCLIPTextConfig + cleaned some docstring

* Removed entries from check_docstring.py

* Removed entries from check_docstring.py

* Removed entry from check_docstring.py

* [docstring] Fix docstring for AltCLIPTextConfig, AltCLIPVisionConfig and AltCLIPConfig
2023-10-31 10:20:14 +00:00
b5c8e23f0f Remove broken links to s-JoL/Open-Llama (#27164) 2023-10-31 10:17:54 +00:00
df6f36a171 deprecate function get_default_device in tools/base.py (#26774)
* get default device through `PartialState().default_device` as is has
been officially released

* apply code review suggestion

* apply code review suggestion

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2023-10-31 09:15:39 +00:00
8211c59b9a [KOSMOS-2] Update docs (#27157)
Update docs
2023-10-30 21:42:19 +01:00
d39352d12c Fix import of torch.utils.checkpoint (#27155)
* Fix import

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-10-30 20:08:29 +00:00
e971486d89 Fix: typos in README.md (#27154) 2023-10-30 19:12:09 +00:00
f7ea959b96 [core/ GC / tests] Stronger GC tests (#27124)
* stronger GC tests

* better tests and skip failing tests

* break down into 3 sub-tests

* break down into 3 sub-tests

* refactor a bit

* more refactor

* fix

* last nit

* credits contrib and suggestions

* credits contrib and suggestions

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-10-30 19:53:46 +01:00
5bbf671276 Device agnostic trainer testing (#27131) 2023-10-30 18:16:40 +00:00
84724efd10 Translating en/main_classes folder docs to Japanese 🇯🇵 (#26894)
* add

* add

* add

* Add deepspeed.md

* Add

* add

* Update docs/source/ja/main_classes/callback.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/main_classes/output.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/main_classes/pipelines.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/main_classes/processors.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/main_classes/processors.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/main_classes/text_generation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/main_classes/processors.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update  logging.md

* Update toctree.yml

* Update docs/source/ja/main_classes/deepspeed.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Add suggesitons

* m

* Update docs/source/ja/main_classes/trainer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update toctree.yml

* Update Quantization.md

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update toctree.yml

* Update docs/source/en/main_classes/deepspeed.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/main_classes/deepspeed.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-30 09:39:14 -07:00
9093b19b13 🌐 [i18n-ZH] Translate serialization.md into Chinese (#27076)
* docs(zh): translate serialization.md

* docs(zh): add space around links
2023-10-30 08:50:29 -07:00
3224c0c13f Remove some Kosmos-2 copied from (#27149)
* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-30 16:07:27 +01:00
cd19b19378 make tests of pytorch_example device agnostic (#27081) 2023-10-30 14:56:41 +00:00
6b466771b0 [tests / Quantization] Fix bnb test (#27145)
* fix bnb test

* link to GH issue
2023-10-30 15:43:08 +01:00
576994963f Fix some tests using "common_voice" (#27147)
* Use mozilla-foundation/common_voice_11_0

* Update expected values

* Update expected values

* For test_word_time_stamp_integration

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-30 15:27:15 +01:00
691fd8fdde Add Kosmos-2 model (#24709)
* Add KOSMOS-2 model

* update

* update

* update

* address review comment - 001

* address review comment - 002

* address review comment - 003

* style

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

* address review comment - 004

* address review comment - 005

* address review comment - 006

* address review comment - 007

* address review comment - 008

* address review comment - 009

* address review comment - 010

* address review comment - 011

* update readme

* fix

* fix

* fix

* [skip ci] fix

* revert the change in _decode

* fix docstring

* fix docstring

* Update docs/source/en/model_doc/kosmos-2.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* no more Kosmos2Tokenizer

* style

* remove "returned when being computed by the model"

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* UTM5 Atten

* fix attn mask

* use present_key_value_states instead of next_decoder_cache

* style

* conversion scripts

* conversion scripts

* conversion scripts

* Add _reorder_cache

* fix doctest and copies

* rename 1

* rename 2

* rename 3

* make fixup

* fix table

* fix docstring

* rename 4

* change repo_id

* remove tip

* update md file

* make style

* update md file

* put docs/source/en/model_doc/kosmos-2.md to slow

* update conversion script

* Use CLIPImageProcessor in Kosmos2Processor

* Remove Kosmos2ImageProcessor

* Remove to_dict in Kosmos2Config

* Remove files

* fix import

* Update conversion

* normalized=False

* Not using hardcoded values like <image>

* elt --> element

* Apply suggestion

* Not using hardcoded values like </image>

* No assert

* No nested functions

* Fix md file

* copy

* update doc

* fix docstring

* fix name

* Remove _add_remove_spaces_around_tag_tokens

* Remove dummy docstring of _preprocess_single_example

* Use `BatchEncoding`

* temp

* temp

* temp

* Update

* Update

* Make Kosmos2ProcessorTest a bit pretty

* Update gradient checkpointing

* Fix gradient checkpointing test

* Remove one liner remove_special_fields

* Simplify conversion script

* fix add_eos_token

* update readme

* update tests

* Change to microsoft/kosmos-2-patch14-224

* style

* Fix doc

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-30 13:32:17 +01:00
d751dbecb2 remove the obsolete code related to fairscale FSDP (#26651)
* remove the obsolete code related to fairscale FSDP

* apple review suggestion
2023-10-30 11:55:03 +00:00
5fbed2d7ca [Trainer / GC] Add gradient_checkpointing_kwargs in trainer and training arguments (#27068)
* add `gradient_checkpointing_kwargs` in trainer and training arguments

* add comment

* add test - currently failing

* now tests pass
2023-10-30 12:41:48 +01:00
e830495c1c Fix data2vec-audio note about attention mask (#27116)
fix data2vec audio note about attention mask
2023-10-30 10:52:24 +00:00
160432110c [FA2/ Mistral] Revert previous behavior with right padding + forward (#27125)
Update modeling_mistral.py
2023-10-30 11:04:50 +01:00
211ad4c9cc Fix slack report failing for doctest (#27042)
* fix slack report for doctest

* separate reports

* style

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-30 10:48:24 +01:00
722e936491 [Typo fix] flag config in WANDB (#27130)
typo fix flag config
2023-10-29 18:22:26 +00:00
9e87618f2b Fix docstring and type hint for resize (#27104)
fix docstring and type hint for resize
2023-10-27 16:50:10 -03:00
ef23b68ebf translate transformers_agents.md to Chinese (#27046)
* update translation

* fix problems mentioned in reviews
2023-10-27 12:45:43 -07:00
96f9e78f4c Added Telugu [te] translation for README.md in main (#27077)
* Create index.md

* Create _toctree.yml

* Updated index.md in telugu

* Update _toctree.yml

* Create quicktour.md

* Update quicktour.md

* Create index.md

* Update quicktour.md

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Delete docs/source/hi/index.md

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update build_documentation.yml

Added telugu [te]

* Update build_pr_documentation.yml

Added Telugu [te]

* Update _toctree.yml

* Create README_te.md

Telugu translation for README.md

* Update README_te.md

Added Telugu translation for Readme.md

* Update README_te.md

* Update README_te.md

* Update README_te.md

* Update README_te.md

* Update README.md

* Update README_es.md

* Update README_es.md

* Update README_hd.md

* Update README_ja.md

* Update README_ko.md

* Update README_pt-br.md

* Update README_ru.md

* Update README_zh-hans.md

* Update README_zh-hant.md

* Update README_te.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-27 11:40:10 -07:00
ac5893756b [Attention Mask] Refactor all encoder-decoder attention mask (#27086)
* [FA2 Bart] Add FA2 to all Bart-like

* better

* Refactor attention mask

* remove all customized atteniton logic

* format

* mass rename

* replace _expand_mask

* replace _expand_mask

* mass rename

* add pt files

* mass replace & rename

* mass replace & rename

* mass replace & rename

* mass replace & rename

* Update src/transformers/models/idefics/modeling_idefics.py

* fix more

* clean more

* fix more

* make style

* fix again

* finish

* finish

* finish

* finish

* finish

* finish

* finish

* finish

* finish

* finish

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* small fix mistral

* finish

* finish

* finish

* finish

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-10-27 16:42:01 +02:00
29c74f58ae fix detr device map (#27089)
* fix detr device map

* add comments
2023-10-27 10:28:12 -04:00
ffff9e70ab [core/ gradient_checkpointing] Refactor GC - part 2 (#27073)
* fix

* more fixes

* fix other models

* fix long t5

* use `gradient_checkpointing_func` instead

* fix copies

* set `gradient_checkpointing_func` as a private attribute and retrieve previous behaviour

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* replace it with `is_gradient_checkpointing_set`

* remove default

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-27 16:15:22 +02:00
5be1fb6d1f Fix no split modules underlying modules (#27090)
* fix no split

* style

* remove comm

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* rename modules

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-27 09:49:20 -04:00
66b088faf0 Provide alternative when warning on use_auth_token (#27105) 2023-10-27 14:32:54 +02:00
e2bffcfafd Add early stopping for Bark generation via logits processor (#26675)
* add early stopping logits processor

* black formmated

* indent

* follow method signature

* actual logic

* check for None

* address comments on docstrings and method signature

* add unit test under `LogitsProcessorTest` wip

* unit test passing

* black formatted

* condition per sample

* add to BarkModelIntegrationTests

* wip BarkSemanticModelTest

* rename and add to kwargs handling

* not add to BarkSemanticModelTest

* correct logic and assert last outputs tokens different in test

* doc-builder style

* read from kwargs as well

* assert len of with less than that of without

* ruff

* add back seed and test case

* add original impl default suggestion

* doc-builder

* rename and use softmax

* switch back to LogitsProcessor and update docs wording

* camelCase and spelling and saving compute

* assert strictly less than

* assert less than

* expand test_generate_semantic_early_stop instead
2023-10-27 11:07:33 +01:00
90ee9cea19 Revert "add exllamav2 arg" (#27102)
Revert "add exllamav2 arg (#26437)"

This reverts commit 8214d6e7b1d6ac25859ad745ccebdf73434e166d.
2023-10-27 11:23:06 +02:00
aa4198a238 [T5Tokenizer] Fix fast and extra tokens (#27085)
* v4.35.dev.0

* nit t5fast match t5 slow
2023-10-27 08:18:24 +02:00
6f31601687 Added huggingface emoji instead of the markdown format (#27091)
Added huggingface emoji instead of the markdown format as it was not displaying the required emoji in that format
2023-10-26 14:10:16 -07:00
34a640642b Save TB logs as part of push_to_hub (#27022)
* Support runs/

* Upload runs folder as part of push to hub

* Add a test

* Add to test deps

* Update with proposed solution from Slack

* Ensure that repo gets deleted in tests
2023-10-26 12:13:19 -04:00
1892592530 Correct docstrings and a typo in comments (#27047)
* docs(training_args): correct docstrings

Correct docstrings of these methods in `TrainingArguments`:

- `set_save`
- `set_logging`

* docs(training_args): adjust words in docstrings

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* docs(trainer): correct a typo in comments

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-26 08:46:17 -07:00
8214d6e7b1 add exllamav2 arg (#26437)
* add_ xllamav2 arg

* add test

* style

* add check

* add doc

* replace by use_exllama_v2

* fix tests

* fix doc

* style

* better condition

* fix logic

* add deprecate msg
2023-10-26 10:15:05 -04:00
d7cb5e138e [Llama FA2] Re-add _expand_attention_mask and clean a couple things (#27074)
* clean

* clean llama

* fix more

* make style

* Apply suggestions from code review

* Apply suggestions from code review

* Update src/transformers/models/llama/modeling_llama.py

* Update src/transformers/models/llama/modeling_llama.py

* Apply suggestions from code review

* finish

* make style
2023-10-26 13:06:21 +02:00
4864d08d3e Add-support for commit description (#26704)
* fix

* update

* revert

* add dosctring

* good to go

* update

* add a test
2023-10-26 12:37:09 +02:00
15cd096288 Create SECURITY.md 2023-10-26 12:26:47 +02:00
fe2877ce21 Remove unneeded prints in modeling_gpt_neox.py (#27080) 2023-10-26 11:55:31 +02:00
efba1a1744 Bumpflash_attn version to 2.1 (#27079)
* pin FA-2 to `2.1`

* fix on modeling
2023-10-26 11:21:04 +02:00
90412401e6 Bring back set_epoch for Accelerate-based dataloaders (#26850)
* Working tests!

* Fix sampler

* Fix

* Update src/transformers/trainer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix check

* Clean

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-26 11:20:11 +02:00
3c2692407d Bump urllib3 from 1.26.17 to 1.26.18 in /examples/research_projects/lxmert (#26888)
Bump urllib3 in /examples/research_projects/lxmert

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.17 to 1.26.18.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.17...1.26.18)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-26 09:10:29 +02:00
9c5240af14 Bump werkzeug from 2.2.3 to 3.0.1 in /examples/research_projects/decision_transformer (#27072)
Bump werkzeug in /examples/research_projects/decision_transformer

Bumps [werkzeug](https://github.com/pallets/werkzeug) from 2.2.3 to 3.0.1.
- [Release notes](https://github.com/pallets/werkzeug/releases)
- [Changelog](https://github.com/pallets/werkzeug/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/werkzeug/compare/2.2.3...3.0.1)

---
updated-dependencies:
- dependency-name: werkzeug
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-26 08:56:28 +02:00
df2eebf1e7 Handle unsharded Llama2 model types in conversion script (#27069)
Handle all unshared models types
2023-10-26 08:41:07 +02:00
a2f55a65cd Hindi translation of pipeline_tutorial.md (#26837)
* hindi translation of pipeline_tutorial.md

* Update pipeline_tutorial.md

* Update build_documentation.yml

* Update build_pr_documentation.yml

* Updated build_documentation.yml

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-25 11:21:49 -07:00
ba5144f7a9 🌐 [i18n-ZH] Translate custom_models.md into Chinese (#27065)
* docs(zh): translate custom_models.md

* minor fix in customer_models

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-25 11:20:32 -07:00
c34c50cdc0 [docs] Add MaskGenerationPipeline in docs (#27063)
* add `MaskGenerationPipeline` in docs

* Update __init__.py

* fix repo consistency and clarify docstring

* add on check docstirngs

* actually we do have a tf sam

* oops
2023-10-25 19:31:36 +02:00
ba073ea9e3 [DOCS] minor fixes in README.md (#27048)
minor fixes
2023-10-25 10:21:13 -07:00
a64f8c1f87 [docstring] fix incorrect llama docstring: encoder -> decoder (#27071)
fix incorrect docstring: encoder -> decoder
2023-10-25 18:09:04 +02:00
0baa9246cb Fix TypicalLogitsWarper tensor OOB indexing edge case (#26579)
* Fix TypicalLogitsWarper tensor OOB indexing edge case

This can be triggerd fairly quickly with low precision e.g. bfloat16 and typical_p = 0.99.

* Shift threshold index by one

* Use explicit named arg for clamp min
2023-10-25 11:36:43 +01:00
06e782da4e [core] Refactor of gradient_checkpointing (#27020)
* v1

* fix

* remove `create_custom_forward`

* fixup

* fixup

* add test and fix all failing GC tests

* remove all remaining `create_custom_forward` methods

* fix idefics bug

* fixup

* replace with `__call__`

* add comment

* quality
2023-10-25 12:16:15 +02:00
9286f0ac39 Skip-test (#27062)
* skip plbart test

* nits

* update
2023-10-25 10:47:33 +02:00
6cbc1369a3 Fix RoPE config validation for FalconConfig + various config typos (#26929)
* Resolve incorrect ValueError in RoPE config for Falcon

* Add broken codeblock tag in Falcon Config

* Fix typo: an float -> a float

* Implement copy functionality for Fuyu and Persimmon

for RoPE scaling validation

* Make style
2023-10-24 18:37:09 +01:00
a0fd34483f Add a default decoder_attention_mask for EncoderDecoderModel during training (#26752)
* Add a default decoder_attention_mask for EncoderDecoderModel during training

Since we are already creating the default decoder_input_ids from the labels, we should also
create a default decoder_attention_mask to go with it.

* Fix test constant that relied on manual_seed()

The test was changed to use a decoder_attention_mask that ignores padding instead (which is
the default one created by BERT when attention_mask is None).

* Create the decoder_attention_mask using decoder_input_ids instead of labels

* Fix formatting in test
2023-10-24 18:26:16 +01:00
9333bf0769 [docs] Performance docs refactor p.2 (#26791)
* initial edits

* improvements for clarity and flow

* improvements for clarity and flow, removed the repetead section

* removed two docs that had no content

* Revert "removed two docs that had no content"

This reverts commit e98fa2fa0d8e171163f15cb8a04bdada1053543b.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* feedback addressed

* more feedback addressed

* feedback addressed

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-24 13:10:06 -04:00
13ef14e18e Fix config silent copy in from_pretrained (#27043)
* Fix config modeling utils

* fix more

* fix attn mask bug

* Update src/transformers/modeling_utils.py
2023-10-24 19:05:37 +02:00
9da451713d Device agnostic testing (#25870)
* adds agnostic decorators and availability fns

* renaming decorators and fixing imports

* updating some representative example tests
bloom, opt, and reformer for now

* wip device agnostic functions

* lru cache to device checking functions

* adds `TRANSFORMERS_TEST_DEVICE_SPEC`
if present, imports the target file and updates device to function
mappings

* comments `TRANSFORMERS_TEST_DEVICE_SPEC` code

* extra checks on device name

* `make style; make quality`

* updates default functions for agnostic calls

* applies suggestions from review

* adds `is_torch_available` guard

* Add spec file to docs, rename function dispatch names to backend_*

* add backend import to docs example for spec file

* change instances of  to

* Move register backend to before device check as per @statelesshz changes

* make style

* make opt test require fp16 to run

---------

Co-authored-by: arsalanu <arsalanu@graphcore.ai>
Co-authored-by: arsalanu <hzji210@gmail.com>
2023-10-24 16:49:26 +02:00
41496b95da Add fuyu device map (#26949)
* add _no_split_modules

* style

* fix _no_split_modules

* add doc
2023-10-24 09:10:23 -04:00
b18e31407c add info on TRL docs (#27024)
* add info on TRL docs

* add TRL link

* tweak text

* tweak text
2023-10-24 14:56:00 +02:00
cb0c68069d Safe import of rgb_to_id from FE modules (#27037)
Safe import from FE modules
2023-10-24 13:40:16 +01:00
7bde5d634f [TFxxxxForSequenceClassifciation] Fix the eager mode after #25085 (#25751)
* TODOS

* Switch .shape -> shape_list

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2023-10-24 13:33:05 +01:00
e2d6d5ce57 Normalize only if needed (#26049)
* Normalize only if needed

* Update examples/pytorch/image-classification/run_image_classification.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* if else in one line

* within block

* one more place, sorry for mess

* import order

* Update examples/pytorch/image-classification/run_image_classification.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/pytorch/image-classification/run_image_classification_no_trainer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-10-24 13:32:03 +01:00
JP
576e2823a3 Add descriptive docstring to WhisperTimeStampLogitsProcessor (#25642)
* adding in logit examples for Whisper processor

* adding in updated logits processor for Whisper

* adding in cleaned version of  logits processor for Whisper

* adding docstrings for whisper processor

* making sure the formatting is correct

* adding logits after doc builder

* Update src/transformers/generation/logits_process.py

Adding in suggested fix to the LogitProcessor description.

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/logits_process.py

Removing tip per suggestion.

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/logits_process.py

Removing redundant code per suggestion.

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* adding in revised version

* adding in version with timestamp examples

* Update src/transformers/generation/logits_process.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* enhanced paragraph on behavior of processor

* fixing doc quality issue

* removing the word poem from example

* adding in updated docstring

* adding in new version of file after doc-builder

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-24 12:02:06 +02:00
fc142bd775 Add default_to_square_for_size to CLIPImageProcessor (#26965)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-24 11:08:17 +02:00
cc7803c0a6 Register ModelOutput as supported torch pytree nodes (#26618)
* Register ModelOutput as supported torch pytree nodes

* Test ModelOutput as supported torch pytree nodes

* Update type hints for pytree unflatten functions
2023-10-24 11:02:40 +02:00
ede051f1b8 Fix key dtype in GPTJ and CodeGen (#26836)
* fix key dtype in gptj and codegen

* delay the key cast to a later point

* fix
2023-10-24 16:55:14 +09:00
32f799db0d 🌐 [i18n-ZH] Translate create_a_model.md into Chinese (#27026)
docs(zh): translate create_a_model.md
2023-10-23 15:44:42 -07:00
25c022d7c5 Fix little typo (#27028) 2023-10-23 15:36:42 -07:00
f370bebdc3 Bugfix device map detr model (#26849)
* Fixed replace_batch_norm when on meta device

* lint fix

* Adding coauthor

Co-authored-by: Pi Esposito <piero.skywalker@gmail.com>

* Removed tests

* Remove unused deps

* Try to fix copy issue

* try fix copy one more time

* Reverted import changes

---------

Co-authored-by: Pi Esposito <piero.skywalker@gmail.com>
2023-10-23 14:34:27 -04:00
b0d1d7f71a translate preprocessing.md to Chinese (#26955)
* translate preprocessing.md to Chinese

* update files fixing problems mentioned in review

* update files fixing problems mentioned in review

---------

Co-authored-by: jiaqiw <wangjiaqi50@huawei.com>
2023-10-23 10:36:24 -07:00
19ae0505ae 🌐 [i18n-ZH] Translate multilingual into Chinese (#26935)
translate multilingual into Chinese

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-23 10:35:17 -07:00
33f98cfded Remove ambiguous padding_mask and instead use a 2D->4D Attn Mask Mapper (#26792)
* [Attn Mask Converter] refactor attn mask

* up

* Apply suggestions from code review

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>

* improve

* rename

* better cache

* renaming

* improve more

* improve

* fix bug

* finalize

* make style & make fix-copies

* correct more

* start moving attention_mask

* fix llama

* improve falcon

* up

* improve more

* improve more

* Update src/transformers/models/owlv2/modeling_owlv2.py

* make style

* make style

* rename to converter

* Apply suggestions from code review

---------

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
2023-10-23 18:54:00 +02:00
f09a081d27 Translate pipeline_tutorial.md to chinese (#26954)
* update translation of pipeline_tutorial and preprocessing(Version1.0)

* update translation of pipeline_tutorial and preprocessing(Version2.0)

* update translation docs

* update to fix problems mentioned in review

---------

Co-authored-by: jiaqiw <wangjiaqi50@huawei.com>
2023-10-23 08:58:00 -07:00
f7354a3bd6 Remove token_type_ids from default TF GPT-2 signature (#26962)
Remove token_type_ids from default GPT-2 signature
2023-10-23 16:18:02 +01:00
c0b5ad9473 small typos found (#26988)
just very small typos found
2023-10-23 11:08:39 -03:00
f9f27b0fc2 [SeamlessM4T] fix copies with NLLB MoE int8 (#27018)
fix copies on newly merged model
2023-10-23 15:25:06 +02:00
244a53e0f6 [NLLB-MoE] Fix NLLB MoE 4bit inference (#27012)
fix NLLB MoE 4bit
2023-10-23 14:54:22 +02:00
cb45f71c4d Add Seamless M4T model (#25693)
* first raw commit

* still POC

* tentative convert script

* almost working speech encoder conversion scripts

* intermediate code for encoder/decoders

* add modeling code

* first version of speech encoder

* make style

* add new adapter layer architecture

* add adapter block

* add first tentative config

* add working speech encoder conversion

* base model convert works now

* make style

* remove unnecessary classes

* remove unecessary functions

* add modeling code speech encoder

* rework logics

* forward pass of sub components work

* add modeling codes

* some config modifs and modeling code modifs

* save WIP

* new edits

* same output speech encoder

* correct attention mask

* correct attention mask

* fix generation

* new generation logics

* erase comments

* make style

* fix typo

* add some descriptions

* new state

* clean imports

* add tests

* make style

* make beam search and num_return_sequences>1 works

* correct edge case issue

* correct SeamlessM4TConformerSamePadLayer copied from

* replace ACT2FN relu by nn.relu

* remove unecessary return variable

* move back a class

* change name conformer_attention_mask ->conv_attention_mask

* better nit code

* add some Copied from statements

* small nits

* small nit in dict.get

* rename t2u model -> conditionalgeneration

* ongoing refactoring of structure

* update models architecture

* remove SeamlessM4TMultiModal classes

* add tests

* adapt tests

* some non-working code for vocoder

* add seamlessM4T vocoder

* remove buggy line

* fix some hifigan related bugs

* remove hifigan specifc config

* change

* add WIP tokenization

* add seamlessM4T working tokenzier

* update tokenization

* add tentative feature extractor

* Update converting script

* update working FE

* refactor input_values -> input_features

* update FE

* changes in generation, tokenizer and modeling

* make style and add t2u_decoder_input_ids

* add intermediate outputs for ToSpeech models

* add vocoder to speech models

* update valueerror

* update FE with languages

* add vocoder convert

* update config docstrings and names

* update generation code and configuration

* remove todos and update config.pad_token_id to generation_config.pad_token_id

* move block vocoder

* remove unecessary code and uniformize tospeech code

* add feature extractor import

* make style and fix some copies from

* correct consistency + make fix-copies

* add processor code

* remove comments

* add fast tokenizer support

* correct pad_token_id in M4TModel

* correct config

* update tests and codes  + make style

* make some suggested correstion - correct comments and change naming

* rename some attributes

* rename some attributes

* remove unecessary sequential

* remove option to use dur predictor

* nit

* refactor hifigan

* replace normalize_mean and normalize_var with do_normalize + save lang ids to generation config

* add tests

* change tgt_lang logic

* update generation ToSpeech

* add support import SeamlessM4TProcessor

* fix generate

* make tests

* update integration tests, add option to only return text and update tokenizer fast

* fix wrong function call

* update import and convert script

* update integration tests + update repo id

* correct paths and add first test

* update how new attention masks are computed

* update tests

* take first care of batching in vocoder code

* add batching with the vocoder

* add waveform lengths to model outputs

* make style

* add generate kwargs + forward kwargs of M4TModel

* add docstrings forward methods

* reformate docstrings

* add docstrings t2u model

* add another round of modeling docstrings + reformate speaker_id -> spkr_id

* make style

* fix check_repo

* make style

* add seamlessm4t to toctree

* correct check_config_attributes

* write config docstrings + some modifs

* make style

* add docstrings tokenizer

* add docstrings to processor, fe and tokenizers

* make style

* write first version of model docs

* fix FE + correct FE test

* fix tokenizer + add correct integration tests

* fix most tokenization tests

* make style

* correct most processor test

* add generation tests and fix num_return_sequences > 1

* correct integration tests -still one left

* make style

* correct position embedding

* change numbeams to 1

* refactor some modeling code and correct one test

* make style

* correct typo

* refactor intermediate fnn

* refactor feedforward conformer

* make style

* remove comments

* make style

* fix tokenizer tests

* make style

* correct processor tests

* make style

* correct S2TT integration

* Apply suggestions from Sanchit code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* correct typo

* replace torch.nn->nn + make style

* change Output naming (waveforms -> waveform) and ordering

* nit renaming and formating

* remove return None when not necessary

* refactor SeamlessM4TConformerFeedForward

* nit typo

* remove almost copied from comments

* add a copied from comment and remove an unecessary dropout

* remove inputs_embeds from speechencoder

* remove backward compatibiliy function

* reformate class docstrings for a few components

* remove unecessary methods

* split over 2 lines smthg hard to read

* make style

* replace two steps offset by one step as suggested

* nice typo

* move warnings

* remove useless lines from processor

* make generation non-standard test more robusts

* remove torch.inference_mode from tests

* split integration tests

* enrich md

* rename control_symbol_vocoder_offset->vocoder_offset

* clean convert file

* remove tgt_lang and src_lang from FE

* change generate docstring of ToText models

* update generate docstring of tospeech models

* unify how to deal withtext_decoder_input_ids

* add default spkr_id

* unify tgt_lang for t2u_model

* simplify tgt_lang verification

* remove a todo

* change config docstring

* make style

* simplify t2u_tgt_lang_id

* make style

* enrich/correct comments

* enrich .md

* correct typo in docstrings

* add torchaudio dependency

* update tokenizer

* make style and fix copies

* modify SeamlessM4TConverter with new tokenizer behaviour

* make style

* correct small typo docs

* fix import

* update docs and add requirement to tests

* add convert_fairseq2_to_hf in utils/not_doctested.txt

* update FE

* fix imports and make style

* remove torchaudio in FE test

* add seamless_m4t.md to utils/not_doctested.txt

* nits and change the way docstring dataset is loaded

* move checkpoints from ylacombe/ to facebook/ orga

* refactor warning/error to be in the 119 line width limit

* round overly precised floats

* add stereo audio behaviour

* refactor .md and make style

* enrich docs with more precised architecture description

* readd undocumented models

* make fix-copies

* apply some suggestions

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* correct bug from previous commit

* refactor a parameter allowing to clean the code + some small nits

* clean tokenizer

* make style and fix

* make style

* clean tokenizers arguments

* add precisions for some tests

* move docs from not_tested to slow

* modify tokenizer according to last comments

* add copied from statements in tests

* correct convert script

* correct parameter docstring style

* correct tokenization

* correct multi gpus

* make style

* clean modeling code

* make style

* add copied from statements

* add copied statements

* add support with ASR pipeline

* remove file added inadvertently

* fix docstrings seamlessM4TModel

* add seamlessM4TConfig to OBJECTS_TO_IGNORE due of unconventional markdown

* add seamlessm4t to assisted generation ignored models

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-23 14:49:48 +02:00
50d0cf4f6b Change default max_shard_size to smaller value (#26942)
* Update modeling_utils.py

* fixup

* let's change it to 5GB

* fix
2023-10-23 14:25:48 +02:00
d33d313192 Nits in Llama2 docstring (#26996)
Update llama2.md
2023-10-23 14:19:59 +02:00
ef978d0a7b skip two tests (#27013)
* skip two tests

* skip torch as well

* fixup
2023-10-23 12:52:05 +02:00
45425660d0 python falcon doc-string example typo (#26995)
git python falcon typo
2023-10-23 12:51:35 +02:00
700329493d Limit to inferior fsspec version (#27010)
Pin fsspec
2023-10-23 12:34:21 +02:00
YQ
f71c9ccf59 fix logit-to-multi-hot conversion in example (#26936)
* fix logit to multi-hot converstion

* add comments

* typo
2023-10-23 12:33:05 +02:00
093848d3cc Added Telugu [te] translations (#26828)
* Create index.md

* Create _toctree.yml

* Updated index.md in telugu

* Update _toctree.yml

* Create quicktour.md

* Update quicktour.md

* Create index.md

* Update quicktour.md

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Delete docs/source/hi/index.md

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update build_documentation.yml

Added telugu [te]

* Update build_pr_documentation.yml

Added Telugu [te]

* Update _toctree.yml

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-20 15:27:55 -07:00
224794b011 Update README_hd.md (#26872)
* Update README_hd.md

- Fixed broken links
I hope this small contribution adds value to this project.

* Update README_hd.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-20 14:23:41 -07:00
c030fc8913 Fix Fuyu image scaling bug (#26918)
* Fix Fuyu image scaling bug

It could produce negative padding and hence inference errors for certain
image sizes.

* Fix aspect ratio scaling test
2023-10-20 13:46:06 +02:00
9b1976697d fix set_transform link docs (#26856)
* fix set_transform link

* Update docs/source/en/preprocessing.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* use doc-builder sintax

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-20 11:16:37 +02:00
929134bf65 [docstring] Fix docstring for speech-to-text config (#26883)
* Fix docstring for speech-to-text config

* Refactor doc line len <= 119 char

* Remove Speech2TextConfig from OBJECTS_TO_IGNORE

* Fix Speech2TextConfig doc str

* Fix Speech2TextConfig doc using doc-builder

* Refactor Speech2TextConfig doc
2023-10-20 09:49:55 +02:00
08a2edfc66 Corrected modalities description in README_ru.md (#26913)
Update README_ru.md

Corrected modalities description in README
2023-10-19 09:30:27 -07:00
ae4fb84629 Generate: update basic llm tutorial (#26937) 2023-10-19 16:53:28 +01:00
bc4bbd9f6e [FA-2 / Mistral] Supprot fa-2 + right padding + forward (#26912)
supprot fa-2 + right padding + forward
2023-10-19 15:48:49 +02:00
cbd278f0f6 Pin Keras for now (#26904)
* Pin Keras for now out of paranoia

* Add the keras pin to _tests_requirements.txt too

* Make sure the Keras version matches the TF one

* make fixup
2023-10-19 14:39:31 +01:00
73dc23f786 Fix license (#26931) 2023-10-19 15:36:41 +02:00
ad08137e47 [docstring] Fix docstrings for CodeGen (#26821)
* remove docstrings CodeGen from objects_to_ignore

* autofix codegen docstrings

* fill in the missing types and docstrings

* fixup

* change descriptions to be in a separate line

* apply docstring suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* update n_ctx description in CodeGenConfig

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-10-19 14:21:40 +02:00
bdbcd5d482 Fix and re-enable ConversationalPipeline tests (#26907)
* Fix and re-enable conversationalpipeline tests

* Fix the batch test so the change only applies to conversational pipeline
2023-10-19 12:04:25 +01:00
734dd96e02 [Docs] Make sure important decode and generate method are nicely displayed in Whisper docs (#26927)
better docstrings whisper
2023-10-19 13:01:47 +02:00
816c2237c1 [docstring] Fix docstring for ChineseCLIP (#26880)
* Remove ChineseCLIPImageProcessor, ChineseCLIPTextConfig, ChineseCLIPVisionConfig from check_docstrings

* Run fix_and_overwrite for ChineseCLIPImageProcessor, ChineseCLIPTextConfig, ChineseCLIPVisionConfig

* Replace <fill_type> and <fill_docstring> in configuration_chinese_clip.py, image_processing_chinese_clip.py with type and docstring values

---------

Co-authored-by: vignesh-raghunathan <vignesh_raghunathan@intuit.com>
2023-10-19 10:52:14 +02:00
574a538455 [FA-2] Revert suggestion that broke FA2 fine-tuning with quantized models (#26916)
revert
2023-10-19 00:36:24 +02:00
caa0ff0bf1 Add fuyu model (#26911)
* initial commit

* add processor, add fuyu naming

* add draft processor

* fix processor

* remove dropout to fix loading of weights

* add image processing fixes from Pedro

* fix

* fix processor

* add basic processing fuyu test

* add documentation and TODO

* address comments, add tests, add doc

* replace assert with torch asserts

* add Mixins and fix tests

* clean imports

* add model tester, clean imports

* fix embedding test

* add updated tests from pre-release model

* Processor: return input_ids used for inference

* separate processing and model tests

* relax test tolerance for embeddings

* add test for logit comparison

* make sure fuyu image processor is imported in the init

* fix formattingh

* more formatting issues

* and more

* fixups

* remove some stuff

* nits

* update init

* remove the fuyu file

* Update integration test with release model

* Update conversion script.

The projection is not used, as confirmed by the authors.

* improve geenration

* Remove duplicate function

* Trickle down patches to model call

* processing fuyu updates

* remove things

* fix prepare_inputs_for_generation to fix generate()

* remove model_input

* update

* add generation tests

* nits

* draft leverage automodel and autoconfig

* nits

* fix dtype patch

* address comments, update READMEs and doc, include tests

* add working processing test, remove refs to subsequences

* add tests, remove Sequence classification

* processing

* update

* update the conversion script

* more processing cleanup

* safe import

* take out ModelTesterMixin for early release

* more cl;eanup

* more cleanup

* more cleanup

* and more

* register a buffer

* nits

* add postprocessing of generate output

* nits

* updates

* add one working test

* fix test

* make fixup works

* fixup

* Arthur's updates

* nits

* update

* update

* fix processor

* update tests

* passe more fixups

* fix

* nits

* don't import torch

* skip fuyu config for now

* fixup done

* fixup

* update

* oups

* nits

* Use input embeddings

* no buffer

* update

* styling processing fuyu

* fix test

* update licence

* protect torch import

* fixup and update not doctested

* kwargs should be passed

* udpates

* update the impofixuprts in the test

* protect import

* protecting imports

* protect imports in type checking

* add testing decorators

* protect top level import structure

* fix typo

* fix check init

* move requires_backend to functions

* Imports

* Protect types

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-10-18 15:24:11 -07:00
5a73316bed [FA-2] Final fix for FA2 dtype (#26846)
* final fix for FA2 dtype

* try

* oops

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* apply fix everywhere

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-18 19:48:55 +02:00
732d2a8aac [i18n-ZH] Translated fast_tokenizers.md to Chinese (#26910)
docs: translate fast_tokenizers into Chinese
2023-10-18 10:45:41 -07:00
eec5a3a8d8 Refactor code part in documentation translated to japanese (#26900)
Refactor code in documentation
2023-10-18 10:35:58 -07:00
d933818d67 Add default template warning (#26637)
* Add default template warnings

* make fixup

* Move warnings to FutureWarning

* Move warnings to FutureWarning

* fix make fixup

* Remove futurewarning
2023-10-18 17:38:52 +01:00
de55ead1f1 Emergency PR to skip conversational tests to fix CI (#26906) 2023-10-18 15:33:43 +01:00
ef7e93699a [Tokenizer] Fix slow and fast serialization (#26570)
* fix

* last attempt

* current work

* fix forward compatibility

* save all special tokens

* current state

* revert additional changes

* updates

* remove tokenizer.model

* add a test and the fix

* nit

* revert one more break

* fix typefield issue

* quality

* more tests

* fix fields for FC

* more nits?

* new additional changes

* how

* some updates

* simplify all

* more nits

* revert some things to original

* nice

* nits

* a small hack

* more nits

* ahhaha

* fixup

* update

* make test run on ci

* use subtesting

* update

* Update .circleci/create_circleci_config.py

* updates

* fixup

* nits

* replace typo

* fix the test

* nits

* update

* None max dif pls

* a partial fix

* had to revert one thing

* test the fast

* updates

* fixup

* and more nits

* more fixes

* update

* Oupsy 👁️

* nits

* fix marian

* on our way to heaven

* Update src/transformers/models/t5/tokenization_t5.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* fixup

* Update src/transformers/tokenization_utils_fast.py

Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com>

* fix phobert

* skip some things, test more

* nits

* fixup

* fix deberta

* update

* update

* more updates

* skip one test

* more updates

* fix camembert

* can't test this one

* more good fixes

* kind of a major update

- seperate what is only done in fast in fast init and refactor
- add_token(AddedToken(..., speicla = True)) ignores it in fast
- better loading

* fixup

* more fixups

* fix pegasus and mpnet

* remove skipped tests

* fix phoneme tokenizer if self.verbose

* fix individual models

* update common tests

* update testing files

* all over again

* nits

* skip test for markup lm

* fixups

* fix order of addition in fast by sorting the added tokens decoder

* proper defaults for deberta

* correct default for fnet

* nits on add tokens, string initialized to special if special

* skip irrelevant herbert tests

* main fixes

* update test added_tokens_serialization

* the fix for bart like models and class instanciating

* update bart

* nit!

* update idefix test

* fix whisper!

* some fixup

* fixups

* revert some of the wrong chanegs

* fixup

* fixup

* skip marian

* skip the correct tests

* skip for tf and flax as well

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com>
2023-10-18 16:30:53 +02:00
34678db4a1 Fix Seq2seqTrainer decoder attention mask (#26841)
Don't drop decoder_input_ids without also dropping decoder_attention_mask
2023-10-18 13:28:15 +01:00
280c757f6c Knowledge distillation for vision guide (#25619)
* Knowledge distillation for vision guide

* Update knowledge_distillation_for_image_classification.md

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Iterated on Rafael's comments

* Added to toctree

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Addressed comments

* Update knowledge_distillation_for_image_classification.md

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update knowledge_distillation_for_image_classification.md

* Update knowledge_distillation_for_image_classification.md

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Address comments

* Update knowledge_distillation_for_image_classification.md

* Explain KL Div

---------

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Maria Khalusova <kafooster@gmail.com>
2023-10-18 04:42:32 -07:00
bece55d8f9 Bump urllib3 from 1.26.17 to 1.26.18 in /examples/research_projects/decision_transformer (#26889)
Bump urllib3 in /examples/research_projects/decision_transformer

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.17 to 1.26.18.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.17...1.26.18)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-18 13:31:06 +02:00
6d644d6852 Bump urllib3 from 1.26.17 to 1.26.18 in /examples/research_projects/visual_bert (#26890)
Bump urllib3 in /examples/research_projects/visual_bert

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.17 to 1.26.18.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.17...1.26.18)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-18 04:30:50 -07:00
e893b1efbb Generate: improve docstrings for custom stopping criteria (#26863)
improve docstrings
2023-10-18 09:55:01 +01:00
ef42cb6274 Fix TensorFlow pakage check (#26842)
Add tf-nightly-rocm to _is_tf_available check
2023-10-17 23:15:50 +01:00
b002353dca Translating en/internal folder docs to Japanese 🇯🇵 (#26747)
* Add translation to fitst 3 file of internal folder

* Update Toctree.md and add files

* Update docs/source/ja/internal/generation_utils

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Rename generation_utils file

* rename pipelines_utils.md

* Change file names

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-17 15:01:21 -07:00
46092f763d Fixed a typo in mistral.md (#26879)
Fix a typo in mistral.md
2023-10-17 14:06:37 -07:00
51042ae8e5 [docstring] Fix docstring for LukeConfig (#26858)
* Deleted LukeConfig and ran check_docstrings.py

* Filled docstring information

---------

Co-authored-by: louie <louisparizeau@Chicken.local>
2023-10-17 19:30:46 +02:00
db611aabee 🚨 🚨 Raise error when no speaker embeddings in speecht5._generate_speech (#26418)
* add warning when no speaker embeddings in speecht5._generate_speech

* modify warning to error

* adapt generation test
2023-10-17 15:59:35 +02:00
41c42f85f6 [FA2] Fix flash attention 2 fine-tuning with Falcon (#26852)
fix fa2 + dropout issue
2023-10-17 15:38:03 +02:00
4b423e6074 🚨🚨 Generate: change order of ops in beam sample to avoid nans (#26843)
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-17 10:32:49 +01:00
0b8604d002 Update logits_process.py docstrings to clarify penalty and reward cases (attempt #2) (#26784)
* Update logits_process.py docstrings + match arg fields to __init__'s

* Ran `make style`
2023-10-17 10:13:37 +02:00
85e9d64480 fix: when window_size is passes as array (#26800) 2023-10-17 09:26:03 +02:00
b3961f7291 Chore: Typo fixed in multiple files of docs/source/en/model_doc (#26833)
* Chore: Typo fixed in multiple files of docs/source/en/model_doc

* Update docs/source/en/model_doc/nllb-moe.md

Co-authored-by: Aryan V S <avs050602@gmail.com>

---------

Co-authored-by: Aryan V S <avs050602@gmail.com>
2023-10-17 07:10:08 +02:00
b8f1cde931 Fix Mistral OOM again (#26847)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-16 22:47:20 +02:00
fd6a0ade9b 🚨🚨🚨 [Quantization] Store the original dtype in the config as a private attribute 🚨🚨🚨 (#26761)
* First step

* fix

* add adjustements for gptq

* change to `_pre_quantization_dtype`

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix serialization

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-16 19:56:53 +02:00
14b04b4b9c Conversation pipeline fixes (#26795)
* Adjust length limits and allow naked conversation list inputs

* Adjust length limits and allow naked conversation list inputs

* Maybe use a slightly more reasonable limit than 1024

* Skip tests for old models that never supported this anyway

* Cleanup input docstrings

* More docstring cleanup + skip failing TF test

* Make fixup
2023-10-16 17:27:45 +01:00
5c6b83cb69 [docstring] Fix bert generation tokenizer (#26820)
* Remove BertGenerationTokenizer from objects to ignore

The file BertGenerationTokenizer is removed from
objects to ignore as a first step to fix docstring.

* Docstrings fix for BertGenerationTokenizer

Docstring fix is generated for BertGenerationTokenizer
by using check_docstrings.py.

* Fix docstring for BertGenerationTokenizer

Added sep_token type and docstring in BertGenerationTokenizer.
2023-10-16 18:26:55 +02:00
12cc123359 Better way to run AMD CI with different flavors (#26634)
* Enable testing against mi250

* Change BERT to trigger tests

* Revert BERT's change

* AMD CI

* AMD CI

---------

Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-16 16:24:30 +02:00
3ef7134553 Llama tokenizer: remove space in template comment (#26788)
* Remove space in template comment

I think the space between the eos and bos tokens is not present in the actual template output. I'm using this documentation as a reference for everyone asking about prompting, so would like to clarify whether there's a space or not :)

* Update fast tokenizer too

* Apply to Code Llama

* Link to original code snippet.
2023-10-16 15:16:03 +01:00
805d5d2111 Add LLM doc (#26058)
* [WIP] Add LLM doc

* rename

* latex

* latex

* Fix more latex

* [LLMs] Getting most out of LLMS

* improve

* try again

* Apply suggestions from code review

Co-authored-by: Maria Khalusova <kafooster@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/en/llm_tutorial_optimization.md

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Apply suggestions from code review

* move file

---------

Co-authored-by: Maria Khalusova <kafooster@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-10-16 16:09:50 +02:00
570b3f9cdd [OWL-ViT, OWLv2] Add resources (#26822)
Add resources
2023-10-16 15:47:44 +02:00
b91cff5a3e fix resume_from_checkpoint bug (#26739)
* fix resume_from_checkpoint bug

* update code
2023-10-16 15:29:47 +02:00
a5f5568d75 Make fsdp ram efficient loading optional (#26631)
make fsdp ram efficient loading optional
2023-10-16 06:29:01 -07:00
5d997f227c Image-to-Image Task Guide (#26595)
* img2img task guide

* Update year

* Add to toctree

* Update docs/source/en/tasks/image_to_image.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/image_to_image.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/image_to_image.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/image_to_image.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/image_to_image.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_to_image.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Addressed comments

* Update docs/source/en/tasks/image_to_image.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Addressed comments

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Maria Khalusova <kafooster@gmail.com>
2023-10-16 15:12:03 +02:00
5c081e2993 [docstring] Fix docstring for CodeLlamaTokenizerFast (#26666)
* remove from OBJECTS_TO_IGNORE

* run check_docstrings.py

* fill in information

* ignore CodeLlamaTokenizer
2023-10-16 10:11:45 +02:00
69a26c7ecd Add Japanese translation (#26799)
Translated into Japanese (README_ja)
2023-10-16 10:10:23 +02:00
0e52af4d7b [docstring] Fix docstring for CanineConfig (#26771)
* Remove CanineConfig from check_docstrings

* Run fix_and_overwrite for CanineConfig

* Replace <fill_type> and <fill_docstring> in configuration_canine.py with type and docstring values

---------

Co-authored-by: vignesh-raghunathan <vignesh_raghunathan@intuit.com>
2023-10-16 10:08:44 +02:00
0dd58d96a0 Fixed typos (#26810)
Update feature_extractor.md
2023-10-16 09:52:29 +02:00
21dc585942 translation brazilian portuguese (#26769)
* add translation brazilian portuguese

* add translation brazilian portuguese

* add translation brazilian portuguese title

* add translation portuguese tag

* Update README_pt-br.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update README_pt-br.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update README_pt-br.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update README_pt-br.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-13 11:13:47 -07:00
d6e5b02ef3 Add CLIP resources (#26534)
* docs: feat: model resources for CLIP

* fix: resolve suggestion

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: resolve suggestion

* fix: resolve suggestion

* fix: resolve suggestion

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: resolve suggestion

* fix: resolve suggestions

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-13 11:12:59 -07:00
7cc6f822a3 [Flava] Fix flava doc (#26789)
* fix flava doctest

* add shape

* adapt
2023-10-13 18:38:36 +02:00
8e05ad326b Fixed KeyError for Mistral (#26682)
* Fixed KeyError for Mistral

* Removed try block

* Removed whitespace
2023-10-13 17:20:26 +02:00
762af3e3c7 Add OWLv2, bis (#26668)
* First draft

* Update conversion script

* Update copied from statements

* Fix style

* Add copied from to config

* Add copied from to processor

* Run make fixup

* Add docstring

* Update docstrings

* Add method

* Improve docstrings

* Fix docstrings

* Improve docstrings

* Remove onnx

* Add flag

* Address comments

* Add copied from to model tests

* Add flag to conversion script

* Add code snippet

* Address more comments

* Address comment

* Improve conversion script

* More improvements

* Add expected objectness logits

* Skip test

* Improve conversion script

* Extend conversion script

* Convert large checkpoint

* Fix doc tests

* Convert all checkpoints, update integration tests

* Add checkpoint_path arg

* Fix repo_id
2023-10-13 16:41:24 +02:00
bdb391e9c6 Fix Falcon generation test (#26770) 2023-10-13 15:10:27 +01:00
c9785d956b Disable default system prompt for LLaMA (#26765)
* Disable default system prompt for LLaMA

* Update test to not expect default prompt
2023-10-13 14:48:38 +01:00
6df9179c1c [core] Fix fa-2 import (#26785)
* fix fa-2 import

* nit
2023-10-13 12:56:50 +02:00
5bfda28dd3 [docstring] fix docstring DPRConfig (#26674)
* fix docstring dpr config

* fix style

* Update descp

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-10-13 12:13:43 +02:00
288bf5c1d2 Fix num. of minimal calls to the Hub with peft for pipeline (#26385)
* fix

* [skip-ci] fix

* [skip-ci] fix

* [skip-ci] fix

* [skip-ci] fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-13 11:03:14 +02:00
d085662c59 [docstring] Fix docstring for RwkvConfig (#26782)
* update check_docstrings

* update docstring
2023-10-13 10:20:30 +02:00
21da3b2461 Update expect outputs of IdeficsProcessorTest.test_tokenizer_padding (#26779)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-13 09:52:10 +02:00
7790943c91 🌐 [i18n-KO] Translated big_models.md to Korean (#26245)
* docs: ko: big_models.md

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions

Co-Authored-By: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-Authored-By: heuristicwave <31366038+heuristicwave@users.noreply.github.com>
Co-Authored-By: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-Authored-By: heuristicwave <31366038+heuristicwave@users.noreply.github.com>
Co-Authored-By: bolizabeth <68984363+bolizabeth@users.noreply.github.com>

---------

Co-authored-by: bolizabeth <68984363+bolizabeth@users.noreply.github.com>
Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-authored-by: heuristicwave <31366038+heuristicwave@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-12 15:00:12 -07:00
3e93dd295b Skip TrainerIntegrationFSDP::test_basic_run_with_cpu_offload if torch < 2.1 (#26764)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-12 18:22:09 +02:00
883ed4b344 chore: fix typos (#26756) 2023-10-12 18:00:27 +02:00
a243cdca2a Fix PerceiverModelIntegrationTest::test_inference_masked_lm (#26760)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-12 17:43:06 +02:00
33df09e71a [docstring] Fix docstring for 'BertGenerationConfig' (#26661)
* [docstring] Remove 'BertGenerationConfig' from OBJECTS_TO_IGNORE

* [docstring] Fix docstring for 'BertGenerationConfig' (#26638)
2023-10-12 17:01:13 +02:00
b4199c2dad [docstring] Update GPT2 and Whisper (#26642)
* [DOCS] Update docstrings for  and  tokenizer

* [DOCS] add pad_token argument to whisper tokenizer docstring

* [FIX] Reword pad_token description

* [CHORE] Apply style formatting

---------

Co-authored-by: jmcdonnell <jmcdonnell@fieldbox.ai>
2023-10-12 17:00:59 +02:00
eb734e5147 [docstring] Fix UniSpeech, UniSpeechSat, Wav2Vec2ForCTC (#26664)
* Remove UniSpeechConfig

* Remove , at the end otherwise check_docstring changes order

* Auto add new docstring

* Update docstring for UniSpeechConfig

* Remove from check_docstrings

* Remove UniSpeechSatConfig and UniSpeechSatForCTC from check_docstrings

* Remove , at the end

* Fix docstring

* Update docstring for Wav2Vec2ForCTC

* Update Wav2Vec2ForCTC docstring

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* fix style

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-10-12 16:51:34 +02:00
0ebee8b933 [docs] LLM prompting guide (#26274)
* llm prompting guide

* updated code examples

* an attempt to fix the code example tests

* set seed in examples

* added a doctest comment

* added einops to the doc_test_job

* string formatting

* string formatting, again

* added the toc to slow_documentation_tests.txt

* minor list fix

* string formatting + pipe renamed

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* replaced max_length with max_new_tokens and updated the outputs to match

* minor formatting fix

* removed einops from circleci config

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <hi@lysand.re>

* removed einops and trust_remote_code parameter

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-10-12 08:48:01 -04:00
57632bf98c Fix backward compatibility of Conversation (#26741)
* Fix backward compatibility of Conversation

I ran into a case where an external library was depending on the `new_user_input` field of Conversation. https://github.com/SeldonIO/MLServer/blob/release/1.4.x/runtimes/huggingface/mlserver_huggingface/codecs/utils.py#L37 

This field was deprecated as part of the refactor, but if `transformers` wants to maintain backwards compatibility for now (which is mentioned in a few comments) then there's a good argument for supporting it. Some comments referred to it as an "internal" property, but it didn't start with `_` as is Python convention, so I think it's reasonable that other libraries were referencing it directly.

It's not difficult to add it to the other supported backwards-compatible properties. In addition, the implementation of `past_user_inputs` didn't actually match the past behavior (it would contain the most recent message as well) so I updated that as well.

* make style

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2023-10-12 13:19:23 +02:00
db5e0c3292 Fix MistralIntegrationTest OOM (#26754)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-12 12:31:11 +02:00
72256bc72a Fix PersimmonIntegrationTest OOM (#26750)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-12 11:24:18 +02:00
ab0ddc99e8 Warnings controlled by logger level (#26527)
* Logger level

Co-authored-by: Sahil Bhosale <sahilbhosale63@live.com>
Co-authored-by: Adithya4720 <hegdeadithyak@gmail.com>
Co-authored-by: Sachin Singh <sachinishu02@gmail.com>
Co-authored-by: Riya Dhanduke <113622644+riiyaa24@users.noreply.github.com>

* More comprehensive documentation

---------

Co-authored-by: Sahil Bhosale <sahilbhosale63@live.com>
Co-authored-by: Adithya4720 <hegdeadithyak@gmail.com>
Co-authored-by: Sachin Singh <sachinishu02@gmail.com>
Co-authored-by: Riya Dhanduke <113622644+riiyaa24@users.noreply.github.com>
2023-10-12 10:48:38 +02:00
40ea9ab2a1 Add many missing spaces in adjacent strings (#26751)
Add missing spaces in adjacent strings
2023-10-12 10:28:40 +02:00
3bc65505fc Fix doctest for Blip2ForConditionalGeneration (#26737)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-12 10:01:07 +02:00
e1cec43415 Translated the accelerate.md file of the documentation to Chinese (#26161)
* translate accelerate page

* Update docs/source/zh/accelerate.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-11 10:54:22 -07:00
9b7668c03a add japanese documentation (#26138)
* udpaet

* update

* Update docs/source/ja/autoclass_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* add codes workflows/build_pr_documentation.yml

* Create preprocessing.md

* added traning.md

* Create Model_sharing.md

* add quicktour.md

* new

* ll

* Create benchmark.md

* Create Tensorflow_model

* add

* add community.md

* add create_a_model

* create custom_model.md

* create_custom_tools.md

* create fast_tokenizers.md

* create

* add

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* md

* add

* commit

* add

* h

* Update docs/source/ja/peft.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/ja/_toctree.yml

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/ja/_toctree.yml

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Suggested Update

* add perf_train_gpu_one.md

* added perf based MD files

* Modify toctree.yml and Add transmartion to md codes

* Add `serialization.md` and edit `_toctree.yml`

* add task summary and tasks explained

* Add and Modify files starting from T

* Add testing.md

* Create main_classes files

* delete main_classes folder

* Add toctree.yml

* Update llm_tutorail.md

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update misspelled filenames

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/_toctree.yml

* Update docs/source/ja/_toctree.yml

* missplled file names inmrpovements

* Update _toctree.yml

* close tip block

* close another tip block

* Update docs/source/ja/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/pipeline_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/pipeline_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/preprocessing.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/peft.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/add_new_model.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/testing.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/task_summary.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks_explained.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update glossary.md

* Update docs/source/ja/transformers_agents.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/llm_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/create_a_model.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/torchscript.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/benchmarks.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/troubleshooting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/troubleshooting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/troubleshooting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/add_new_model.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update perf_torch_compile.md

* Update Year to default in en documentation

* Final Update

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-10-11 10:26:37 -07:00
797a1babf2 [docstring] Fix docstring for CodeLlamaTokenizer (#26709)
* update check_docstrings

* update docstring
2023-10-11 18:01:22 +02:00
aaccf1844e [docstring] Fix docstring for LlamaTokenizer and LlamaTokenizerFast (#26669)
* [docstring] Fix docstring for `LlamaTokenizer` and `LlamaTokenizerFast`

* [docstring] Fix docstring typo at `LlamaTokenizer` and `LlamaTokenizerFast`
2023-10-11 17:03:31 +02:00
e58cbed51d Revert #20715 (#26734)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-11 16:46:41 +02:00
b219ae6bd4 Update docker files to use torch==2.1.0 (#26735)
Update docker files to use torch 2.1

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-11 16:23:36 +02:00
1d6a84749b Fix checkpoint path in no_trainer scripts (#26733)
checkpoint path
2023-10-11 16:16:27 +02:00
6ecb2ab679 Fix stale bot for locked issues (#26711) 2023-10-11 16:08:55 +02:00
69873d529d fix the model card issue as use_cuda_amp is no more available (#26731) 2023-10-11 15:58:23 +02:00
cc44ca8017 [docstring] SwinModel docstring fix (#26679)
* remove from utils

* updated doc string

* only in the model

* Update src/transformers/models/swin/modeling_swin.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/swin/modeling_swin.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-10-11 15:53:32 +02:00
da69de17e8 [Assistant Generation] Improve Encoder Decoder (#26701)
* [Assistant Generation] Improve enc dec

* save more

* Fix logit processor checks

* Clean

* make style

* fix deprecation

* fix generation test

* Apply suggestions from code review

* fix biogpt

* make style
2023-10-11 15:52:20 +02:00
5334796d20 Copied from for test files (#26713)
* copied statement for test files

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-11 14:12:09 +02:00
9f40639292 Update docs to explain disabling callbacks using report_to (#26155)
* feat: update callback doc to explain disabling callbacks using report_to

* docs: update report_to docstring
2023-10-11 07:50:23 -04:00
dcc49d8a7e In assisted decoding, pass model_kwargs to model's forward call (fix prepare_input_for_generation in all models) (#25242)
* In assisted decoding, pass model_kwargs to model's forward call

Previously, assisted decoding would ignore any additional kwargs
that it doesn't explicitly handle. This was inconsistent with other
generation methods, which pass the model_kwargs through
prepare_inputs_for_generation and forward the returned dict to the
model's forward call.

The prepare_inputs_for_generation method needs to be amended in all
models, as previously it only kept the last input ID when a past_key_values
was passed.

* Improve variable names in _extend_attention_mask

* Refactor extending token_type_ids into a function

* Replace deepcopy with copy to optimize performance

* Update new persimmon model with llama changes for assisted generation

* Update new mistral model for assisted generation with prepare_inputs_for_generation

* Update position_ids creation in falcon prepare_inputs_for_generation to support assisted generation
2023-10-11 13:18:42 +02:00
1e3c9ddacc Make Whisper Encoder's sinusoidal PE non-trainable by default (#26032)
* set encoder's PE as non-trainable

* freeze flax

* init sinusoids

* add test for non-trainable embed positions

* simplify TF encoder embed_pos

* revert tf

* clean up

* add sinusoidal init for jax

* make consistent sinusoidal function

* fix dtype

* add default dtype

* use numpy for sinusoids. fix jax

* add sinusoid init for TF

* fix

* use custom embedding

* use specialized init for each impl

* fix sinusoids init. add test for pytorch

* fix TF dtype

* simplify sinusoid init for flax and tf

* add tests for TF

* change default dtype to float32

* add sinusoid test for flax

* Update src/transformers/models/whisper/modeling_flax_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* move sinusoidal init to _init_weights

---------

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-10-11 09:08:54 +01:00
fc63914399 [JAX] Replace uses of jnp.array in types with jnp.ndarray. (#26703)
`jnp.array` is a function, not a type:
https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.array.html
so it never makes sense to use `jnp.array` in a type annotation. Presumably the intent was to write `jnp.ndarray` aka `jax.Array`.

Co-authored-by: Peter Hawkins <phawkins@google.com>
2023-10-10 21:35:16 +02:00
3eceaa3637 Fix source_prefix default value (#26654) 2023-10-10 20:49:10 +02:00
975003eacb fix a typo in flax T5 attention - attention_mask variable is misnamed (#26663)
* fix a typo in flax t5 attention

* fix the typo in flax longt5 attention
2023-10-10 20:36:32 +02:00
e8fdd7875d [docstring] Fix docstring for LlamaConfig (#26685)
* Your commit message here

* fix LlamaConfig docstring

* run make fixup

* fix formatting after review

reformat of the file to prevent script issues

* rerun make fixup after reformat
2023-10-10 17:05:48 +02:00
a9862a0f49 Fix Typo: table in deepspeed.md (#26705) 2023-10-10 11:50:10 +02:00
592f2eabd1 Control first downsample stride in ResNet (#26374)
* control first downsample stride

* reduce first only works for ResNetBottleNeckLayer

* fix param name

* fix style
2023-10-10 06:45:24 +02:00
a5e6df82c0 [docstring] Fix docstrings for CLIP (#26691)
fix docstrings for vanilla clip
2023-10-09 17:39:05 +02:00
87b4ade9e5 Fix stale bot (#26692)
* Fix stale bot

* Comments
2023-10-09 16:39:57 +02:00
3257946fb7 [docstring] Fix docstring for DonutImageProcessor (#26641)
* removed donutimageprocessor from objects_to_ignore

* added docstring for donutimageprocessor

* readding donut file

* moved docstring to correct location
2023-10-09 16:32:13 +02:00
d2f06dfffc [docstring] Fix docstring for CLIPImageProcessor (#26676)
fix docstring for CLIPImageProcessor
2023-10-09 14:22:44 +02:00
3763101f85 [docstring] Fix docstring CLIP configs (#26677)
* fix docstrings for CLIP configs

* black formatted
2023-10-09 12:34:01 +02:00
c7f01beece fix typos in idefics.md (#26648)
* fix typos in idefics.md

Two typos found in reviewing this documentation.

1) max_new_tokens=4, is not sufficient to generate "Vegetables" as indicated - you will get only "Veget". (incidentally - some mention of how to select this value might be useful as it seems to change in each example)

2) inputs = processor(prompts, return_tensors="pt").to(device) as inputs need to be on the same device (as they are in all other examples on the page)

* Update idefics.md

Change device to cuda explicitly to match other examples
2023-10-09 12:18:02 +02:00
740fc6a1da Avoid CI OOM (#26639)
fix avoid oom

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-09 11:42:08 +02:00
8835bff6a0 fix links in README.md for the GPT, GPT-2, and Llama2 Models (#26640)
* fix OpenAI GPT, GPT-2 links

* fix Llama2 link
2023-10-09 11:34:44 +02:00
86a4e5a96b Fixed malapropism error (#26660)
Update test_integration.py

Fixed malapropism clone>copy
2023-10-09 11:04:57 +02:00
2629c8f36a [DINOv2] Convert more checkpoints (#26177)
* Convert checkpoints

* Update doc test

* Address comment
2023-10-09 09:58:04 +02:00
897a826d83 docs(zh): review and punctuation & space fix (#26627) 2023-10-06 09:24:28 -07:00
360ea8fc72 [docstring] Fix docstring for AlbertConfig (#26636)
example fix docstring

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-06 17:36:22 +02:00
9ad815e412 [LlamaTokenizerFast] Adds edge cases for the template processor (#26606)
* make sure eos and bos are properly handled for fast tokenizer

* fix code llama as well

* nits

* fix the conversion script as well

* fix failing test
2023-10-06 16:40:54 +02:00
27597fea07 remove SharedDDP as it is deprecated (#25702)
* remove SharedDDP as it was drepracated

* apply review suggestion

* make style

* Oops,forgot to remove the compute_loss context manager in Seq2SeqTrainer.

* remove the unnecessary conditional statement

* keep the logic of IPEX

* clean code

* mix precision setup & make fixup

---------

Co-authored-by: statelesshz <jihuazhong1@huawei.com>
2023-10-06 16:03:11 +02:00
e840aa67e8 Fix failing MusicgenTest .test_pipeline_text_to_audio (#26586)
* fix

* fix

* Fix

* Fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-06 15:53:59 +02:00
87499420bf fix RoPE t range issue for fp16 (#26602) 2023-10-06 12:04:54 +01:00
ea52ed9dc8 Update chat template docs with more tips on writing a template (#26625) 2023-10-06 12:04:40 +01:00
64845307b3 Remove unnecessary unsqueeze - squeeze in rotary positional embedding (#26162)
* remove unnecessary unsqueeze-squeeze in llama

* correct other models

* fix

* revert gpt_neox_japanese

* fix copie

* fix test
2023-10-06 18:25:15 +09:00
65aabafe2f Update tokenization_code_llama_fast.py (#26576)
* Update tokenization_code_llama_fast.py

* Update test_tokenization_code_llama.py

* Update test_tokenization_code_llama.py
2023-10-06 10:49:02 +02:00
af38c837ee Fixed inconsistency in several fast tokenizers (#26561) 2023-10-06 10:40:47 +02:00
8878eb1bd9 Remove unnecessary views of position_ids (#26059)
* Remove unnecessary `view` of `position_ids` in `modeling_llama`

When `position_ids` is `None`, its value is generated using
`torch.arange`, which creates a tensor of size `(seq_length +
past_key_values_length) - past_key_values_length = seq_length`. The
tensor is then unsqueezed, resulting in a tensor of shape `(1,
seq_length)`. This means that the last `view` to a tensor of shape
`(-1, seq_length)` is a no-op.

This commit removes the unnecessary view.

* Remove no-op `view` of `position_ids` in rest of transformer models
2023-10-06 10:28:00 +02:00
75a33d60f2 Don't install pytorch-quantization in Doc Builder docker file (#26622)
Fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-05 16:57:50 +02:00
18fbeec824 [docs] Update to scripts building index.md (#26546)
* build the table in index.md with links to the model_doc

* removed list generation on index.md

* fixed missing models

* make style
2023-10-05 10:20:41 -04:00
9d20601259 Fix transformers-pytorch-gpu docker build (#26615)
Fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-05 15:33:35 +02:00
9e78c9acfb Don't close ClearML task if it was created externally (#26614)
don't close clearml task if it was created externally
2023-10-05 15:33:05 +02:00
0a3b9d02fe #26566 swin2 sr allow in out channels (#26568)
* feat: close #26566, changed model & config files to accept arbitary in and out channels

* updated docstrings

* fix: linter error

* fix: update Copy docstrings

* fix: linter update

* fix: rename num_channels_in to num_channels to prevent breaking changes

* fix: make num_channels_out None per default

* Update src/transformers/models/swin2sr/configuration_swin2sr.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix: update tests to include num_channels_out

* fix:linter

* fix: remove normalization with precomputed rgb values when #input_channels!=#output_channels

---------

Co-authored-by: marvingabler <marvingabler@outlook.de>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-05 15:20:38 +02:00
e6d250e4cd [core] fix silent bug keep_in_fp32 modules (#26589)
* fix silent bug `keep_in_fp32` modules

* final fix

* added a common test.

* Trigger CI

* revert
2023-10-05 14:44:31 +02:00
19f0b7dd02 Make ModelOutput serializable (#26493)
* Make `ModelOutput` serializable

Original PR from diffusers : https://github.com/huggingface/diffusers/pull/5234

* Black
2023-10-05 11:08:44 +02:00
54e17a15dc Fix failing tests on main due to torch 2.1 (#26607)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-05 10:27:05 +02:00
2ab76c2c4f [Falcon] Set use_cache=False before creating presents which relies on use_cache (#26328)
* Set `presents=None` when `use_cache` is set to False for activation ckpt

* Update modeling_falcon.py

* fix black
2023-10-05 10:18:27 +02:00
253f9a3f97 [GPTNeoX] Faster rotary embedding for GPTNeoX (based on llama changes) (#25830)
* Faster rotary embedding for GPTNeoX

* there might be un-necessary moves from device

* fixup

* fix dtype issue

* add copied from statements

* fox copies

* oupsy

* add copied from Llama for scaled ones as well

* fixup

* fix

* fix copies
2023-10-05 10:05:39 +02:00
b4e66d7a67 [ NougatProcessor] Fix the default channel (#26608)
fix
2023-10-05 09:38:08 +02:00
43bfd093e1 add zh translation for installation (#26084)
* translate installation to zh

* fix translation typo
2023-10-04 09:39:02 -07:00
2d8ee9817c [Wav2Vec2] Fix tokenizer set lang (#26349)
* fix wav2vec2 doctest

* suggestion

* fix

* final fix

* revert since we need AddedTokens
2023-10-04 17:12:09 +01:00
f9ab07f920 Update mistral.md to update 404 link (#26590) 2023-10-04 17:48:11 +02:00
c037b2e340 skip flaky hub tests (#26594)
skip flaky
2023-10-04 17:47:55 +02:00
ca7912d191 Fix encoder->decoder typo bug in convert_t5x_checkpoint_to_pytorch.py (#26587)
Fix bug in convert_t5x_checkpoint_to_pytorch.py
2023-10-04 17:34:32 +02:00
8b03615b7b Fix embarrassing typo in the doc chat template! (#26596) 2023-10-04 16:28:53 +01:00
9deb18ca1a Add # Copied from statements to audio feature extractors that use the floats_list function (#26581)
Add # Copied from statements to audio feature extractors that use the floats_list function.
2023-10-04 17:09:48 +02:00
0a49f909bc [Mistral] Update config docstring (#26593)
* fix copies

* fix missing docstring

* make style

* oops
2023-10-04 16:02:34 +01:00
6015f91a5a refactor: change default block_size (#26229)
* refactor: change default block_size

* fix: return tf to origin

* fix: change files to origin

* rebase

* rebase

* rebase

* rebase

* rebase

* rebase

* rebase

* rebase

* refactor: add min block_size to files

* reformat: add min block_size for run_clm tf
2023-10-04 15:31:38 +01:00
8b46c5bcfc Add add_generation_prompt argument to apply_chat_template (#26573)
* Add add_generation_prompt argument to apply_chat_template

* Add add_generation_prompt argument to apply_chat_template and update default templates

* Fix typo

* Add generation prompts section to chat templating guide

* Add generation prompts section to chat templating guide

* Minor style fix
2023-10-04 15:15:29 +01:00
03af4c42a6 Docstring check (#26052)
* Fix number of minimal calls to the Hub with peft integration

* Alternate design

* And this way?

* Revert

* Nits to fix

* Add util

* Print when changes are made

* Add list to ignore

* Add more rules

* Manual fixes

* deal with kwargs

* deal with enum defaults

* avoid many digits for floats

* Manual fixes

* Fix regex

* Fix regex

* Auto fix

* Style

* Apply script

* Add ignored list

* Add check that templates are filled

* Adding to CI checks

* Add back semi-fix

* Ignore more objects

* More auto-fixes

* Ignore missing objects

* Remove temp semi-fix

* Fixes

* Update src/transformers/models/pvt/configuration_pvt.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update utils/check_docstrings.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Deal with float defaults

* Fix small defaults

* Address review comment

* Treat

* Post-rebase cleanup

* Address review comment

* Update src/transformers/models/deprecated/mctct/configuration_mctct.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Address review comment

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-10-04 15:13:37 +02:00
122b2657f8 feat: add trainer label to wandb run upon initialization (#26466) 2023-10-04 14:57:41 +02:00
4fdf47cd3c Extend Trainer to enable Ascend NPU to use the fused Adamw optimizer when training (#26194) 2023-10-04 14:57:11 +02:00
fc296f419e Bump pillow from 9.3.0 to 10.0.1 in /examples/research_projects/decision_transformer (#26580)
Bump pillow in /examples/research_projects/decision_transformer

Bumps [pillow](https://github.com/python-pillow/Pillow) from 9.3.0 to 10.0.1.
- [Release notes](https://github.com/python-pillow/Pillow/releases)
- [Changelog](https://github.com/python-pillow/Pillow/blob/main/CHANGES.rst)
- [Commits](https://github.com/python-pillow/Pillow/compare/9.3.0...10.0.1)

---
updated-dependencies:
- dependency-name: pillow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-04 11:52:46 +02:00
2f3ea08a07 docs: feat: add clip notebook resources from OSSCA community (#26505) 2023-10-03 11:20:22 -07:00
5c66378cea [Tokenizers] Skip tests temporarily (#26574)
* Skip tests temporarily

* style

* Add additional test
2023-10-03 19:43:42 +02:00
2c7b26f508 🌐 [i18n-KO] Translated semantic_segmentation.md to Korean (#26515)
* docs: ko: sementic_segmentation.md

* feat: manual draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* fix: resolve suggestions

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: edit the title

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-03 10:25:50 -07:00
57f44dc428 [Whisper] Allow basic text normalization (#26149)
* [Whisper] Allow basic text normalization

* up

* style copies
2023-10-03 17:57:16 +01:00
bd6205919a v4.35.0.dev0 2023-10-03 16:54:37 +02:00
c26b2a29e5 [Nougat] from transformers import * (#26562)
* remove unprotected import to PIL

* cleanup

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-10-03 16:32:12 +02:00
2aef9a9601 [PEFT] Final fixes (#26559)
* fix issues with PEFT

* logger warning futurewarning issues

* fixup

* adapt from suggestions

* oops

* rm test
2023-10-03 14:53:09 +02:00
ae9a344cce [Mistral] Add Flash Attention-2 support for mistral (#26464)
* add FA-2 support for mistral

* fixup

* add sliding windows

* fixing few nits

* v1 slicing cache - logits do not match

* add comment

* fix bugs

* more mem efficient

* add warning once

* add warning once

* oops

* fixup

* more comments

* copy

* add safety checker

* fixup

* Update src/transformers/models/mistral/modeling_mistral.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* copied from

* up

* raise when padding side is right

* fixup

* add doc + few minor changes

* fixup

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-03 13:44:46 +02:00
1a2e966cfe Nit-added-tokens (#26538)
* fix stripping

* nits

* fix another test

* styling

* fix?

* update

* revert bad merge

* found the bug

* YES SIR

* is that change really required?

* make fast even faster

* re order functions
2023-10-03 12:23:46 +02:00
245da7ed38 [Doctest] Add configuration_encoder_decoder.py (#26519)
* [Doctest] Add configuration_encoder_decoder.py

Added configuration_encoder_decoder.py to utils/documentation_tests.txt for doctest

* Revert "[Doctest] Add configuration_encoder_decoder.py"

This reverts commit bd653535a4356dc3c9f43e65883819079a2053b0.

* [Doctest] Add configuration_encoder_decoder.py

add configuration_encoder_decoder.py to utils/documentation_tests.txt

* [Doctest] Add configuration_encoder_decoder.py

add configuration_encoder_decoder.py to utils/documentation_tests.txt

* [Doctest] Add configuration_encoder_decoder.py

add configuration_encoder_decoder.py to utils/documentation_tests.txt

* changed as per request

* fixed line 46
2023-10-03 11:21:24 +02:00
3632fb3c25 [AMD] Add initial version for run_tests_multi_gpu (#26346)
* Add initial version for run_tests_multi_gpu

* Trigger change in BERT

* fix typo setup -> setup_gpu

* Add tag mi210

* Enable multi-gpu jobs

* One more

* Use dynamic device allocation

* Attempt to fix syntax for docker create

* fix script path

* fix

* temp machine type

* fix label

* Enable multi-gpu tests

* Rename multi-amd-gpu to multi-gpu

* Let's not be lazy dude

* Update rocm-smi output

* Add gpu_flavour in the matrix

* Fix typos

* merge single/multi dispatch into the matrix

* Format.

* Revert BERT's change

---------

Co-authored-by: Guillaume LEGENDRE <glegendre01@gmail.com>
2023-10-03 11:13:45 +02:00
768aa3d9cd [Wav2Vec2 and Co] Update init tests for PT 2.1 (#26494) 2023-10-03 10:52:34 +02:00
b5ca8fcd20 Add tokenizer kwargs to fill mask pipeline. (#26234)
* add tokenizer kwarg inputs

* Adding tokenizer_kwargs to _sanitize_parameters

* Add truncation=True example to tests

* Update test_pipelines_fill_mask.py

* Update test_pipelines_fill_mask.py

* make fix-copies and make style

* Update fill_mask.py

Replace single tick with double

* make fix-copies

* Style

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-10-03 10:25:10 +02:00
df6a855e7b [RFC, Logging] Change warning to info (#26545)
[Logging] Change warning to info
2023-10-03 08:55:39 +02:00
cf345d5f38 Bump urllib3 from 1.26.9 to 1.26.17 in /examples/research_projects/decision_transformer (#26554)
Bump urllib3 in /examples/research_projects/decision_transformer

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.9 to 1.26.17.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.9...1.26.17)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-03 08:55:12 +02:00
6de6fdd06d Bump urllib3 from 1.26.5 to 1.26.17 in /examples/research_projects/visual_bert (#26552)
Bump urllib3 in /examples/research_projects/visual_bert

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.5 to 1.26.17.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.5...1.26.17)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-03 08:55:01 +02:00
e092b4ad68 Bump urllib3 from 1.26.5 to 1.26.17 in /examples/research_projects/lxmert (#26551)
Bump urllib3 in /examples/research_projects/lxmert

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.5 to 1.26.17.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.5...1.26.17)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-03 08:54:50 +02:00
9ed538f2e6 [i18n-DE] contribute chapter (#26481)
* start working on next chapter

* finish testing

* Update docs/source/de/testing.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/testing.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/testing.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-02 09:56:40 -07:00
1470f731b6 🌐 [i18n-KO] Translated tokenizer_summary.md to Korean (#26243)
* docs: ko: toknenizer_summary.md

Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Juntae <79131091+sronger@users.noreply.github.com>
Co-Authored-By: Injin Paek <71638597+eenzeenee@users.noreply.github.com>

* update review

* fix: resolve suggestions

Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: HanNayeoniee <nayeon2.han@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Juntae <79131091+sronger@users.noreply.github.com>
Co-authored-by: Injin Paek <71638597+eenzeenee@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-10-02 09:55:33 -07:00
c20d90d577 add build_inputs_with_special_tokens to LlamaFast (#26297)
* add build_inputs_with_special_tokens to LlamaFast

* fixup

* Update src/transformers/models/llama/tokenization_llama_fast.py
2023-10-02 18:30:44 +02:00
bab3331906 Code-llama-nit (#26300)
* fix encoding when the fill token is None

* add tests and edge cases

* fiuxp

* Update tests/models/code_llama/test_tokenization_code_llama.py
2023-10-02 18:29:27 +02:00
4b4c6aabfb [Doctest] Add configuration_roformer.py (#26530)
* [Doctest] Add configuration_roformer.py

* [Doctest] Add configuration_roformer.py

* [Doctest] Add configuration_roformer.py

* [Doctest] Add configuration_roformer.py

* Removed documentation_test.txt

* Removed configuration_roformer.py

* Update not_doctested.txt
2023-10-02 17:19:13 +02:00
e4dad4fe32 Remove-warns (#26483)
* fix stripping

* remove some warnings and update some warnings

* revert changes for other PR
2023-10-02 16:52:00 +02:00
1b8decb04c [PEFT] Protect adapter_kwargs check (#26537)
Update modeling_utils.py
2023-10-02 14:59:24 +02:00
63864e057f Fix model integration ci (#26322)
* fix wav2vec2

* nit

* stash

* one more file to update

* fix byt5

* vocab size is 256, don't change that!

* use other revision

* test persimon in smaller size

* style

* tests

* nits

* update add tokens from pretrained

* test tokenization

* nits

* potential fnet fix?

* more nits

* nits

* correct test

* assert close

* udpate

* ouch

* fix it

* some more nits

* FINALLU

* use `adept` checkpoints

* more adept checkpoints

* that was invlved!
2023-10-02 13:55:46 +02:00
6824461f2a [core/ auto ] Fix bnb test with code revision + bug with code revision (#26431)
* fix bnb test with code revision

* fix test

* Apply suggestions from code review

* Update src/transformers/models/auto/auto_factory.py

* Update src/transformers/models/auto/auto_factory.py

* Update src/transformers/models/auto/auto_factory.py
2023-10-02 11:35:07 +02:00
24178c2461 [PEFT] Pass token when calling find_adapter_config (#26488)
* try

* nit

* nits
2023-10-02 11:23:03 +02:00
7d6627d0d9 Fix broken link to video classification task (#26487) 2023-10-02 11:19:11 +02:00
6d02ca4bb9 Fix issue of canine forward requiring input_ids anyway (#26290)
* fix issue of canine forward requires input_ids anyway

The `forward` requires `input_ids` for deriving other variables in all cases. Change this to use the given one between `input_ids` and `inputs_embeds`

* fix canine forward

The current `forward` requires (the shape of) `input_ids` for deriving other variables whenever `input_ids` or `inputs_embeds` is provided. Change this to use the given one instead of `input_ids` all the time.

* fix format

* fix format
2023-10-02 11:06:40 +02:00
7d77d7f79c Fix requests connection error during modelcard creation (#26518)
fix requests connection error

Co-authored-by: Jan Philipp Harries <jphme@users.noreply.github.com>
2023-10-02 10:52:51 +02:00
ca0379b8c8 Fix num_heads in _upad_input (#26490)
* Fix num_heads in _upad_input

The variable num_key_value_heads has falsely been named num_heads, which led to reshaping the query_layer using the wrong attention head count. (It would have been enough to use the correct variable self.num_heads instead of num_heads, but I renamed num_heads to num_key_value_heads for clarity)

* fixed copies using make fix-copies and ran make fixup

---------

Co-authored-by: fseiler <f.seiler@jerocom.de>
2023-10-02 10:10:19 +02:00
67239f7360 Revert falcon exception (#26472)
* Revert "Falcon: fix revision propagation (#26006)"

This reverts commit 118c676ef3124423e5d062b665f05cde55bc9a90.

* Revert "Put Falcon back (#25960)"

This reverts commit 22a69f1d7d520d5fbccbdb163d05db56bf79724c.
2023-10-02 09:13:19 +02:00
0b192de1f3 [ASR Pipe] Improve docs and error messages (#26476)
* improve docs/errors

* why whisper

* Update docs/source/en/pipeline_tutorial.md

Co-authored-by: Lysandre Debut <hi@lysand.re>

* specify pt only

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-09-29 18:32:37 +01:00
68e85fc822 [Flax Examples] Seq2Seq ASR Fine-Tuning Script (#21764)
* from seq2seq speech

* [Flax] Example script for speech seq2seq

* tests and fixes

* make style

* fix: label padding tokens

* fix: label padding tokens over list

* update ln names for Whisper

* try datasets iter loader

* create readme and append results

* style

* make style

* adjust lr

* use pt dataloader

* make fast

* pin gen max len

* finish

* add pt to requirements for test

* fix pt -> torch

* add accelerate
2023-09-29 16:42:58 +01:00
391177441b Avoid all-zeor attnetion mask used in testing (#26469)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-29 11:06:06 +02:00
9b23d0de0e Skip 2 failing persimmon pipeline tests for now (#26485)
skip

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-29 10:52:18 +02:00
14170b784b [docs] navigation improvement between text gen pipelines and text gen params (#26477)
* navigation improvement between text generation pipelines and text generation docs

* make style
2023-09-29 09:43:39 +02:00
7bb1c0c147 [docs] Update offline mode docs (#26478)
update
2023-09-29 09:42:21 +02:00
211f93aab9 [Whisper Tokenizer] Make decoding faster after adding timestamps (#26299)
make decoding faster
2023-09-28 19:02:27 +01:00
4e931a8eb3 Esm checkpointing (#26454)
* Fixed in-place operation error in EsmEmbeddings

* Fixed in-place operation error in EsmEmbeddings again

---------

Co-authored-by: Schreiber-Finance <amelie.schreiber.finance@gmail.com>
2023-09-28 18:49:39 +01:00
5e11d72d4d fix_mbart_tied_weights (#26422)
* fix_mbart_tied_weights

* add test
2023-09-28 15:08:35 +02:00
216dff7549 Do not warn about unexpected decoder weights when loading T5EncoderModel and LongT5EncoderModel (#26211)
Ignore decoder weights when using T5EncoderModel and LongT5EncoderModel

Both T5EncoderModel and LongT5EncoderModel do not have any decoder layers, so
loading a pretrained model checkpoint such as t5-small will give warnings about
keys found in the model checkpoint that are not in the model itself.

To prevent this log warning, r"decoder" has been added to _keys_to_ignore_on_load_unexpected for
both T5EncoderModel and LongT5EncoderModel
2023-09-28 11:27:43 +02:00
38e96324ef [PEFT] introducing adapter_kwargs for loading adapters from different Hub location (subfolder, revision) than the base model (#26270)
* make use of adapter_revision

* v1 adapter kwargs

* fix CI

* fix CI

* fix CI

* fixup

* add BC

* Update src/transformers/integrations/peft.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

* change it to error

* Update src/transformers/modeling_utils.py

* Update src/transformers/modeling_utils.py

* fixup

* change

* Update src/transformers/integrations/peft.py

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-28 11:13:03 +02:00
52e2c13da3 [VITS] Fix speaker_embed device mismatch (#26115)
* [VITS] Fix speaker_embed device mismatch

- pass device arg to speaker_id tensor

* [VITS] put speaker_embed on device when int

* [VITS] device=self.device
instead of self.embed_speaker.weight.device

* [VITS] make tensor directly on device
using torch.full()
2023-09-28 10:56:36 +02:00
098c3f400c change mention of decoder_input_ids to input_ids and same with decode_inputs_embeds (#26406)
* change mention of decoder_input_ids to input_ids and same with decoder_input_embeds

* Style

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-09-28 10:15:48 +02:00
ba47efbfe4 docs: change assert to raise and some small docs (#26232)
* docs: change assert to raise and some small docs

* docs: add rule and some document

* fix: fix bug

* fix: fix bug

* chorse: revert logging

* chorse: revert
2023-09-28 10:14:17 +02:00
375b4e0935 Fix cos_sin device issue in Falcon model (#26448)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-28 10:00:15 +02:00
a7e0ed829c optimize VRAM for calculating pos_bias in LayoutLM v2, v3 (#26139)
* optimize layoutv2, v3 for VRAM saving

* reformat codes

---------

Co-authored-by: NormXU <xunuo@datagrand.com>
2023-09-28 09:55:57 +02:00
ab37b801b1 🌐 [i18n-KO] Translated perf_train_gpu_many.md to Korean (#26244)
* dos: ko: perf_train_gpu_many.mdx

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions

Change description
Follow the glossary
Fix discrepancies

Co-Authored-By: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-Authored-By: 이서정 <97655267+sjlee-wise@users.noreply.github.com>
Co-Authored-By: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Hyunho <105839613+hyunhp@users.noreply.github.com>
Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-authored-by: 이서정 <97655267+sjlee-wise@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-09-27 13:51:15 -07:00
a0922a538b 🌐 [i18n-KO] Translated debugging.md to Korean (#26246)
* docs:ko:Debugging.md

* feat: chatgpt draft

* fix: resolve suggestions

Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Jang KyuJin <106062329+kj021@users.noreply.github.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-09-27 13:47:44 -07:00
ef81759e31 [i18n-DE] Complete first toc chapter (#26311)
* initial

* toctree

* add tf model

* run scripts

* peft

* llm and agents

* Update docs/source/de/peft.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/peft.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/peft.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/run_scripts.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/run_scripts.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/transformers_agents.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/transformers_agents.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-09-27 11:33:05 -07:00
6ae71ec836 Update runs-on in workflow files (#26435)
* update

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-27 19:25:52 +02:00
78dd120282 Fix failing doctest (#26450)
* Fix doctest

* Adding modeling also for now
2023-09-27 18:47:26 +02:00
72958fcd3c [Mistral] Mistral-7B-v0.1 support (#26447)
* [Mistral] Mistral-7B-v0.1 support

* fixing names

* slightly longer test

* fixups

* not_doctested

* wrongly formatted references

* make fixuped

---------

Co-authored-by: Timothee Lacroix <t@eugen.ai>
Co-authored-by: timlacroix <t@mistral.ai>
2023-09-27 18:30:46 +02:00
3ca18d6d09 [PEFT] Fix PEFT multi adapters support (#26407)
* fix PEFT multi adapters support

* refactor a bit

* save pretrained + BC + added tests

* Update src/transformers/integrations/peft.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* add more tests

* add suggestion

* final changes

* adapt a bit

* fixup

* Update src/transformers/integrations/peft.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* adapt from suggestions

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-27 16:45:31 +02:00
946bac798c add bf16 mixed precision support for NPU (#26163)
Co-authored-by: statelesshz <jihuazhong1@huawei.com>
2023-09-27 12:28:40 +02:00
153755ee38 [FA / tests] Add use_cache tests for FA models (#26415)
* add use_cache tests for FA

* fixup
2023-09-27 12:21:54 +02:00
a0be960dcc Fixing tokenizer when transformers is installed without tokenizers (#26236)
* Fixing tokenizer when tokenizers is not installed

* Adding __repr__ function and repr=True in dataclass

* Revert "Adding __repr__ function and repr=True in dataclass"

This reverts commit 18839505d1cada3170ed623744d3e75008a18bdc.
2023-09-27 11:58:04 +02:00
777f2243f5 Update semantic_segmentation.md (#26419) 2023-09-27 11:51:44 +02:00
abd2531034 Fix padding for IDEFICS (#26396)
* fix

* fixup

* tests

* fixup
2023-09-27 10:56:07 +02:00
408b2b3c50 Add torch RMSProp optimizer (#26425)
add rmsprop
2023-09-26 19:27:09 +02:00
6ba63ac3a0 [InternLM] Add support for InternLM (#26302)
* Add config.bias to LLaMA to allow InternLM models to be ported as LLaMA checkpoints

* Rename bias -> attention_bias and add docstring
2023-09-26 16:52:19 +01:00
0ac3875011 Fix DeepSpeed issue with Idefics (#26393)
Fix deepspeed issue with Idefics
2023-09-26 10:19:00 +02:00
6ce6a5adb9 added support for gradient checkpointing in ESM models (#26386) 2023-09-26 10:15:53 +02:00
a8531f3bfd Deleted duplicate sentence (#26394) 2023-09-26 10:11:28 +02:00
a09130feee [ViTMatte] Add resources (#26317)
Add resource
2023-09-26 07:06:38 +02:00
ace74d16bd Add Nougat (#25942)
* Add conversion script

* Add NougatImageProcessor

* Add crop margin

* More improvements

* Add docs, READMEs

* Remove print statements

* Include model_max_length

* Add NougatTokenizerFast

* Fix imports

* Improve postprocessing

* Improve image processor

* Fix image processor

* Improve normalize method

* More improvements

* More improvements

* Add processor, improve docs

* Simplify fast tokenizer

* Remove test file

* Fix docstrings

* Use NougatProcessor in conversion script

* Add is_levensthein_available

* Add tokenizer tests

* More improvements

* Use numpy instead of opencv

* Add is_cv2_available

* Fix cv2_available

* Add is_nltk_available

* Add image processor tests, improve crop_margin

* Add integration tests

* Improve integration test

* Use do_rescale instead of hacks, thanks Amy

* Remove random_padding

* Address comments

* Address more comments

* Add import

* Address more comments

* Address more comments

* Address comment

* Address comment

* Set max_model_input_sizes

* Add tests

* Add requires_backends

* Add Nougat to exotic tests

* Use to_pil_image

* Address comment regarding nltk

* Add NLTK

* Improve variable names, integration test

* Add test

* refactor, document, and test regexes

* remove named capture groups, add comments

* format

* add non-markdown fixed tokenization

* format

* correct flakyness of args parse

* add regex comments

* test functionalities for crop_image, align long axis and expected output

* add regex tests

* remove cv2 dependency

* test crop_margin equality between cv2 and python

* refactor table regexes to markdown

add newline

* change print to log, improve doc

* fix high count tables correction

* address PR comments: naming, linting, asserts

* Address comments

* Add copied from

* Update conversion script

* Update conversion script to convert both small and base versions

* Add inference example

* Add more info

* Fix style

* Add require annotators to test

* Define all keyword arguments explicitly

* Move cv2 annotator

* Add tokenizer init method

* Transfer checkpoints

* Add reference to Donut

* Address comments

* Skip test

* Remove cv2 method

* Add copied from statements

* Use cached_property

* Fix docstring

* Add file to not doctested

---------

Co-authored-by: Pablo Montalvo <pablo.montalvo.leroux@gmail.com>
2023-09-26 07:06:04 +02:00
5e09af2acd 🌐 [i18n-KO] Translated audio_classification.mdx to Korean (#26200)
* 🌐 [i18n-KO] Translated  to Korean

* update translation

* fix some sentence editing and fixing punctuation

* Update docs/source/ko/_toctree.yml

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Apply suggestions from code review

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-09-25 10:24:45 -07:00
033ec57c03 Add Russian localization for README (#26208)
* Add Russian localization

* typo

* mistake in link

* Update README_ru.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update README_ru.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-09-25 09:42:23 -07:00
d9e4bc2895 Update tiny model information and pipeline tests (#26285)
* Update tiny model summary file

* add to pipeline tests

* revert

* fix import

* fix import

* fix

* fix

* update

* update

* update

* fix

* remove BarkModelTest

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-25 18:08:12 +02:00
546e7679e7 [docs] removed MaskFormerSwin and TimmBackbone from the table on index.md (#26347)
removed MaskFormerSwin and TimmBackbone from the table
2023-09-25 09:41:59 -04:00
0ee4590684 Fix MusicGen logging error (#26370)
* Fix logging error

* Update modeling_musicgen.py

* Update modeling_musicgen.py
2023-09-25 13:08:25 +02:00
6accd5effb Update add_new_model.md (#26365)
fixed typos
2023-09-25 12:58:11 +02:00
5936c8c57c Fixed unclosed p tags (#26240) 2023-09-22 11:39:28 -07:00
910faa3e1f feat: adding num_proc to load_dataset (#26326)
* feat: adding num_proc to load_dataset

* feat: add add_num_proc for run_mlm_flax

* feat: add num_proc for bart and t5

* chorse: remove
2023-09-22 19:22:47 +02:00
576cd45a57 Add image to image pipeline (#25393)
* Add image to image pipeline

Add image to image pipeline

* remove swin2sr from tf auto

* make ImageToImage importable

* make style

make style

make style

make style

* remove tf support

* remove nonused imports

* fix postprocessing

* add important comments; add unit tests

* add documentation

* remove support for TF

* make fixup

* fix typehint Image.Image

* fix documentation code

* address review request; fix unittest type checking

* address review request; fix unittest type checking

* make fixup

* address reviews

* Update src/transformers/pipelines/image_to_image.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* enhance docs

* make style

* make style

* improve docetest time

* improve docetest time

* Update tests/pipelines/test_pipelines_image_to_image.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* Update tests/pipelines/test_pipelines_image_to_image.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* make fixup

* undo faulty merge

* undo faulty merge

* add image-to-image to test pipeline mixin

* Update src/transformers/pipelines/image_to_image.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_image_to_image.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* improve docs

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-22 19:53:55 +03:00
914771cbfe [TTA Pipeline] Fix MusicGen test (#26348)
* fix musicgen pipeline test

* fix wav2vec2 doctest

* revert wav2vec2
2023-09-22 17:55:54 +02:00
368a58e61c [core ] Integrate Flash attention 2 in most used models (#25598)
* v1

* oops

* working v1

* fixup

* add some TODOs

* fixup

* padding support + try with module replacement

* nit

* alternative design

* oops

* add `use_cache` support for llama

* v1 falcon

* nit

* a bit of refactor

* nit

* nits nits

* add v1 padding support falcon (even though it seemed to work before)

* nit

* falcon works

* fixup

* v1 tests

* nit

* fix generation llama flash

* update tests

* fix tests + nits

* fix copies

* fix nit

* test- padding mask

* stype

* add more mem efficient support

* Update src/transformers/modeling_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fixup

* nit

* fixup

* remove it from config when saving

* fixup

* revert docstring

* add more checks

* use values

* oops

* new version

* fixup

* add same trick for falcon

* nit

* add another test

* change tests

* fix issues with GC and also falcon

* fixup

* oops

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add init_rope

* updates

* fix copies

* fixup

* fixup

* more clarification

* fixup

* right padding tests

* add docs

* add FA in docker image

* more clarifications

* add some figures

* add todo

* rectify comment

* Change to FA2

* Update docs/source/en/perf_infer_gpu_one.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* split in two lines

* change test name

* add more tests

* some clean up

* remove `rearrange` deps

* add more docs

* revert changes on dockerfile

* Revert "revert changes on dockerfile"

This reverts commit 8d72a66b4b9b771abc3f15a9b9506b4246d62d8e.

* revert changes on dockerfile

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <hi@lysand.re>

* address some comments

* docs

* use inheritance

* Update src/transformers/testing_utils.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* fixup

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

* final comments

* clean up

* style

* add cast + warning for PEFT models

* fixup

---------

Co-authored-by: Felix Marty <9808326+fxmarty@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-09-22 17:42:10 +02:00
dcbfd93d7a [doc] fixed indices in obj detection example (#26343)
fixed indexes in obj detection example
2023-09-22 10:29:27 -04:00
c3ecf2d95d Fix doctest CI (#26324)
fix doc CI

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-22 08:58:30 +02:00
06ee91aebc Use CircleCI store_test_results (#26223)
store_test_results

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-22 08:56:54 +02:00
587b7b16ce [QUICK FIX LINK] Update trainer.py (#26293)
* Update trainer.py

Fix link

* Update src/transformers/trainer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update trainer.py

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-22 03:33:29 +02:00
000e52aec8 More error message fixup, plus some linebreaks! (#26296)
* More error message fixup, plus some linebreaks!

* Update src/transformers/dynamic_module_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/dynamic_module_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/dynamic_module_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-21 17:36:05 +01:00
9a30753485 Porting the torchaudio kaldi fbank implementation to audio_utils (#26182)
* add kaldi fbank

* make style

* add herz_to_mel_kaldi tests

* add mel to hertz kaldi test

* integration tests

* correct test and remove comment

* make style

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* change parameter name

* Apply suggestions from Arthur review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update remove_dc_offset description

* fix bug  + make style

* fix error in using np.exp instead of np.power

* make style

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-21 17:52:47 +02:00
b132c1703e update hf hub dependency to be compatible with the new tokenizers (#26301) 2023-09-21 14:57:36 +02:00
26ba56ccbd Fix FSMT weight sharing (#26292) 2023-09-21 14:46:05 +02:00
da971b2271 Keep relevant weights in fp32 when model._keep_in_fp32_modules is set even when accelerate is not installed (#26225)
* fix bug where weight would not be kept in fp32

* nit

* address review comments

* fix test
2023-09-21 19:00:03 +09:00
e3a4bd2bee add custom RMSNorm to ALL_LAYERNORM_LAYERS (#26227)
* add LlamaRMSNorm to ALL_LAYERNORM_LAYERS

* fixup

* add IdeficsRMSNorm to ALL_LAYERNORM_LAYERS and fixup
2023-09-20 18:51:56 +02:00
0b5024ce72 [Trainer] Refactor trainer + bnb logic (#26248)
* refactor trainer + bnb logic

* remove logger.info

* oops
2023-09-20 17:38:59 +02:00
f94c9b3d86 include changes from llama (#26260)
* include changes from llama

* add a test
2023-09-20 17:19:30 +02:00
00247ea0de add bbox input validation (#26294) 2023-09-20 16:48:35 +02:00
245532065d fix deepspeed available detection (#26252) 2023-09-20 16:40:14 +02:00
f29fe74589 Rewrite for custom code warning messages (#26291)
Quick britpicking for some warning messages!
2023-09-20 15:18:49 +01:00
2d71307dc0 Integrate AMD GPU in CI/CD environment (#26007)
* Add a Dockerfile for PyTorch + ROCm based on official AMD released artifact

* Add a new artifact single-amdgpu testing on main

* Attempt to test the workflow without merging.

* Changed BERT to check if things are triggered

* Meet the dependencies graph on workflow

* Revert BERT changes

* Add check_runners_amdgpu to correctly mount and check availability

* Rename setup to setup_gpu for CUDA and add setup_amdgpu for AMD

* Fix all the needs.setup -> needs.setup_[gpu|amdgpu] dependencies

* Fix setup dependency graph to use check_runner_amdgpu

* Let's do the runner status check only on AMDGPU target

* Update the Dockerfile.amd to put ourselves in / rather than /var/lib

* Restore the whole setup for CUDA too.

* Let's redisable them

* Change BERT to trigger tests

* Restore BERT

* Add torchaudio with rocm 5.6 to AMD Dockerfile (#26050)

fix dockerfile

Co-authored-by: Felix Marty <felix@hf.co>

* Place AMD GPU tests in a separate workflow (correct branch) (#26105)

AMDGPU CI lives in an other workflow

* Fix invalid job name is dependencies.

* Remove tests multi-amdgpu for now.

* Use single-amdgpu

* Use --net=host for now.

* Remote host networking.

* Removed duplicated check_runners_amdgpu step

* Let's tag machine-types with mi210 for now.

* Machine type should be only mi210

* Remove unnecessary push.branches item

* Apply review suggestions moving from `x-amdgpu` to `x-gpu` introducing `amd-gpu` and `miXXX` labels.

* Remove amdgpu from step names.

* finalize

* delete

---------

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
Co-authored-by: Felix Marty <felix@hf.co>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-20 14:48:49 +02:00
37c205eb5d Update bros checkpoint (#26277)
* fix bros integration test

* update bros checkpoint
2023-09-20 10:22:07 +02:00
86ffd5ffa2 fix name error when accelerate is not available (#26278)
* fix name error when accelerate is not available

* fix `is_fsdp_available`
2023-09-20 08:02:55 +02:00
382ba670ed FSDP tests and checkpointing fixes (#26180)
* add fsdp tests

* Update test_fsdp.py

* Update test_fsdp.py

* fixes

* checks

* Update trainer.py

* fix

* fixes for saving/resuming checkpoints

* fixes

* add tests and delete debug statements

* fixing tests

* Update test_fsdp.py

* fix tests

* fix tests

* minor nits

* fix code style and quality

* refactor and modularize test code

* reduce the time of tests

* reduce the test time

* fix test

* reduce test time

* reduce test time

* fix failing tests

* fix

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* resolve comments

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-20 10:26:16 +05:30
8e3980a290 [FIX] resize_token_embeddings (#26102)
* fix roundup command

* add test for resize_token_embeddings

* Update tests/test_modeling_common.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* style

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-19 21:44:41 +02:00
ffbf989f0d DeepSpeed ZeRO-3 handling when resizing embedding layers (#26259)
* fix failing deepspeed slow tests

* fixes
2023-09-20 00:34:56 +05:30
39df4eca73 Fix Error not captured in PR doctesting (#26215)
* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-19 17:27:51 +02:00
7d6354e047 Add ViTMatte (#25843)
* First draft

* Simplify image processor

* Fix rebase

* Address comments

* Address more comments

* Address more comments

* Address more comments

* Address more comments

* Improve pad_image

* Add tests

* Update integration test

* Fix image processor tests

* Fix model tests

* Convert checkpoints

* Fix doc tests

* Remove file

* Apply suggestions

* Address comments

* Fix typing hint

* Add batch_norm_eps

* Address comments

* Fix style
2023-09-19 10:56:10 -03:00
04191ea1e6 Fix gated repo tests (#26257)
* Fix gated repo tests

* Apply suggestions from code review
2023-09-19 13:25:12 +02:00
eb8489971a Fix some docstring in image processors (#26235)
Fix doc

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-19 07:35:41 +02:00
e469be3406 Fix the gitlab user mention in issue templates to the correct user (#26237) 2023-09-19 01:49:03 +02:00
373d0d9985 [docs] Fix model reference in zero shot image classification example (#26206) 2023-09-19 00:45:12 +02:00
500dfb5b03 Update add_new_pipeline.md (#26197)
fixed a few typos
2023-09-19 00:41:16 +02:00
7d4e0c23c8 Update README.md (#26198)
Fixed a few typos
2023-09-19 00:02:50 +02:00
de8bec6df3 [AutoBackbone] Add test (#26094)
* Add test

* Add config_class
2023-09-18 23:47:54 +02:00
97f439aed8 Create the return value on device to avoid unnecessary copying from CPU (#26151) 2023-09-18 23:46:13 +02:00
42791a5753 🌐 [i18n-KO] Translated whisper.md to Korean (#26002)
* docs: ko-whisper.md

* fix: chatgpt draft

* feat: manual edits

* Feat: manual edits

* fix: resolve suggestions

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-09-18 22:12:41 +02:00
2da8853775 🚨🚨 🚨🚨 [Tokenizer] attemp to fix add_token issues🚨🚨 🚨🚨 (#23909)
* fix test for bart. Order is correct now let's skip BPEs

* ouf

* styling

* fix bert....

* slow refactoring

* current updates

* massive refactoring

* update

* NICE!

* update to see where I am at

* updates

* update

* update

* revert

* updates

* updates

* start supporting legacy_save

* styling

* big update

* revert some changes

* nits

* nniiiiiice

* small fixes

* kinda fix t5 with new behaviour

* major update

* fixup

* fix copies

* today's updates

* fix byt5

* upfate

* update

* update

* updates

* update vocab size test

* Barthez does not use not need the fairseq offset ids

* super calll must be after

* calll super

* move all super init

* move other super init

* fixup

* nits

* more fixes

* nits

* more fixes

* nits

* more fix

* remove useless files

* ouch all of them are affected

* and more!

* small imporvements

* no more sanitize token

* more changes around unique no split tokens

* partially fix more things

* keep legacy save but add warning

* so... more fixes

* updates

* guess deberta tokenizer could be nuked

* fixup

* fixup did some bad things

* nuke it if it breaks

* remove prints and pretrain fast from slow with new format.

* fixups

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fiou

* nit

* by default specials should not be normalized?

* update

* remove brakpoint

* updates

* a lot of updates

* fixup

* fixes revert some changes to match fast

* small nits

* that makes it cleaner

* fix camembert accordingly

* update

* some lest breaking changes

* update

* fixup

* fix byt5 and whisper mostly

* some more fixes, canine's byte vocab

* fix gpt2

* fix most of the perceiver tests (4 left)

* fix layout lmv3

* fixup

* fix copies for gpt2 style

* make sure to only warn once

* fix perciever and gpt2 tests

* some more backward compatibility: also read special tokens map because some ppl use it........////.....

* fixup

* add else when reading

* nits

* fresh updates

* fix copies

* will this make everything faster?

* fixes

* more fixes

* update

* more fixes

* fixup

* is the source of truth right?

* sorry camembert for the troubles

* current updates

* fixup

* update led

* update

* fix regression

* fix single word

* more model specific fixes

* fix t5 tests

* fixup

* more comments

* update

* fix nllb

* rstrip removed

* small fixes

* better handle additional_special_tokens and vocab sizes

* fixing

* styling

* fix 4 / 21

* fixup

* fix nlbb's tests

* some fixes

* fix t5

* fixes

* style

* fix canine tests

* damn this is nice

* nits

* m2m100 nit

* fixups

* fixes!

* fixup

* stash

* fix merge

* revert bad change

* fixup

* correct order for code Llama

* fix speecht5 post merge

* styling

* revert source of 11 fails

* small nits

* all changes in one go

* fnet hack

* fix 2 more tests

* update based on main branch of tokenizers

* fixup

* fix VITS issues

* more fixes

* fix mgp test

* fix camembert issues

* oups camembert still has 2 failing tests

* mluke fixes

* decode fixes

* small nits

* nits

* fix llama and vits

* fix camembert

* smal nits

* more fixes when initialising a fast from a slow and etc

* fix one of the last test

* fix CPM tokenizer test

* fixups

* fix pop2piano

* fixup

* ⚠️ Change tokenizers required version ⚠️

* ⚠️ Change tokenizers required version ⚠️

* "tokenizers>=0.14,<0.15", don't forget smaller than

* fix musicgen tests and pretraiendtokenizerfast

* fix owlvit and all

* update t5

* fix 800 red

* fix tests

* fix the fix of the fix of t5

* styling

* documentation nits

* cache _added_tokens_encoder

* fixups

* Nit

* fix red tests

* one last nit!

* make eveything a lot simpler

* Now it's over 😉

* few small nits

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates that work for now

* tests that should no be skipped / changed and fixed next

* fixup

* i am ashamed

* pushe the fix

* update

* fixups

* nits

* fix added_tokens_encoder

* fix canine test

* fix pegasus vocab

* fix transfoXL

* fixup

* whisper needs to be fixed for train new

* pegasus nits

* more pegasus fixes

* minor update

* better error message in failed test

* fix whisper failing test

* fix whisper failing test

* fix pegasus

* fixup

* fix **** pegasus

* reset things

* remove another file

* attempts to fix the strange custome encoder and offset

* nits here and there

* update

* fixup

* nit

* fix the whisper test

* nits nits

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates based on review

* some small update to potentially remove

* nits

* import rlu cache

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* move warning to `from_pretrained`

* update tests results now that the special tokens are always added

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-09-18 20:28:36 +02:00
835b0a0533 [Check] Fix config docstring (#26222) 2023-09-18 19:58:01 +02:00
e5f7e03b3b [Permisson] Style fix (#26228)
fix copies
2023-09-18 19:49:51 +02:00
e4e55af79c [Wav2Vec2-Conf / LLaMA] Style fix (#26188)
* torch.nn -> nn

* fix llama

* copies
2023-09-18 17:24:35 +01:00
8b5da9fc6e refactor: change default block_size in block size > max position embeddings (#26069)
* refactor: change default block_size when not initialize

* reformat: add the min of block size
2023-09-18 16:47:57 +01:00
c63e27012d refactor decay_parameters production into its own function (#26152) 2023-09-18 17:40:11 +02:00
77ed9fa1a9 [FSMT] Fix non-shared weights (#26187)
* Fix non-shared weights

* Add tests

* Edit tied weights keys
2023-09-18 16:58:38 +02:00
f0a6057fbc Fix ConversationalPipeline tests (#26217)
Add BlenderbotSmall templates and correct handling for conversation.past_user_inputs
2023-09-18 15:08:56 +01:00
bc7ce1808f moved ctrl to Salesforce/ctrl (#26183)
* moved `ctrl` to `Salesforce/ctrl`

redirects should theoretically work, but still updating those repo references for clarity

* Fixup

* Slow doc tests

* Add modeling file

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-09-18 13:52:43 +02:00
f02b915ba2 Remove utils/documentation_tests.txt (#26213)
* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-18 13:33:01 +02:00
d020a2b81b No doctest for convert_bros_to_pytorch.py (#26212)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-18 13:31:59 +02:00
0a55d9f737 [PEFT] Allow PEFT model dict to be loaded (#25721)
* Allow PEFT model dict to be loaded

* make style

* make style

* Apply suggestions from code review

* address comments

* fixup

* final change

* added tests

* fix test

* better logic for handling if adapter has been loaded

* Update tests/peft_integration/test_peft_integration.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-15 18:22:01 +02:00
8b13471494 [docs] IDEFICS guide and task guides restructure (#26035)
* initial commit for the IDEFICS task guide

* conversational example

* updated TOC

* fixed typos

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* addressed feedback

* bad_words_ids

* Apply suggestions from code review

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* rank classification note

* feedback addressed

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Victor SANH <victorsanh@gmail.com>
2023-09-15 12:15:07 -04:00
eb644980eb Fix pad to multiple of (#25732)
* nits

* update the test

* nits

* update

* fix bark

* fix bark tests and allow padding to multiple of without new tokens
2023-09-15 11:53:39 -04:00
ebd21e904f Update notebook.py to support multi eval datasets (#25796)
* Update notebook.py

fix multi eval datasets

* Update notebook.py

* Update notebook.py

using `black` to reformat

* Update notebook.py

support Validation Loss

* Update notebook.py

reformat

* Update notebook.py
2023-09-15 11:52:18 -04:00
c7b4d0b4e2 [Whisper] Check length of prompt + max new tokens (#26164) 2023-09-15 15:46:31 +01:00
2518e36810 Tweaks to Chat Templates docs (#26168)
* Put tokenizer methods in the right alphabetical order in the docs

* Quick tweak to ConversationalPipeline

* Typo fixes in the developer doc

* make fixup
2023-09-15 12:50:57 +01:00
d70fab8b20 [TTA Pipeline] Test MusicGen and VITS (#26146) 2023-09-15 10:00:36 +01:00
869733ab62 IDEFICS: allow interpolation of vision's pos embeddings (#26029)
* add pos embed interpolation for vision encoder

* style

* update config with interpolate_pos_encoding arg

* fix imports formatting

* take off copied from on vision embeddings

* add test for image embeddings interpolation

* add credit for interpolation code

* Update src/transformers/models/idefics/configuration_idefics.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/idefics/vision.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix condition to check nbr image patches match shape of pos embeddings

* use kwargs in the forward methods for interpolation

* fix tests

* have interpolate_pos_encoding default to False instead of None

* Update tests/models/idefics/test_modeling_idefics.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/idefics/test_modeling_idefics.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/idefics/test_modeling_idefics.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/idefics/configuration_idefics.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* take off for loop meant to print k,v

* add interpolate_pos_encoding arg in prepare_inputs_for_generation

* add test for interpolated generation

* fix edge case num_patches == num_positions and height == width

* add test for edge case

* fix pos_embed in interpolate

* allow interpolation in bf16 with upcasting

* Update src/transformers/models/idefics/vision.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/idefics/vision.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add multiple images tests for interpolation and generation

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-14 19:27:40 -04:00
5469c18762 [BLIP-2] Improve conversion script (#24854)
* Improve conversion script

* Add int8 code example

* Update tip

* Fix code

* Fix code snippet

* Add nucleus sampling

* More improvements

* Address comments

* Address comments
2023-09-14 19:42:20 +01:00
17fdd35481 Add BROS (#23190)
* add Bros boilerplate

* copy and pasted modeling_bros.py from official Bros repo

* update copyright of bros files

* copy tokenization_bros.py from official repo and update import path

* copy tokenization_bros_fast.py from official repo and update import path

* copy configuration_bros.py from official repo and update import path

* remove trailing period in copyright line

* copy and paste bros/__init__.py from official repo

* save formatting

* remove unused unnecessary pe_type argument - using only crel type

* resolve import issue

* remove unused model classes

* remove unnecessary tests

* remove unused classes

* fix original code's bug - layer_module's argument order

* clean up modeling auto

* add bbox to prepare_config_and_inputs

* set temporary value to hidden_size (32 is too low because of the of the
Bros' positional embedding)

* remove decoder test, update create_and_check* input arguemnts

* add missing variable to model tests

* do make fixup

* update bros.mdx

* add boilerate plate for no_head inference test

* update BROS_PRETRAINED_MODEL_ARCHIVE_LIST (add naver-clova-ocr prefix)

* add prepare_bros_batch_inputs function

* update modeling_common to add bbox inputs in Bros Model Test

* remove unnecessary model inference

* add test case

* add model_doc

* add test case for token_classification

* apply fixup

* update modeling code

* update BrosForTokenClassification loss calculation logic

* revert logits preprocessing logic to make sure logits have original shape

* - update class name

* - add BrosSpadeOutput
- update BrosConfig arguments

* add boilerate plate for no_head inference test

* add prepare_bros_batch_inputs function

* add test case

* add test case for token_classification

* update modeling code

* update BrosForTokenClassification loss calculation logic

* revert logits preprocessing logic to make sure logits have original shape

* apply masking on the fly

* add BrosSpadeForTokenLinking

* update class name
put docstring to the beginning of the file

* separate the logits calculation logic and loss calculation logic

* update logic for loss calculation so that logits shape doesn't change
when return

* update typo

* update prepare_config_and_inputs

* update dummy node initialization

* update last_hidden_states getting logic to consider when return_dict is False

* update box first token mask param

* bugfix: remove random attention mask generation

* update keys to ignore on load missing

* run make style and quality

* apply make style and quality of other codes

* update box_first_token_mask to bool type

* update index.md

* apply make style and quality

* apply make fix-copies

* pass check_repo

* update bros model doc

* docstring bugfix fix

* add checkpoint for doc, tokenizer for doc

* Update README.md

* Update docs/source/en/model_doc/bros.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update bros.md

* Update src/transformers/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/bros.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* apply suggestions from code review

* apply suggestions from code review

* revert test_processor_markuplm.py

* Update test_processor_markuplm.py

* apply suggestions from code review

* apply suggestions from code review

* apply suggestions from code review

* update BrosSpadeELForTokenClassification head name to entity linker

* add doc string for config params

* update class, var names to more explicit and apply suggestions from code review

* remove unnecessary keys to ignore

* update relation extractor to be initialized with config

* add bros processor

* apply make style and quality

* update bros.md

* remove bros tokenizer, add bros processor that wraps bert tokenizer

* revert change

* apply make fix-copies

* update processor code, update itc -> initial token, stc -> subsequent token

* add type hint

* remove unnecessary condition branches in embedding forward

* fix auto tokenizer fail

* update docstring for each classes

* update bbox input dimension as standard 2 points and convert them to 4
points in forward pass

* update bros docs

* apply suggestions from code review : update Bros -> BROS in bros.md

* 1. box prefix var -> bbox
2. update variable names to be more explicit

* replace einsum with torch matmul

* apply style and quality

* remove unused argument

* remove unused arguments

* update docstrings

* apply suggestions from code review: add BrosBboxEmbeddings, replace
einsum with classical matrix operations

* revert einsum update

* update bros processor

* apply suggestions from code review

* add conversion script for bros

* Apply suggestions from code review

* fix readme

* apply fix-copies

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-09-14 18:02:37 +01:00
95fe0f5d80 [Whisper] Fix word-level timestamps for audio < 30 seconds (#25607)
* Fix word-level timestamps for audio < 30 seconds

* Fix code quality

* fix unit tests

* Fix unit tests

* Fix unit test

* temp: print out result

* temp: set max diff to None

* fix unit tests

* fix typo

* Fix typo

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Use generation config for `num_frames`

* fix docs

* Move `num_frames` to kwargs

* compute stride/attn_mask once

* mark test as slow

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
2023-09-14 17:42:35 +01:00
44a0490d3c [MusicGen] Add sampling rate to config (#26136)
* [MusicGen] Add sampling rate to config

* remove tiny

* make property

* Update tests/pipelines/test_pipelines_text_to_audio.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* style

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-14 16:57:06 +01:00
8881f38a4f Fix beam search when using model parallel (#24969)
* Fix GPTNeoX beam search when using parallelize

* Fix beam search idx device when using model parallel

* remove onnx related stuff

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix: move test_beam_search_on_multi_gpu to GenerationTesterMixin

* fix: add right item to _no_split_modules of MegaPreTrainedModel

* fix: add num_beams within parallelized beam_search test

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-09-14 11:00:52 -04:00
0dd06c3f78 [MusicGen] Add streamer to generate (#25320)
* [MusicGen] Add streamer to generate

* add to for cond generation

* add test

* finish

* torch only

* fix type hint

* yield audio chunks

* fix typehint

* remove test
2023-09-14 15:59:09 +01:00
866df66fe4 Overhaul Conversation class and prompt templating (#25323)
* First commit while I figure this out

* make fixup

* Remove unused method

* Store prompt attrib

* Fix prompt argument for tests

* Make same changes in fast tokenizer

* Remove global prompts from fast tokenizer too

* stash commit

* stash commit

* Migrate PromptConfig to its True Final Location

* Replace Conversation entirely with the new class

* Import/dependency fixes

* Import/dependency fixes

* Change format for lots of default prompts

* More default prompt fixups

* Revert llama old methods so we can compare

* Fix some default configs

* Fix some default configs

* Fix misspelled kwarg

* Fixes for Blenderbot

* make fixup

* little rebase cleanup

* Add basic documentation

* Quick doc fix

* Truncate docstring for now

* Add handling for the case when messages is a single string

* Quick llama merges

* Update conversational pipeline and tests

* Add a couple of legacy properties for backward compatibility

* More legacy handling

* Add docstring for build_conversation_input_ids

* Restructure PromptConfig

* Let's start T E M P L A T I N G

* Refactor all default configs to use templates instead

* Revert changes to the special token properties since we don't need them anymore

* More class templates

* Make the sandbox even sandier

* Everything replaced with pure templating

* Remove docs for PromptConfig

* Add testing and optional requirement boilerplate

* Fix imports and make fixup

* Fix LLaMA tests and add Conversation docstring

* Finally get LLaMA working with the template system

* Finally get LLaMA working with the template system

* make fixup

* make fixup

* fmt-off for the long lists of test tokens

* Rename method to apply_chat_template for now

* Start on documentation

* Make chat_template a property that reads through to the default if it's not set

* Expand docs

* Expand chat templating doc some more

* trim/lstrip blocks by default and update doc

* Few doc tweaks

* rebase cleanup

* Clarify docstring

* rebase cleanup

* rebase cleanup

* make fixup

* Quick doc edit

* Reformat the standard template to match ChatML

* Re-add PEFT check

* Update docs/source/en/chat_templating.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add apply_chat_template to the tokenizer doc

* make fixup

* Add doc links

* Fix chat links

* Fix chat links

* Explain system messages in the doc

* Add chat template test

* Proper save-loading for chat template attribute

* Add test skips for layout models

* Remove _build_conversation_input_ids, add default_chat_template to code_llama

* Make sure all LLaMA models are using the latest template

* Remove default_system_prompt block in code_llama because it has no default prompt

* Update ConversationPipeline preprocess

* Add correct #Copied from links to the default_chat_templates

* Remove unneeded type checking line

* Add a dummy mark_processsed method

* Reorganize Conversation to have **deprecated_kwargs

* Update chat_templating.md

* Quick fix to LLAMA tests

* Small doc tweaks

* Add proper docstrings and "copied from" statements to all default chat templates

* Merge use_default_system_prompt support for code_llama too

* Improve clarity around self.chat_template

* Docstring fix

* Fix blenderbot default template

* More doctest fix

* Break out some tokenizer kwargs

* Update doc to explain default templates

* Quick tweaks to tokenizer args

* Cleanups for tokenizer args

* Add note about cacheing

* Quick tweak to the chat-templating doc

* Update the LLaMA template with error checking and correct system message embedding

* make fixup

* make fixup

* add requires_jinja

* Cleanup to expected output formatting

* Add cacheing

* Fix typo in llama default template

* Update LLaMA tests

* Update documentation

* Improved legacy handling in the Conversation class

* Update Jinja template with proper error handling

* Quick bugfix

* Proper exception raising

* Change cacheing behaviour so it doesn't try to pickle an entire Jinja env

* make fixup

* rebase cleanup

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-14 15:10:34 +01:00
7c63e6fc8c [PEFT] Fix PEFT + gradient checkpointing (#25846)
* fix PEFT + gradient checkpointing

* add disable RG

* polish tests

* fix comment

* Revert "fix comment"

This reverts commit b85386f50d2b104bac522e823c47b7e232116a47.

* final explanations and tests
2023-09-14 13:01:58 +02:00
ac957f69cc [Whisper Tokenizer] Encode timestamps (#26054)
* [Whisper Tokenizer] Fix tests after adding timestamps

* fix s2t tokenizer tests

* fix vocab test

* backwards comp

* fix tests

* comment

* style

* fix last test

* fix fast

* make faster

* move logic to decode

* remove skip test

* fix decode with offsets

* fix special tokens

* empty commit to re-trigger ci

* use lru cache
2023-09-14 12:00:43 +01:00
6d49b9dcbf Fix eval accumulation when accelerate > 0.20.3 (#26060)
As mentioned in: https://github.com/huggingface/transformers/issues/25641

Eval accumulation will never happen with `accelerate > 0.20.3`, so this change ensures that `sync_gradients` is ignored if accelerate is > 0.20.3
2023-09-14 10:57:47 +01:00
d7bd325b5a Add missing Maskformer dataclass decorator, add dataclass check in ModelOutput for subclasses (#25638)
* Add @dataclass to MaskFormerPixelDecoderOutput

* Add dataclass check if subclass of ModelOutout

* Use unittest assertRaises rather than pytest per contribution doc

* Update src/transformers/utils/generic.py per suggested change

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-09-14 10:30:49 +01:00
05de038f3d Flex xpu bug fix (#26135)
flex gpu bug fix
2023-09-13 21:03:52 +01:00
9709ab116c [docs] last hidden state vs hidden_states[-1] (#26142)
* last hidden state clarification

* feedback addressed
2023-09-13 14:35:42 -04:00
e52f1cb669 Update training_args.py - addition of self.distributed_state when using XPU (#25999)
* Update training_args.py

Missing distributed state so lign 1813-1814 failed because value is undefined

* Update training_args.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2023-09-13 19:21:46 +01:00
0fced06788 Fix beam_scores shape when token scores shape changes after logits_processor (#25980) 2023-09-13 19:12:47 +01:00
a796f7eea6 Falcon: batched generation (#26137) 2023-09-13 17:00:52 +01:00
95a904104e Fix test_finetune_bert2bert (#25984)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-13 16:53:43 +01:00
86ffef87b6 Generate: ignore warning when generation_config.max_length is set to None (#26147) 2023-09-13 16:50:58 +01:00
a6ae2bd059 docs: feat: add llama2 notebook resources from OSSCA community (#26076) 2023-09-13 08:27:41 -07:00
7ccac73f74 [RWKV] Final fix RWMV 4bit (#26134)
* Final fix RWMV 4bit

* fixup

* add a test

* add more clarifications
2023-09-13 16:30:20 +02:00
32ec7345f2 Update spectrogram and waveform model mapping for TTS/A pipeline (#26114)
update names mapping for spectrogram and waveform models
2023-09-13 09:05:11 -04:00
a9b63ca989 Add missing space in generation/utils.py (#26121)
Add missing space in utils.py

Warning now reads as "...  to control thegeneration length. We ..."
2023-09-13 13:45:55 +01:00
c8b26096d4 [core] fix 4bit num_parameters (#26132)
* fix 4bit `num_parameters`

* stronger check
2023-09-13 14:12:35 +02:00
7db1ad63d9 Fix AutoTokenizer docstring typo (#26117)
Fix docstring typo
2023-09-13 11:12:27 +01:00
b477327394 fix the deepspeed tests (#26021)
* fix the deepspeed tests

* resolve comment
2023-09-13 10:26:53 +05:30
73b13ac099 safeguard torch distributed check (#26056) 2023-09-13 10:26:37 +05:30
12f043eaea Fix MarianTokenizer to remove metaspace character in decode (#26091)
* add: check to remove metaspace from marian tokenizer

* fix: metaspace character being removed from everywhere

* fix: remove redundant check at top

* add: test for marian tokenizer decode fix

* fix: simplified the test
2023-09-12 21:53:31 +02:00
03e309d58e Text2text pipeline: don't parameterize from the config (#26118) 2023-09-12 18:40:45 +01:00
4fb64e285a chore: correct update_step and correct gradient_accumulation_steps (#26068) 2023-09-12 18:31:23 +01:00
8f609ab9e0 enable optuna multi-objectives feature (#25969)
* enable optuna multi-objectives feature

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* update hpo doc

* update docstring

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* extend direction to List[str] type

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Update src/transformers/integrations/integration_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-09-12 18:01:22 +01:00
92f2fbad50 🌐 [i18n-KO] Translated contributing.md to Korean (#25877)
* docs: ko-contributing.md

* feat: chatGPT draft

* feat: manual edits

* feat: change linked document

* fix: resolve suggestion

Co-authored-by: Haewon Kim <ehdvkf02@naver.com>

* fix: resolve suggestion

Co-authored-by: Haewon Kim <ehdvkf02@naver.com>

* fix: resolve suggestion

Co-authored-by: Haewon Kim <ehdvkf02@naver.com>

* fix: resolve suggestion

Co-authored-by: Haewon Kim <ehdvkf02@naver.com>

* fix: resolve suggestion

Co-authored-by: Haewon Kim <ehdvkf02@naver.com>

* fix: resolve suggestion

Co-authored-by: Haewon Kim <ehdvkf02@naver.com>

* fix: resolve suggestion

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: resolve suggestion

* fix: resolve suggestion

* feat: delete file to resolve error

---------

Co-authored-by: Haewon Kim <ehdvkf02@naver.com>
Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
2023-09-12 08:35:29 -07:00
1fe7ce48f1 [docs] Updates to TTS task guide with regards to the new TTS pipeline (#26095)
* tts guide updates with a pipeline

* Apply suggestions from code review

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* Update docs/source/en/tasks/text-to-speech.md

Co-authored-by: Vaibhav Srivastav <vaibhavs10@gmail.com>

---------

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
Co-authored-by: Vaibhav Srivastav <vaibhavs10@gmail.com>
2023-09-12 11:29:06 -04:00
be9438ed43 🌐 [i18n-KO] Translated llama2.md to Korean (#26047)
* docs: ko-llama2.md

* feat: chatGPT draft and manul edits

* feat: added inline TOC

* fix: inline TOC

* fix: resolve suggestions

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-09-12 08:04:26 -07:00
6acc27eea8 Fix ExponentialDecayLengthPenalty negative logits issue (#25594)
* Fix issues in test_exponential_decay_length_penalty

Fix tests which were broken and add validation of negative scores.

Current test didn't take into account that ExponentialDecayLengthPenalty updates the score inplace, resulting in updates to base tested Tensor.

In addition, the gt assert had empty Tensors due to indexing along the batch dimension.

Test is currently expected to fail to show ExponentialDecayLengthPenalty issues with negative scores

* Fix ExponentialDecayLengthPenalty negative logits issue

In cases where the scores are negative, ExponentialDecayLengthPenalty decreases the score of eos_token_id instead of increasing it.
To fix this issue we compute the penalty of the absolute value and add it to the original score.

* Add examples for ExponentialDecayLengthPenalty

* Fix styling issue in ExponentialDecayLengthPenalty doc

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Style and quality fix

* Fix example outputs

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-12 12:50:41 +01:00
d65c4a4fed Update logits_process.py docstrings (#25971) 2023-09-12 12:36:31 +01:00
3319eb5490 Generate: legacy mode is only triggered when generation_config is untouched (#25962) 2023-09-12 12:08:17 +01:00
18abc756c5 [core] Import tensorflow inside relevant methods in trainer_utils (#26106)
import tensorflow inside relevant methods in trainer_utils
2023-09-12 11:49:06 +02:00
9cccb3a838 [Persimmon] Add support for persimmon (#26042)
* intiial commit

* updates

* nits

* update conversion script

* update conversion script

* use path to load

* add tips etc

* some modeling logic

* modeling update

* more nits

* nits

* normal layer norm

* update config and doc

* nits

* update doc remove unused

* update

* fix inits and stuff

* fixup

* revert wrong changes

* updates

* more nits

* add default config values to the configuration file

* fixup happy

* update

* 2 tests left

* update readmes

* more nits

* slow test and more documentation

* update readme

* fix licences

* styling

* use fast if possible when saving tokenizer

* remove todo

* remove tokenization tests

* small last nits

* Apply suggestions from code review

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* nits to skip the timout doctest

* fix integration test

* fix test

* update eos token

* update to allow fast tokenization

* styling

* fix codeLlama as well for the update post processor

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add more copied from statements

* update

* doc passes doctest

* remove `# final layer norm?`

* change docstring prompot

* update

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* don't doctest the conversion script as it requires more packages

* don't init a model in the config

* oups

* fix doctest

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-09-12 11:33:27 +02:00
5af2c62696 docs: add space to docs (#26067)
* docs: add space to docs

* docs: remove reduntant space
2023-09-11 22:03:26 +01:00
ce2e7ef3d9 [Core] Add lazy import structure to imports (#26090)
* improve import time

* Update src/transformers/integrations/__init__.py

* sort import
2023-09-11 17:20:29 +02:00
9cebae64ad docs: update link huggingface map (#26077) 2023-09-11 12:57:04 +01:00
7fd2d68613 only main process should call _save on deepspeed zero3 (#25959)
only main process should call _save when deepspeed zero3
2023-09-11 12:56:36 +01:00
95b374952d [CITests] skip failing tests until #26054 is merged (#26063)
* skip failing tests until #26054 is merged

* fixup
2023-09-09 05:43:26 +02:00
09b2de6eb7 [CodeLlamaTokenizerFast] Fix fix set_infilling_processor to properly reset (#26041)
* fix `set_infilling_processor` to properly reset

* Add docstring!

* fixups

* more details in the docuemtation about the tokenization

* styl;e
2023-09-08 22:03:09 +02:00
d53606031f 🌐 [i18n-KO] Translated llama.md to Korean (#26044)
* docs: ko-llama.md

* fix: chatgpt draft

* feat: manual edits

* fix: resolve suggestions
2023-09-08 12:38:41 -07:00
6c26faa159 Skip warning if tracing with dynamo (#25581)
* Ignore warning if tracing with dynamo

* fix import error

* separate to function

* add test
2023-09-08 21:13:33 +02:00
18ee1fe762 Update missing docs on activation_dropout and fix DropOut docs for SEW-D (#26031)
* add missing doc for activation dropout

* fix doc for SEW-D dropout

* deprecate hidden_dropout for SEW-D
2023-09-08 14:51:54 +01:00
0c67a72c9a Fix Dropout Implementation in Graphormer (#24817)
This commit corrects the dropout implementation in Graphormer, aligning it with the original implementation and improving performance. Specifically:

1. The `attention_dropout` variable, intended for use in GraphormerMultiheadAttention, was defined but not used. This has been corrected to use `attention_dropout` instead of the regular `dropout`.
2. The `activation_dropout` for the activations in the feed-forward layers was missing. Instead, the regular `dropout` was used. This commit adds `activation_dropout` to the feed-forward layers.

These changes ensure the dropout implementation matches the original Graphormer and delivers empirically better performance.
2023-09-08 12:49:39 +01:00
fb7d246951 Try to fix training Loss inconsistent after resume from old checkpoint (#25872)
* fix loss inconsistent after resume  #25340

* fix typo

* clean code

* reformatted code

* adjust code according to comments

* adjust check_dataloader_randomsampler location

* return sampler only

* handle sampler is None

* Update src/transformers/trainer_pt_utils.py

thanks @amyeroberts

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-09-07 20:00:22 +01:00
c5e66a40a4 Punctuation fix (#26025)
fix typo
2023-09-07 19:54:52 +01:00
00efd64e51 Fix vilt config docstring parameter to match value in init (#26017)
* Fix vilt config init parameter to match the ones in documentation

* Fix the documentation
2023-09-07 19:53:43 +01:00
02c4a77f57 Added HerBERT to README.md (#26020)
* Added HerBERT to README.md

* Update README.md to contain HerBERT (#26016)

* Resolved #26016: Updated READMEs and index.md to contain Herbert

Updated READMEs and ran make fix-copies
2023-09-07 19:51:45 +01:00
2af87d018e [VITS] Fix nightly tests (#25986)
* fix tokenizer

* make bs even

* fix multi gpu test

* style

* model forward

* fix torch import

* revert tok pin
2023-09-07 17:49:14 +01:00
3744126c87 Add tgs speed metrics (#25858)
* Add tgs metrics

* bugfix and black formatting

* workaround for tokens counting

* formating and bugfix

* Fix

* Add opt-in for tgs metrics

* make style and fix error

* Fix doc

* fix docbuild

* hf-doc-build

* fix

* test

* Update src/transformers/training_args.py

renaming

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* Update src/transformers/training_args.py

renaming

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* Fix some symbol

* test

* Update src/transformers/trainer_utils.py

match nameing patterns

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/trainer.py

nice

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix reviews

* Fix

* Fix black

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-09-07 17:17:30 +01:00
0188739a74 Fix CircleCI config (#26023)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-07 14:51:35 +02:00
Kai
df04959e55 fix _resize_token_embeddings will set lm head size to 0 when enabled deepspeed zero3 (#26024) 2023-09-07 10:10:40 +01:00
e3a9716384 Fix err with FSDP (#25991)
* Fix err

* Use version check
2023-09-07 09:52:53 +05:30
fa6107c97e modify context length for GPTQ + version bump (#25899)
* add new arg for gptq

* add tests

* add min version autogptq

* fix order

* skip test

* fix

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix style

* change model path

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-06 11:45:47 -04:00
300d6a4a62 Remove Falcon from undocumented list (#26008)
Remove falcon from undocumented list
2023-09-06 15:49:04 +01:00
fa522d8d7b 🌐[i18n-KO] Translated llm_tutorial.md to Korean (#25791)
* docs: ko: llm_tutoroal.md

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions

* fix: resolve suggestions
2023-09-06 07:40:03 -07:00
3e203f92be Fix small typo README.md (#25934)
* fix some samll bugs in readme

* Update docs/README.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-09-06 14:07:29 +01:00
842e99f1b9 TF-OPT attention mask fixes (#25238)
* stash commit

* More OPT updates

* Update src/transformers/models/opt/modeling_tf_opt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-09-06 13:37:27 +01:00
f6301b9a13 Falcon: fix revision propagation (#26006)
* Fix revision propagation

* Cleaner
2023-09-06 07:21:00 -04:00
f6295c6c53 Update README.md (#26003)
fixed a typo
2023-09-06 10:55:11 +01:00
172f42c512 save space when converting hf model to megatron model. (#25950)
* fix convert megatron model too large

* fix convert megatron model too large
2023-09-05 16:47:48 -04:00
b8def68934 Fix Mega chunking error when using decoder-only model (#25765)
* add: potential fix to mega chunking in decoder only model bug

* add: decoder with chunking test

* add: input_mask passed with input_ids
2023-09-05 21:50:14 +02:00
4fa0aff21e [VITS] tokenizer integration test: fix revision did not exist (#25996)
* revision did not exist

* correct revision
2023-09-05 21:21:33 +02:00
d0354e5e86 [CI] Fix red CI and ERROR failed should show (#25995)
* start with error too

* fix ?

* start with nit

* one more path

* use `job_name`

* mark pipeline test as slow
2023-09-05 20:16:00 +02:00
6206f599e1 Add LLaMA resources (#25859)
* docs: feat: model resources for llama

* fix: resolve suggestion

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-09-05 10:50:08 -07:00
8d518013ef [Wav2Vec2 Conformer] Fix inference float16 (#25985)
* [Wav2Vec2 Conformer] Fix inference float16

* fix test

* fix test more

* clean pipe test
2023-09-05 18:26:06 +01:00
6bc517ccd4 deepspeed resume from ckpt fixes and adding support for deepspeed optimizer and HF scheduler (#25863)
* Add support for deepspeed optimizer and HF scheduler

* fix bug

* fix the import

* fix issue with deepspeed scheduler saving for hf optim + hf scheduler scenario

* fix loading of hf scheduler when loading deepspeed checkpoint

* fix import of `DeepSpeedSchedulerWrapper`

* add tests

* add the comment and skip the failing tests

* address comment
2023-09-05 22:31:20 +05:30
1110b565d6 Add TFDebertaV2ForMultipleChoice (#25932)
* Add TFDebertaV2ForMultipleChoice

* Import newer model in main init

* Fix import issues

* Fix copies

* Add doc

* Fix tests

* Fix copies

* Fix docstring
2023-09-05 17:13:06 +01:00
da1af21dbb PegasusX add _no_split_modules (#25933)
* no_split_modules

* no_split_modules

* inputs_embeds+pos same device

* update _no_split_modules

* update _no_split_modules
2023-09-05 16:34:34 +01:00
70a98024b1 Patch with accelerate xpu (#25714)
* patch with accelerate xpu

* patch with accelerate xpu

* formatting

* fix tests

* revert ruff unrelated fixes

* revert ruff unrelated fixes

* revert ruff unrelated fixes

* fix test

* review fixes

* review fixes

* black fixed

* review commits

* review commits

* style fix

* use pytorch_utils

* revert markuplm test
2023-09-05 15:41:42 +01:00
aa5c94d38d Show failed tests on CircleCI layout in a better way (#25895)
* update

* update

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-05 15:49:33 +02:00
9a70d6e56f Trainer: delegate default generation values to generation_config (#25987) 2023-09-05 14:47:00 +01:00
aea761499f Update training_args.py to remove the runtime error (#25920)
This cl iterates through a list of keys rather than dict items while updating the dict elements. Fixes the following error:
File "..../transformers/training_args.py", line 1544, in post_init
for k, v in self.fsdp_config.items():
RuntimeError: dictionary keys changed during iteration
2023-09-05 12:43:51 +01:00
7011cd8667 Update RAG README.md with correct path to examples/seq2seq (#25953)
Update README.md with correct path to examples/seq2seq
2023-09-05 12:31:59 +01:00
6316ce8d27 [doc] Always call it Agents for consistency (#25958) 2023-09-05 12:27:20 +01:00
391f26459a Use main in conversion script (#25973)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-05 13:04:49 +02:00
Kai
6f125aaa48 fix typo (#25981)
rename doanloading to downloading
2023-09-05 11:13:06 +01:00
52a46dc57b Add Pop2Piano space demo. (#25975)
Update pop2piano.md
2023-09-05 11:07:02 +01:00
1cc3bc22fe nn.Identity is not required to be compatible with PyTorch < 1.1.0 as the minimum PyTorch version we currently support is 1.10.0 (#25974)
nn.Identity is not required to be compatible with PyTorch < 1.1.0 as the
minimum PyTorch version we currently support is 1.10.0
2023-09-05 11:37:54 +02:00
fbbe1b8a40 Fix test_load_img_url_timeout (#25976)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-05 11:34:28 +02:00
feec56959a Fix Detr CI (#25972)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-05 11:19:56 +02:00
404ff8fc17 Fix typo (#25966)
* Update feature_extraction_clap.py

* changed all lenght to length
2023-09-05 10:12:25 +02:00
d8e13b3e04 v4.34.dev.0 2023-09-04 15:12:11 -04:00
49b69fe0d4 [Falcon] Remove SDPA for falcon to support earlier versions of PyTorch (< 2.0) (#25947)
* remove SDPA for falcon

* revert previous behaviour and add warning

* nit

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update src/transformers/models/falcon/modeling_falcon.py

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-09-04 14:34:04 -04:00
22a69f1d7d Put Falcon back (#25960)
* Put Falcon back

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update test

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-04 14:17:09 -04:00
040c4613c2 Add type hints for tf models final batch (#25883)
* Add missing type hints and consistency to `RegNet` models

* Add missing type hints and consistency to `TFSamModel`

* Add missing type hints to `TFSegformerDecodeHead`

* Add missing type hints and consistency to `TransfoXL` family models

* Add missing type hints and consistency to `TFWav2Vec2ForSequenceClassification`

* Add type hints to `TFXLMModel`

* Fix linter

* Revert the type hints for `RegNet` to python 3.8 compliant

* Remove the redundant np.ndarray type hint.
2023-09-04 18:16:10 +01:00
44d2c199f6 Fix smart check (#25955)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-04 18:54:34 +02:00
3a479672ea Fix failing test (#25963) 2023-09-04 12:53:50 -04:00
034bc5d26a Add proper Falcon docs and conversion script (#25954)
* Add proper Falcon docs and conversion script

* Autodetect the decoder architecture instead of using an arg

* Update docs now that we can autodetect

* Fix doc error

* Add doc to toctree

* Quick doc update
2023-09-04 17:18:34 +01:00
d750eff627 [VITS] Fix init test (#25945)
* [VITS] Fix init test

* add flaky decorator

* style

* max attempts

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* style

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-09-04 17:09:26 +01:00
7cd01d4e38 Update README.md (#25922)
fixed a typo
2023-09-04 16:11:00 +02:00
bfb1895e33 Import deepspeed utilities from integrations (#25919)
Follow up from #25599
2023-09-04 14:03:48 +01:00
eb984418e2 [VITS] Handle deprecated weight norm (#25946) 2023-09-04 11:54:03 +01:00
f435003e0c [MMS] Fix pip install in docs (#25949) 2023-09-04 11:53:41 +01:00
604a6c51ae Update README.md (#25941)
fixed a typo
2023-09-04 11:28:21 +01:00
d4407a3bd1 Update autoclass_tutorial.md (#25929)
fixed typos
2023-09-04 11:16:49 +01:00
51e1e8120b Update community.md (#25928)
fixed a few typos
2023-09-04 11:16:34 +01:00
0f0e1a2c2b Fix typos (#25936)
* fix typo

* fix typo

* fix typo

* fix typos

* fix typos

* fix typo

* fix typo

* fix typo

* fix typos

* fix typo

* fix typo

* fix typo

* fix typos

* fix typos
2023-09-04 11:15:12 +01:00
b1d475f6d2 Skip offload tests for ViTDet (#25913)
* update

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-04 11:35:39 +02:00
ab8cba824e CI: hotfix (skip VitsModelTest::test_initialization) 2023-09-04 09:06:11 +02:00
0afa5071bd Update model_memory_anatomy.md (#25896)
typo fixes
2023-09-01 12:27:01 -07:00
a4dd53d88e Update-llama-code (#25826)
* some bug fixes

* updates

* Update code_llama.md

Co-authored-by: Omar Sanseviero <osanseviero@users.noreply.github.com>

* Add co author

Co-authored-by: pcuenca <pedro@latenitesoft.com>

* add a test

* fixup

* nits

* some updates

* fix-coies

* adress comments

* nits

* nits

* fix docsting

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update

* add int for https://huggingface.co/spaces/hf-accelerate/model-memory-usage

---------

Co-authored-by: Omar Sanseviero <osanseviero@users.noreply.github.com>
Co-authored-by: pcuenca <pedro@latenitesoft.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-09-01 20:40:40 +02:00
3587769c08 [VITS] Only trigger tokenizer warning for uroman (#25915) 2023-09-01 19:27:01 +01:00
1fa2d89a9b [MMS] Update docs with HF TTS implementation (#25907)
* [MMS] Update docs with HF TTS implementation

* Update docs/source/en/model_doc/mms.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add uromanise to docs

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-01 16:50:59 +01:00
b439129e74 [VITS] Add to TTA pipeline (#25906)
* [VITS] Add to TTA pipeline

* Update tests/pipelines/test_pipelines_text_to_audio.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* remove extra spaces

---------

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
2023-09-01 16:39:00 +01:00
be0e189bd3 Revert frozen training arguments (#25903)
* Revert frozen training arguments

* TODO
2023-09-01 11:24:12 -04:00
69c5b8f186 Remove broken docs for MusicGen (#25905)
Update musicgen.md
2023-09-01 15:26:42 +01:00
16d6e3087c Better error message for pipeline loading (#25912)
* update

* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-01 16:09:12 +02:00
53e2fd785b Falcon: Add RoPE scaling (#25878) 2023-09-01 12:05:53 +01:00
024acd271b fix FSDP model resume optimizer & scheduler (#25852)
* fix FSDP resume optimizer & scheduler

* improve trainer code quality

---------

Co-authored-by: machi04 <machi04@meituan.com>
2023-09-01 15:20:42 +05:30
4ece3b9433 add VITS model (#24085)
* add VITS model

* let's vits

* finish TextEncoder (mostly)

* rename VITS to Vits

* add StochasticDurationPredictor

* ads flow model

* add generator

* correctly set vocab size

* add tokenizer

* remove processor & feature extractor

* add PosteriorEncoder

* add missing weights to SDP

* also convert LJSpeech and VCTK checkpoints

* add training stuff in forward

* add placeholder tests for tokenizer

* add placeholder tests for model

* starting cleanup

* let the great renaming begin!

* use config

* global_conditioning

* more cleaning

* renaming variables

* more renaming

* more renaming

* it never ends

* reticulating the splines

* more renaming

* HiFi-GAN

* doc strings for main model

* fixup

* fix-copies

* don't make it a PreTrainedModel

* fixup

* rename config options

* remove training logic from forward pass

* simplify relative position

* use actual checkpoint

* style

* PR review fixes

* more review changes

* fixup

* more unit tests

* fixup

* fix doc test

* add integration test

* improve tokenizer tests

* add tokenizer integration test

* fix tests on GPU (gave OOM)

* conversion script can handle repos from hub

* add conversion script for all MMS-TTS checkpoints

* automatically create a README for the converted checkpoint

* small changes to config

* push README to hub

* only show uroman note for checkpoints that need it

* remove conversion script because code formatting breaks the readme

* make WaveNet layers configurable

* rename variables

* simplifying the math

* output attentions and hidden states

* remove VitsFlip in flow model

* also got rid of the other flip

* fix tests

* rename more variables

* rename tokenizer, add phonemization

* raise error when phonemizer missing

* re-order config docstrings to match method

* change config naming

* remove redundant str -> list

* fix copyright: vits authors -> kakao enterprise

* (mean, log_variances) -> (prior_mean, prior_log_variances)

* if return dict -> if not return dict

* speed -> speaking rate

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update fused tanh sigmoid

* reduce dims in tester

* audio -> output_values

* audio -> output_values in tuple out

* fix return type

* fix return type

* make _unconstrained_rational_quadratic_spline a function

* all nn's to accept a config

* add spectro to output

* move {speaking rate, noise scale, noise scale duration} to config

* path -> attn_path

* idxs -> valid idxs -> padded idxs

* output values -> waveform

* use config for attention

* make generation work

* harden integration test

* add spectrogram to dict output

* tokenizer refactor

* make style

* remove 'fake' padding token

* harden tokenizer tests

* ron norm test

* fprop / save tests deterministic

* move uroman to tokenizer as much as possible

* better logger message

* fix vivit imports

* add uroman integration test

* make style

* up

* matthijs -> sanchit-gandhi

* fix tokenizer test

* make fix-copies

* fix dict comprehension

* fix config tests

* fix model tests

* make outputs consistent with reverse/not reverse

* fix key concat

* more model details

* add author

* return dict

* speaker error

* labels error

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vits/convert_original_checkpoint.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove uromanize

* add docstrings

* add docstrings for tokenizer

* upper-case skip messages

* fix return dict

* style

* finish tests

* update checkpoints

* make style

* remove doctest file

* revert

* fix docstring

* fix tokenizer

* remove uroman integration test

* add sampling rate

* fix docs / docstrings

* style

* add sr to model output

* fix outputs

* style / copies

* fix docstring

* fix copies

* remove sr from model outputs

* Update utils/documentation_tests.txt

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add sr as allowed attr

---------

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-09-01 10:50:06 +01:00
ef10dbce5c remove torch_dtype override (#25894)
* remove torch_dtype override

* style

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-31 17:38:14 -04:00
0f08cd205a Smarter check for is_tensor (#25871)
* Smarter check for

* Use protected functions

* Do others too

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Address review comments

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-31 13:14:18 -04:00
3fb1535b09 Update setup.py (#25893)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-31 18:54:01 +02:00
eaf5e98ec0 Add type hints for tf models batch 1 (#25853)
* Add type hints to `TFBlipTextModel`

* Add missing type hints to DPR family models

* Add type hints to `TFLEDModel`

* Add type hints to `TFLxmertForPreTraining`

* Add missing type hints to `TFMarianMTModel` and `TFMarianModel`

* Add missing type hints to `TFRagModel` & `TFRagTokenForGeneration`

* Make type hints annotations consistent
2023-08-31 17:00:03 +01:00
9c5acca002 [InstructBlip] FINAL Fix instructblip test (#25887)
fix instructblip test
2023-08-31 17:01:27 +02:00
2be8a9098e Save image_processor while saving pipeline (ImageSegmentationPipeline) (#25884)
* Save image_processor while saving pipeline (ImageSegmentationPipeline)

* Fix black issues
2023-08-31 16:08:20 +02:00
a39ebbf879 [CodeLlama] Fix CI (#25890)
* Fix coellama

* style
2023-08-31 16:06:56 +02:00
3b39b90618 [TokenizerFast] can_save_slow_tokenizer as a property for when vocab_file's folder was removed (#25626)
* pad token should be None by default

* fix tests

* nits

* check if isfile vocabfile

* add warning if sp model folder was deleted

* save SPM when missing folder for sloz

* update the ` can_save_slow_tokenizer`  to be a property

* first batch

* second batch

* missing one
2023-08-31 14:17:26 +02:00
99fc3ac8ac Modify efficient GPU training doc with now-available adamw_bnb_8bit optimizer (#25807)
* Modify single-GPU efficient training doc with now-available adamw_bnb_8bit optimizer

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-31 10:55:10 +01:00
e95bcaeef0 fix ds z3 checkpointing when stage3_gather_16bit_weights_on_model_save=False (#25817)
* fix ds z3 checkpointing when  `stage3_gather_16bit_weights_on_model_save=False`

* refactoring
2023-08-31 15:17:53 +05:30
f8468b4fac For xla tensors, use an alternative way to get a unique id (#25802)
* For xla tensors, use an alternative way to get a unique id

Because xla tensors don't have storage.

* add is_torch_tpu_available check
2023-08-31 10:31:16 +01:00
716bb2e391 [ViTDet] Fix doc tests (#25880)
Fix docstrings
2023-08-30 22:49:03 +02:00
1c6f072db0 Reduce CI output (#25876)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-30 18:15:07 +02:00
9219d1427b pin pandas==2.0.3 (#25875)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-30 18:10:01 +02:00
459bc6738c Docs: fix example failing doctest in generation_strategies.md (#25874) 2023-08-30 16:23:44 +01:00
72298178bc fix max_memory for bnb (#25842) 2023-08-30 11:00:36 -04:00
f73c20970c Fix imports (#25869)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-30 16:11:54 +02:00
ed290b0837 Remote tools are turned off (#25867) 2023-08-30 09:40:39 -04:00
09dc99517f Add Blip2 model in VQA pipeline (#25532)
* Add Blip2 model in VQA pipeline

* use require_torch_gpu for test_large_model_pt_blip2

* use can_generate in vqa pipeline

* test Blip2ForConditionalGeneration using float16

* remove custom can_generate from Blip2ForConditionalGeneration
2023-08-30 14:16:16 +01:00
62399d6f35 Add flax installation in daily doctest workflow (#25860)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-30 15:13:50 +02:00
52574026b6 minor typo fix in PeftAdapterMixin docs (#25829)
fix minor documentation typo
2023-08-30 11:56:05 +01:00
1bf2f36daf Update README.md (#25832)
deleted unnecessary comma in the Adding a new model section.
2023-08-30 10:52:41 +01:00
07998ef399 Generate: models with custom generate() return True in can_generate() (#25838) 2023-08-29 20:10:46 +01:00
8c75cfdaee Update README.md (#25834)
_toctree.yml file. broken link, now fixed.
2023-08-29 20:02:57 +01:00
dbc16f4404 Support loading base64 images in pipelines (#25633)
* support loading base64 images

* add test

* mention in docs

* remove the logging

* sort imports

* update error message

* Update tests/utils/test_image_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* restructure to catch base64 exception

* doesn't like the newline

* download files

* format

* optimize imports

* guess it needs a space?

* support loading base64 images

* add test

* remove the logging

* sort imports

* restructure to catch base64 exception

* doesn't like the newline

* download files

* optimize imports

* guess it needs a space?

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-29 19:24:24 +01:00
ce2d4bc6a1 MaskFormer,Mask2former - reduce memory load (#25741)
Allocate result array ahead of time
2023-08-29 18:49:15 +01:00
0daeeb40a1 [AutoTokenizer] Add data2vec to mapping (#25835) 2023-08-29 18:26:41 +01:00
0e59c93983 update remaining Pop2Piano checkpoints (#25827)
update checkpoints
2023-08-29 18:00:40 +01:00
245dcc49ef 🤦update warning to If you want to use the new behaviour, set `legacy=… (#25833)
🤦update warning to If you want to use the new behaviour, set `legacy=False`. instead of True
2023-08-29 18:01:43 +02:00
aade754b27 🌐 [i18n-KO] Translated community.md to Korean (#25674)
* docs: ko: community.md

* feat: deepl draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
2023-08-29 11:47:24 -04:00
d97fd871e5 🌐 [i18n-KO] Translated add_new_pipeline.md to Korean (#25498)
* dos: ko: add_new_pipeline.mdx

* feat: chatgpt draft

* fix: manual edits

* docs: ko: add_new_pipeline

Update _toctree

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
2023-08-29 11:38:44 -04:00
a35f889acc Tests: detect lines removed from "utils/not_doctested.txt" and doctest ALL generation files (#25763) 2023-08-29 16:15:05 +01:00
483861d52d Error with checking args.eval_accumulation_steps to gather tensors (#25819)
* Update trainer.py (error with checking steps in args.eval_accumulation_steps to gather tensors)

While the deprecated code has the correct check (line 3772): 
"if args.eval_accumulation_steps is not None and (step + 1) % args.eval_accumulation_steps == 0:"

The current code does not (line 3196):
"if args.eval_accumulation_steps is not None and self.accelerator.sync_gradients:"

We need to check "(step + 1) % args.eval_accumulation_steps == 0". Hence, the line 3196 should be modified to:
"if args.eval_accumulation_steps is not None and (step + 1) % args.eval_accumulation_steps == 0 and self.accelerator.sync_gradients:"

* Fix error with checking args.eval_accumulation_steps to gather tensors
2023-08-29 15:06:41 +01:00
33aa0af70c 🌐 [i18n-KO] model_memory_anatomy.md to Korean (#25755)
* docs: ko-model_memory_anatomy.md

* feat: chatgpt draft

* feat: manual edits

* feat: change document title

* feat: manual edits

* fix: resolve suggestion

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: heuristicwave <31366038+heuristicwave@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: heuristicwave <31366038+heuristicwave@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestion

---------

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-authored-by: heuristicwave <31366038+heuristicwave@users.noreply.github.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-08-29 09:48:51 -04:00
173fa7da9c 🌐 [i18n-KO] Translated peft.md to Korean (#25706)
* docs: ko: peft.mdx

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: heuristicwave <31366038+heuristicwave@users.noreply.github.com>

* fix: resolve suggestions

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: heuristicwave <31366038+heuristicwave@users.noreply.github.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-08-29 09:10:00 -04:00
2ee60b757e fix warning trigger for embed_positions when loading xglm (#25798)
* fix warning triggering for xglm.embed_positions

* Make TF variable a tf.constant to match (and fix some spelling)

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2023-08-29 14:09:07 +01:00
5b5ee235f3 [LlamaTokenizer] tokenize nits. (#25793)
* return when length is zero

* Add tests

Co-authored-by:  Avnish Narayan <38871737avnishn@users.noreply.github.com>

* Co-authored-by: avnishn
<38871737+avnishn@users.noreply.github.com>

* codeLlama doc should not be on Main

* update test

---------

Co-authored-by: Avnish Narayan <38871737avnishn@users.noreply.github.com>
2023-08-29 15:08:14 +02:00
9525515cd4 Minor wording changes for Code Llama (#25815)
* Update code_llama.md

* Update code_llama.md
2023-08-29 15:02:57 +02:00
3dd030d264 fix register (#25779) 2023-08-29 14:11:48 +02:00
dc0c102954 [Docs] More clarifications on BT + FA (#25823) 2023-08-29 13:52:25 +02:00
c9bae84eb5 Resolving Attribute error when using the FSDP ram efficient feature (#25820)
fix bug
2023-08-29 17:02:19 +05:30
77713d11f6 [DINOv2] Add backbone class (#25520)
* First draft

* More improvements

* Fix all tests

* More improvements

* Add backbone test

* Improve docstring

* Address comments

* Rename attribute

* Remove expected output

* Update src/transformers/models/dinov2/modeling_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix style

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-29 11:05:27 +01:00
4c21da5e34 Add ViTDet (#25524)
* First draft

* Fix READMEs

* Update return_dict

* Add more tests

* Fix docstrings

* Address comments

* Address more comments

* Address more comments

* Address more comments, fix test

* Fix test
2023-08-29 10:03:52 +01:00
99c3d44906 fixing name position_embeddings to object_queries (#24652)
* fixing name position_embeddings to object_queries

* [fix] renaming variable and docstring do object queries

* [fix] comment position_embedding to object queries

* [feat] changes from make-fix-copies to keep consistency

* Revert "[feat] changes from make-fix-copies to keep consistency"

This reverts commit 56e3e9ede1d32f7aeefba707ddfaf12c9b4b9e7e.

* [tests] fix wrong expected score

* [fix] wrong assignment causing wrong tensor shapes

* [fix] fixing position_embeddings to object queries to keep consistency (make fix copies)

* [fix] make fix copies, renaming position_embeddings to object_queries

* [fix] positional_embeddingss to object queries, fixes from make fix copies

* [fix] comments frmo make fix copies

* [fix] adding args validation to keep version support

* [fix] adding args validation to keep version support -conditional detr

* [fix] adding args validation to keep version support - maskformer

* [style] make fixup style fixes

* [feat] adding args checking

* [feat] fixcopies and args checking

* make fixup

* make fixup

---------

Co-authored-by: Lorenzobattistela <lorenzobattistela@gmail.com>
2023-08-29 09:09:45 +01:00
39c37fe45c Fix incorrect Boolean value in deepspeed example (#25788) 2023-08-29 09:22:37 +02:00
738ecd17d8 Arde/fsdp activation checkpointing (#25771)
* add FSDP config option to enable activation-checkpointing

* update docs

* add checks and remove redundant code

* fix formatting error
2023-08-29 12:52:14 +05:30
50573c648a [idefics] fix vision's hidden_act (#25787)
[idefics] fix vision's hidden_act
2023-08-28 07:37:37 -07:00
886b6be081 Add type hints for several pytorch models (batch-4) (#25749)
* Add type hints for MGP STR model

* Add missing type hints for plbart model

* Add type hints for Pix2struct model

* Add missing type hints to Rag model and tweak the docstring

* Add missing type hints to Sam model

* Add missing type hints to Swin2sr model

* Fix a type hint for Pix2StructTextModel

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Fix typo on Rag model docstring

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Fix linter

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-08-28 14:31:33 +01:00
ed915cff97 Add type hints for pytorch models (final batch) (#25750)
* Add type hints for table_transformer

* Add type hints to Timesformer model

* Add type hints to Timm Backbone model

* Add type hints to TVLT family models

* Add type hints to Vivit family models

* Use the typing instance instead of the python builtin.

* Fix the `replace_return_docstrings` decorator for Vivit model

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-08-28 14:31:22 +01:00
cb91ec67b5 Add type hints for several pytorch models (batch-2) (#25557)
* Add missing type hint to cpmant

* Add type hints to decision_transformer model

* Add type hints to deformable_detr models

* Add type hints to detr models

* Add type hints to deta models

* Add type hints to dpr models

* Update attention mask type hint

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update remaining attention masks type hints

* Update docstrings' type hints related to attention masks

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-08-28 13:58:23 +01:00
de139702a1 [LlamaFamiliy] add a tip about dtype (#25794)
* add a warning=True tip to the Llama2 doc

* code llama needs a tip too

* doc nit

* build PR doc

* doc nits

Co-authored-by: Lysandre <lysandre@huggingface.co>

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-08-28 12:07:31 +02:00
686c68f64c Add docstrings and fix VIVIT examples (#25628)
* fix docstrings and examples

* docstring update

* add missing whitespace
2023-08-26 20:08:47 +01:00
960807f62e [idefics] small fixes (#25764) 2023-08-25 10:59:29 -07:00
015f8e110d [CodeLlama] Add support for CodeLlama (#25740)
* add all

* Revert "Delete .github directory"

This reverts commit 9b0ff7b052e2b20b629a26fb13606b78a42944d1.

* make conversion script backward compatible

* fixup

* more styling

* copy to llama changes

* fix repo consistency

* nits

* document correct classes

* updates

* more fixes

* nits

* update auto mappings

* add readmes

* smallupdates

* llama-code replace with llama_code

* make fixup

* updates to the testsing suite

* fix fast nits

* more small fixes

* fix decode

* fix template processing

* properly reset the normalizer

* nits processor

* tokenization tests pass

* styling

* last tests

* additional nits

* one test is left

* nits

Co-authored-by faabian <faabian@users.noreply.github.com>

* update failing test

* fixup

* remove decode infilling users should handle it on their onw after generation, padding can be a problem

* update

* make test slow and more meaningfull

* fixup

* doc update

* fixup

* Apply suggestions from code review

* add kwargs doc

* tokenizer requires `requires_backend`

* type requires_backends

* CodeLlama instead of LlamaCode

* more name cahnges

* nits

* make doctests happy

* small pipeline nits

* last nit

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* update

* add codellama to toctree

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-08-25 18:57:40 +02:00
74081cb5fa fix a typo in docsting (#25759)
* fix a typo in docsting

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: statelesshz <jihuazhong1@huawei.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-25 17:46:56 +02:00
0040469bb8 Correct attention mask dtype for Flax GPT2 (#25636)
* Correct attention mask dtype

* reformat code

* add a test for boolean mask

* convert test to fast test

* delete unwanted print

* use assertTrue for testing
2023-08-25 17:36:37 +02:00
4b79697865 🚨🚨🚨 [Refactor] Move third-party related utility files into integrations/ folder 🚨🚨🚨 (#25599)
* move deepspeed to `lib_integrations.deepspeed`

* more refactor

* oops

* fix slow tests

* Fix docs

* fix docs

* addess feedback

* address feedback

* final modifs for PEFT

* fixup

* ok now

* trigger CI

* trigger CI again

* Update docs/source/en/main_classes/deepspeed.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* import from `integrations`

* address feedback

* revert removal of `deepspeed` module

* revert removal of `deepspeed` module

* fix conflicts

* ooops

* oops

* add deprecation warning

* place it on the top

* put `FutureWarning`

* fix conflicts with not_doctested.txt

* add back `bitsandbytes` module with a depr warning

* fix

* fix

* fixup

* oops

* fix doctests

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-08-25 17:13:34 +02:00
4d9e45f3ef Add type hints for several pytorch models (batch-3) (#25705)
* Add missing type hints for ErnieM family

* Add missing type hints for EsmForProteinFolding model

* Add missing type hints for Graphormer model

* Add type hints for InstructBlipQFormer model

* Add missing type hints for LayoutLMForMaskedLM model

* Add missing type hints for LukeForEntitySpanClassification model
2023-08-25 15:12:54 +01:00
8b0a7bfcdc Docs: fix indentation in HammingDiversityLogitsProcessor (#25756) 2023-08-25 14:56:39 +01:00
35c570c80e fix encoder hook (#25735)
* fix encoder hook

* style
2023-08-25 09:36:41 -04:00
dd8b7d28ae [Sentencepiece] make sure legacy do not require protobuf (#25684)
make sure legacy does not require `protobuf`
2023-08-25 14:41:04 +02:00
0770ce6cfb [CLAP] Fix logit scales dtype for fp16 (#25754) 2023-08-25 13:30:39 +01:00
494e96d8d6 Generate: logits processors are doctested and fix broken doctests (#25692)
* shorter example

* add logits processors to doctests

* remove file from conflict?

* tmp commit

* Fix broken tests; Shorter sampling tests

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-25 12:42:06 +01:00
c6a84b7202 [DOCS] Add example for HammingDiversityLogitsProcessor (#25481)
* updated logits processor text

* Update logits_process.py

* fixed formatting with black

* fixed formatting with black

* fixed formatting with Make Fixup

* more formatting fixes

* Update src/transformers/generation/logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Revert "fixed formatting with Make Fixup"

This reverts commit 47643083

* Revert "fixed formatting with black"

This reverts commit bfb153673664d099cbdbcce100ceb6a64868adaf.

* Revert "fixed formatting with Make Fixup"

This reverts commit 47643083

* Revert "fixed formatting with Make Fixup"

This reverts commit 47643083

* Revert "fixed formatting with black"

This reverts commit ad6ceb64

* Revert "fixed formatting with black"

This reverts commit ad6ceb64b7cf77addcc4c863d497bf948ec335c8.

* Update src/transformers/generation/logits_process.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Revert "fixed formatting with Make Fixup"

This reverts commit 47643083

* formatted logits_process with make fixup

---------

Co-authored-by: jesspeck <jess@localseoguide.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-25 12:35:40 +01:00
85cf90a1c9 Generate: add missing logits processors docs (#25653) 2023-08-25 11:56:17 +01:00
cb8e3ee25f Add FlaxCLIPTextModelWithProjection (#25254)
* Add FlaxClipTextModelWithProjection

This is necessary to support the Flax port of Stable Diffusion XL: fb6d705fb5/text_encoder_2/config.json (L3)

Co-authored-by: Martin Müller <martin.muller.me@gmail.com>
Co-authored-by: Juan Acevedo <juancevedo@gmail.com>

* Use FlaxCLIPTextModelOutput

* make fix-copies again

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Use `return_dict` for consistency with other uses.

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Fix docstring example.

* Add new model to FlaxCLIPTextModelTest

* Add to IGNORE_NON_AUTO_CONFIGURED list

* Fix naming convention.

---------

Co-authored-by: Martin Müller <martin.muller.me@gmail.com>
Co-authored-by: Juan Acevedo <juancevedo@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-08-25 10:58:14 +02:00
8968fface4 fixed typo in speech encoder decoder doc (#25745)
fixed typo in speech encoder decoder blog
2023-08-25 09:20:37 +02:00
ae320fa53f [PEFT] Fix PeftConfig save pretrained when calling add_adapter (#25738)
fix save_pretrained issue + add test
2023-08-25 08:19:11 +02:00
f26099e7b5 🌐 [i18n-KO] Translated visual_question_answering.md to Korean (#25679)
* docs: ko: visual_question_answering.md

* feat: chatgpt draft

tosquash: add code blocks

* fix: manual edits

~L34 14:25
~L126 16:52
~L224 17:00
~L335 17:11
~EOF 17:18

* fix: self-correction

* amend grammar, phrasing

* docs: add new entry to _toctree.yml

* fix: use terms from glossary

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

---------

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
2023-08-24 11:14:58 -07:00
0218876822 [ASR Pipe Test] Fix CTC timestamps error message (#25727) 2023-08-24 17:58:37 +01:00
fd0b94fd7b [from_pretrained] Fix failing PEFT tests (#25733)
fix failing PEFT tests
2023-08-24 18:48:41 +02:00
1b2381c46b ImageProcessor - check if input pixel values between 0-255 (#25688)
* Check if pixel values between 0-255 and add doc clarification

* Add missing docstrings

* _is_scale_image -> is_scaled_image

* Spelling is hard

* Tidy up
2023-08-24 17:24:36 +01:00
7a6efe1e9f [idefics] idefics-9b test use 4bit quant (#25734) 2023-08-24 08:33:14 -07:00
fecf08560c [from_pretrained] Simpler code for peft (#25726)
* refactor complicated from pretrained for peft

* nits

* more nits

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make tests happy

* fixup after merge

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-08-24 16:18:39 +02:00
0a365c3e6a Generate: nudge towards do_sample=False when temperature=0.0 (#25722) 2023-08-24 14:15:43 +01:00
584eeb5387 [AutoGPTQ] Add correct installation of GPTQ library + fix slow tests (#25713)
* add correct installation of GPTQ library

* update tests values
2023-08-24 14:57:16 +02:00
2febd50614 Fix number of minimal calls to the Hub with peft integration (#25715)
* Fix number of minimal calls to the Hub with peft integration

* Alternate design

* And this way?

* Revert

* Address comments
2023-08-24 14:56:11 +02:00
70b49f023c [PEFT] Fix peft version (#25710)
* fix peft version

* address comments

* adapt suggestion
2023-08-24 12:09:12 +02:00
8fff61b9db Fix failing test_batch_generation for bloom (#25718)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-24 11:15:29 +02:00
f01459c75d docs: Resolve typos in warning text (#25711)
Resolve typos in warning text
2023-08-24 11:14:27 +02:00
c2123626aa Update list of persons to tag (#25708) 2023-08-24 10:13:30 +02:00
6e6da5e4b8 [LlamaTokenizer] make unk_token_length a property (#25689)
make unk_token_length a property
2023-08-24 08:03:34 +02:00
b85b88069a fix ram efficient fsdp init (#25686) 2023-08-24 11:30:42 +05:30
68fa9a5937 Skip broken tests 2023-08-24 01:48:53 -04:00
4d40109c3a Fix typo in configuration_gpt2.py (#25676)
Update configuration_gpt2.py
2023-08-23 11:40:03 -07:00
3c2383b1c6 Generate: general test for decoder-only generation from inputs_embeds (#25687)
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-23 19:17:01 +01:00
656e17f6f7 correct resume training steps number in progress bar (#25691)
feat: correct update resume update with steps
2023-08-23 20:09:14 +02:00
6add3b313d [DOCS] Added docstring example for EpsilonLogitsWarper #24783 (#25378)
* [DOCS] Added docstring example for EpsilonLogitsWarper #24783

* minor code changes based on review comments

* set seed for both generate calls, reduced the example length

* fixed line length under 120 chars
2023-08-23 17:25:28 +01:00
2189a7f54a Fix pad_token check condition (#25685)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-23 16:39:28 +02:00
8657ec68fc Sets the stalebot to 10 AM CEST (#25678)
This sets the stale bot trigger time at 10 AM CEST rather than 5 PM CEST as all core maintainers on watch duty are now in the European timezone
2023-08-23 14:21:07 +02:00
77cb2ab792 ⚠️ [CLAP] Fix dtype of logit scales in init (#25682)
[CLAP] Fix dtype of logit scales
2023-08-23 13:17:37 +01:00
2cf87e2bbb Prevent Dynamo graph fragmentation in GPTNeoX with torch.baddbmm fix (#24941)
* Pass a Python scalar for alpha in torch.baddbmm

* fixup

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2023-08-23 14:07:46 +02:00
b413e0610b Remove utils/documentation_tests.txt (#25680)
* fix

* fix

* fix

* fix

* fix

* fix

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-23 11:14:45 +02:00
3d1edb6c5d fix wrong path in some doc (#25658)
* update

* check

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-23 08:34:30 +02:00
db58722084 [GPTNeo] Add input_embeds functionality to gpt_neo Causal LM (#25664)
nit
2023-08-23 07:49:19 +02:00
51794bf21e [SPM] Patch spm Llama and T5 (#25656)
* hot fix

* only encode with string prefix if starts with prefix

* styling

* add a new test

* fixup
2023-08-23 07:16:43 +02:00
57943630e2 Add Llama2 resources (#25531)
* docs: feat: model resources for llama2

Co-authored-by: Woojun Jung <hello_984@naver.com>

* fix: add description for dpo and rearrange posts

* docs: feat: add llama2 notebook resources

* style: one liners for each resource

Co-Authored-By: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
Co-Authored-By: Kihoon Son <75935546+kihoon71@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Fix typo

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Woojun Jung <hello_984@naver.com>
Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-22 17:14:54 -07:00
40a0cabd93 Update doc toctree (#25661)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-22 22:58:55 +02:00
977b2f05d5 Add input_embeds functionality to gpt_neo Causal LM (#25659)
* Updated gpt_neo causalLM to support using input embeddings for generation

* added indentation

* Did make fixup
2023-08-22 20:28:38 +02:00
908f853688 stringify config (#25637)
* stringify config

* apply code formatting
2023-08-22 17:21:01 +02:00
5eeaef921f Adds TRANSFORMERS_TEST_BACKEND (#25655)
* Adds `TRANSFORMERS_TEST_BACKEND`
Allows specifying arbitrary additional import following first `import torch`.
This is useful for some custom backends, that will require additional imports to trigger backend registration with upstream torch.
See https://github.com/pytorch/benchmark/pull/1805 for a similar change in `torchbench`.

* Update src/transformers/testing_utils.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Adds real backend example to documentation

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-08-22 17:08:13 +02:00
fd56f7f081 removing unnecesssary extra parameter (#25643) 2023-08-22 10:10:30 -04:00
e20fab0bbe Fix bloom add prefix space (#25652)
* properly support Sequence of pretokenizers

* actual fix

* make sure the fix works. Tests are not working for sure!

* hacky way

* add TODO

* update

* add a todo

* nits

* rename test

* nits

* rename test
2023-08-22 14:50:12 +02:00
62396cff46 TF 2.14 compatibility (#25630)
* Update the TF pin and see if anything breaks

* make fixup

* make fixup

* make fixup
2023-08-22 13:13:38 +01:00
3629190689 Put IDEFICS in the right section of the doc (#25650) 2023-08-22 10:39:10 +02:00
edb28722c2 Pass the proper token to PEFT integration in auto classes (#25649) 2023-08-22 10:13:56 +02:00
88e51ba306 [MINOR:TYPO] (#25646)
[MINOR:TYPO] Update tokenization_auto.py
2023-08-22 09:54:44 +02:00
6a314ea7cd [DOCS] MusicGen Docs Update (#25510)
* docs: note token limitations for MusicGen

* docs: note token limitations for MusicGen

* docs: fix token count with token limitations for MusicGen
2023-08-22 08:22:45 +02:00
182b83749a Add Number Normalisation for SpeechT5 (#25447)
* add: NumberNormalizer works for integers, floats, common currencies, negative numbers and percentages

* fix: renamed number normalizer class and added normalization to SpeechT5Processor

* fix: restyled with black and ruff, should pass code quality tests

* fix: moved normalization to tokenizer and other small changes to normalizer

* add: test for normalization and changed the existing full tokenizer test

* fix: tokenization tests now pass, made changes to existing tokenization where normalization is covered; added normalize arg to func signature

* fix: changed default normalize setting to False, modified the tests a bit

* fix: added support for comma separated numbers, tokenization on the fly with kwargs and normalizer getter setter funcs
2023-08-22 08:12:57 +02:00
58c36bea74 Support specifying revision in push_to_hub (#25578)
Support revision in push_to_hub
2023-08-22 07:55:35 +02:00
450a181d8b Add Pop2Piano (#21785)
* init commit

* config updated also some modeling

* Processor and Model config combined

* extraction pipeline(upto before spectogram & mel_conditioner) added but not properly tested

* model loading successful!

* feature extractor done!

* FE can now be called from HF

* postprocessing added in fe file

* same as prev commit

* Pop2PianoConfig doc done

* cfg docs slightly changed

* fe docs done

* batched

* batched working!

* temp

* v1

* checking

* trying to go with generate

* with generate and model tests passed

* before rebasing

* .

* tests done docs done remaining others & nits

* nits

* LogMelSpectogram shifted to FeatureExtractor

* is_tf rmeoved from pop2piano/init

* import solved

* tokenization tests added

* minor fixed regarding modeling_pop2piano

* tokenizer changed to only return midi_object and other changes

* Updated paper abstract(Camera-ready version) (#2)

* more comments and nits

* ruff changes

* code quality fix

* sg comments

* t5 change added and rebased

* comments except batching

* batching done

* comments

* small doc fix

* example removed from modeling

* ckpt

* forward it compatible with fe and generation done

* comments

* comments

* code-quality fix(maybe)

* ckpts changed

* doc file changed from mdx to md

* test fixes

* tokenizer test fix

* changes

* nits done main changes remaining

* code modified

* Pop2PianoProcessor added with tests

* other comments

* added Pop2PianoProcessor to dummy_objects

* added require_onnx to modeling file

* changes

* update .md file

* remove extra line in index.md

* back to the main index

* added pop2piano to index

* Added tokenizer.__call__ with valid args and batch_decode and aligned the processor part too

* changes

* added return types to 2 tokenizer methods

* the PR build test might work now

* added backends

* PR build fix

* vocab added

* comments

* refactored vocab into 1 file

* added conversion script

* comments

* essentia version changed in .md

* comments

* more tokenizer tests added

* minor fix

* tests extended for outputs acc check

* small fix

---------

Co-authored-by: Jongho Choi <sweetcocoa@snu.ac.kr>
2023-08-21 16:35:00 +01:00
6f041fcbb8 fix documentation for CustomTrainer (#25635)
fix doc
2023-08-21 17:23:17 +02:00
8608bf2049 🚨🚨🚨 changing default threshold and applying threshold before the rescale (#25608)
changing position of score threshold and its default value
2023-08-21 10:20:05 -04:00
2df24228d6 Skip doctest for some recent files (#25631)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-21 15:20:44 +02:00
2582bbde2e fix ACT_FN (#25627) 2023-08-21 14:33:43 +02:00
2c1bcbf5ed correct TTS pipeline docstrings snippet (#25587)
* correct TTS pipeline docstrings snippet

* add text_to_audio.py pipelines to documentation tests
2023-08-21 13:40:04 +02:00
e769ca3d28 Added paper links in logitprocess.py (#25482) 2023-08-21 12:09:34 +01:00
5c67682b16 v4.33.0.dev0 2023-08-21 07:07:04 -04:00
2f8acfea1c Fix test_modeling_mpt typo in model id (#25606)
Fix model id in get_large_model_config on file test_modeling_mpt
2023-08-21 11:11:21 +02:00
f09db47a71 Run doctest for new files (#25588)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-21 11:08:38 +02:00
9627c3da4a Fix PEFT integration failures on nightly CI (#25624)
fix PEFT integration failures
2023-08-21 10:04:44 +02:00
f92cc7034a Ignore all exceptions from signal in dynamic code (#25623) 2023-08-21 09:01:11 +02:00
1982dd3b15 Hotfix 2023-08-19 11:15:38 +02:00
6b82d936d4 reattach hooks when using resize_token_embeddings (#25596)
* reattach hooks

* fix style
2023-08-18 17:30:29 -04:00
6c811a322f new model: IDEFICS via HuggingFaceM4 (#24796)
* rename

* restore

* mappings

* unedited tests+docs

* docs

* fixes

* fix auto-sync breakage

* cleanup

* wip

* wip

* add fetch_images

* remove einops dependency

* update

* fix

* fix

* fix

* fix

* fix

* re-add

* add batching

* rework

* fix

* improve

* add Leo as I am extending his work

* cleanup

* fix

* cleanup

* slow-test

* fix

* fix

* fixes

* deal with warning

* rename modified llama classes

* rework fetch_images

* alternative implementation

* cleanup

* strict version

* cleanup

* [`IDEFICS`] Fix idefics ci (#25056)

* Fix IDEFICS CI

* fix test file

* fixup

* some changes to make tests pass

* fix

* fixup

* Update src/transformers/models/idefics/configuration_idefics.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

---------

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* remove compat checks

* style

* explain that Idefics is not for training from scratch

* require pt>=2.0

* fix idefics vision config (#25092)

* fix idefics vision config

* fixup

* clean

* Update src/transformers/models/idefics/configuration_idefics.py

---------

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* cleanup

* style

* cleanup

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* upcase

* sequence of images

* handle the case with no images

* Update src/transformers/image_processing_utils.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* support pure lm take 2

* support tokenizer options

* parameterize num_channels

* fix upcase

* s|IdeficsForCausalLM|IdeficsForVisionText2Text|g

* manual to one line

* addressing review

* unbreak

* remove clip dependency

* fix test

* consistency

* PIL import

* Idefics prefix

* Idefics prefix

* hack to make tests work

* style

* fix

* fix

* revert

* try/finally

* cleanup

* clean up

* move

* [`IDEFICS`] Fix idefics config refactor (#25149)

* refactor config

* nuke init weights

* more refactor

* oops

* remove visual question answering pipeline support

* Update src/transformers/models/idefics/clip.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update src/transformers/models/idefics/modeling_idefics.py

* cleanup

* mv clip.py vision.py

* tidyup

---------

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>

* fix

* license

* condition on pt

* fix

* style

* fix

* rm torchvision dependency, allow custom transforms

* address review

* rework device arg

* add_eos_token

* s/transforms/transform/

* fix top level imports

* fix return value

* cleanup

* cleanup

* fix

* style

* license

* license

* Update src/transformers/models/idefics/image_processing_idefics.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add a wrapper to freeze vision layears

* tidyup

* use the correct std/mean settings

* parameterize values from config

* add tests/models/idefics/test_image_processing_idefics.py

* add test_processor_idefics.py

* cleanup

* cleanups

* fix

* fix

* move to the right group

* style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add perceiver config

* reset

* missing arg docs

* Apply suggestions from code review

Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com>

* address review comments

* inject automatic end of utterance tokens (#25218)

* inject automatic end of utterance tokens

* fix

* fix

* fix

* rework to not use the config

* not end_of_utterance_token at the end

* Update src/transformers/models/idefics/processing_idefics.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address review

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/image_processing_utils.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* [`Idefics`] add image_embeddings option in generate-related methods (#25442)

* add image_embeddings option in generate-related methods

* style

* rename image_embeddings and allow perceiver embeddings precomputation

* compute embeddings within generate

* make is_encoder_decoder= True the default in config

* nested if else fix

* better triple check

* switch if elif order for pixel values / img embeds

* update model_kwargs perceiver only at the end

* use _prepare_model_inputs instead of encoder_decoder logic

* fix comment typo

* fix config default for is_encoder_decoder

* style

* add typehints

* precompute in forward

* doc builder

* style

* pop instead of get image hidden states

* Trigger CI

* Update src/transformers/models/idefics/modeling_idefics.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/idefics/modeling_idefics.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix * + indentation + style

* simplify a bit the use_resampler logic using comments

* update diocstrings

* Trigger CI

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix rebase changes

* unbreak #25237 - to be fixed in follow up PRs

* is_composition = False

* no longer needed

---------

Co-authored-by: leot13 <leo.tronchon@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Victor SANH <victorsanh@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-18 14:12:28 -07:00
4d64157ed3 🌐 [i18n-KO] Translated perf_train_tpu_tf.md to Korean (#25433)
* docs: ko: perf_train_tpu_tf.md

* feat: nmt and manual edit perf_train_tpu_tf.md

* fix: resolve suggestions

Co-authored-by: Sangam Lee <74291999+augustinLib@users.noreply.github.com>
Co-authored-by: Kim haewon <ehdvkf02@naver.com>
Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>

---------

Co-authored-by: Sangam Lee <74291999+augustinLib@users.noreply.github.com>
Co-authored-by: Kim haewon <ehdvkf02@naver.com>
Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>
2023-08-18 23:08:34 +02:00
6f4424bb08 Make TTS automodels importable (#25595)
* Add auto model for spectrogram/waveform

* Add doc and install

* Add dummy objects

* Did I miss anything?
2023-08-18 22:01:35 +02:00
faed2ca46f [PEFT] Peft integration alternative design (#25077)
* a draft version

* v2 integration

* fix

* make it more generic and works for IA3

* add set adapter and multiple adapters support

* fixup

* adapt a bit

* oops

* oops

* oops

* adapt more

* fix

* add more refactor

* now works with model class

* change it to instance method as it causes issues with `jit`.

* add CR

* change method name

* add `add_adapter` method

* clean up

* Update src/transformers/adapters/peft_mixin.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add moe utils

* fixup

* Update src/transformers/adapters/peft_mixin.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* adapt

* oops

* fixup

* add is_peft_available

* remove `requires_backend`

* trainer compatibility

* fixup + docstring

* more details

* trigger CI

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

* fixup + is_main_process

* added `save_peft_format` in save_pretrained

* up

* fix nits here and there

* nits here and there.

* docs

* revert `encoding="utf-8"`

* comment

* added slow tests before the PEFT release.

* fixup and nits

* let's be on the safe zone

* added more comments

* v1 docs

* add remaining docs

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* move to `lib_integrations`

* fixup

* this time fixup

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address final comments

* refactor to use `token`

* add PEFT to DockerFile for slow tests.

* added pipeline support.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-18 19:08:03 +02:00
ef1534252f [TokenizerFast] Fix setting prefix space in __init__ (#25563)
* properly support Sequence of pretokenizers

* actual fix

* make sure the fix works. Tests are not working for sure!

* hacky way

* add TODO

* update

* add a todo
2023-08-18 18:09:50 +02:00
636acc75b0 fix z3 init when using accelerate launcher (#25589) 2023-08-18 19:27:17 +05:30
8d2f953f4a [Time series Informer] fix dtype of cumsum (#25431)
* fix dtype of cumsum

* add comment
2023-08-18 14:27:16 +02:00
bc3e20dcf0 [Llama] remove prompt and fix prefix finetuning (#25565)
* nit

* update

* make sure use_default_system_prompt is saved

* update checkpointing

* consistency

* use_default_system_prompt for test
2023-08-18 13:39:23 +02:00
30b3c46ff5 [split_special_tokens] Add support for split_special_tokens argument to encode (#25081)
* draft changes

* update and add tests

* styling for no

* move test

* path to usable model

* update test

* small update

* update bertbased tokenizers

* don'tuse kwargs for _tokenize

* don'tuse kwargs for _tokenize

* fix copies

* update

* update test for special tokenizers

* fixup

* skip two tests

* remove pdb breakpiont()

* wowo

* rewrite custom tests

* nits

* revert chang in target keys

* fix markup lm

* update documentation of the argument
2023-08-18 13:26:27 +02:00
9d7afd2536 Replaces calls to .cuda with .to(torch_device) in tests (#25571)
* Replaces calls to `.cuda` with `.to(torch_device)` in tests
`torch.Tensor.cuda()` is a pre-0.4 solution to changing a tensor's device. It is recommended to prefer `.to(...)` for greater flexibility and error handling. Furthermore, this makes it more consistent with other tests (that tend to use `.to(torch_device)`) and ensures the correct device backend is used (if `torch_device` is neither `cpu` or `cuda`).

* addressing review comments

* more formatting changes in Bloom test

* `make style`

* Update tests/models/bloom/test_modeling_bloom.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixes style failures

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-18 12:40:40 +02:00
c45aab7535 Added missing parenthesis in call to is_fsdp_enabled (#25585)
Calling function is_fsdp_enabled instead of checking if it is not None
2023-08-18 10:32:46 +02:00
940d1a76b0 [Docs / BetterTransformer ] Added more details about flash attention + SDPA (#25265)
* added more details about flash attention

* correct and add more details

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* few modifs

* more details

* up

* Apply suggestions from code review

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>

* adapt from suggestion

* Apply suggestions from code review

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>

* trigger CI

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix nits and copies

* add new section

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
2023-08-18 10:32:28 +02:00
08e32519f8 Suggestions on Pipeline_webserver (#25570)
* Suggestions on Pipeline_webserver

docs: reorder the warning tip for pseudo-code

Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ko/pipeline_webserver.md

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-18 10:17:44 +02:00
659ab0423e Fix typo in example code (#25583)
`lang_code_to_id("en_XX")` => `lang_code_to_id["en_XX"]`

lang_code_to_id is a dict
2023-08-18 07:58:59 +02:00
4a27c13f1e add warning for 8bit optimizers (#25575)
* add warning for 8bit optimizers

* protect import
2023-08-17 14:48:58 -04:00
427adc898a Skip test_contrastive_generate for TFXLNet (#25574)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-17 18:56:34 +02:00
b8f69d0d10 Add Text-To-Speech pipeline (#24952)
* add AutoModelForTextToSpeech class

* add TTS pipeline and tessting

* add docstrings to text_to_speech pipeline

* fix torch dependency

* corrector 'processor is None' case in Pipeline

* correct repo id

* modify text-to-speech -> text-to-audio

* remove processor

* rename text_to_speech pipelines files to text_audio

* add textToWaveform and textToSpectrogram instead of textToAudio classes

* update TTS pipeline to the bare minimum

* update tests TTS pipeline

* make style and erase useless import torch in TTS pipeline tests

* modify how to check if generate or forward in TTS pipeline

* remove unnecessary extra new lines

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* refactor input_texts -> text_inputs

* correct docstrings of TTS.__call__

* correct the shape of generated waveform

* take care of Bark tokenizer special case

* correct run_pipeline_test TTS

* make style

* update TTS docstrings

* address Sylvain nit refactors

* make style

* refactor into one liners

* correct squeeze

* correct way to test if forward or generate

* Update output audio waveform shape

* make style

* correct import

* modify how the TTS pipeline test if a model can generate

* align shape output of TTS pipeline with consistent shape

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-08-17 17:34:47 +01:00
c4c0ceff09 add util for ram efficient loading of model when using fsdp (#25107)
* add util for ram efficient loading of model when using fsdp

* make fix-copies

* fixes 😅

* docs

* making it further easier to use

* rename the function

* refactor to handle fsdp ram efficiency in `from_pretrained`

* fixes

* fixes

* fixes

* update

* fixes

* revert `load_pretrained_model_only_on_rank0`

* resolve `load_from_checkpoint`
2023-08-17 21:53:34 +05:30
4e1dee0e8e Revert "change version (#25387)" (#25573)
This reverts commit 3a05e010e0c7e8abd3e5357dd4e89e28cc69003e.
2023-08-17 11:44:01 -04:00
d4c0aa1443 [Tests] Fix failing 8bit test (#25564)
* fix failing 8bit test

* trigger CI
2023-08-17 17:34:25 +02:00
181d778f83 [NllbMoe] Update code to properly support loss computation (#25429)
* update nllb_moe

* fix

* doc nits

* nits

* add a small test

* ficup

* remove adapted from
2023-08-17 17:21:56 +02:00
9264fc915a Inconsistency in PreTrainedModel.resize_token_embeddings When ZeRO3 Is Enabled (#25394)
* Inconsistency in PreTrainedModel.resize_token_embeddings

This PR addresses https://github.com/huggingface/transformers/issues/25241.

In previous implementation when ZeRO stage 3 was enbaled, resize_token_embeddings would create independent PyTorch weights on each device. Here we ensure that new embeddings are created with DeepSpeed init, and are properly partitioned accros devices.

* formatting with black

* adding the removed comments back in

---------

Co-authored-by: Sina Moeini <smoeini@amazon.com>
2023-08-17 17:19:54 +02:00
b4d5548800 🚨🚨🚨 [SPM] Finish fix spm models 🚨🚨🚨 (#25224)
* fix EVERYTHING

* more fixes

* ⚗️⚗️ Tokenizer magic ⚗️⚗️

* wrong value but test passes for the TODO

* update

* updat

* safe protobuf import?

* style

* non gated repo

* update

* fixup

* Update src/transformers/models/llama/tokenization_llama.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llama/tokenization_llama.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/t5/test_tokenization_t5.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* nits

* fix t5 too

* use assert equal

* fix llama decoding

* nits on t5

* fixup

* only remove the prefix space, not other spaces

* more deconding tests and more todos

* fix CI as well

* fixup

* skip failing test on CI (its tf its ok)

* skip test_subword_regularization_tokenizer that is also crashing on the CI for TF

* update llama

* revert good fixes

* fixup

* empty

* explain why we need to encode with an additional token

* better warning?

* nits

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-17 17:08:05 +02:00
5347d00092 [SwitchTransformers] Remove unused module (#25427)
* remove unused module

* remove old feed_forward_proj

* fixup
2023-08-17 17:03:41 +02:00
d6bf08f7f6 [resize_embedding] Introduce pad_to_multiple_of and guidance (#25088)
* fix

* revert cahnges and update resizing of embedding layer

* use wraning

* fixup

* more styling nits

* fix all tests that overload the embedding tests

* 👀👀 remove breakpoint

* remove useless overload + overload correctly where needed

* resize lm head with new vocab size

* reverse not necessary changes

* style

* fix CIs!

* fix last CI tests, adapt bark and Marian

* fixup
2023-08-17 17:00:32 +02:00
d2871b2975 Skip test_beam_search_xla_generate_simple for T5 (#25566)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-17 15:30:46 +02:00
1791ef8df6 Adds TRANSFORMERS_TEST_DEVICE (#25506)
* Adds `TRANSFORMERS_TEST_DEVICE`
Mirrors the same API in the diffusers library. Useful in transformers
too.

* replace backend checking with trying `torch.device`

* Adds better error message for unknown test devices

* `make style`

* adds documentation showing `TRANSFORMERS_TEST_DEVICE` usage.
2023-08-17 13:41:34 +02:00
e7e9261a20 [Docs] Fix un-rendered images (#25561)
fix un-rendered images
2023-08-17 12:08:11 +02:00
8992589dd6 Skip test_onnx_runtime_optimize for now (#25560)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-17 11:23:16 +02:00
e50c9253f3 YOLOS - reset default return_pixel_mask value (#25559)
Remove added back copied from statement
2023-08-17 09:48:38 +01:00
c8346cb267 🚨🚨🚨 Vivit update default rescale_factor value (#25547)
* Update default rescale_factor value

* Formatting
2023-08-17 09:35:56 +01:00
8fd6561981 Fix torch.fx tests on nightly CI (#25549)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-17 10:02:54 +02:00
ec25306b39 Fix MPT CI (#25548)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-17 09:06:26 +02:00
297a6a7aea Add documentation to dynamic module utils (#25534)
* Add documentation to dynamic module utils

* Address review comments
2023-08-17 08:28:06 +02:00
d1832dd808 Update trainer.py (#25553) 2023-08-17 08:10:33 +02:00
db816c6e02 [i18n-KO] Translated docs: ko: pr_checks.md to Korean (#24987)
* docs: ko: pr_checks.mdx

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* feat: chatgpt draft

* fix: manual edits

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-08-17 08:03:17 +02:00
2defb6b048 More utils doc (#25457)
* Document and clean more utils.

* More documentation and fixes

* Switch to Lysandre's token

* Address review comments

* Actually put else
2023-08-17 07:58:35 +02:00
36f183ebab [ASR Pipeline] Fix init with timestamps (#25438)
* [ASR Pipeline] Fix init

* refactor test

* change default kwarg setting

* only perform checks if we have to

* override init

* move pre/forward/post checks to sanitize
2023-08-16 18:04:19 +01:00
6bca43bb90 Input data format (#25464)
* Add copied from statements for image processors

* Move out rescale and normalize to base image processor

* Remove rescale and normalize from vit (post rebase)

* Update docstrings and tidy up

* PR comments

* Add input_data_format as preprocess argument

* Resolve tests and tidy up

* Remove num_channels argument

* Update doc strings -> default ints not in code formatting
2023-08-16 17:45:02 +01:00
a6609caf4e More frozen args (#25540) 2023-08-16 12:19:51 -04:00
f61f072b61 Fix MaskFormerModelIntegrationTest OOM (#25544)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-16 18:11:24 +02:00
0ed23e4db2 fix vit hybrid test (#25543)
fix test
2023-08-16 17:02:57 +02:00
3f9cb33504 Generate: fix default max length warning (#25539) 2023-08-16 15:30:54 +01:00
e13d5b6048 Document the test fetcher (#25521)
* Document the test fetcher

* Address review comments
2023-08-16 14:18:32 +02:00
0b568291d7 Marian: post-hack-fix correction (#25459) 2023-08-16 11:49:29 +01:00
5ccf343aeb Fix nested configs of Jukebox (#25533) 2023-08-16 11:48:24 +02:00
c385de2441 [TYPO] fix typo/format in quicktour.md (#25519)
* fix_all_language_quicktour

* give up ! before bash command

---------

Co-authored-by: lishukan <lishukan@dxy.cn>
2023-08-16 08:03:23 +02:00
eec5841e9f Use dynamic past key-values shape in TF-Whisper (#25523) 2023-08-15 17:57:58 +01:00
ca51499248 Make training args fully immutable (#25435)
* Make training args fully immutable

* Working tests, PyTorch

* In test_trainer

* during testing

* Use proper dataclass way

* Fix test

* Another one

* Fix tf

* Lingering slow

* Exception

* Clean
2023-08-15 11:47:47 -04:00
YQ
f11518a542 add __repr__ to the BitsAndBytesConfig class (#25517)
add __repr__
2023-08-15 11:11:28 +02:00
7a94ea4c64 Bump tornado from 6.3.2 to 6.3.3 in /examples/research_projects/lxmert (#25511)
Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.3.2 to 6.3.3.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.3.2...v6.3.3)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-08-15 08:52:30 +02:00
2552b8c5bd Bump tornado from 6.3.2 to 6.3.3 in /examples/research_projects/visual_bert (#25512)
Bump tornado in /examples/research_projects/visual_bert

Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.3.2 to 6.3.3.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.3.2...v6.3.3)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-08-15 08:52:20 +02:00
df91ff5314 Check for case where auxiliary_head is None in UperNetPreTrainedModel (#25514)
check for case where auxiliary_head is None in UperNetPreTrainedModel
2023-08-15 08:44:21 +02:00
b42010bb1d Conditional DETR type hint fix (#25505) 2023-08-14 18:12:06 +01:00
c41291965f 🚨🚨🚨 Remove softmax for EfficientNetForImageClassification 🚨🚨🚨 (#25501)
* Remove softmax for EfficientNet

* Update integration test values

* Fix up
2023-08-14 17:08:47 +01:00
06a1d75bd5 fix gptq nits (#25500)
* fix nits

* fix docstring

* fix doc

* fix damp_percent

* fix doc
2023-08-14 11:43:38 -04:00
80f29a25a7 MaskFormer post_process_instance_segmentation bug fix convert out side of loop (#25497)
Bug fix - convert out side of loop
2023-08-14 16:00:57 +01:00
ee7d6694ed Set can_generate for SpeechT5ForTextToSpeech (#25493)
add can_generate=True to SpeechT5ForTextToSpeech
2023-08-14 15:41:47 +01:00
87c9d8a10f Add type hints to Blip2QFormer, BigBirdForQA and ConditionalDetr family models (#25488)
* Add missing type hints to `BigBirdForQuestionAnswering`

* Add type hints to `Blip2QFormerModel`

* Add type hints for `ConditionalDetr` family
2023-08-14 14:44:34 +01:00
b1b0fc4f56 Remove logging code in TF Longformer that fails to compile (#25496)
Remove wonky logger block
2023-08-14 14:22:15 +01:00
e97deca9a3 fix : escape key of start_token from special characters before search end_token in token2json function of DonutProcessor (#25472)
fix : escape key of start_token from special characters before searching for end_token
2023-08-14 13:46:17 +02:00
0ebe7ae160 Bump gitpython from 3.1.30 to 3.1.32 in /examples/research_projects/decision_transformer (#25467)
Bump gitpython in /examples/research_projects/decision_transformer

Bumps [gitpython](https://github.com/gitpython-developers/GitPython) from 3.1.30 to 3.1.32.
- [Release notes](https://github.com/gitpython-developers/GitPython/releases)
- [Changelog](https://github.com/gitpython-developers/GitPython/blob/main/CHANGES)
- [Commits](https://github.com/gitpython-developers/GitPython/compare/3.1.30...3.1.32)

---
updated-dependencies:
- dependency-name: gitpython
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-08-13 19:47:16 +02:00
2b22cde71e Bump gitpython from 3.1.30 to 3.1.32 in /examples/research_projects/distillation (#25468)
Bump gitpython in /examples/research_projects/distillation

Bumps [gitpython](https://github.com/gitpython-developers/GitPython) from 3.1.30 to 3.1.32.
- [Release notes](https://github.com/gitpython-developers/GitPython/releases)
- [Changelog](https://github.com/gitpython-developers/GitPython/blob/main/CHANGES)
- [Commits](https://github.com/gitpython-developers/GitPython/compare/3.1.30...3.1.32)

---
updated-dependencies:
- dependency-name: gitpython
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-08-13 19:47:04 +02:00
892f9ea0db import required torch and numpy libraries (#25483) 2023-08-13 19:26:40 +02:00
fe3c8ab1af Revert "Reuse the cache created for latest main on PRs/branches" (#25466)
Revert "Reuse the cache created for latest `main` on PRs/branches if `setup.py` is not modified (#25445)"

This reverts commit 1d75768695f667fc1efcb8823c062d41ad30f090.
2023-08-11 21:07:08 +02:00
5e5fa0d88c Mark flaky tests (#25463)
Make CI less brittle
2023-08-11 15:26:45 +01:00
11757e2bbd Add input_data_format argument, image transforms (#25462)
* Enable specifying input data format - overriding inferring

* Add tests
2023-08-11 15:09:31 +01:00
0acf56224b Update run_translation.py broken link example Pytoch (#25461)
* Update run_translation.py

Fixed link

* Update run_translation.py
2023-08-11 15:41:24 +02:00
1d75768695 Reuse the cache created for latest main on PRs/branches if setup.py is not modified (#25445)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-11 14:40:51 +02:00
4692d26194 Switch Transformers: remove overwritten beam sample test (#25458) 2023-08-11 13:16:01 +01:00
41d56ea6dd Refactor image processor testers (#25450)
* Refactor image processor test mixin

- Move test_call_numpy, test_call_pytorch, test_call_pil to mixin
- Rename mixin to reflect handling of logic more than saving
- Add prepare_image_inputs, expected_image_outputs for tests

* Fix for oneformer
2023-08-11 11:30:18 +01:00
454957c9bb Fix for #25437 (#25454)
* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-11 11:39:57 +02:00
55db70c63d GPTQ integration (#25062)
* GTPQ integration

* Add tests for gptq

* support for more quantization model

* fix style

* typo

* fix method

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add dataclass and fix quantization_method

* fix doc

* Update tests/quantization/gptq/test_gptq.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* modify dataclass

* add gtpqconfig import

* fix typo

* fix tests

* remove dataset as req arg

* remove tokenizer import

* add offload cpu quantization test

* fix check dataset

* modify dockerfile

* protect trainer

* style

* test for config

* add more log

* overwrite torch_dtype

* draft doc

* modify quantization_config docstring

* fix class name in docstring

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* more warning

* fix 8bit kwargs tests

* peft compatibility

* remove var

* fix is_gptq_quantized

* remove is_gptq_quantized

* fix wrap

* Update src/transformers/modeling_utils.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* add exllama

* skip test

* overwrite float16

* style

* fix skip test

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix docsting formatting

* add doc

* better test

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-08-10 16:06:29 -04:00
347001237a docs: add LLaMA-Efficient-Tuning to awesome-transformers (#25441)
Co-authored-by: statelesshz <jihuazhong1@huawei.com>
2023-08-10 17:13:39 +02:00
a7da2996a0 Fix issue with ratio evaluation steps and auto find batch size (#25436)
* Fully rebased solution

* 500
2023-08-10 11:07:32 -04:00
2d6839eaa6 Add examples to tests to run when setup.py is modified (#25437)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-10 16:42:05 +02:00
e7b001db4f Fix rendering for torch.compile() docs (#25432)
fix rendering
2023-08-10 13:25:00 +02:00
3e41cf13fc Generate: Load generation config when device_map is passed (#25413) 2023-08-10 10:54:26 +01:00
d0839f1a74 [WavLM] Fix Arxiv link and authors (#25415)
* [WavLM] Fix Arxiv link and authors

* make style
2023-08-10 10:50:12 +01:00
123ad5363f Generation: strict generation config validation at save time (#25411)
* strict gen config save; Add tests

* add note that the warning will be an exception in v4.34
2023-08-10 10:42:34 +01:00
16edf4d9fd Doc checks (#25408)
* Document check_dummies

* Type hints and doc in other files

* Document check inits

* Add documentation to

* Address review comments
2023-08-10 10:53:22 +02:00
b14d4641f6 🌐 [i18n-KO] Translated philosophy.md to Korean (#25010)
* docs: ko: philosophy.md

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions
2023-08-10 09:50:51 +02:00
b175fc39d9 [DINOv2] Update pooler output (#25392)
Update pooler output
2023-08-10 09:13:52 +02:00
d0c1aebea4 Bark: flexible generation config overload (#25414) 2023-08-09 18:51:51 +01:00
944ddce8bf Enable passing number of channels when inferring data format (#25412) 2023-08-09 17:41:21 +01:00
cb3c821cb7 aligned sample_beam output selection with beam_search (#25375)
* aligned sample_beam specs with beam_search

* pull origin main

* Revert "pull origin main"

This reverts commit 06d356f1137bb52272e120a03636598c44449cf3.

* update test_utils.py

* fix format

* remove comment

---------

Co-authored-by: Shogo Fujita <shogo.fujita@legalontech.jp>
2023-08-09 18:28:57 +02:00
704bf595eb Update Bark generation configs and tests (#25409)
* update bark generation configs for more coherent parameter

* make style

* update bark hub repo
2023-08-09 18:28:02 +02:00
cf84738d2e 🌐 [i18n-KO] Translated model_summary.md to Korean (#24625)
* docs: ko: model_summary.md

* feat: nmt and manual edit model_summary.mdx

* fix: resolve suggestions

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* fix: resolve suggestions2

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-08-09 18:27:27 +02:00
133aac09b0 🌐 [i18n-KO] Translated add_new_model.md to Korean (#24957)
* docs: ko: add_new_model.md

* feat: chatgpt draft

* fix: manual edits

* fix: change document title

* fix: edit with reviewers

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* fix: edit with reviewers

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* fix: edit with reviewers

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* fix: edit with reviewers

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* fix: edit with reviewers

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: edit with reviewers

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: edit with reviewers

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: edit with reviewers

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* fix: add anchor to header

* Update docs/source/ko/add_new_model.md

Co-authored-by: 이서정 <97655267+sjlee-wise@users.noreply.github.com>

* Update docs/source/ko/add_new_model.md

Co-authored-by: 이서정 <97655267+sjlee-wise@users.noreply.github.com>

* Update docs/source/ko/add_new_model.md

Co-authored-by: 이서정 <97655267+sjlee-wise@users.noreply.github.com>

* fix: edit with reviews

* feat: edit toctree

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-authored-by: 이서정 <97655267+sjlee-wise@users.noreply.github.com>
2023-08-09 18:24:29 +02:00
f2a43c7383 VQA task guide (#25244)
* initial commit

* semi-finished task guide draft

* image link

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/visual_question_answering.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* feedback addressed

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* nits addressed

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-09 08:29:06 -04:00
eb3ded16f7 Generate: lower severity of parameterization checks (#25407) 2023-08-09 13:15:06 +01:00
ef74da6582 16059 - Add extra type hints for AltCLIPModel (#25399) 2023-08-09 13:13:33 +01:00
f456b4d10b Generate: generation config validation fixes in docs (#25405) 2023-08-09 13:07:11 +01:00
00b93cda21 Improve training args (#25401)
* enhanced tips for some training args

* make style
2023-08-09 13:50:13 +02:00
3deed1f97e Generate: length validation (#25384) 2023-08-09 11:48:32 +01:00
d59b872c9e Docs: introduction to generation with LLMs (#25240)
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-09 11:09:20 +01:00
ea5dda2290 YOLOS - Revert default return_pixel_mask value (#25404)
Revert default return_pixel_mask value
2023-08-09 11:09:09 +01:00
599377161b Fix path for dynamic module creation (#25402) 2023-08-09 10:46:05 +02:00
85447bb22e rm useless condition since the previous condition contains it. (#25403) 2023-08-09 09:31:24 +02:00
1564a81ac5 16059 - Add missing type hints for ASTModel (#25364)
* 16059 - Add missing type hints for ASTModel

* Add an additional type hint

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-08-09 08:31:57 +02:00
1367142afd 🌐 [i18n-KO] Translated perf_train_cpu_many.md to Korean (#24923)
* docs: ko: perf_train_cpu_many.md

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-08-09 08:15:31 +02:00
41c5f45bfe [DOCS] Add example for TopPLogitsWarper (#25361)
* [DOCS] Add example for `TopPLogitsWarper`

* fix typo

* address review feedback

* address review nits
2023-08-08 19:18:33 +02:00
3a05e010e0 change version (#25387) 2023-08-08 13:05:41 -04:00
e3490104da Add copied from for image processor methods (#25121)
* Add copied from statements for image processors

* Move out rescale and normalize to base image processor

* Remove rescale and normalize from vit (post rebase)

* Update docstrings and tidy up

* PR comments
2023-08-08 17:02:49 +01:00
5b517e1764 Use small config for OneFormerModelTest.test_model_with_labels (#25383)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-08 17:15:34 +02:00
9c7b744795 Fix missing usage of token (#25382)
* add missing tokens

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-08 16:27:24 +02:00
5bd8c011bb Generate: add config-level validation (#25381) 2023-08-08 13:53:03 +01:00
9e57e0c063 Fix torch_job worker(s) crashing (#25374)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-08 14:12:56 +02:00
6247d1b2b6 🌐 [i18n-KO] Translated add_tensorflow_model.md to Korean (#25017)
* docs: ko: add_tensorflow_model.md

* feat: chatgpt draft

* fix: manual edits

* fix: manual edits

* fix: resolve suggestions

* fix: manual edits
2023-08-08 13:56:34 +02:00
26ce4dd8b7 Enable tests to run on third-party devcies (#25327)
* enable unit tests to run on third-party devcies other than CUDA and CPU.

* remove the modification that enabled ut on MPS

* control test on third-party device by env variable

* update

---------

Co-authored-by: statelesshz <jihuazhong1@huawei.com>
2023-08-08 13:48:50 +02:00
5744482abc Fix token in example template (#25351)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-08 12:00:31 +02:00
01ab39b65f Load state in else (#25318)
* Load else

* New approach

* Propagate
2023-08-08 05:41:00 -04:00
36d5b8b06c MaskFormer, Mask2Former - replace einsum for tracing (#25297)
* Replace einsum with ops for tracing

* Fix comment
2023-08-08 10:37:14 +01:00
dedd11160d [ASR Pipeline] Clarify return timestamps (#25344)
* [ASR Pipeline] Clarify return timestamps

* fix indentation

* fix ctc check

* fix ctc error message!

* fix test

* fix other test

* add new tests

* final comment
2023-08-08 10:16:00 +01:00
5ea2595ecd Add warning for missing attention mask when pad tokens are detected (#25345)
* Add attention mask and pad token warning to many of the models

* Remove changes under examples/research_projects

These files are not maintained by HG.

* Skip the warning check during torch.fx or JIT tracing

* Switch ordering for the warning and input shape assignment

This ordering is a little cleaner for some of the cases.

* Add missing line break in one of the files
2023-08-08 10:49:21 +02:00
6ea3ee3cd2 Fix test_model_parallelism (#25359)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-08 10:48:45 +02:00
d4bd33cc9f Register ModelOutput subclasses as supported torch.utils._pytree nodes (#25358)
* Register ModelOutput subclasses as supported torch.utils._pytree nodes

Fixes #25357 where DDP with static_graph=True does not sync gradients when calling backward() over tensors contained in ModelOutput subclasses

* Add test for torch pytree ModelOutput serialization and deserialization
2023-08-08 08:12:11 +02:00
a23ac36f8c [DOCS] Add descriptive docstring to MinNewTokensLength (#25196)
* Add descriptive docstring to MinNewTokensLength

It addresses https://github.com/huggingface/transformers/issues/24783

* Refine the differences between `min_length` and `min_new_tokens`

* Remove extra line

* Remove extra arguments in generate

* Add a missing space

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Run the linter

* Add clarification comments

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-08 08:09:17 +02:00
080a97119c Add mask2former fp16 support (#25093)
* Add mask2former fp16 support

* Clear consistency/quality issues

* Fix consistency/quality (2)

* Add integration test for mask2former (fp16 case)

* Fix code quality

* Add integration test for maskformer (fp16 case)

* Add integration test for oneformer (fp16 case)

* Remove slow decorator from fp16 tests

* Fix lint

* Remove usage of full inference and value checks for fp16

* Temporarily comment slow for {mask, mask2, one}former

* Add fp16 support to oneformer

* Revert "Temporarily comment slow for {mask, mask2, one}former"

This reverts commit e5371edabd301cf56079def0421a0a87df307cb0.

* Remove dtype conversion noop
2023-08-07 20:07:29 +01:00
5ee9693a1c Docs: Added benchmarks for torch.compile() for vision models (#24748)
* added benchmarks for compile

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* added more models

* added more models fr

* added visualizations

* minor fix

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Added links to models and put charts side by side

* Added batch comparisons

* Added more comparisons

* Fix table

* Added link to wheel

* Update perf_torch_compile.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-07 17:18:43 +01:00
676247fd6b [DOCS] Add NoRepeatNGramLogitsProcessor Example for LogitsProcessor class (#25186)
* Add Description And Example to Docstring

* make style corrections

* make style

* Doc Style Consistent With HF

* Apply make style

* Modify Docstring

* Edit Type in Docstring

* Feedback Incorporated

* Edit Docstring

* make style

* Post Review Changes

* Review Feedback Incorporated

* Styling

* Formatting

* make style

* pep8
2023-08-07 17:02:14 +01:00
5fe36970e5 Adding more information in help parser on train_file and validation_file (#25324)
chorse: adding new doc on train and val
2023-08-07 17:56:13 +02:00
baf1daa58e Migrate Trainer from Repository to upload_folder (#25095)
* First draft

* Deal with progress bars

* Update src/transformers/utils/hub.py

Co-authored-by: Lucain <lucainp@gmail.com>

* Address review comments

* Forgot one

* Pin hf_hub

* Add argument for push all and fix tests

* Fix tests

* Address review comments

---------

Co-authored-by: Lucain <lucainp@gmail.com>
2023-08-07 17:47:22 +02:00
c177606fb4 Fix more offload edge cases (#25342)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-07 17:45:41 +02:00
7d65697da7 Generate: remove Marian hack (#25294)
Remove Marian hack
2023-08-07 15:38:24 +01:00
145109382a Allow trust_remote_code in example scripts (#25248)
* pytorch examples

* pytorch mim no trainer

* cookiecutter

* flax examples

* missed line in pytorch run_glue

* tensorflow examples

* tensorflow run_clip

* tensorflow run_mlm

* tensorflow run_ner

* tensorflow run_clm

* pytorch example from_configs

* pytorch no trainer examples

* Revert "tensorflow run_clip"

This reverts commit 261f86ac1f1c9e05dd3fd0291e1a1f8e573781d5.

* fix: duplicated argument
2023-08-07 16:32:25 +02:00
65001cb1c8 Loosen output shape restrictions on GPT-style models (#25188)
* Loosen output shape restrictions on GPT-style models

* Use more self-explanatory variables

* Revert "Use more self-explanatory variables"

This reverts commit 5fd9ab39119558b7e750f61aa4a19014dccc5ed5.
2023-08-07 16:31:15 +02:00
d6bfba76be Generalize CFG to allow for positive prompts (#25339)
* Generalize CFG to allow for positive prompts

* Add documentation, fix the correct class
2023-08-07 16:25:15 +02:00
b0f23036f1 Update TF pin in docker image (#25343)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-07 12:32:34 +02:00
b9da44bd3e 🌐 [i18n-KO] Translated perf_infer_gpu_one.md to Korean (#24978)
* docs: ko: perf_infer_gpu_one

* feat: chatgpt draft

* fix: manual edits

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: TaeYupNoh <107118671+TaeYupNoh@users.noreply.github.com>

* fix: resolve suggestions

* fix: resolve suggestions

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: TaeYupNoh <107118671+TaeYupNoh@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-08-07 08:37:29 +02:00
d533465150 add CFG for .generate() (#24654) 2023-08-06 20:15:24 +01:00
a6e6b1c622 Remove jnp.DeviceArray since it is deprecated. (#24875)
* Remove jnp.DeviceArray since it is deprecated.

* Replace all instances of jnp.DeviceArray with jax.Array

* Update src/transformers/models/bert/modeling_flax_bert.py

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-08-04 18:36:57 +01:00
fdd81aea12 [Whisper] Better error message for outdated generation config (#25298) 2023-08-04 15:53:57 +01:00
fdaef3368b Document toc check and doctest check scripts (#25319)
* Clean doc toc check and make doctest list better

* Add to Makefile
2023-08-04 16:24:04 +02:00
ce6d153a53 Make bark could have tiny model (#25290)
* temp

* update

* update

* update

* small dim

* small dim

* small dim

* fix

* update

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-04 15:13:14 +02:00
f0fd73a2de Document check copies (#25291)
* Document check copies better and add tests

* Include header in check for copies

* Manual fixes

* Try autofix

* Fixes

* Clean tests

* Finalize doc

* Remove debug print

* More fixes
2023-08-04 14:56:29 +02:00
29f04002e6 Deal with nested configs better in base class (#25237)
* Deal better with nested configs

* Fixes

* More fixes

* Fix last test

* Clean up existing configs

* Remove hack in MPT Config

* Update src/transformers/configuration_utils.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Fix setting a nested config via dict in the kwargs

* Adapt common test

* Add test for nested config load with dict

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-08-04 14:56:09 +02:00
aeb5a08abd Add offline mode for agents (#25226)
* Add offline mode for agents

* Disable second check too
2023-08-04 14:55:58 +02:00
bff4313b37 Generate: get generation mode as an enum (#25292) 2023-08-04 13:35:10 +01:00
fab1a0aa82 Give more memory in test_disk_offload (#25315) 2023-08-04 14:10:31 +02:00
67683095a6 Move usage of deprecated logging.warn to logging.warning (#25310)
The former spelling is deprecated and has been discouraged for a
while. The latter spelling seems to be more common in this project
anyway, so this change ought to be safe.

Fixes https://github.com/huggingface/transformers/issues/25283
2023-08-04 12:42:05 +01:00
641adca558 Fix typo: Roberta -> RoBERTa (#25302) 2023-08-03 14:17:30 -07:00
33da2db5ea [small] llama2.md typo (#25295)
`groupe` -> `grouped`
2023-08-03 14:17:06 -07:00
66c240f3c9 [JAX] Bump min version (#25286)
* [JAX] Bump min version

* make fixup
2023-08-03 16:05:02 +01:00
d114a6b71f Add timeout parameter to load_image function (#25184)
* Add timeout parameter to load_image function.

* Remove line.

* Reformat code

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add parameter to docs.

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-03 15:51:54 +01:00
6d3f9c1e2e add generate method to SpeechT5ForTextToSpeech (#25233)
* add generate method to SpeechT5ForTextToSpeech

* update speecht5forTTS docstrings

* Remove defaults to None in generate docstrings

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-08-03 14:12:07 +01:00
8455346c5c Update bark doc (#25234)
* add mention to optimization in Bark docs

* add offload mention in docs

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update bark docs.

* Update bark.md

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-08-03 14:08:39 +01:00
a8817371c9 Docs: separate generate section (#25235)
Separate generate doc section
2023-08-03 13:51:56 +01:00
30409af6e1 Update InstructBLIP & Align values after rescale update (#25209)
* Update InstructBLIP values
Note: the tests are not independent. Running the test independentely produces different logits compared to running all the integration tests

* Update test values after rescale update

* Remove left over commented out code

* Revert to previous rescaling logic

* Update rescale tests
2023-08-03 11:01:10 +01:00
15082a9dc6 Docs: Update list of report_to logging integrations in docstring (#25281)
* Update list of logging integrations in docstring

Also update type hint

* Also add 'flyte' to report_to callback list

* Revert 'report_to' type hint update

Due to CLI breaking
2023-08-03 11:34:45 +02:00
2bd7a27a67 CI with pytest_num_workers=8 for torch/tf jobs (#25274)
n8

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-02 22:00:32 +02:00
bd90cda9a6 CI with num_hidden_layers=2 🚀🚀🚀 (#25266)
* CI with layers=2

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-02 20:22:36 +02:00
b28ebb2655 [MMS] Fix mms (#25267)
* [MMS] Fix mms

* [MMS] Fix mms

* fix mms loading

* Apply suggestions from code review

* make style

* Update tests/models/wav2vec2/test_modeling_wav2vec2.py
2023-08-02 18:11:15 +02:00
ad8321512d recommend DeepSpeed's Argument Parsing documentation (#25268) 2023-08-02 11:48:39 -04:00
bef02fd6b9 🌐 [i18n-KO] Translated perf_infer_gpu_many.md to Korean (#24943)
* doc: ko: perf_infer_gpu_many.mdx

* feat: chatgpt draft

* fix: manual edits

* Update docs/source/ko/perf_infer_gpu_many.md

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-08-02 16:06:35 +02:00
8edd0da960 Remove pytest_options={"rA": None} in CI (#25263)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-02 14:53:05 +02:00
1baeed5bdf Fix return_dict_in_generate bug in InstructBlip generate function (#25246)
Fix bug in InstructBlip generate function

Previously, the postprocessing conducted on generated sequences in InstructBlip's generate function assumed these sequences were tensors (i.e. that `return_dict_in_generate == False`).

This commit checks whether the result of the call to the wrapped language model `generate()` is a tensor, and if not attempts to postprocess the sequence attribute of the returned results object.
2023-08-02 13:43:54 +01:00
eec0d84e6a [DOCS] Add example and modified docs of EtaLogitsWarper (#25125)
* added example and modified docs for EtaLogitsWarper

* make style

* fixed styling issue on 544

* removed error info and added set_seed

* Update src/transformers/generation/logits_process.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/generation/logits_process.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updated the results

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-02 11:55:56 +01:00
8021c684ec Fix some bugs for two stage training of deformable detr (#25045)
* Update modeling_deformable_detr.py

Fix bugs for two stage training

* Update modeling_deformable_detr.py

* Add test_two_stage_training to DeformableDetrModelTest

---------

Co-authored-by: yupeng.jia <yupeng.jia@momenta.ai>
2023-08-02 11:30:36 +01:00
1b35409768 Update rescale tests - cast to float after rescaling to reflect #25229 (#25259)
Rescale tests - cast to float after rescaling to reflect #25229
2023-08-02 11:29:55 +01:00
904e7e0f3c resolving zero3 init when using accelerate config with Trainer (#25227)
* resolving zero3 init when using accelerate config with Trainer

* refactor

* fix

* fix import
2023-08-02 15:07:27 +05:30
149cb0cce2 Add token arugment in example scripts (#25172)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-02 11:17:31 +02:00
YQ
c6a8768dab add pathname and line number to logging formatter in debug mode (#25203)
* add pathname and lineno to logging formatter in debug mode

* use TRANSFORMERS_VERBOSITY="detail" to print pathname and lineno
2023-08-02 09:44:43 +01:00
YQ
2230d149f0 fix get_keys_to_not_convert() to return correct modules for full precision inference (#25105)
* add test for `get_keys_to_not_convert`

* add minimum patch to keep mpt lm_head from 8bit quantization

* add reivsion to
2023-08-02 04:21:52 -04:00
f6f567d0be Fix set of model parallel in the Trainer when no GPUs are available (#25239) 2023-08-02 03:29:00 -04:00
d27e4c18fe Move rescale dtype recasting to match torchvision ToTensor (#25229)
Move dtype recasting to match torchvision ToTensor
2023-08-01 12:33:12 +01:00
3170af71e1 [Detr] Fix detr BatchNorm replacement issue (#25230)
* fix detr weird issue

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix copies

* fix copies

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-08-01 12:21:48 +02:00
05ebb0264e [MPT] Add require_bitsandbytes on MPT integration tests (#25201)
* add  `require_bitsandbytes` on MPT integration tests

* add it on mpt as well
2023-08-01 12:20:34 +02:00
972fdcc778 [Docs/quantization] Clearer explanation on how things works under the hood. + remove outdated info (#25216)
* clearer explanation on how things works under the hood.

* Update docs/source/en/main_classes/quantization.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/main_classes/quantization.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add `load_in_4bit` in `from_pretrained`

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-01 10:56:52 +02:00
77c3973e8f [Pix2Struct] Fix pix2struct cross attention (#25200)
* fix pix2struct cross attention

* fix torchscript slow test
2023-08-01 10:56:37 +02:00
4033ea7167 make build_mpt_alibi_tensor a method of MptModel so that deepspeed co… (#25193)
make build_mpt_alibi_tensor a method of MptModel so that deepspeed could override it to make autoTP work

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-08-01 01:35:49 -04:00
0fd8d2aa2c Fix docker image build failure (#25214)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-31 20:13:15 +02:00
1b4f6199c6 Update tiny model info. and pipeline testing (#25213)
* update tiny_model_summary.json

* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-31 19:35:33 +02:00
e0c50b274a [pipeline] revisit device check for pipeline (#25207)
* revisit device check for pipeline

* let's raise an error.
2023-07-31 18:43:21 +02:00
5220606607 [quantization.md] fix (#25190)
Update quantization.md
2023-07-31 09:37:29 -07:00
9ca3aa0156 Fix all_model_classes in FlaxBloomGenerationTest (#25211)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-31 17:32:05 +02:00
59dcea3fe4 [PreTrainedModel] Wrap cuda and to method correctly (#25206)
wrap `cuda` and `to` method correctly
2023-07-31 17:25:09 +02:00
67b85f24de Better error message in _prepare_output_docstrings (#25202)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-31 16:15:02 +02:00
4a564490e1 Musicgen: CFG is manually added (#25173) 2023-07-31 11:21:11 +01:00
05cda5df34 🚨🚨🚨 Fix rescale ViVit Efficientnet (#25174)
* Fix rescaling bug

* Add tests

* Update integration tests

* Fix up

* Update src/transformers/image_transforms.py

* Update test - new possible order in list
2023-07-28 19:52:51 +01:00
03f98f9683 [MusicGen] Fix integration tests (#25169)
* move to device

* update with cuda values

* fix fp16

* more rigorous
2023-07-28 18:50:15 +01:00
c90e14fb0f Fix beam search to sample at least 1 non eos token (#25103) (#25115) 2023-07-28 13:20:24 -04:00
31f137c04f 🌐 [i18n-KO] Translated transformers_agents.md to Korean (#24881)
* docs: ko: transformers_agents.md

* docs: ko: transformers_agents.md

* feat: deepl draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Juntae <79131091+sronger@users.noreply.github.com>
Co-authored-by: Injin Paek <71638597+eenzeenee@users.noreply.github.com>

---------

Co-authored-by: Juntae <79131091+sronger@users.noreply.github.com>
Co-authored-by: Injin Paek <71638597+eenzeenee@users.noreply.github.com>
2023-07-28 13:06:37 -04:00
dd9d45b6ec [InstructBlip] Fix instructblip slow test (#25171)
* fix instruct blip slow test

* Update tests/models/instructblip/test_modeling_instructblip.py
2023-07-28 17:00:10 +02:00
add0895dd9 [Mpt] Fix mpt slow test (#25170)
fix mpt slow test
2023-07-28 16:45:09 +02:00
d53b8ad780 Update use_auth_token -> token in example scripts (#25167)
* pytorch examples

* tensorflow examples

* flax examples

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-28 15:33:45 +02:00
3cbc560d03 added compiled model support for inference (#25124)
* added compiled model support for inference

* linter

* Fix tests

* linter

* linter

* remove inference mode from pipelines

* Linter

---------

Co-authored-by: amarkov <alexander@inworld.ai>
2023-07-28 08:28:04 -04:00
afa96fffdf make run_generation more generic for other devices (#25133)
* make run_generation more generic for other devices

* use Accelerate to support any device type it supports.

* make style

* fix error usage of accelerator.prepare_model

* use `PartialState` to make sure everything is running on the right device

---------

Co-authored-by: statelesshz <jihuazhong1@huawei.com>
2023-07-28 08:20:10 -04:00
d23d2c27c2 Represent query_length in a different way to solve jit issue (#25164)
Fix jit trace
2023-07-28 08:19:10 -04:00
YQ
2a78720104 override .cuda() to check if model is already quantized (#25166) 2023-07-28 08:17:24 -04:00
c1dba1111b Add test when downloading from gated repo (#25039) 2023-07-28 08:14:27 -04:00
6232c380f2 Fix .push_to_hub and cleanup get_full_repo_name usage (#25120)
* Fix .push_to_hub and cleanup get_full_repo_name usage

* Do not rely on Python bool conversion magic

* request changes
2023-07-28 11:40:08 +02:00
400e76ef11 Add new model in doc table of content (#25148) 2023-07-27 13:41:50 -04:00
e93103632b Add bloom flax (#25094)
* First commit

* step 1 working

* add alibi

* placeholder for `scan`

* add matrix mult alibi

* beta scaling factor for bmm

* working v1 - simple forward pass

* move layer_number from attribute to arg in call

* partial functioning scan

* hacky working scan

* add more modifs

* add test

* update scan for new kwarg order

* fix position_ids problem

* fix bug in attention layer

* small fix

- do the alibi broadcasting only once

* prelim refactor

* finish refactor

* alibi shifting

* incorporate dropout_add to attention module

* make style

* make padding work again

* update

* remove bogus file

* up

* get generation to work

* clean code a bit

* added small tests

* adding albii test

* make CI tests pass:

- change init weight
- add correct tuple for output attention
- add scan test
- make CI tests work

* fix few nits

* fix nit onnx

* fix onnx nit

* add missing dtype args to nn.Modules

* remove debugging statements

* fix scan generate

* Update modeling_flax_bloom.py

* Update test_modeling_flax_bloom.py

* Update test_modeling_flax_bloom.py

* Update test_modeling_flax_bloom.py

* fix small test issue + make style

* clean up

* Update tests/models/bloom/test_modeling_flax_bloom.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* fix function name

* small fix test

* forward contrib credits from PR17761

* Fix failing test

* fix small typo documentation

* fix non passing test

- remove device from build alibi

* refactor call

- refactor `FlaxBloomBlockCollection` module

* make style

* upcast to fp32

* cleaner way to upcast

* remove unused args

* remove layer number

* fix scan test

* make style

* fix i4 casting

* fix slow test

* Update src/transformers/models/bloom/modeling_flax_bloom.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* remove `layer_past`

* refactor a bit

* fix `scan` slow test

* remove useless import

* major changes

- remove unused code
- refactor a bit
- revert import `torch`

* major refactoring

- change build alibi

* remove scan

* fix tests

* make style

* clean-up alibi

* add integration tests

* up

* fix batch norm conversion

* style

* style

* update pt-fx cross tests

* update copyright

* Update src/transformers/modeling_flax_pytorch_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* per-weight check

* style

* line formats

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: haileyschoelkopf <haileyschoelkopf@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-27 18:24:56 +01:00
0c790ddbd1 More token things (#25146)
* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-27 17:42:07 +02:00
0b92ae3489 Add offload support to Bark (#25037)
* initial Bark offload proposal

* use hooks instead of manually offloading

* add test of bark offload to cpu feature

* Apply nit suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docstrings of offload

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* remove unecessary set_seed in Bark tests

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-07-27 15:35:17 +01:00
9cea3e7b80 [MptConfig] support from pretrained args (#25116)
* support from pretrained args

* draft addition of tests

* update test

* use parrent assert true

* Update src/transformers/models/mpt/configuration_mpt.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-07-27 16:24:52 +02:00
a1c4954d25 🚨🚨🚨Change default from adamw_hf to adamw_torch 🚨🚨🚨 (#25109)
* Change defaults

* Sylvain's comments
2023-07-27 09:11:28 -04:00
9a220ce30c Clarify 4/8 bit loading log message (#25134)
* clarify 4/8 bit loading log message

* make style
2023-07-27 09:09:27 -04:00
9429642e2d [T5/LlamaTokenizer] default legacy to None to not always warn (#25131)
default legacy to None
2023-07-27 14:43:18 +02:00
de9e3b5945 fix delete all checkpoints when save_total_limit is set to 1 (#25136) 2023-07-27 08:34:02 -04:00
a004237926 fix deepspeed load best model at end when the model gets sharded (#25057) 2023-07-27 07:11:43 +05:30
1689aea733 Move center_crop to BaseImageProcessor (#25122) 2023-07-26 18:30:38 +01:00
659829b6ae MaskFormer - enable return_dict in order to compile (#25052)
* Enable return_dict in order to compile

* Update tests
2023-07-26 16:23:30 +01:00
b914ec9847 Fix ViT docstring regarding default dropout values. (#25118)
Fix docstring for dropout.
2023-07-26 11:08:57 -04:00
1486d2aec2 Move common image processing methods to BaseImageProcessor (#25089)
Move out common methods
2023-07-26 15:09:17 +01:00
d30cf3d02f Fix past CI after #24334 (#25113)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-26 15:34:42 +02:00
224da5df69 update use_auth_token -> token (#25083)
* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-26 15:09:59 +02:00
Leo
c53c8e490c fix "UserWarning: Creating a tensor from a list of numpy.ndarrays is … (#24772)
fix "UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor."

Co-authored-by: 刘长伟 <hzliuchw@corp.netease.com>
2023-07-26 09:07:21 -04:00
04a5c859b0 Add descriptive docstring to TemperatureLogitsWarper (#24892)
* Add descriptive docstring to TemperatureLogitsWarper

It addresses https://github.com/huggingface/transformers/issues/24783

* Remove niche features

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Commit suggestion

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Refactor the examples to simpler ones

* Add a missing comma

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Make args description more compact

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Remove extra text after making description more compact

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fix linter

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-07-26 08:58:26 -04:00
31acba5697 Fix PvtModelIntegrationTest::test_inference_fp16 (#25106)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-26 14:57:44 +02:00
ee63520a7b 🌐[i18n-KO] Translated pipeline_webserver.md to Korean (#24828)
* translated pipeline_webserver.md

Co-Authored-By: Hyeonseo Yun <0525yhs@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update pipeline_webserver.md

* Apply suggestions from code review

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sangam Lee <74291999+augustinLib@users.noreply.github.com>
Co-authored-by: Kim haewon <ehdvkf02@naver.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Sangam Lee <74291999+augustinLib@users.noreply.github.com>
Co-authored-by: Kim haewon <ehdvkf02@naver.com>
2023-07-26 08:40:37 -04:00
277d3aed0a documentation for llama2 models (#25102)
* fix documentation

* changes
2023-07-26 08:30:33 -04:00
a5cc30d72a fix tied_params for meta tensor (#25101)
* fix tied_params for meta tensor

* remove duplicate
2023-07-25 18:08:45 -04:00
f1deb21fce Bump certifi from 2022.12.7 to 2023.7.22 in /examples/research_projects/visual_bert (#25097)
Bump certifi in /examples/research_projects/visual_bert

Bumps [certifi](https://github.com/certifi/python-certifi) from 2022.12.7 to 2023.7.22.
- [Commits](https://github.com/certifi/python-certifi/compare/2022.12.07...2023.07.22)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-07-25 17:25:14 -04:00
45bde362d2 Bump certifi from 2022.12.7 to 2023.7.22 in /examples/research_projects/decision_transformer (#25098)
Bump certifi in /examples/research_projects/decision_transformer

Bumps [certifi](https://github.com/certifi/python-certifi) from 2022.12.7 to 2023.7.22.
- [Commits](https://github.com/certifi/python-certifi/compare/2022.12.07...2023.07.22)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-07-25 17:25:05 -04:00
6b8dbc283c Bump certifi from 2022.12.7 to 2023.7.22 in /examples/research_projects/lxmert (#25096)
Bump certifi in /examples/research_projects/lxmert

Bumps [certifi](https://github.com/certifi/python-certifi) from 2022.12.7 to 2023.7.22.
- [Commits](https://github.com/certifi/python-certifi/compare/2022.12.07...2023.07.22)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-07-25 17:24:50 -04:00
da5ff18a4a Fix doctest (#25031)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-25 22:10:06 +02:00
8f36ab3e22 [T5, MT5, UMT5] Add [T5, MT5, UMT5]ForSequenceClassification (#24726)
* Initial addition of t5forsequenceclassification

* Adding imports and adding tests

* Formatting

* Running make fix-copies

* Adding mt5forseq

* Formatting

* run make fix-copies

* Adding to docs

* Add model_parallel

* Fix bug

* Fix

* Remove TODO

* Fixing tests for T5ForSequenceClassification

* Undo changes to dependency_versions_table.py

* Change classification head to work with T5Config directly

* Change seq length to let tests pass

* PR comments for formatting

* Formatting

* Initial addition of UMT5ForSequenceClassification

* Adding to inits and formatting

* run make fix-copies

* Add doc for UMT5ForSeqClass

* Update UMT5 config

* Fix docs

* Skip torch fx test for SequenceClassification

* Formatting

* Add skip to UMT5 tests as well

* Fix umt5 tests

* Running make fix-copies

* PR comments

* Fix for change to sentence_representation

* Rename seq_len to hidden_size since that's what it is

* Use base_model to follow format of the rest of the library

* Update docs

* Extract the decoder_input_ids changes and make one liner

* Make one-liner
2023-07-25 21:02:49 +02:00
21150cb0f3 Hotfix for failing MusicgenForConditionalGeneration tests (#25091)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-25 20:26:00 +02:00
f9cc333805 [ PreTrainedTokenizerFast] Keep properties from fast tokenizer (#25053)
* draft solution

* use `setdefault`

* nits

* add tests and fix truncation issue

* fix test

* test passes locally

* quality

* updates

* update tsets
2023-07-25 18:45:01 +02:00
0779fc8eb8 Edit err message and comment in test_model_is_small (#25087)
* Edit err message and comment in

* put back 80M comment
2023-07-25 12:24:36 -04:00
2fac342238 [TF] Also apply patch to support left padding (#25085)
* tf versions

* apply changes to other models

* 3 models slipped through the cracks
2023-07-25 11:23:09 -04:00
f104522718 [ ForSequenceClassification] Support left padding (#24979)
* support left padding

* nit

* Update src/transformers/models/gpt_neox/modeling_gpt_neox.py

* Update src/transformers/models/gpt_neox/modeling_gpt_neox.py
2023-07-25 16:19:43 +02:00
1e662f0f07 Allow generic composite models to pass more kwargs (#24927)
* fix

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-07-25 16:07:00 +02:00
b51312e24d 🌐 [i18n-KO] Translated perf_infer_cpu.md to Korean (#24920)
* docs: ko: perf_infer_cpu.md

* feat: chatgpt draft

* fix: manual edits

* Update docs/source/ko/_toctree.yml

* Update docs/source/ko/perf_infer_cpu.md

* Update docs/source/ko/perf_infer_cpu.md

이 부분은 저도 걸리적거렸던 부분입니다. 반영하겠습니다!

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/perf_infer_cpu.md

동의합니다! 제가 원본에 너무 얽매여 있었네요!

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/perf_infer_cpu.md

말씀하신대로 원문에 너무 집착했던것 같습니다

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/perf_infer_cpu.md

더 나은 어휘 사용에 감사드립니다!

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/perf_infer_cpu.md

이 당시 '주기'란 용어를 생각해내질 못했네요...

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/perf_infer_cpu.md

좀 더 자연스러운 문맥이 됐네요!

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/perf_infer_cpu.md

굳이 원본 형식에 얽매일 필요가 없군요!

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/perf_infer_cpu.md

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-07-25 16:04:14 +02:00
b99f7bd4fc [DOCS] add example NoBadWordsLogitsProcessor (#25046)
* add example NoBadWordsLogitsProcessor

* fix L764 & L767

* make style
2023-07-25 09:41:48 -04:00
dcb183f4bd [MPT] Add MosaicML's MPT model to transformers (#24629)
* draft add new model like

* some cleaning of the config

* nits

* add nested configs

* nits

* update

* update

* added layer norms + triton kernels

* consider only LPLayerNorm for now.

* update

* all keys match.

* Update

* fixing nits here and there

* working forward pass.

* removed einops dependency

* nits

* format

* add alibi

* byebye head mask

* refactor attention

* nits.

* format

* fix nits.

* nuke ande updates

* nuke tokenizer test

* don't reshape query with kv heads

* added a bit of documentation.

* remove unneeded things

* nuke more stuff

* nit

* logits match - same generations

* rm unneeded methods

* 1 remaining failing CI test

* nit

* fix nits

* fix docs

* fix docs

* rm tokenizer

* fixup

* fixup

* fixup and fix tests

* fixed configuration object.

* use correct activation

* few minor fixes

* clarify docs a bit

* logits match à 1e-12

* skip and unskip a test

* added some slow tests.

* fix readme

* add more details

* Update docs/source/en/model_doc/mpt.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix configuration issues

* more fixes in config

* added more models

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove unneeded position ids

* fix some  comments

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* revert suggestion

* mpt alibi + added batched generation

* Update src/transformers/models/mpt/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove init config

* Update src/transformers/models/mpt/configuration_mpt.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix nit

* add another slow test

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fits in one line

* some refactor because make fixup doesn't pass

* add ft notebook

* update md

* correct doc path

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-25 14:32:40 +02:00
1dbc1440a7 Fix: repeat per sample for SAM image embeddings (#25074)
Repeat per sample for SAM image embeddings
2023-07-25 08:30:14 -04:00
cb8abee511 🌐 [i18n-KO] Translated hpo_train.md to Korean (#24968)
* dos: ko: hpo_train.mdx

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions
2023-07-25 08:28:20 -04:00
f2c1df93f5 [generate] Only warn users if the generation_config's max_length is set to the default value (#25030)
* check max length is default

* nit

* update warning: no-longer deprecate

* comment in the configuration_utils in case max length's default gets changed in the futur
2023-07-25 14:20:37 +02:00
c879318cc5 replace per_gpu_eval_batch_size with per_device_eval_batch_size in readme of multiple-choice task (#25078)
replace `per_gpu_eval_batch_size` with `per_device_eval_batch_size`
in readme of multiple-choice
2023-07-25 08:11:56 -04:00
25e443c0d4 Fix broken link in README_hd.md (#25067)
Update README_hd.md
2023-07-25 08:09:01 -04:00
6bc61aa7af Set TF32 flag for PyTorch cuDNN backend (#25075) 2023-07-25 08:04:48 -04:00
5dba88b2d2 fix: add TOC anchor link (#25066) 2023-07-25 08:02:33 -04:00
f295fc8a16 Fix last models for common tests that are too big. (#25058)
* Fix last models for common tests that are too big.

* Remove print statement
2023-07-25 07:56:04 -04:00
ee1eb3b325 🌐 [i18n-KO] Translated perf_hardware.md to Korean (#24966)
* docs: ko: perf_hardware.md

* feat: nmt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

Co-authored-by: Haewon Kim <ehdvkf02@naver.com>

* Fix: manual edits

* fix: manual edits

* fix: manual edits

* fix: manual edits

* fix: fix rendering error of perf_hardware.md

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Haewon Kim <ehdvkf02@naver.com>
2023-07-25 07:44:24 -04:00
f6fe1d5514 🌐 [i18n-KO] Translated <tf_xla>.md to Korean (#24904)
* docs: ko: tf_xla.md

* feat: chatgpt draft

* fix: manual edits

* fix: manual edits

* fix: manual edits

* fix: resolve suggestions
2023-07-25 07:43:22 -04:00
faf25c040d [Docs] fix rope_scaling doc string (#25072)
fix rope_scaling doc string
2023-07-25 07:34:10 -04:00
c0742b15cb Generate - add beam indices output in contrained beam search (#25042) 2023-07-25 11:12:29 +01:00
c53a6eae74 [RWKV] Add note in doc on RwkvStoppingCriteria (#25055)
* Add note in doc on `RwkvStoppingCriteria`

* give some breathing space to the code
2023-07-25 10:15:00 +02:00
d2295708a6 Better error message when signal is not supported on OS (#25049)
* Better error message when signal is not supported on OS

* Address review comments
2023-07-24 14:34:16 -04:00
c0d1c33022 🌐 [i18n-KO] Translated perf_train_cpu.md to Korean (#24911)
* dos: ko: perf_train_cpu.md

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions

* fix: manual edits

Co-authored-by: Haewon Kim <ehdvkf02@naver.com>

---------

Co-authored-by: Haewon Kim <ehdvkf02@naver.com>
2023-07-24 17:54:13 +02:00
b08f41e62a [8bit] Fix 8bit corner case with Blip2 8bit (#25047)
fix 8bit corner case with Blip2 8bit
2023-07-24 16:58:40 +02:00
3611fc90e0 compute_loss in trainer failing to label shift for PEFT model when label smoothing enabled. (#25044)
* added PeftModelForCausalLM to MODEL_FOR_CAUSAL_LM_MAPPING_NAMES dict

* check for PEFT model in compute_loss section

---------

Co-authored-by: Nathan Brake <nbrake3@mmm.com>
2023-07-24 10:53:10 -04:00
a03d13c83d Pvt model (#24720)
* pull and push updates

* add docs

* fix modeling

* Add and run test

* make copies

* add task

* fix tests and fix small issues

* Checks on a Pull Request

* fix docs

* add desc pvt.md
2023-07-24 15:34:19 +01:00
afe8bfc075 Comment again print statement 2023-07-24 10:12:20 -04:00
42571f6eb8 Make more test models smaller (#25005)
* Make more test models tiny

* Make more test models tiny

* More models

* More models
2023-07-24 10:08:47 -04:00
8f1f0bf50f Fix typo in LlamaTokenizerFast docstring example (#25018) 2023-07-24 09:37:58 -04:00
3b734f5042 Add dispatch_batches to training arguments (#25038)
* Dispatch batches

* Copy items
2023-07-24 09:27:19 -04:00
9d2b983ed0 🌐 [i18n-KO] Translated testing.md to Korean (#24900)
* docs: ko: testing.md

* feat: draft

* fix: manual edits

* fix: edit ko/_toctree.yml

* fix: manual edits

* fix: manual edits

* fix: manual edits

* fix: manual edits

* fix: resolve suggestions
2023-07-24 09:24:11 -04:00
383be1b763 🌐[i18n-KO] Translated performance.md to Korean (#24883)
* dos: ko: performance.md

* feat: chatgpt draft

* fix: manual edits

* fix: manual edits

* Update docs/source/ko/performance.md

Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>

* Update docs/source/ko/performance.md

---------

Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>
2023-07-24 09:23:34 -04:00
efb2ba666d Better handling missing SYS in llama conversation tokenizer (#24997)
* Better handling missing SYS in llama conversation tokenizer

The existing code failed to add SYS if the conversation has history
without SYS, but did modify the passed conversation as it did.

Rearrange the code so modification to the conversation object are taken
into account for token id generation.

* Fix formatting with black

* Avoid one-liners

* Also fix fast tokenizer

* Drop List decl
2023-07-24 09:21:10 -04:00
6704923107 Support GatedRepoError + use raise from (#25034)
* Support GatedRepoError + use raise from

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Use token instead of use_auth_token in error messages

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-24 09:12:39 -04:00
75317aefb3 [docs] Performance docs tidy up, part 1 (#23963)
* first pass at the single gpu doc

* overview: improved clarity and navigation

* WIP

* updated intro and deepspeed sections

* improved torch.compile section

* more improvements

* minor improvements

* make style

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* feedback addressed

* mdx -> md

* link fix

* feedback addressed

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-07-24 08:57:24 -04:00
54ba8608d0 fix(integrations): store serialized TrainingArgs to wandb.config without sanitization. (#25035)
fix: store training args to wandb config without sanitization.

Allows resuming runs by reusing the wandb config.

Co-authored-by: Bharat Ramanathan <ramanathan.parameshwaran@gohuddl.com>
2023-07-24 08:42:39 -04:00
0906d21203 [logging.py] set default stderr path if None (#25033)
set default logger
2023-07-24 14:31:45 +02:00
c9a82be592 [check_config_docstrings.py] improve diagnostics (#25012)
* [check_config_docstrings.py] improve diagnostics

* style

* rephrase

* fix
2023-07-23 21:17:26 -07:00
b257c46a07 🌐 [i18n-KO] Updated Korean serialization.md (#24686)
fix: update ko/serialization.md

* chatgpt draft
2023-07-21 19:23:59 -04:00
87fba947a5 Move template doc file to md (#25004) 2023-07-21 16:49:44 -04:00
ea41e18cfc improve from_pretrained for zero3 multi gpus mode (#24964)
* improve from_pretrained for zero3 multi gpus mode

* Add check if torch.distributed.is_initialized

* Revert torch.distributed

---------

Co-authored-by: Stas Bekman <stas@stason.org>
2023-07-21 15:39:28 -04:00
95f96b45ff [Llama] remove persistent inv_freq tensor (#24998)
remove persistent tensor
2023-07-21 18:11:08 +02:00
d3ce048c20 [bnb] Add simple check for bnb import (#24995)
add simple check for bnb
2023-07-21 17:50:52 +02:00
f1a1eb4ae1 Fix llama tokenization doctest (#24990)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-21 16:47:51 +02:00
a7d213189d Use main_input_name for include_inputs_for_metrics (#24993) 2023-07-21 10:30:17 -04:00
a6484c89b9 Fix type annotation for deepspeed training arg (#24988) 2023-07-21 09:42:05 -04:00
5b7ffd5492 Avoid importing all models when instantiating a pipeline (#24960)
* Avoid importing all models when instantiating a pipeline

* Remove sums that don't work
2023-07-21 09:41:56 -04:00
640e1b6c6f Remove tokenizers from the doc table (#24963) 2023-07-21 09:41:36 -04:00
0511369a8b [LlamaConfig] Nit: pad token should be None by default (#24958)
* pad token should be None by default

* fix tests

* nits
2023-07-21 14:32:34 +02:00
f74560d007 Fix missing spaces in system prompt of Llama2 tokenizer (#24930)
* Update tokenization_llama.py

* Update tokenization_llama_fast.py

* Update src/transformers/models/llama/tokenization_llama_fast.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/llama/tokenization_llama.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/llama/tokenization_llama.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/llama/tokenization_llama_fast.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-07-21 08:28:54 -04:00
f4eb459ef2 fsdp fixes and enhancements (#24980)
* fix fsdp prepare to remove the warnings and fix excess memory usage

* Update training_args.py

* parity for FSDP+XLA

* Update trainer.py
2023-07-21 17:52:48 +05:30
ec3dfe5e24 🌐 [i18n-KO] Fixed Korean and English quicktour.md (#24664)
* fix: english/korean quicktour.md

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>

* fix: follow glossary

* 파인튜닝 -> 미세조정

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>
2023-07-21 08:19:28 -04:00
83f9314d10 fix: cast input pixels to appropriate dtype for image_to_text pipelines (#24947)
* fix: cast input pixels to appropriate dtype for image_to_text tasks

* fix: add casting to pixel inputs of additional models after running copy checks
2023-07-21 08:16:57 -04:00
1c7e5e2368 fix fsdp checkpointing issues (#24926)
* fix fsdp load

* Update trainer.py

* remove saving duplicate state_dict
2023-07-21 12:17:26 +05:30
9ef5256dfb Fallback for missing attribute Parameter.ds_numel (#24942)
* [trainer] fallback for deepspeed param count

* [trainer] more readable numel count
2023-07-20 15:19:35 -04:00
caf5e369fc Contrastive Search peak memory reduction (#24120)
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-07-20 18:46:53 +01:00
aa1b09c5d1 Change logic for logging in the examples (#24956)
Change logic
2023-07-20 12:30:10 -04:00
89a1f34271 [RWKV] Add Gradient Checkpointing support for RWKV (#24955)
add GC support for RWKV
2023-07-20 18:29:23 +02:00
9f912ef62a Bump aiohttp from 3.8.1 to 3.8.5 in /examples/research_projects/decision_transformer (#24954)
Bump aiohttp in /examples/research_projects/decision_transformer

Bumps [aiohttp](https://github.com/aio-libs/aiohttp) from 3.8.1 to 3.8.5.
- [Release notes](https://github.com/aio-libs/aiohttp/releases)
- [Changelog](https://github.com/aio-libs/aiohttp/blob/v3.8.5/CHANGES.rst)
- [Commits](https://github.com/aio-libs/aiohttp/compare/v3.8.1...v3.8.5)

---
updated-dependencies:
- dependency-name: aiohttp
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-07-20 12:17:38 -04:00
e75cb0cb3c fix type annotations for arguments in training_args (#24550)
* testing

* example script

* fix typehinting

* some tests

* make test

* optional update

* Union of arguments

* does this fix the issue

* remove reports

* set default to False

* documentation change

* None support

* does not need None

* Fix typing annotations for FSDP and DeepSpeed in TrainingArguments (#24549)

* Fix typing annotations for FSDP and DeepSpeed in TrainingArguments

* Change dict to Dict

* Revert "Fix typing annotations for FSDP and DeepSpeed in TrainingArguments" (#24574)

Revert "Fix typing annotations for FSDP and DeepSpeed in TrainingArguments (#24549)"

This reverts commit c5e29d4381d4b9739e6cb427adbca87fbb43a3ad.

* Fix typing annotations for FSDP and DeepSpeed in TrainingArguments (#24549)

* Fix typing annotations for FSDP and DeepSpeed in TrainingArguments

* Change dict to Dict

* merge

* hacky fix

* fixup

---------

Co-authored-by: Max Ryabinin <mryabinin0@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-20 10:13:13 -04:00
0c41765df4 [DOCS] Example for LogitsProcessor class (#24848)
* make docs

* fixup

* resolved

* remove debugs

* Revert "fixup"

This reverts commit 5e0f636aae0bf8707bc8bdaa6a9427fbf66834ed.

* prev (ignore)

* fixup broke some files

* remove files

* reverting modeling_reformer

* lang fix
2023-07-20 10:09:40 -04:00
35c04596f8 Fix main_input_name in src/transformers/keras_callbacks.py (#24916)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-20 15:01:37 +02:00
85514c17d1 Update processing_vision_text_dual_encoder.py (#24950)
Fixing small typo: kwrags -> kwargs
2023-07-20 08:25:38 -04:00
9859806608 Bump pygments from 2.11.2 to 2.15.0 in /examples/research_projects/decision_transformer (#24949)
Bump pygments in /examples/research_projects/decision_transformer

Bumps [pygments](https://github.com/pygments/pygments) from 2.11.2 to 2.15.0.
- [Release notes](https://github.com/pygments/pygments/releases)
- [Changelog](https://github.com/pygments/pygments/blob/master/CHANGES)
- [Commits](https://github.com/pygments/pygments/compare/2.11.2...2.15.0)

---
updated-dependencies:
- dependency-name: pygments
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-07-20 07:43:48 -04:00
89136ff7f8 Generate: sequence bias can handle same terminations (#24822) 2023-07-20 12:23:17 +01:00
37d8611ac9 replace no_cuda with use_cpu in test_pytorch_examples (#24944)
* replace no_cuda with use_cpu in test_pytorch_examples

* remove codes that never be used

* fix style
2023-07-20 07:09:04 -04:00
79444f370f Deprecate unused OpenLlama architecture (#24922)
* Resolve typo in check_repo.py

* Specify encoding when opening modeling files

* Deprecate the OpenLlama architecture

* Add disclaimer pointing to Llama

I'm open to different wordings here

* Match the capitalisation of LLaMA
2023-07-20 07:03:24 -04:00
8fd8c8e49e Add multi-label text classification support to pytorch example (#24770)
* Add text classification example

* set the problem type and finetuning task

* ruff reformated

* fix bug for unseting label_to_id for regression

* update README.md

* fixed finetuning task

* update comment

* check if label exists in feature before removing

* add useful logging
2023-07-20 07:02:44 -04:00
7381987f90 🌐 [i18n-KO] Translatedtasks/document_question_answering.md to Korean (#24588)
* docs: ko: `document_question_answering.md`

* fix: resolve suggestions

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-07-20 06:19:36 -04:00
6112b1c644 [doc] image_processing_vilt.py wrong default documented (#24931)
[doc] image_processing_vilt.py wrong default
2023-07-19 13:57:40 -07:00
ee4250a35f [Llama2] replace self.pretraining_tp with self.config.pretraining_tp (#24906)
* add possibility to disable TP

* fixup

* adapt from offline discussions
2023-07-19 14:26:27 +02:00
3a43794dd6 Fix minor llama2.md model doc typos (#24909)
Update llama2.md

 Fix typos in the llama2 model doc
2023-07-19 08:13:14 -04:00
99c1268e0a fix typo in BARK_PRETRAINED_MODEL_ARCHIVE_LIST (#24902)
fix typo in BARK_PRETRAINED_MODEL_ARCHIVE_LIST

suno/barh should be suno/bark
2023-07-19 07:35:04 -04:00
aa4afa67f3 Fixed issue where ACCELERATE_USE_CPU="False" results in bool(True) (#24907)
- This results in cpu mode on Apple Silicon mps
2023-07-19 07:30:01 -04:00
243b2ea3fd Fix test_model_parallelism for FalconModel (#24914)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-19 13:18:16 +02:00
c035970212 Update tested versions in READMEs (#24895)
* Update supported Python and PyTorch versions in readme

* Update Python, etc. versions in non-English readmes

These were more out of date than in the English readme. This
updates all the versions the readmes claim the repository is tested
with to the same versions stated in the English readme.

Those versions are current at least in the case of the Python and
PyTorch versions (and less out of date for the others).

* Propagate trailing whitespace fix to model list

This runs "make fix-copies". The only change is the removal of
whitespace. No actual information or wording is changed.

* Update tested TensorFlow to 2.6 in all readmes

Per pinning in setup.py

Unlike Python and PyTorch, the minimum supported TensorFlow version
has not very recently changed, but old versions were listed in all
READMEs.
2023-07-19 07:17:34 -04:00
129cb6d523 Avoid some pipeline tasks to use use_cache=True (#24893)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-19 09:49:52 +02:00
476be08c4a Check for accelerate env var when doing CPU only (#24890)
Check for use-cpu
2023-07-18 18:40:37 -04:00
a982c0225e Disable ipex env var if false (#24885)
Disable ipex if in use
2023-07-18 16:07:02 -04:00
07360b6c9c [Llama2] Add support for Llama 2 (#24891)
* add llama

* add other readmes

* update padding id in readme

* add link to paper

* fix paths and tokenizer

* more nits

* styling

* fit operation in 2 lines when possible

* nits

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add form

* update reademe

* update readme, we don't have a default pad token

* update test and tokenization

* LLaMA instead of Llama

* nits

* add expected text

* add greeedy output

* styling

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* sequential device map

* skip relevant changes

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-18 15:18:31 -04:00
30c172fc20 Separate CircleCI cache between main and pull (or other branches) (#24886)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-18 21:05:26 +02:00
dd49404a89 check if eval dataset is dict (#24877)
* check if eval dataset is dict

* formatting
2023-07-18 13:33:41 -04:00
5c5cb4eeb2 [Blip] Fix blip output name (#24889)
* fix blip output name

* add property

* oops

* fix failing test
2023-07-18 19:30:27 +02:00
a9e067a45c [InstructBlip] Fix int8/fp4 issues (#24888)
* fix dtype issue

* revert `.float()`

* fix copies
2023-07-18 19:24:36 +02:00
3ec10e6c76 Add DINOv2 (#24016)
* First draft

* More improvements

* Convert patch embedding layer

* Convert all weights

* Make conversion work

* Improve conversion script

* Fix style

* Make all tests pass

* Add image processor to auto mapping

* Add swiglu ffn

* Add image processor to conversion script

* Fix conversion of giant model

* Fix documentation

* Fix style

* Fix tests

* Address comments

* Address more comments

* Remove unused arguments

* Remove more arguments

* Rename parameters

* Include mask token

* Address comments

* Add docstring

* Transfer checkpoints

* Empty commit
2023-07-18 15:34:06 +01:00
57da42ad05 Enable ZeroShotAudioClassificationPipelineTests::test_small_model_pt (#24882)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-18 15:08:53 +02:00
9c875839c0 add ascend npu accelerator support (#24879)
* Add Ascend NPU accelerator support

* fix style warining
2023-07-18 08:20:32 -04:00
f14c7f999d Fix CircleCI cache (#24880)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-18 13:45:00 +02:00
ca974aff0f [Docs] Clarify 4bit docs (#24878)
* clarify 4bit docs

* Apply suggestions from code review

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

---------

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2023-07-18 13:39:08 +02:00
2ab75add4b Remove tests/onnx (#24868)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-17 22:37:28 +02:00
d561408cc3 Skip Add model like job (#24865) 2023-07-17 15:52:04 -04:00
870dfc15b2 Skip failing ZeroShotAudioClassificationPipelineTests::test_small_model_pt for now (#24867)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-17 15:51:50 -04:00
9dc965bb40 deprecate no_cuda (#24863)
* deprecate no_cuda

* style

* remove doc

* remove doc 2

* fix style
2023-07-17 14:52:28 -04:00
0f4502d335 Remove deprecated codes (#24837)
* remove `xpu_backend` training argument

* always call `contextlib.nullcontext()` since transformers updated to
python3.8

* these codes will not be executed
2023-07-17 14:45:59 -04:00
eeaa9c016a Make CLIP model could use new added tokens with meaningful pooling (#24777)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-17 20:35:20 +02:00
d0154015f7 Replace assert statements with exceptions (#24856)
* Changed AssertionError to ValueError

try-except block was using AssesrtionError in except statement while the expected error is value error. Fixed the same.

* Changed AssertionError to ValueError

try-except block was using AssesrtionError in except statement while the expected error is ValueError. Fixed the same.
Note: While raising the ValueError args are passed to it, but later added again while handling the error (See the code snippet)

* Changed AssertionError to ValueError

try-except block was using AssesrtionError in except statement while the expected error is ValueError. Fixed the same.
Note: While raising the ValueError args are passed to it, but later added again while handling the error (See the code snippet)

* Changed AssertionError to ValueError

* Changed AssertionError to ValueError

* Changed AssertionError to ValueError

* Changed AssertionError to ValueError

* Changed AssertionError to ValueError

* Changed assert statement to ValueError based

* Changed assert statement to ValueError based

* Changed assert statement to ValueError based

* Changed incorrect error handling from AssertionError to ValueError

* Undoed change from AssertionError to ValueError as it is not needed

* Reverted back to using AssertionError as it is not necessary to make it into ValueError

* Fixed erraneous comparision

Changed == to !=

* Fixed erraneous comparision

Changed == to !=

* formatted the code

* Ran make fix-copies
2023-07-17 14:32:44 -04:00
12b908c659 Fix the fetch of all example tests (#24864) 2023-07-17 14:10:13 -04:00
e9ad51306f 4.32.0.dev0 2023-07-17 13:30:44 -04:00
49eb357564 Fix token pass (#24862)
* Fix how token is passed along in from_pretrained for tokenizers

* It's actually not necessary
2023-07-17 13:27:11 -04:00
f42a35e611 Add bark (#24086)
* first raw version of the bark integration

* working code on small models with single run

* add converting script from suno weights 2 hf

* many changes

* correct past_kv output

* working implementation for inference

* update the converting script according to the architecture changes

* add a working end-to-end inference code

* remove some comments and make small changes

* remove unecessary comment

* add docstrings and ensure no unecessary intermediary output during audio generation

* remove done TODOs

* make style + add config docstrings

* modification for batch inference support on the whole model

* add details to .generation_audio method

* add copyright

* convert EncodecModel from original library to transformers implementation

* add two class in order to facilitate model and sub-models loading from the hub

* add support of loading the whole model

* add BarkProcessor

* correct modeling according to processor output

* Add proper __init__ and auto support

* Add up-to-date copyright/license message

* add relative import instead of absolute

* cleaner head_dim computation

* small comment removal or changes

* more verbose LayerNorm init method

* specify eps for clearer comprehension

* more verbose variable naming in the MLP module

* remove unecessary BarkBlock parameter

* clearer code in the forward pass of the BarkBlock

* remove _initialize_modules method for cleaner code

* Remove unnecessary methods from sub-models

* move code to remove unnecessary function

* rename a variable for clarity and change an assert

* move code and change variable name for clarity

* remove unnecessary asserts

* correct small bug

* correct a comment

* change variable names for clarity

* remove asserts

* change import from absolute to relative

* correct small error due to comma missing + correct import

* Add attribute Bark config

* add first version of tests

* update attention_map

* add tie_weights and resize_token_embeddings for fineModel

* correct getting attention_mask in generate_text_semantic

* remove Bark inference trick

* leave more choices in barkProcessor

* remove _no_split_modules

* fixe error in forward of block and introduce clearer notations

* correct converting script with last changes

* make style + add draft bark.mdx

* correct BarkModelTest::test_generate_text_semantic

* add Bark in main README

* add dummy_pt_objects for Bark

* add missing models in the main init

* correct test_decoder_model_past_with_large_inputs

* disable torchscript test

* change docstring of BarkProcessor

* Add test_processor_bark

* make style

* correct copyrights

* add bark.mdx + make style, quality and consistency

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Remove unnecessary test method

* simply logic of a test

* Only check first ids for slow audio generation

* split full end-to-end generation tests

* remove unneccessary comment

* change submodel names for clearer naming

* remove ModuleDict from modeling_bark

* combine two if statements

* ensure that an edge misued won't happen

* modify variable name

* move code snippet to the right place (coarse instead of semantic)

* change BarkSemanticModule -> BarkSemanticModel

* align BarkProcessor with transformers paradigm

* correct BarkProcessor tests with last commit changes

* change _validate_voice_preset to an instance method instead of a class method

* tie_weights already called with post_init

* add codec_model config to configuration

* update bark modeling tests with recent BarkProcessor changes

* remove SubModelPretrainedModel + change speakers embeddings prompt type in BarkModel

* change absolute imports to relative

* remove TODO

* change docstrings

* add examples to docs and docstrings

* make style

* uses BatchFeature in BarkProcessor insteads of dict

* continue improving docstrings and docs + make style

* correct docstrings examples

* more comprehensible speaker_embeddings load/Save

* rename speaker_embeddings_dict -> speaker_embeddings

* correct bark.mdx + add bark to documentation_tests

* correct docstrings configuration_bark

* integrate last nit suggestions

* integrate BarkGeneration configs

* make style

* remove bark tests from documentation_tests.txt because timeout - tested manually

* add proper generation config initialization

* small bark.mdx documentation changes

* rename bark.mdx -> bark.md

* add torch.no_grad behind BarkModel.generate_audio()

* replace assert by ValueError in convert_suno_to_hf.py

* integrate a series of short comments from reviewer

* move SemanticLogitsProcessors and remove .detach() from Bark docs and docstrings

* actually remove SemanticLogitsProcessor from modeling_bark.oy

* BarkProcessor returns a single output instead of tuple + correct docstrings

* make style + correct bug

* add initializer_range to BarkConfig + correct slow modeling tests

* add .clone() to history_prompt.coarse_prompt to avoid modifying input array

* Making sure no extra "`" are present

* remove extra characters in modeling_bark.py

* Correct output if history_prompt is None

* remove TODOs

* remove ravel comment

* completing generation_configuration_bark.py docstrings

* change docstrings - number of audio codebooks instead of Encodec codebooks

* change 'bias' docstrings in configuration_bark.py

* format code

* rename BarkModel.generate_audio -> BarkModel.generate_speech

* modify AutoConfig instead of EncodecConfig in BarkConfig

* correct AutoConfig wrong init

* refactor BarkModel and sub-models generate_coarse, generate_fine, generate_text_semantic

* remove SemanticLogitsProcessor and replace it with SuppressTokensLogitsProcessor

* move nb_codebook related config arguments to BarkFineConfig

* rename bark.mdx -> bark.md

* correcting BarkModelConfig from_pretrained + remove keys_to_ignore

* correct bark.md with correct hub path

* correct code bug in bark.md

* correct list tokens_to_suppress

* modify Processor to load nested speaker embeddings in a safer way

* correct batch sampling in BarkFineModel.generate_fine

* Apply suggestions from code review

Small docstrings correction and code improvements

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* give more details about num_layers in docstrings

* correct indentation mistake

* correct submodelconfig order of docstring variables

* put audio models in alphabetical order in utils/check_repo.my

* remove useless line from test_modeling_bark.py

* makes BarkCoarseModelTest inherits from (ModelTesterMixin, GenerationTesterMixin, unittest.TestCase) instead of BarkSemanticModelTest

* make a Tester class for each sub-model instead of inheriting

* add test_resize_embeddings=True for Bark sub-models

* add Copied from transformers.models.gpt_neo.modeling_gpt_neo.GPTNeoSelfAttention._split_heads

* remove 'Copied fom Bark' comment

* remove unneccessary comment

* change np.min -> min in modeling_bark.py

* refactored all custom layers to have Bark prefix

* add attention_mask as an argument of generate_text_semantic

* refactor sub-models start docstrings to have more precise config class definition

* move _tied_weights_keys overriding

* add docstrings to generate_xxx in modeling_bark.py

* add loading whole BarkModel to convert_suno_to_hf

* refactor attribute and variable names

* make style convert_suno

* update bark checkpoints

* remove never entered if statement

* move bark_modeling docstrings after BarkPretrainedModel class definition

* refactor modeling_bark.py: kv -> key_values

* small nits - code refactoring and removing unecessary lines from _init_weights

* nits - replace inplace method by variable assigning

* remove *optional* when necessary

* remove some lines in generate_speech

* add default value for optional parameter

* Refactor preprocess_histories_before_coarse -> preprocess_histories

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* correct usage after refactoring

* refactor Bark's generate_xxx -> generate and modify docstrings and tests accordingly

* update docstrings python in configuration_bark.py

* add bark files in utils/documentation_test.txt

* correct docstrings python snippet

* add the ability to use parameters in the form of e.g coarse_temperature

* add semantic_max_new_tokens in python snippet in docstrings for quicker generation

* Reformate sub-models kwargs in BakModel.generate

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* correct kwargs in BarkModel.generate

* correct attention_mask kwarg in BarkModel.generate

* add tests for sub-models args in BarkModel.generate and correct BarkFineModel.test_generate_fp16

* enrich BarkModel.generate docstrings with a description of how to use the kwargs

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-17 17:53:24 +01:00
c21c3737c1 Add TAPEX to the list of deprecated models (#24859)
* Add TAPEX to the list of deprecated models

* Add check

* Fix typo

* Fix import path for Van conversion
2023-07-17 12:53:03 -04:00
054e802914 fix broken links in READMEs (#24861)
fix MRA in READMEs
2023-07-17 18:47:14 +02:00
c965d30279 Fix comments for _merge_heads (#24855)
* Fix comments

* Fix comments
2023-07-17 11:07:16 -04:00
e4a52b6a15 Fix is_vision_available (#24853)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-17 16:58:51 +02:00
4f08887053 Add Multimodal heading and Document question answering in task_summary.mdx (#23318)
* add multimodal heading and docqa

* fix sentence

* task_summary data type = modality clarification

* change the multimodal example to a smaller model
2023-07-17 13:51:19 +01:00
38dfb86958 Bump cryptography from 41.0.0 to 41.0.2 in /examples/research_projects/decision_transformer (#24833)
Bump cryptography in /examples/research_projects/decision_transformer

Bumps [cryptography](https://github.com/pyca/cryptography) from 41.0.0 to 41.0.2.
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/41.0.0...41.0.2)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-07-17 07:17:17 -04:00
18d42bfd23 Remove unused code in GPT-Neo (#24826)
1
2023-07-17 07:07:47 -04:00
9771ad33be 🌐 [i18n-KO] Translated custom_tools.mdx to Korean (#24580)
* docs: ko: custom_tools.mdx

* feat: deepl draft

* fix: change .mdx to .md

* fix: resolve suggestions

* fix: resolve suggestions
2023-07-17 07:04:10 -04:00
8ba26c18cf deprecate sharded_ddp training argument (#24825)
* deprecate fairscale's ShardedDDP

* fix code style

* roll back

* deprecate the `sharded_ddp` training argument

---------

Co-authored-by: jihuazhong <jihuazhong1@huawei.com>
2023-07-17 06:57:42 -04:00
5bb4430edc [🔗 Docs] Fixed Incorrect Migration Link (#24793)
* [🔗 Docs] Fixed Incorrect Migration Link

* Update README.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-14 17:47:50 -04:00
1023705440 Check models used for common tests are small (#24824)
* First models

* Conditional DETR

* Treat DETR models, skip others

* Skip LayoutLMv2 as well

* Fix last tests
2023-07-14 14:43:19 -04:00
a865b62e07 set correct model input names for gptsw3tokenizer (#24788) 2023-07-14 18:13:45 +01:00
50726f9ea7 Fixing double use_auth_token.pop (preventing private models from being visible). (#24812)
Fixing double `use_auth_token.pop` (preventing private models from
being visible).

Should fix: https://github.com/huggingface/transformers/issues/14334#issuecomment-1634527833

Repro: Have a private repo, with `vocab.json` (spread out files for the
tokenizer) and use `AutoTokenizer.from_pretrained(...,
use_auth_token="token")`.
2023-07-14 15:20:02 +02:00
91d7df58b6 Copy code when using local trust remote code (#24785)
* Copy code when using local trust remote code

* Remote upgrade strategy

* Revert "Remote upgrade strategy"

This reverts commit 4f0392f5d747bcbbcf7211ef9f9b555a86778297.
2023-07-13 16:57:20 -04:00
f32303d519 Run hub tests (#24807)
* Run hub tests

* [all-test] Run tests please!

* [all-test] Add vision dep for hub tests

* Fix tests
2023-07-13 15:25:45 -04:00
9d7a0871e2 Use _BaseAutoModelClass's register method (#24810)
Switching _BaseAutoModelClass from_pretrained and from_config to use the register classmethod that it defines rather than using the _LazyAutoMapping register method directly. This makes use of the additional consistency check within the base model's register.
2023-07-13 15:24:51 -04:00
0866705022 Update setup.py to be compatible with pipenv (#24789) 2023-07-13 12:56:43 -04:00
c0ca73dc98 Remove Falcon docs for the release until TGI is ready (#24808)
* Remove Falcon docs for the release until TGI is ready

* Update toctree
2023-07-13 17:27:58 +01:00
f9a711df4a Fix typo 'submosules' (#24809) 2023-07-13 16:56:53 +01:00
eebce4470c Add accelerate version in transformers-cli env (#24806)
* Add accelerate version in transformers-cli env

* Add accelerate config
2023-07-13 16:50:19 +01:00
34d9409427 Llama/GPTNeoX: add RoPE scaling (#24653)
* add rope_scaling

* tmp commit

* add gptneox

* add tests

* GPTNeoX can now handle long inputs, so the pipeline test was wrong

* Update src/transformers/models/open_llama/configuration_open_llama.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove ntk

* remove redundant validation

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-13 16:47:30 +01:00
9342c8fb82 Deprecate models (#24787)
* Deprecate some models

* Fix imports

* Fix inits too

* Remove tests

* Add deprecated banner to documentation

* Remove from init

* Fix auto classes

* Style

* Remote upgrade strategy 1

* Remove site package cache

* Revert this part

* Fix typo...

* Update utils

* Update docs/source/en/model_doc/bort.md

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Address review comments

* With all files saved

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-07-13 11:46:54 -04:00
717dadc6f3 Skip torchscript tests for MusicgenForConditionalGeneration (#24782)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-13 15:54:18 +02:00
e367a9770f Fix MobileVitV2 doctest checkpoint (#24805)
* Fix doctest checkpoint

* Add import torch for mobilevit
2023-07-13 14:47:59 +01:00
e538189931 Upgrade jax/jaxlib/flax pin versions (#24791)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-13 13:57:30 +02:00
6ba4d5de3a [DOC] Clarify relationshi load_best_model_at_end and save_total_limit (#24614)
* Update training_args.py

Clarify the relationship between `load_best_model_at_end` and `save_total_limit`.

* fix: faulty quotes

* make quality

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* DOCS: add explicit `True`

* DOCS: make style/quality

---------

Co-authored-by: Bram Vanroy <Bram.Vanroy@UGent.be>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-13 07:36:16 -04:00
21946a8cf4 [fix] Change the condition of ValueError in "convert_checkpoint_from_transformers_to_megatron" (#24769)
* fix: half inference error

norm_factor is still torch.float32 after using model.half

So I changed it to register_buffer so I can change it to torch.float16 after using model.half

* fix: Added a variable "persistent=False"

* run make style

* [fix] Change the condition of ValueError
convert_checkpoint_from_transformers_to_megatron

* [fix] error wording
layers -> attention heads
2023-07-13 11:57:56 +01:00
1f6f32c243 Removing unnecessary device=device in modeling_llama.py (#24696)
* Update modeling_llama.py

Removing unnecessary `device=device`

* fix in all occurrences of _make_causal_mask
2023-07-13 10:30:22 +01:00
906afa1d5c Revert "Unpin protobuf in docker file (for daily CI)" (#24800)
Revert "Unpin protobuf in docker file (for daily CI) (#24761)"

This reverts commit 45025d92f815675e483f32812caa28cce3a960e7.
2023-07-13 04:19:45 +02:00
f1732e1374 Rm duplicate pad_across_processes (#24780)
Rm duplicate
2023-07-12 11:47:21 -04:00
cfc8a05305 Remove WWT from README (#24672) 2023-07-12 10:58:08 -04:00
395e566a42 gpt-bigcode: avoid zero_ to support Core ML (#24755)
gpt-bigcode: avoid `zeros_` to support Core ML.

In-place `zeros_` is not supported by the Core ML conversion process.
This PR replaces it with `zeros_like` so conversion can proceed.

The change only affects a workaround for a PyTorch bug on the `cpu`
device.
2023-07-12 16:38:25 +02:00
0284285501 Fix pad across processes dim in trainer and not being able to set the timeout (#24775)
* dim, and rm copy

* Don't rm copy for now

* Oops

* pad index

* Should be a working test

* Tickle down ddp timeout

* Put fix back in now that testing locally is done

* Better comment specifying timeout

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-12 10:01:51 -04:00
4f85aaa6c9 Update default values of bos/eos token ids in CLIPTextConfig (#24773)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-12 13:50:26 +02:00
fc9e387dc0 Replacement of 20 asserts with exceptions (#24757)
* initial replacements of asserts with errors/exceptions

* replace assert with exception in generation, align and bart

* reset formatting change

* reset another formatting issue

* Apply suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* don't touch this file

* change to 'is not False'

* fix type

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-12 07:45:09 -04:00
430a04a75a Docs: Update logit processors __call__ docs (#24729)
* tmp commit

* __call__ docs

* kwargs documented; shorter input_ids doc

* nit

* Update src/transformers/generation/logits_process.py
2023-07-12 12:21:30 +01:00
6e2f069650 Add MobileVitV2 to doctests (#24771)
* Add to doctests

* Alphabetical order
2023-07-12 12:06:17 +01:00
7edc33ac7a Fix eval_accumulation_steps leading to incorrect metrics (#24756)
Fix eval steps
2023-07-12 05:49:12 -04:00
45025d92f8 Unpin protobuf in docker file (for daily CI) (#24761)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-11 23:55:55 +02:00
6aadb8d016 Allow existing configs to be registered (#24760) 2023-07-11 16:52:34 -04:00
4c0e251dc7 🐛 Handle empty gen_kwargs for seq2seq trainer prediction_step function (#24759)
* 🐛 Handle empty gen_kwargs for seq2seq trainer prediction_step fn

Signed-off-by: gkumbhat <kumbhat.gaurav@gmail.com>

* Update src/transformers/trainer_seq2seq.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Signed-off-by: gkumbhat <kumbhat.gaurav@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-11 16:48:06 -04:00
253d43d46d Fix lr scheduler not being reset on reruns (#24758)
* Try this

* Solved!

* Rm extranious

* Rm extranious

* self

* Args'

* Check for if we created the lr scheduler

* Move comment

* Clean
2023-07-11 16:37:04 -04:00
1be0145d6a Skip some slow tests for doctesting in PRs (Circle)CI (#24753)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-11 22:08:14 +02:00
bb13a92859 [InstructBLIP] Fix bos token of LLaMa checkpoints (#24492)
* Add fix

* Fix doctest
2023-07-11 20:43:01 +01:00
aac4c79968 Fix non-deterministic Megatron-LM checkpoint name (#24674)
Fix non-deterministic checkpoint name

`os.listdir`'s order is not deterministic, which is a problem when
querying the first listed file as in the code (`os.listdir(...)[0]`).

This can return a checkpoint name such as `distrib_optim.pt`, which does
not include desired information such as the saved arguments originally
given to Megatron-LM.
2023-07-11 19:55:04 +01:00
33aafc26ee Skip keys not in the state dict when finding mismatched weights (#24749) 2023-07-11 12:40:21 -04:00
3d8697261e add gradient checkpointing for distilbert (#24719)
* add gradient checkpointing for distilbert

* reformatted
2023-07-11 11:29:47 -04:00
2642d8d04b Docs: add kwargs type to fix formatting (#24733) 2023-07-11 16:21:29 +01:00
5739726fcc fix: Text splitting in the BasicTokenizer (#22280)
* fix: Apostraphe splitting in the BasicTokenizer for CLIPTokenizer

* account for apostrophe at start of new word

* remove _run_split_on_punc, use re.findall instead

* remove debugging, make style and quality

* use pattern and punc splitting, repo-consistency will fail

* remove commented out debugging

* adds bool args to BasicTokenizer, remove pattern

* do_split_on_punc default True

* clean stray comments and line breaks

* rebase, repo-consistency

* update to just do punctuation split

* add unicode normalizing back

* remove redundant line
2023-07-11 11:07:58 -04:00
2489e380e4 Fix typo in LocalAgent (#24736) 2023-07-11 09:04:50 -04:00
8a5e8a9c2a Add ViViT (#22518)
* Add model

* Add ability to get classification head weights

* Add docs

* Add imports to __init__.py

* Run style

* Fix imports and add mdx doc

* Run style

* Fix copyright

* Fix config docstring

* Remove imports of ViViTLayer and load_tf_weights_in_vivit

* Remove FeatureExtractor and replace with ImageProcessor everywhere

* Remove ViViTForPreTraining from vivit.mdx

* Change ViViT -> Vivit everywhere

* Add model_doc to _toctree.yml

* Replace tuples with lists in arguments of VivitConfig

* Rename patch_size to tubelet_size in TubeletEmbeddings

* Fix checkpoint names

* Add tests

* Remove unused num_frames

* Fix imports for VivitImageProcessor

* Minor fixes

* Decrease number of frames in VivitModelTester from 32 to 16

* Decrease number of frames in VivitModelTester from 16 to 8

* Add initialization for pos embeddings

* Rename Vivit -> ViViT in some places

* Fix docstring and formatting

* Rename TubeletEmbeddings -> VivitTubeletEmbeddings

* Remove load_tf_weights_in_vivit

* Change checkpoint name

* Remove Vivit _TOKENIZER_FOR_DOC

* Fix

* Fix VivitTubeletEmbeddings and pass config object as parameter

* Use image_size and num_frames instead of video_size

* Change conversion script and fix differences with the orig implementation

* Fix docstrings

* Add attention head pruning

* Run style and fixup

* Fix tests

* Add ViViT to video_classification.mdx

* Save processor in conversion script

* Fix

* Add image processor test

* Run fixup and style

* Run fix-copies

* Update tests/models/vivit/test_modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vivit/test_modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Use PyAV instead of decord

* Add unittest.skip

* Run style

* Remove unneeded test

* Update docs/source/en/model_doc/vivit.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/configuration_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add model

* Add docs

* Run style

* Fix imports and add mdx doc

* Remove FeatureExtractor and replace with ImageProcessor everywhere

* Change ViViT -> Vivit everywhere

* Rename Vivit -> ViViT in some places

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Run make style

* Remove inputs save

* Fix image processor

* Fix

* Run `make style`

* Decrease parameters of VivitModelTester

* Decrease tubelet size

* Rename vivit.mdx

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix default values in image_processing_vivit.py

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-11 14:04:04 +01:00
b15343de6f [Patch-t5-tokenizer] Patches the changes on T5 to make sure previous behaviour is still valide for beginning of words (#24622)
* patch `_tokenize` function

* more tests

* properly fix

* fixup

* Update src/transformers/models/t5/tokenization_t5.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix without ifs

* update

* protect import

* add python processing

* is first needed

* add doc and update with lefacy

* updaate

* fix T5 SPM converter

* styling

* fix T5 warning

* add is_seqio_available

* remove is_first

* revert some changes

* more tests and update

* update llama test batterie

* fixup

* refactor T5 spm common tests

* draft the llama tests

* update

* uopdate test

* nits

* refine

* name nit

* fix t5 tests

* fix T5

* update

* revert convert slow to fast changes that fail lots of tests

* legacy support

* fixup

* nits is first not defined

* don't use legacy behaviour for switch transformers

* style

* My attempt to check.

* nits

* fixes

* update

* fixup

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates

* fixup

* add legacy warning

* fixup

* warning_once nit

* update t5 documentation test

* update llama tok documentation

* add space to warning

* nits

* nit

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* last nits

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2023-07-11 15:02:18 +02:00
b3ab3fac1d Falcon port (#24523)
* Initial commit

* Update src/transformers/models/falcon/configuration_falcon.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/falcon/configuration_falcon.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Cleanup config docstring

* Update src/transformers/models/falcon/configuration_falcon.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Convert to relative imports

* Remove torch < 1.8 warning

* Restructure cos_sin header

* qkv -> query, key, value

* Refactor attention calculation

* Add a couple of config variables to account for the different checkpoints

* Successful merging of the code paths!

* Fix misplaced line in the non-parallel attention path

* Update config and tests

* Add a pad_token_id when testing

* Support output_attentions when alibi is None

* make fixup

* Skip KV cache shape test

* No more _keys_to_ignore_on_load_missing

* Simplify self attention a bit

* Simplify self attention a bit

* make fixup

* stash commit

* Some more attention mask updates

* Should pass all tests except assisted generation!

* Add big model generation test

* make fixup

* Add temporary workaround for test

* Test overrides for assisted generation

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/models/falcon/test_modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Test overrides for assisted generation

* Add generation demo

* Update copyright

* Make the docstring model actually small

* Add module-level docstring

* Remove all assertions

* Add copied from bloom

* Reformat the QKV layer

* Add copied from bloom

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove unused line and reformat

* No single letter variables

* Cleanup return names

* Add copied from line

* Remove the deprecated arguments blocks

* Change the embeddings test to an alibi on/off test

* Remove position_ids from FalconForQA

* Remove old check for token type IDs

* Fix the alibi path when multi_query is False

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/falcon/test_modeling_falcon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update config naming

* Fix typo for new_decoder_architecture

* Add some comments

* Fix docstring

* Fix docstring

* Create range in the right dtype from the start

* Review comment cleanup

* n_head_kv -> num_kv_heads

* self.alibi -> self.use_alibi

* self.num_kv -> self.num_kv_heads

* Reorder config args

* Made alibi arguments Optional

* Add all model docstrings

* Add extra checkpoints

* Add author info for Falcon

* Stop removing token_type_ids because our checkpoints shouldn't return it anymore

* Add one hopeful comment for the future

* Fix typo

* Update tests, fix cache issue for generation

* Use -1e9 instead of -inf to avoid float overflow

* Recompute the rotary embeddings much less often

* Re-enable disabled tests

* One final fix to attention mask calculation, and update tests

* Cleanup targeting falcon-40b equivalency

* Post-rebase docs update

* Update docstrings, especially in the config

* More descriptive variable names, and comments where we can't rename them

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-11 13:36:31 +01:00
35eac0df75 add link to accelerate doc (#24601) 2023-07-10 17:49:30 -04:00
a074a5d34d Docs: change some input_ids doc reference from BertTokenizer to AutoTokenizer (#24730) 2023-07-10 17:57:26 +01:00
2541108564 [T5] Adding model_parallel = False to T5ForQuestionAnswering and MT5ForQuestionAnswering (#24684)
Adding model_parallel = False
2023-07-10 13:50:07 +01:00
30ed3adf47 Add Multi Resolution Analysis (MRA) (New PR) (#24513)
* Add all files

* Update masked_language_modeling.md

* fix mlm models

* fix conflicts

* fix conflicts

* fix copies

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Reduce seq_len and hidden_size in ModelTester

* remove output_attentions

* fix conflicts

* remove copied from statements

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-10 10:50:43 +01:00
abaca9f943 Enable conversational pipeline for GPTSw3Tokenizer (#24648)
* feat: Add `_build_conversation_input_ids` to GPT-SW3 tokenizer, adjust line length

* feat: Merge in PR https://github.com/huggingface/transformers/pull/24504.

This allows the GPT-SW3 models (and other GPT-2 based models) to be 4-bit quantised
using `load_in_4bit` with `bitsandbytes`.

* fix: F-string

* fix: F-string

* fix: Remove EOS token from all responses

* fix: Remove redundant newlines

* feat: Add `load_in_4bit` to `Pipeline`

* fix: Separate turns with `\n<s>\n` rather than `<s>`

* fix: Add missing newline in prompt

* tests: Add unit tests for the new `_build_conversation_input_ids` method

* style: Automatic style correction

* tests: Compare encodings rather than decodings

* fix: Remove `load_in_4bit` from pipeline arguments

* docs: Add description and references of the GPT-SW3 chat format

* style: Line breaks

* Apply suggestions from code review

Fix Conversation type hints

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix: Import TYPE_CHECKING

* style: Run automatic fixes

* tests: Remove `_build_conversation_input_ids` unit tests

* tests: Remove import of `Conversation` in GPT-SW3 unit test

* style: Revert formatting

* style: Move TYPE_CHECKING line after all imports

* style: Imports order

* fix: Change prompt to ensure that `sp_model.encode` and `encode` yields same result

* docs: Add TODO comment related to the addition of whitespace during decoding

* style: Automatic style checks

* fix: Remove final whitespace in prompt, as prefix whitespace is used by sentencepiece

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-07-07 19:52:21 +01:00
f614b6e393 Whisper: fix prompted max length (#24666) 2023-07-07 18:11:38 +01:00
4957294270 Fix flaky test_for_warning_if_padding_and_no_attention_mask (#24706)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-07 11:55:21 +02:00
fb78769b9c [MT5] Fix CONFIG_MAPPING issue leading it to load umt5 class (#24678)
* update

* add umt5 to auto tokenizer mapping

* nits

* fixup

* fix failing torch test
2023-07-07 11:33:54 +09:00
fded6f4186 Fix integration with Accelerate and failing test (#24691)
Fix integration
2023-07-06 14:12:16 -04:00
bbf3090848 Avoid import sentencepiece_model_pb2 in utils.__init__.py (#24689)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-06 16:30:23 +02:00
66a378429d DeepSpeed/FSDP ckpt saving utils fixes and FSDP training args fixes (#24591)
* update ds and fsdp ckpt logic

* refactoring

* fix 🐛

* resolve comment

* fix issue with overriding of the fsdp config set by accelerate
2023-07-06 15:03:25 +05:30
392740452e Add dropouts to GPT-NeoX (#24680)
* add attention dropout, post attention dropout, post mlp dropout to gpt-neox

* fix typo

* add documentation

* fix too long line

* ran Checking/fixing src/transformers/models/gpt_neox/configuration_gpt_neox.py src/transformers/models/gpt_neox/modeling_gpt_neox.py
python utils/custom_init_isort.py
python utils/sort_auto_mappings.py
doc-builder style src/transformers docs/source --max_len 119 --path_to_docs docs/source
python utils/check_doc_toc.py --fix_and_overwrite
running deps_table_update
updating src/transformers/dependency_versions_table.py
python utils/check_copies.py
python utils/check_table.py
python utils/check_dummies.py
python utils/check_repo.py
Checking all models are included.
Checking all models are public.
Checking all models are properly tested.
Checking all objects are properly documented.
Checking all models are in at least one auto class.
Checking all names in auto name mappings are defined.
Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.
Checking all auto mappings could be imported.
Checking all objects are equally (across frameworks) in the main __init__.
python utils/check_inits.py
python utils/check_config_docstrings.py
python utils/check_config_attributes.py
python utils/check_doctest_list.py
python utils/update_metadata.py --check-only
python utils/check_task_guides.py
2023-07-06 10:26:36 +01:00
fb3b22c3b9 LlamaTokenizer should be picklable (#24681)
* LlamaTokenizer should be picklable

* make fixup
2023-07-06 10:21:27 +01:00
9a5d468ba0 Add Nucleotide Transformer notebooks and restructure notebook list (#24669)
* Add Nucleotide Transformer notebooks and restructure lists

* Add missing linebreak!
2023-07-05 18:28:47 +01:00
3df3b9d4bf Fix model referenced and results in documentation. Model mentioned was inaccessible (#24609) 2023-07-05 13:25:36 -03:00
050ef14516 Unpin huggingface_hub (#24667)
* fix

* fix

* fix

* [test all] commit

* [test all] commit

* [test all] commit

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-05 16:49:10 +02:00
bd9dfc23b9 Add is_torch_mps_available function to utils (#24660)
* Add mps function utils

* black formating

* format fix

* Added MPS functionality to transformers

* format fix
2023-07-05 16:02:20 +02:00
ee339bad01 Fix VisionTextDualEncoderIntegrationTest (#24661)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-05 13:44:30 +02:00
d211a84aca Fix EncodecModelTest::test_multi_gpu_data_parallel_forward (#24663)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-05 11:37:46 +02:00
469f4d0c29 Make warning disappear for remote code in pipelines (#24603)
* Make warning disappear for remote code in pipelines

* Make sure it works twice in a row

* No need for that
2023-07-04 19:03:14 -04:00
b19c7b5ccf Add finetuned_from property in the autogenerated model card (#24528)
* Add finetuned_from tag in the autogenerated model card

* Update name
2023-07-04 17:58:31 -04:00
ea9caf7aba Update warning messages reffering to post_process_object_detection (#24649)
* including the threshold alert in warning messages.

* Updating doc owlvit.md including post_process_object_detection function with threshold.

* fix
2023-07-04 16:47:57 -03:00
f3e96235a3 documentation_tests.txt - sort filenames alphabetically (#24647)
* Sort filenames alphabetically

* Add check for order
2023-07-04 17:06:05 +01:00
a3b402ff9a llama fp16 torch.max bug fix (#24561)
* open llama fp16 bug fix

* bug fix

* bug fixed

* make style

* Update modeling_llama.py

* apply formatting

* Address amy's comment

---------

Co-authored-by: Prathik Rao <prathikrao@microsoft.com@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
Co-authored-by: root <root@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
2023-07-04 16:05:12 +01:00
4e94566018 Fix audio feature extractor deps (#24636)
* Fix audio feature extractor deps

* use audio utils window over torch window
2023-07-04 16:03:27 +01:00
cd4584e3c8 precompiled_charsmap checking before adding to the normalizers' list for XLNetTokenizerFast conversion. (#24618)
* precompiled_charsmap checking before adding to the normalizers' list.

* precompiled_charsmap checking for all Sentencepiece tokenizer models

* precompiled_charsmap checking for SPM tokenizer models - correct formatting
2023-07-04 02:51:42 +02:00
f4e4b4d0e2 Generate: force cache with inputs_embeds forwarding (#24639) 2023-07-03 18:18:49 +01:00
9934bb1f42 Generate: multi-device support for contrastive search (#24635) 2023-07-03 16:08:20 +01:00
4b26a61631 Fix loading dataset docs link in run_translation.py example (#24594)
* fix loading dataset link

* Update examples/tensorflow/translation/run_translation.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update examples/tensorflow/translation/run_translation.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-03 15:21:21 +01:00
6eedfa6dd1 Pin Pillow for now (#24633)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-03 12:24:46 +02:00
fc7ce2ebc5 [Time-Series] Added blog-post to tips (#24482)
* [Time-Series] Added blog-post to tips

* added Resources to time series models docs

* removed "with Bert"
2023-07-03 10:07:25 +02:00
e16191a8ac 🌐 [i18n-KO] Translated perplexity.mdx to Korean (#23850)
* docs: ko: `perplexity.mdx`

* translate comment

* reference english file

* change extension

* update toctree
2023-07-03 08:50:27 +02:00
799df10aef [Umt5] Add google's umt5 to transformers (#24477)
* add tokenization template

* update conversion script

* update modeling code

* update

* update convert checkpoint

* update modeling

* revert changes on convert script

* new conversion script for new format

* correct position bias

* cleaning a bit

* Credit co authors

Co-authored-by: agemagician
<ahmed.elnaggar@tum.de>

Co-authored-by: stefan-it
<>

* styling

* Add docq

* fix copies

* add co author

* Other Author

* Merge branch 'main' of https://github.com/huggingface/transformers into add-umt5

* add testing

* nit

* Update docs/source/en/model_doc/umt5.mdx

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* fix t5

* actual fix?

* revert wrong changes

* remove

* update test

* more fixes

* revert some changes

* add SPIECE_UNDERLINE

* add a commone xample

* upfate

* fix copies

* revert changes on t5 conversion script

* revert bytefallback changes since there was no addition yet

* fixup

* fixup

* ingore umt5 cutom testing folder

* fix readmes

* revertT5 changes

* same outputs

* fixup

* update example

* Apply suggestions from code review

* style

* draft addition of all new files

* current update

* fix attention and stuff

* finish refactoring

* auto config

* fixup

* more nits

* add umt5 to init

* use md format

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* revert changes on mt5

* revert mt4 changes

* update test

* more fixes

* add to mapping

* fix-copies

* fix copies

* foix retain grad

* fix some tests

* nits

* done

* Update src/transformers/models/umt5/modeling_umt5.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/model_doc/umt5.md

* Update src/transformers/models/umt5/__init__.py

* Update docs/source/en/model_doc/umt5.md

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* Update src/transformers/models/umt5/modeling_umt5.py

* update conversion script + use google checkpoints

* nits

* update test and modelling

* stash slow convert

* update fixupd

* don't change slow

---------

Co-authored-by: stefan-it <>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-03 07:38:21 +02:00
66ded238cd fix pydantic install command 2023-07-01 09:29:21 +02:00
d51aa48a76 Limit Pydantic to V1 in dependencies (#24596)
* Limit Pydantic to V1 in dependencies

Pydantic is about to release V2 release which will break a lot of things. This change prevents `transformers` to be used with Pydantic V2 to avoid breaking things.

* more

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-01 00:04:03 +02:00
299aafe55f Use protobuf 4 (#24599)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-30 20:56:55 +02:00
49e812d12b [several models] improve readability (#24585)
* [modeling_clip.py] improve readability

* apply to other models

* fix
2023-06-30 11:27:27 -07:00
134caef31a Speed up TF tests by reducing hidden layer counts (#24595)
* hidden layers, huh, what are they good for (absolutely nothing)

* Some tests break with 1 hidden layer, use 2

* Use 1 hidden layer in a few slow models

* Use num_hidden_layers=2 everywhere

* Slightly higher tol for groupvit

* Slightly higher tol for groupvit
2023-06-30 16:30:33 +01:00
3441ad7d43 Make (TF) CI faster (test only a subset of model classes) (#24592)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-30 16:54:54 +02:00
78a2b19fc8 Show a warning for missing attention masks when pad_token_id is not None (#24510)
* Adding warning messages to BERT for missing attention masks

These warning messages when there are pad tokens within the input ids and
no attention masks are given. The warning message should only show up once.

* Adding warning messages to BERT for missing attention masks

These warning messages are shown when the pad_token_id is not None
and no attention masks are given. The warning message should only
show up once.

* Ran fix copies to copy over the changes to some of the other models

* Add logger.warning_once.cache_clear() to the test

* Shows warning when there are no attention masks and input_ids start/end with pad tokens

* Using warning_once() instead and fix indexing in input_ids check

---------

Co-authored-by: JB Lau <hckyn@voyager2.local>
2023-06-30 08:19:39 -04:00
fd8dcd0953 Udate link to RunHouse hardware setup documentation. (#24590)
* Udate link to RunHouse hardware setup documentation.

* Fix link to hardware setup in other location as well
2023-06-30 12:11:58 +01:00
b52a03cd3b ⚠️⚠️[T5Tokenize] Fix T5 family tokenizers⚠️⚠️ (#24565)
* don't add space before single letter chars that don't have a merge

* fix the fix

* fixup

* add a test

* more testing

* fixup

* hack to make sure fast is also fixed

* update switch transformers test

* revert convert slow

* Update src/transformers/models/t5/tokenization_t5.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add typechecking

* quality

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-30 07:00:43 +02:00
9e28750287 fix peft ckpts not being pushed to hub (#24578)
* fix push to hub for peft ckpts

* oops
2023-06-30 00:07:44 +05:30
232c898f9f Fix annotations (#24582)
* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations
2023-06-29 14:17:35 -04:00
c817bc44e2 Check all objects are equally in the main __init__ file (#24573)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-29 17:49:59 +02:00
8c4471d1fc Fix ESM models buffers (#24576)
* Fix ESM models buffers

* Remove modifs

* Tied weights keys are needed silly

* quality
2023-06-29 10:55:21 -04:00
b324557aac Removal of deprecated vision methods and specify deprecation versions (#24570)
* Removal of deprecated methods and specify versions

* Fix tests
2023-06-29 15:09:51 +01:00
77db28dc52 Update some torchscript tests after #24505 (#24566)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-29 16:05:24 +02:00
1c1c90756d Add Musicgen (#24109)
* Add Audiocraft

* add cross attention

* style

* add for lm

* convert and verify

* introduce t5

* split configs

* load t5 + lm

* clean conversion

* copy from t5

* style

* start pattern provider

* make generation work

* style

* fix pos embs

* propagate shape changes

* propagate shape changes

* style

* delay pattern: pad tokens at end

* audiocraft -> musicgen

* fix inits

* add mdx

* style

* fix pad token in processor

* override generate and add todos

* add init to test

* undo pattern delay mask after gen

* remove cfg logits processor

* remove cfg logits processor

* remove logits processor in favour of mask

* clean pos embs

* make fix copies

* update readmes

* clean pos emb

* refactor encoder/decoder

* make fix copies

* update conversion

* fix config imports

* update config docs

* make style

* send pattern mask to device

* pattern mask with delay

* recover prompted audio tokens

* fix docstrings

* laydown test file

* pattern edge case

* remove t5 ref

* add processing class

* config refactor

* better pattern comment

* check if mask is not present

* check if mask is not present

* refactor to auto class

* remove encoder configs

* fix processor

* processor import

* start updating conversion

* start updating tests

* make style

* convert t5, encodec, lm

* convert as composite

* also convert processor

* run generate

* classifier free gen

* comments and clean up

* make style

* docs for logit proc

* docstring for uncond gen

* start lm tests

* work tests

* let the lm generate

* refactor: reshape inside forward

* undo greedy loop changes

* from_enc_dec -> from_sub_model

* fix input id shapes in docstrings

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* undo generate changes

* from sub model config

* Update src/transformers/models/musicgen/modeling_musicgen.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make generate work again

* generate uncond -> get uncond inputs

* remove prefix allowed tokens fn

* better error message

* logit proc checks

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* make decoder only tests work

* composite fast tests

* make style

* uncond generation

* feat extr padding

* make audio prompt work

* fix inputs docstrings

* unconditional inputs: dict -> model output

* clean up tests

* more clean up tests

* make style

* t5 encoder -> auto text encoder

* remove comments

* deal with frames

* fix auto text

* slow tests

* nice mdx

* remove can generate

* todo - hub id

* convert m/l

* make fix copies

* only import generation with torch

* ignore decoder from tests

* don't wrap uncond inputs

* make style

* cleaner uncond inputs

* add example to musicgen forward

* fix docs

* ignore MusicGen Model/ForConditionalGeneration in auto mapping

* add doc section to toctree

* add to doc tests

* add processor tests

* fix push to hub in conversion

* tips for decoder only loading

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix conversion for s / m / l checkpoints

* import stopping criteria from module

* remove from pipeline tests

* fix uncond docstring

* decode audio method

* fix docs

* org: sanchit-gandhi -> facebook

* fix max pos embeddings

* remove auto doc (not compatible with shapes)

* bump max pos emb

* make style

* fix doc

* fix config doc

* fix config doc

* ignore musicgen config from docstring

* make style

* fix config

* fix config for doctest

* consistent from_sub_models

* don't automap decoder

* fix mdx save audio file

* fix mdx save audio file

* processor batch decode for audio

* remove keys to ignore

* update doc md

* update generation config

* allow changes for default generation config

* update tests

* make style

* fix docstring for uncond

* fix processor test

* fix processor test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-29 14:48:59 +01:00
2dc5e1a120 Revert "Fix typing annotations for FSDP and DeepSpeed in TrainingArguments" (#24574)
Revert "Fix typing annotations for FSDP and DeepSpeed in TrainingArguments (#24549)"

This reverts commit c5e29d4381d4b9739e6cb427adbca87fbb43a3ad.
2023-06-29 08:14:43 -04:00
4f1b31c2ee Docs: 4 bit doc corrections (#24572)
4 bit doc corrections
2023-06-29 13:13:20 +01:00
1fd52e6e60 Fix annotations (#24571)
* fix annotations

* fix copies
2023-06-29 08:05:19 -04:00
63cc30e71b Fix Typo (#24559) 2023-06-29 08:04:07 -04:00
ae454f41d4 Update old existing feature extractor references (#24552)
* Update old existing feature extractor references

* Typo

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* Address comments from review - update 'feature extractor'
Co-authored by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-06-29 10:17:36 +01:00
10c2ac7bc6 Fixed OwlViTModel inplace operations (#24529)
* fixed OwlViTModel inplace operations

* fixed operands order in owlvit
2023-06-29 10:17:26 +02:00
66954ea25e Update masked_language_modeling.md (#24560)
See https://github.com/huggingface/transformers/issues/24546
2023-06-28 17:54:20 -04:00
fd6735102a Make PT/Flax tests could be run on GPU (#24557)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 20:11:01 +02:00
faae8d8255 Update PT/Flax weight conversion after #24030 (#24556)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 19:44:31 +02:00
33b5ef5cdf [InstructBlip] Add instruct blip int8 test (#24555)
* add 8bit instructblip test

* update tests
2023-06-28 19:06:30 +02:00
c70c88a268 Fix processor __init__ bug if image processor undefined (#24554)
Make sure feature_extractor is defined in all cases
2023-06-28 17:17:27 +01:00
903b97d8df [gpt2-int8] Add gpt2-xl int8 test (#24543)
add gpt2-xl test
2023-06-28 18:02:13 +02:00
b0651655be Update EncodecIntegrationTest (#24553)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 18:01:41 +02:00
6c57ce1558 Update PT/TF weight conversion after #24030 (#24547)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 16:36:57 +02:00
c5e29d4381 Fix typing annotations for FSDP and DeepSpeed in TrainingArguments (#24549)
* Fix typing annotations for FSDP and DeepSpeed in TrainingArguments

* Change dict to Dict
2023-06-28 10:36:17 -04:00
daccde143d Allow for warn_only selection in enable_full_determinism (#24496)
* Warn only in enable full determinism

* Add option in the function definition
2023-06-28 08:54:36 -04:00
11cb6e0f7e Unpin DeepSpeed and require DS >= 0.9.3 (#24541)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 14:01:22 +02:00
e84bf1f734 ⚠️ Time to say goodbye to py37 (#24091)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 07:22:39 +02:00
12240925cf Add bitsandbytes support for gpt2 models (#24504)
* Add bitsandbytes support for gpt2 models

* Guard Conv1D import to pass tensorflow test

* Appease ruff linter

* Fix 4bit test and remove int8 test boilerplate

* Update tests/bnb/test_mixed_int8.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-06-28 05:55:32 +02:00
89b6ee49fd Finishing tidying keys to ignore on load (#24535) 2023-06-27 21:35:15 -04:00
04f46a22d8 Fix Typo (#24530)
* Fix Typo

* Fix all copies
2023-06-27 15:38:14 -04:00
462f77cbce Allow backbones not in backbones_supported - Maskformer Mask2Former (#24532)
Allow backbones not in backbones_supported
2023-06-27 20:34:36 +01:00
8e5d1619b3 Clean load keys (#24505)
* Preliminary work on some models

* Fix test load missing and make sure nonpersistent buffers are tested

* Always ignore nonpersistent buffers if in state_dict

* Treat models

* More models

* Treat remaining models

* Fix quality

* Fix tests

* Remove draft

* This test is not needed anymore

* Fix copies

* Fix last test

* Newly added models

* Fix last tests

* Address review comments
2023-06-27 14:45:40 -04:00
53194991e9 [Mask2Former] Remove SwinConfig (#24259)
Remove SwinConfig
2023-06-27 13:33:55 -04:00
fb6a62762f Fix LR scheduler based on bs from auto bs finder (#24521)
* One solution

* args -> self
2023-06-27 13:28:26 -04:00
38db04ece0 Find module name in an OS-agnostic fashion (#24526)
* Find module name in an OS-agnostic fashion

* address review comment
2023-06-27 13:21:19 -04:00
7d150d68ff Update huggingface_hub commit sha (#24527)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-27 17:41:55 +02:00
4e8929dcbb set model to training mode before accelerate.prepare (#24520) 2023-06-27 10:09:38 -04:00
06910f5a76 [T5] Add T5ForQuestionAnswering and MT5ForQuestionAnswering (#24481)
* Adding T5ForQuestionAnswering

* Changed weight initialization that results in better initial loss when fine-tuning

* Update to class variables

* Running make fixup

* Running make fix-copies

* Remove model_parallel

* Adding MT5ForQuestionAnswering

* Adding docs

* Fix wrong doc

* Update src/transformers/models/mt5/modeling_mt5.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/t5/modeling_t5.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* File formatting

* Undoing change

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-06-27 10:07:06 -04:00
bcf02ec701 Update hyperparameter_search.py (#24515)
* Update hyperparameter_search.py

* resolve comments
2023-06-27 18:42:15 +05:30
6fe8d198e3 use accelerate autocast in jit eval path, since mix precision logic is… (#24460)
use accelerate autocast in jit eval path, since mix precision logic is in accelerator currently

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-06-27 08:33:21 -04:00
0863436b6c 🌐 [i18n-KO] Translated tflite.mdx to Korean (#24435)
* docs: ko: tflite.mdx

* feat: nmt and manual edit `tflite.mdx`

* revised: resolve suggestions tflite.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* revised: resolve suggestions and new line tflite.mdx

Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-06-27 08:18:42 -04:00
4abd3ee479 Fix poor past ci (#24485)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-27 14:14:17 +02:00
239ace152b Fix TypeError: Object of type int64 is not JSON serializable (#24340)
* Fix TypeError: Object of type int64 is not JSON serializable

* Convert numpy.float64 and numpy.int64 to float and int for json serialization

* Black reformatted examples/pytorch/token-classification/run_ner_no_trainer.py

* * make style
2023-06-27 12:15:49 +01:00
ac19871ce2 Generate: min_tokens_to_keep has to be >= 1 (#24453) 2023-06-27 11:48:23 +01:00
5f3efdf762 Generate: group_beam_search requires diversity_penalty>0.0 (#24456)
* add exception

* update docs
2023-06-27 10:46:39 +01:00
43479ef98f 🚨🚨 Fix group beam search (#24407)
* group_beam_search now works correctly

* add argument descriptions

* add a comment

* format

* make style

* change comment

* Update src/transformers/generation/beam_search.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

---------

Co-authored-by: shogo.fujita <shogo.fujita@legalontech.jp>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-06-27 10:43:10 +01:00
68c92981ff Fix link in utils (#24501)
* fix link

* new link

---------

Co-authored-by: Gema <gema@mbp-de-gema-2.lan>
2023-06-26 14:26:09 -04:00
7b4e3b5b40 Compute dropout_probability only in training mode (SpeechT5) (#24498)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-26 19:43:06 +02:00
c9fd49853f Fix 'local_rank' AttiributeError in Trainer class (#24297)
fix attribute error
2023-06-26 13:38:29 -04:00
850cf4af0c Compute dropout_probability only in training mode (#24486)
* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-26 18:36:47 +02:00
9895670e95 [InstructBlip] Add accelerate support for instructblip (#24488)
* add accelerate support for instructblip

* add `_keep_in_fp32_modules`

* dynamically adapt `_no_split_modules`

* better fix

* same logic for `_keep_in_fp32_modules`
2023-06-26 18:36:27 +02:00
5757923888 Add support for for loops in python interpreter (#24429)
Add support for for loops
2023-06-26 09:58:14 -04:00
c2aa5e17e4 Update token_classification.md (#24484)
Add link to pytorch CrossEntropyLoss so that one understand why '-100' is ignore by the loss function.
2023-06-26 08:42:38 -04:00
3ca022238b Update InstructBlipModelIntegrationTest (#24490)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-26 14:37:12 +02:00
195a9e5bdb deepspeed z1/z2 state dict fix (#24489)
* deepspeed z2/z1 state_dict bloating fix

* update

* version check
2023-06-26 17:45:37 +05:30
c8aff1d3e6 when resume from peft checkpoint, the model should be trainable (#24463) 2023-06-26 08:07:27 -04:00
914289ac4b [pipeline] Fix str device issue (#24396)
* fix str device issue

* fixup

* adapt from suggestions

* forward contrib credits from suggestions

* better fix

* added backward compatibility for older PT versions

* final fixes

* oops

* Attempting something with less branching.

---------

Co-authored-by: amyeroberts <amyeroberts@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2023-06-26 13:58:36 +02:00
892399c5ff Update AlbertModel type annotation (#24450)
Update type annotation
2023-06-26 10:59:42 +01:00
be2d9f2e47 Fix tpu_metrics_debug (#24452)
fix for tpu metrics debugs string
2023-06-26 10:59:07 +01:00
3b84d86b57 add missing alignment_heads to Whisper integration test (#24487)
add missing alignment heads
2023-06-26 11:50:10 +02:00
868363abb9 Add InstructBLIP (#23460)
* Squash 88 commits

* Use markdown

* Remove mdx files due to bad rebase

* Fix modeling files due to bad rebase

* Fix style

* Update comment

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-26 11:23:57 +02:00
8e164c5400 Improved keras imports (#24448)
* An end to accursed version-specific imports

* No more K.is_keras_tensor() either

* Update dependency tables

* Use a cleaner call context function getter

* Add a cap to <2.14

* Add cap to examples requirements too
2023-06-23 19:09:34 +01:00
1e9da2b0a6 Update JukeboxConfig.from_pretrained (#24443)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-23 15:00:52 +02:00
8767958fc1 Allow dict input for audio classification pipeline (#23445)
* Allow dict input for audio classification pipeline

* make style

* Empty commit to trigger CI

* Empty commit to trigger CI

* check for torchaudio

* add pip instructions

Co-authored-by: Sylvain <sylvain.gugger@gmail.com>

* Update src/transformers/pipelines/audio_classification.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* asr -> audio class

* asr -> audio class

---------

Co-authored-by: Sylvain <sylvain.gugger@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2023-06-23 13:50:37 +01:00
a6f37f8879 fixes issue when saving fsdp via accelerate's FSDP plugin (#24446) 2023-06-23 18:03:57 +05:30
2898fd3968 Fix some TFWhisperModelIntegrationTests (#24428)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-23 14:27:49 +02:00
5e9f6752ee Fix typo (#24440) 2023-06-23 08:21:08 -04:00
a28325e25e Replace python random with torch.rand to enable dynamo.export (#24434)
* Replace python random with torch.rand to enable dynamo.export

* revert changes to flax model code

* Remove unused random import

* Fix torch template

* Move torch.manual_seed(0) to right location
2023-06-23 08:17:21 -04:00
c036c814f4 fix the grad_acc issue at epoch boundaries (#24415)
* fix the grad_acc issue at epoch boundaries

Co-Authored-By: Zach Mueller <7831895+muellerzr@users.noreply.github.com>

* add contributors.

Co-authored-by: sumpster

* address comments

---------

Co-authored-by: Zach Mueller <7831895+muellerzr@users.noreply.github.com>
2023-06-23 17:43:07 +05:30
468aed39af [Trainer] Fix .to call on 4bit models (#24444)
* fix `.to` call on 4bit models

* better check
2023-06-23 13:35:04 +02:00
ea91c2adca [AutoModel] Add AutoModelForTextEncoding (#24305)
* [AutoModel] Add AutoModelForTextEncoding

* add mt5

* add other models

* add to docs

* fix tf imports

* add tf to docs / init

* up

* fix inits

* add to dummy objects
2023-06-23 10:01:37 +01:00
feb83521ec [llama] Fix comments in weights converter (#24436)
Explain the reason to clone tensor
2023-06-22 20:38:53 -04:00
2c977e4a90 Save site-packages as cache in CircleCI job (#24424)
* fix

* fix

* Upgrade complete!

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-22 23:16:35 +02:00
2834c17ad2 Clarify batch size displayed when using DataParallel (#24430) 2023-06-22 14:46:20 -04:00
b6295b26c5 Refactor hyperparameter search backends (#24384)
* Refactor hyperparameter search backends

* Simpler refactoring without abstract base class

* black

* review comments:
specify name in class
use methods instead of callable class attributes
name constant better

* review comments: safer bool checking, log multiple available backends

* test ALL_HYPERPARAMETER_SEARCH_BACKENDS vs HPSearchBackend in unit test, not module. format with black.

* copyright
2023-06-22 14:28:25 -04:00
a1c4b63076 TF CI fix for Segformer (#24426)
Fix segformer so compilation can figure out the channel dim
2023-06-22 15:49:13 +01:00
754f61ca05 Update RayTune doc link for Hyperparameter tuning (#24422)
Update outdated hyperlink hpo_train.md 

Link to RayTune search space API docs was outdated - have provided correct new link for docs.

Co-authored-by: Joshua Samuel <66880119+Joshsamuel101@users.noreply.github.com>
2023-06-22 10:38:01 -04:00
8f2ef52fb6 Fix save_cache version in config.yml (#24419)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-22 16:18:16 +02:00
3ce3385c47 Revert "Fix gradient checkpointing + fp16 autocast for most models" (#24420)
Revert "Fix gradient checkpointing + fp16 autocast for most models (#24247)"

This reverts commit 285a48011da3145ae77c5b22bcfbe77d367e5173.
2023-06-22 16:11:27 +02:00
ebb62e8880 [bnb] Fix bnb serialization issue with new release (#24416)
* fix bnb issue

* fixup

* revert and do simple patching instead

* add more details
2023-06-22 15:40:38 +02:00
652ece0710 Skip test_conditional_generation_pt_pix2struct in Past CI (torch < 1.11) (#24417)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-22 15:34:13 +02:00
22fe73c378 TF safetensors reduced mem usage (#24404)
* Slight comment cleanup

* Reduce peak mem usage when loading TF-format safetensor weights

* Tweak the PyTorch loading code to support lazy loading from safetensors

* Pass safe_open objects to the PyTorch loading function

* Do GPU transposes for speed

* One more tweak to reduce peak usage further

* One-line hasattr

* Fix bug when there's a shape mismatch

* Rename state_dict in the loading code to be clearer

* Use TF format everywhere for consistency
2023-06-22 14:06:16 +01:00
7e03e46934 [ASR pipeline] Check for torchaudio (#23953)
* [ASR pipeline] Check for torchaudio

* add pip instructions

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>

---------

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
2023-06-22 13:48:49 +01:00
6ce6d62b6f Explicit arguments in from_pretrained (#24306)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-21 19:24:11 +02:00
127e81c272 Remove redundant code from TrainingArgs (#24401)
Remove redundant code
2023-06-21 11:51:27 -04:00
cd927a4736 add word-level timestamps to Whisper (#23205)
* let's go!

* initial implementation of token-level timestamps

* only return a single timestamp per token

* remove token probabilities

* fix return type

* fix doc comment

* strip special tokens

* rename

* revert to not stripping special tokens

* only support models that have alignment_heads

* add integration test

* consistently name it token-level timestamps

* small DTW tweak

* initial support for ASR pipeline

* fix pipeline doc comments

* resolve token timestamps in pipeline with chunking

* change warning when no final timestamp is found

* return word-level timestamps

* fixup

* fix bug that skipped final word in each chunk

* fix failing unit tests

* merge punctuations into the words

* also return word tokens

* also return token indices

* add (failing) unit test for combine_tokens_into_words

* make combine_tokens_into_words private

* restore OpenAI's punctuation rules

* add pipeline tests

* make requested changes

* PR review changes

* fix failing pipeline test

* small stuff from PR

* only return words and their timestamps, not segments

* move alignment_heads into generation config

* forgot to set alignment_heads in pipeline tests

* tiny comment fix

* grr
2023-06-21 17:48:21 +02:00
0f968ddaa3 Check auto mappings could be imported via from transformers (#24400)
* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-21 17:31:57 +02:00
1a6fb930fb Clean up dist import (#24402) 2023-06-21 11:19:42 -04:00
285a48011d Fix gradient checkpointing + fp16 autocast for most models (#24247)
* fix gc bug

* continue PoC on OPT

* fixes

* 🤯

* fix tests

* remove pytest.mark

* fixup

* forward contrib credits from discussions

* forward contrib credits from discussions

* reverting changes on untouched files.

---------

Co-authored-by: zhaoqf123 <zhaoqf123@users.noreply.github.com>
Co-authored-by: 7eu7d7 <7eu7d7@users.noreply.github.com>
2023-06-21 17:04:59 +02:00
1815d1865e [Trainer] Fix optimizer step on PyTorch TPU (#24389)
* update optimizer step for tpu

* add comment
2023-06-21 07:24:41 -04:00
4c6e429589 fix type annotation for debug arg (#24033)
* fix type annotation for debug arg

* fix TypeErorr
2023-06-21 11:42:21 +01:00
16c7b16a0a byebye Hub connection timeout - Recast (#24399)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-21 12:36:34 +02:00
5f0801d174 Generate: add SequenceBiasLogitsProcessor (#24334) 2023-06-21 11:14:41 +01:00
45f71d793d Add ffmpeg for doc_test_job on CircleCI (#24397)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-21 11:12:38 +02:00
ad78d9597b [docs] Fix NLLB-MoE links (#24388)
fix broken links
2023-06-20 17:34:20 -07:00
cb8f675510 Update deprecated torch.ger (#24387) 2023-06-20 20:21:13 -04:00
eb849f6604 Migrate doc files to Markdown. (#24376)
* Rename index.mdx to index.md

* With saved modifs

* Address review comment

* Treat all files

* .mdx -> .md

* Remove special char

* Update utils/tests_fetcher.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-06-20 18:07:47 -04:00
b0513b013b [Wav2Vec2 - MMS] Correct directly loading adapters weights (#24335)
* Correct direct lang loading

* correct more

* revert black

* Use tie weights instead=

* add tests

* add tests

* make style
2023-06-20 19:39:52 +02:00
e5c760d636 [GPTNeoX] Nit in config (#24349)
* add raise value error for attention size

* nits to fix test_config

* style
2023-06-20 19:19:19 +02:00
c2882403c4 [Whisper Docs] Nits (#24367)
* nits

* config doc did not match

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-06-20 19:18:52 +02:00
83dc5762e7 Skip a tapas (tokenization) test in past CI (#24378)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-20 18:35:45 +02:00
297d769d0e Better test name and enable pipeline test for pix2struct (#24377)
* best test name forever

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-20 18:29:30 +02:00
6950f70b38 style: add BitsAndBytesConfig __repr__ function (#24331)
* style: add repr to BitsAndBytesConfig

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>

* chore: update pattern for __repr__

implement diff dict for __repr__ of BitsAndBytesConfig

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>

---------

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
2023-06-20 12:26:08 -04:00
7feba74400 [Tokenizer doc] Clarification about add_prefix_space (#24368)
* nits

* more details

* fixup

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-20 18:22:00 +02:00
0527c1c0ea Add a check in ImageToTextPipeline._forward (#24373)
* fix

* fix

* fix

* Update src/transformers/pipelines/image_to_text.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2023-06-20 18:07:34 +02:00
dc4449918d Rename test to be more accurate (#24374) 2023-06-20 11:54:55 -04:00
a6b4d1ad83 Remove print statement 2023-06-20 11:14:29 -04:00
6c1344444a [Whisper] Make tests faster (#24105) 2023-06-20 16:01:56 +01:00
f924df3c7e [modelcard] add audio classification to task list (#24363) 2023-06-20 14:01:17 +01:00
c23d131eab Update tiny models for pipeline testing. (#24364)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-20 14:43:10 +02:00
56efbf4301 TensorFlow CI fixes (#24360)
* Fix saved_model_creation_extended

* Skip the BLIP model creation test for now

* Fix TF SAM test

* Fix longformer tests

* Fix Wav2Vec2

* Add a skip for XLNet

* make fixup

* make fix-copies

* Add comments
2023-06-20 12:59:21 +01:00
183f442ba8 Fix resuming PeftModel checkpoints in Trainer (#24274)
* Fix resuming checkpoints for PeftModels

Fix an error occurred when resuming a PeftModel from a training checkpoint. That was caused since PeftModel.pre_trained saves only adapter-related data while _load_from_checkpoint was expecting a torch sved model. This PR fix this issue and allows the adapter checkpoint to be loaded.

Resolves: #24252

* fix last comment

* fix nits

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-06-20 13:57:08 +02:00
0875b2509a Allow passing kwargs through to TFBertTokenizer (#24324) 2023-06-20 12:49:06 +01:00
cfc838dd4d Respect explicitly set framework parameter in pipeline (#24322)
* Respect framework parameter

* Move check to pipeline()

* Add check inside infer_framework_load_model again
2023-06-20 11:43:52 +01:00
c5454eba9e Fix the order in GPTNeo's docstring (#24358)
* Fix arg sort in docstring

* further order fix

* make style
2023-06-19 18:59:35 +01:00
20273ee214 [Doc Fix] Fix model name path in the transformers doc for AutoClasses (#24329)
fix model name path

Co-authored-by: Ritesh Ghorse <riteshghorse@Riteshs-Air.attlocal.net>
2023-06-19 17:26:55 +01:00
c003c8cb52 docs: add BentoML to awesome-transformers (#24344)
* docs: add BentoML to awesome-transformers

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>

* chore: add the project to the bottom of the line

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>

---------

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
2023-06-19 12:17:30 -04:00
52c4276e44 Fix link to documentation in Install from Source (#24336)
Update __init__.py

Fix link to documentation to install Transformers from source 
Probably the title changed at some point from 'Installing' to 'Install'
2023-06-19 17:12:55 +01:00
7e71eb2ef7 Fix ImageGPT doctest (#24353)
Fix doctest
2023-06-19 15:23:29 +01:00
a4de24f691 Make AutoFormer work with previous torch version (#24357)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-19 16:02:06 +02:00
7761b1893a Update MMS integration docs (#24311)
* Update mms.mdx

* Update mms.mdx

* Update docs/source/en/model_doc/mms.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update mms.mdx

* Update docs/source/en/model_doc/mms.mdx

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-06-19 14:49:01 +01:00
5fca839fef Fix device issue in SwitchTransformers (#24352)
* fix

* Update src/transformers/models/switch_transformers/modeling_switch_transformers.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-19 15:06:05 +02:00
3b5a56e595 Fix KerasMetricCallback: pass generate_kwargs even if use_xla_generation is False (#24333)
* Fix `KerasMetricCallback`: always pass `generate_kwargs`.

* Reformat code using Black.
2023-06-19 12:51:25 +01:00
0b259a3b7e Clean up disk sapce during docker image build for transformers-pytorch-gpu (#24346)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-19 12:54:02 +02:00
691b60db90 byebye Hub connection timeout (#24350)
byebye timeout

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-19 12:50:20 +02:00
17e3e7d686 pin apex to a speicifc commit (for DeepSpeed CI docker image) (#24351)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-19 12:48:53 +02:00
3c124df579 🌐 [i18n-KO] Fixed tutorial/preprocessing.mdx (#24156)
* fix: revise translations

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-06-19 11:43:57 +01:00
881c0df952 error bug on saving distributed optim state when using data parallel (#24108)
Update checkpoint_reshaping_and_interoperability.py
2023-06-19 16:04:21 +05:30
ee88ae5994 Adding ddp_broadcast_buffers argument to Trainer (#24326)
adding ddp_broadcast_buffers argument
2023-06-16 15:14:03 -04:00
9138995025 Add test for proper TF input signatures (#24320)
* Add test for proper input signatures

* No more signature pruning

* Test the dummy inputs are valid too

* fine-tine -> fine-tune

* Fix indent in test_dataset_conversion
2023-06-16 17:03:13 +01:00
bdfd57d1d1 Fix ImageGPT doc example (#24317)
* Fix ImageGPT doc example

* Update src/transformers/models/imagegpt/image_processing_imagegpt.py

* Fix types
2023-06-16 17:01:22 +01:00
096f2cf126 Tied weights load (#24310)
* Use tied weight keys

* More

* Fix tied weight missing warning

* Only give info on unexpected keys with different classes

* Deal with empty archs

* Fix tests

* Refine test
2023-06-16 10:55:42 -04:00
61ffdeba38 Fix ner average grouping with no groups (#24319)
Fixes #https://github.com/huggingface/transformers/issues/24314
2023-06-16 16:43:19 +02:00
3403712958 Big TF test cleanup (#24282)
* Fix one BLIP arg not being optional, remove misspelled arg

* Remove the lxmert test overrides and just use the base test_saved_model_creation

* saved_model_creation fixes and re-enabling tests across the board

* Remove unnecessary skip

* Stop caching sinusoidal embeddings in speech_to_text

* Fix transfo_xl compilation

* Fix transfo_xl compilation

* Fix the conditionals in xglm

* Set the save spec only when building

* Clarify comment

* Move comment correctly

* Correct embeddings generation for speech2text

* Mark RAG generation tests as @slow

* Remove redundant else:

* Add comment to clarify the save_spec line in build()

* Fix size tests for XGLM at last!

* make fixup

* Remove one band_part operation

* Mark test_keras_fit as @slow
2023-06-16 15:40:49 +01:00
896a58de15 Byebye pytorch 1.9 (#24080)
byebye

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-16 16:38:23 +02:00
62d71f4083 Fix functional TF Whisper and modernize tests (#24301)
* Revert whisper change and modify the test_compile_tf_model test

* make fixup

* Tweak test slightly

* Add functional model saving to test

* Ensure TF can infer shapes for data2vec

* Add override for efficientformer

* Mark test as slow
2023-06-16 14:43:43 +01:00
ba3fb4b8d7 [SwitchTransformers] Fix return values (#24300)
* clean history

* remove other changes

* fix

* fix coipes
2023-06-16 15:40:33 +02:00
0b7b4429c7 Update test versions on README.md (#24307)
Update README.md

Updated the tested versions
2023-06-15 18:01:11 +01:00
6134b9b4c7 Make can_generate as class method (#24299)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-15 18:31:38 +02:00
e45bc14350 Beam search type (#24288)
* test check in

* adding in type hint fix on beam search

* fixed code quality issue
2023-06-15 16:48:02 +01:00
1a113fcf65 Update tokenizer_summary.mdx (grammar) (#24286) 2023-06-15 16:31:47 +01:00
c3ca346b49 [Docs] Fix the paper URL for MMS model (#24302)
Fix the paper URL for MMS model
2023-06-15 15:45:49 +01:00
4124a09f8b [EnCodec] Changes for 32kHz ckpt (#24296)
* [EnCodec] Changes for 32kHz ckpt

* Update src/transformers/models/encodec/convert_encodec_checkpoint_to_pytorch.py

* Update src/transformers/models/encodec/convert_encodec_checkpoint_to_pytorch.py
2023-06-15 14:36:19 +01:00
01b55779d3 deepspeed init during eval fix (#24298)
* deepspeed init during eval fix

* commit suggestions

Co-Authored-By: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-15 18:47:09 +05:30
6a081c512a Update README_zh-hans.md (#24181)
* Update README_zh-hans.md

update document link

* Update README_zh-hans.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-15 13:50:40 +01:00
604a21b1e6 [Docs] Improve docs for MMS loading of other languages (#24292)
* Improve docs

* Apply suggestions from code review

* upload readme

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-15 14:29:32 +02:00
e6122c3f40 Fix image segmentation tool bug (#23897)
* Image segmentation tool bug

* Remove resizing in the tests
2023-06-15 08:09:31 -04:00
6cd34d451c [fix] bug in BatchEncoding.__getitem__ (#24293)
Co-authored-by: luchen <luchen@luchendeMBP.lan>
2023-06-15 12:33:37 +01:00
372f50030b Split common test from core tests (#24284) 2023-06-15 07:30:24 -04:00
a611ac9b3f remove unused is_decoder parameter in DetrAttention (#24226)
* issue#24161 remove unused is_decoder parameter in DetrAttention

* #24161 fix check_repository_consistency fail
2023-06-15 11:39:32 +01:00
33196b459c Fix LLaMa beam search when using parallelize (#24224)
* Fix LLaMa beam search when using parallelize

same issue as T5 #11717

* fix code format in modeling_llama.py

* fix format of _reorder_cache in modeling_llama.py
2023-06-15 11:28:48 +01:00
7504be35ab Fix check_config_attributes: check all configuration classes (#24231)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-15 11:39:20 +02:00
6793f0cfe0 Fix bug in slow tokenizer conversion, make it a lot faster (#24266)
* Make conversion faster, fix None vs 0 bug

* Add second sort for consistency

* Update src/transformers/convert_slow_tokenizer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-06-15 09:41:57 +01:00
1609a436ec Add MMS CTC Fine-Tuning (#24281)
* Add mms ctc fine tuning

* make style

* More fixes that are needed

* make fix-copies

* make draft for README

* add new file

* move to new file

* make style

* make style

* add quick test

* make style

* make style
2023-06-15 01:10:27 +02:00
0c3fdccf2f [WIP] add EnCodec model (#23655)
* boilerplate stuff

* messing around with the feature extractor

* fix feature extractor

* unit tests for feature extractor

* rename speech to audio

* quick-and-dirty import of Meta's code

* import weights (sort of)

* cleaning up

* more cleaning up

* move encoder/decoder args into config

* cleanup model

* rename EnCodec -> Encodec

* RVQ parameters in config

* add slow test

* add lstm init and test_init

* Add save & load

* finish EncodecModel

* remove decoder_input_values as they are ont used anywhere (not removed from doc yet)

* fix test feature extraction model name

* Add better slow test

* Fix tests

* some fixup and cleaning

* Improve further

* cleaning up quantizer

* fix up conversion script

* test don't pass, _encode_fram does not work

* update tests with output per encode and decode

* more cleanup

* rename _codebook

* remove old config cruft

* ratios & hop_length

* use ModuleList instead of Sequential

* clean up resnet block

* update types

* update tests

* fixup

* quick cleanup

* fix padding

* more styl,ing

* add patrick feedback

* fix copies

* fixup

* fix lstm

* fix shape issues

* fixup

* rename conv layers

* fixup

* fix decoding

* small conv refactoring

* remove norm_params

* simplify conv layers

* rename conv layers

* stuff

* Clean up

* Add padding logic

use padding mask

small conv refactoring

remove norm_params

simplify conv layers

rename conv layers

stuff

add batched test

update

Clean up

merge and update for padding

fix padding

fixup

* clean up more

* clean up more

* More clean ups

* cleanup convolutions

* typo

* fix typos

* fixup

* build PR doc?

* start refactoring docstring

* fix don't pad when no strid and chunk

* update docstring

* update docstring

* nits

* update going to lunch

* update config and model

* fix broken testse (becaue of the config changes)

* fix scale computation

* fixu[

* only return dict if speciefied or if config returns it

* remove todos

* update defaults in config

* update conversion script

* fix doctest

* more docstring + fixup

* nits on batched_tests

* more nits

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update basxed on review

* fix update

* updaet tests

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fixup

* add overlap and chunl_length_s

* cleanup feature extraction

* teste edge cases truncation and padding

* correct processor values

* update config encodec, nits

* fix tests

* fixup

* fix 24Hz test

* elle tests are green

* fix fixup

* Apply suggestions from code review

* revert readme changes

* fixup

* add example

* use facebook checkpoints

* fix typo

* no pipeline tests

* use slef.pad everywhere we can

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update based on review

* update

* update mdx

* fix bug and tests

* fixup

* fix doctest

* remove comment

* more nits

* add more coverage for `test_truncation_and_padding`

* fixup

* add last test

* fix text

* nits

* Update tests/models/encodec/test_modeling_encodec.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* take care of the last comments

* typo

* fix test

* nits

* fixup

* Update src/transformers/models/encodec/feature_extraction_encodec.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: arthur.zucker@gmail.com <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-14 18:57:23 +02:00
26a2ec56d7 Clean up old Accelerate checks (#24279)
* Clean up old Accelerate checks

* Put back imports
2023-06-14 12:44:09 -04:00
860d11ff7c Fix Debertav2 embed_proj (#24205)
* MLM prediction head output size from embed_size

Take the output size of the dense projection layer from embedding_size instead of hidden_size since there could be a projection of the input embedding into hidden_size if they are different

* project TFDebertaV2 mlm output to embedding size

embedding size can be different that hidden_size, so the final layer needs to project back to embedding size. like in ELECTRA or DeBERTaV3 style pertaining.

This should solve an error that occurs when loading models like "almanach/camemberta-base-generator".

* fix the same issue for reshaping after projection

* fix layernorm size

* add self.embedding_size to scope

* fix embed_proj scope name

* apply the same changes to TF Deberta

* add the changes to deberta

* added self.embedding_size instead of config.embedding_size

* added the same change to debertav2

* added coppied from deberta to deberta2 model

* config.embedding_size fix

* black

* fix deberta config name
2023-06-14 17:24:53 +01:00
a04ebc8b33 Pix2StructImageProcessor requires torch>=1.11.0 (#24270)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-14 17:05:40 +02:00
8978b696d7 Update check of core deps (#24277) 2023-06-14 10:06:31 -04:00
c4fec38bc7 Adapt Wav2Vec2 conversion for MMS lang identification (#24234)
* Add conversion for mms lid

* make style
2023-06-14 16:02:36 +02:00
4626df5077 TF: CTRL with native embedding layers (#23456) 2023-06-14 14:39:02 +01:00
eac8dede83 Skip some TQAPipelineTests tests in past CI (#24267)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-14 14:25:24 +02:00
91b62f5a78 QA doc: import torch before it is used (#24228)
* import torch before it is used

* style

Signed-off-by: byhsu <byhsu@linkedin.com>

---------

Signed-off-by: byhsu <byhsu@linkedin.com>
Co-authored-by: byhsu <byhsu@linkedin.com>
2023-06-14 11:23:55 +01:00
6ab045d6fe Fix URL in comment for contrastive loss function (#24271)
* Update language_modeling.py

in "class TextDatasetForNextSentencePrediction(Dataset)", double considering "self.tokenizer.num_special_tokens_to_add(pair=True)" 

so, i remove self.block_size, and add parameter for "def create_examples_from_document". like "class LineByLineWithSOPTextDataset" do

* Update language_modeling.py

* Fix URL in comment for contrastive loss function
2023-06-14 11:08:31 +01:00
b89fcccd44 update FSDP save and load logic (#24249)
* update fsdp save and load logic

* fix

* see if this resolves the failing tests
2023-06-14 00:49:15 +05:30
e0603d894d docs wrt using accelerate launcher with trainer (#24250)
* update docs

* missing part

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address comments

* address Zach's comment

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-14 00:31:06 +05:30
233113149b Skip GPT-J fx tests for torch < 1.12 (#24256)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-13 20:33:26 +02:00
3bd1fe4315 Stop storing references to bound methods via tf.function (#24146)
* Stop storing references to bound methods in tf.functions

* Remove the gc.collect calls now that we resolved the underlying problem

* Remove the default signature from model.serving entirely, big cleanup

* Remove _prune_signature as self.input_signature can prune itself

* Restore serving docstring

* Update int support test to check the input signature

* Make sure other tests also use model.input_signature and not serving.input_signature

* Restore _prune_signature

* Remove the doctest GC now it's no longer needed

* Correct core tests to use the pruned sig

* order lines correctly in core tests

* Add eager_serving back with a deprecation warning
2023-06-13 19:04:22 +01:00
b979a2064d Fix how we detect the TF package (#24255)
* Fix how we detect the TF package

* Add a comment as a talisman warding against future harm

* Actually put the comment in the right place
2023-06-13 18:57:50 +01:00
e64d99fa6b Update urls in warnings for rich rendering (#24136)
* fixing typo in url in warnings

* fixing typo in url in warnings

* multi-line fix

* multi-line fix

* Update src/transformers/generation/utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/generation/flax_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/generation/tf_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-13 18:23:30 +01:00
cf561d7cf1 Add torch >=1.12 requirement for Tapas (#24251)
* fix

* fix

* fix

* Update src/transformers/models/tapas/modeling_tapas.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-13 19:19:40 +02:00
b1ea6b4bf5 Generate: GenerationConfig can overwrite attributes at from_pretrained time (#24238)
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-13 17:59:21 +01:00
7bb6933b9d TF: standardize test_model_common_attributes for language models (#23457) 2023-06-13 17:51:37 +01:00
4ed075280c [Time Series] use mean scaler when scaling is a boolean True (#24237)
* use mean scaler when scaling is boolean True

* remove debug
2023-06-13 18:46:05 +02:00
695928e1e5 Tied params cleanup (#24211)
* First test

* Add info for all models

* style

* Repo consistency

* Fix last model and cleanup prints

* Repo consistency

* Use consistent function for detecting tied weights
2023-06-13 11:38:39 -04:00
3723329d01 deprecate use_mps_device (#24239) 2023-06-13 19:48:36 +05:30
3e142cb0f5 fix overflow when training mDeberta in fp16 (#24116)
* Porting changes from https://github.com/microsoft/DeBERTa/ that hopefully allows for fp16 training of mdeberta

* Updates to deberta modeling from microsoft repo

* Performing some cleanup

* Undoing changes that weren't necessary

* Undoing float calls

* Minimally change the p2c block

* Fix error

* Minimally changing the c2p block

* Switch to torch sqrt

* Remove math

* Adding back the to calls to scale

* Undoing attention_scores change

* Removing commented out code

* Updating modeling_sew_d.py to satisfy utils/check_copies.py

* Missed changed

* Further reduce changes needed to get fp16 working

* Reverting changes to modeling_sew_d.py

* Make same change in TF
2023-06-13 15:04:27 +01:00
f91810da88 Safely import pytest in testing_utils.py (#24241) 2023-06-13 14:28:08 +01:00
fdd78d9153 Improving error message when using use_safetensors=True. (#24232) 2023-06-13 15:07:00 +02:00
74b846cacf Update (TF)SamModelIntegrationTest (#24199)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-13 14:28:14 +02:00
d7389cd201 fix: TextIteratorStreamer cannot work with pipeline (#23641)
* fix: TextIteratorStreamer cannot work with pipeline

Deepcopying the TextIteratorStreamer object causes the exception.

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Update src/transformers/pipelines/text_generation.py

Got it. I will update the patch.

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/pipelines/text_generation.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update text_generation.py

---------

Signed-off-by: yuanwu <yuan.wu@intel.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-06-13 10:42:41 +01:00
70c7994095 Fix README copies 2023-06-12 16:24:27 -04:00
41a8fa4e14 Add the number of model test failures to slack CI report (#24207)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 21:27:10 +02:00
4da84008dc Finish dataloader integration (#24201) 2023-06-12 13:26:17 -04:00
0675600a60 Update WhisperForAudioClassification doc example (#24188)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 19:10:31 +02:00
e5dd7432e7 Remove unnecessary aten::to overhead in llama (#24203)
* fix dtype init

* fix copies

* fix fixcopies mess

* edit forward as well

* copy
2023-06-12 12:18:04 -04:00
4fe9716a79 Skip RWKV test in past CI (#24204)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 18:14:15 +02:00
f7d80cb3d2 Fix steps bugs in no trainer examples (#24197)
Fix step bugs in no trainer + load checkpoint + grad acc
2023-06-12 11:49:55 -04:00
08ae37c820 Fix _load_pretrained_model (#24200)
Fix test
2023-06-12 11:31:06 -04:00
ebd94b0f6f 🚨🚨🚨 Replace DataLoader logic for Accelerate in Trainer, remove unneeded tests 🚨🚨🚨 (#24028)
* Working integration

* Fix failing test

* Revert label host logic

* Bring it back!
2023-06-12 11:23:37 -04:00
dc42a9d76f 🌐 [i18n-KO] Translated tasks_summary.mdx to Korean (#23977)
* 🌐 [i18n-KO] Translated tasks_summary.mdx to Korean

Co-Authored-By: Hyeonseo Yun <0525yhs@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>

* Apply suggestions from code review

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* Update _toctree.yml

* Delete generation_strategies.mdx

* Delete tasks_explained.mdx

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
2023-06-12 11:07:15 -04:00
60b69f7de2 Generate: detect special architectures when loaded from PEFT (#24198) 2023-06-12 16:06:20 +01:00
97527898da typo: fix typos in CONTRIBUTING.md and deepspeed.mdx (#24184)
* typo: fix typos in CONTRIBUTING.md and deepspeed.mdx

* Update CONTRIBUTING.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-12 15:43:58 +01:00
dadc9fb427 Update GPTNeoXLanguageGenerationTest (#24193)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 15:37:12 +02:00
a9cdb059a8 Fix device issue in OpenLlamaModelTest::test_model_parallelism (#24195)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 15:21:27 +02:00
9f81f4f6dd Generate: force caching on the main model, in assisted generation (#24177) 2023-06-12 14:10:49 +01:00
535f92aea3 [i18n]Translated "attention.mdx" to korean (#23878)
* [i18n]Translated "attention.mdx" to korean

Co-Authored-By: Hyeonseo Yun <0525yhs@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* Update _toctree.yml

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-06-12 08:59:18 -04:00
ba64ec07bb Change ProgressCallback to use dynamic_ncols=True (#24101)
* Change ProgressCallback to use dynamic_ncols=True

* style: make style

* Revert "style: make style"

This reverts commit dee484904cd30a072d80e3be0a3d74a03cff30c6.

* run make style only trainer_callback
2023-06-12 08:56:48 -04:00
93f73a3848 Fix push to hub (#24187)
Add fix
2023-06-12 08:51:09 -04:00
e26c6f03be Fix Wav2Vec2 CI OOM (#24190)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 11:39:04 +02:00
8f093fb799 Avoid OOM in doctest CI (#24139)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-10 09:47:38 +02:00
0d217f428f [tests] fix bitsandbytes import issue (#24151)
fix bitsandbytes import issue
2023-06-09 21:53:11 -07:00
deff5979fe Tool types (#24032)
* Tool types

* Tests + fixes

* Isolate types

* Oops

* Review comments + docs

* Tests + docs

* soundfile -> vision
2023-06-09 13:34:07 -04:00
061580c82c Fix typo in streamers.py (#24144) 2023-06-09 17:27:46 +01:00
12bb853ccd [documentation] grammatical fixes in image_classification.mdx (#24141)
Update image_classification.mdx
2023-06-09 16:59:44 +01:00
d0d1632958 Fix Pipeline CI OOM issue (#24124)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-09 16:49:02 +02:00
a7501f6fc6 [BlenderBotSmall] Update doc example (#24092)
* small tokenizer uses `__start__` and `__end__`

* fix PR doctest
2023-06-09 16:31:57 +02:00
5af3a1aa48 [lamaTokenizerFast] Update documentation (#24132)
* Update documentation

* nits
2023-06-09 16:30:20 +02:00
62fe753325 [SAM] Fix sam slow test (#24140)
* fix sam test

* update pipeline typehint
2023-06-09 16:22:09 +02:00
847b47c0ee Fix XGLM OOM on CI (#24123)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-09 15:20:59 +02:00
b8fe259f16 Fix SAM OOM issue on CI (#24125)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-09 15:07:08 +02:00
707023d155 Fix TF Rag OOM issue (#24122)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-09 15:03:11 +02:00
f2b918356c fix bugs with trainer (#24134)
* fix the deepspeed test failures

* apex fix

* FSDP save ckpt fix

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-09 17:54:53 +05:30
be10092e63 Generate: PT's top_p enforces min_tokens_to_keep when it is 1 (#24111) 2023-06-09 13:20:05 +01:00
03585f3734 Correctly build models and import call_context for older TF versions (#24138) 2023-06-09 13:11:01 +01:00
a6d05d55f6 [bnb] Fix bnb config json serialization (#24137)
* fix bnb config json serialization

* forward contrib credits from discussions

---------

Co-authored-by: Andrechang <Andrechang@users.noreply.github.com>
2023-06-09 13:41:14 +02:00
e2972dffdd PLAM => PaLM (#24129) 2023-06-09 12:32:16 +01:00
535542d38d [Lllama] Update tokenization code to ensure parsing of the special tokens [core] (#24042)
* preventllama fast from returning token type ids

* remove type hints

* normalised False
2023-06-09 09:36:19 +02:00
2e2088f24b Avoid GPT-2 daily CI job OOM (in TF tests) (#24106)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-08 18:21:09 +02:00
9322c24476 Fix typo in Llama docstrings (#24020)
* Fix typo in Llama docstrings

Signed-off-by: Serge Panev <spanev@nvidia.com>

* Update

Signed-off-by: Serge Panev <spanev@nvidia.com>

* make style

Signed-off-by: Serge Panev <spanev@nvidia.com>

---------

Signed-off-by: Serge Panev <spanev@nvidia.com>
2023-06-08 17:19:07 +01:00
a73883ae9e add trust_remote_code option to CLI download cmd (#24097)
* add trust_remote_code option

* require_torch
2023-06-08 11:13:57 -04:00
8b169142f8 [GPT2] Add correct keys on _keys_to_ignore_on_load_unexpected on all child classes of GPT2PreTrainedModel (#24113)
* add correct keys on `_keys_to_ignore_on_load_unexpected`

* oops
2023-06-08 10:21:42 -04:00
71a114d3e0 fix get_keys_to_not_convert function (#24095)
* fix get_keys_to_not_convert funct

* Fix style
2023-06-08 10:14:27 -04:00
8c5f306719 Update the pin on Accelerate (#24110) 2023-06-08 10:11:01 -04:00
2200bf7a45 [Trainer] Correct behavior of _load_best_model for PEFT models (#24103)
* v1

* some refactor

- add ST format as well

* fix

* add `ADAPTER_WEIGHTS_NAME` & `ADAPTER_SAFE_WEIGHTS_NAME`
2023-06-08 15:38:30 +02:00
0f23605094 reset accelerate env variables after each test (#24107) 2023-06-08 09:19:07 -04:00
5fa0a1b23b Fix a tiny typo in WhisperForConditionalGeneration::generate docstring (#24045) 2023-06-08 13:54:56 +01:00
ba695c1efd v4.31.0.dev0 2023-06-07 16:49:00 -04:00
c3572e6bfb Add AzureOpenAiAgent (#24058)
* Add AzureOpenAiAgent

* quality

* Update src/transformers/tools/agents.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-06-07 16:34:53 -04:00
5eb3d3c702 Up pinned accelerate version (#24089)
* Min accelerate

* Also min version

* Min accelerate

* Also min version

* To different minor version

* Empty
2023-06-07 16:21:51 -04:00
d1c039e398 fix accelerator prepare during eval only mode (#24014)
* fix mixed precision prep during eval only mode

* update to address comments

* update to reflect the changes in accelerate
2023-06-08 01:03:13 +05:30
2c887cf8e0 Do not prepare lr scheduler as it as the right number of steps (#24088)
* Do not prepare lr scheduler as it as the right number of steps

* Trigger CI

* Trigger CI

* Trigger CI

* Add fake comment

* Remove fake comment

* Trigger CI please!
2023-06-07 15:31:32 -04:00
12298cb65c fix executable batch size issue (#24067)
* fix executable batch size issue

* fix

* undo
2023-06-07 22:08:04 +05:30
ef010071ee Update delete_doc_comment_trigger.yml (#24084)
fix base workflow name
2023-06-07 17:55:48 +02:00
89b00eef94 Fix expected value in tests of the test fetcher (#24077)
* Fix expected value in tests of the test fetcher

* Fix trigger for repo util tests
2023-06-07 11:38:56 -04:00
5c9394b54c [doc build] Use secrets (#24079) 2023-06-07 17:33:39 +02:00
1fc832b454 Make the TF dummies even smaller (#24071)
* Let's see if we can use the smallest possible dummies

* Make GPT-2's dummies a little longer

* Just use (1,2) as the default shape

* Update other dummies in sync

* Correct imports for Keras 2.13

* Shrink the Wav2Vec2 dummies
2023-06-07 16:23:05 +01:00
092c14c37d Be nice to TF (#24076)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-07 16:18:13 +02:00
4795219228 [bnb] Fix bnb skip modules (#24043)
* fix skip modules test

* oops

* address comments
2023-06-07 15:27:46 +02:00
a1160185ff Fix is_optimum_neuron_available (#23961)
Fix is_optimum_neuron_available
2023-06-07 09:13:01 -04:00
6b548129b1 [Hub] Add safe_serialization in push_to_hub (#24074)
add `safe_serialization` in push_to_hub
2023-06-07 09:07:33 -04:00
6daf7c311b Support PEFT models when saving the model using trainer (#24073)
* support PEFT models when saving the model using trainer

* fixup
2023-06-07 14:30:55 +02:00
1e4a7737ed Add support for non-rust implemented tokenization for __getitem__ method. (#24039)
* Add support for non-rust implemented tokenization for `__getitem__` method.

* Update for error message on adding new sub-branch for `__item__` method.

---------

Co-authored-by: liuyang17 <liuyang17@zhihu.com>
2023-06-07 12:29:19 +01:00
52972e70c7 [Wav2Vec2] Fix torch srcipt (#24062)
* [Wav2Vec2] Fix torch srcipt

* fix more
2023-06-07 07:27:07 -04:00
612b2a1a6d Generate: increase left-padding test atol (#23448)
increase atol
2023-06-07 11:56:57 +01:00
f1660d7e23 Remote code improvements (#23959)
* Fix model load when it has both code on the Hub and locally

* Add input check with timeout

* Add tests

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Some non-saved stuff

* Add feature extractors

* Add image processor

* Add model

* Add processor and tokenizer

* Reduce timeout

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-06-06 14:31:14 -04:00
60825f2c6e Fix device placement for model-parallelism in generate for encoder/de… (#24025)
* Fix device placement for model-parallelism in generate for encoder/decoders

* Remove debug statements
2023-06-06 14:30:59 -04:00
02d255db26 bring back filtered_test_list_cross_tests.txt (#24055)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-06 19:35:24 +02:00
bc9ecef942 Use new parametrization based weight norm if available (#24030)
* Use new parametrization based weight norm if available

See https://github.com/pytorch/pytorch/pull/103001

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

* handle copies

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

* black

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

---------

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
2023-06-06 13:34:57 -04:00
4a55e47877 Move TF building to an actual build() method (#23760)
* A fun new PR where I break the entire codebase again

* A fun new PR where I break the entire codebase again

* Handle cross-attention

* Move calls to model(model.dummy_inputs) to the new build() method

* Seeing what fails with the build context thing

* make fix-copies

* Let's see what fails with new build methods

* Fix the pytorch crossload build calls

* Fix the overridden build methods in vision_text_dual_encoder

* Make sure all our build methods set self.built or call super().build(), which also sets it

* make fix-copies

* Remove finished TODO

* Tentatively remove unneeded (?) line

* Transpose b in deberta correctly and remove unused threading local

* Get rid of build_with_dummies and all it stands for

* Rollback some changes to TF-PT crossloading

* Correctly call super().build()
2023-06-06 18:30:51 +01:00
cbf6bc2350 Oops, missed one (#24054)
Oops
2023-06-06 13:30:19 -04:00
7203ea6797 Reduce memory usage in TF building (#24046)
* Make the default dummies (2, 2) instead of (3, 3)

* Fix for Funnel

* Actually fix Funnel
2023-06-06 18:29:54 +01:00
072188d638 Act on deprecations in Accelerate no_trainer examples (#24053)
Act on deprecation
2023-06-06 13:04:38 -04:00
ff4c0fc7d2 Tiny fix for check_self_hosted_runner.py (#24052)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-06 18:17:41 +02:00
a717e0318c Add TimmBackbone model (#22619)
* Add test_backbone for convnext

* Add TimmBackbone model

* Add check for backbone type

* Tidying up - config checks

* Update convnextv2

* Tidy up

* Fix indices & clearer comment

* Exceptions for config checks

* Correclty update config for tests

* Safer imports

* Safer safer imports

* Fix where decorators go

* Update import logic and backbone tests

* More import fixes

* Fixup

* Only import all_models if torch available

* Fix kwarg updates in from_pretrained & main rebase

* Tidy up

* Add tests for AutoBackbone

* Tidy up

* Fix import error

* Fix up

* Install nattan in doc_test_job

* Revert back to setting self._out_xxx directly

* Bug fix - out_indices mapping from out_features

* Fix tests

* Dont accept output_loading_info for Timm models

* Set out_xxx and don't remap

* Use smaller checkpoint for test

* Don't remap timm indices - check out_indices based on stage names

* Skip test as it's n/a

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Cleaner imports / spelling is hard

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-06 17:11:30 +01:00
b8935980a2 Modification of one text example file should trigger said test (#24051) 2023-06-06 12:02:56 -04:00
02fe3af275 Prevent ZeroDivisionError on trainer.evaluate if model and dataset are tiny (#24049)
Prevent ZeroDivisionError if evaluation is too quick
2023-06-06 11:31:05 -04:00
d924390d5b Use TruncatedNormal from Keras initializers (#24036)
Co-authored-by: Andrey Voynov <avoin@google.com>
2023-06-06 14:51:44 +01:00
c2e3fa0b2a Fixing single candidate_label return. (#24023) 2023-06-06 15:26:10 +02:00
6307312dfc Add check for tied parameters (#24029)
* Add check for tied parameters

* Fix style

* fix style

* Fix versioning

* Change if to elif
2023-06-06 09:12:46 -04:00
7da3ce04a6 🌐 [i18n-KO] Translated bertology.mdx to Korean (#23968)
* docs: ko: `bertology.mdx`

* feat: nmt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-06-06 09:08:45 -04:00
c938597657 🌐 [i18n-KO] Translated language-modeling.mdx (#23969)
* docs: ko: `language_modeling.mdx`

* feat: nmt draft

* fix: manual edits

* fix: add inline toc

* fix: typo in toc_tree.yml

* fix: resolve suggestions

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-06-06 09:08:26 -04:00
7631db0fdc Pin deepspeed to 0.9.2 for now (#24024)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-05 20:00:28 +02:00
17846646f2 Fix MobileViTV2 checkpoint name (#24018)
* fix

* fix

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-05 18:12:45 +02:00
649ffbf575 🌐 [i18n-KO] Translated tasks_explained.mdx to Korean (#23844)
* docs: ko: tasks_explained.mdx

* feat: nmt and manual edit `tasks_explained.mdx`

* revised: resolve suggestions task_explained.mdx

* fixed: added draft of reference docs

Co-Authored-By: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>

* revised: resolve suggestions(voca, spell check) task_explained.mdx

Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* revised: remove duplicate sentence in task_explained.mdx

* fixed: remove draft of reference docs

- I think it will be confusing in the translation process.
- This issue is included in #23971.

---------

Co-authored-by: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-06-05 12:02:03 -04:00
2872f9671b TensorBoard callback no longer adds hparams (#23999)
tensorboard callback no longer adds hparams
2023-06-05 11:53:45 -04:00
44bd590a29 Pix2Struct: fix wrong broadcast axis of attention mask in visual encoder (#23976)
* fix wrong broadcast axis of attention mask in visual encoder

* fix slow tests

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-06-05 11:47:29 -04:00
7824fa431e expose safe_serialization argument in the pipeline API (#23775)
expose safe_serialization argument of PreTrainedModel and TFPreTrainedModel in the save_pretrained of the pipeline api

Co-authored-by: Yessen Kanapin <yessen@deepinfra.com>
2023-06-05 11:19:58 -04:00
b4919cb520 Auto tokenizer registration (#23965)
add check loop over extra content
2023-06-05 11:10:47 -04:00
b143019005 Update README.md (#24022)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-05 17:08:15 +02:00
5176dc2310 Skip test_multi_gpu_data_parallel_forward for MobileViTV2ModelTest (#24017)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-05 16:29:32 +02:00
460b844360 fix trainer slow tests related to hyperparam search (#24011)
* fix trainer slow tests

* commit 2
2023-06-05 17:58:10 +05:30
3c3108972a Fix typo in doc comment of BitsAndBytesConfig (#23978) 2023-06-05 12:10:31 +01:00
539e2281cd Bump cryptography from 39.0.1 to 41.0.0 in /examples/research_projects/decision_transformer (#23964)
Bump cryptography in /examples/research_projects/decision_transformer

Bumps [cryptography](https://github.com/pyca/cryptography) from 39.0.1 to 41.0.0.
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/39.0.1...41.0.0)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-06-02 16:23:44 -04:00
bacaab1629 Added time-series blogs to the models (#23857)
* added blogs to docs

* removed new-line
2023-06-02 12:32:34 -04:00
167a0d8f87 Add an option to reduce compile() console spam (#23938)
* Add an option to reduce compile() console spam

* Add annotations to the example scripts

* Add notes to the quicktour docs as well

* minor fix
2023-06-02 15:28:52 +01:00
c9cf337772 [Whisper Tokenizer] Skip special tokens when decoding with timestamps (#23945) 2023-06-02 16:26:59 +02:00
8940d315aa Trainer: fixed evaluate raising KeyError for ReduceLROnPlateau (#23952)
Trainer: fixed KeyError on evaluate for ReduceLROnPlateau

Co-authored-by: Claudius Kienle <claudius.kienle@artiminds.com>
2023-06-02 08:53:48 -04:00
2fdba73a99 🌐 [i18n-KO] Translated object_detection.mdx to Korean (#23164)
* translated object_detection.mdx

Co-Authored-By: Hyeonseo Yun <0525_hhgus@naver.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: simso <3035487+simso@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: simso <3035487+simso@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-06-02 07:43:55 -04:00
dcb5e18c9e add new mms functions to doc (#23954) 2023-06-02 11:35:52 +01:00
07c54413ac Add MobileViTv2 (#22820)
* generated code from add-new-model-like

* Add code for modeling, config, and weight conversion

* add tests for image-classification, update modeling and config

* add code, tests for semantic-segmentation

* make style, make quality, make fix-copies

* make fix-copies

* Update modeling_mobilevitv2.py

fix bugs

* Update _toctree.yml

* update modeling, config

fix bugs

* Edit docs - fix bug MobileViTv2v2 -> MobileViTv2

* Update mobilevitv2.mdx

* update docstrings

* Update configuration_mobilevitv2.py

make style

* Update convert_mlcvnets_to_pytorch.py

remove unused options

* Update convert_mlcvnets_to_pytorch.py

make style

* Add suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style, make quality

* Add suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add suggestions from code review

Remove MobileViTv2ImageProcessor

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style

* Add suggestions from code review

Rename MobileViTv2 -> MobileViTV2

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update modeling_mobilevitv2.py

make style

* Update serialization.mdx

* Update modeling_mobilevitv2.py

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-02 10:37:02 +01:00
5dfd407b37 [MMS] Scaling Speech Technology to 1,000+ Languages | Add attention adapter to Wav2Vec2 (#23813)
* add fine-tuned with adapter layer

* Add set_target_lang to tokenizer

* Implement load adapter

* add tests

* make style

* Apply suggestions from code review

* Update src/transformers/models/wav2vec2/tokenization_wav2vec2.py

* make fix-copies

* Apply suggestions from code review

* make fix-copies

* make style again

* mkae style again

* fix doc string

* Update tests/models/wav2vec2/test_tokenization_wav2vec2.py

* Apply suggestions from code review

* fix

* Correct wav2vec2 adapter

* mkae style

* Update src/transformers/models/wav2vec2/modeling_wav2vec2.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* add more nice docs

* finish

* finish

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

* all finish

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-02 10:30:24 +01:00
f49a3453ca Fix ReduceLROnPlateau object has no attribute 'get_last_lr' (#23944)
* Fix 'ReduceLROnPlateau' object has no attribute 'get_last_lr'

* fix style
2023-06-01 16:10:52 -04:00
c62b01d0b0 use _make_causal_mask in clip/vit models (#23942)
use _make_causal_mask in clip models
2023-06-01 16:10:24 -04:00
e03a9cc0cd Modify device_map behavior when loading a model using from_pretrained (#23922)
* Modify device map behavior for 4/8 bits model

* Remove device_map arg for training 4/8 bit model

* Remove index

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add Exceptions

* Modify comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix formatting

* Get current device with accelerate

* Revert "Get current device with accelerate"

This reverts commit 46f00799103bbe15bd58762ba029aab35363c4f7.

* Fix Exception

* Modify quantization doc

* Fix error

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-01 13:21:22 -04:00
d1fa349e78 #23675 Registering Malay language (#23689)
* #23675 Registering Malay language

* removing untranslated files

* some translate

* more updates to toctree

* inc index

* additional translations for toctree

* translations of more sections

* removing untranslated file

* translated index.mdx to malay
2023-06-01 13:17:27 -04:00
dc67da0182 Revert "Update stale.yml to use HuggingFaceBot" (#23943)
Revert "Update stale.yml to use HuggingFaceBot (#23941)"

This reverts commit 5929f86ebba157b3ea3460622215a2b9db69d44b.
2023-06-01 11:58:11 -04:00
8088ca4185 Make TF ESM inv_freq non-trainable like PyTorch (#23940)
Make TF inv_freq non-trainable like PyTorch
2023-06-01 16:15:00 +01:00
5929f86ebb Update stale.yml to use HuggingFaceBot (#23941) 2023-06-01 10:54:50 -04:00
857d4e1c87 rename DocumentQuestionAnsweringTool parameter input to match docstring (#23939)
rename encode input to match docstring
2023-06-01 10:54:01 -04:00
9193188276 Pin rhoknp (#23937) 2023-06-01 10:25:43 -04:00
af2c36793f Fix doc string nits (#23929) 2023-06-01 10:10:15 -04:00
9a35a7b9e1 Effectively allow encoder_outputs input to be a tuple in pix2struct (#23932)
consistentcy
2023-06-01 09:07:57 -04:00
9603ef890a [Flax Whisper] Update decode docstring (#23908) 2023-06-01 14:36:45 +02:00
fabe17a726 Skip device placement for past key values in decoder models (#23919) 2023-05-31 15:32:21 -04:00
6affd9cd7c [PushToHub] Make it possible to upload folders (#23920)
Add first draft
2023-05-31 15:31:28 -04:00
4aa13224a5 Update the update metadata job to use upload_folder (#23917) 2023-05-31 14:10:14 -04:00
3ff443a6d9 Re-enable squad test (#23912)
* Re-enable squad test

* [all-test]

* [all-test] Fix all test command

* Fix the all-test
2023-05-31 13:44:26 -04:00
d13021e35f remove the extra accelerator.prepare (#23914)
remove the extra `accelerator.prepare` that slipped in with multiple update from main 😅
2023-05-31 23:04:55 +05:30
c608b8fc93 Bug fix - flip_channel_order for channels first images (#23701)
Bug fix - flip_channel_order for channels_first
2023-05-31 17:12:27 +01:00
0b3d092f63 Empty circleci config (#23913)
* Try easy first

* Add an empty job

* Fix name

* Fix method
2023-05-31 12:02:05 -04:00
8714b964ee Raise error if loss can't be calculated - ViT MIM (#23872)
Raise error if loss can't be calculated
2023-05-31 17:01:53 +01:00
404d925384 add conditional statement for auxiliary loss calculation (#23899)
* add conditional statement for auxiliary loss calculation

* fix style and copies
2023-05-31 16:40:23 +01:00
c63bfc3023 [RWKV] Fix RWKV 4bit (#23910)
fix RWKV 4bit
2023-05-31 17:36:56 +02:00
55451c66ce Upgrade safetensors version (#23911)
* Upgrade safetensors

* Second table
2023-05-31 11:30:39 -04:00
7adce8b532 fix: Replace add_prefix_space in get_prompt_ids with manual space for FastTokenizer compatibility (#23796)
* add ' ' replacement for add_prefix_space

* add fast tokenizer test
2023-05-31 10:52:35 -04:00
84bac652f3 Move import check to before state reset (#23906)
* Move import check to before state reset

* Guard better
2023-05-31 10:49:43 -04:00
e42869b091 [bnb] add warning when no linear (#23894)
* add warning for gpt2-like models

* more details

* adapt from suggestions
2023-05-31 16:40:07 +02:00
8f915c450d Unpin numba (#23162)
* fix for ragged list

* unpin numba

* make style

* np.object -> object

* propagate changes to tokenizer as well

* np.long -> "long"

* revert tokenization changes

* check with tokenization changes

* list/tuple logic

* catch numpy

* catch else case

* clean up

* up

* better check

* trigger ci

* Empty commit to trigger CI
2023-05-31 14:59:30 +01:00
d99f11e898 ensure banned_mask and indices in same device (#23901)
* ensure banned_mask and indices in same device

* ensure banned_mask and indices in same device

switch the order in which indices and banned_mask are created and create banned_mask on the proper device
2023-05-31 09:47:46 -04:00
d68d6665f9 Support shared tensors (#23871)
* Suport shared storage

* Really be sure we have the same storage

* Make style

* - Refactor storage identifier mechanism
 - Group everything into a single for loop

* Make style

* PR

* make style

* Update src/transformers/pytorch_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-31 09:42:30 -04:00
68d53bc717 Fix Trainer when model is loaded on a different GPU (#23792) 2023-05-31 07:54:26 -04:00
0963a2508b fix(configuration_llama): add keys_to_ignore_at_inference to LlamaConfig (#23891) 2023-05-31 07:39:51 -04:00
00f6ba0e7e Skip failing test for now 2023-05-31 06:31:33 -04:00
a73b1d59a3 accelerate deepspeed and gradient accumulation integrate (#23236)
* mixed precision support via accelerate

* fix issues

* fix for the sharded ddp case

* fix flax and tf failing tests

* `refactor the place to create `Accelerator` object

* move ddp prep to accelerate

* fix 😅

* resolving comments

* move fsdp handling to accelerate

* fixex

* fix saving

* shift torch dynamo handling to accelerate

* shift deepspeed integration and save & load utils to accelerate

* fix accelerate launcher support

* oops

* fix 🐛

* save ckpt fix

* Trigger CI

* nasty 🐛 😅

* as deepspeed needs grad_acc fixes, transfer grad_acc to accelerate

* make tests happy

* quality 

* loss tracked needs to account for grad_acc

* fixing the deepspeed tests

* quality 

* 😅😅😅

* tests 😡

* quality 

* Trigger CI

* resolve comments and fix the issue with the previous merge from branch

* Trigger CI

* accelerate took over deepspeed integration

---------

Co-authored-by: Stas Bekman <stas@stason.org>
2023-05-31 15:16:22 +05:30
88f50a1e89 Add TensorFlow implementation of EfficientFormer (#22620)
* Add tf code for efficientformer

* Fix return dict bug - return last hidden state after last stage

* Fix corresponding return dict bug

* Override test tol

* Change default values of training to False

* Set training to default False X3

* Rm axis from ln

* Set init in dense projection

* Rm debug stuff

* Make style; all tests pass.

* Modify year to 2023

* Fix attention biases codes

* Update the shape list logic

* Add a batch norm eps config

* Remove extract comments in test files

* Add conditional attn and hidden states return for serving output

* Change channel dim checking logic

* Add exception for withteacher model in training mode

* Revert layer count for now

* Add layer count for conditional layer naming

* Transpose for conv happens only in main layer

* Make tests smaller

* Make style

* Update doc

* Rm from_pt

* Change to actual expect image class label

* Remove stray print in tests

* Update image processor test

* Remove the old serving output logic

* Make style

* Make style

* Complete test
2023-05-31 10:43:12 +01:00
9fea71b465 Fix last instances of kbit -> quantized (#23797) 2023-05-31 11:38:20 +02:00
38dbbc2640 Fix bug leading to missing token in GPTSanJapaneseTokenizer (#23883)
* add \n

* removed copied from header
2023-05-31 11:32:27 +02:00
03db591047 shift torch dynamo handling to accelerate (#23168)
* mixed precision support via accelerate

* fix issues

* fix for the sharded ddp case

* fix flax and tf failing tests

* `refactor the place to create `Accelerator` object

* move ddp prep to accelerate

* fix 😅

* resolving comments

* move fsdp handling to accelerate

* fixex

* fix saving

* shift torch dynamo handling to accelerate
2023-05-31 14:42:07 +05:30
0b774074a5 move fsdp handling to accelerate (#23158)
* mixed precision support via accelerate

* fix issues

* fix for the sharded ddp case

* fix flax and tf failing tests

* `refactor the place to create `Accelerator` object

* move ddp prep to accelerate

* fix 😅

* resolving comments

* move fsdp handling to accelerate

* fixex

* fix saving
2023-05-31 14:10:46 +05:30
015829e6c4 🌐 [i18n-KO] Translated pad_truncation.mdx to Korean (#23823)
* docs: ko: pad_truncation.mdx

* feat: manual draft

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-05-31 10:23:59 +02:00
1cf148a6aa Smangrul/accelerate ddp integrate (#23151)
* mixed precision support via accelerate

* fix issues

* fix for the sharded ddp case

* fix flax and tf failing tests

* `refactor the place to create `Accelerator` object

* move ddp prep to accelerate

* fix 😅

* resolving comments
2023-05-31 13:42:49 +05:30
9f0646a555 Smangrul/accelerate mp integrate (#23148)
* mixed precision support via accelerate

* fix issues

* fix for the sharded ddp case

* fix flax and tf failing tests

* `refactor the place to create `Accelerator` object

* address comments by removing debugging print statements
2023-05-31 12:27:51 +05:30
de9255de27 Adds AutoProcessor.from_pretrained support for MCTCTProcessor (#23856)
Adds support for AutoProcessor.from_pretrained to MCTCTProcessor models
2023-05-30 14:36:18 -04:00
6451ad0471 Editing issue with pickle def with lambda function (#23869)
* Editing issue with pickle def with lambda function

* fix type

* Made helper function private

* delete tab

---------

Co-authored-by: georgebredis <9454-georgebredis@users.noreply.gitlab.aicrowd.com>
2023-05-30 13:26:37 -04:00
af2aac51fc [from_pretrained] imporve the error message when _no_split_modules is not defined (#23861)
* Better warning

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* format line

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-30 17:12:14 +02:00
58022e41b8 #23388 Issue: Update RoBERTa configuration (#23863) 2023-05-30 10:53:40 -04:00
6fc0454b2f [LlamaTokenizerFast] nit update post_processor on the fly (#23855)
* Update the processor when changing add_eos and add_bos

* fixup

* update

* add a test

* fix failing tests

* fixup
2023-05-30 16:50:41 +02:00
0623f08e99 Update collating_graphormer.py (#23862) 2023-05-30 10:23:20 -04:00
62ba64b90a Adds a FlyteCallback (#23759)
* initial flyte callback

* lint

* logs should still be saved to Flyte even if pandas isn't install (unlikely)

* cr - flyte team

* add docs for Flytecallback

* fix doc string - cr sgugger

* Apply suggestions from code review

cr - sgugger fix doc strings

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-30 10:08:07 -04:00
867316670a 🌐 [i18n-KO] Translated troubleshooting.mdx to Korean (#23166)
* docs: ko: troubleshooting.mdx

* revised: fix _toctree.yml #23112

* feat: nmt draft `troubleshooting.mdx`

* fix: manual edits `troubleshooting.mdx`

* revised: resolve suggestions troubleshooting.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-05-30 09:49:47 -04:00
192aa04783 [i18n-KO] Translated video_classification.mdx to Korean (#23026)
* task/video_classification translated

Co-Authored-By: Hyeonseo Yun <0525_hhgus@naver.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>

* Update video_classification.mdx

* Update _toctree.yml

* Update _toctree.yml

* Update _toctree.yml

* Update _toctree.yml

---------

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-05-30 09:28:44 -04:00
a077f710f3 🌐 [i18n-KO] Translated fast_tokenizers.mdx to Korean (#22956)
* docs: ko: fast_tokenizer.mdx

content - translated

Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Hyeonseo Yun <0525_hhgus@naver.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* Update fast_tokenizers.mdx

* Update fast_tokenizers.mdx

* Update fast_tokenizers.mdx

* Update fast_tokenizers.mdx

* Update _toctree.yml

---------

Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-05-30 09:27:40 -04:00
2faa09530b fix Whisper tests on GPU (#23753)
* move input features to GPU

* skip these tests because undefined behavior

* unskip tests
2023-05-30 09:06:58 -04:00
ac224dee90 TF SAM shape flexibility fixes (#23842)
SAM shape flexibility fixes for compilation
2023-05-30 13:08:44 +01:00
af45ec0a16 add type hint in pipeline model argument (#23740)
* add type hint in pipeline model argument

* add pretrainedmodel and tfpretainedmodel type hint

* make type hints string
2023-05-30 11:05:58 +01:00
4b6a5a7caa [Time-Series] Autoformer model (#21891)
* ran `transformers-cli add-new-model-like`

* added `AutoformerLayernorm` and `AutoformerSeriesDecomposition`

* added `decomposition_layer` in `init` and `moving_avg` to config

* added `AutoformerAutoCorrelation` to encoder & decoder

* removed caninical self attention `AutoformerAttention`

* added arguments in config and model tester. Init works! 😁

* WIP autoformer attention with autocorrlation

* fixed `attn_weights` size

* wip time_delay_agg_training

* fixing sizes and debug time_delay_agg_training

* aggregation in training works! 😁

* `top_k_delays` -> `top_k_delays_index` and added `contiguous()`

* wip time_delay_agg_inference

* finish time_delay_agg_inference 😎

* added resize to autocorrelation

* bug fix: added the length of the output signal to `irfft`

* `attention_mask = None` in the decoder

* fixed test: changed attention expected size, `test_attention_outputs` works!

* removed unnecessary code

* apply AutoformerLayernorm in final norm in enc & dec

* added series decomposition to the encoder

* added series decomp to decoder, with inputs

* added trend todos

* added autoformer to README

* added to index

* added autoformer.mdx

* remove scaling and init attention_mask in the decoder

* make style

* fix copies

* make fix-copies

* inital fix-copies

* fix from https://github.com/huggingface/transformers/pull/22076

* make style

* fix class names

* added trend

* added d_model and projection layers

* added `trend_projection` source, and decomp layer init

* added trend & seasonal init for decoder input

* AutoformerModel cannot be copied as it has the decomp layer too

* encoder can be copied from time series transformer

* fixed generation and made distrb. out more robust

* use context window to calculate decomposition

* use the context_window for decomposition

* use output_params helper

* clean up AutoformerAttention

* subsequences_length off by 1

* make fix copies

* fix test

* added init for nn.Conv1d

* fix IGNORE_NON_TESTED

* added model_doc

* fix ruff

* ignore tests

* remove dup

* fix SPECIAL_CASES_TO_ALLOW

* do not copy due to conv1d weight init

* remove unused imports

* added short summary

* added label_length and made the model non-autoregressive

* added params docs

* better doc for `factor`

* fix tests

* renamed `moving_avg` to `moving_average`

* renamed `factor` to `autocorrelation_factor`

* make style

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix configurations

* fix integration tests

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fixing `lags_sequence` doc

* Revert "fixing `lags_sequence` doc"

This reverts commit 21e34911e36a6f8f45f25cbf43584a49e5316c55.

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* model layers now take the config

* added `layer_norm_eps` to the config

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* added `config.layer_norm_eps` to AutoformerLayernorm

* added `config.layer_norm_eps` to all layernorm layers

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix variable names

* added inital pretrained model

* added use_cache docstring

* doc strings for trend and use_cache

* fix order of args

* imports on one line

* fixed get_lagged_subsequences docs

* add docstring for create_network_inputs

* get rid of layer_norm_eps config

* add back layernorm

* update fixture location

* fix signature

* use AutoformerModelOutput dataclass

* fix pretrain config

* no need as default exists

* subclass ModelOutput

* remove layer_norm_eps config

* fix test_model_outputs_equivalence test

* test hidden_states_output

* make fix-copies

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* removed unused attr

* Update tests/models/autoformer/test_modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* use AutoFormerDecoderOutput

* fix formatting

* fix formatting

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-30 10:23:32 +02:00
17a55534f5 Enable code-specific revision for code on the Hub (#23799)
* Enable code-specific revision for code on the Hub

* invalidate old revision
2023-05-26 15:51:15 -04:00
edf7772826 Log the right train_batch_size if using auto_find_batch_size and also log the adjusted value seperately. (#23800)
* Log right bs

* Log

* Diff message
2023-05-26 15:09:05 -04:00
e724246935 Fix no such file or directory error (#23783)
* Fix no such file or directory error

* Address comment

* Fix formatting issue
2023-05-26 14:24:57 -04:00
b7b729b38d no_cuda does not take effect in non distributed environment (#23795)
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
2023-05-26 10:47:51 -04:00
d61d747627 Update trainer.mdx class_weights example (#23787)
class_weights tensor should follow model's device
2023-05-26 08:36:33 -04:00
4d9b76a80f Fix RWKV backward on GPU (#23774) 2023-05-26 08:33:17 -04:00
8d28dba35d [OPT] Doc nit, using fast is fine (#23789)
small doc nit
2023-05-26 14:30:32 +02:00
f67dac97bd [Nllb-Moe] Fix nllb moe accelerate issue (#23758)
fix nllb moe accelerate issue
2023-05-25 22:37:33 +02:00
d685e330b5 Bump tornado from 6.0.4 to 6.3.2 in /examples/research_projects/visual_bert (#23767)
Bump tornado in /examples/research_projects/visual_bert

Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.0.4 to 6.3.2.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.0.4...v6.3.2)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-25 16:16:12 -04:00
4b0e7ded1c Bump tornado from 6.0.4 to 6.3.2 in /examples/research_projects/lxmert (#23766)
Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.0.4 to 6.3.2.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.0.4...v6.3.2)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-25 16:16:01 -04:00
f04f549bae Fix is_ninja_available() (#23752)
* Fix is_ninja_available()

search ninja using subprocess instead of importlib.

* Fix style

* Fix doc

* Fix style
2023-05-25 16:10:25 -04:00
3416bba7c7 [LongFormer] code nits, removed unused parameters (#23749)
* remove unused parameters

* remove unused parameters in config
2023-05-25 16:06:14 +02:00
6e4bc67099 Revamp test selection for the example tests (#23737)
* Revamp test selection for the example tests

* Rename old XLA test and fake modif in run_glue

* Fixes

* Fake Trainer modif

* Remove fake modifs
2023-05-25 09:38:21 -04:00
7d4fe85ef3 Fix psuh_to_hub in Trainer when nothing needs pushing (#23751) 2023-05-25 09:38:09 -04:00
06c28cd0fc Add LlamaIndex to awesome-transformers.md (#23484) 2023-05-25 09:35:10 -04:00
f0a2a82ab4 Fix pip install --upgrade accelerate command in modeling_utils.py (#23747)
Fix command in modeling_utils.py
2023-05-25 07:48:48 -04:00
e45e756d22 Remove the last few TF serving sigs (#23738)
Remove some more serving methods that (I think?) turned up while this PR was open
2023-05-24 21:19:44 +01:00
9850e6ddab Enable prompts on the Hub (#23662)
* Enable prompts on the Hub

* Update src/transformers/tools/prompts.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Address review comments

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-24 16:09:13 -04:00
75bbf20bce Fix sagemaker DP/MP (#23681)
* Check for use_sagemaker_dp

* Add a check for is_sagemaker_mp when setting _n_gpu again. Should be last broken thing

* Try explicit check?

* Quality
2023-05-24 15:51:09 -04:00
89159651ba Fix the regex in get_imports to support multiline try blocks and excepts with specific exception types (#23725)
* fix and test get_imports for multiline try blocks, and excepts with specific errors

* fixup

* add some more tests

* add license
2023-05-24 15:40:19 -04:00
d8222be57e [Whisper] Reduce batch size in tests (#23736) 2023-05-24 17:31:25 +01:00
814de8fac7 Overhaul TF serving signatures + dummy inputs (#23234)
* Let's try autodetecting serving sigs

* Don't clobber existing sigs

* Change shapes for multiplechoice models

* Make default dummy inputs smarter too

* Fix missing f-string

* Let's YOLO a serving output too

* Read __class__.__name__ properly

* Don't just pass naked lists in there and expect it to be okay

* Code cleanup

* Update default serving sig

* Clearer error messages

* Further updates to the default serving output

* make fixup

* Update the serving output a bit more

* Cleanups and renames, raise errors appropriately when we can't infer inputs

* More renames

* we're building in a functional context again, yolo

* import DUMMY_INPUTS from the right place

* import DUMMY_INPUTS from the right place

* Support cross-attention in the dummies

* Support cross-attention in the dummies

* Complete removal of dummy/serving overrides in BERT

* Complete removal of dummy/serving overrides in RoBERTa

* Obliterate lots and lots of serving sig and dummy overrides

* merge type hint changes

* Fix for token_type_ids with vocab_size 1

* Add missing property decorator

* Fix T5 and hopefully some models that take conv inputs

* More signature pruning

* Fix T5's signature

* Fix Wav2Vec2 signature

* Fix LongformerForMultipleChoice input signature

* Fix BLIP and LED

* Better default serving output error handling

* Fix BART dummies

* Fix dummies for cross-attention, esp encoder-decoder models

* Fix visionencoderdecoder signature

* Fix BLIP serving output

* Small tweak to BART dummies

* Cleanup the ugly parameter inspection line that I used in a few places

* committed a breakpoint again

* Move the text_dims check

* Remove blip_text serving_output

* Add decoder_input_ids to the default input sig

* Remove all the manual overrides for encoder-decoder model signatures

* Tweak longformer/led input sigs

* Tweak default serving output

* output.keys() -> output

* make fixup
2023-05-24 17:03:24 +01:00
3d7baef114 fix: Whisper generate, move text_prompt_ids trim up for max_new_tokens calculation (#23724)
move text_prompt_ids trimming to top
2023-05-24 11:34:21 -04:00
50a56bedb6 fix: delete duplicate sentences in document_question_answering.mdx (#23735)
fix: delete duplicate sentence
2023-05-24 11:20:50 -04:00
d2d8822604 TF SAM memory reduction (#23732)
* Extremely small change to TF SAM dummies to reduce memory usage on build

* remove debug breakpoint

* Debug print statement to track array sizes

* More debug shape printing

* More debug shape printing

* Now remove the debug shape printing

* make fixup

* make fixup
2023-05-24 15:59:02 +01:00
28aa438cd2 Minor awesome-transformers.md fixes (#23453)
Minor docs fixes
2023-05-24 08:57:52 -04:00
f8b2574416 Better TF docstring types (#23477)
* Rework TF type hints to use | None instead of Optional[] for tf.Tensor

* Rework TF type hints to use | None instead of Optional[] for tf.Tensor

* Don't forget the imports

* Add the imports to tests too

* make fixup

* Refactor tests that depended on get_type_hints

* Better test refactor

* Fix an old hidden bug in the test_keras_fit input creation code

* Fix for the Deit tests
2023-05-24 13:52:52 +01:00
767e6b5314 fix gptj could not jit.trace in GPU (#23317)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-05-24 08:48:31 -04:00
b4698b7ef2 fix: use bool instead of uint8/byte in Deberta/DebertaV2/SEW-D to make it compatible with TensorRT (#23683)
* Use bool instead of uint8/byte in DebertaV2 to make it compatible with TensorRT

TensorRT cannot accept onnx graph with uint8/byte intermediate tensors. This PR uses bool tensors instead of unit8/byte tensors to make the exported onnx file can work with TensorRT.

* fix: use bool instead of uint8/byte in Deberta and SEW-D

---------

Co-authored-by: Yuxian Qiu <yuxianq@nvidia.com>
2023-05-24 08:47:43 -04:00
2eaaf17a0b Export to ONNX doc refocused on using optimum, added tflite (#23434)
* doc refocused on using optimum, tflite

* minor updates to fix checks

* Apply suggestions from code review

Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>

* TFLite to separate page, added links

* Removed the onnx list builder

* make style

* Update docs/source/en/serialization.mdx

Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>

---------

Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
2023-05-24 08:13:23 -04:00
796162c512 Paged Optimizer + Lion Optimizer for Trainer (#23217)
* Added lion and paged optimizers and made original tests pass.

* Added tests for paged and lion optimizers.

* Added and fixed optimizer tests.

* Style and quality checks.

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-05-24 12:53:28 +02:00
9d73b92269 4-bit QLoRA via bitsandbytes (4-bit base model + LoRA) (#23479)
* Added lion and paged optimizers and made original tests pass.

* Added tests for paged and lion optimizers.

* Added and fixed optimizer tests.

* Style and quality checks.

* Initial draft. Some tests fail.

* Fixed dtype bug.

* Fixed bug caused by torch_dtype='auto'.

* All test green for 8-bit and 4-bit layers.

* Added fix for fp32 layer norms and bf16 compute in LLaMA.

* Initial draft. Some tests fail.

* Fixed dtype bug.

* Fixed bug caused by torch_dtype='auto'.

* All test green for 8-bit and 4-bit layers.

* Added lion and paged optimizers and made original tests pass.

* Added tests for paged and lion optimizers.

* Added and fixed optimizer tests.

* Style and quality checks.

* Fixing issues for PR #23479.

* Added fix for fp32 layer norms and bf16 compute in LLaMA.

* Reverted variable name change.

* Initial draft. Some tests fail.

* Fixed dtype bug.

* Fixed bug caused by torch_dtype='auto'.

* All test green for 8-bit and 4-bit layers.

* Added lion and paged optimizers and made original tests pass.

* Added tests for paged and lion optimizers.

* Added and fixed optimizer tests.

* Style and quality checks.

* Added missing tests.

* Fixup changes.

* Added fixup changes.

* Missed some variables to rename.

* revert trainer tests

* revert test trainer

* another revert

* fix tests and safety checkers

* protect import

* simplify a bit

* Update src/transformers/trainer.py

* few fixes

* add warning

* replace with `load_in_kbit = load_in_4bit or load_in_8bit`

* fix test

* fix tests

* this time fix tests

* safety checker

* add docs

* revert torch_dtype

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* multiple fixes

* update docs

* version checks and multiple fixes

* replace `is_loaded_in_kbit`

* replace `load_in_kbit`

* change methods names

* better checks

* oops

* oops

* address final comments

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-24 12:52:45 +02:00
33687a3f61 add GPTJ/bloom/llama/opt into model list and enhance the jit support (#23291)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-05-24 10:57:56 +01:00
003a0cf8cc Fix some docs what layerdrop does (#23691)
* Fix some docs what layerdrop does

* Update src/transformers/models/data2vec/configuration_data2vec_audio.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix more docs

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-23 14:50:40 -04:00
357f281ba2 fix: load_best_model_at_end error when load_in_8bit is True (#23443)
Ref: https://github.com/huggingface/peft/issues/394
    Loading a quantized checkpoint into non-quantized Linear8bitLt is not supported.
    call module.cuda() before module.load_state_dict()
2023-05-23 14:50:27 -04:00
de5f86e59d Skip TFCvtModelTest::test_keras_fit_mixed_precision for now (#23699)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-23 20:47:47 +02:00
3d57404464 is_batched fix for remaining 2-D numpy arrays (#23309)
* Fix is_batched code to allow 2-D numpy arrays for audio

* Tests

* Fix typo

* Incorporate comments from PR #23223
2023-05-23 14:37:35 -04:00
6b7d6f848b [Blip] Fix blip doctest (#23698)
fix blip doctest
2023-05-23 18:25:44 +02:00
876d9a32c6 TF version compatibility fixes (#23663)
* New TF version compatibility fixes

* Remove dummy print statement, move expand_1d

* Make a proper framework inference function

* Make a proper framework inference function

* ValueError -> TypeError
2023-05-23 16:42:11 +01:00
42baa58f90 [SAM] Fixes pipeline and adds a dummy pipeline test (#23684)
* add a dummy pipeline test

* change test name
2023-05-23 17:36:49 +02:00
71a5ed3433 Fix a BridgeTower test (#23694)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-23 17:32:57 +02:00
1fe1e3caa4 🌐 [i18n-KO] Translated tasks/monocular_depth_estimation.mdx to Korean (#23621)
docs: ko: `tasks/monocular_depth_estimation`

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-05-23 15:54:39 +02:00
9e8d7066e6 Making safetensors a core dependency. (#23254)
* Making `safetensors` a core dependency.

To be merged later, I'm creating the PR so we can try it out.

* Update setup.py

* Remove duplicates.

* Even more redundant.
2023-05-23 15:16:34 +02:00
abf691aac0 Fix PyTorch SAM tests (#23682)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-23 14:48:38 +02:00
b687af0b36 Fix typo in a parameter name for open llama model (#23637)
* Update modeling_open_llama.py

Fix typo in `use_memorry_efficient_attention` parameter name

* Update configuration_open_llama.py

Fix typo in `use_memorry_efficient_attention` parameter name

* Update configuration_open_llama.py

Take care of backwards compatibility ensuring that the previous parameter name is taken into account if used

* Update configuration_open_llama.py

format to adjust the line length

* Update configuration_open_llama.py

proper code formatting using `make fixup`

* Update configuration_open_llama.py

pop the argument not to let it be set later down the line
2023-05-23 12:57:58 +01:00
527ab894e5 Add PerSAM [bis] (#23659)
* Add PerSAM args

* Make attn_sim optional

* Rename to attention_similarity

* Add docstrigns

* Improve docstrings
2023-05-23 11:43:12 +02:00
aa30cd4f3f Bump requests from 2.22.0 to 2.31.0 in /examples/research_projects/lxmert (#23668)
Bump requests in /examples/research_projects/lxmert

Bumps [requests](https://github.com/psf/requests) from 2.22.0 to 2.31.0.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.22.0...v2.31.0)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-23 05:31:53 -04:00
9bf72ae564 Bump requests from 2.22.0 to 2.31.0 in /examples/research_projects/visual_bert (#23670)
Bump requests in /examples/research_projects/visual_bert

Bumps [requests](https://github.com/psf/requests) from 2.22.0 to 2.31.0.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.22.0...v2.31.0)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-23 05:31:30 -04:00
ecc05f8c1e Bump requests from 2.27.1 to 2.31.0 in /examples/research_projects/decision_transformer (#23673)
Bump requests in /examples/research_projects/decision_transformer

Bumps [requests](https://github.com/psf/requests) from 2.27.1 to 2.31.0.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.27.1...v2.31.0)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-23 05:28:09 -04:00
e30ceae07b small fix to remove unused eos in processor when it's not used. (#23408) 2023-05-23 09:27:36 +02:00
2f424d7979 [image-to-text pipeline] Add conditional text support + GIT (#23362)
* First draft

* Remove print statements

* Add conditional generation

* Add more tests

* Remove scripts

* Remove BLIP specific linkes

* Add support for pix2struct

* Add fast test

* Address comment

* Fix style
2023-05-22 21:45:50 +02:00
e69feab8a1 Update workflow files (#23658)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-22 21:26:51 +02:00
b191d7db44 Update all no_trainer with skip_first_batches (#23664) 2023-05-22 14:49:31 -04:00
26a06814a1 Fix SAM tests and use smaller checkpoints (#23656)
* Fix SAM tests and use smaller checkpoints

* Override test_model_from_pretrained to use sam-vit-base as well

* make fixup
2023-05-22 19:42:35 +02:00
6f72e71f97 changing the requirements to a cpu torch version that works (#23483) 2023-05-22 12:58:55 -04:00
5de2a6d5e5 Fix wav2vec2 is_batched check to include 2-D numpy arrays (#23223)
* Fix wav2vec2 is_batched check to include 2-D numpy arrays

* address comment

* Add tests

* oops

* oops

* Switch to np array

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Switch to np array

* condition merge

* Specify mono channel only in comment

* oops, add other comment too

* make style

* Switch list check from falsiness to empty

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-05-22 12:57:45 -04:00
4ddd9de9d3 Bugfix: LLaMA layer norm incorrectly changes input type and consumers lots of memory (#23535)
* Fixed bug where LLaMA layer norm would change input type.

* make fix-copies

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-05-22 18:20:38 +02:00
fe34486f12 Muellerzr fix deepspeed (#23657)
* Fix deepspeed recursion

* Better fix
2023-05-22 11:22:54 -04:00
7bbdfd7b24 Fix accelerate logger bug (#23650)
* fix logger bug

* Update tests/mixed_int8/test_mixed_int8.py

Co-authored-by: Zachary Mueller <muellerzr@gmail.com>

* import `PartialState`

---------

Co-authored-by: Zachary Mueller <muellerzr@gmail.com>
2023-05-22 15:39:47 +02:00
29294b0e68 Fix tensor device while attention_mask is not None (#23538)
* Fix tensor device while attention_mask is not None

* Fix tensor device while attention_mask is not None
2023-05-22 09:30:46 -04:00
12ec7f0c20 Remove erroneous img closing tag (#23646)
See https://github.com/huggingface/transformers/pull/23625
2023-05-22 09:28:26 -04:00
6397b7f008 Debug example code for MegaForCausalLM (#23382)
* Debug example code for MegaForCausalLM

set ignore_mismatched_sizes=True in model loading code

* Fix up
2023-05-22 10:53:14 +01:00
3658488ff7 Fix tests/repo_utils/test_get_test_info.py (#23485)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-20 06:53:10 +02:00
9728f1134b Fix confusing transformers installation in CI (#23465)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-19 22:10:18 +02:00
1f2c00d671 Fix DeepSpeed stuff in the nightly CI (#23478)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-19 20:31:55 +02:00
3cb9309024 [Blip] Remove redundant shift right (#23153)
* remove redundant shit right

* fix failing tests

* this time fix tests
2023-05-19 19:14:16 +02:00
847e5691a6 Fix: Change tensors to integers for torch.dynamo and torch.compile compatibility (#23475)
* Fix: Change tensors to integers in torch.split() for torch.dynamo and torch.compile compatibility

* Applied the suggested fix to the utils/check_copies.py test

* Applied the suggested fix by changing the original function that gets copied
2023-05-19 12:50:11 -04:00
389bdba618 Fix PretrainedConfig min_length docstring (#23471) 2023-05-19 17:48:35 +01:00
b455ad0a64 Fix parallel mode check (#23409)
* Fix sagemaker/distributed state

* Fix correctly

* Bring back -1

* Bring back local rank for distributed check

* better version

* Cleanest option
2023-05-19 12:44:24 -04:00
db4d765249 Fix transformers' DeepSpeed CI job (#23463)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-19 17:50:06 +02:00
2aa0cc2c2a Use config to set name and description if not present (#23473)
Use config to set name and descriptiob if not present
2023-05-19 10:36:14 -04:00
21bd3be172 [RWKV] Rwkv fix for 8bit inference (#23468)
* rwkv fix for 8bit inference

* add comment
2023-05-19 16:12:25 +02:00
1c460a5273 TF port of the Segment Anything Model (SAM) (#22970)
* First commit

* Add auto-translation with GPT-4

* make fixup

* Add a functional layernorm for TF

* Add all the auxiliary imports etc.

* Add the extra processor and tests

* rebase to main

* Add all the needed fixes to the GPT code

* make fixup

* Make convolutions channels-last so they run on CPU

* make fixup

* Fix final issues

* Fix other models affected by test change

* Clarify comment on the sparse_prompt_embeddings check

* Refactor functional_layernorm, use shape_list in place of .shape in some places

* Remove deprecated torch-alike code

* Update tests/models/sam/test_modeling_tf_sam.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/sam/test_modeling_tf_sam.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Refactor processor with common methods and separated private methods

* make fixup

* Quietly delete the file that didn't do anything (sorry Sylvain)

* Refactor the processor tests into one file

* make fixup

* Clean up some unnecessary indirection

* Fix TF mask postprocessing

* Add more processor equivalence tests

* Refactor generate_crop_boxes to use framework-neutral np code

* Make the serving output correctly conditional

* Fix error message line length

* Use dict keys rather than indices internally in both TF and PT SAM call/forward

* Return dicts internally in the call/forward methods

* Revert changes to common tests and just override check_pt_tf_outputs

* Revert changes to other model tests

* Clarify comments for functional layernorm

* Add missing transpose from PT code

* Removed unused copied from in PT code

* Remove overrides for tests that don't exist in TF

* Fix transpose and update tests for PT and TF to check pred_masks

* Add training flag

* Update tests to use TF checkpoints

* Update index.mdx

* Add missing cross-test decorator

* Remove optional extra asterisks

* Revert return_dict changes in PT code

* Update src/transformers/models/sam/modeling_tf_sam.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove None return annotations on init methods

* Update tests/models/sam/test_processor_sam.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix input_boxes shapes

* make fixup

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-19 14:14:13 +01:00
8aa8513f71 Remove .data usages in optimizations.py (#23417)
Patched the optimizers
2023-05-19 07:41:51 -04:00
3cf01b2060 README: Fix affiliation for MEGA (#23394)
* README: Fix affiliation for MEGA

* Fix quality

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-05-19 11:03:07 +02:00
2acedf4721 feat: Whisper prompting (#22496)
* initial working additions

* clean and rename, add cond stripping initial prompt to decode

* cleanup, edit create_initial_prompt_ids, add tests

* repo consistency, flip order of conditional

* fix error, move the processor fn to the tokenizer

* repo consistency, update test ids to corresponding tokenizer

* use convert_tokens_to_ids not get_vocab...

* use actual conditional in generate

* make sytle

* initial address comments

* initial working add new params to pipeline

* first draft of sequential generation for condition_on_previous_text

* add/update tests, make compatible with timestamps

* make compatible with diff. input kwargs and max length

* add None check

* add temperature check

* flip temp check operand

* refocusing to prev pr scope

* remove the params too

* make style

* edits, move max length incorporating prompt to whisper

* address comments

* remove asr pipeline prompt decoding, fix indexing

* address comments (more tests, validate prompt)

* un-comment out tests (from debug)

* remove old comment

* address comments

* fix typo

* remove timestamp token from test

* make style

* cleanup

* copy method to fast tokenizer, set max_new_tokens for test

* prompt_ids type just pt

* address Amy's comments

* make style
2023-05-19 09:33:11 +01:00
a7920065f2 fix bug in group_texts function, that was inserting short batches (#23429)
* fix bug in group_texts function, that was inserting short batches

* fully exclude short batches and return empty dict instead

* fix style
2023-05-18 14:22:30 -04:00
b7b81d9344 Clean up CUDA kernels (#23455) 2023-05-18 14:14:43 -04:00
40ed18ae15 Add an option to log result from the Agent (#23454) 2023-05-18 14:06:49 -04:00
f69589d1bc add cleanlab to awesome-transformers tools list (#23440)
* add tool to awesome-transformers list

* add keyword list

* sgugger wording suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-18 13:14:28 -04:00
167aa76cfa Properly guard PyTorch stuff (#23452)
* Properly guard PyTorch stuff

* [all-test]

* [all-test] Fix model imports as well

* Making sure StoppingCriteria is always defined

* [all-test]
2023-05-18 12:17:17 -04:00
ffad4f1373 Update tiny models and pipeline tests (#23446)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-18 17:29:04 +02:00
2406dbdcfa Less flaky test_assisted_decoding_matches_greedy_search (#23451)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-18 17:28:22 +02:00
21f7e81b6b Make RwkvModel accept attention_mask but discard it internally (#23442)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-18 17:14:25 +02:00
cf43200861 Add local agent (#23438)
* Add local agent

* Document LocalAgent
2023-05-18 11:09:55 -04:00
db13634183 TF: GPT2 with native embedding layers (#23436) 2023-05-18 14:46:40 +01:00
c618ab4fab Fix DecisionTransformerConfig doctring (#23450) 2023-05-18 14:07:10 +01:00
5777c3cb3f Fix (skip) a pipeline test for RwkvModel (#23444)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-18 14:54:23 +02:00
8cfae44093 🌐 [i18n-KO] Translated tasks/zero_shot_object_detection.mdx to Korean (#23430)
docs: ko: zero_shot_object_detection
2023-05-18 08:52:17 -04:00
f2d2880bbb remove unnecessary print in gpt neox sequence classifier (#23433) 2023-05-18 11:34:33 +01:00
aea7b23b57 Generate: skip left-padding tests on old models (#23437) 2023-05-18 11:04:51 +01:00
a8732e09bb Fix device issue in SwiftFormerModelIntegrationTest::test_inference_image_classification_head (#23435)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-17 19:48:18 +02:00
0f2c738207 Remove hardcoded prints in Trainer (#23432) 2023-05-17 13:08:12 -04:00
a574de302f Encoder-Decoder: add informative exception when the decoder is not compatible (#23426) 2023-05-17 17:42:54 +01:00
939a65aba7 Update Bigbird Pegasus tests (#23431)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-17 18:14:29 +02:00
cf9e7cb079 TF: embeddings out of bounds check factored into function (#23427) 2023-05-17 17:04:51 +01:00
45e3d6496a Update error message when Accelerate isn't installed (#23373)
Update error
2023-05-17 11:16:02 -04:00
ea0eb15649 Small fixes and link in the README (#23428)
Fix + link
2023-05-17 11:07:36 -04:00
5ba0c332b6 Top 100 (#22912)
* Awesome Transformers

* Update

* Update

* Keywords

* Keywords

* Complete document

* Add lm-evaluation-harness

* Edit txtai according to David's comments

* Update awesome-transformers.md
2023-05-17 10:46:55 -04:00
ebb649a4e3 Add Missing tokenization test [electra] (#22997)
* Create test_tokenization_electra.py

* Update tests/models/electra/test_tokenization_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-17 10:45:15 -04:00
cyy
a2789adddf [Reland] search model buffers for dtype as the last resort (#23319)
search model buffers for dtype as the last resort
2023-05-17 09:05:07 -04:00
3d764fe860 Return early once stop token is found. (#23421)
Previously even after finding a stop token, other stop tokens were considered, which is unnecessary and slows down processing.

Currently, this unnecessary overhead is negligible since there are usually 2 stop tokens considered and they are fairly short, but in future it may become more expensive.
2023-05-17 09:00:08 -04:00
3d3c7d4213 [SAM] fix sam slow test (#23376)
* fix sam slow test

* oops

* fix error message
2023-05-17 14:27:43 +02:00
22a0769933 Update 3 docker files to use cu118 (#23406)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-17 14:26:50 +02:00
a6c9643ce7 Use dict.items to avoid unnecessary lookups. (#23415)
It's more efficient to iterate over key, value dict pairs instead of iterating over keys and performing value lookups on each iteration. It's also more idiomatic.
2023-05-17 11:25:29 +01:00
43f146208e Fix a typo in HfAgent docstring. (#23420) 2023-05-17 09:43:02 +01:00
46d2468695 Update ConvNextV2ModelIntegrationTest::test_inference_image_classification_head (#23402)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-16 23:35:11 +02:00
ca3df9f0cf Run doctest (in PRs) only when some doc example(s) are modified (#23387)
* fix

* fix

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-16 23:29:02 +02:00
17d0290e57 Why crash the whole run when HFHub gives a 50x error? (#23320)
Logging an error and continuing is probably following the principle of least surprise.
2023-05-16 15:46:53 -04:00
d712ebd86d Fix smdistributed check (#23414) 2023-05-16 15:18:31 -04:00
4e244b8817 Replace appends with list comprehension. (#23359)
It's more idiomatic and significantly more efficient because
1) it avoids repeated `append` call that Python has to resolve on each iteration
2) can preallocate the size of the final list avoiding resizing
2023-05-16 20:14:11 +01:00
918a06e25d Generate: add test to check KV format (#23403)
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-16 19:28:19 +01:00
9cf4a8b456 Build with non Python files (#23405)
* Add a test of the built release

* Polish everything

* Trigger CI
2023-05-16 14:23:10 -04:00
5b1ad0eb73 Docs: add link to assisted generation blog post (#23397) 2023-05-16 18:54:34 +01:00
bbbc5c15d4 [AutoModel] fix torch_dtype=auto in from_pretrained (#23379)
* [automodel] fix torch_dtype=auto in from_pretrained

* add test

* fix logic

* Update src/transformers/models/auto/auto_factory.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-16 10:21:42 -07:00
8a58809312 Fix translation no_trainer (#23407)
* Fix translation
2023-05-16 13:10:42 -04:00
130e154291 Generate: faster can_generate check on TF and Flax (#23398) 2023-05-16 15:12:21 +01:00
2922e394e3 [Pix2Struct] Add conditional generation on docstring example (#23399)
add conditional generation on docstring
2023-05-16 15:59:18 +02:00
52d516c3a9 Minor fixes in transformers-tools (#23364)
* Few fixes in new Tools implementation

* code quality
2023-05-16 15:55:44 +02:00
728c5e82cc 🌐 [i18n-KO] Translated asr.mdx to Korean (#23106)
* docs: ko: task/asr.mdx

* feat: manual draft

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-05-16 09:22:56 -04:00
770a1275d3 Fix chat prompt in HFAgent (#23335)
fix chat prompts
2023-05-16 09:18:58 -04:00
466af1a356 OPT/BioGPT: Improved attention mask shape exception (#23270) 2023-05-16 13:59:53 +01:00
21741e8c7e Update test_batched_inference_image_captioning_conditioned (#23391)
* fix

* fix

* fix test + add more docs

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-05-16 14:49:24 +02:00
d765717c76 Fix RwkvModel (#23392)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-16 12:14:54 +02:00
80ca924709 Use mkstemp to replace deprecated mktemp (#23372)
* Use `mkstemp` to replace deprecated `mktemp`

The `tempfile.mktemp` function is [deprecated](https://docs.python.org/3/library/tempfile.html#tempfile.mktemp) due to [security issues](https://cwe.mitre.org/data/definitions/377.html).

* Update src/transformers/utils/hub.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-16 11:10:54 +01:00
ba6815e824 Replace NumPy Operations with JAX NumPy Equivalents for JIT Compilation Compatibility (#23356)
* Replace numpy operations with jax.numpy for JIT compatibility

Replaced numpy operations with their jax.numpy equivalents in the transformer library. This change was necessary to prevent errors during JIT compilation. Specifically, the modifications involve changing numpy's in-place assignments to jax.numpy's immutable update methods.

* rm numpy import

* rm numpy import and fix np->jnp

* fixed slices bug

* fixed decoder_start_tokens -> decoder_start_token_id

* fixed jnp in modleing mt5

* doc fix

* rm numpy import

* make
2023-05-16 10:54:19 +01:00
c2393cad08 Added type hints for Graphormer pytorch version (#23073)
* Added type hints for `Graphormer` pytorch version

added type hints for graphormers pytorch , checked formating issues .

* made the code less bloated
2023-05-15 18:27:41 +01:00
ee3be05310 Fix test typos - audio feature extractors (#23310) 2023-05-15 17:22:10 +01:00
8f76dc8e5a Skip failing AlignModelTest::test_multi_gpu_data_parallel_forward (#23374)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 16:46:58 +02:00
41d47db90f [Bugfix] OPTDecoderLayer does not return attentions when gradient_checkpointing and training is enabled. (#23367)
Update modeling_opt.py
2023-05-15 13:31:53 +01:00
569a97adb2 Revert "Only add files with modification outside doc blocks" (#23371)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 14:28:36 +02:00
c94f7a1cce Fix OwlViTForObjectDetection.image_guided_detection doc example (#23370)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 14:17:09 +02:00
380280d994 Fix BigBirdForMaskedLM doctest (#23369)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 14:15:43 +02:00
96ae83a0d2 Fix some is_xxx_available (#23365)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 14:08:45 +02:00
65b885027a Typo suggestion (#23360)
Update graphormer.mdx

Typo suggestion
2023-05-15 12:04:16 +01:00
81a73fa638 Fix issue introduced in PR #23163 (#23363)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 11:38:44 +02:00
2958b55fe5 Removing one of the twice defined position_embeddings in LongFormer (#23343)
Removing twice defined position_embeddings

The self.position_embeddings in LongFormerEmbeddings is defined twice.
Removing the first with padding_idx
2023-05-15 10:35:55 +01:00
cf11493dce Use cu118 with cudnn >= 8.6 in docker file (#23339)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-12 21:58:15 +02:00
79743cedab replaced assert with raise ValueError for t5, switch_transformers, pix2struct, mt5, longt5, gptsan_japanese. (#23273)
* replaced assert with raise ValueError

* one liner

* reverse one liner and cache-decoder check
2023-05-12 19:29:50 +01:00
291c5e9b25 Handle padding warning in generation when using inputs_embeds (#23131)
* Handle padding warning in generation when using `inputs_embeds`

* Simpler condition

* Black formatter

* Changed warning logic
2023-05-12 17:06:15 +01:00
65d7b21b77 OR am I crazy? (#23295)
or or and
2023-05-12 16:47:40 +01:00
ef3e25ce4e [docs] Fix Agents and Tools docstring (#23313)
fix kwargs
2023-05-12 08:29:13 -07:00
a3975f94f3 Only add files with modification outside doc blocks (#23327)
* min. version for pytest

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-12 16:35:15 +02:00
7f8b909189 Compute the mask in-place, with less memory reads, and on CUDA on XLNetLMHeadModel (#23332)
When working on TorchInductor, I realised that there was a part from
`XLNetLMHeadModel` that was being compiled to CPU code.

This PR should allow to fuse this operation with other CUDA operations
in `torch.compile`. It also should be faster on eager mode, as it has a
this implementation has a lower foot-print.

If in-place operations are not allowed even in non-grad context, I still
believe that doing ones + tril rather than a ones + tril + zeros + cat
should be faster simply due to the number of memory reads/writes.

I tested that this code produces the same results for `0 <= qlen,mlen <
10` and `same_length in (True, False)`.
2023-05-12 14:35:37 +01:00
8c8744a94a Fix docker image (caused by tensorflow_text) (#23321)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-12 13:37:37 +02:00
c045249049 Add swiftformer (#22686)
* Commit the automatically generated code

using add-new-model-like

* Update description at swiftformer.mdx file

* remove autogenerated code for MaskedImageModeling

* update weight conversion scripts

* Update modeling_swiftformer.py

* update configuration_swiftformer.py

* Update test_modeling_swiftformer.py

* update modeling code - remove einops dependency

* Update _toctree.yml

* update modeling code - remove copied from comments

* update docs

* Revert "update docs"

This reverts commit c2e05e2998fe2cd6eaee8b8cc31aca5222bac9fb.

* update docs

* remove unused reference SwiftFormerImageProcessor

* update dependency_versions_table.py

* update swiftformer.mdx

* update swiftformer.mdx

* change model output type - no attentions

* update model org name

* Fix typo

* fix copies

* Update tests/models/swiftformer/test_modeling_swiftformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/auto/image_processing_auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/auto/feature_extraction_auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/swiftformer.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/swiftformer/configuration_swiftformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update modeling_swiftformer.py

fix-copies

* make style, make quality, fix-copies

* Apply suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fix-copies

* Update modeling_swiftformer.py

* Update modeling_swiftformer.py

* Add suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-12 11:52:31 +01:00
364ced6893 Remove LanguageIdentificationTool in __init__.py as we don't have it yet (#23326)
remove LanguageIdentificationTool

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-12 12:11:20 +02:00
273f5ba026 Revert "search buffers for dtype" (#23308)
Revert "search buffers for dtype (#23159)"

This reverts commit ef42c2c487260c2a0111fa9d17f2507d84ddedea.
2023-05-11 15:31:59 -04:00
ba71d9e94c unpin tf prob (#23293)
* unpin tf prob

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-11 21:28:08 +02:00
786b9cf5ca Style 2023-05-11 14:40:38 -04:00
4eea25b445 Fix image segmentation tool test (#23306) 2023-05-11 14:38:11 -04:00
662751b4e2 Fix typo in gradio-tools docs (#23305)
Fix typo
2023-05-11 14:31:28 -04:00
f76fb3aeea Fix broken links in the agent docs (#23297) 2023-05-11 14:26:19 -04:00
71b19ee251 Agents extras (#23301)
* Agents extras

* Add to docs
2023-05-11 14:25:51 -04:00
ab96bf0294 Add gradient_checkpointing parameter to FlaxWhisperEncoder (#23300)
Add gradient_checkpointing parameter
2023-05-11 19:13:05 +01:00
83eda6435e Better check for packages availability (#23163)
* Better check for packages availability

* amend _optimumneuron_available

* amend torch_version

* amend PIL detection and lint

* lint

* amend _faiss_available

* remove overloaded signatures of _is_package_available

* fix sklearn and decord detection

* remove unused checks

* revert
2023-05-11 13:52:22 -04:00
d51296d9c2 skip test_run_squad_no_trainer for now (#23302)
skip

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-11 19:26:48 +02:00
6a6225beab Fix doctest files fetch issue (#23277)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-11 17:14:06 +02:00
5d02e6bd20 Convert numpy arrays to lists before saving the evaluation metrics as json (#23268)
* convert numpy array to list before writing to json

per_category_iou and per_category_accuracy  are ndarray in the eval_metrics

* code reformatted with make style
2023-05-11 08:54:23 -04:00
436dc779a5 Update transformers_agents.mdx (#23289)
Make `huggingface-tools` to [`huggingface-tools`](https://huggingface.co/huggingface-tools)
2023-05-11 08:54:02 -04:00
125516977d Update custom_tools.mdx: fix link (#23292)
Wrong parantheses
2023-05-11 08:50:04 -04:00
dee673232b Added missing " in CHAT_PROMPT_TEMPLATE (#23287) 2023-05-11 11:45:32 +01:00
e1eb3efd02 Temporarily increase tol for PT-FLAX whisper tests (#23288) 2023-05-11 11:43:18 +01:00
b3bbe1bdb6 transformers-cli -> huggingface-cli (#23276) 2023-05-11 11:12:13 +01:00
b92abfa6e0 Add top_k argument to post-process of conditional/deformable-DETR (#22787)
* update min k_value of conditional detr post-processing

* feat: add top_k arg to post processing of deformable and conditional detr

* refactor: revert changes to deprecated methods

* refactor: move prob reshape to improve code clarity and reduce repetition
2023-05-11 10:07:43 +01:00
f82ee109e6 Temporary tolerance fix for flaky whipser PT-TF equiv. test (#23257)
* Temp tol fix for flaky whipser test

* Add equivalent update to TF tests
2023-05-11 10:04:07 +01:00
ca26699f37 [gpt] Gpt2 fix half precision causal mask (#23256)
* fix gpt2 inference

* fixup

* no need to be in `_keys_to_ignore_on_load_missing`
2023-05-11 09:32:23 +02:00
9088fcae82 Bring back the PR Refactor doctests + add CI to main (#23271)
* Revert "Revert "[Doctests] Refactor doctests + add CI" (#23245)"

This reverts commit 69ee46243c40ea61f63d4b8f78d171ad27b4a046.

* try not expose HfDocTestParser

* move into testing_utils.py

* remove pytest install

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-10 22:00:48 +02:00
b2846afda8 Remove missplaced test file (#23275) 2023-05-10 15:10:06 -04:00
6d6b7c923c Fix link displayed for custom tools (#23274) 2023-05-10 15:09:57 -04:00
0c65fb7cfa chore: allow protobuf 3.20.3 requirement (#22759)
* chore: allow protobuf 3.20.3

Allow latest bugfix release for protobuf (3.20.3)

* chore: update auto-generated dependency table

update auto-generated dependency table

* run in subprocess

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-10 20:22:56 +02:00
eb5b5ce641 Render custom tool docs a bit better (#23269)
* Try on a couple of blocks to see

* Build the doc please

* Build the doc please

* Build the doc please

* add more

* Finish with all

* Style
2023-05-10 11:58:20 -04:00
42017d82ba Fix new line bug in chat mode for agents (#23267) 2023-05-10 11:13:42 -04:00
f93509b114 Refine documentation for Tools (#23266)
* refine documentation for Tools

* + one bugfix
2023-05-10 11:03:53 -04:00
5f26a23d03 pin tensorflow-probability in docker files (#23260)
* pong TF prob

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-10 16:21:09 +02:00
b203de7c86 Update Image segmentation description (#23261)
* Update Image segmentation description

* prompt -> label
2023-05-10 09:36:15 -04:00
4f05bbf165 Metadata update (#23259)
* Metadata update

* Make fixup
2023-05-10 09:25:07 -04:00
996f127a90 Improve Docs of Custom Tools and Agents (#23255)
* Improve docs

* correct tip format

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* Correct grammer & spelling

* Improve code style

* make style ruff

* make style final
2023-05-10 08:55:26 -04:00
d3cbc997a2 [docs] Audio task guides fixes (#23239)
trainer parameters fixed
2023-05-10 07:45:33 -04:00
91f4c84a19 CTC example: updated trainer parameters to save tokenizer (#23243)
trainer parameters changed to save tokenizer in addition to feature_extractor
2023-05-10 07:45:10 -04:00
3335724376 Test composition (#23214)
* Remove nestedness in tool config

* Really do it

* Use remote tools descriptions

* Work

* Clean up eval

* Changes

* Tools

* Tools

* tool

* Fix everything

* Use last result/assign for evaluation

* Prompt

* Remove hardcoded selection

* Evaluation for chat agents

* correct some spelling

* Small fixes

* Change summarization model (#23172)

* Fix link displayed

* Update description of the tool

* Fixes in chat prompt

* Custom tools, custom prompt

* Tool clean up

* save_pretrained and push_to_hub for tool

* Fix init

* Tests

* Fix tests

* Tool save/from_hub/push_to_hub and tool->load_tool

* Clean push_to_hub and add app file

* Custom inference API for endpoints too

* Clean up

* old remote tool and new remote tool

* Make a requirements

* return_code adds tool creation

* Avoid redundancy between global variables

* Remote tools can be loaded

* Tests

* Text summarization tests

* Quality

* Properly mark tests

* Test the python interpreter

* And the CI shall be green.

* fix loading of additional tools

* Work on RemoteTool and fix tests

* General clean up

* Guard imports

* Fix tools

* docs: Fix broken link in 'How to add a model...'  (#23216)

fix link

* Get default endpoint from the Hub

* Add guide

* Simplify tool config

* Docs

* Some fixes

* Docs

* Docs

* Docs

* Fix code returned by agent

* Try this

* Match args with signature in remote tool

* Should fix python interpreter for Python 3.8

* Fix push_to_hub for tools

* Other fixes to push_to_hub

* Add API doc page

* Docs

* Docs

* Custom tools

* Pin tensorflow-probability (#23220)

* Pin tensorflow-probability

* [all-test]

* [all-test] Fix syntax for bash

* PoC for some chaining API

* Text to speech

* J'ai pris des libertés

* Rename

* Basic python interpreter

* Add agents

* Quality

* Add translation tool

* temp

* GenQA + LID + S2T

* Quality + word missing in translation

* Add open assistance, support f-strings in evaluate

* captioning + s2t fixes

* Style

* Refactor descriptions and remove chain

* Support errors and rename OpenAssistantAgent

* Add setup

* Deal with typos + example of inference API

* Some rename + README

* Fixes

* Update prompt

* Unwanted change

* Make sure everyone has a default

* One prompt to rule them all.

* SD

* Description

* Clean up remote tools

* More remote tools

* Add option to return code and update doc

* Image segmentation

* ControlNet

* Gradio demo

* Diffusers protection

* Lib protection

* ControlNet description

* Cleanup

* Style

* Remove accelerate and try to be reproducible

* No randomness

* Male Basic optional in token

* Clean description

* Better prompts

* Fix args eval in interpreter

* Add tool wrapper

* Tool on the Hub

* Style post-rebase

* Big refactor of descriptions, batch generation and evaluation for agents

* Make problems easier - interface to debug

* More problems, add python primitives

* Back to one prompt

* Remove dict for translation

* Be consistent

* Add prompts

* New version of the agent

* Evaluate new agents

* New endpoints agents

* Make all tools a dict variable

* Typo

* Add problems

* Add to big prompt

* Harmonize

* Add tools

* New evaluation

* Add more tools

* Build prompt with tools descriptions

* Tools on the Hub

* Let's chat!

* Cleanup

* Temporary bs4 safeguard

* Cache agents and clean up

* Blank init

* Fix evaluation for agents

* New format for tools on the Hub

* Add method to reset state

* Remove nestedness in tool config

* Really do it

* Use remote tools descriptions

* Work

* Clean up eval

* Changes

* Tools

* Tools

* tool

* Fix everything

* Use last result/assign for evaluation

* Prompt

* Remove hardcoded selection

* Evaluation for chat agents

* correct some spelling

* Small fixes

* Change summarization model (#23172)

* Fix link displayed

* Update description of the tool

* Fixes in chat prompt

* Custom tools, custom prompt

* Tool clean up

* save_pretrained and push_to_hub for tool

* Fix init

* Tests

* Fix tests

* Tool save/from_hub/push_to_hub and tool->load_tool

* Clean push_to_hub and add app file

* Custom inference API for endpoints too

* Clean up

* old remote tool and new remote tool

* Make a requirements

* return_code adds tool creation

* Avoid redundancy between global variables

* Remote tools can be loaded

* Tests

* Text summarization tests

* Quality

* Properly mark tests

* Test the python interpreter

* And the CI shall be green.

* Work on RemoteTool and fix tests

* fix loading of additional tools

* General clean up

* Guard imports

* Fix tools

* Get default endpoint from the Hub

* Simplify tool config

* Add guide

* Docs

* Some fixes

* Docs

* Docs

* Fix code returned by agent

* Try this

* Docs

* Match args with signature in remote tool

* Should fix python interpreter for Python 3.8

* Fix push_to_hub for tools

* Other fixes to push_to_hub

* Add API doc page

* Fixes

* Doc fixes

* Docs

* Fix audio

* Custom tools

* Audio fix

* Improve custom tools docstring

* Docstrings

* Trigger CI

* Mode docstrings

* More docstrings

* Improve custom tools

* Fix for remote tools

* Style

* Fix repo consistency

* Quality

* Tip

* Cleanup on doc

* Cleanup toc

* Add disclaimer for starcoder vs openai

* Remove disclaimer

* Small fixed in the prompts

* 4.29

* Update src/transformers/tools/agents.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Complete documentation

* Small fixes

* Agent evaluation

* Note about gradio-tools & LC

* Clean up agents and prompt

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Note about gradio-tools & LC

* Add copyrights and address review comments

* Quality

* Add all language codes

* Add remote tool tests

* Move custom prompts to other docs

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* TTS tests

* Quality

---------

Co-authored-by: Lysandre <hi@lyand.re>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com>
Co-authored-by: Connor Henderson <connor.henderson@talkiatry.com>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Lysandre <lysandre@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-09 20:37:57 -04:00
366a8ca09e Fix from_config (#23246)
fix
2023-05-09 16:58:39 -04:00
69ee46243c Revert "[Doctests] Refactor doctests + add CI" (#23245)
Revert "[Doctests] Refactor doctests + add CI (#22987)"

This reverts commit 627f44799a9f4948a6a1b8fe9e536eee0e29ea68.
2023-05-09 15:26:15 -04:00
a0c0a78233 v4.30.0.dev0 2023-05-09 14:59:38 -04:00
627f44799a [Doctests] Refactor doctests + add CI (#22987)
* intiial commit

* new styling

* update

* just run doctest in CI

* remove more test for fast dev

* update

* update refs

* update path and fetch upstream

* update documentatyion trests

* typo

* parse pwd

* don't check for files that are in hidden folders

* just give paths relative to transformers

* update

* update

* update

* major refactoring

* make sure options is ok

* lest test that mdx is tested

* doctest glob

* nits

* update doctest nightly

* some cleaning

* run correct test on diff

* debug

* run on a single worker

* skip_cuda_test tampkate

* updates

* add rA and continue on failure

* test options

* parse `py` codeblock?

* we don't need to replace ignore results, don't remember whyu I put it

* cleanup

* more cleaning

* fix arg

* more cleaning

* clean an todo

* more pre-processing

* doctest-module has none so extra `- ` is needed

* remove logs

* nits

* doctest-modules ....

* oups

* let's use sugar

* make dataset go quiet

* add proper timeout

* nites

* spleling timeout

* update

* properly skip tests that have CUDSA

* proper skipping

* cleaning main and get tests to run

* remove make report?

* remove tee

* some updates

* tee was removed but is the full output still available?

* [all-test]

* only our tests

* don't  touch tee in this PR

* no atee-sys

* proper sub

* monkey

* only replace call

* fix sub

* nits

* nits

* fix invalid syntax

* add skip cuda doctest env variable

* make sure all packages are installed

* move file

* update check repo

* revert changes

* nit

* finish cleanup

* fix re

* findall

* update don't test init files

* ignore pycache

* `-ignore-pycache` when running pytests

* try to fix the import missmatch error

* install dec

* pytest is required as doctest_utils imports things from it

* the only log issues were dataset, ignore results should work

* more cleaning

* Update .circleci/create_circleci_config.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* [ydshieh] empty string if cuda is found

* [ydshieh] fix condition

* style

* [ydshieh] fix

* Add comment

* style

* style

* show failure

* trigger CI

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-09 20:34:48 +02:00
650a71e157 Support ratios for logging_steps, eval_steps, and save_steps (#23235)
* Ratio option for `logging_steps`, `eval_steps`, `save_steps`

* Add guards if arguments are not set

* Add more detailed comments + formatting

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Convert args values to `int` if bigger than 1

* `black`

* `make fixup`

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-09 13:05:13 -04:00
c34a525d2f Proposed fix for TF example now running on safetensors. (#23208)
* Proposed fix for TF example now running on safetensors.

* Adding more warnings and returning keys.

* Trigger CI

* Trigger CI

---------

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2023-05-09 13:04:27 -04:00
b4d4d6fe87 Add RWKV-4 (#22797)
* First draft of RWKV-4

* Add support for generate

* Style post-rebase

* Properly use state

* Write doc

* Fix doc

* More math

* Add model to README, dummies and clean config

* Fix init

* multiple fixes:

- fix common tests
- fix configuraion default values
- add CI test for checking state computation
- fix some CI tests

* correct tokenizer

* some tweaks

- fix config docstring
- fix failing tests

* fix CI tests

- add output_attention / output_hidden_states
- override test_initialization
- fix failing CIs

* fix conversion script

- fix sharded case
- add new arguments

* add slow tests + more fixes on conversion script

* add another test

* final fixes

* change single name variable

* add mock attention mask for pipeline to work

* correct eos token id

* fix nits

* add checkpoints

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add `tie_word_embeddings` in docstring

* change tensor name

* fix final nits

* Trigger CI

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-09 13:04:10 -04:00
9a50cb6195 Add Japanese translation to accelerate.mdx (#23232)
Co-authored-by: rustinwelter <rustinwelter.alwp9@slmails.com>
2023-05-09 10:51:43 -04:00
1a8f61110e fix: Update run_qa.py to work with deepset/germanquad (#23225)
Call str on id to make sure any ints are converted into the expected format for squad datasets
2023-05-09 09:20:10 -04:00
51ae566511 Fix typo ; Update output.mdx (#23227) 2023-05-09 09:19:38 -04:00
e02a8065e0 make opt checkpoint dir name correct (#21660)
make opt checkpoint dir name corrent following 100b522bb8/megatron/checkpointing.py (L117)
2023-05-09 09:14:02 -04:00
7f91950901 audio_utils improvements (#21998)
* silly change to allow making a PR

* clean up doc comments

* simplify hertz_to_mel and mel_to_hertz

* fixup

* clean up power_to_db

* also add amplitude_to_db

* move functions

* clean up mel_filter_bank

* fixup

* credit librosa & torchaudio authors

* add unit tests

* tests for power_to_db and amplitude_to_db

* add mel_filter_bank tests

* rewrite STFT

* add convenience spectrogram function

* missing transpose

* fewer transposes

* add integration test to M-CTC-T

* frame length can be either window or FFT length

* rewrite stft API

* add preemphasis coefficient

* move argument

* add log option to spectrogram

* replace M-CTC-T feature extractor

* fix api thing

* replace whisper STFT

* replace whisper mel filters

* replace tvlt's stft

* allow alternate window names

* replace speecht5 stft

* fixup

* fix integration tests

* fix doc comments

* remove manual FFT length calculation

* fix docs

* go away, deprecation warnings

* combine everything into spectrogram function

* add deprecated functions back

* fixup
2023-05-09 09:10:17 -04:00
431b04d8c4 [SAM] Add resources (#23224)
Add resources
2023-05-09 08:58:19 -04:00
006da469dd Pin tensorflow-probability (#23220)
* Pin tensorflow-probability

* [all-test]

* [all-test] Fix syntax for bash
2023-05-08 18:36:22 -04:00
188a8bfccc docs: Fix broken link in 'How to add a model...' (#23216)
fix link
2023-05-08 14:56:42 -04:00
94056b57be New version of Accelerate for the Trainer (#23204) 2023-05-08 09:47:08 -04:00
fd6970bc56 Skip failing test 2023-05-08 08:52:44 -04:00
843fdf2e42 Fixing class embedding selection in owl-vit (#23157)
fixing class embedding selection in owl-vit
2023-05-08 07:35:04 -04:00
bbfb9fc22b Generate: starcoder 🤜 🤛 assisted generation (#23182)
* starcoder has joined the chat

* indexing that works for all
2023-05-08 10:45:40 +01:00
dbc12269ed Fix hf_argparser.parse_json_file to open file with utf-8 encoding, close file when finished (#23194)
* Open json args in utf-8 encoding, close file when finished

* black formatted
2023-05-07 19:06:24 -04:00
6f8a02844a fix random attention for pytorch's bigbird/pegasus_bigbird (#23056)
* fix random attention usage for bigbird and pegasus_bigbird

* remove staticmethod, update tests target valus

* revert style changes
2023-05-07 18:55:04 -04:00
ef0c380c12 Update LLaMA docs with arxiv link (#23191)
* Update docs with arxiv link

* Update llama model docs
2023-05-07 18:52:44 -04:00
cyy
ef42c2c487 search buffers for dtype (#23159) 2023-05-06 11:41:08 -04:00
312b104ff6 Add FlaxWhisperForAudioClassification model (#23173)
* Add FlaxWhisperForAudioClassification model

* Add models to init

* Add models to init

* Fix copies

* Fix automapping

* Fix failing test
2023-05-05 13:23:46 -04:00
fc6c8b0eaa Add no_trainer scripts to pre-train Vision Transformers (#23156)
* Add run_mim_no_trainer.py draft from #20412

Add parse_args method and copy over other dependencies

Add Method call for sending telemetry

Initialize Accelerator

Make one log on every process

Set seed and Handle repository creation

Initialize dataset and Set validation split

Create Config

Adapt Config

Update Config

Create Feature Extractor

Create model

Set column names

Create transforms

Create mask generator

Create method to preprocess images

Shuffle datasets if needed and set transforms

Create Dataloaders

Add optimizer

Add learning rate scheduler

Prepare everything with our accelerator

Tie weights for TPU training

Recalculate training steps and training epochs

Set accelerator checkpointing steps

Initialize trackers and store configuration

Set total batch size

Fix typo: mlm -> mim

Log info at the start of training

Load in the weights and states from previous save

update the progress_bar if load from checkpoint

Define train loop

Add evaluation loop to training

Add to parse_args method

Push repo to hub

Save accelerator state

End training and save model and feature extractor

Remove unused imports

Fix trailing whitespace

* Update code based on comments, Rename feature_extractor to image_processor

* Fix linting

* Add argument for learning rate

* Add argument for setting number of training epochs

* Remove incorrect logger argument

* Convert max_train_steps to int for tqdm

---------

Co-authored-by: Saad Mahmud <shuvro.mahmud79@gmail.com>
2023-05-05 13:22:49 -04:00
17083b9b84 fix: Passing language as acronym to Whisper generate (#23141)
* add fix

* address comments

* remove error formatting
2023-05-05 11:52:19 -04:00
40082d598b 🌐 [i18n-KO] docs: ko: Translate multiple_choice.mdx (#23064)
* update doctree

* doc: ko: translate multiple choice

* Update reviews
2023-05-05 11:36:56 -04:00
77412343c8 fixed whisper positional encoding (#23167) 2023-05-05 11:36:15 -04:00
1b9c352e55 Add TrOCR resources (#23142)
* Add TrOCR resources

* Made fixes suggested by stevhliu
2023-05-05 11:29:20 -04:00
01734dba84 Revert "Add FlaxWhisperForAudioClassification model" (#23154)
Revert "Add FlaxWhisperForAudioClassification model (#22883)"

This reverts commit c8f2c5c56e942e8c45821d07555f2eab178b3f83.
2023-05-04 13:47:07 -04:00
b369e507aa Generate: text generation pipeline no longer emits max_length warning when it is not set (#23139) 2023-05-04 18:36:23 +01:00
516dc6305f [docs] Text to speech task guide (#23107)
* First draft

* Some polishing

* Text polishing

* added TOC entry for TTS

* make style

* added links to images

* fixed links to images

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* feedback addressed

* feedback from Matthijs addresed

* Update docs/source/en/tasks/text-to-speech.mdx

Co-authored-by: Matthijs Hollemans <mail@hollance.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matthijs Hollemans <mail@hollance.com>
2023-05-04 13:17:13 -04:00
c8f2c5c56e Add FlaxWhisperForAudioClassification model (#22883)
* Add FlaxWhisperForAudioClassification model

* Add models to init

* Add models to init

* Fix copies

* Fix automapping
2023-05-04 13:00:16 -04:00
3341bb41cd Pin urllib3 2023-05-04 12:00:22 -04:00
57ffd8ab4c [GPT-J] Fix causal mask dtype (#23147)
* fix #23136

* better fix

* same fix for `masked_bias`
2023-05-04 16:31:19 +02:00
83b38fbea8 GPTNeoXForQuestionAnswering (#23059)
* first draft - gives index error in question_answering.py

* maturing

* no labels

* pipeline should know about QA

* fixing checks

* formatting

* fixed docstring

* initial commit

* formatting

* adding the class to many places

* towards less unhappy checks

* nearly there

* and gpt neox for qa

* use right model

* forgot this one

* base_model_prefix is "gpt_neox" for GPTNeoX* models

* unnecessary stuff

* Update src/transformers/models/gpt_neox/modeling_gpt_neox.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* format

* Update src/transformers/models/gpt_neox/modeling_gpt_neox.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* removed gpt2 stuff

---------

Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-04 10:15:15 -04:00
510ad0a8b8 gpt2 multi-gpu fix (#23149)
Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
2023-05-04 09:58:38 -04:00
adb0760b5f fix resume fsdp (#23111)
* fix resume fsdp

* fix rank 0 loading

* fix style and quality
2023-05-04 09:57:32 -04:00
3b74889e8f Remove typo in perf_train_gpu_many.mdx (#23144)
- Excess `w` in  the word `bottom`
2023-05-04 09:56:45 -04:00
5eeb556484 fix spelling error (#23143)
change referrred to referred
2023-05-04 09:56:28 -04:00
90e8263d91 Add methods to update and verify out_features out_indices (#23031)
* Add methods to update and verify out_features out_indices

* Safe update for config attributes

* Fix function names

* Save config correctly

* PR comments - use property setters

* PR comment - directly set attributes

* Update test

* Add updates to recently merged focalnet backbone
2023-05-04 10:15:06 +01:00
78b7debf56 GPTNeoForQuestionAnswering (#23057)
* first draft - gives index error in question_answering.py

* maturing

* no labels

* pipeline should know about QA

* fixing checks

* formatting

* fixed docstring

* initial commit

* formatting

* adding the class to many places

* towards less unhappy checks

* nearly there

* Update src/transformers/models/gpt_neo/modeling_gpt_neo.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* avoid error

* moving to device of star/end_logits

---------

Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-03 15:59:19 -04:00
b6933d76d2 Tidy Pytorch GLUE benchmark example (#23134)
Migration to Evaluate for metric is not quite complete
2023-05-03 15:50:41 -04:00
b0a78091a5 Remove redundant print statements (#23133)
remove redundant print statements
2023-05-03 18:04:48 +01:00
e3ee45aa54 Enable to use custom tracer in FX symbolic_trace (#23105)
* Enable to use custom tracer in FX `symbolic_trace`

* Integrate feedback from review

* Formatting

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-03 12:47:36 -04:00
441658dd6c Add focalnet backbone (#23104)
Adds FocalNet backbone to return features from all stages
2023-05-03 19:32:42 +03:00
ca7eb27ed5 [doc] Try a few ≠ ways of linking to Papers, users, and org profiles (#22611)
* [doc] Try a few ≠ ways of linking to Papers, users, and org profiles

* Empty commit

* Empty commit now that the backend is fixed

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-05-03 18:23:09 +02:00
fbe0178f08 docs: ko: update _toctree.yml (#23112)
* docs: ko: update `_toctree.yml`

* fix: ko: update toc

* fix: resolve suggestions

* fix: resolve build issue

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-05-03 11:04:58 -04:00
c4e32e206f Add support for beam search's num_return_sequencs flag in flax (#23082)
* add code for numReturnSeq

* add flax support for num return sequences

* Make Fix up for changes

* add test for num return sequences

* lint
2023-05-03 10:50:34 -04:00
ee4bc07474 Support union types X | Y syntax for HfArgumentParser for Python 3.10+ (#23126)
* Support union types `X | Y` syntax for `HfArgumentParser` for Python 3.10+

* Add tests for PEP 604 for `HfArgumentParser`

* Reorganize tests
2023-05-03 10:49:54 -04:00
56b8d49ddf Fix ConvNext V2 paramater naming issue (#23122)
Fixes the parameter naming issue in ConvNextV2GRN module
2023-05-03 17:21:27 +03:00
b53004fdce Add resources for LayoutLmV2 and reformat documentation resources (#23115)
* add resources for layoutlmv2

* remove 🌎 from some resources
2023-05-03 09:53:00 -04:00
3a08dc63fd Generate: better warnings with pipelines (#23128) 2023-05-03 14:43:17 +01:00
2a16d8b275 improve unclear documentation (#23123) 2023-05-03 09:36:30 -04:00
a0bd464776 Generate: correct beam search length on score calculation for multi batch generation (#23127) 2023-05-03 14:29:55 +01:00
ce31e3c8bf Generate: slow assisted generation test (#23125) 2023-05-03 14:24:50 +01:00
b61d5b47f6 [Doctest] Fix pix2struct doctest (#23121)
fix pix2struct doctest
2023-05-03 11:21:59 +02:00
4b6aecb48e Pin numba for now (#23118) 2023-05-02 22:02:39 -04:00
3ff89f29f5 Fixed default config for Pix2Struct model to set Pix2StructTextModel to is_decoder=True (#23051)
added  as default keyword arg. to  in order to correctly configure the decoder
2023-05-02 13:40:41 -04:00
805db1fe13 num_noise_spans should be <= num_items #22246 (#22938) 2023-05-02 13:07:30 -04:00
9ade58f055 [ONNX] Sam fix (#23110)
* [WIP] Fix for the ONNX export

* Apply changes

* Remove commented code

* Resolve todo

* empty -> zeros

* fix slow tests

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-05-02 17:20:02 +02:00
4baa34c18f [Flava] Fix flava torch.distributed.nn.functional import all_gather issue (#23108)
* fix flava `torch.distributed.nn.functional import all_gather` issue

* more comments
2023-05-02 15:35:57 +02:00
c6c6658499 Fix check for backword_pos (#23075) 2023-05-02 09:32:42 -04:00
f31a510bb3 🌐 [i18n-KO] Translated torchscript.mdx to Korean (#23060)
* docs: ko: torchscript.mdx

* feat: gpt and deepl draft

* fix: manual edits

* fix: edit anchor link

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-05-02 09:27:59 -04:00
2b0c924568 GPT2ForQuestionAnswering (#23030)
* first draft - gives index error in question_answering.py

* maturing

* no labels

* pipeline should know about QA

* fixing checks

* formatting

* fixed docstring

* make sure legacy code executes

* comment

* like this

---------

Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
2023-05-02 09:25:46 -04:00
bcedd0a471 Save the tokenizer and image preprocessor after training a model with the contrastive image-text example (#23035)
Save tokenizer and image preprocessor
2023-05-02 09:23:16 -04:00
85e3d7b6a0 added type hints for blip_text pytorch model (#23071)
* added type hints for blip_text pytorch model

* updated type hints for blip_text pytorch model
2023-05-02 13:22:31 +01:00
b8648290d2 Bump flask from 2.0.3 to 2.3.2 in /examples/research_projects/decision_transformer (#23094)
Bump flask in /examples/research_projects/decision_transformer

Bumps [flask](https://github.com/pallets/flask) from 2.0.3 to 2.3.2.
- [Release notes](https://github.com/pallets/flask/releases)
- [Changelog](https://github.com/pallets/flask/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/flask/compare/2.0.3...2.3.2)

---
updated-dependencies:
- dependency-name: flask
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-01 20:15:11 -04:00
f9426eeb94 🌐 [i18n-KO] Translated tasks/zero_shot_image_classification.mdx to Korean (#23065)
docs: ko: `tasks/zero_shot_image_classification`

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-05-01 20:11:56 -04:00
92601d2eb1 🌐 [i18n-KO] Translated tasks/question_answering.mdx to Korean (#23012)
docs: ko: `tasks/question_answering.mdx` to Korean

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
2023-05-01 11:05:40 -04:00
78941b9fe5 🌐 [i18n-KO] Translated tasks/image_classification.mdx to Korean (#23048)
* ko: init: tasks/image_classification.mdx

* docs: ko: trans: tasks/image_classification.mdx

* docs: ko: revise: sync glossary and spell check tasks/image_classification.mdx

* docs: ko: revise: sync glossary tasks/image_classification.mdx

* fix: resolve suggestions (github) image_classification.mdx

Only github code review suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestions image_classification.mdx

Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
2023-05-01 09:50:05 -04:00
9884862383 Depricate xpu_backend for ddp_backend (#23085)
* Depricate xpu_backend for ddp_backend

* Typo

* Only do a minor deprecation, no need for major

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-01 09:44:47 -04:00
95cf3725b4 Fix convnext __init__ (#23078)
fix
2023-05-01 09:36:42 -04:00
487f132a6f Add BioGPTForSequenceClassification (#22253)
* added BioGptForSequenceClassification

* added source of copied code

* typo

* Format code with black

* Update comments for copied code

* Remove code copy comment

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix failing tests

* Update code copied from comments

* Fix code quality

* Update src/transformers/models/biogpt/modeling_biogpt.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix lint error

* Update src/transformers/models/biogpt/modeling_biogpt.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Rename model to biogpt for consistency

* Add PipelineTesterMixin to test_modeling_biogpt.py

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Resolve merge confict

---------

Co-authored-by: Guillem García Subies <37592763+GuillemGSubies@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-01 09:17:27 -04:00
549e5f9f23 Fix string syntax error in logger warning message (additional comma) (#23083) 2023-05-01 09:14:16 -04:00
9062d1bab2 Fix grammar error in summarization pipeline (#23080)
Fix minor grammar issue
2023-05-01 08:54:57 -04:00
849367ccf7 Generate: prepare assisted generation for release (#23052) 2023-04-29 10:53:30 +01:00
dfeb5aa6a9 extend the test files (#23043)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-28 22:25:34 +02:00
b6865b9bef Fix model parallelism for BridgeTower (#23039)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-28 21:53:58 +02:00
d337631b91 🚨🚨🚨 [Blip] remove labels masking (#23024)
* remove labels masking

* add fix on blip tf
2023-04-28 18:24:51 +02:00
c2c99dc7ef add open-llama model with ckpt (#22795)
* update Open-Llama model

* update

* update format

* update doc

* update

* update stable embedding test

* update test case

* update format

* update readme

* fix typo

* update name

* remove tokenizer and update format

* remove convert_open_llama_weights_to_hf

* update warning and doc_string

---------

Co-authored-by: songliang.bayesian <songliang.bayesian@bytedance.com>
2023-04-28 11:01:32 -04:00
0bf34b1c9f Skip pt/flax equivalence tests in pytorch bigbird test file (#23040)
skip

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-28 17:00:13 +02:00
4d0ea3d269 Cuda rng_state_all is used when saving in distributed mode so same should also be used when loading (#23045)
cuda rng state should be all for distributed bc all were saved
2023-04-28 09:28:01 -04:00
521a8ffa53 [docs] Doc TOC updates (#23049)
* first draft of toc restructure

* polishing based on feedback
2023-04-28 09:24:28 -04:00
4893d919f1 🌐 [i18n-KO] Translated model_sharing.mdx to Korean (#22991)
* docs: ko: init: model_sharing.mdx

* docs: ko: trans: model_sharing.mdx

Co-Authored-By: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* docs: ko: revised: apply code reviews model_sharing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* docs: ko: revised: apply aditional reviews model_sharing.mdx

1. Natural Expression
2. `파인 튜닝` to `미세 조정`
3. Glossary Sync

Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>

* docs: ko: revised: apply aditional reviews in model_sharing.mdx

1. Spell check
2. Natural Expression
3. Sync Glossary

Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>

* docs: ko: revised: `프로그래밍 방식` to `API` in model_sharing.mdx

Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>

---------

Co-authored-by: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-04-28 09:20:33 -04:00
9b435204b1 Add Trainer support for ReduceLROnPlateau (#23010)
* Add Trainer support for ReduceLROnPlateau

Fixes #16503

* Remove training argument and add default instance

---------

Co-authored-by: mmeloux <maxime.meloux@loria.fr>
2023-04-28 09:17:30 -04:00
cf7baf4060 Make _test_xla_generate less flaky (#22996)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-28 13:27:28 +02:00
a0e7332839 Fix CLAP link across all READMEs (#23032)
* Fix CLAP link across all READMEs

* Fix copy only for en
2023-04-27 18:07:02 -04:00
88399476c3 Fix bigbird random attention (#21023)
* switch np.random.permutation to jax.random.permuation

* remove comments

* remove leftover comment

* skip similarity tests

* modify indices_prng_key usage, add deterministic behaviour

* update style

* remove unused import

* remove copy statement since classes are not identical

* remove numpy import

* revert removing copied from statements

* make style from copied

* remove copied from statement

* update copied from statement to include only np.ndarry

* add deterministic args, unittestskip equivalence tests
2023-04-27 13:52:28 -04:00
27b66bea01 Update BridgeTowerModelTester (#23029)
* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-27 18:26:17 +02:00
d65b14ed67 added GPTNeoForTokenClassification (#22908)
* added GPTNeoForTokenClassification

* add to top-level init

* fixup

* test

* more fixup

* add to gpt_neo.mdx

* repo consistency

* dummy copy

* fix copies

* optax >= 0.1.5 assumes jax.Array exists - which it doesn't for jax <= 0.3.6

* merge with main made this superfluous

* added classifier_dropout

* remove legacy code

* removed fmt:on/off
removed expected_outputs

* doc style fix

* classifier_dropout is always in config

---------

Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
2023-04-27 12:10:03 -04:00
614e191c4d added GPTNeoXForTokenClassification (#23002)
* initial commit

* added GPTNeoXForTokenClassification

* typo

* doc
fixed extra comma that turned into a tuple

* unifying variable names
fixing forward call

* classifier_dropout is in config

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-27 11:08:26 -04:00
1933231a0a [MEGA] nit size test (#23028)
* add fast not use warning

* properly check sequence_length vs chunk_size

* fixup
2023-04-27 16:21:00 +02:00
a4908da04e Fix the expected error in test_offline_mode_pipeline_exception (#23022)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-27 14:22:05 +02:00
e28fff18b8 🌐 [i18n-KO] Translated multilingual.mdx to Korean (#23008)
docs: ko: `multilingual.mdx`

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-04-27 08:06:12 -04:00
9435cc6670 [Pix2Struct] Fix pix2struct doctest (#23023)
fix pix2struct doctest
2023-04-27 11:48:02 +02:00
3042c63a95 Add methods to PreTrainedModel to use PyTorch's BetterTransformer (#21259)
* fix mess

* better documentation

* typo

* fix doc

* update

* add test

* fix test

* more tests

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* move to utils

* Apply suggestions from code review

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* nit

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
2023-04-27 11:03:42 +02:00
0083b149e9 🚨🚨🚨 Use default ignore index in Luke (#23014)
Use default ignore index in Luke
2023-04-26 17:55:01 -04:00
8b129030cb Bring back PartialState DeepSpeed (#22921)
* Bring back deepspeed integration

* Branchname

* Self-scheduled

* newline

* Use deepspeed env var

* Remove comment

* Del env var after partialstate
2023-04-26 15:35:59 -04:00
4331923b97 Fix None value when adding info to auto_map (#22990) 2023-04-26 14:39:36 -04:00
d0b5002378 [Llama Tokenizer] Fast llama template (#22959)
* update template processing for llama fast to add eos

* style

* update

* adress training from new issue

* fix

* update

* special tokens can be given even if not used
2023-04-26 19:13:20 +02:00
00bc6e2067 [PEFT] Add HFTracer support for PEFT (#23006)
* add hack fx

* continue hacking

* final changes

* Test

* Add a keys method

* Fix keys method

* revert unneeded changes

* small nit

---------

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
2023-04-26 18:45:05 +02:00
304aacac90 🚨🚨🚨 [Pix2Struct] Attempts to fix training issues 🚨🚨🚨 (#23004)
* multiple fixes

- add `add_special_tokens` to `True` by default
- remove label smoothing and labels masking

* fix test
2023-04-26 18:29:25 +02:00
ba0dc54576 Add gradient checkpointing to Whisper Flax (#22954)
* Add gradient checkpointing to Whisper Flax

* self.gradient_checkpointing only needed in nn.Module, removing unnecessary comments
2023-04-26 12:19:16 -04:00
a72b82ebe6 Remove a failing ONNX test (#23011)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-26 17:44:12 +02:00
20ac86c6f1 Add TensorFlow Wav2Vec2 for sequence classification (#22073)
* Add initial changes for TF wav2vec2 for sequence classification

* Add suggested changes

* Add serving and serving output methods

* Add serving_output implementation and fix layer_weights

* Add fixes

* Fixed test cases

* Fixing test and adding suggested changes
2023-04-26 13:35:30 +01:00
4c2b4c4c3c 🌐 [i18n-KO] Translated token_classification.mdx to Korean (#22945)
* docs: ko: init: token_classification.mdx

* docs: ko: trans: tasks/token_classification.mdx

* docs: ko: revise: apply suggestions tasks/token_classification.mdx

right vocabulary, spell check, natural expression

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* docs: ko: revise: `Hub` to `허브` in tasks/token_classification.mdx

* docs: ko: revise: `example` in tasks/token_classification.mdx

Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* docs: ko: revise: ko expression in tasks/token_classification.mdx

Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>

* Revert "docs: ko: revise: ko expression in tasks/token_classification.mdx"

This reverts commit 8efe28059b65cf02de12249db2132a50e2b2b827.

* docs: ko: revise: `quick tour` in tasks/token_classification.mdx

Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-04-26 07:56:14 -04:00
6dc2474727 🌐 [i18n-KO] Translated tasks/image_captioning.mdx to Korean (#22943)
docs: ko: tasks/image_captioning.mdx

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-04-26 07:54:58 -04:00
4e1522d65a Fix typo in mega.mdx (#22998)
MegaConfiig -> MegaConfig
2023-04-25 17:58:45 -04:00
d95045717e 🌐 [i18n-KO] Translated serialization.mdx to Korean (#22806)
docs: ko: serialization.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-04-25 12:38:51 -04:00
a0ae2310ec [DocTest] Fix correct checkpoint (#22988)
fix pipeline issue
2023-04-25 15:20:36 +02:00
5427250351 Avoid invalid escape sequences, use raw strings (#22936)
* Avoid invalid escape sequences, use raw strings

* Integrate PR feedback
2023-04-25 09:17:56 -04:00
81c1910c86 fixed small typo in code example (#22982)
fixed typo in code example

fixed a really small typo in the docs of single gpu inference
2023-04-25 08:56:21 -04:00
0a570dbd2e Neptune fix bug init run (#22836)
* [neptune] fix checkpoint bug with relative out_dir

* update imports

* reformat with black

* check neptune without imports

* fix typing-related issue

* run black on code

* use os.path.sep instead of raw \

* simplify imports and remove type annotation

* make ruff happy

* apply review suggestions

* replace run with with_id kwarg to run

* update imports to avoid deprecation warnings for the latest client

---------

Co-authored-by: kshitij12345 <kshitijkalambarkar@gmail.com>
2023-04-25 08:51:05 -04:00
d4d628462f [SAM] Add sam doc (#22984)
* add sam doc

* fixes

* multiple fixes
2023-04-25 14:00:27 +02:00
f0f5e28f82 🌐 [i18n-KO] Fixed tasks/masked_language_modeling.mdx (#22965)
fix: docs: missing newline before code block
2023-04-25 09:59:17 +02:00
60f9649653 Fix DeepSpeed CI job link in Past CI (#22967)
* Fix job link

* fix artifact name logic

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-25 09:52:19 +02:00
073baf7f22 Install accelerete@main in PyTorch Past CI jobs (#22963)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-24 21:19:06 +02:00
e4a97f82bf Generate: assisted generation with sample (take 2) (#22949)
* temperature controls speed
2023-04-24 19:54:55 +01:00
7701716efc 🌐 [i18n-KO] translate create_a_model doc to Korean (#22754)
docs: ko: translates create_a_model.mdx

Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-04-24 13:02:19 -04:00
8f20e61c85 Update feature selection in to_tf_dataset (#21935)
* Update feature selection

* Check compatibility with datasets version

* Checkout from datasets main
2023-04-24 17:34:30 +01:00
345a1371d8 Fix TF example in quicktour (#22960)
* Fix TF example in quicktour

* Fix model.fit() and the dataset section too
2023-04-24 17:25:13 +01:00
503e8c8b32 fix ValueError message in LlamaAttention (#22966) 2023-04-24 12:02:05 -04:00
6e32959329 Reverting Deta cloning mecanism. (#22656)
* Fixed the revert by making sure that even the regexp can cover all
duplicates.

* Code simplification using hash.

* Fixing the `ident`.

* Fixing ignoring patterened duplicate names.

* Using `accelerate@find_tied_parameters` for from_pretrained

This is more correct there, since it handles meta device seemlessly
and we don't need to handle "non-duplicate" tensors (slices of each
other).

* Protecting accelerate.

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-24 11:24:35 -04:00
d6f1da6b71 🌐 [i18n-KO] Translated run_scripts.mdx to Korean (#22793)
docs: ko: `run_scripts` to Korean

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-04-24 10:18:20 -04:00
74c55ab9e5 Prepare tests for hfh 0.14 (#22958)
* Test hf_hub 0.14.0rc1

* fix mocked tests

* package version

---------

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: testbot <lucainp@hf.co>
2023-04-24 09:31:50 -04:00
69f2d5386b [Fix Bugs] Fix keys in _load_pretrained_model (#22947)
fix transformers keys
2023-04-24 09:28:51 -04:00
b5f06d6c59 Raise error if stride is too high in TokenClassificationPipeline (#22942)
* Raise error if `stride` is too high

* Clarify use of `stride`
2023-04-24 09:27:49 -04:00
3f6a4b5bd7 Decorate test_codegen_sample_max_time as flaky (#22953)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-24 15:27:31 +02:00
edb6d950cb Add an attribute to disable custom kernels in deformable detr in order to make the model ONNX exportable (#22918)
* add disable kernel option

* add comment

* fix copies

* add disable_custom_kernels to config

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* style

* fix

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-04-24 09:27:03 -04:00
84097f6d38 🌐 [i18n-KO] Translated tasks/summarization.mdx to Korean (#22783)
docs: ko: tasks/summarization.mdx

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>
2023-04-24 09:03:02 -04:00
093be36f6c 🌐 [i18n-KO] Translated tasks/masked_language_modeling.mdx to Korean (#22838)
docs: ko: `tasks/masked_language_modeling.mdx` to Korean

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-04-24 09:02:21 -04:00
975159bb61 Update tiny models and a few fixes (#22928)
* run_check_tiny_models

* update summary

* update mixin

* update pipeline_model_mapping

* update pipeline_model_mapping

* Update for gpt_bigcode

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-24 14:45:22 +02:00
2fbd6df81c Generate: Add exception path for Donut (#22955) 2023-04-24 13:05:55 +01:00
df017c3ccc [CLAP] Doc nits (#22957)
clap nits
2023-04-24 14:00:29 +02:00
137eb8e663 [i18n-KO] Translated accelerate.mdx to Korean (#22830)
* docs: ko: init: accelerate.mdx

* docs: ko: translated: accelerate.mdx

* docs: ko: revised: natural expression accelerate.mdx

Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>

* docs: ko: revised: natural expression2 accelerate.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-04-24 07:49:05 -04:00
3d3204c025 Add FocalNet (#21532)
Adds FocalNet by Microsoft to transformers

---------

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: alaradirik <alaradirik@gmail.com>
2023-04-23 20:03:05 +03:00
d04ec99bec vilt_model (#22930) 2023-04-21 20:01:25 -04:00
4d10de55b4 Feature to convert videomae huge and small finetuned on kinetics and ssv2 added to the videomae to pytorch converter (#22788)
* Feature to convert videomae huge finetuned kinetics and videomae small finetuned kinetics and ssv2 added to videomae to pytorch converter

* Reformat convert_videomae_to_pytorch using black

* Value exception added for the possible videomae model architectures
2023-04-21 16:13:06 -04:00
7579a52b55 Small sam patch (#22920)
* patch

* add test

* move tests

* cover more cases (will fail nw update the code)

* style

* fix

* Update src/transformers/models/sam/image_processing_sam.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/sam/image_processing_sam.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add better check

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-04-21 21:41:18 +02:00
5166c30e29 Fix a minor bug in CI slack report (#22906)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-21 20:36:35 +02:00
b950c38565 tests: Fix flaky test for NLLB-MoE (#22880)
* add test update and docs edits

* docs edit suggestion
2023-04-21 17:09:40 +01:00
d00997e66c ddp fixes for training (#22874)
ddp fixes for stable lm training
2023-04-21 11:42:02 -04:00
eddf9eeca0 [CI] clap patch fusion test values (#22922)
* patch test with values

* lower tol
2023-04-21 11:22:07 -04:00
5600e6f3ba Hardcode GELU as the intermediate activation for ESM (#22892)
* Hardcode GELU as the intermediate activation for ESM

* Sneak a quick fix to the weight tying in too

* Make the call to gelu explicit
2023-04-21 16:10:10 +01:00
874c7caf19 Remove broken test_data symlink in legacy s2s examples (#22876) 2023-04-21 15:35:42 +01:00
587a19c725 fix: GPTNeoX half inference error (#22888)
* fix: half inference error

norm_factor is still torch.float32 after using model.half

So I changed it to register_buffer so I can change it to torch.float16 after using model.half

* fix: Added a variable "persistent=False"

* run make style
2023-04-21 10:23:53 -04:00
3d852da2db Expose AutoModelForMaskGeneration (#22910)
* expose

* style

* add dummy object

* amazed by the quality of transformers CI
2023-04-21 10:04:45 -04:00
75444551c0 Make sam ONNX exportable (#22915)
* fix code not exportable

* fix

* Update src/transformers/models/sam/modeling_sam.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-21 09:54:30 -04:00
d03d8c720f Fix: Seq2SeqTrainingArgs overriding to_dict for GenerationConfig json support (#22919)
* Seq2SeqTrainingArgs overriding to_dict for GenerationConfig json support

* seq2seqTrainingArgs to_dict calling super method before handling genconf
2023-04-21 09:53:24 -04:00
64ec802e50 fix bug of CLAP dataloader (#22674)
fix bug of CLAP: https://github.com/LAION-AI/CLAP/issues/62
2023-04-21 09:41:29 -04:00
3db2e40422 Update Swin MIM output class (#22893)
Updates Swin MIM output class to match other masked image modeling outputs
2023-04-21 16:38:32 +03:00
1e1cb6f8e5 Fix FillMaskPipelineTests (#22894)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-21 15:16:45 +02:00
9fdf158aa0 Add inputs_embeds functionality when generating with GPT-Neox (#22916)
* support gpt neox generate with inputs embeds

* Update src/transformers/models/gpt_neox/modeling_gpt_neox.py

great thx for the suggestion!

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

---------

Co-authored-by: Lei Li <tobiaslee@qq.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-04-21 12:51:28 +01:00
ec93b895c1 fix CLAP integration tests (#22834)
* integration tests were not being run

* add tests for short input waveform

* rewrite test for long input

* even more betterer

* my bad

* oh boy
2023-04-21 11:04:15 +01:00
3080fb714f Fix Slack report for Nightly CI and Past CI (#22901)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-21 11:23:16 +02:00
435abb22cb Fix counting in Slack report for some jobs (#22913)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-21 11:22:23 +02:00
aab14120d4 Moved labels to enable parallelism pipeline in Luke model (#22909) 2023-04-21 10:19:15 +01:00
397720fb14 Skip a failing test on main for now (#22911)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-21 10:22:54 +02:00
8a817e1eca moved labels to the same device as logits for LILT model (#22898) 2023-04-20 14:49:47 -04:00
515d6a551e [tensorflow] Add support for the is_symbolic_tensor predicate (#22878)
This predicate will become available in tensorflow starting with version
2.14.

Co-authored-by: Russell Power <power@google.com>
2023-04-20 19:46:42 +01:00
5764e67cee Revert DeepSpeed stuff from accelerate integration (#22899) 2023-04-20 14:23:59 -04:00
f143037789 Add automatic-mask-generation pipeline for Segment Anything Model (SAM) (#22840)
* cleanup

* updates

* more refactoring

* make style

* update inits

* support other inputs in base

* update based on review

Co-authored-by: Nicolas Patry <patry.nicolas@gmail.com>

* Update tests/pipelines/test_pipelines_automatic_mask_generation.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* update

* fixup

* TODO x and y to refactor, _h _w refactored here

* update docstring

* more nits

* style on these

* more doc fix

* rename variables

* update

* updates

* style

* update

* fix `_mask_to_rle_pytorch`

* styling

* fix ask to rle, wrong outputs

* add device arg

* update

* more updates, fix tets

* udpate

* update docstrings

* styling

* fixup

* add notebook on the docs

* update orginal sizes

* fix docstring

* updat condition on point_per-batch

* updates tests

* fix CI  test

* extend is required, append does not work!

* fixup

* fix CI tests

* whit pixels left

* address doc comments

* fix doc

* slow pipeline tests

* update auto init

* add revision

* make fixup

* update p!ipoeline tag when calling tests

* alphabeitcal order in inits

* fix copies

* last style nits

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* reformat docstring

* more reformat

* address most of the comments

* Update src/transformers/pipelines/mask_generation.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* final refactor

* Update src/transformers/models/sam/image_processing_sam.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fixup and fix slow tests

* revert

---------

Co-authored-by: Nicolas Patry <patry.nicolas@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-04-20 19:27:24 +02:00
e5f3487190 Pin flax & optax version (#22895)
* Pin optax version

* Pin flax too

* Fixup
2023-04-20 17:30:14 +01:00
6dc0a849b7 Fix weight tying in TF-ESM (#22839)
Fix weight tying in ESM
2023-04-20 15:50:31 +01:00
3b61d2890d Include decoder_attention_mask in T5 model inputs (#22835) 2023-04-20 15:05:36 +01:00
91d6a593f1 moved labels to the same device as logits for OTP, CODEGEN ,gptj and pixel2struct model (#22872)
* moved labels to the same device as logits for OTP model

* moved labels to the same device as logits for CODEGEN model

* Update modeling_codegen.py

* moved labels to the same device as logits for gptj and pix2struct model

* Update modeling_pix2struct.py
2023-04-20 08:52:54 -04:00
4116d1ec75 [Examples/TensorFlow] minor refactoring to allow compatible datasets to work (#22879)
minor refactoring to allow compatible datasets to work.
2023-04-20 18:21:01 +05:30
10dd3a7d1c [SAM] Change to facebook/sam-vit-base (#22891)
change to `facebook/sam-vit-base`
2023-04-20 14:11:18 +02:00
aa43a76538 fix warning function call creating logger error (max_length and max_new_tokens) (#22889) 2023-04-20 13:08:03 +01:00
aa4316757d Change schedule CI time (#22884)
* fix

* Update .github/workflows/self-nightly-past-ci-caller.yml

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-04-20 14:01:08 +02:00
d50db469c0 Generation: only search for eos_token if set (#22875)
Generation: only check for eos_token if set

The check for unfinished_sequences.max(), which is to find sequences
that have ended early via eos_token_id, creates a synchronization point
even when there is no eos_token, which slows inference down.

This change moves the calculation to inside the condition checking for
eos_token, so that such slowdown may be removed by disabling this token.

Co-authored-by: John Doe <john.doe@example.com>
2023-04-20 12:18:28 +01:00
a438a0941c fix: Correct small typo in docstring (#22857)
* fix: Correct small typo in docstring

* fix: Run make fixup
2023-04-20 11:58:52 +01:00
4cfe328bae Fix SAM example in documentation (#22887)
fix sam example
2023-04-20 12:22:42 +02:00
cb47293eba Patching clip model to create mask tensor on the device (#22711)
* Patching clip model to create mask tensor on the device

* Addressing PR's comments

* Addressing PR's comments

* Addressing PR's comments

---------

Co-authored-by: Shanmugam Ramasamy <shanmugamr@shanmugamr-mlt.client.nvidia.com>
2023-04-20 10:58:52 +01:00
2da73f6302 [SAM] Correct arxiv link (#22886)
put correct link
2023-04-20 11:23:12 +02:00
4060d6857e XGLM: Fix left-padding (PT and TF) (#22828) 2023-04-20 10:01:56 +01:00
474bf508df Add Segment Anything Model (SAM) (#22654)
* initial commit

* keys match

* update, fix conversion

* fixes, inference working

* fix

* more fixes

* more fixes

* clean up

* more clean up

* fix copies and add convext copied layer norm

* stash

* pretty big upfate

* cleaning

* more cleaning

* fixup stuffs

* fix copies

* fix iinit

* update test removing tokenizer

* nits

* add pretrained

* more nits

* remove tracking of pipeline

* few fixes

* update san and conversion script

* fix mask decoder and prompt encoder conversion

* fixes

* small update

* fix order

* fix

* fix image embeddings

* nites

* few fixes

* fix logits

* clean up

* fixes boxes inference

* v1 AMG

* clean up

* some clean up

* multi points support

* amg working

* fixup

* clean up

* readme

* update toctree

* fix type hint

* multiple fixes

* fixup

* fixes

* updates

* updates

* more tests

* few fixes

* change to `SamForMaskGeneration`

* doc

* fixup

* fix more tests

* multiple fixes

* fix CI tests

* refactor processor

* renamings

* draft the pipeline

* refactor

* fix tests

* fix test

* few cleanings

* fix test

* edit pipelien support chunking

* udate

* add slow tests

* fix nit

* fixup

* fix nit

* current chunk pipleine

* cast boxes in fp32

* nit

* current updates

* piepleine works

* fixup

* clean up config

* fix slow tests

* fix slow tests

* clean up

* update doc and pipeline

* adds more slow tests

* fix slow tests

* cleaning

* tests pass

* add docstring

* fix copies

* clean up

* support batch of images

* style

* dummy is needed, add tests

* fix slow tests

* fix CI

* update

* adds more tests

* fixes

* fixes

* fixup

* fixes

* few fixes

* filter

* few fixes

* some refactor

* touches finales

* fix

* style

* remove pipeline files

* fixes nits

* revert pipeline changes

* fix test

* fixup

* remove automodel for automatic mask generation

* fix failing torch tests

* update mdx

* revert removal of `MODEL_FOR_AUTOMATIC_MASK_GENERATION_MAPPING`

* update sam config based on review

Co-authored-by: amyeroberts <aeroberts4444@gmail.com>
Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* update low_resolution_masks -> pred_masks
inti ln with layer_norm_eps
add_decomposed_rel_pos doc
forward doc of SamForMaskGeneration

* update processor docstring

* remove image processor import empty

* update for testing

* output vision hidden states + clean recomm
also test all iou values

* fixup

* fixup

* remove unused

* Update src/transformers/models/sam/modeling_sam.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/sam/image_processing_sam.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* nits

* fix

* fix CI tests and slow tests

* replace with Amy's processor

* clearer docstring

* add `SamVisionNeck`

* refactor - all CI tests should pass

* fix broken import on Gcolab

* few fixes here and there

* fix another bug

* fix more bugs

* update and merge

* correct ckpt

* address comments

* add tips

* revert

* fix docstring

* replace with `SamModel`

* make fixup

* add support for bathed images and batch ed points

* make fixup this time, really

* make fixup again and again

* few fixes here and there, this should be the touche finale

* Update docs/source/en/model_doc/sam.mdx

* fixup

* correct checkpoints

* correct name

* rm unneeded file

* add notebook

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: amyeroberts <aeroberts4444@gmail.com>
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-04-19 21:01:49 +02:00
898efca72a Fix to removing ESM special tokens (#22870)
Fix to make sure the EOS token doesn't come back
2023-04-19 19:42:29 +01:00
a8aad0ec93 Fixup multigpu local_rank (#22869)
Fixup multigpu tests
2023-04-19 14:37:16 -04:00
06bab00338 Remove some pipeline skip cases (#22865)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-19 20:27:19 +02:00
648bd5a8aa Show diff between 2 CI runs on Slack reports (#22798)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-19 19:27:37 +02:00
5f97bbc124 Remove 'main' from doc links (#22860) 2023-04-19 15:03:57 +01:00
4603fe9b1f use accelerate@main in CI (#22859)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-19 14:58:53 +02:00
337225ec1c feat(model parallelism): move labels to the same device as logits for M2M100 (#22850)
moved logits for m2m_100
2023-04-19 08:54:27 -04:00
6bd8ae2640 move preprocess_logits_for_metrics before _nested_gather in trainer.e… (#22603)
* move preprocess_logits_for_metrics before _nested_gather in trainer.evaluation_loop

* fix

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix

* fix

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-19 08:53:47 -04:00
c582e8aad0 fix SpeechT5 doc comments (#22854)
fix doc comments
2023-04-19 14:10:40 +02:00
84a6570e7b Make ClipSeg compatible with model parallelism (#22844) 2023-04-18 19:31:59 -04:00
5bb4ec6233 Raise err if minimum Accelerate version isn't available (#22841)
* Add warning about accelerate

* Version block Accelerate

* Include parse

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Check partial state

* Update param

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-18 14:25:02 -04:00
5f09219400 Fix from_pretrained when model is instantiated on the meta device (#22837) 2023-04-18 13:54:18 -04:00
5f9b825c89 Use code on the Hub from another repo (#22814)
* initial work

* Add other classes

* Refactor code

* Move warning and fix dynamic pipeline

* Issue warning when necessary

* Add test

* Do not skip auto tests

* Fix failing tests

* Refactor and address review comments

* Address review comments
2023-04-18 13:46:11 -04:00
aec10d162f Update accelerate version + warning check fix (#22833) 2023-04-18 12:51:32 -04:00
78cda46f17 Generate: Add assisted generation (#22211)
* working mvp

* remove breakpoint

* fix commit

* standardize outputs

* tmp commit

* tests almost ready

* tmp commit

* skip a few models

* Add streaming; Docs and examples

* document limitations

* PR commits

* Amy PR comments
2023-04-18 17:36:56 +01:00
90247d3e01 Fix test_eos_token_id_int_and_list_top_k_top_sampling (#22826)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-18 16:04:51 +02:00
1ebc1dee92 Fix Past CI not running against the latest main (#22823)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-18 15:41:41 +02:00
42288269c3 🌐 [i18n-KO] Fix anchor links for docs auto_tutorial, training (#22796)
docs: ko: fix anchor links for docs (auto_tutorial, training)

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Na Yeon Han <nayeon2.han@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-04-18 09:11:30 -04:00
ac2bc50a10 TTS fine-tuning for SpeechT5 (#21824)
* wrong argument name

* append eos_token_id

* all tokenizers need mask and ctc_blank tokens

* remove reduction factor from feature extractor

* add proper TTS loss

* did shifting the wrong way around

* mask out padded portions

* remove logits again (don't really need it)

* fix unit tests

* fixup

* pad also returns the decoder attention mask, since that's useful to have

* clean up feature extractor logic

* pad can handle TTS task too

* remove stop_labels from loss calculation

* simplify logic

* fixup

* do -100 masking properly

* small STFT optimization (calculate mel filterbanks only once)

* replace torchaudio fbanks with audio_utils

* remove torchaudio dependency

* simplify & speed up the STFT

* don't serialize window and mel filters

* output cross attentions when generating speech

* add guided attention loss

* fix failing test

* Update src/transformers/models/speecht5/feature_extraction_speecht5.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/speecht5/modeling_speecht5.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* change type annotation of attention_mask to LongTensor

* extract loss into class

* remove unused frame_signal_scale argument

* use config object in loss class

* fix type annotations in doc comments

* change optional to just bool

* implement missing tokenizer method

* add deprecation warning

* Update src/transformers/models/speecht5/feature_extraction_speecht5.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/speecht5/feature_extraction_speecht5.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add deprecation warning for stop_labels

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-18 10:12:30 +01:00
dacd34568d Mark auto models as important (#22815)
* Mark auto models as important

* Annoying file with bad line endings
2023-04-17 15:33:01 -04:00
03462875cc Introduce PartialState as the device handler in the Trainer (#22752)
* Use accelerate for device management

* Add accelerate to setup


Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-17 15:09:45 -04:00
50caa20628 Revert "Use code on the Hub from another repo" (#22813)
Revert "Use code on the Hub from another repo (#22698)"

This reverts commit ea7b0a539a92a79b829cfc7d41d28f33f993e820.
2023-04-17 14:22:13 -04:00
e13d6ef7dc Simplify update metadata job (#22811)
* Simplify update metadata job

* Match more branch names

* Install all what is necessary

* Install all what is necessary

* Forgot the dev

* Install less stuff

* This syntax?
2023-04-17 13:54:20 -04:00
cd3e0211a6 Remove accelerate from tf test reqs (#22777)
Remove accelerate from tf
2023-04-17 12:31:21 -04:00
f8c43c9425 Fix squeeze into torch 1.x compatible form in llama model (#22808)
fix-squeeze-tuple
2023-04-17 17:28:48 +01:00
5269718cb7 Don't use LayoutLMv2 and LayoutLMv3 in some pipeline tests (#22774)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-17 17:45:20 +02:00
ea7b0a539a Use code on the Hub from another repo (#22698)
* initial work

* Add other classes

* Refactor code

* Move warning and fix dynamic pipeline

* Issue warning when necessary

* Add test
2023-04-17 11:36:29 -04:00
4d2c52e830 🌐 [i18n-KO] Translated tasks/translation.mdx to Korean (#22805)
docs: ko: tasks/translation.mdx
2023-04-17 11:30:17 -04:00
2237127a6c Fix sneaky torch dependency in TF example (#22804) 2023-04-17 16:11:52 +01:00
626c1b8af1 improve(llama): Faster apply_rotary_pos_emb (#22785) 2023-04-17 15:18:38 +01:00
abbc96a214 [i18n-KO] fix: docs: ko: sagemaker anchors and _toctree.yml (#22549)
fix: docs: ko: sagemaker anchors and  `_toctree.yml`

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Na Yeon Han <nayeon2.han@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-04-17 07:41:52 -04:00
18c894814e 🌐 [i18n-KO] Translated custom_models.mdx to Korean (#22534)
docs: ko: translated `custom_models.mdx`

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-04-17 07:39:53 -04:00
76d24f1a83 Fix test_word_time_stamp_integration for Wav2Vec2ProcessorWithLMTest (#22800)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-17 12:41:55 +02:00
28f26c107b Generate: add CJK support to TextStreamer (#22664) 2023-04-15 10:35:08 +01:00
fb3aa06cb6 Move labels to the same device as logits for Whisper (#22779) 2023-04-14 19:08:41 -04:00
20e54e49fa Indexing fix - CLIP checkpoint conversion (#22776)
* Indexing fix - CLIP checkpoint conversion

* Fix up
2023-04-14 19:12:47 +01:00
895ae3b5c4 Seq2SeqTrainer: Evict decoder_input_ids only when it is created from labels (#22772) 2023-04-14 17:45:14 +01:00
daf53241d6 Fix word_ids hyperlink (#22765)
* Fix word_ids hyperlink

* Add suggested fix
2023-04-14 16:18:15 +01:00
06e737fbaf Tweak ESM tokenizer for Nucleotide Transformer (#22770)
* If EOS is None, don't add it to sequences

* If EOS is None, don't add it to sequences
2023-04-14 15:18:43 +01:00
c8df3900c8 [WIP]🌐 [i18n-KO] Translated tutorial/proprecssing.mdx to Korean (#22578)
* add ko preprocessing

* translate preprocessing.mdx to korean

* translate preprocessing.mdx

* Update preprocessing.mdx

Fixed the line 273 as below:
또한, 특징 추출기에 `sampling_rate` 인자를 추가하여 발생할 수 있는 조용한 오류(silent errors)를 더 잘 디버깅하는 것을 권장합니다.

* translate Image part

* translated preprocess.mdx

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

* Update docs/source/ko/preprocessing.mdx

* Update docs/source/ko/preprocessing.mdx

* Update docs/source/ko/preprocessing.mdx

* Update docs/source/ko/preprocessing.mdx

* Update docs/source/ko/preprocessing.mdx

* fixed translation

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-04-14 07:26:44 -04:00
53c710d17b Fix failing torchscript tests for CpmAnt model (#22766)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-14 12:53:45 +02:00
d2ffc3fc48 Fix a mistake in Llama weight converter log output. (#22764)
Fixed string format; better tokenizer message.

Before: `Saving a {tokenizer_class} to {tokenizer_path}`
After: `Saving a LlamaTokenizerFast to outdir.`
2023-04-14 10:26:45 +01:00
9af845afc2 Generate: pin number of beams in BART test (#22763) 2023-04-14 09:57:25 +01:00
66b15efb20 Pix2struct: doctest fix (#22761) 2023-04-14 09:40:39 +01:00
390e121fb5 [Examples] TPU-based training of a language model using TensorFlow (#21657)
* add: tokenizer training script for TF TPU LM training.

* add: script for preparing the TFRecord shards.

* add: sequence of execution to readme.

* remove limit from the tfrecord shard name.

* Add initial train_model.py

* Add basic training arguments and model init

* Get up to the point of writing the data collator

* Pushing progress so far!

* Complete first draft of model training code

* feat: grouping of texts efficiently.

Co-authored-by: Matt <rocketknight1@gmail.com>

* Add proper masking collator and get training loop working

* fix: things.

* Read sample counts from filenames

* Read sample counts from filenames

* Draft README

* Improve TPU warning

* Use distribute instead of distribute.experimental

* Apply suggestions from code review

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Modularize loading and add MLM probability as arg

* minor refactoring to better use the cli args.

* readme fillup.

* include tpu and inference sections in the readme.

* table of contents.

* parallelize maps.

* polish readme.

* change script name to run_mlm.py

* address PR feedback (round I).

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-04-14 10:41:01 +05:30
bfb3925fcb 🌐 [i18n-KO] Translated sequence_classification.mdx to Korean (#22655)
* docs: ko: init: tasks/sequence_classification.mdx

* docs: ko: revised: change voca in tasks/sequence_classification.mdx

* docs: ko: revised: [RE] change voca in tasks/sequence_classification.mdx

* docs: ko: revised: spell check and sentence naturally in tasks/sequence_classification.mdx

* docs: ko: revised: spell check and consistent vocabulary in tasks/sequence_classification.mdx

* docs: ko: revised: Add full stop and change voca in tasks/sequence_classification.mdx

* docs: ko: revised: sync first section templates in tasks/sequence_classification.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* fix: revert use of full-stops to colons

* colons are used to emphasize the code block that follows

* @0525hhgus @wonhyeongseo docs: ko: revised: sync second section templates in tasks/sequence_classification.mdx

Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>

* docs: ko: revised: change 'train', 'finetuning' in tasks/sequence_classification.mdx

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-04-13 21:40:36 -04:00
a6752a7d3c Fix serving_output for TF composite models (encoder-decoder like models) (#22743)
* fix

* style

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-13 23:45:22 +02:00
410b61ad7e Revert (for now) the change on Deta in #22437 (#22750)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-13 21:32:29 +02:00
9dfd6a4baa Generate: handle text conditioning with multimodal encoder-decoder models (#22748) 2023-04-13 19:51:13 +01:00
90ce374d14 fix(llama): fix LlamaTokenzier (#22746)
Bug in LlamaTokenizer when  #22742
2023-04-13 18:19:38 +01:00
d85bf95436 [trainer] update url (#22747)
* [trainer] update url

* style
2023-04-13 09:23:55 -07:00
656d41ab4c Remove DS_BUILD_AIO=1 (#22741)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-13 18:08:22 +02:00
32b08742a5 DocumentQuestionAnsweringPipeline only for fast tokenizers (#22745)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-13 17:22:59 +02:00
4def2fe969 🌐 [i18n-KO] Translated training.mdx to Korean (#22670)
translate training doc to Korean
2023-04-13 11:04:47 -04:00
7df1343292 Change torch_dtype to str when saved_model=True in save_pretrained for TF models (#22740)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-13 15:52:16 +02:00
8eb38f638d [Pix2struct] Simplify generation (#22527)
* Add model to doc tests

* Remove generate and replace by prepare_inputs_for_generation

* More fixes

* Remove print statements

* Update integration tests

* Fix generate

* Remove model from auto mapping

* Use auto processor

* Fix integration tests

* Fix test

* Add inference code snippet

* Remove is_encoder_decoder

* Update docs

* Remove notebook link
2023-04-13 09:01:14 -04:00
95e7057507 Make vilt, switch_transformers compatible with model parallelism (#22703)
* Update modeling_vilt.py

Vilt compatible with model parallelism

* Update modeling_switch_transformers.py

switch_transformers compatible with model parallelism
2023-04-13 06:50:30 -04:00
89087597ba Indexing fix for gpt_bigcode (#22737)
Fix indexing
2023-04-13 11:00:37 +01:00
7ade6ef7d4 [Doctest] Add configuration_mvp.py (#22735)
* added configuration file for mvp model

* added configuration_mvp.py line to file
2023-04-13 08:19:18 +02:00
51007976ec [Doctest] Add configuration_m2m_100.py (#22733)
m2m-100-config for doctest
2023-04-13 08:17:07 +02:00
888c4a2ae0 v4.29.0.dev0 2023-04-12 20:04:29 -04:00
50f82e1282 Fix docstrings for TF BLIP (#22618)
* Fix docstrings for TFBLIP

* Fix missing line in TF port!

* Use values from torch tests now other bugs fixed

* Use values from torch tests now other bugs fixed

* Fix doctest string
2023-04-12 17:46:41 +01:00
ce06e4780e Update warning levels (#22727)
* Use different level

* Remove futurewarning

* Use warning_once

* Update copies
2023-04-12 17:25:24 +01:00
9858195481 add fast support and option (#22724)
* add fast support and option

* update based on review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/llama/convert_llama_weights_to_hf.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* nit

* add print

* fixup

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-12 18:10:04 +02:00
10fab90fe2 torch.distributed group initialization for torch_neuron disabled when optimum-neuron is installed (#22728)
* Make the process group initialization not happen if optimum_neuron is installed

* Add warning

* Remove list and added warning
2023-04-12 17:42:50 +02:00
1306b7d3ae [tests] switch to torchrun (#22712) 2023-04-12 08:25:45 -07:00
d87ef00c31 Modify pipeline_tutorial.mdx (#22726)
generator(model="openai/whisper-large") always returns error. As the error says the generator expects an input, just like the .flac file above. Even the generator object has no parameters called model. While there are parameters which can be passed to generator like 'batch_size' but to pass a model i believe the the parameter has to be passed while instantiating the pipeline and not as a parameter to the instance.

I believe the correct term should be:

generator = pipeline(model="openai/whisper-large", device=0)
2023-04-12 15:20:25 +01:00
370f0ca18c [bnb] Let's make serialization of int8 models possible (#22177)
* make serialization of int8 models possible

* make fixup

* add docs

* add ability to push to hub and save pretrained

* fixes

* more addition

* more tests

* fix issues

* change variable

* clearer message

* adapt from suggestions

* few fixes

* remove unused function

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address last comments

* last warning

* clarify doc

* protect import

* Update src/transformers/modeling_utils.py

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-12 08:01:18 -04:00
523ca4e016 add model resources for CPMAnt (new) (#20906)
* resolve conflicts

* rebase and make style

* test

* test

* test

* rebase and make style

* rebase and make style

* tests

* tests

* rewrite some functions

* rebase and make style

* fix load_tf_weights_in_cpmant

* reformat some unrelated files

* upgrade quality

* fix some bugs & docstring

* add models and tests

* solve conflicts

* resolve conflicts

* resolve conflicts

* resolve conflicts

* resolve conflicts

* tests

* resolve conflicts

* resolve conflicts

* fix load_tf_weights_in_cpmant

* reformat some unrelated files

* upgrade quality

* fix some bugs & docstring

* save resolution

* make style

* delete redefinition code

* reformat function

* reformat

* resolve conflicts

* resolve conflicts

* resolve conflicts

* resolve conflicts

* resolve conflicts

* tests

* resolve conflicts

* resolve conflicts

* fix load_tf_weights_in_cpmant

* reformat some unrelated files

* upgrade quality

* resolve conflicts

* resolve conflicts

* resolve conflicts

* resolve conflicts

* resolve conflicts

* fix load_tf_weights_in_cpmant

* reformat some unrelated files

* upgrade quality

* resolve conflicts

* make style

* fix bugs and refactor

* modify docstrings and make style

* unify import format in __init__.py

* fix import-altclp bug

* fix copies to update index.md

* fix unused config parameters

* fix unused config parameters

* fix unused config parameters

* update README_ja.md

* dummy commit for unit test

* fix attention mask

* add CPMAntTokenizer&-Fast to auto-mapping

* drop redundant changes in README_ko

* fix  defaults in docstring

* fix use_cache and some docstring

* add missing args in tokenizer

* modify tester inheritance

* add is_jieba_available

* fix some bugs

* make style and fix-copies

* add doctests

* skip integration tests

* add is_jieba_available

* fix bugs in common tests

* adjust docstrings and make style

* add argument docstring

* adjust code to some specifications

* make style and fix-copies

* add fast tokenization test

* dummy commit for unit test

* dummy commit for unit test

* dummy commit for unit test

* normalize some comments and names

* Bert->CPMAnt

* camel names and drop redundant codes

* make style and fix-coies

* add CpmTokenizerFast _import_structure

* drop cpmanttokenizerfast in model_doc

* fix some problems

* fix CPMAnt tokenization for common test

* make style and fixup

* fix copies and fixup

* fix bugs in tokenization test

* dummy commit for connection failure in unittest

* fix copies

* drop trailing comma

* fix decorator in tests

* dummy commit for connection failure in unittest

---------

Co-authored-by: Gong Baitao <gongbaitao11@gmail.com>
2023-04-12 07:33:20 -04:00
17503b00ea Added parallel device usage for GPT-J (#22713) 2023-04-12 07:31:27 -04:00
b76e6ebd44 remove wrong doc in readme (#22723) 2023-04-12 07:11:12 -04:00
5a71977b8b Update input values for docstring (#22631) 2023-04-12 11:44:29 +01:00
fe1f5a639d Fix decorator order (#22708)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-11 17:59:15 +02:00
1b1867d86b Replace -100s in predictions by the pad token (#22693)
* Replace -100s in predictions by the pad token

* Style

* Try to catch them all
2023-04-11 09:32:20 -04:00
ff73deeb0e Remove 2 failing ONNX conversion tests (#22660)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-11 15:26:32 +02:00
06b05d4575 Clarify stride option (#22684)
* Clarify stride option

* formatting
2023-04-11 14:06:54 +01:00
0224aaf67f Enable naive Pipeline Parallelism training for Gpt neox japanese and san japanese (#22702)
Move labels to same device as logits
2023-04-11 09:06:17 -04:00
28c19ab58d Make it easier to develop without a dev install (#22697)
* Make it easier to develop without a dev install

* Remove ugly hack that doesn't work anyway
2023-04-11 08:41:53 -04:00
4c01231e67 Update some MarkupLM tests' expected values (#22667)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-11 10:00:34 +02:00
151425ddb2 Model parallelism: Moving labels to same devices as the logits are (#22691)
Model parallelism correct labels device
2023-04-10 12:22:53 -04:00
6daa9cb515 add GPTNeoXForSequenceClassification (#22671)
* add GPTNeoXForSequenceClassification

* move the labels to logits.device (ref: #22561)

* fix
2023-04-10 11:52:23 -04:00
f74b40208d use __func__ to check can_generate (#22643) 2023-04-10 09:06:52 -04:00
14fc1a2467 Fix quantization docs typo (#22666) 2023-04-10 08:53:53 -04:00
3876fc6839 Make dynamic code work with offline mode (#22661)
* Make dynamic code work with offline mode

* Clean up

* Quality
2023-04-10 08:49:42 -04:00
98597725f1 (feat): Moving labels to same device as logits for Deit (#22679) 2023-04-10 08:04:57 -04:00
870d91fb89 Model parallelism: Moving labels to the same device as logits for BridgeTower models (#22676)
BrideTower Model parallelism logits device for loss calculation
2023-04-10 08:04:14 -04:00
e0921c6b53 Add GPTBigCode model (Optimized GPT2 with MQA from Santacoder & BigCode) (#22575)
* Add model with cli tool

* Remove unwanted stuff

* Add new code

* Remove inference runner

* Style

* Fix checks

* Test updates

* make fixup

* fix docs

* fix doc

* fix test

* hopefully fix pipeline tests

* refactor

* fix CIs

* add comment

* rename to `GPTBigCodeForCausalLM`

* correct readme

* make fixup + docs

* make fixup

* fixes

* fixes

* Remove pruning

* Remove import

* Doc updates

* More pruning removal

* Combine copies

* Single MQA implementation, remove kv cache pre-allocation and padding

* Update doc

* Revert refactor to match gpt2 style

* Merge back key and value caches, fix some type hints

* Update doc

* Fix position ids pith padding (PR 21080)

* Add conversion script temporarily

* Update conversion script

* Remove checkpoint conversion

* New model

* Fix MQA test

* Fix copies

* try fix tests

* FIX TEST!!

* remove  `DoubleHeadsModel`

* add MQA tests

* add slow tests

* clean up

* add CPU checker

* final fixes

* fixes

- fix GPU issue
- fixed slow tests
- skip disk offload

* fix final issue

* Simplify and comment baddbmm fix

* Remove unnecessary code

* Transpose tweaks

* Use beta=1 on cpu, improve tests

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-04-10 10:57:21 +02:00
656e869a45 moved labels to the same device as logits for BLOOM, GPT Neo, GPT NeoX, RoBERTa and VIT models (#22663)
moved labels to the same device as logits
2023-04-07 17:04:54 -04:00
6db23af50c Revert migration of setup to pyproject.toml (#22658) 2023-04-07 15:08:44 -04:00
3f96e0b4e4 Generate: add API warning to streamers (#22659)
add API warning
2023-04-07 14:15:20 -04:00
f33419261a [OPT] Fix default attention mask size (#22649)
* Fix default attention mask size

* fixup

* add a test to make sure that even if attention mask are not provided, works

* style
2023-04-07 20:12:57 +02:00
b1b3dc3e52 [tokenization] do not push special file (#22657)
* do not push special file

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-07 20:12:36 +02:00
117a0f6afa Small nit, (#22653)
* Small nit,
Fixes #21986

* Update src/transformers/pipelines/__init__.py
2023-04-07 17:29:23 +02:00
fc1ba6fd11 🌐 [i18n-KO] Translated pipeline_tutorial.mdx to Korean (#22508)
docs: feat: Korean pipeline_tutorial

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: gabrielwithappy <102908949+gabrielwithappy@users.noreply.github.com>
Co-authored-by: Na Yeon Han <nayeon2.han@gmail.com>
2023-04-07 11:27:59 -04:00
14d5b2b645 Fix MegaModel CI (#22652)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-07 17:13:04 +02:00
f2cc8ffdaa Fix typo (#22650) 2023-04-07 08:46:23 -04:00
1de8ce9ee1 Move labels to the same device as logits for LlamaForSequenceClassification and Blip2 (#22596)
* (feat): Move labels to the same device as logits

* Trigger CI

* Trigger CI

* Trigger CI

* (feat): Making changes for Blip2
2023-04-07 08:23:55 -04:00
d59034ff6f 🌐[i18n-KO] Translate autoclass_tutorial to Korean and Fix the typo of quicktour (#22533)
translate the autoclass_tutorial and fix the typo of the quicktour
2023-04-07 08:12:35 -04:00
ee8e80a060 fix FSDP version related issues (#22489)
fix fsdp
2023-04-07 04:25:19 +05:30
c7ec71baf5 Update tiny model summary file for recent models (#22637)
* Update tiny model summary file for recent models

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-06 22:52:59 +02:00
ed67286465 [Blip] Fix slow tests and doctests with correct values (#22632)
fix slow tests and doctests
2023-04-06 19:12:51 +02:00
6a02e98074 LlamaTokenizerFast Fix (.., from_slow=True). (#22630) 2023-04-06 18:52:59 +02:00
09a9888fe9 [bnb] 8bit models should not be converted to DDP (#22628)
add safety checker
2023-04-06 18:09:24 +02:00
d0b83fe2e1 A script to add/update pipeline_model_mapping systematically (#22180)
* Auto. add and update pipeline_model_mapping

* Fix style and quality

* Finalize (comments)

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-06 18:08:14 +02:00
fa01127a67 update_pip_test_mapping (#22606)
* Add TFBlipForConditionalGeneration

* update pipeline_model_mapping

* Add import

* Revert changes in GPTSanJapaneseTest

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-06 17:56:06 +02:00
321b0908dd docs: Fix broken link to generation strategies (#22623)
fix broken link
2023-04-06 11:48:50 -04:00
2c22bc79c2 Make tiny model creation + pipeline testing more robust (#22500)
* Final Tiny things

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-06 17:45:55 +02:00
12d51db243 Backbone add mixin tests (#22542)
* Add out_indices to backbones, deprecate out_features

* Update - can specify both out_features and out_indices but not both

* Add backbone mixin tests

* Test tidy up

* Add test_backbone for convnext

* Remove redefinition of method

* Update for Dinat and Nat backbones

* Update tests

* Smarter indexing

* Add checks on config creation for backbone

* PR comments
2023-04-06 13:50:15 +01:00
48706c7178 Seq2SeqTrainer: use unwrapped model to retrieve the generation config (#22584) 2023-04-06 13:29:58 +01:00
0aa1153ffb Revert error back into warning for byte fallback conversion. (#22607) 2023-04-06 14:00:29 +02:00
1670be4bde Adding Llama FastTokenizer support. (#22264)
* Adding Llama FastTokenizer support.

- Requires https://github.com/huggingface/tokenizers/pull/1183 version
- Only support byte_fallback for llama, raise otherwise (safety net).
- Lots of questions are special tokens

How to test:

```python

from transformers.convert_slow_tokenizer import convert_slow_tokenizer
from transformers import AutoTokenizer
from tokenizers import Tokenizer

tokenizer = AutoTokenizer.from_pretrained("huggingface/llama-7b")

if False:
    new_tokenizer = Tokenizer.from_file("tok.json")
else:
    new_tokenizer = convert_slow_tokenizer(tokenizer)
    new_tokenizer.save("tok.json")

strings = [
    "This is a test",
    "生活的真谛是",
    "生活的真谛是[MASK]。",
    # XXX: This one is problematic because of special tokens
    # "<s> Something something",
]

for string in strings:
    encoded = tokenizer(string)["input_ids"]
    encoded2 = new_tokenizer.encode(string).ids

    assert encoded == encoded2, f"{encoded} != {encoded2}"

    decoded = tokenizer.decode(encoded)
    decoded2 = new_tokenizer.decode(encoded2)

    assert decoded.strip() == decoded2, f"{repr(decoded)} != {repr(decoded2)}"
```

The converter + some test script.

The test script.

Tmp save.

Adding Fast tokenizer + tests.

Adding the tokenization tests.

Correct combination.

Small fix.

Fixing tests.

Fixing with latest update.

Rebased.

fix copies + normalized added tokens  + copies.

Adding doc.

TMP.

Doc + split files.

Doc.

Versions + try import.

Fix Camembert + warnings -> Error.

Fix by ArthurZucker.

Not a decorator.

* Fixing comments.

* Adding more to docstring.

* Doc rewriting.
2023-04-06 09:53:03 +02:00
1564189298 feat(model parallelism): moving the labels to the same device as the logits for gpt2 and bart (#22591) 2023-04-05 14:37:17 -04:00
e577bd0f13 Use native TF checkpoints for the BLIP TF tests (#22593)
* Use native TF checkpoints for the TF tests

* Remove unneeded exceptions
2023-04-05 18:43:14 +01:00
176ceff91f Add DePlot + MatCha on transformers (#22528)
* add deplot + matcha on `transformers`

* more docs

* correct path

* Update docs/source/en/model_doc/deplot.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix

* use auto processor

* Update docs/source/en/model_doc/matcha.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make fixup

* Update docs/source/en/model_doc/deplot.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add correct names

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2023-04-05 17:43:48 +02:00
126eafe396 Adding support for BPE merge creation from scores instead of ids. (#22582)
* Adding support for BPE merge creation from scores instead of ids.

* Revert warn -> raise.

* Update src/transformers/convert_slow_tokenizer.py

* Quality.
2023-04-05 16:03:06 +02:00
12f1a3bb3c Fix a typo in one of the BLIP pretrained checkpoint names (#22588)
Fixes a typo in one of the BLIP pretrained checkpoint names
2023-04-05 14:56:20 +01:00
d5239bab5b Sync preprocesses before loading the processor at run_speech_recognition_ctc.py (#21926)
* Update run_speech_recognition_ctc.py

Make sure all processes wait until data is saved before loading the processor from the output_dit

* Make sure all processes wait until data is saved before loading the processor from the output_dit

* Update run_speech_recognition_ctc.py

* Update run_speech_recognition_seq2seq.py
2023-04-05 09:36:04 -04:00
f49b0762a1 docs: ko: complete _toctree.yml (#22581)
Co-authored-by: gabrielwithappy <102908949+gabrielwithappy@users.noreply.github.com>
2023-04-05 09:32:17 -04:00
4861c25817 Add thousands separator in training summary (#22583)
The logger prints a summary at the beginning of training that displays some info such as number of examples, number of parameters, total number of steps, etc. Those numbers can be quite large and difficult to read. I added a thousand separator to improve readability for the following:
- num_examples
- num_train_epochs
- per_device_train_batch_size
- total_train_batch_size
- max_steps
- num_trainable_params
2023-04-05 09:28:38 -04:00
2a91a9ef66 Fix PT-TF equivalence test for GPT1 (#22586)
* Re-enable skipped test and fix the hidden state shape issue

* Actually fix the bug instead of just doing something wrong
2023-04-05 13:16:00 +01:00
0684284911 Tests: disable accelerate_tests mark warnings (#22585) 2023-04-05 13:13:26 +01:00
6c640f098a Move back doctest instructions to setup.cfg (#22587) 2023-04-05 07:53:19 -04:00
861ff890d6 Generate: TextIteratorStreamer timeout (#22576) 2023-04-05 09:57:46 +01:00
11fd2c773b Skip failing test 2023-04-04 21:26:17 -04:00
edb704b26e Fix inverted conditional in TF common test! (#22540)
* Fix inverted conditional in TF common test!

* Make the same change in the PT tests file

* Make sure hidden states for GPT2 have the same output shape in PT/TF

* Minor fix to PT implementation of token classification loss

* Skip loss equivalence test for TFHubert because it keeps overflowing to inf

* Compute LM loss for TF the (weird) way it's computed in PT

* Skip loss equivalence test for Wav2Vec2 for the same reason as Hubert

* Fix - don't try to access the hidden states property when output is a tuple
2023-04-04 21:59:54 +01:00
48fbd8fa2e fix _no_split_modules for Whisper model (#22486) 2023-04-04 13:01:32 -04:00
900677487d Flax Regnet (#21867)
* initial commit

* review changes

* post model PR merge

* updating doc
2023-04-04 12:41:12 -04:00
fc5b7419d4 corrected the code comment for the output of find_pruneable_heads_and_indices (#22557)
* corrected/clarified the code comment of find_pruneable_heads_and_indices

* have run make style
2023-04-04 11:29:42 -04:00
5f3ea66bc0 Add TF port of BLIP (#22090)
* Initial commit

* more stash commit

* Yet another stash commit

* yet more stash commit

* Mostly working except for docs / repo consistency

* Stop importing model list from torch file

* Add TF BLIP models to docs

* Add auto classes

* Move get_text_features and get_image_features

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip_text.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/blip/test_modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/blip/test_modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/models/blip/test_modeling_tf_blip_text.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip_text.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Use channels_last convolutions in TF (better performance + compatibility)

* Remove _shape function

* Move multi-line statement to one line in PT + TF

* Specify tf.keras.layers instead of importing from it

* Remove test_gradient_checkpointing and empty test_training methods

* move some multi-line statements to one line

* Update docstring for generate

* Remove pruned heads set

* Remove self.seq_len_dim

* Fixed issues with loss computation, should resolve some tests. Also ensured that the PT version follows the config for output_attentions and output_hidden_states

* ensure original model follows config in more cases

* Skip the same cross-attention tests in the PT tests - didn't realize we did it twice!

* Add training args throughout the models and layers

* make fixup

* Fix docstring for inputs_embeds

* Add docstring for is_decoder

* Add docstrings to text models

* Remove redundant computation

* Add unpack_inputs / keras_serializable

* Add modeling_tf_blip to doctests

* Add config classes for keras serialization

* Changes to allow model porting with pt-to-tf

* Quick fix to decoder head and test tweaks

* Revert an issue with masking the embeddings outputs

* Allow missing keys in some equivalence tests (for unused layers)

* Add tf-pt equivalence tests back in

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip_text.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip_text.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make fixup

* Refactor invert_attention_mask out into tf_utils

* Re-enable cross-tests on the PT side too

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-04 16:05:22 +01:00
a515d0a77c Soft error whisper. (#22475)
* Soft error whisper.

* Fix format.

---------

Co-authored-by: Ubuntu <ubuntu@ip-172-31-34-94.taildb5d.ts.net>
2023-04-04 16:21:57 +02:00
98268b2e76 Add id2label and label2id to model's config in run_xnil (#22558)
Add id2label and label2id to config in run_xnil
2023-04-04 09:28:57 -04:00
fa2bdffc5d [bnb] Fix typo (#22556)
Update modeling_utils.py
2023-04-04 15:26:45 +02:00
28fcf00607 Remove hack for dynamic modules and use Python functions instead (#22537) 2023-04-04 09:20:13 -04:00
871598be55 Implemented safetensors checkpoints save/load for Trainer (#22498)
* implemented safetensors save/load

* remove duplicated file

* added tests

* more tests

* style fix

* fix tf tests

* change to list comprehension

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* review fixes + safe load for sharded checkpoint

* style fix

* remove rogue import

* remove partial to avoid undefined exception

* use naming alias instead of safetensors.torch

* fix safe sharding in tests

* grammar

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* update docs

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* update docs

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* minor corrections

* style

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-04 09:05:04 -04:00
00b5887b94 🚨🚨🚨 [NLLB Tokenizer] Fix the prefix tokens 🚨🚨🚨 (#22313)
* fix the prefix tokens

* update fast and test values

* add legacy behaviour

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* update disclaimer, linkissue PR and behaviral changes

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <hi@lysand.re>

* styling

* make a quote

* quote this time

---------

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-04-04 14:53:06 +02:00
ad5e9b6c6a [Roformer] Fixing a bug in RoFormerEncoder where it was ignoring the length of past_key_values when generating as a decoder (#22416)
* fix RoFormerEncoder postion embedding when generate as decoder

* make fixup

* add test case for check generate with past key values

* remove duplicating code
2023-04-04 12:50:33 +02:00
1905384fd5 Generate: Add text streamer decoding options (#22544) 2023-04-04 09:03:13 +01:00
41a2f3529c Fix OPTForQuestionAnswering doc string (#22481)
* Fix OPTForQuestionAnswering doc string

for more adequate model answer decoding

* black style fix

* doc-builder style
2023-04-03 21:05:31 -04:00
159ff3342c Update test_image_processing_pix2struct.py (#22543) 2023-04-03 15:26:35 -04:00
c14d31294e Skip failing test 2023-04-03 14:07:40 -04:00
4169dc84bf [setup] migrate setup script to pyproject.toml (#22539)
* [setup] migrate setup script to `pyproject.toml`

* [setup] cleanup configurations

* remove unused imports
2023-04-03 14:03:41 -04:00
a17841ac49 Generate: Enable easier TextStreamer customization (#22516) 2023-04-03 18:49:38 +01:00
80d1319e1b [setup] drop deprecated distutils usage (#22531)
* [setup] drop deprecated `distutils` usage

* drop deprecated `distutils.util.strtobool` usage

* fix import order

* reformat docstring by `doc-builder`
2023-04-03 12:04:24 -04:00
4c33a0c4fc Fix missing metrics with multiple eval datasets (#22536) 2023-04-03 12:03:57 -04:00
d7a4f5becc [T5] Enable naive Pipeline Parallelism training for T5 (#22535)
* enable PP for T5

* make fixup

* fix failing tests
2023-04-03 17:55:37 +02:00
cab048fb35 [Trainer] Force is_model_parallel when model is loaded in multiple GPUs using accelerate (#22532)
* add `is_model_parallel` arg on Trainer

* add warning

* adapt from suggestions

* revert t5 changes

* remove commas

* adapt from suggestions
2023-04-03 17:10:50 +02:00
aecbcb3680 [BLIP] fix cross attentions for BlipTextEncoder (#22515) 2023-04-03 11:00:26 -04:00
4e441e529c fix LayoutLMv3TokenizerFast subword label after 'Ġ' token (#21695)
LayoutLMv3TokenizerFast produces empty 'Ġ' token with `offset_mapping = (0, 0)`.
Next token is wrongly assumed to also be beginning of word and isn't
correctly assigned `pad_token_label`.
Modify test with text that produce 'Ġ' token.
Remove copy check from LayoutLMv2TokenizerFast for `_batch_encode_plus`.

solves issue: #19978
2023-04-03 10:32:36 -04:00
a60010566a llama docs: fix conversion script url (#22514) 2023-04-03 10:28:40 -04:00
9419f144ad Fix convert_opt_original_pytorch_checkpoint_to_pytorch.py typo (#22526)
`load_checkpoint()` silently fails because `".qkj_proj." in key` is always `False`, but will eventually cause an error at `model.load_state_dict(state_dict)`.
2023-04-03 10:06:52 -04:00
a55a822adf Generate: TextIteratorStreamer (streamer for gradio) (#22501)
* haha text go brrr (but in gradio)
2023-04-03 15:04:37 +01:00
7d25c9c81e added biogpt token classifier (#22447)
* added biogpt token classifier

* fix reviews

* Updated modeling_biogpt.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-04-03 09:20:02 -04:00
1194c3e315 [WIP] docs: ko: sagemaker.mdx (#22509)
docs: ko: sagemaker.mdx
2023-04-03 09:17:02 -04:00
c0f99b4d2e Fix llama tokenizer (#22402)
* draft

* update tokenization limma and conversion script

* more udpates

* initial commit

* style

* default pad to None

* draft tokenization tests

* update test

* update tokenization tests

* nits

* update

* versioning test

* major fix

* fix more testst

* finish fixing special masks

* last nit

* more nits

* add encode decode tests

* add more

* fix token type ids

* style
2023-04-03 09:07:32 -04:00
9eae4aa576 [Time-Series] fix past_observed_mask type (#22076)
added > 0.5 to `past_observed_mask`
2023-04-03 09:07:21 -04:00
559a45d1dc Backbone add out indices (#22493)
* Add out_indices to backbones, deprecate out_features

* Update - can specify both out_features and out_indices but not both

* Can specify both

* Fix copies

* Add out_indices to convnextv2 configuration
2023-04-03 11:06:25 +01:00
db803b6919 Update convert_llama_weights_to_hf.py (#22525) 2023-04-03 10:41:39 +01:00
c612628045 Test fetch v2 (#22367)
* Test fetcher v2

* Fix regexes

* Remove sanity check

* Fake modification to OPT

* Fixes some .sep issues

* Remove fake OPT change

* Fake modif for BERT

* Fake modif for init

* Exclude SageMaker tests

* Fix test and remove fake modif

* Fake setup modif

* Fake pipeline modif

* Remove all fake modifs

* Adds options to skip/force tests

* [test-all-models] Fake modif for BERT

* Try this way

* Does the command actually work?

* [test-all-models] Try again!

* [skip circleci] Remove fake modif

* Remove debug statements

* Add the list of important models

* Quality

* Update utils/tests_fetcher.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Address review comments

* Address review comments

* Fix and add test

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Address review comments

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-03-31 16:18:43 -04:00
3a9464bd30 Update Neptune callback docstring (#22497)
* update NeptuneCallback docstring

* formatting

* apply make style

---------

Co-authored-by: Aleksander Wojnarowicz <alwojnarowicz@gmail.com>
2023-03-31 15:38:34 -04:00
6fc44656b4 Bump redis from 4.5.3 to 4.5.4 in /examples/research_projects/decision_transformer (#22494)
Bump redis in /examples/research_projects/decision_transformer

Bumps [redis](https://github.com/redis/redis-py) from 4.5.3 to 4.5.4.
- [Release notes](https://github.com/redis/redis-py/releases)
- [Changelog](https://github.com/redis/redis-py/blob/master/CHANGES)
- [Commits](https://github.com/redis/redis-py/compare/v4.5.3...v4.5.4)

---
updated-dependencies:
- dependency-name: redis
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-03-31 10:50:33 -04:00
d143087d18 Making sure we can use safetensors to serialize all the time. (#22437)
* Making sure we can use safetensors to serialize all the time.

* Expanding the tests for increased coverage.

* Update the test.

* Getting current state of affairs.

* Tentative fix.

* Fixing black version.

* Fixing the worst offenders.

* Try to modify less files.

* Fixing blip_2 (Weird solution right now).

* Fixing deta.

* Fix blip ?

* Missing extra newline.

* No deta modification.

* Adding some comments.

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Addressing comments.

* Addressing comments.

* creating warn_once.

* Warning_once !

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-31 16:07:35 +02:00
516077b3b0 Update Wav2Vec2ProcessorWithLM doc example (#22474)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-31 14:17:40 +02:00
da68fd691c Relax eos_token_id < 0 checks in generate() from ValueError to warning (#22472)
* Relax  checks from  to warning

* Fix style

* Replace warnings with logger

* Use warning vs warn
2023-03-31 09:09:40 +02:00
0fe6c6bdca (Re-)Enable Nightly + Past CI (#22393)
* Enable Nightly + Past CI

* put schedule

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-30 21:06:35 +02:00
d5de578c22 Docs fix: Multinomial sampling decoding needs "num_beams=1", since by default it is usually not 1. (#22473)
Fix: Multinomial sampling needs "num_beams=1", since by default is 5.
2023-03-30 11:04:12 -04:00
165dd6dc91 Llama: support for max_position_embeddings (#22471)
* Llama now supports max_position_embeddings

* Save config; Cosmetic edits
2023-03-30 15:54:01 +01:00
349e1242d9 [NLLB-MoE] model_type update for auto mapping (#22470)
edit default model type and testing path set to hf-internal-testing
2023-03-30 15:36:07 +02:00
11426641dc Guard imports of PreTrainedTokenizerFast on is_tokenizers_available (#22285)
Guard imports that use the tokenizers library
2023-03-30 09:16:03 -04:00
4d7a5b5ba3 🚨🚨🚨 Fix ordering of height, width for BLIP image processor (#22466)
Fix ordering of height,width for BLIP
2023-03-30 14:02:16 +01:00
228792a9dc Generate: basic token streaming (#22449)
* haha tokens go brrrr
2023-03-30 12:00:12 +01:00
f0aeb1be17 Skip flaky NLLB Moe test for now (#22463)
Skip flaky test for now
2023-03-30 11:30:19 +01:00
154c6bb7ac Rescale image back if it was scaled during PIL conversion (#22458)
* Rescale image back if it was scaled during PIL conversion

* do_rescale is defined if PIL image passed in
2023-03-30 11:29:11 +01:00
c15f937581 Move common properties to BackboneMixin (#21855)
* Move common properties to BackboneMixin

* Fix failing tests

* Update ConvNextV2 backbone
2023-03-30 10:04:11 +01:00
cd73b9a8c1 Update: ignore padding support for TransfoXL training when n_clusters==0 (#22457)
* Update: ignore padding support for TransfoXL training when n_clusters==0

* Update: transformer XL always pad

* Update: drop doc
2023-03-29 14:36:39 -04:00
2194943a34 Pin ruff (#22455) 2023-03-29 14:07:06 -04:00
4c295a265b Update release instructions (#22454) 2023-03-29 14:05:42 -04:00
97440e9c75 Avoid using personal HF token in CI (#22453)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-29 19:45:06 +02:00
173193ccd0 Update Neptune docs (#22452) 2023-03-29 13:15:38 -04:00
5e89a435c8 Revert "Fix --bf16 option support for Neuron after PR #22300" (#22451)
This reverts commit fd81746dbec5f17c8285a0fdc72ca4b4c025cc33.
2023-03-29 12:59:13 -04:00
b844f8a9ab [Pix2Struct] Fix slow test (#22448)
fix slow test
2023-03-29 17:40:45 +02:00
55dae94c0c Revert "Error (also in original) model, scaling only q matrix not qk.T dot product (qk.T/sqrt(dim_per_head))" (#22444)
Revert "Error (also in original) model, scaling only q matrix not qk.T dot product (qk.T/sqrt(dim_per_head)) (#21627)"

This reverts commit bad83008377bf01a34ac2e08c74e7da89eaf4e07.
2023-03-29 10:59:42 -04:00
8894b81742 Use real tokenizers if tiny version(s) creation has issue(s) (#22428)
Fix some tiny model creation issues

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-29 16:16:23 +02:00
9b494a1537 Don't hard error when cache version can't be converted to int (#22427) 2023-03-29 09:46:30 -04:00
8252e24a77 [Generate] Add conditional generation for multimodal models (#22424)
* add conditional generation

* add comments
2023-03-29 15:35:30 +02:00
33f4cb1093 [bnb] fix bnb failing test (#22439)
* fix bnb failing test

* fix

* fix

* fixup
2023-03-29 15:13:00 +02:00
fab1de72f1 Hyperparameter search reporting to W&B (#22440)
Fixes #22429
2023-03-29 09:09:57 -04:00
8d9c3836be Add clean_up_tokenization_spaces to config (#22341)
* add draft changes

* fix failing wav2vec

* style

* make sure that the argument is saved + add tests

* style

* fixup

* update test

* default clean_up_tokenization_spaces to False for Bloom and Llama

* Update code based on review

Co-authored-by: Nicolas Patry <patry.nicolas@gmail.com>

* style

* quality

---------

Co-authored-by: Nicolas Patry <patry.nicolas@gmail.com>
2023-03-29 13:21:07 +02:00
b29fd6971d MBart: Fix docs and doctests (#22422)
Fix docs and doctests
2023-03-28 15:42:02 +01:00
ae5fc2db87 [performance] ensure causal_mask is created directly on device (#22378)
* ensure causal_mask is created directly on device

* add copy tag to opt, update bart implementation

* add device to all _make_causal_mask copies

* formatting fixes

* more manual fixes due to unlinked versions of _prepare_decoder_attention_mask
2023-03-28 09:17:03 -04:00
ed57c979b9 Fix bug in perplexity guide calculations and update perplexity numbers. Fixes #22348 (#22411)
Fix bug in perplexity guide calculations and update perplexity numbers.
2023-03-28 09:09:17 -04:00
32ff06403d Bump redis from 4.1.4 to 4.5.3 in /examples/research_projects/decision_transformer (#22410)
Bump redis in /examples/research_projects/decision_transformer

Bumps [redis](https://github.com/redis/redis-py) from 4.1.4 to 4.5.3.
- [Release notes](https://github.com/redis/redis-py/releases)
- [Changelog](https://github.com/redis/redis-py/blob/master/CHANGES)
- [Commits](https://github.com/redis/redis-py/compare/v4.1.4...v4.5.3)

---
updated-dependencies:
- dependency-name: redis
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-03-27 20:23:55 -04:00
3ec7a47664 [neptune] fix checkpoint bug with relative out_dir (#22102)
* [neptune] fix checkpoint bug with relative out_dir

* update imports

* reformat with black

* check neptune without imports

* fix typing-related issue

* run black on code

* use os.path.sep instead of raw \

* simplify imports and remove type annotation

* make ruff happy

* apply review suggestions

---------

Co-authored-by: Aleksander Wojnarowicz <alwojnarowicz@gmail.com>
2023-03-27 15:00:16 -04:00
19ade2426a [WIP]NLLB-MoE Adds the moe model (#22024)
* Initial commit

* update modeling code

* update doc

* add functions necessary

* fix impotrs

* revert changes

* fixup

* more styling to get going

* remove standalone encoder

* update code

* styling

* fix config and model

* update code and some refactoring

* make more tests pass

* Adding NLLB-200 - MoE - 54.5B for no language left behind
Fixes #21300

* fix mor common tests

* styke

* update testing file

* update

* update

* Router2 doc

* update check config with sparse layer

* add dummy router

* update current conversion script

* create on the fly conversion script

* Fixup

* style

* style 2

* fix empty return

* fix return

* Update default config sparse layers

* easier to create sparse layers

* update

* update conversion script

* update modeling

* add to toctree

* styling

* make ruff happy

* update docstring

* update conversion script

* update, will break tests but impelemting top2

* update

* local groups are supported here

* ⚠️ Support for local groups is now removed ⚠️

This is because it has to work with model parallelism that we do not support

* finish simplificaiton

* Fix forward

* style

* fixup

* Update modelling and test, refactoring

* update tests

* remove final layer)norm as it is done in the FF

* routing works! Logits test added

* nit in test

* remove top1router

* style

* make sure sparse are tested. Had to change route_tokens a liottle bit

* add support for unslip models when converting

* fixup

* style

* update test s

* update test

* REFACTOR

* encoder outputs match!

* style

* update testing

* 🎉encoder and decoder logits match 🎉

* styleing

* update tests

* cleanup tests

* fix router test and CIs

* cleanup

* cleanup test styling

* fix tests

* Finally the generation tests match!

* cleanup

* update test

* style testing file

* remove script

* cleanup

* more cleanup

* nits

* update

* NLLB tokenizer is wrong and will be fixed soon

* use LongTensors

* update tests

* revert some small changes

* fix second expert sampling and batch prioritized routing

* update tests

* finish last tests

* make ruff happy

* update

* ruff again

* style

* Update docs/source/en/model_doc/nllb-moe.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Updates based on review

* style and fix import issue

* nit

* more nits

* cleanup

* styling

* update test_seconde_expert_policy

* fix name

* last nit on the markdown examples

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-27 19:42:00 +02:00
057e1d7473 Fix quality 2023-03-27 13:17:14 -04:00
f02e3a2b18 Hardware Auto-Setup for Examples (#22319)
* Add initial remote hardware auto-setup docs

* Fix a few typos and clarify some language

* Add missing dependency

* Update self-hosted launch script with Sylvain's comments.

* Formatting.

* Trigger CI

* Style
2023-03-27 13:07:53 -04:00
738944c9ee Trainer: missing None check (#22404)
missing None check
2023-03-27 18:04:28 +01:00
53155b520d Trainer: move Seq2SeqTrainer imports under the typing guard (#22401) 2023-03-27 16:39:26 +01:00
0e708178ed [Pix2Struct] Add support to resize embeddings (#22394)
* First draft

* Fix integration test

* Remove script

* Fix test and typos

* Fix one more test

* Skip tied embeddings test

* Remove line

* Address comments
2023-03-27 11:38:07 -04:00
f6b80a0139 Transformers env safetensors (#22400)
* Report safetensors version in transformers-cli env

* Styling

* Trigger CI maybe
2023-03-27 11:12:42 -04:00
d324b70f00 [bnb] Force requires_grad to be False (#22396)
for rg to be `False`
2023-03-27 16:55:55 +02:00
7dcd8703ef Generate: support for left-padding on GPTNeoX and Llama (#22382) 2023-03-27 15:48:23 +01:00
5506d04969 Seq2seq trainer generation config arg (#22323)
* seq2seq trainer and training arguments accepting GenerationConfig arg

* seq2seq Trainer and training arguments docstring fixes

* Update training_args_seq2seq.py docstring

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fixing trainer_seq2seq.py docstring

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* seq2seq trainer: legacy gen args back & GenerationConfig created at init

* Seq2seq trainer: fix in case gen_config.max_new_tokens is None

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* seq2seq trainer: adding legacy arg retrocompatibility

* seq2seq trainer and training arguments accepting GenerationConfig arg

* seq2seq Trainer and training arguments docstring fixes

* Update training_args_seq2seq.py docstring

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fixing trainer_seq2seq.py docstring

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* seq2seq trainer: legacy gen args back & GenerationConfig created at init

* Seq2seq trainer: fix in case gen_config.max_new_tokens is None

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* seq2seq trainer: adding legacy arg retrocompatibility

* seq2seq trainer: evaluate and predict untouched

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* seq2seq trainer: adding init args, keeping IDEs hints

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-27 15:47:35 +01:00
03966cacf9 Wav2Vec2ProcessorWithLM can return N best hypotheses now (#22235)
* Wav2Vec2ProcessorWithLM can return N best hypotheses now

Signed-off-by: Vladislav Sokolovskii <vladislav@parrothq.com>

* Wav2Vec2ProcessorWithLM n_best cannot be None

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Batch decoding can return  N best hypotheses now

batch_decode was extended with the same functionality as decode
function, N best hypotheses per sample can be returned

Signed-off-by: Vladislav Sokolovskii <vladislav@parrothq.com>

---------

Signed-off-by: Vladislav Sokolovskii <vladislav@parrothq.com>
Co-authored-by: Vladislav Sokolovskii <vladislav@parrothq.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-03-27 10:37:46 -04:00
66d1eee682 load_in_8bit now respects 'balanced' device maps in multi-gpu environments (#22377)
balanced 8bit memory
2023-03-27 10:34:52 -04:00
8cfc6678da Adapt find_tied_parameters to handle breaking change in Accelerate (#22360) 2023-03-27 10:11:14 -04:00
204737fcc5 Translated documentation in italian (#22388)
* updated toctree

* added and translated mdx documents
2023-03-27 09:48:49 -04:00
d5c2c71c0f Changed world_size() to get_world_size() bugfix (#22381)
Edited one line in src/transormers/generation/utils.py. Changed dist.world_size() to dist.get_world_size() since world_size() doesn't exist in pytorch.dist.
2023-03-27 09:24:25 -04:00
c746eb1603 TensorFlow: additional missing cmake dependencies in CI (#22383)
* missing cmake

* more cmake
2023-03-27 09:20:56 -04:00
cae78c46d6 [safetensors] don't use in torch<1.10 (#22370)
* [safetensors] don't use in pt<1.10

* better fix
2023-03-24 16:23:27 -04:00
cfab34e188 Fix TF pipeline job 2023-03-24 16:16:43 -04:00
500fce073b [Trainer] add disclaimer that full_determinism is slow (#22368) 2023-03-24 12:46:41 -07:00
a0cbbba31f Resnet flax (#21472)
* [WIP] flax resnet

* added pretrained flax models, results reproducible

* Added pretrained flax models, results reproducible

* working on tests

* no real code change, just some comments

* [flax] adding support for batch norm layers

* fixing bugs related to pt+flax integration

* removing loss from modeling flax output class

* fixing classifier tests

* fixing comments, model output

* cleaning comments

* review changes

* review changes

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* renaming Flax to PyTorch

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-03-24 19:45:57 +00:00
88dae78f4d TensorFlow: pin maximum version to 2.12 (#22364) 2023-03-24 18:45:03 +00:00
3a7f5fa9d2 Improve error message (#22361)
* Improve error message

* Fix consistency
2023-03-24 18:09:01 +00:00
6587125c0a Pin tensorflow-text to go with tensorflow (#22362)
* Pin tensorflow-text to go with tensorflow

* Make it more convenient to pin TensorFlow

* setup don't like f-strings
2023-03-24 10:54:06 -04:00
01203475c9 Update docker files to use official torch 2.0.0 (#22357)
* update docker files to use official torch 2.0.0

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-24 14:29:05 +01:00
57f25f4b7f Add Mega: Moving Average Equipped Gated Attention (#21766)
* add mega file structure and plain pytorch version of mega source code

* added config class with old naming conventions

* filled in mega documentation

* added config class and embeddings with optional token types

* updated notes

* starting the conversion process, deleted intermediate and added use_cache back to config

* renamed config attributes in modeling_mega.py

* checkpointing before refactoring incremental decoding functions

* removed stateful incremental key/values for EMA and self-attention

* refactored MovingAverageGatedAttention to remove stateful k/v history and use unified attention mask

* MovingAverageGatedAttention works with incremental decoding + past values, added sequence length enforcement

* more comments in MovingAverageGatedAttention + checkpointing before GatedCrossAttention

* bug fix in attention mask handling in MovingAverageGatedAttention

* removed incremental state from GatedCrossAttention and removed IncrementalState class

* finished gated cross attention and got MegaLayer working

* fixed causal masking in mega decoder

* fixed how padding and causal masks are passed through MegaLayer with and without k/v caching

* finished MegaModel; tested with encoder, decoder-only, and cross-attention type inputs; started work on downstream classes; removed mentions of position_ids

* added optional dense hidden layer for masked and causal LM classes

* docstring updates in MultiHeadEMA and GatedCrossAttention, removed unnecessary inputs in cross-attention

* removed before_attn_fn in Mega class and updated docstrings and comments up to there

* bug fix in MovingAverageGatedAttention masking

* working conversion of MLM checkpoint in scratchpad script -- perfect matches

* moved arg for hidden dense layer in LM head to config; discovered issue where from_pretrained is renaming gamma and beta parameters

* renamed gamma and beta parameters to avoid HF renaming when loading from checkpoint

* finished checkpoint conversion script

* cleanup old class in mega config script

* removed 'copied from' statements and passing integration tests

* added num_attention_heads=1 to config for integration compatibility, decoder tests working, generation tests failing

* fixed tuple output of megamodel

* all common tests passing after fixing issues in decoder, gradient retention, and initialization

* added mega-specific tests, ready for more documentation and style checks

* updated docstrings; checkpoint before style fixes

* style and quality checks, fixed initialization problem in float_tensor, ready for PR

* added mega to toctree

* removed unnecessary arg in megaconfig

* removed unused arg and fixed code samples with leftover roberta models

* Apply suggestions from code review

Applied all suggestions except the one renaming a class, as I'll need to update that througout

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixed issue where .view breaks batch dimension, conversion script fixed with absolute imports, updated readme with Mega->MEGA

* removed asserts in Mega code, renamed sequencenorm, gatedcrossattention, and NFFN, replaced get_activation_fn with ACTFN, and added sequencenorm to layer norms

* reformatted .forward() docstrings to match style and removed unused mask input in cross-attention

* removed all reset_parameters() methods and rolled into MegaPreTrainedModel._init_weights()

* renamed all single-letter variables and improved readability in tensor size comments, Mega->MEGA in 2 documentation files

* variable names in NFFN

* manual Mega->MEGA changes in docs

* Mega->MEGA in config auto

* style and quality fixes

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* renamed parameters and variables with confusing names, added copied from statements, moved fft conv to its own method, other cleanup from PR comments

* commit before dealing with merge conflicts

* made new attention activation functions available in ACT2FN and added generation test from OPT

* style and quality in activations and tests

* documentation fixes, renaming variables in dropout and rotary positions, used built-in causal masking, encoders->layers in MegaModel, moved comments into docstrings

* style and quality fixes after latest updates, before rotary position ids

* causal mask in MegaBlock docstring + added missing device passing

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* added Mega prefixes where missing, reverted MegaSequenceNorm to if-else, other module renaming requested in PR

* style and quality fixes + readme updates pointing to main

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-24 08:17:27 -04:00
0fa46524ac Generate: Add GPTNeoX integration test (#22346) 2023-03-24 11:33:16 +00:00
b79607656b Fix typo in Greedy Search Description (#22345)
Fix typo in greedy search docs
2023-03-24 07:32:18 -04:00
c0fa2aa0b8 [HFTracer] Make embeddings ops take on the dtype of the weight (#22347)
* [HFTracer] Make embeddings ops take on the dtype of the weight

* fix bug
2023-03-24 07:04:51 -04:00
e8cc02555e Automatically create/update tiny models (#22275)
* Automatically create or update tiny models

* Skip failed tests

* update workflow file

* use revision

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-23 19:14:17 +01:00
a92e0ad2e2 Enable training Llama with model or pipeline parallelism (#22329)
* Llama - Move target tokens to final pipeline device if needed

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-23 13:15:51 -04:00
502fec779b Generate: add test for left-padding support (#22322) 2023-03-23 17:00:22 +00:00
ec9b18f62d Fix --bf16 option support for Neuron after PR #22300 (#22307)
This PR fixes the "RuntimeError: No CUDA GPUs are available"
when running with --bf16 option on Neuron.

Related PRs:
https://github.com/huggingface/transformers/pull/20684
https://github.com/huggingface/transformers/pull/22300
2023-03-23 12:27:13 -04:00
aef488c503 Added type hints to TFDeiTModel (#22327)
* Added type hints to TFDeiTModel

* make style

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2023-03-23 15:31:32 +00:00
59b9351b78 Minor typo in pipeline FillMaskPipeline's documentation. (#22339) 2023-03-23 11:14:11 -04:00
506e7c6361 Fix various imports (#22281)
* Fix various imports

* Fix copies

* Fix import
2023-03-23 10:34:17 -04:00
053c2153f8 Mention why one needs to specify max_steps in Trainer (#22333)
* Mention why one needs to specify max_steps in Trainer

* dummy change to trigger CI
2023-03-23 15:26:51 +01:00
5a9eb31477 Fixed gradient checkpoint bug for TimeSeriesTransformer (#22272)
* Fixed gradient checkpoint bug for this model

* Updating PR indentation (maintainer feedback)

* make fixup

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-03-23 08:45:13 -04:00
ff20f9cf36 [MBart] Add accelerate support for MBart (#22309)
add `accelerate` support for MBart
2023-03-23 10:34:43 +01:00
61f79b2986 [gptj] support older pytorch version (#22325)
* [gptj] support older pytorch version

* contributor

* contributor

* make copies

---------

Co-authored-by: Michael Wyatt <michaelwyatt@microsoft.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2023-03-22 18:35:04 -07:00
80e3b36361 Really fix quality due to ruff release 2023-03-22 20:56:22 -04:00
ef28df0572 Fix quality due to ruff release 2023-03-22 20:45:08 -04:00
73fdc8c5b4 [deepspeed zero3] need generate(synced_gpus=True, ...) (#22242)
* [deepspeed zero3] need generate(synced_gpus=True, ...)

* fix

* rework per Sylvain's suggestion

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-22 12:18:57 -07:00
8b05ace014 Fix PipelineTests skip conditions (#22320)
* check what tests fail

* Skip failing tests

* Skip failing tests

* Skip failing tests

* Skip failing tests

* clean up

* clean up

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-22 20:02:24 +01:00
d62e7d8842 Chunkable token classification pipeline (#21771)
* Chunkable classification pipeline 

The TokenClassificationPipeline is now able to process sequences longer than 512. No matter the framework, the model, the tokenizer. We just have to pass process_all=True and a stride number (optional). The behavior remains the same if you don't pass these optional parameters. For overlapping parts when using stride above 0, we consider only the max scores for each overlapped token in all chunks where the token is.

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* update with latest black format

* update black format

* Update token_classification.py

* Update token_classification.py

* format correction

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update comments

* Update src/transformers/pipelines/token_classification.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* Update token_classification.py

Correct spaces, remove process_all and keep only stride. If stride is provided, the pipeline is applied to the whole text.

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update chunk aggregation

Update the chunk aggregation strategy based on entities aggregation.

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

Remove unnecessary pop from outputs dict

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update src/transformers/pipelines/token_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add chunking tests

* correct formating

* correct formatting

* correct model id for test chunking

* update scores with nested simplify

* Update test_pipelines_token_classification.py

* Update test_pipelines_token_classification.py

* update model to a tiny one

* Update test_pipelines_token_classification.py

* Adding smaller test for chunking.

* Fixup

* Update token_classification.py

* Update src/transformers/pipelines/token_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/token_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-22 14:13:20 -04:00
f48d3314e4 docs: Resolve incorrect type typo in trainer methods (#22316)
Resolve incorrect type typo in trainer methods
2023-03-22 11:57:08 -04:00
0f68a7f408 Add Pix2Struct (#21400)
* v1 all keys match

* clean up

* forward pass ok

* add correct image transform

* generate works, logits matching

* clean up

* more refactor

* revert

* revert

* clean up

* clean ups

* clean up

* refactor

* refactor

* fix doc

* fix tokenizer test

* fix toctree

* revert toctree

* oops

* few fixes

* replace to `pixel_embeds`

* make fixup

* test processing & feat extractor

* fix some tests

* more fixes

* make fixup

* clean up

* more clean up

* add a single slow test

* fix test

* make fixup

* fix

* fix authors

* fix toctree

* update docs

* add docstring

* revert change

* Update src/transformers/models/pix2struct/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix tokenizer

* fix processor test

* fix test

* make fixup

* refactor

* fix config

* Update src/transformers/models/pix2struct/image_processing_pix2struct.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* format

* fix

* Update src/transformers/models/pix2struct/image_processing_pix2struct.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* make fixup

* add docstring

* fix issues

* fix

* fix

* fix

* add slow test

* fix

* fix

* fix batched issue

* fix training issues

* fix ci test

* fix slow test

* fix conversion script

* remove unneeded classes

* fix slow test

* fix require backends

* fix masked fill

* revert

* fix softmax

* add large models support

* fix conditional generation

* few fixes

* add instructions

* rm unneeded file

* Update src/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py

* fix ci test

* fix ci test really

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix nit

* fix nits

* fix image processors nits

* docstring

* clean up

* fix nit

* fix tests

* docstring nit

* fix reshape

* Update src/transformers/models/pix2struct/image_processing_pix2struct.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix nit

* fix repetition

* refactor processor

* make patch size consistent

* refactor forward

* fix docstring

* fix max_patches issue

* update docstirng

* update docstring

* fix coped from

* add skip reasons

* few fixes

* Update src/transformers/models/pix2struct/image_processing_pix2struct.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* format

* fix doctests

* refactor and fix

* fix doc build issue

* fix processor test

* small fix conversion script

* replace correct weights

* make fixup

* fix some issues

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* revert config and fixes

* Update src/transformers/models/pix2struct/image_processing_pix2struct.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* more details

* fixes

* fix processor

* fix processor test

* fix

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fixup

* fix processor

* Update src/transformers/models/pix2struct/modeling_pix2struct.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add copied

* make fixup

* fix copies

* update docstring

* refactor

* fix docstring

* fix conversion script

* fix vqa issue

* replace to `flattened_patches`

* nit

* fix numpy issue

* fix image processors

* add batched vqa support

* fix vqa conversion

* make fixup

* fix conversion script

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fixup

* add correct docstring

* update docstring

* fix module level + channel dim

* use `make_list_of_images`

* refactor

* correct docstring

* fix authors

* remove `data_format`

* add header text test

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fixup

* add checkpoints

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2023-03-22 16:53:52 +01:00
fd3eb3e3cd Beef up Llama tests (#22314)
* tmp commit

* beef up llama tests
2023-03-22 15:20:48 +00:00
12febc20db Generate: Export TF generate with a TF tokenizer (#22310)
* Export TF generate with a TF tokenizer

* remove unused lines
2023-03-22 15:00:20 +00:00
5fd4e3c87c Enforce max_memory for device_map strategies (#22311)
Enforce  for device_map strategies
2023-03-22 09:22:07 -04:00
48bef3a734 Fixed bug to calculate correct xpath_sub_list in MarkupLMTokenizer (#22302)
Fixed bug to calculate correct xpath_sub_list in MarkupLMTokenizer. Earlier xpath_sub_list was same as xpath_tags_list

Co-authored-by: dusejat <dusejat@amazon.com>
2023-03-22 12:07:49 +00:00
4e94c6c008 Fix position embeddings for GPT-J and CodeGen (#22069)
* Revert "[GPT-J] add deprecation warning (#21869)"

This reverts commit fb76994c41d1eaf09e50020cbd849d3bb686b6a3.

* Fix position embeddings for GPT-J and CodeGen

* Address review comments from @gante

* Fix "Copied from" comment referencing wrong function

* Fix copy/paste mistake

* Fix training path

* Hopefully make torch.fx happy

* Move position_ids long cast

* Revert "Hopefully make torch.fx happy"

This reverts commit e41a6f4cad3ff441124c7457b19cfb630d4ca025.

* Changes to help with torch.fx tracing

* Linter fix

* Correct position_ids tensor type hint

* Work-around torch.fx tracing issue

* Get the changes to work with torch.fx

* Address review comment from @michaelbenayoun

* Another small adjustment

* Add explanatory comment; small code tidyup
2023-03-22 11:14:54 +00:00
8e6c34b390 fix: Allow only test_file in pytorch and flax summarization (#22293)
allow only test_file in pytorch and flax summarization
2023-03-22 10:46:56 +00:00
4ccaf268fb add low_cpu_mem_usage option in run_clm.py example which will benefit… (#22288)
* add low_cpu_mem_usage option in run_clm.py example which will benefit LLM loading

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update all the example and README under language-modeling

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-03-22 10:42:39 +00:00
8472a224fb Enable traced model for text-generation task (#22265) 2023-03-22 10:19:26 +00:00
0558914dff Add MaskedImageModelingOutput (#22212)
* Add MaskedImageModelingOutput
2023-03-22 07:35:47 +03:00
0dcb46e7a4 Final update of doctest (#22299)
* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-22 01:00:33 +01:00
89a0a9eace [deepspeed] offload + non-cpuadam optimizer exception doc (#22044)
* [deepspeed] offload + non-cpuadam optimizer exception doc

* deps
2023-03-21 17:00:05 -07:00
5990743fdd Correct NATTEN function signatures and force new version (#22298) 2023-03-21 17:21:34 -04:00
d35f729649 Restore fp16 support on xla gpu device (#22300) 2023-03-21 16:32:43 -04:00
67c2dbdb54 Time to Say Goodbye, torch 1.7 and 1.8 (#22291)
* time to say goodbye, torch 1.7 and 1.8

* clean up torch_int_div

* clean up is_torch_less_than_1_8-9

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-21 19:22:01 +01:00
86c7931a70 Add translation perf_infer_gpu_one for it (#22296)
Add translation
2023-03-21 13:07:30 -04:00
d0b942d1dc fix more doctests (#22292)
* fix more doctests

* fix style

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-21 16:16:17 +01:00
48327c5718 More doctests (#22268)
* all doctests

* Skip failed tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-21 13:27:30 +01:00
5a2b77a6c1 Fix error in mixed precision training of TFCvtModel (#22267)
* Make sure CVT can be trained using mixed precision

* Add test for keras-fit with mixed-precision

* Update tests/models/cvt/test_modeling_tf_cvt.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

---------

Co-authored-by: gcuder <Gerald.Cuder@iacapps.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-03-21 12:12:57 +00:00
330d8b991f replace_8bit_linear modules_to_not_convert default value fix (#22238)
* Fixed modules_to_not_convert default value

* Fixed modules_to_not_convert docstring

* Update src/transformers/utils/bitsandbytes.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/utils/bitsandbytes.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* ["lm_head"] if modules_to_not_convert is None

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-03-21 10:16:07 +00:00
c07a02a4b7 Update vision docstring bool masked pos (#22237)
* Add bool_masked_pos to forward docstrings

* Add note about mask ratio - videomae

* Fix up

* Fix indenting
2023-03-20 20:06:16 +00:00
7bd8650512 Example of pad_to_multiple_of for padding and truncation guide & docstring update (#22278)
* added an example of pad_to_multiple_of

* make style

* addressed feedback
2023-03-20 14:18:55 -04:00
fb0a38b4f2 Move torch.compile() wrapping after DDP/FSDP wrapping to ensure correct graph breaks during training (#22279) 2023-03-20 13:54:01 -04:00
8ac29fe090 Fix doc links (#22274) 2023-03-20 17:07:31 +00:00
da005253b8 Proper map location for optimizer load (#22273)
* Proper map location for optimizer load

* What happened to my code?
2023-03-20 11:30:46 -04:00
786092a35e Rework a bit the LLaMA conversion script (#22236)
* Update LLaMA conversion script

* Doc

* Fix the weight size for the 13B checkpoint

* Update src/transformers/models/llama/convert_llama_weights_to_hf.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-03-20 11:30:36 -04:00
43efd7cb13 Fix balanced and auto device_map (#22271) 2023-03-20 11:24:17 -04:00
89f0fda5d3 Fix the gradient checkpointing bug of the llama model (#22270)
fix grad ckpt bug of llama
2023-03-20 10:26:50 -04:00
cf0af9a31b [Trainer] Add optional communication backends for torch.distributed when using GPU (#22247)
Update training_args.py
2023-03-20 09:17:34 -04:00
c4bf6f38bd Italian translation perf_infer_cpu (#22243)
* added translated files

added perf_train_cpu and perf_train_cpu_many

* updated toctree

* updated toctree

* added file

perf_infer_cpu.medx

* italian translation perf_infer_cpu.mdx
2023-03-20 09:16:07 -04:00
466144d440 [Docs] fix typos in some tokenizer docs (#22256)
[Docs] fix typos

Co-authored-by: yesinkim <yesinkim@yesinkimui-MacBookAir.local>
2023-03-20 12:17:31 +00:00
a48310de47 Update training_args.py -- a nightly install is not required anymore for torch.compile (#22266)
Update training_args.py

A nightly install is not required anymore for `torch.compile`.
2023-03-20 12:00:05 +00:00
60d51ef512 [trainer] param count for deepspeed zero3 (#22193)
[trainer] param count for zero3
2023-03-17 11:02:55 -07:00
cf601b902f Fix Unnecessary move of tensors from CPU to GPU in LlamaRotaryEmbedding (#22234)
push
2023-03-17 13:56:32 -04:00
bec075612a Revert "Use dash==2.8.1 for now for daily CI" (#22233)
Revert "Use `dash==2.8.1` for now for daily CI (#22227)"

This reverts commit 53218671d968235ff320a4b03f7753972a637299.
2023-03-17 16:54:27 +01:00
3028b20a71 Fix natten (#22229)
* Add kernel size to NATTEN's QK arguments.

The new NATTEN 0.14.5 supports PyTorch 2.0, but also adds an additional
argument to the QK operation to allow optional RPBs.

This ends up failing NATTEN tests.

This commit adds NATTEN back to circleci and adds the arguments to get
it working again.

* Force NATTEN >= 0.14.5
2023-03-17 11:07:55 -04:00
074490b2c2 fix(docs): fix task guide links in model docs (#22226)
fix(docs): task guide links in model docs
2023-03-17 14:30:17 +00:00
314cdf7c25 Removed .mdx extension in two links (#22230)
removed .mdx extension
2023-03-17 10:27:12 -04:00
f251441387 Add LlamaForSequenceClassification (#22209)
* Add LlamaForSequenceClassification

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Add docstring

* Add test

* Add input embedding getter and setter

* Remove dead code

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-03-17 14:39:26 +01:00
675d2a5a00 fix AutoTP in deepspeed could not work for bloom (#22196)
* fix AutoTP in deepspeed could not work for bloom

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add a method in BloomModel to build ailib

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-03-17 09:28:17 -04:00
00934026a4 LLaMA house-keeping (#22216)
* LLaMA house-keeping

* Doc links
2023-03-17 08:55:15 -04:00
42f8f76402 Depth estimation task guide (#22205)
* added doc to toc, auto tip with  supported models, mention of task guide in model docs

* make style

* removed "see also"

* minor fix
2023-03-17 08:36:23 -04:00
53218671d9 Use dash==2.8.1 for now for daily CI (#22227)
Use dash 2.8.1 for now

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-17 13:27:14 +01:00
af1c864cdc fix code example in mgp-str doc (#22219)
Co-authored-by: yue kun <yuekun.wp@alibaba-inc.com>
2023-03-17 09:40:06 +00:00
33d033d694 fix typos in llama.mdx (#22223) 2023-03-17 08:43:18 +00:00
97a3d16a69 Hotfix for natten issue with torch 2.0.0 on CircleCI (#22218)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-16 23:57:26 +01:00
5110e5748e 🔥py38 + torch 2 🔥🔥🔥🚀 (#22204)
* py38 + torch 2

* increment cache versions

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-16 22:59:23 +01:00
fb366b9a2a fixes a typo in WhisperFeatureExtractor docs. (#22208)
* fixes a typo

* .
2023-03-16 16:08:05 +00:00
da3ba3a167 [XGLM] Add accelerate support for XGLM (#22207)
* add `accelerate` support for XGLM

* fix order
2023-03-16 16:18:05 +01:00
a88a4dae19 Temporarily fix ONNX model exporting error (#21830)
* Temporarily fix https://github.com/microsoft/onnx-converters-private/issues/143

* Reduced column width

* Fix formatting.

* Revert "Temporarily fix https://github.com/microsoft/onnx-converters-private/issues/143"

This reverts commit 6e95a108042118d204da447729f3834affa354fc.

* Fix export error.

* Revert "Fix formatting."

This reverts commit 8310f60da10358edbdf77a2a2f3c83ee55066cb8.

* Propagated changes made in SwinV2 to Swin2SR
2023-03-16 10:56:26 -04:00
4c5c0af7e5 Update tiny model creation script (#22202)
* Update UNCONVERTIBLE_MODEL_ARCHITECTURES

* Deal with 2 model tester classes in single test file

* Deal with 2 model tester classes in single test file

* Deal with 2 model tester classes in single test file

* make style and quality

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-16 14:21:58 +01:00
464d420775 LLaMA Implementation (#21955)
* LLaMA

* sharding and docs

* tweak

* black

* inits

* ruff

* LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP

* init

* no checkpoint

* docs

* ruff

* type_vocab_size

* tokenizer fixes

* tokenizer fixes

* Update tokenization_llama.py

* Update tokenization_llama.py

* Update configuration_llama.py

* Update modeling_llama.py

* tokenizer add_bos by default

* licenses

* remove decoder

* norms and mlp

* rope overhaul

* tweaks

* black

* mention OPT implementation

* off-by-one naming

* typo

* fix

* tokenization fix and slicing bug

* padding config

* cleanup

* black

* update tests

* undo typo

* fix vocab caching logic

* ruff

* docbuilder

* attn fix from BlackSamorez

* initial feedback

* typo

* docs

* llama case

* llama case

* load checkpoint docs

* comment about tokenizer

* tokenizer defaults

* clear past_key_values if use_cache=False

* last tweaks

* last tweaks

* last tweaks

* last tweaks

---------

Co-authored-by: Stella Biderman <stellabiderman@gmail.com>
2023-03-16 09:01:15 -04:00
0041be5b3d LLaMA Implementation (#21955)
* LLaMA

* sharding and docs

* tweak

* black

* inits

* ruff

* LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP

* init

* no checkpoint

* docs

* ruff

* type_vocab_size

* tokenizer fixes

* tokenizer fixes

* Update tokenization_llama.py

* Update tokenization_llama.py

* Update configuration_llama.py

* Update modeling_llama.py

* tokenizer add_bos by default

* licenses

* remove decoder

* norms and mlp

* rope overhaul

* tweaks

* black

* mention OPT implementation

* off-by-one naming

* typo

* fix

* tokenization fix and slicing bug

* padding config

* cleanup

* black

* update tests

* undo typo

* fix vocab caching logic

* ruff

* docbuilder

* attn fix from BlackSamorez

* initial feedback

* typo

* docs

* llama case

* llama case

* load checkpoint docs

* comment about tokenizer

* tokenizer defaults

* clear past_key_values if use_cache=False

* last tweaks

* last tweaks

* last tweaks

* last tweaks

---------

Co-authored-by: Stella Biderman <stellabiderman@gmail.com>
2023-03-16 09:00:53 -04:00
09922da4a7 Italian Translation of migration.mdx (#22183)
* Tranlstion Italian: migration

* Update migration.mdx

minor fixes

* Update _toctree.yml

* Delete migration.mdx

* Add italian translation of migration.mdx

* Update of migration.mdx translation and toctree
2023-03-16 12:00:07 +00:00
52a57f7c7c Update expected values in MgpstrModelIntegrationTest (#22195)
Update values

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-16 11:48:52 +00:00
1485bd9c02 Fix typo in Align docs (#22199)
Fix align docs typo
2023-03-16 13:41:48 +03:00
1c4a9acc73 Fix DeepSpeed CI (#22194)
* Deal with torch-tensorrt

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-16 05:52:40 +01:00
7c4999e495 t5 remove data dependency (#22097)
* t5 remove data dependency

* make style

* make fix-copies

---------

Co-authored-by: Prathik Rao <prathikrao@microsoft.com>
2023-03-15 16:11:15 -04:00
16121bae5c Update BridgeTowerForContrastiveLearning (#22145)
* Use return_loss for BridgeTowerForContrastiveLearning, add example

* fix tests

* Update example in BridgeTowerForContrastiveLearning

* Update test_modeling_bridgetower.py

* update model output format

* minor update

* Update src/transformers/models/bridgetower/modeling_bridgetower.py

* make style

---------

Co-authored-by: Tiep Le <97980157+tileintel@users.noreply.github.com>
Co-authored-by: Tiep Le <tiep.le@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-15 20:54:38 +01:00
42ad693b7b Regression pipeline device (#22190)
* Fix regression in pipeline when device=-1 is passed

* Add regression test
2023-03-15 14:13:38 -04:00
737681477c Revert 22152 MaskedImageCompletionOutput changes (#22187)
Revert changes
2023-03-15 18:37:23 +01:00
7b0e2cfdfb Fix: unfinished_sequences with correct device (#22184)
Fix: unfinished_sequences with correct device 

The original code was causing errors when running torch.jit.trace due to the tensor options being incorrect. I fixed this by using torch.ones to create a tensor with the correct device and dtype. This should resolve the issue with running torch.jit.trace.
2023-03-15 16:27:19 +00:00
f7329751fe Run all tests by default (#22162) 2023-03-14 17:30:43 -04:00
b7036f4912 Load optimizer state on CPU to avoid CUDA OOM (#22159) 2023-03-14 17:30:32 -04:00
ebdb185bef v4.28.0.dev0 2023-03-14 13:49:10 -04:00
c52c5282ef Revert "Enforce same behavior as PyTorch 2.0 for older versions" (#22163)
Revert "Enforce same behavior as PyTorch 2.0 for older versions (#22136)"

This reverts commit 1c801d65eb42a71ea52db797af760bd96c8b113f.
2023-03-14 13:45:46 -04:00
085bf5c1fe [trainer] add --optim adamw_torch_fused for pt-2.0+ (#22144)
* [trainer] add --optim adamw_torch_fused

* change optim default

* deal with non-torch

* revert default change; prep; add fp16/amp assert

* typo

* typo
2023-03-14 10:22:03 -07:00
c6318c3788 to_pil - don't rescale if int and in range 0-255 (#22158)
* Don't rescale if in and in range 0-255

* Raise value error if int values too large

* Update tests/test_image_transforms.py

* Update tests/test_image_transforms.py
2023-03-14 15:43:44 +00:00
3b22bfbc6a Create MaskedImageCompletionOutput and fix ViT docs (#22152)
* create MaskedImageCompletionOutput

* fix bugs

* fix bugs
2023-03-14 13:55:18 +00:00
b45192ec47 Fix big model inference for T5 models in float16 (#22095)
* Fix big model inference for T5 models in float16

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Style

* Trigger CI with latest release

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-03-14 09:20:16 -04:00
7f5ad6c35b Translation Italian: perf_train_cpu and perf_train_cpu_many (#22151)
* added translated files

added perf_train_cpu and perf_train_cpu_many

* updated toctree
2023-03-14 11:09:36 +00:00
ff88703501 Update 2 doctest expected values for torch 2.0.0 (#22148)
update values

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-14 09:13:16 +00:00
cdddfbffa1 Add ConvNeXT V2 (#21679)
* Add ConvNeXt V2 to transformers
* TF model is separated from the PR to fix issues
2023-03-14 12:08:14 +03:00
6c2ad00c46 Move is_pipeline_test_to_skip to specific model test classes (#21999)
* Move `is_pipeline_test_to_skip` to specific model test classes

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-14 10:03:02 +01:00
2beabd24f0 [🛠️] Fix-whisper-breaking-changes (#21965)
* temp fix

* temporary fix

* update

* fix tests

* fixup

* update based on reveiew

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* update to fix tests

* update docstring

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-03-14 09:23:48 +01:00
101a6cd276 docs: New terms and updates to glossary (#21982)
* Updated glossary with new terms, added abbreviations for certain terms and merged autoencoding models, autoregressive models and causal language modeling into encoder and decoder models

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Added link to 'Pipeline for inference' tutorial

* Trigger CI

* Update docs/source/en/glossary.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Added entry for self supervised learning, added deleted entries + fixed broken links

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-13 19:09:37 -04:00
ba9e0191de Prepare daily CI for torch 2.0.0 (#22135)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-13 22:21:15 +01:00
f780557a34 [Safetensors] Add explicit flag to from pretrained (#22083)
* [Safetensors] Add explicit  flag to from pretrained

* add test

* remove @

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-13 21:39:06 +01:00
3a35937ede Remove backend check for torch.compile (#22140)
* Remove backend enforcment for torch.compile

* Update error

* Update src/transformers/training_args.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Style

---------

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2023-03-13 16:34:00 -04:00
618697ef53 [deepspeed docs] Activation Checkpointing (#22099)
* [deepspeed docs] Activation Checkpointing

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update deepspeed.mdx

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-13 12:52:42 -07:00
5b85add7d5 [trainer] fix bug in grad accum with multiple epochs (#22098)
* [trainer] fix bug in grad accum

* comment out debug

* fix one-off

* rename counter
2023-03-13 12:51:40 -07:00
1c801d65eb Enforce same behavior as PyTorch 2.0 for older versions (#22136) 2023-03-13 15:50:50 -04:00
e16cbe88ae Trainer: let generate pick its inputs (#22108)
* Let generate pick its inputs

* fix squad seq2seq example
2023-03-13 19:00:25 +00:00
d979cf6efd [Whiper] add get_input_embeddings to WhisperForAudioClassification (#22133)
* add `get_input_embeddings` to `WhisperForAudioClassification`

* add common tests

* fix another common test

* Update tests/models/whisper/test_modeling_whisper.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix style

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-03-13 19:46:01 +01:00
987972377d Update configuration_align.py (projected_dim=640) (#22139)
Update configuration_align.py

updated projected_dim=640 from 512 in arguments of AlignConfig
2023-03-13 14:12:12 -04:00
54ee56b15b Add a new script to check model testers' config (#22063)
* Add script

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-13 19:11:19 +01:00
a096eaca65 Adding Type Hints to TF_Pegasus model (#21941)
* Adding Type Hints to TF_Pegasus model

* Updated some parameters per maintainer comments
2023-03-13 15:58:29 +00:00
6cb5132a7f Fix doc link for MGP-STR (#22138) 2023-03-13 15:26:50 +00:00
8def252de2 Zero-shot image classification task guide (#22132)
* WIP

* WIP

* manual inference example

* make style

* Apply suggestions from code review

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

---------

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
2023-03-13 10:57:17 -04:00
e61081e725 Fix gradient checkpointing bug in trocr (#22126)
* Fix gradient checkpointing bug in trocr

* Fix format

* Update src/transformers/models/trocr/modeling_trocr.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-03-13 15:45:47 +01:00
ef74e7e783 Fix gradient checkpointing bug in LongT5 (#22130) 2023-03-13 14:06:17 +00:00
c1db6a3bab Fix gradient checkpointing bug in xmod (#22129) 2023-03-13 15:05:11 +01:00
6652e7da0d [Blip2] skip accelerate test (#22124)
skip accelerate test
2023-03-13 15:03:21 +01:00
dd3a0580a6 Added big_models.mdx italian translation #17600 (#22115)
* updated toctree

* italian translation big_model.mdx

* italian translation big_models
2023-03-13 10:02:03 -04:00
0768c5e274 Fix gradient checkpointing bug in xlm_roberta_xl (#22128) 2023-03-13 13:52:34 +00:00
4c14c1f47b Fix gradient checkpointing bug in Trajectory Transformer (#22125) 2023-03-13 13:50:02 +00:00
d0876a095f Fix gradient checkpointing bug in xglm (#22127) 2023-03-13 13:49:23 +00:00
0c883766bd Add pr_checks.mdx Italian translation (#17459) (#22116)
* Add pr_checks.mdx Italian translation (#17459)

* Updated pr_checks.mdx Italian translation (#17459)
2023-03-13 09:24:34 -04:00
102b5ff4a8 add new model of MGP-STR (#21418)
* add new model of MGP-STR

* fix the check failings

* remove torch and numpy from mgp_tokenization

* remove unused import from modeling_mgp_str

* add test_processing_mgp_str

* rm test_processing_mgp_str.py

* add test_processing_mgp_str

* add test_processing_mgp_str

* add test_processing_mgp_str

* rm test_processing_mgp_str and add softmax outs to model

* rm test_processing_mgp_str and add softmax outs to model

* rewrite the code of mgp-str according to PR suggestions

* rewrite the code of mgp-str according to PR suggestions

* add new model of MGP-STR

* fix the check failings

* remove torch and numpy from mgp_tokenization

* remove unused import from modeling_mgp_str

* add test_processing_mgp_str

* rm test_processing_mgp_str.py

* add test_processing_mgp_str

* add test_processing_mgp_str

* add test_processing_mgp_str

* rm test_processing_mgp_str and add softmax outs to model

* rewrite the code of mgp-str according to PR suggestions

* rewrite the code of mgp-str according to PR suggestions

* remove representation_size from MGPSTRConfig

* reformat configuration_mgp_str.py

* format test_processor_mgp_str.py

* add test for tokenizer and complete model/processer test and model file

* rm Unnecessary tupple in modeling_mgp_str

* reduce hidden_size/layers/label_size in test_model

* add integration tests and change MGPSTR to Mgpstr

* add test for logit values

* reformat test model file

---------

Co-authored-by: yue kun <yuekun.wp@alibaba-inc.com>
2023-03-13 10:11:31 +00:00
32e3466d38 Add AutoModelForZeroShotImageClassification (#22087)
Adds AutoModelForZeroShotImageClassification to transformers
2023-03-13 12:46:14 +03:00
b90fbc7e0b [Whisper] Remove embed_tokens from encoder docstring (#21996)
* [Whisper] Remove embed_tokens from encoder docstring

* new line to retrigger CI

* remove new line
2023-03-11 14:03:36 +01:00
2f320661f3 Revert "[GPT2] Propose fix for #21080" (#22093)
Revert "[GPT2] Propose fix for #21080 (#21853)" to avoid CI failure

This reverts commit a3fef89b2694fac4dd642a3f77d3e96d0c3df82a.
2023-03-10 22:08:21 +01:00
499770c088 Fix imports of TF MobileViT (#22065)
* Fix imports of TF MobileViT

* Fix copies
2023-03-10 14:46:34 -05:00
bdec2768bd GPT-J specific half precision on CPU note (#22086)
* re: #21989

* update re: #21989

* removed cpu option

* make style
2023-03-10 14:03:43 -05:00
2f4cdd97f5 handle numpy inputs in whole word mask data collator (#22032) 2023-03-10 10:50:29 -05:00
a70da86b84 Fix hint in src/transformers/modeling_utils.py (#22074)
fix hint
2023-03-10 08:56:42 -05:00
419d979f7f Fix gradient checkpointing bug in Speecht5 (#22080)
* Fix gradient checkpointing bug in Speecht5

* Update modeling_speech_to_text.py

* Update src/transformers/models/speech_to_text/modeling_speech_to_text.py

* Fix change errors

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-03-10 13:36:09 +00:00
7014fc360d Generate - Fix broken documentation links (#22078)
fix broken links
2023-03-10 13:28:30 +00:00
ade26bf991 Fix small typo in flan-ul2.mdx (#22068)
* Update flan-ul2.mdx

* Update flan-ul2.mdx
2023-03-10 07:44:45 -05:00
a3fef89b26 [GPT2] Propose fix for #21080 (#21853)
* Make sure position ids are masked

* test that padded input produce the same results

* fix failing tests

* fixup

* fix batch test
2023-03-10 07:15:25 -05:00
eee195b3aa Fix gradient checkpointing bug in switch transformer (#22081) 2023-03-10 11:31:08 +00:00
b9273353dc Fix gradient checkpointing bug in Speech2Text (#22079)
* Fix gradient checkpointing bug in Speech2Text

* Update modeling_speech_to_text.py

* Update modeling_speech_to_text_2.py
2023-03-10 11:30:42 +00:00
a9bd5df16a Add a progress bar for the total download of shards (#22062)
* Add a progress bar for the total download of shards

* Check for no cache at all

* Fix check
2023-03-09 16:58:03 -05:00
1a5fc300f4 Fix case when using --gradient_accumulation_steps with DDP disabled. (#22007)
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-42-72.us-west-2.compute.internal>
2023-03-09 14:31:58 -05:00
6d9031f285 Update tiny model creation script (#22058)
Update the script

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-09 19:53:54 +01:00
7a2b915e92 Add setters by type of args to TrainingArguments (#21570)
* Add setters by type of args to TrainingArguments

* Define more setters
2023-03-09 13:13:23 -05:00
ab81d31d20 Skip 3 tests for WhisperEncoderModelTest (#22060)
* skip 3 tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-09 19:09:23 +01:00
8434cb878e Edit the docstring of image_processing_donut to match code (#22033)
* Edit the docstring of `image_processing_donut` to match code

* improve style

* more style improvement after installing quality
2023-03-09 17:35:43 +00:00
ec24132b6c [deepspeed] offload + non-cpuadam optimizer exception (#22043)
* [deepspeed] offload + non-cpuadam optimizer exception

* flip

* revert min version
2023-03-09 08:12:57 -08:00
d0c19b3303 rm $ symbol from code block from contributing.md (#22057)
rm $ symbol from code block 

Removed the $ symbol from the code block to make copy-pasting easier.
2023-03-09 11:09:46 -05:00
fdf8409656 pt-to-tf model architecture override (#22055)
* Add an argument to pt-to-tf to allow overriding the model class

* make fixup

* Minor fix to error message

* Remove unused extra conversion from the script
2023-03-09 15:36:29 +00:00
04bfac83b7 Return analysis for hyperparameter_search with Ray backend (#22040)
* return analysis for hyperparameter_search with ray backend

* Revert "return analysis for hyperparameter_search with ray backend"

This reverts commit cd5179070930e03020d96d98eb51dec3eb21ef75.

* add run_summary attribute to BestRun and return analysis for ray backend

* fix typo

* add doc for run_summary for ray backend
2023-03-09 09:44:17 -05:00
90a7c95496 Show the number of huggingface_hub warnings in CI report (#22054)
* show hfh warnings

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-09 15:39:05 +01:00
923110b74f Remove set_access_token usage + fail tests if FutureWarning (#22051)
* Remove set_access_token usage + fail tests if FutureWarning

* do not fail on FutureWarning in CI

---------

Co-authored-by: testbot <lucainp@hf.co>
2023-03-09 09:23:48 -05:00
684774306d Can't install tf2 on M1 Chip by default (#22046) 2023-03-09 07:44:58 -05:00
81cd655cab Docs Improvement - In ZSH, not using ' ' around pip install fails, fix it (#22045)
In ZSH, not using ' ' around pip install fails

Running 
```
pip install transformers[torch]
```
in the default ZSH terminal will fail with the error `zsh: no matches found: transformers[torch]`

The solution is to wrap the installation path in ' ' like 
```
pip install 'transformers[torch]'
```

Relevant StackOverflow: https://stackoverflow.com/questions/30539798/zsh-no-matches-found-requestssecurity
2023-03-09 07:43:49 -05:00
1a77a1a86f [21737][T5]: Fix gradient checkpoint bug (#22036)
* [21737][T5]: Fix gradient checkpoint bug

* [21737][T5]: Fix gradient checkpoint bug

* [21737][T5]: Fix gradient checkpoint bug

* Update src/transformers/models/mt5/modeling_mt5.py

* Update src/transformers/models/t5/modeling_t5.py

---------

Co-authored-by: njindal <njindal@adobe.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-03-09 12:17:44 +00:00
2055d737ad Update ALIGN docs (#22025)
* Fix typos and add code examples, resources
2023-03-09 14:12:17 +03:00
3ec8171bed Bug fix: token classification pipeline while passing offset_mapping (#22034)
fix slow tokenizers with passing offset_mapping
2023-03-08 16:21:46 -05:00
1cbac6867b Mark all BridgeTower tests slow for now (#22039)
* slow me

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-08 21:48:29 +01:00
bcc8d30aff Avoid text_config_dict and vision_config_dict being saved for CLIP-like models (#22035)
* Avoid text_config_dict and vision_config_dict being saved

* for other CLIP-like models

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-08 20:27:30 +01:00
998395061b fixes the gradient checkpointing of whisper (#22019)
* fixing

* Update modeling_whisper.py

* Update modeling_whisper.py

* Update src/transformers/models/whisper/modeling_whisper.py

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-03-08 14:21:38 -05:00
6192549c1f [examples/speech-recognition] Add SpecAugment to run_speech_recognition_seq2seq.py (#21942)
* Add specaugment to run_speech_recognition_seq2seq.py

* Remove useless argument: text_column

* Fix quality

* Update return_attention_mask condition

* Update specaugment arguments only for whisper models

* Remove SpecAugment arguments from ModelArguments, only leave default values for simplicity

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update apply_spec_augment only for whisper models

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Rename return_attention_mask to forward_attention_mask to avoid confusion with wav2vec2 models

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-03-08 17:59:31 +01:00
b427b263e2 Add tokenize_kwargs parameter definition in the FeatureExtractionPipeline (#22031)
add tokenize_kwargs doc in the FeatureExtractionPipeline
2023-03-08 11:43:31 -05:00
a5392ee747 Fix test for torchneuroncore in Trainer (#22028) 2023-03-08 09:12:43 -05:00
de81adf978 [WIP] Add BridgeTowerForContrastiveLearning (#21964)
* Add BridgeTower for ITC

* Fix review feedback

* Rename BridgeTowerForITC, cleanup

* Fix style and quality

* implement tests

---------

Co-authored-by: Tiep Le <97980157+tileintel@users.noreply.github.com>
Co-authored-by: Tiep Le <tiep.le@intel.com>
2023-03-08 09:00:54 -05:00
edea08a6b0 [bnb] Fix bnb error message (#22026)
* fix error message

* make style
2023-03-08 14:51:44 +01:00
dfe9a31973 Update AudioClassificationPipelineTests::test_small_model_pt for PT 2.0.0 (#22023)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-08 13:56:47 +01:00
bbd949970d update: bertology paper (#22012) 2023-03-08 07:54:30 -05:00
4130e70367 VideoMAE doctest - use valid dummy pixel values (#22022)
Use valid dummy pixel values
2023-03-08 11:54:42 +00:00
jim
c1f85598eb Generate - add 1 to cur_len to make up the new beam length (#21993)
* add 1 to cur_len to make up the new beam length

cur_len is 1 token shorter comparing to the length of the sequence whose best_sum_logprobs is the numerator.

* cur_len+=1 before check if beam hyp is done

* format code

* reformat with black

---------

Co-authored-by: Chiming <chiming@biomap.com>
2023-03-08 11:47:55 +00:00
b338414e61 Update tiny model creation script and some others files (#22006)
* Update 1

* Update 2

* Update 3

* Update 4

* Update 5

* Update 6

* Update 7

* Update 8

* Update 9

* Update 10

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-07 22:31:14 +01:00
8abe4930d3 [Time-Series] informer model (#21099)
* added informer to gitignore

* added informer to gitignore

* WIP informer2020

* added checking that instantiate works

* added config using gluonTS by kashif

* WIP config

* adding informeConfig. need to remove FeatureEmbedder

* done InformerConfig, but need to change the names

* Done informer model init. working on enc-dec

* added things to address, after reading again enc-dec in the paper

* done modeling - checking initialization work

* added informer to gitignore

* WIP informer2020

* added checking that instantiate works

* added config using gluonTS by kashif

* WIP config

* adding informeConfig. need to remove FeatureEmbedder

* done InformerConfig, but need to change the names

* Done informer model init. working on enc-dec

* added things to address, after reading again enc-dec in the paper

* done modeling - checking initialization work

* moved enc-dec init to InformerEncoder/Decoder init

* added 'init_std' to config, now model init works!

* WIP conversion script, and added code sources

* WIP conversion script: loading original informer pth works

* WIP conversion script: change defaults in the config

* WIP conversion script: supporting Informer input embedding

* WIP conversion script: added parameters for the informer embed

* WIP conversion script: change dim_feedforward=2048

* WIP conversion script: remove unused args for loading checkpoint

* just cleaning up

* DataEmbedding removed, after thinking with Kashif

* working on forward pass

* WIP forward pass: trying to establish working batch for forward pass

* cleaning and finalizing

* adding HF names and docs

* init after cleaning works

* WIP in tests

* added docs for the informer specific args

* fix style

* undo change

* cleaning informer, now need to work only enc-dec

* initial enc-dec classes

* added encoder and decoder

* added todo

* add todos for conv_layers

* added decoder docs from vanilla

* added encoder docs from vanilla

* remove encoder decoder from the original informer

* removed AttentionLayer from the original paper

* removed TriangularCausalMask, same as decoder_attention_mask

* initial sparse attention

* use conv_layers

* fixed test_config test

* fix parenthesis when itearting zip(layers, conv_layers)

* error found in prob attention, added sizes as comments

* fix sizes

* added proposal for q_reduce indexing, and remove unused

* WIP ProbMask, and changed factor=2 for testing

* remove unused libs for this PR for creating the env

* fix checking the attn_weights.size() after bmm

* Q_reduce: changed from torch.gather to simple slicing

* WIP calculate final attn_output

* finish adding v_aggregated, attn_output ready

* changed tgt_len to u in attention_mask, need to fix the size error

* comment attention_mask for encoder, and fix if cond for v_agg

* added ProbMask support (wip), removed old original code

* finished ProbMask 😃

* Revert "remove unused libs for this PR for creating the env"

This reverts commit 11a081e09e92771e51a5d2758d53a9afb59547f0.

* fixes

* make style

* fix initial tests

* fix more tests

* dry

* make style

* remove unused files

* style

* added integration tests

* fix num_static_real_features

* fix header

* remove unused function

* fix example

* fix docs

* Update src/transformers/models/informer/configuration_informer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/informer/modeling_informer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/informer/configuration_informer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/informer/configuration_informer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/informer/configuration_informer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/informer/configuration_informer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixes for reviewer

* use prediction_length from model

* fix style

* fixed informer.mdx

* added to index

* updated readme

* undo

* make fix-copies

* typo

* fix copy

* added Informer to toctree

* in order

* fixed comments

* remove unneeded new lines in docs

* make static real and cat optional

* fix use of distil conv layers

* fixed integration test

* added checkpoint for convlayer

* make fix-copies

* updated from time series model

* make fix-copies

* copy decoder

* fix unit tests

* updated scaling config

* fix integration tests

* IGNORE_NON_TESTED

* IGNORE_NON_AUTO_CONFIGURED

* IGNORE_NON_AUTO_CONFIGURED

* updated check configs

* fix formatting

* undo change from time series

* prediction_length should not be None

* aliign with the blog: prettify ProbSparse and change attention_factor  to sampling_factor

* make style

* make fix-copies

* niels CR: update contributed by

* niels CR: update configuration_informer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* niels CR: update kashif -> huggingface

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* niels CR: `sampling_factor` only relevant when `attention_type`=prob

* make style

* fixed U_part: added multiplication by `L_Q`

* fixed bug: remove `is not None` from `if config.distil`

* fixed test: `decoder_seq_length` to `encoder_seq_length` in cross_attentions check

* fix integration tests

* updated model hub

* do not shift as in training

* undo

* fix make-copies

* make fix-copies

* added `if prediction_length is None`

* changed `ProbSparseAttention` to `InformerProbSparseAttention`

* changed `V_sum` -> `v_mean_dim_time`

* changed `ConvLayer` to `InformerConvLayer` and fixed `super()`

* TimeSeriesTansformer->Informer in decoder's Copied from

* more descriptive in ProbSparse

* make style

* fix coped from

* Revert "added `if prediction_length is None`"

This reverts commit b4cbddfa05e3bd739b79569cd3c3b89e316f2451.

* fixed indent

* use InformerSinusoidalPositionalEmbedding

* make fix-style

* fix from #21860

* fix name

* make fix-copies

* use time series utils

* fix dec num_heads

* docstring

* added time series util doc

* _import_structure

* formatting

* changes from review

* make style

* fix docs

* fix doc

* removed NegativeLogLikelihood

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2023-03-07 21:36:38 +01:00
dde718e7a6 [DETR and friends] Remove is_timm_available (#21814)
* First draft

* Fix to_dict

* Improve conversion script

* Update config

* Remove timm dependency

* Fix dummies

* Fix typo, add integration test

* Upload 101 model as well

* Remove timm dummies

* Fix style

---------

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-03-07 15:19:39 -05:00
2156662dea [TF] Fix creating a PR while pushing in TF framework (#21968)
* add create pr arg

* style

* add test

* ficup

* update test

* last nit fix typo

* add `is_pt_tf_cross_test` marker for the tsts
2023-03-07 17:32:08 +01:00
d128f2ffab Stop requiring Torch for our TF examples! (#21997)
* Stop requiring Torch for our TF examples!

* Slight tweak to logging in the example itself
2023-03-07 15:54:10 +00:00
7c39318136 [Whisper] Add model for audio classification (#21754)
* [Whisper] Add model for audio classification

* make fix-copies

* add to docs

* add docstring

* empty returns

* add code example

* switch to fleurs

* stick everything on one line
2023-03-07 16:20:21 +01:00
9402788b34 Skip test_multi_gpu_data_parallel_forward for some model tests (#21991)
skip test_multi_gpu_data_parallel_forward for some model tests

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-07 14:23:36 +01:00
99c5c6079d Update notification_service.py (#21992)
* better check

* better check

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-07 14:20:39 +01:00
10bcbcae30 Remove unneeded casts to bool (#21983)
Remove cast to Bool
2023-03-07 07:35:49 -05:00
95408e9953 [DETR, YOLOS] Fix device bug (#21974)
* Fix integration test

* Add test

* Add test
2023-03-07 07:34:04 -05:00
eec46b4f75 Fix MinNewTokensLengthLogitsProcessor when used with a list of eos tokens (#21959)
* Fix MinNewTokensLengthLogitsProcessor when used with a list of eos tokens

* fix docs

* Empty commit

* formatting
2023-03-07 11:59:22 +00:00
4063fd9cba Add check before int casting for PIL conversion (#21969)
* Add check before int casting for PIL conversion

* Line length

* Tidier logic
2023-03-07 11:14:09 +00:00
5b28b78332 Update Jukebox tests (#21984)
* update expected values for jukebox

* update expected values for jukebox

* update expected values for jukebox

* update expected values for jukebox

* update expected values for jukebox

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-07 04:20:14 +01:00
31e3c6c393 docs: improve clarity for language modeling (#21952)
* docs: improve clarity for clm/mlm

* docs: remove incorrect explanation

* docs: remove incorrect explanation

---------

Co-authored-by: pdhall99 <pdhall99>
2023-03-06 13:13:43 -05:00
0ce5236dd1 Fix gradient checkpointing bug in ESM (#21980) 2023-03-06 17:44:53 +00:00
de496ef08b Fix gradient checkpointing bug in Codegen (#21979) 2023-03-06 17:44:31 +00:00
4a545d18e2 Fix gradient checkpointing bug in BlipText (#21978)
Make Format
2023-03-06 17:43:52 +00:00
451263b841 Fix gradient checkpointing bug in Blenderbot Small (#21977) 2023-03-06 17:43:25 +00:00
4f84dedc03 Fix gradient checkpointing bug in BigBird Pegasus (#21976) 2023-03-06 17:42:52 +00:00
f2a2616b74 Update expected values for test_xglm_sample (#21975)
update expected values for xglm

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-06 18:07:31 +01:00
5d8efc79db Add TF contrastive image text finetuning example (#21939)
* Initial commit

* stash commit

* Add model checkpointing and pushing

* Fix model name inference

* Update README

* Update README

* Remove a couple of Torch references

* Update copyright date

* make fixup

* Update PushToHubCallback args!

* Remove the torch summary

* Add strategy.scope
2023-03-06 16:57:40 +00:00
9474abdf47 Use larger atol in torch.allclose for some tests (#21966)
Use larger atol

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-06 17:41:00 +01:00
64d95c44ec Add missing parameter definition in layoutlm config (#21960)
Four parameters in `LayoutLM` config were missing definitions, Added their definition (copied from BertConfig).
2023-03-06 15:20:11 +00:00
f3c75f8b44 [Generate] Fix gradient_checkpointing and use_cache bug for BLOOM (#21956)
Step 1 - Change use_cache fix
2023-03-06 14:56:40 +00:00
934d0b8bdd Fix bert issue (#21963)
Co-authored-by: saswatmeher <saswatmeher@cse.iitb.ac.in>
2023-03-06 14:55:31 +00:00
0bb17295f0 Disable DDP for neuron (#21953)
Disable DDp for neuron

Co-authored-by: EC2 Default User <ec2-user@ip-172-31-42-72.us-west-2.compute.internal>
2023-03-06 09:33:44 -05:00
bc33fbf956 [CI] Fix ci (#21940)
* fix `get_proposal_pos_embed`

* fix order

* style

* zero shot simplify test

* add approximate values for zero shot audio classification
2023-03-06 15:22:27 +01:00
fcf813417a Update expected values in XLMProphetNetModelIntegrationTest (#21957)
update values

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-06 09:15:44 +01:00
699a2293cc Fixed gradient_checkpointing/use_cache bug in blenderbot (#21833)
* Fixed gradient_checkpointing/use_cache bug in blenderbot

* Update modeling_blenderbot.py

* Added back if statement

* Formatted using black
2023-03-04 15:45:53 +00:00
6feb39b43c Fix gradient checkpointing bug in Roformer (#21946) 2023-03-04 15:44:33 +00:00
6386eb9721 Fix gradient checkpointing bug in Rembert (#21945) 2023-03-04 15:44:06 +00:00
f12c74f51e Fix gradient checkpointing bug in Pegasus (#21944) 2023-03-04 15:43:32 +00:00
f932ee61b9 Fix gradient checkpointing bug in OPT (#21943) 2023-03-04 15:42:57 +00:00
003a7cc608 [Whisper] Fix feature normalization in WhisperFeatureExtractor (#21938)
Fix feature normalization in WhisperFeatureExtractor
2023-03-03 14:21:13 -05:00
718e9d777f [CLAP] Support batched inputs for CLAP. Fixes pipeline issues (#21931)
* fix pipeline

* fix feature_extraction clap

* you can now batch the `is_longer` attribute

* add tests

* fixup

* add expected scores

* comment on is_longert
2023-03-03 18:42:18 +01:00
c5fe06c59d Update README logo (#21933) 2023-03-03 11:57:39 -05:00
82aac00e0f [Flan-UL2] Add-flan-ul2 (#21929)
* add doc and readme

* add model docs

* update toctree and fix copies

* update

* update doc file

* fix

* add FLAN-UL2 to configuration mapping

* fixup

* Apply suggestions from code review

* more clarification

---------

Co-authored-by: younesbelakda <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-03-03 17:57:24 +01:00
956ae62139 Fix wrong documentation about DataCollator padding defaults (#21919)
* Fix wrong documentation about DataCollator padding defaults

* Fix styling
2023-03-03 11:51:54 -05:00
8c40ba73d8 Avoid failure in check_repo.py due to missing backends (#21930)
* Update utils/check_repo.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update utils/check_repo.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-03 15:34:20 +01:00
d4306daea1 Fix AlignModelTest tests (#21923)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-03 14:47:09 +01:00
c5a1ff9ef0 feat: filter try/except when looking at custom code (#21914)
* feat: filter try/except

* Update src/transformers/dynamic_module_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-03 08:43:59 -05:00
02a77fa04c Cleanup more auto mapping names (#21909)
* fix auto 2

* fix auto 2

* fix task guide issue

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-03 14:43:44 +01:00
b05e0bec88 Use large VM for repo_utils_job (#21928)
upgrade to large VM

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-03 14:43:03 +01:00
fa9d2ad7ec Update model_split_percents for WhisperModelTest (#21922)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-03 14:35:08 +01:00
c82bd37169 Fix gradient checkpointing megatron bert (#21921) 2023-03-03 11:50:21 +00:00
99a62347fb Fix gradient checkpointing bug in mvp (#21920) 2023-03-03 11:49:49 +00:00
e407b5a323 Fix gradient checkpointing bug in MBart (#21918) 2023-03-03 11:49:27 +00:00
dcec3277cd faster forward following what is done for images (#21906)
* faster forward following what is done for images

* add missing licence
2023-03-03 06:18:18 +01:00
37e0974afc Fix doctests for TFVisionTextDualEncoder (#21910) 2023-03-03 00:18:11 +00:00
9f5bfe1b99 Avoid modeling tests run in pipeline CI jobs (#21911)
* rework is_pipeline_test

* bring back 3 tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-02 21:23:06 +01:00
db979f7588 [time series] Add Time series inputs tests (#21846)
* intial test of inputs

* added test for generation

* remove asserts

* fixed test

* Update tests/models/time_series_transformer/test_modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2023-03-02 20:43:35 +01:00
b2a41d2be4 Faster zero shot image (#21897)
* Make ZeroShotImageClassificationPipeline faster

The pipeline makes separate calls to model for each candidate label.
This commit combines all labels into one call.
Original code takes more that 60 seconds to process one image and 1000
candidate labels. Updated code takes less than 2 seconds.

* implement batching

* code formatting

* Creating an even faster zero-shot-image-classifiction.

Unfortunately super tailored towards CLIP.

Co-Authored-By: Yessen Kanapin <yessen@deepinfra.com>

* Quality.

* Cleanup.

* Order different on the CI it seems.

* Cleanup.

* Quality.

---------

Co-authored-by: Yessen Kanapin <yessen@deepinfra.com>
2023-03-02 19:46:22 +01:00
88e5c51a15 Temporarily skip 3 tests in BridgeTowerModelTest (#21908)
skip for now

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-02 19:16:03 +01:00
e6de918676 Add Blip and Blip2 for pipeline tests (#21904)
* fix

* add to tests

* style and quality

* add missing

---------

Co-authored-by: NielsRogge <NielsRogge@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-02 18:20:34 +01:00
1325459105 Refactor whisper asr pipeline to include language too. (#21427)
* [WIP] whisper refacto to support language output.

* Handling merges.

* A bit more cleanup and comments.

* Many improvements.

Lots of details everywhere.

* Cleanup old code and tests.

* Handle lone timestamp tokens (just recover when something bad happens).

* Adding return_language example.

* No ffmpeg.

* Hmm.

* Some corrections.

* Both fast and slow.

* New black.

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove print.

* Undoing tests modifications.

* Smaller test modifications.

* Rename.

* Remove maxDiff.

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-03-02 18:12:19 +01:00
8e5a1b2abb Make schedulers picklable by making lr_lambda fns global (#21768)
* Make schedulers picklable by making lr_lambda fns global

* add unused _get_constant_schedule_lr_lambda arg

* remove unneeded _get_constant_schedule_lr_lamda

* add test

* make style

* rebase, remove torch dep, put lambda back

* repo-consistency and style
2023-03-02 12:08:43 -05:00
6bf885375a Prophetnet batch dimension inversion fix (#21870)
* decoder forward pass is working

* no model has forward pass returning attentions

* decoder ngram changed to not mix batch size

* current basic forward pass returns identical result

* passed test_model attentions

* passed test_encoder_decoder_model_generate

* passed test_headmasking

* removed old block

* removed comments bug/fixme

* removed bug comments

* applied styling

* applied fix-copies

* applied ngram forward comments

* corrected dimension notation

* applied styling and comment fixes

* changed asserts for raise ValueError

* changed question gen test

* updated hidden_states integration test

* applied styling
2023-03-02 12:07:45 -05:00
99ba36e72f Clean up auto mapping names (#21903)
* add new test

* fix after new test

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-02 17:14:50 +01:00
50a8ed3ee0 Mark pipeline tests to skip them easily (#21887)
* Mark pipeline tests to skip them easily

* Mark the mixin as pipeline test

* Update src/transformers/testing_utils.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-03-02 10:55:36 -05:00
d9e28d91a8 Fix gradient checkpointing bug marian (#21842)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-02 15:41:15 +00:00
b405b62f4a Fix gradient checkpointing bug M2M 100 (#21841)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-02 15:40:56 +00:00
7e6dd664e8 Fix gradient checkpointing bug LED (#21840)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-02 15:40:35 +00:00
b6f47b5393 fsdp bf16 enable autocast (#21847) 2023-03-02 20:18:07 +05:30
fb76994c41 [GPT-J] add deprecation warning (#21869)
* add deprecation warning

* remove pos ids from args docstirng

* fix failing test
2023-03-02 14:51:59 +01:00
648d0deb1d fix typo in Bart's attention (#21898) 2023-03-02 08:49:26 -05:00
c87654dca1 [Whisper] Add rescaling function with do_normalize (#21263)
* add `zero_mean_unit_var_norm` function

* normalize before MEL computation

* fixup

* add simple test

* quality

* Update tests/models/whisper/test_feature_extraction_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* fixup

* use attention masks if padding was applied

* Update based on review

Co-authored-by: bofeng huang <bofenghuang7@gmail.com>

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: bofeng huang <bofenghuang7@gmail.com>
2023-03-02 14:17:21 +01:00
b48c7f7b3f [T5 doc] Fix confusing documentation about d_kv (#21896)
* Confusing documentation in T5

* Fix onfusing documentation in T5 configuration file
2023-03-02 14:07:25 +01:00
edbb37f736 Add inputs_embeds functionality when generating with BioGPT (#21889)
* initial commit to add inputs_embeds to generation

* formatting
2023-03-02 07:43:19 -05:00
3412f5979d Use PyAV instead of Decord in examples (#21572)
* Use PyAV instead of Decord

* Get frame indices

* Fix number of frames

* Update src/transformers/models/videomae/image_processing_videomae.py

* Fix up

* Fix copies

* Update timesformer doctests

* Update docstrings
2023-03-02 12:30:38 +00:00
c256bc6d10 [ZAC] fix ci daily (#21893)
add correct revision after model was overwritten
2023-03-02 10:46:03 +01:00
633e5e89f7 [Refactor] Relative imports wherever we can (#21880)
* initial commit

* update

* second batch

* style

* fix imports

* fix relative import on pipeline
2023-03-02 09:45:42 +01:00
43299c63ca fix checkpoint (#21874) 2023-03-02 08:47:20 +01:00
89359e4c63 Fix test_load_default_pipelines_pt for ClapModel (#21886)
* fix tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-01 21:52:26 +01:00
36ee128375 Fix WhisperModelTest (#21883)
* force on the same device

* fix tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-01 20:41:27 +01:00
4edfd2d4d2 Fix Gradient checkpointing bug BigBird (#21882)
Co-authored-by: saswatmeher <saswatmeher@cse.iitb.ac.in>
2023-03-01 19:10:03 +00:00
269b054939 Add ALIGN to transformers (#21741)
Adds the ALIGN model to transformers. ALIGN is introduced in "Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision" by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
2023-03-01 21:23:31 +03:00
f7c618e3b0 Add TFVisionTextDualEncoder (#21873)
* Temporary commit to stash everything so far

* Temporary commit to stash everything so far

* stash commit

* Refactor from_pretrained

* Fix final test, make fixup

* Update dummies

* Add model to TEST_FILES_WITH_NO_COMMON_TESTS

* Update src/transformers/models/vision_text_dual_encoder/modeling_tf_vision_text_dual_encoder.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/vision_text_dual_encoder/modeling_tf_vision_text_dual_encoder.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/vision_text_dual_encoder/modeling_tf_vision_text_dual_encoder.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/vision_text_dual_encoder/modeling_tf_vision_text_dual_encoder.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Add TFVisionTextDualEncoder to utils/documentation_tests.txt

* make fixup

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-03-01 18:00:48 +00:00
45e11091e5 Make loading of pretrained gpt2 faster by avoiding initialization of Conv1D's weights (#21879)
apply normal_ after assigning weight as nn.Parameter to avoid unnecessary initialization computation
2023-03-01 11:59:21 -05:00
1d3a1cc44b Add check for different embedding types in examples (#21881)
* Add check for different embedding types in examples

* Correctly update summarization example
2023-03-01 16:57:06 +00:00
53735d7c3b Add an utility file to get information from test files (#21856)
* Add an utility file to get information from test files

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-01 17:53:29 +01:00
3eba1dd27e [doc] deepspeed tests (#21859) 2023-03-01 08:52:49 -08:00
571dd693b5 update FSDP and add XLA-FSDP documentation (#21812)
* update FSDP and add XLA-FSDP documentation

* resolving comments

* minor update

* fix xla-fsdp docs
2023-03-01 19:51:07 +05:30
9c1d59882b Removed BLIP mention from the troubleshooting guide (#21872)
removed BLIP mention from the troubleshooting guide
2023-03-01 08:26:25 -05:00
72787c5b68 [Blip] Fix blip doctest (#21868)
fix blip doctest
2023-03-01 14:05:53 +01:00
619d831848 Italian translation of community.mdx (#21871)
Italian translation of community.mdx gh-17459
2023-03-01 07:49:56 -05:00
ebd5258975 Change the way tensor is reshaped in BartAttention (from .view to .reshape) (#21860)
* Change the .view call to .reshape

* Change the .view call to .reshape to all the copies from bart attention

* Fix copies and style

* Fix copies and style

* Fix copies and style

* Fix copies and style

* Fix copies and style

* Revert unneccessary changes

* Revert unneccessary changes

* Revert unneccessary changes

* Revert unneccessary changes
2023-03-01 07:47:17 -05:00
f71873c5fc [deepspeed] check whether model is NLP one instead of counting on input type (#21800)
* trying to figure out whether model is NLP

* drop my changes and apply easier fix

* trying to handle all int input types

* fix logic

---------

Co-authored-by: Stas Bekman <stas@stason.org>
2023-03-01 07:41:35 -05:00
72e9ca7519 Fix gradient checkpointing bug Bart (#21866)
Co-authored-by: saswatmeher <saswatmeher@cse.iitb.ac.in>
2023-03-01 11:41:58 +00:00
5e6cd51bec Flax beam search fix (#21857) 2023-03-01 10:25:33 +00:00
b599b19289 [ConvBert] Fix #21523 (#21849)
* fix reshaping
Fixes #21523

* add test

* styling

* last fixes

* Update src/transformers/models/convbert/modeling_convbert.py

* code quallity
2023-03-01 11:11:04 +01:00
44e3e3fb49 prepare for "__floordiv__ is deprecated and its behavior will change in a future version of pytorch" (#20211)
* rounding_mode = "floor"  instead of // to prevent behavioral change

* add other TODO

* use `torch_int_div` from pytrch_utils

* same for tests

* fix copies

* style

* use relative imports when needed

* Co-authored-by: sgugger <sylvain.gugger@gmail.com>
2023-03-01 10:49:21 +01:00
b29e2dcaff Fix flaky test for log level (#21776)
* Fix flaky test for log level

* Fix other flaky test
2023-02-28 16:24:14 -05:00
acfb714bdf Improve TF weight loading, especially PT crossloading (#21792)
* First commit for the improved PT-TF weight loading

* Remove workarounds from TFEncoderDecoder tests

* Allow a custom weight renaming function in from_pretrained and use that to clean up EncoderDecoder

* make fixup

* First attempt at visionencoderdecoder

* Disable tensorfloat32 in tests to get consistent outputs

* Quick fix to tf_vision_encoder_decoder tests

* make fixup

* Update Blenderbot tests

* Remove unused arg in modeling_tf_opt

* load_tf_sharded_weights had strict=True! This meant transfer learning was impossible, so I'm setting it to False.

* Support prefixes when loading sharded TF checkpoints

* make fixup

* Add test to load sharded models with a weight prefix

* Fix sharded weight loading test

* Add a test for transfer from a sharded checkpoint

* make fixup

* Add test to check that crossloading from PT with a prefix works

* Refactor from_pretrained in the encoderdecoder classes

* Refactor from_pretrained in the encoderdecoder classes

* missmatched -> mismatched

* Explicitly check for None

* No comments showing my very impressive and attractive knowledge of Py3.9+

* Disable TF32 across all TF tests
2023-02-28 18:41:34 +00:00
871c31a6f1 🔥Rework pipeline testing by removing PipelineTestCaseMeta 🚀 (#21516)
* Add PipelineTesterMixin

* remove class PipelineTestCaseMeta

* move validate_test_components

* Add for ViT

* Add to SPECIAL_MODULE_TO_TEST_MAP

* style and quality

* Add feature-extraction

* update

* raise instead of skip

* add tiny_model_summary.json

* more explicit

* skip tasks not in mapping

* add availability check

* Add Copyright

* A way to diable irrelevant tests

* update with main

* remove disable_irrelevant_tests

* skip tests

* better skip message

* better skip message

* Add all pipeline task tests

* revert

* Import PipelineTesterMixin

* subclass test classes with PipelineTesterMixin

* Add pipieline_model_mapping

* Fix import after adding pipieline_model_mapping

* Fix style and quality after adding pipieline_model_mapping

* Fix one more import after adding pipieline_model_mapping

* Fix style and quality after adding pipieline_model_mapping

* Fix test issues

* Fix import requirements

* Fix mapping for MobileViTModelTest

* Update

* Better skip message

* pipieline_model_mapping could not be None

* Remove some PipelineTesterMixin

* Fix typo

* revert tests_fetcher.py

* update

* rename

* revert

* Remove PipelineTestCaseMeta from ZeroShotAudioClassificationPipelineTests

* style and quality

* test fetcher for all pipeline/model tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-28 19:40:57 +01:00
4cb5ffa93d Add loss for BridgeTowerForMaskedLM and BridgeTowerForImageAndTextRetrieval (#21684)
* Add loss for BridgeTowerForMaskedLM and BridgeTowerForImageAndTextRetrieval

* minor fix return_dict

* implement test for loss computation

---------

Co-authored-by: Tiep Le <97980157+tileintel@users.noreply.github.com>
Co-authored-by: Tiep Le <tiep.le@intel.com>
2023-02-28 12:21:48 -05:00
7f4f8b97d0 [Blip2] Fix Blip-2 multi gpu (#21707)
* fix blip multi gpu

* fix

* final changes

* adapt suggestions

* fix failing slow test

* forward contrib credits from testing and suggestions

* reformat

---------

Co-authored-by: akkikiki <akkikiki@users.noreply.github.com>
2023-02-28 17:28:58 +01:00
aab895c396 Make Slack CI reporting stronger (#21823)
* Use token

* Avoid failure

* better error

* Fix

* fix style

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-28 17:12:44 +01:00
6ca844582c Add: task guide for zero shot object detection (#21829)
* zero shot object detection part 1

* added batch prediction section

* added image guided object detection section

* make style

* added the task guide to the TOC

* minor polishing

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

* added embedded owlvit demo

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* minor fix

* make style

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-28 10:23:08 -05:00
31fa2b6c68 [GPTJ] Fix gradient checkpointing bug (#21794)
* If applied, this commit fixes generate bug in gptj

* Remove extra same code block

* formatting and test fix

* Conflict fix and declaration error fix

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-28 10:12:42 -05:00
eec76042f4 Fix the issue of blip model returning loss even when the label is not provided. (#21811)
* Fix the issue of blip model returning loss even when the label is not provoided

* Fix ruff failure

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks
2023-02-28 09:54:08 -05:00
b8de7e448e [Blip2] Add Blip2Model (#21817)
* add v1

* add `Blip2Model`

- add relevant functions
- add tests
- add on automapping

* fix docs

* fix doctest
2023-02-28 15:42:55 +01:00
ae9230af40 [T5] Fix torchquant issue (#21843)
* fix torchquant issue

* add tests
2023-02-28 15:09:44 +01:00
2d506ea4c4 Fix tf random token masking probability in data collator (#21834)
* fix tf random mask tokens probability

* fix tf random mask tokens probability in collator for langauge modelling
2023-02-28 07:55:47 -05:00
4fe744f528 Fix gradient checkpointing imagegpt (#21816)
* Fix gradient checkpointing bug in gptneox

* Fix gradient checkpointing bug in modeling_imagegpt.py

* Revert gpt neox changes

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-28 07:47:04 -05:00
e07a3d95f8 Fix gradient checkpointing bug in git (#21818)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-28 07:46:33 -05:00
50db741417 check for None forced tokens (#21793) 2023-02-28 13:24:43 +01:00
50644cf624 Fix gradient checkpointing bug BioGpt (#21844)
Co-authored-by: saswatmeher <saswatmeher@cse.iitb.ac.in>
2023-02-28 11:56:25 +00:00
a9dd124346 Rename MobileViTModelTest to TFMobileViTModelTest (#21825)
Let's give TF a bit more love ❤️ 🙏

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-28 08:10:29 +01:00
c7f3abc257 introduce logger.warning_once and use it for grad checkpointing code (#21804)
* logger.warning_once

* style
2023-02-27 13:25:06 -08:00
f95f60c829 Fix quality with ruff==0.0.253 (#21828)
fix quality with ruff 0.0.253

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-27 19:38:44 +01:00
92dfceb124 Inheritance-based framework detection (#21784) 2023-02-27 15:31:55 +00:00
7811bf7e73 Fix gradient checkpointing bug in gptneox (#21815)
* Fix gradient checkpointing bug in gptneox

* Remove use_cache block
2023-02-27 14:49:32 +00:00
0c7f93f5f1 Fix nn.init.trunc_normal_ call on torch.float16 data (#21789)
fix nn.init.trunc_normal_ call on half data
2023-02-27 13:31:29 +01:00
ebf84f07ba Fix PyTorch Perceiver PerceiverFourierPositionEncoding with fp16 (#21787)
* fix perceiver fp16

* hopefully fix tests
2023-02-27 11:43:57 +00:00
831f3144a6 [tests] add accelerate marker (#21743)
* add `accelerate` marker

* add to docs

* Update docs/source/en/testing.mdx
2023-02-27 12:33:34 +01:00
c51dc4f927 [torch] remove deprecated uint8 in favor of bool (#21384)
* uint8 -> bool

* fix copies

* style

* update test modeling commen when checking attention buffers

* style

* use logical not on random mask instead of subtraction with 1

* remove torch uint8

* quality

* remove modified modeling utils

* Update based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

---------

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
2023-02-27 11:46:02 +01:00
cc44e72d14 [Pipeline] Add zero shot audio classificatoin pipeline (#21600)
* add pipeline

* update init

* add zero shot to init

* update inits and correct checkpoints

* update base to support input features

* add tests

* Update src/transformers/pipelines/zero_shot_audio_classification.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/pipelines/zero_shot_audio_classification.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* update pieline code

* use tiny checkpoint

* nits and expected value with tiny model

* style

* last nit on tests values

* fix styling

* fix collate fn that was casting t float

* update

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-02-27 11:43:44 +01:00
2ea1ef9090 [FX tracer] Make concrete_args from outside available (#21775)
make concrete_args from outside available
2023-02-27 08:57:57 +01:00
ba2a5f13f7 Fix en documentation typos (#21799)
* fix wrong url

* typos in english documentation
2023-02-27 08:36:36 +01:00
a36983653e Fix type in gpt2 config docstring (#21782)
Fix docstring gpt2 config
2023-02-27 08:19:19 +01:00
3c0ce60855 [examples/summarization] deal with max_length and num_beams (#21740)
* Override the decoding parameters of Seq2SeqTrainer

* Fix quality

* Fix max_length parameter

* Fix quality

* Remove redundant parameter max_length

* Separate the preprocess of train and validation to use different max_target_length
2023-02-27 08:18:14 +01:00
9ddf4f4f03 Fix resume_from_checkpoint for deepspeed (#21735)
* Fix resume_from_checkpoint for deepspeed

Fix resume_from_checkpoint for deepspeed, by ensuring that the deepspeed engine is the one to load the checkpoint.

* Empty commit to trigger CI

* Removed deepspeed skipping 

Removed deepspeed skipping inside the _load_from_checkpoint function, as it is obsolete

* another adjustment

* Trigger CI

* trigger circleci

* style

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2023-02-25 11:30:54 -08:00
3dae0d7b4f [SpeechT5] Fix HiFiGAN tests (#21788) 2023-02-24 16:55:38 +01:00
59c1d5b96b [GPT2, ProphetNet] Fix gradient checkpointing bug (#21772)
* fix gradient checkpointing bug

* fix gradient checkpointing bug

* ran make fix-copies

* fixed bug

* fixed bug
2023-02-24 15:37:22 +00:00
ba0e370dc1 [time series] updated expected values for integration test. (#21762)
* updated expected

* prediction_length fix

* prediction_length default value

* default prediction_length 24

* revert back prediction_length default

* move prediction_length test
2023-02-24 12:36:54 +01:00
440f39754b Generate - update cookie cutters to not initialize cache with training and gradient checkpointing (#21759) 2023-02-24 11:21:00 +00:00
087436c98e Fix-ci-whisper (#21767)
* fix history

* input_features instead of input ids for TFWhisport doctest

* use translate intead of transcribe
2023-02-24 11:39:25 +01:00
c8545d2a9c [Whisper] Add SpecAugment (#21298)
* Return and rescale attention_mask

* Add SpecAugment to Whisper modeling

* Fix test

* Update docstring

* Add SpecAug related parameters to model config

* Add the _mask_input_features function to doc

* Fix quality

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove dev comments

* Add test

* Resolve conflict

* feat: mask {feature, time} prob fast tests

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-24 11:07:52 +01:00
75bd49ff88 [Flax] Fix erroneous kwargs being passed to generate config (#21765) 2023-02-24 09:59:18 +01:00
14f33205a7 Different behavior in DistilBERT when using "inputs_embeds" (#21752)
* Different behavior in DistilBERT when using "inputs_embeds"
Fixes #21089

* fix failing test
2023-02-24 09:48:07 +01:00
13489248fa [Examples] Generalise run audio classification for log-mel models (#21756)
* [Examples] Generalise run audio classification for log-mel models

* batch feature extractor

* make style
2023-02-24 09:19:07 +01:00
f7ca656f07 [Flax] adding support for batch norm layers (#21581)
* [flax] adding support for batch norm layers

* fixing bugs related to pt+flax integration

* cleanup, batchnorm support in sharded pt to flax

* support for batchnorm tests in pt+flax integration

* simplifying checking batch norm layer
2023-02-24 08:47:33 +01:00
279008adc3 fix: Change is_last chunk calc and add conditional break in chunk_iter (#21612)
* fix: Change is_last chunk calc and add conditional break

* format fix

* account for 0 and full stride_rights, add comment

* add new test

* make style

* update slow whisper asr test timestamps

* use nested_simplify on output and round timestamp to hundreths place
2023-02-24 08:30:32 +01:00
4446b6b094 Graphormer fix (#21699)
* Removed useless check for backend

* fix style check for graphormer

* Reverted change and corrected requires_backend for cython

* code qual
2023-02-24 08:20:52 +01:00
633062639b [deepspeed tests] fix issues introduced by #21700 (#21769)
* [deepspeed tests] fix issues introduced by #21700

* fix

* fix
2023-02-23 13:22:25 -08:00
04d90ac49e Auto api Value Error addition to Troubleshoot (#21708)
* troubleshooting guide: added an error description for missing auto-mapping

* minor polishing

* changed the example

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/troubleshooting.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-23 11:51:18 -05:00
0ffa22f9f6 Added Type Hints for modeling_tf_encoder_decoder.py (#21673)
* Ran Black formatting

* Added imports and reformatted

* Update src/transformers/models/encoder_decoder/modeling_tf_encoder_decoder.py

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-02-23 14:08:26 +00:00
aa3787c8f0 Skip test_log_level for now 2023-02-23 12:11:20 +01:00
1d4b797852 Generate: Fix GIT batched captioning (#21738) 2023-02-23 09:50:37 +00:00
78a93d17c0 [GPTNeo] Fix gradient checkpointing bug (#21733)
* fix bug

* forward contrib credits from discussions

* change logic

---------

Co-authored-by: edbeeching <edbeeching@users.noreply.github.com>
2023-02-23 09:48:19 +01:00
36a6a1adb6 Fix 2 quicktour file doctest (#21742)
* Update expect output values - as Hub repo. files are updated

* Update expect output values - as librosa is from 0.9.2 to 0.10.0 on CI docker

* fix

* update one more

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-23 09:41:28 +01:00
ff143ae10e Update doctest GH workflow file (#21744)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-23 09:40:53 +01:00
448e050b0d Make ImageProcessorMixin compatible with subfolder kwarg (#21725)
* Add subfolder support

* Add kwarg docstring

* formatting fix

* Add test
2023-02-23 09:28:18 +01:00
064f374874 typos in french documentation (#21750) 2023-02-23 09:17:01 +01:00
619d51e01f Added "Open in Colab" to task guides (#21729)
added Open in Colab to task guides
2023-02-22 08:32:35 -05:00
d913f4aa40 Fix to KerasMetricCallback when the model returns unstructured output (#21727)
* Stop doing dict-things to non-dict inputs

* Add a debug check

* Add a debug check

* Remove debug checks, looks good now!

* make fixup
2023-02-22 13:15:14 +00:00
82e61f3445 [SpeechT5HifiGan] Handle batched inputs (#21702)
* [SpeechT5HifiGan] Handle batched inputs

* fix docstring

* rebase and new ruff style
2023-02-22 11:16:56 +01:00
09127c5713 Fix GPTSanJapaneseModel (#21731)
* fix

* skip test_model_parallelism

* skip test_model_parallelism

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-22 11:09:04 +01:00
aff87da15b Fix ErnieMEmbeddings device issue (#21726)
* remove .parameters()).device

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-22 10:57:34 +01:00
2f2b19ff40 Change doc example for BigBirdForQuestionAnswering (#21723)
Change doc example for BigBirdForQuestionAnswering

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-22 10:55:12 +01:00
354b338316 Remove gptsan_japanese from doctest list to avoid GPU OOM (#21722)
remove from doctest list to avoid GPU OOM

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-22 10:51:00 +01:00
b19d64d852 Respect documentation on passive log level (#21700)
* Respect documentation on passive log level

* Fix test and set log level in examples

* Add doc
2023-02-22 09:39:18 +01:00
ee6e71e29c Fix quality 2023-02-22 03:36:15 -05:00
24b930ad1d [MBart] Fix cross attention mask check (#21730)
fix typo
2023-02-22 09:21:25 +01:00
5e8c8eb5ba Apply ruff flake8-comprehensions (#21694) 2023-02-22 09:14:54 +01:00
df06fb1f0b Time series transformer: input projection and Std scaler (#21020)
* added loc and scale outputs from scalers

* fix typo

* fix tests

* fixed formatting

* initial StdScaler

* move scaling to optional str

* calculate std feature for scalers

* undid change as it does not help

* added StdScaler with weights

* added input projection layer and d_model hyperparam

* use linear proj

* add back layernorm_embedding

* add sin-cos pos embeddings

* updated scalers

* formatting

* fix type

* fixed test

* fix repeated_past_values cal.

* fix when keepdim=false

* fix default_scale

* backward compatibility of scaling config

* update integration test expected output

* fix style

* fix docs

* use the actual num_static_real_features in feature_dim cal

* clarified docs

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* prediction_length is not optional

* fix for reviewer

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* get rid of un-needed new lines

* fix doc

* remove unneeded new lines

* fix style

* static_categorical_features and static_real_features are optional

* fix integration test

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixing docs for multivariate setting

* documentation for generate

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-22 07:50:13 +01:00
bb5a2f2fc3 Adding type hints to call() functions in this file (#21548)
* Adding type hints to call() functions in this file

* make fixup

* Update src/transformers/models/marian/modeling_tf_marian.py

* Update src/transformers/models/marian/modeling_tf_marian.py

* Update src/transformers/models/marian/modeling_tf_marian.py

* Update src/transformers/models/marian/modeling_tf_marian.py

* Update src/transformers/models/marian/modeling_tf_marian.py

* Update src/transformers/models/marian/modeling_tf_marian.py

* Update src/transformers/models/marian/modeling_tf_marian.py

* Update src/transformers/models/marian/modeling_tf_marian.py

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-02-21 16:28:33 +00:00
78a53d59cb Adding task guides to resources (#21704)
* added resources: links to task guides that support these models

* minor polishing

* conflict resolved

* link fix

* Update docs/source/en/model_doc/vision-encoder-decoder.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-21 10:35:11 -05:00
03aaac3502 Fix TVLT (torch device issue) (#21710)
* fix tvlt ci

* fix tvlt ci

* fix tvlt ci

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-21 11:37:49 +01:00
4c6346cc3e Fix get_class_in_module (#21709)
Fix get_class_in_module

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-21 09:39:15 +01:00
ed6ceb7649 Fix typo in PROCESSOR_MAPPING_NAMES and add tests (#21703)
* Add test

* Fix GITProcessor

* Update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-21 09:38:26 +01:00
4deaa534f5 remove position ids and token type ids from forward args in docstring (#21701) 2023-02-21 07:01:36 +01:00
c40e3581c7 Fix axial positional encoding calculations for reformer.mdx (#21649)
* Update reformer.mdx

Fix axial positional encoding calculations

* Update docs/source/en/model_doc/reformer.mdx

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-02-21 06:59:51 +01:00
deafc24388 Add WhisperTokenizerFast (#21222)
* Add WhisperTokenizerFast

* Fixup

* Up

* Up

* Improve tests

* Update src/transformers/models/whisper/tokenization_whisper_fast.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Keep stride in whisper pipelien test

* Remove unknown token special case

* Reduce vocabulary size in tests

* Fix vocab size assertion

* Sync copied changes from WhisperTokenizer

* Skip pipeline tests

* Update assertion

* Remove Whisper tokenizer dependency on sentencepiece

* Format

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-02-21 06:58:54 +01:00
8b3db33a76 Pass along revision in dynamic code fetch (#21698) 2023-02-20 21:21:42 +01:00
4194e5f42b Fix-rag-finetune-project-requirement (#21697)
pin pytorch lightning requirement
2023-02-20 17:23:39 +01:00
49ab16239c Add EfficientNet (#21563)
* Add EfficientNet to transformers
2023-02-20 16:37:11 +03:00
c9a0671477 [bnb] fix bnb decoders bug (#21688)
* fix `bnb` decoders bug

* make fixup
2023-02-20 12:21:58 +00:00
f56174ac5b add GPTSAN model (reopen) (#21291)
* add GPTSAN-Japanese

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN (update for review)

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* fix typo in comment text

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* fix document and comments

* fix class name GPTSAN->GPTSan

* fix import and test for tokenizer
2023-02-20 11:25:27 +01:00
c87bbe1ff0 Fix quality 2023-02-20 03:27:09 -05:00
011cc17a81 Fix for non-contiguous label tensors in VisonEncoderDecoder (#21582)
* add prints

* add shape

* add reshape

* clean up
2023-02-20 09:23:46 +01:00
2840272c5f add flax whisper implementation (#20479)
* add flax whisper implementation

* rever change to setup

* remove unused imports

* revert generation changes

* flax whisper docs

* docs

* import order

* import sorting

* isort

* add dummy objects

* doc formatting

* formatting

* remove trailing whitespaces

* fix flax whisper docs

* add generation logic to unlock flax whisper

* remove scans

* give credits to Flax Bart implementation

* remove unused imports

* add license

* remove assert

* more credits to Bart

* fix style

* formatting

* support left padding

* add flax whisper generation test

* remove copied from comments whenever not a full copy

* fix docstrings for logits processors

* revert change to FlaxForceTokensLogitsProcessor

* revert doc changes

* improve generation docs

* reorganize

* formatting

* cleanup docs

* add tests

* handle empty list case

* fix forced decoder ids in flax tests

* add flax whisper to inits

* upate dummy objects

* docs for FlaxAutoModelForSpeechSeq2Seq

* fix decoder_position_ids computation in pretrained model decode/__call__ fns

* add Copied from statements as necessary

* compute position_ids only in __call__ and decode methods of pretrained model subclasses

* improve readabilityof compute positional embeddings

* check dimensionality of input_features instead of hidden_states

* copied from statement for init_cache

* formatting

* fix copies

* fix copies

* pass attention mask to encoder layers

* fix decoder module outputs

* set dtype

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* smaller flax model for whisper test

* Update src/transformers/generation/flax_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/whisper/modeling_flax_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/models/whisper/test_modeling_flax_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* cleanup

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/whisper/modeling_flax_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* bias cleanup

* doc fix

* align style for force tokens processor

* readability

* fix input shape in tests

* revert FlaxGenerationMixin docstring

* formatting

* fix tests

* fix imports

* consistent encoder hidden states

* consistent hidden states

* input shapes

* typo

* partial class trick

* partial class for input shape

* base_class with correct input shape

* partial base classes

* match by name

* set main_input_name

* compare on names

* formatting

* remove unused import

* safer position ids computation

* safer position id computation

* Update src/transformers/models/whisper/modeling_flax_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/whisper/modeling_flax_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* remove identical inherited tests

* fix prompt ids in tests

* use generation config

* use jnp array

* better var names

* more explicit bias use

* import transformers

* formatting

* test formatting

* remove unused imports

* remove unused imports

* formatting

* isort

* docs

* fix ln orders for encoder hidden states

* whisper unique generation stuff

* flake

* use finfo for attention bias

* docs

* Update src/transformers/generation/flax_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* docs

* add timestamp flax test

* jit for timestamps

* formatting

* clean up timestamps processor

* formatting

* remove if_true

* cleanup

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-02-20 09:17:40 +01:00
7735e0406f Enable PyTorch/XLA Fully Sharded Data Parallel (FSDP) (#21406)
* Reinserted import statement accidentally removed during rebasing.

* Added auto_wrap functionality, restructured XLA FSDP logic to more closely match PyTorch FSDP logic.

* Fixed flag descriptions; changed several instances of fsdp_ to xla_fsdp_; pass in auto_wrap_policy and auto_wrapper_callable directly to avoid lambda saving.

* Moved XLA FSDP logic to be adjacent to Fairscale FSDP logic in trainer.

* Formatted changes in accordance with HF style requirements.

* Added back in warning which was accidentally removed.

* - Merged XLA FSDP training arguments into `fsdp_config`
- Added `xla` boolean flag to `fsdp_config` to specify XLA FSDP wrapping
- Merged XLA FSDP wrapping logic into FSDP wrapping logic within trainer
  class

* Cleaned up errors, moved argument to fsdp_config

- Set `xla` and `xla_fsdp_grad_ckpt` flags by default in fsdp_config
- Added missing colons following conditionals
- Moved `fsdp_transformer_layer_cls_to_wrap` to `fsdp_config`
- Modified `fsdp_transformer_layer_cls_to_wrap` to be list of strings,
  not just one string
- Changed Fairscale FSDP logic to allow for set of layer classes to wrap
- Removed unnecessary checks for `xla_fsdp`

* Corrected small errors, improved layer class flag

- Correctly set default values for `xla` and `xla_fsdp_grad_ckpt`
  arguments
- Made `fsdp_transformer_layer_cls_to_wrap` a list of strings instead of
  a single string
- Added processing to ensure that `fsdp_transformer_layer_cls_to_wrap`
  works as expected if passed as a single string
- Updated PyTorch FSDP logic to accept a list of layers to wrap, as done
  with XLA FSDP
- Replaced instances of `getattr()` with `.get()` for dictionary
  retrievals with default values, including when setting
  `fsdp_min_num_params`
- Corrected `self.fsdp is not None` to `len(self.fsdp) > 0`
- Removed extraneous `xla_fsdp` argument descriptions from outside
  `fsdp_config`

* Changed xla-fsdp-settings to be dictionary

- Modified xla-fsdp-settings to be entered directly as dictionary
  instead of loaded through JSON file
- Made small style corrections

* Reverted unintentional local_rank TPU check

* Do not block XLA FSDP if local rank is -1

* Rebased and applied automatic formatting

- Rebased
- Applied automatic formatting changes via `make style`

* Applied automatic formatting with latest version of black

* Replaced  expression with

* Reran black examples tests src utils
ruff examples tests src utils --fix
make autogenerate_code
make[1]: Entering directory '/usr/local/google/home/awertheim/HF-FSDP-PR/transformers'
make[1]: Leaving directory '/usr/local/google/home/awertheim/HF-FSDP-PR/transformers' after additional formatting changes

* Additionall automatic formatting changes

* Remove unnecessary whitespace characters from src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-20 09:06:23 +01:00
7f1cdf1895 Fix dynamic module import error (#21646)
* fix dynamic module import error

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-17 21:22:39 +01:00
8a4c319d33 [BLIP] update blip path on slow tests (#21476)
* update blip path

* Update tests/models/blip/test_modeling_blip.py
2023-02-17 18:26:36 +00:00
087fd5f368 [ImageProcessor] Refactor default mean & std to OPENAI_CLIP_MEAN & OPENAI_CLIP_STD (#21425)
* fix default value

* add the fix on other models
2023-02-17 18:57:05 +01:00
005b515754 Generate: eta sampling numerical stability (#21676) 2023-02-17 17:09:37 +00:00
bb6a664e14 Fix multi-gpu training error for LayoutLMv2 (#21675)
Co-authored-by: Yoshinari Fujinuma <fujinuy@amazon.com>
2023-02-17 17:04:11 +00:00
a8eb4f79f9 [CLAP] Fix few broken things (#21670)
* add `is_longer`

* fix docstring

* fix config class

* fix loss

* fix all doctests

* fix order

* fix last failing tests

---------

Co-authored-by: arthur.zucker@gmail.com <arthur.zucker@gmail.com>
2023-02-17 11:32:14 +01:00
3668ec1716 [bnb] Introducing BitsAndBytesConfig (#21579)
* v1 `BitsandbytesConfig`

- add v1
- add tests
- more user-friendly API
- add docs

* change to `BitsAndBytesConfig`

* replace logic

* changes

* make fixup

* quality

* make fixup

* fix doc

* fix test

* update toctree

* fix slow test

* add tips

* add warning

* change title

* oops

* Update docs/source/en/main_classes/quantization.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/utils/bitsandbytes.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove unused file

* adapt suggestion

- add also tests
- change logic

* update docs

* adapt suggestions

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-17 09:44:01 +01:00
f16d29b337 Adapt PerceiverIO Multimodal class to work with arbitrary modalities (#20054)
* * Properly register parameters in PerceiverMultimodalPreprocessor
* Adapt PerceiverTextPreprocessor to work with PerceiverMultimodalPreprocessor
* Change a few type hints

* Fix formatting; incorrect return type

* Return embeddings_wo_pos

---------

Co-authored-by: Steven Anton <antonstv@amazon.com>
2023-02-16 16:51:00 -05:00
c236a62172 [CLAP] Add CLAP to the library (#21370)
* add model like clip

* update

* text model ok

* clap text works

* some refactor

- `CLAPVision` to `CLAPAudio`
- refactor kwargs of audio modules

* more refactor

* more refactor

* more refactor

* correct fusion

* more refactor

* new modules

* add basic processor

* fixup

* remove whisper copioed from

* audio logits match

* add doc

* correct filters mel and add maxlength

* style

* few fixes

* forward passes

* fixup

* fixup

* some clean up

* remove mels form the dictionnary

* pad after the repeat

* update padding when dsmaller

* fix padding

* style

* use swin patch merging

* use copied from swin

* processor with any tokenizer

* more copied from

* some clean up

* more refactor

* fix mel when rand_trunc

* style

* remove unused imports

* update processing

* remove image processing tests

* add testing fiel

* fixmodeling issues

* replace with `is_longer`

* clap in serialization

* more refactor

* `make fixup`

* make fixup

* fix feature extractor

* update test feature extractor

* `make fixup`

* clean up config

* more clean up

* more cleanup

* update tests

* refactor tests and inits

* removeCLAP vision config

* remove CLAP from image procssing auto and dummy vision objects

* update inits

* style

* re order classes in modeling clap

* Use roberta tokenizer as the other weights are not open sourced

* small cleaup

* remove tokenization CLAP

* processor tokenizr is roberta

* update feature extraction doc

* remove vclap from model zero shot

* update f_min and f_max to frequency_xx

* some changes

- fix modeling keys
- add `is_longer` in the forward pass
- make fixup

* make fixup

* consistent behavior ebtween rand_crop and fusion

* add numpy resize and bilinear and documentation

* move resizing to image utils

* clean feature extraction

* import resize from correct file

* resize in image transforms

* update

* style

* style

* nit

* remove unused arguments form the feature extractor

* style

* few fixes + make fixup

* oops

* fix more tests

* add zero shot audio classification pipeline

* update zeroshot classification pipeline

* fixup

* fix copies

* all CI tests pass

* make fixup + fix docs

* fix docs

* fix docs

* update tests pip;eline

* update zero shot pipeline

* update feature extraction clap

* update tokenization auto

* use nested simplify

* update pipeline tests

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* split in two lines

* fixes

* refactor

* clean up

* add integration tests

* update config docstring

* style

* update processor

* fix processor test

* fix feat extractor tests

* update docs

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix readmes

* fix tips

* Update src/transformers/models/auto/configuration_auto.py

* update doc and remove todo -> properly explained

* fix idx and typo

* typoe

* cleanup config

* cleanup tests, styles and doc

* ignore docstyle on image transform

* add conversion script

* remove the `clap` indx in favor of `CLAP`

* update __init

* nits

* Update src/transformers/pipelines/__init__.py

* fix bug

* clarifiy config

* fix copy

* fix init

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix model output

* fix comment

* make fixup

* make fixup

* rename to `Clap`

* replace to `Clap`

* replace to `Clap`

* repo consistency

* again repo-consistency

* make fixup

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* add config

* changes

* update conversion

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* remove unused function

* update based on code reviews

* style

* more comments

* cleanup

* clean up

* style

* apply suggestions

* Empty commit

* pipeline will be added in a different PR

* update calls to audio utils functions

* update pipeline init

* style

* style

* styling again

* use pad

* fix repo-consistency

* update utils and add doc for audio utils

* clean up resize by using torch. update inits accordingly

* style

* CLap's  tokenizer is RobertA

* add audio utils to internal toctreee

* update totctree

* style

* update documentation and normalize naming accross audio utils and feature extraction clap

* style

* clean up

* update doc and typos

* fix doctest

* update modelin code, got rid of a lot of reshaping

* style on added doc audio utils

* update modeling clap

* style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* docstringvariables with CLAP

* rename key

* update modeling CLAP

* update audio utils docstring

* update processing clap

* fix readmes

* fix toctree

* udpate configuration clap

* fix init

* make fixup

* fix

* fix

* update naming

* update

* update checkpoint path

* Apply suggestions from code review

* Major refactoring

* Update src/transformers/models/clap/configuration_clap.py

* merge

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-02-16 20:59:27 +01:00
6b0257de42 Sort deps alphabetically 2023-02-16 13:27:27 -05:00
b0f0086fa4 Add OPT resources to the transformers documentation (#21625)
* Add resources to OPT

* Add additional resources for OPT

* Remove -{" "} after <PipelineTag pipeline="question-answering" />

* Change bitsnbytes to bitsandbytes

* Revert formatting

* Revert automatic format changes

* Remove - sign after <PipelineTag pipeline="question-answering" />
2023-02-16 12:44:28 -05:00
61d7fec87a [bloom] gradient_checkpointing fix (#21655)
Update modeling_bloom.py
2023-02-16 08:57:19 -08:00
0f96c26de6 refactor: Make direct_transformers_import util (#21652)
* refactor: Make direct_import util

* edit direct import fn

* add docstring

* make import function specific to transformers only

* edit doc string
2023-02-16 11:32:32 -05:00
96d4fa46ed [WhisperModel] fix bug in reshaping labels (#21653)
fix bug in reshaping labels
2023-02-16 16:00:46 +01:00
fcfd4ec789 Bump werkzeug from 2.0.3 to 2.2.3 in /examples/research_projects/decision_transformer (#21658)
Bump werkzeug in /examples/research_projects/decision_transformer

Bumps [werkzeug](https://github.com/pallets/werkzeug) from 2.0.3 to 2.2.3.
- [Release notes](https://github.com/pallets/werkzeug/releases)
- [Changelog](https://github.com/pallets/werkzeug/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/werkzeug/compare/2.0.3...2.2.3)

---
updated-dependencies:
- dependency-name: werkzeug
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-02-16 09:23:43 -05:00
212c42a1e3 Update document of WhisperDecoderLayer (#21621)
* Update document of WhisperDecoderLayer

* Update modeling_mbart.py

* Update doc with utils/check_copies.py --fix_and_overwrite

* Update modeling_xlm_prophetnet.py
2023-02-16 09:19:59 -05:00
61abe3290b [WIP] Move X-MOD models to facebook organization (#21640)
Move X-MOD models to facebook org
2023-02-16 09:18:25 -05:00
751f17aa48 Fix typos in contrastive-image-text example README (#21665) 2023-02-16 09:10:25 -05:00
9d1116e995 Update deprecated load_module (#21651) 2023-02-15 15:57:24 -05:00
1567bef3b3 Generate: PT Dynamo without graph breaks in the main greedy/sample loop (#21648) 2023-02-15 20:16:46 +00:00
7a5533b2c3 Refactor model summary (#21408)
* first draft of model summary

* restructure docs

* finish first draft

* minor reviews and edits

* apply feedbacks

* save important info, create new page for attention

* add attention doc to toctree

*  few more minor fixes
2023-02-15 10:35:14 -08:00
a0e69a9375 Add TVLT (#20725)
* Update image_processing_tvlt.py

* Update modeling_tvlt.py

* Update

* Update modeling_tvlt.py

* Create tvlt.mdx

* Update configuration_tvlt.py

* Update modeling_tvlt.py

* Update test_modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update image_processing_tvlt.py

* Update feature_extraction_tvlt.py

* Update tvlt models

* Update tests

* Update

* Update

* Update tests

* Update README_ko.md

* Update README_ja.md

* Update README_ko.md

* Update README_zh-hans.md

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update tvlt.mdx

* Update modeling_tvlt.py

* Update configuration_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Add files via upload

* Update model

* Update modeling_tvlt.py

* Update tvlt models

* Update src/transformers/models/tvlt/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add files via upload

* Add files via upload

* Delete modeling_tvlt.py

* Delete feature_extraction_tvlt.py

* Delete configuration_tvlt.py

* Delete image_processing_tvlt.py

* Delete processing_tvlt.py

* Update tvlt

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update README_es.md

* Update README_hd.md

* Update README_ja.md

* Update README_ko.md

* Update README_zh-hans.md

* Update README_zh-hant.md

* Update index.mdx

* Update tvlt.mdx

* Update tvlt.mdx

* Update configuration_tvlt.py

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update modeling_tvlt.py

* Add files via upload

* Update tvlt.mdx

* Update modeling_auto.py

* Add files via upload

* Add files via upload

* Update dummy_pt_objects.py

* Update __init__.py

* Update feature_extraction_tvlt.py

* Update feature_extraction_tvlt.py

* Update image_processing_tvlt.py

* Update modeling_auto.py

* Update test_feature_extraction_tvlt.py

* Update test_processor_tvlt.py

* Update test_feature_extraction_tvlt.py

* Add files via upload

* Update test_image_processor_tvlt.py

* Update tests/models/tvlt/test_processor_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_image_processor_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update tests/models/tvlt/test_image_processor_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_image_processor_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_image_processor_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_feature_extraction_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/feature_extraction_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/feature_extraction_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/feature_extraction_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/feature_extraction_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update feature_extraction_tvlt.py

* Update feature_extraction_tvlt.py

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update image_processing_tvlt.py

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update test_image_processor_tvlt.py

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add files via upload

* Add files via upload

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Add files via upload

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update image_processing_tvlt.py

* Add files via upload

* Add files via upload

* Update tvlt.mdx

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* Update modeling_auto.py

* Update tvlt.mdx

* Update dummy_pt_objects.py

* Update feature_extraction_tvlt.py

* Update modeling_tvlt.py

* Update test_feature_extraction_tvlt.py

* Update test_image_processor_tvlt.py

* Update test_feature_extraction_tvlt.py

* Update modeling_tvlt.py

* Update dummy_pt_objects.py

* Update dummy_speech_objects.py

* Add files via upload

* Update README_hd.md

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update test_modeling_tvlt.py

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/feature_extraction_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update MAE processing

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling

* Update style

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update check_repo.py

* Update tvlt.mdx

* Update __init__.py

* Update tests

* Update tvlt models

* Update configuration_tvlt.py

* Update configuration_tvlt.py

* Update image_processing_tvlt.py

* Update dummy_pt_objects.py

* Add files via upload

* Update test_modeling_tvlt.py

* Update test_feature_extraction_tvlt.py

* Update test_feature_extraction_tvlt.py

* Update test_feature_extraction_tvlt.py

* Update test_feature_extraction_tvlt.py

* Update test_feature_extraction_tvlt.py

* Update test_feature_extraction_tvlt.py

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-02-15 18:10:30 +00:00
7bac51837b Pass parent exception as context exception to provide clearer stack trace (#21636)
* Pass parent exception as context exception to provide clearer stack trace

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-15 11:34:02 -05:00
3499c49c17 Skipping more high mem tests - Wav2Vec2 Hubert (#21647)
Skipping more tests
2023-02-15 16:00:50 +00:00
0c9c8472e6 Add Ernie-M Model to huggingface (#21349)
* config and tokenization(fast too) changed and ErnieEncoder added

* Slow Tokenization Added

* Tokenizer(slow) is now working and Fast Tokenizer removed

* Added Config code

* Added Base Model and utils

* ErnieMModel is now working

* All added except tests

* All tests passed except ErnieUIEM

* All tests passed

* all fixes done

* all fixes done

* fixed MAP

* fixed check_code_quality

* fixed Build PR Documentation issue

* Added changes(comments) and also updated to the latest upstream/main

* Added fixup

* Added # Copied comments

* Added fixup

* Added more comments and some nits

* Added fixup

* Fixed README_hd.md

* Added more fixes

* ErnieMTokenizer (being sentencepiece) protected and other docs edited

* Added code_quality fix

* Fixed for

* Added more fix

* modified AZ

* ernie-m tokenization test added!

* attention mask part fixed(with 0->self.config.pad_token_id)

* applied make fixup
2023-02-15 09:24:56 -05:00
40ca13367e Fix passing kwargs to TFBertTokenizer (#21619) 2023-02-15 09:18:48 -05:00
fc28c006a6 Skip wav2vec2 hubert high mem tests (#21643)
* Skip high memory tests

* Skip high memory tests

* Remove unused import
2023-02-15 14:17:26 +00:00
e3d832ff87 Fix Blip-2 CI again (#21637)
* fix blip-2 ci

* fix blip-2 ci

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-15 10:59:42 +01:00
762dda44de Remove extra "max_length is reached." from InfNaNLogitsProcessor documentation (#21634)
* Fix typo in documentation.

* Remove trailing words typo in documentation.
2023-02-14 16:12:22 -05:00
26ef0f1991 fix: Race Condition when using Sagemaker Checkpointing and Model Repository (#21614)
* Add _add_sm_patterns_to_gitignore

* Add _is_world_process_zero() call and move patterns arg to constant

* Update git status time.sleep

* Apply make style
2023-02-14 16:11:37 -05:00
7bce804260 Fix typo in QA task guide (#21608)
fix typo
2023-02-14 12:02:19 -08:00
bad8300837 Error (also in original) model, scaling only q matrix not qk.T dot product (qk.T/sqrt(dim_per_head)) (#21627)
* Error in model, scaling only q matrix not qK.T dot product (qk.T/sqrt(dim_per_head))

As per Vaswani et al, 2017 p.4
Is torch.matmul(q, k.transpose(2, 3)) / math.sqrt(dim_per_head) not q / math.sqrt(dim_per_head)
https://arxiv.org/pdf/1912.05372.pdf

Error was in original FlauBERT repo and effectively scales queries but not values
cf. 6d176880ca

* Update modeling_flaubert.py

Update to https://github.com/huggingface/transformers/pull/21627
make fixup
make repo_consistency

* Update modeling_xlm.py

* Update modeling_flaubert.py

* Update modeling_xlm.py
2023-02-14 14:39:32 -05:00
aaf6795f92 Fix typo in documentation. (#21632) 2023-02-14 14:00:30 -05:00
d3b1adf59f Removes duplicate computations in DETR post processing (#21592)
* Remove redundant computations, comb variable names

* Fix scores to cur_scores
2023-02-14 13:00:02 -05:00
d4ba6e1a0e Fix generation config for empty state dict (#21630) 2023-02-14 10:57:28 -05:00
317282927d Fix the real failing test 2023-02-14 10:52:23 -05:00
22888d3082 Remove Niels from templates (#21564) 2023-02-14 09:47:43 -05:00
68b21b37ea Final cleanup of TOKENIZER_FOR_DOC (#21565)
FInal cleanup of TOKENIZER_FOR_DOC
2023-02-14 09:47:32 -05:00
c6f163c786 Skip failing test 2023-02-14 09:20:47 -05:00
a81fe4e1df Generate: input expansion for any model input (#21624) 2023-02-14 14:16:22 +00:00
13e03e619d Generate: filter encoder inputs when its signature does not accept wildcards (#21603) 2023-02-14 10:46:46 +00:00
41fa672df1 Enable requires_grad on input embedding to train on top of frozen layers (#21598)
* v1

* make fixup

* add more methods
2023-02-14 09:43:06 +01:00
8c5026628a Add in big model inference to issue template (#21611)
* Add in big model inference to issue template

* Trigger

* Untrigger

* empty test commit
2023-02-13 16:40:34 -05:00
56b03c96b8 Fix TF CTC tests (#21606) 2023-02-13 21:23:00 +00:00
cbecf121cd Fix env. variable type issue in testing (#21609)
* fix env issue

* fix env issue

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-13 20:53:26 +01:00
5987e0ab69 Clarify available pipelines in quicktour (#21607)
clarify available pipelines
2023-02-13 11:37:48 -08:00
101b9a7eb1 [deepspeed] performance docs (#21573)
* [deepspeed] performance docs

* fix

* re-org

* update

* update

* a new NCCL Collectives section

* inference

* Update docs/source/en/main_classes/deepspeed.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* suggestion

* Update docs/source/en/main_classes/deepspeed.mdx

* suggestion

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-13 10:29:12 -08:00
68eff4036d Update setup.py (#21584)
* Update setup.py

* suggestions
2023-02-13 10:12:14 -08:00
a27074abb5 [i18n-fr] Translate quicktour page to French (#21589)
* Translate quicktour to French

* Traduction missing task
2023-02-13 13:05:31 -05:00
fa4bdb0a40 Generate: correct default model input creation for decoder-only models (#21580) 2023-02-13 17:04:49 +00:00
edc1e734bf Fix Blip-2 CI (#21595)
* use fp16

* use fp16

* use fp16

* use fp16

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-13 16:44:27 +01:00
fd5320bb57 Add missing arguemtn to run_clip.py (#21588) 2023-02-13 10:27:23 -05:00
1210c72e82 Correct Markdown bullets indentation (#21583) 2023-02-13 10:22:29 -05:00
92487f5d0b Bump ipython from 8.1.1 to 8.10.0 in /examples/research_projects/decision_transformer (#21577)
Bump ipython in /examples/research_projects/decision_transformer

Bumps [ipython](https://github.com/ipython/ipython) from 8.1.1 to 8.10.0.
- [Release notes](https://github.com/ipython/ipython/releases)
- [Commits](https://github.com/ipython/ipython/compare/8.1.1...8.10.0)

---
updated-dependencies:
- dependency-name: ipython
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-02-13 10:21:50 -05:00
dee4d72e72 annotated TFvisionEncoderDecoder input type hints (#21432)
* annotated TFvisionEncoderDecoder input type hints

Co-authored-by: JuheonChu <chuj@dickinson.edu>
Co-authored-by: AdiaWu <wua@dickinson.edu>

* fixed failing tests

* make fix-copies

* failed test fix

* style fix

* revert

---------

Co-authored-by: JuheonChu <chuj@dickinson.edu>
Co-authored-by: AdiaWu <wua@dickinson.edu>
Co-authored-by: Matt <rocketknight1@gmail.com>
2023-02-13 15:20:18 +00:00
1666c42f0b [bnb] Let's make the daily CI green 🍏 (#21597)
* fix bnb slow test

* make fixup
2023-02-13 16:18:50 +01:00
24273268b7 Generate: Fix flaky indexing error in test_constrained_beam_search_generate_dict_output (#21561) 2023-02-13 15:12:07 +00:00
93ed89bf40 Add inputs_embeds support when generating with GPT-J (#21575) 2023-02-13 15:11:40 +00:00
dcb5e01197 [MINOR] Fix link in timeseries transformer docs (#21602)
[MINOR] Fix link

I'm not sure this will also fix the currently broken link in the docs (Specifically here: https://huggingface.co/docs/transformers/model_doc/time_series_transformer) whereby clicking on `kashif` attempts to link to the following non-existent URL: https://huggingface.co/docs/transformers/model_doc/%3Chttps://huggingface.co/kashif
2023-02-13 10:11:16 -05:00
dd7429d645 Remove trailing 'extractive' word from en documentation (#21594)
remove trailing word
2023-02-13 10:09:00 -05:00
4be75e9728 CI: skip failing TF hubert test (#21601)
skip test
2023-02-13 09:34:23 -05:00
3baa407f92 Add: document question answering task guide (#21518)
* document question answering guide

* Added the list of supported models

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* switched to AutoProcessor

* feedback addressed

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/document_question_answering.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* more feedback addressed

* addressed comments about evaluation loss

* added appropriate image link

* make style

* typo fix

* resolving toc conflict

* fixed the image link

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-02-13 09:24:56 -05:00
eb6c59bc78 Generate: TF supports multiple eos tokens (#21571) 2023-02-13 12:24:22 +00:00
c836f77266 Fix quality on main (ruff release) 2023-02-11 20:09:16 -05:00
75a208ef66 [Blip2] Add int8 support for blip2-flan-t5-xxl (#21574)
add int8 support
2023-02-10 23:28:24 +01:00
b47a16743b Remove more unused attributes in config classes (#21543)
* Remove unused decoder_layerdrop

* Update SPECIAL_CASES_TO_ALLOW for MT5Config

* Remove unused position_embedding_init_scale

* Remove unused decoder_max_relative_position

* Use unused decoder_max_relative_position

* Remove unused init_std

* Remove unused forgotten attributes

* Remove unused patch_norm

* Remove unused max_seq_len

* Update SPECIAL_CASES_TO_ALLOW for OneFormerConfig

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-10 22:57:28 +01:00
862e8e4f4a Added timesformer configuration (#21446)
* Added timesformer configuration

Co-authored-by: JuheonChu <chuj@dickinson.edu>

* Create documentation_tests.txt

* Update documentation_tests.txt

Co-authored-by: JuheonChu <chuj@dickinson.edu>

* Delete documentation_tests.txt

Updates, Deleting "src/transformers/utils/documentation_tests.txt" file.

Co-authored-by: JuheonChu <chuj@dickinson.edu>

* Create documentation_tests.txt

Co-authored-by: JuheonChu <chuj@dickinson.edu>

* Delete documentation_tests.txt


Co-authored-by: JuheonChu <chuj@dickinson.edu>

---------

Co-authored-by: JuheonChu <chuj@dickinson.edu>
2023-02-10 22:54:40 +01:00
cb56590111 Replace input_values_processing with unpack_inputs (#21502)
* Replace input_values_prrocessing with unpack_inputs

* Skip test failing with OOM

* Update tests
2023-02-10 18:19:39 +00:00
557125637d improving contributing tests section (#21569)
* improving tests section

* documenting other  env variables
2023-02-10 13:17:01 -05:00
3b7ed25da9 [deepspeed] deal with models w/o config.hidden_size (#21504)
* [deepspeed] deal with models w/o config.hidden_size

* typo

* typo
2023-02-10 09:44:19 -08:00
4f831e661b Goodbye to Blip-2 doctests (#21566)
Byebye Blip-2 doctest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-10 18:37:06 +01:00
e2ec3089ce [Tasks] Adds image captioning (#21512)
* add: task guide on image cpationing.

* Empty commit to trigger CI

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address additional comments from the PR.

* fix: wording.

* Update docs/source/en/tasks/image_captioning.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-10 22:52:12 +05:30
2f5507580b [from_pretrained] extend torch_dtype="auto" to look up config.torch_dtype first, expand docs (#21524)
* [from_pretrained] expand on torch_dtype entry

* fold 4 into 1

* style

* support torch_dtype='config' plus tests

* style

* oops

* fold config into auto, fix bug

* fix check

* better log

* better log

* clean up
2023-02-10 09:09:21 -08:00
9e40bba6ba [Tests] Improve flax test_attention_outputs (#21486)
improving flax tests
2023-02-10 11:31:49 -05:00
c88b11c591 Add _mp_fn to run_mae.py for XLA testing (#21551)
Update run_mae.py
2023-02-10 09:53:55 -05:00
b20147a3c8 [Variant] Make sure variant files are not incorrectly deleted (#21562)
* [Variant] Make sure variant files are not incorrectly deleted

* Apply suggestions from code review

* fix
2023-02-10 15:44:51 +01:00
51c3f42d8e Replace inefficient torch.sqrt taking scalar input with numpy.sqrt (#21496)
* fix rsqrt

* fix typo
2023-02-10 09:44:14 -05:00
b0d539ccad Add X-MOD (#20939)
* Add X-MOD to Readme

* Add documentation for X-MOD

* Implement X-MOD

* Fix formatting of X-MOD docs

* Change signature of X-MOD forward methods to use lang_ids

* Minor changes

* Rebase with main and run make fix-copies

* Make suggested changes to docstrings

* Improve code readability

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Fix code style

* Conversion script: Remove asserts and type annotations

* Remove _TOKENIZER_FOR_DOC

* XMOD -> Xmod

* Update copyright note

* Fix doctests

* Fix docstring

* Add integration test for FillMaskPipeline

* Revert "Add integration test for FillMaskPipeline"

This reverts commit 4381eb3b1d0f5d85785f89caba83928e6efa6d1f.

* Add end-to-end integration test for mask fill

* make style

* Rebase with main and make fix-copies

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-02-10 15:32:06 +01:00
adb2503ea3 Fix stuff related to the causal_mask in CodeGen. (#21527)
* Fix stuff related to the causal_mask in CodeGen.

1. Line 613, `_keys_to_ignore_on_load_missing  =  [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]` => `_keys_to_ignore_on_load_missing  =  [r"h\.\d+\.attn\.causal_mask"]` to load correctly from CodeGen checkpoint without `causal_mask`.
2. Line 152, `causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length]
` => `causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length].bool()
` to alleviate potential user warning saying like `UserWarning: where received a uint8 condition tensor. This behavior is deprecated and will be removed in a future version of PyTorch. Use a boolean condition instead.`.

* Revert the .bool()

Revert the .bool() and leave it to the future PR.
2023-02-10 09:16:23 -05:00
5b72b3412b Remove CLI spams with Whisper FeatureExtractor (#21267)
* Remove CLI spams with Whisper FeatureExtractor

Whisper feature extractor representation includes the MEL filters, a list of list that is represented as ~16,000 lines. This needlessly spams the command line. I added a `__repr__` method that replaces this list with a string "<array of shape (80, 201)>"

* Remove mel_filters from to_dict output  

Credits to @ArthurZucker

* remove unused import

* update feature extraction tests for the changes in to_dict
2023-02-10 09:15:16 -05:00
129011c20b adding a tip for deepspeed integration in multi-node environment (#21459)
* adding note concerning use_node_local_storage

* overriding checkpoint.use_node_local_storage if save_on_each_node == True

* add more content

* add more content

* improve

* style

---------

Co-authored-by: Stas Bekman <stas@stason.org>
2023-02-10 09:12:56 -05:00
21a2d900ec Added with torch.no_grad() to Camembert integration test (#21544)
add with torch.no_grad() to Camembert integration test

Co-authored-by: Bibi <Bibi@katies-mac.local>
2023-02-10 10:58:29 +01:00
f83942684d [pipeline] A simple fix for half-precision & 8bit models (#21479)
* v1 fix

* adapt from suggestions

* make style

* fix tests

* add gpu tests

* update docs

* fix other tests

* Apply suggestions from code review

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* better fix

* make fixup

* better example

* revert changes

* proposal

* more elegant solution

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-10 10:26:17 +01:00
97d3390fc8 Skip failing test for now 2023-02-09 20:11:26 -05:00
23c146c38b Added with torch.no_grad() to XLM-Roberta integration test (#21547)
* added with torch.no_grad() to the integration tests and applied make style

* added with torch.no_grad() to xlm roberta forward pass

---------

Co-authored-by: Bibi <Bibi@katies-mac.local>
2023-02-09 21:49:54 +01:00
04b2f13c37 🚨🚨🚨 Enforce single model initialization (#21431)
* Enforce single model initialization

* Add OneFormer example for problem 3

* Do it the Stas way

* Actually rename the uses...

* Rewrite test

* Try to change the test this way

* Fix all init slow/fast tests

* Break connection

* Fix more tests

* Fix test for initialization

* Remove custom test

* Quality

* Fix last failing tests

* The end?
2023-02-09 15:46:26 -05:00
2020ac4bd6 Fix from_pretrained API with config and state_dict (#21542) 2023-02-09 15:44:02 -05:00
1efe9c0b24 Fix inclusion of non py files in package (#21546)
* Fix inclusion of non py files in package

* No need for the **
2023-02-09 14:15:10 -05:00
7927732ff8 Align BLIP-2 winit with others 2023-02-09 12:03:27 -05:00
d7f1e7c009 Add BLIP-2 (#21441)
* First draft

* More improvements

* More improvements

* Improve conversion script

* Convert all weights

* Make forward pass work

* Make logits match

* More improvements

* More improvements

* More improvements

* Use get_input_embeddings

* Improve some more

* Improve model tests

* Improve model tests

* More improvements

* Fix processor

* Update files

* Update prepare_inputs_for_generation

* More improvements

* Fix copies

* More fixes

* Make fixup

* More improvements

* Add support for seq2seq language model

* More improvements

* Fix test

* More improvements

* Improve conversion script

* Remove some todo's

* Fix README's

* Improve conversion script

* Fix generation

* Fix style and remove Blip2Model

* Fix model outputs

* More improvements

* Set eos_token_id in config

* Fix quality

* Small improvements

* Add processor tests

* More improvements

* Apply suggestions

* Apply suggestions

* Add integration test

* Update image URL

* Add integration test

* Fix model_type

* Update style

* Improve docs

* Add doc tests

* Fix copies

* Remove tests which are passing

* Improve some more

* Add tests for seq2seq language models

* Minor fix

* Convert more checkpoints

* finalize CI

* Fix blip and blip2 processors

* add `accelerate` support for `blip2`

* clean up

* make style

* Update conversion script

* Update conversion script some more

* Update organization

* revert toc file

* add blip-2 to toc file

* Some more improvements

* Fix docstring

* Improve docs

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-02-09 16:52:11 +01:00
b31cee6727 fix typo in run_speech_recognition_ctc.py (#21528)
Update run_speech_recognition_ctc.py

There should be `# limitations under the License` line at the end of the documentation section.
2023-02-09 09:46:40 -05:00
0d33381fad Tag tests as slow (#21537)
begone slow tests
2023-02-09 14:46:15 +00:00
3a726777ca Fix ClearML Integration to run in ClearML pipelines and external Tasks. (#21531)
* Added clearml pipeline fix for when task is already initialized

* Correctly initialize
2023-02-09 09:28:55 -05:00
17109ecfb8 Fix missing unfinished_sequences (#21529)
fix missing unfinished_sequences
2023-02-09 09:06:22 -05:00
2edf9a857b Generate: TF .generate() can now be exported with dynamic length (#21474) 2023-02-09 12:52:30 +00:00
e69f9715eb Generate: make TF .generate() signature == PT .generate() signature (#21525) 2023-02-09 11:10:13 +00:00
c35bb6de54 Add __len__ method to _LazyAutoMapping (#21522)
Add `__len__` method to `_LazyAutoMapping`

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-08 20:35:14 +01:00
9960506cbe Fix multiple eos_token_ids in model.generate(...) (#21461)
* add tests with multiple eos_token_ids

* make math.prod instead of sum

* make fixup

* fix long and also use np.prod since math.prod does not exist <python 3.8

* make fixup

* add prod util

* use prod util instead of np.prod

* make fixup

* previous .long location

* use tensor ops

* remove prod

* remove prod

* update device

* make fixup

* fix none
2023-02-08 13:48:46 -05:00
06d940efc3 Fixing backward compatiblity image_processor in pipeline. (#21513) 2023-02-08 19:36:20 +01:00
8ea994d3c5 [tests] add missing report_to none (#21505)
[tests] report_to none
2023-02-08 09:32:40 -08:00
98d5b72727 Update OPT conversion script to work for OPT-IML (#21519) 2023-02-08 18:31:10 +01:00
fe616f35c8 no more dummies for speech processors (#21517) 2023-02-08 11:41:54 -05:00
1d9c26a4b8 Generate: TF compute_transition_scores (#21341) 2023-02-08 16:36:43 +00:00
d3046dad80 [Doc] Minor URL fixes in PyTorch Text Classification Readme (#21511)
docs: fix some references in PyTorch text classification readme
2023-02-08 09:39:52 -05:00
e024cd715e Bump cryptography from 36.0.2 to 39.0.1 in /examples/research_projects/decision_transformer (#21507)
Bump cryptography in /examples/research_projects/decision_transformer

Bumps [cryptography](https://github.com/pyca/cryptography) from 36.0.2 to 39.0.1.
- [Release notes](https://github.com/pyca/cryptography/releases)
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/36.0.2...39.0.1)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-02-08 09:25:06 -05:00
ca905ba28e Exclude the madeup words from M2M100Tokenizer.vocab_size (#20976) 2023-02-08 09:19:06 -05:00
cc1d0685b3 Wrap RemBert integration test forward passes with torch.no_grad() (#21503)
added with torch.no_grad() to the integration tests and applied make style

Co-authored-by: Bibi <Bibi@katies-mac.local>
2023-02-08 14:00:52 +01:00
5b67ab9924 Fix import in Accelerate for find_exec_bs (#21501) 2023-02-07 16:45:59 -05:00
eb1771ef1f Check for mapping/dict in distributed_concat function (#21500)
check for mapping/dict in distributed_concat function

Co-authored-by: prajwal967 <user.email>
2023-02-07 16:45:37 -05:00
7e51a441e4 Add XLM-V to Model Doc (#21498)
* doc: introduce new section for XLM-V model

* doc: mention more details for XLM-V integration

* docs: paper abstract in italics, model identifier for base model added

* doc: mention new XLM-V support

* auto: add XLM-V mapping

* doc: run make fix-copies ;)
2023-02-07 16:43:19 -05:00
a3034c7004 Add inverse sqrt learning rate scheduler (#21495)
* added inverse sqrt lr scheduler

* Updated get_scheduler in src/transformers/optimization.py

* Updated src/transformers/__init__.py

* Added inverse sqrt lr scheduler test

* Updated docs/source/en/main_classes/optimizer_schedules.mdx

* Ran style and quality scripts

* Fix get_inverse_sqrt_schedule docstring

* Comment implementation URL
2023-02-07 15:00:50 -05:00
b9af152efb [tokenizer] sanitize saved config (#21483)
* [tokenizer] sanitize saved config

* rm config["name_or_path"] test
2023-02-07 10:51:45 -08:00
67d074874d Cleanup quality (#21493)
* Remove mentions of flake8/isort

* Clean up inits

* Deall with all other inits

* Last special rule for dummy files
2023-02-07 12:27:31 -05:00
571fa585b6 Add limit_all_gathers option to fsdp_config and fix forward_prefetch bug (#21489)
* Add limit_all_gathers option to fsdp_config and fix forward_prefetch bug

* Fix black issue

* Fix ruff failure

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks
2023-02-07 12:27:06 -05:00
479322bfaa A new test to check config attributes being used (#21453)
* Add a new test to check config attributes being used

* Add a new test to check config attributes being used

* Add a new test to check config attributes being used

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions

* Update allowed cases - part 1

* Update allowed cases - part 2

* final

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-07 17:49:30 +01:00
9e7f84a556 [OPT] Adds GPT2TokenizerFast to the list of tokenizer to use for OPT. (#20823)
* Add ("opt", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),

* skip failing test

* Add ("opt", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),

* skip failing test
2023-02-07 17:35:28 +01:00
8a303f527f Sanity check the type of id2label and label2id arguments of from_pretrained for TokenClassification models (#21490)
* Sanity check the type of id2label and label2id arguments of from_pretrained for TokenClassification models

* Incorporate PR feedbacks

* Incorporate PR feedbacks
2023-02-07 10:44:43 -05:00
28ec07d8ad Typos/fixes to link syntax (#21450)
* Typos/fixes to link syntax

* Trying section headers

* Add header formatting for Rule #3
2023-02-07 15:19:19 +00:00
bbe98ea9c3 🖊️ fix typo in pytorch semantic segmentation readme (#21492) 2023-02-07 09:39:24 -05:00
8581fbaa6d changed "ot" to "to" (#21488) 2023-02-07 09:31:32 -05:00
fa0ae17958 [Doc] Fix int8 docs (#21487)
fix int8 docs
2023-02-07 15:09:27 +01:00
1e4cf8bb44 Generate: TF can now generate from embeddings in encoder-decoder models (#21475) 2023-02-07 11:18:23 +00:00
12eb528b5a [CI ] Remove past in favor of pat_key_values (#21443)
* fix past renamed to past_key_value

* update more `past`that were ski^êd

* fixup

* remove changes made to rag

* refactor `_reorder_cache` to use `past_key_values`

* fix git `prepare_inputs_for_generation` to pass tests when false is needed in use_cache
2023-02-07 09:51:35 +01:00
5b49376202 Deprecate parallelize API (#21448)
* Deprecate parallelize API

* Add documentation

* Fix copies
2023-02-06 19:39:13 -05:00
cc8407522a Fix epoch number when resuming training (#21478) 2023-02-06 19:34:34 -05:00
35f93f299f Bump oauthlib from 3.2.1 to 3.2.2 in /examples/research_projects/decision_transformer (#21481)
Bump oauthlib in /examples/research_projects/decision_transformer

Bumps [oauthlib](https://github.com/oauthlib/oauthlib) from 3.2.1 to 3.2.2.
- [Release notes](https://github.com/oauthlib/oauthlib/releases)
- [Changelog](https://github.com/oauthlib/oauthlib/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/oauthlib/oauthlib/compare/v3.2.1...v3.2.2)

---
updated-dependencies:
- dependency-name: oauthlib
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-02-06 18:27:14 -05:00
6f79d26442 Update quality tooling for formatting (#21480)
* Result of black 23.1

* Update target to Python 3.7

* Switch flake8 to ruff

* Configure isort

* Configure isort

* Apply isort with line limit

* Put the right black version

* adapt black in check copies

* Fix copies
2023-02-06 18:10:56 -05:00
b7bb2b59f7 Add tips for generation with Int8 models (#21424)
* Add tips for generation with Int8 models

* Empty commit to trigger CI

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/en/perf_infer_gpu_one.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-06 20:25:40 +01:00
10056d898e OPT: BLIP2-ready prepare_inputs_for_generation (#21477) 2023-02-06 18:19:17 +00:00
baf4bacb1f [i18n-fr] Translate index page to French (#21458)
* Translate index page to French

* Fix indent

* Fix toctree

* Replace missing file by in_translation

* Add index

* Update docs/source/fr/index.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-06 12:25:49 -05:00
3b9a1dc132 [examples] improve block_size warning message (#21463) 2023-02-06 08:36:12 -08:00
4435c7f52c Removing more_itertools dependency. (#21473)
* Removing `more_itertools` dependency.

* Update examples/research_projects/vqgan-clip/requirements.txt
2023-02-06 17:33:20 +01:00
4943331015 Generate: TF can now accept custom logits processors (#21454) 2023-02-06 15:44:47 +00:00
e215e6ded2 make SpeechT5 doc examples deterministic (#21470)
* make doc examples deterministic

* add IGNORE_RESULT
2023-02-06 15:43:55 +01:00
182afb7dc6 Fixed RAG script which was failing on dummy example (#21416)
* do not use prefix="val" for test

The dummy example fails when test_epoch_end is called. The prefix="test" should be dynamic in the log metrics too.

* Create test.source

* Create test.target
2023-02-06 09:27:34 -05:00
7dbee87e09 Fix PushToHubCallback import in Share a model docs (#21457)
docs: update PushToHubCallback import in docs
2023-02-06 09:26:22 -05:00
5ac1c7ea85 Added documentation for DagsHubCallback (#21452)
updated documentation
2023-02-06 09:24:18 -05:00
ae31831879 Add perf numbers for perf_train_cpu (#20974)
* Update perf_train_cpu.mdx

* Update perf_train_cpu.mdx

* Update perf_train_cpu.mdx

* Update docs/source/en/perf_train_cpu.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update perf_train_cpu.mdx

* Update perf_train_cpu.mdx

* Update perf_train_cpu.mdx

* Update perf_train_cpu.mdx

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-06 09:20:43 -05:00
0db5d911fc Fix SpeechT5ForSpeechToSpeechIntegrationTests device issue (#21460)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-06 10:43:07 +01:00
59d5edef34 Avoid flaky generation sampling tests (#21445)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-03 22:01:25 +01:00
31c351c4d3 For IterableDataset, return DataLoader using self._train_batch_size. … (#21447)
For IterableDataset, return DataLoader using self._train_batch_size. This is consistent with how we generate a regular DataLoader, and leads to the correct args.per_device_train_batch_size eventually ending up on each GPU.
2023-02-03 15:32:48 -05:00
833174c929 Add tutorial doc for TF + TPU (#21429)
* Add tutorial doc for TF + TPU

* Fix all those extra asterisks in the markdown

* Use the actual Tip formatting

* Remove unnecessary spaces

* Reformat checklist

* Fix checklist and reformat tips slightly

* Update docs/source/en/perf_train_tpu_tf.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_train_tpu_tf.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_train_tpu_tf.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/perf_train_tpu_tf.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Add link to TPU notebook in the notebooks list

* Add links to the TPU notebook in the tutorial doc

* Make the markdown table a bit less wild

* Fix notebook link

* More notebook links

* More fixes to wild tables

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-02-03 19:07:42 +00:00
6c62cfb2ef exclude deleted files in the fixup script (#21436)
exclude deleted files from fixup script
2023-02-03 12:57:02 -05:00
e4bacf6614 [WIP] add SpeechT5 model (#18922)
* make SpeechT5 model by copying Wav2Vec2

* add paper to docs

* whoops added docs in wrong file

* remove SpeechT5Tokenizer + put CTC back in the name

* remove deprecated class

* remove unused docstring

* delete SpeechT5FeatureExtractor, use Wav2Vec2FeatureExtractor instead

* remove classes we don't need right now

* initial stab at speech encoder prenet

* add more speech encoder prenet stuff

* improve SpeechEncoderPrenet

* add encoder (not finished yet)

* add relative position bias to self-attention

* add encoder CTC layers

* fix formatting

* add decoder from BART, doesn't work yet

* make it work with generate loop

* wrap the encoder into a speech encoder class

* wrap the decoder in a text decoder class

* changed my mind

* changed my mind again ;-)

* load decoder weights, make it work

* add weights for text decoder postnet

* add SpeechT5ForCTC model that uses only the encoder

* clean up EncoderLayer and DecoderLayer

* implement _init_weights in SpeechT5PreTrainedModel

* cleanup config + Encoder and Decoder

* add head + cross attention masks

* improve doc comments

* fixup

* more cleanup

* more fixup

* TextDecoderPrenet works now, thanks Kendall

* add CTC loss

* add placeholders for other pre/postnets

* add type annotation

* fix freeze_feature_encoder

* set padding tokens to 0 in decoder attention mask

* encoder attention mask downsampling

* remove features_pen calculation

* disable the padding tokens thing again

* fixup

* more fixup

* code review fixes

* rename encoder/decoder wrapper classes

* allow checkpoints to be loaded into SpeechT5Model

* put encoder into wrapper for CTC model

* clean up conversion script

* add encoder for TTS model

* add speech decoder prenet

* add speech decoder post-net

* attempt to reconstruct the generation loop

* add speech generation loop

* clean up generate_speech

* small tweaks

* fix forward pass

* enable always dropout on speech decoder prenet

* sort declaration

* rename models

* fixup

* fix copies

* more fixup

* make consistency checker happy

* add Seq2SeqSpectrogramOutput class

* doc comments

* quick note about loss and labels

* add HiFi-GAN implementation (from Speech2Speech PR)

* rename file

* add vocoder to TTS model

* improve vocoder

* working on tokenizer

* more better tokenizer

* add CTC tokenizer

* fix decode and batch_code in CTC tokenizer

* fix processor

* two processors and feature extractors

* use SpeechT5WaveformFeatureExtractor instead of Wav2Vec2

* cleanup

* more cleanup

* even more fixup

* notebooks

* fix log-mel spectrograms

* support reduction factor

* fixup

* shift spectrograms to right to create decoder inputs

* return correct labels

* add labels for stop token prediction

* fix doc comments

* fixup

* remove SpeechT5ForPreTraining

* more fixup

* update copyright headers

* add usage examples

* add SpeechT5ProcessorForCTC

* fixup

* push unofficial checkpoints to hub

* initial version of tokenizer unit tests

* add slow test

* fix failing tests

* tests for CTC tokenizer

* finish CTC tokenizer tests

* processor tests

* initial test for feature extractors

* tests for spectrogram feature extractor

* fixup

* more fixup

* add decorators

* require speech for tests

* modeling tests

* more tests for ASR model

* fix imports

* add fake tests for the other models

* fixup

* remove jupyter notebooks

* add missing SpeechT5Model tests

* add missing tests for SpeechT5ForCTC

* add missing tests for SpeechT5ForTextToSpeech

* sort tests by name

* fix Hi-Fi GAN tests

* fixup

* add speech-to-speech model

* refactor duplicate speech generation code

* add processor for SpeechToSpeech model

* add usage example

* add tests for speech-to-speech model

* fixup

* enable gradient checkpointing for SpeechT5FeatureEncoder

* code review

* push_to_hub now takes repo_id

* improve doc comments for HiFi-GAN config

* add missing test

* add integration tests

* make number of layers in speech decoder prenet configurable

* rename variable

* rename variables

* add auto classes for TTS and S2S

* REMOVE CTC!!!

* S2S processor does not support save/load_pretrained

* fixup

* these models are now in an auto mapping

* fix doc links

* rename HiFiGAN to HifiGan, remove separate config file

* REMOVE auto classes

* there can be only one

* fixup

* replace assert

* reformat

* feature extractor can process input and target at same time

* update checkpoint names

* fix commit hash
2023-02-03 12:43:46 -05:00
fb13a7df95 do not scale gradient in bf16 mode (#21428)
* no dot scale gradient in bf16 mode

* fix since args.fp16 might be none

* fixed typo

* typo

* only do if grad scaling is true

* self.amp_dtype == torch.float16 is true

* put back prop when fsdp is not none
2023-02-03 11:57:33 -05:00
197e7ce911 Fix device issue in a ConvBertModelTest test (#21438)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-03 15:12:28 +01:00
0df802822c Added model resources for LayoutLM Issue#19848 (#21377)
* updated resources for LayoutLM

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fixed formatting, removed extra section

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-02-03 08:53:16 -05:00
f726d53ea3 Remove more unused attributes in config classes (#21392)
* * Remove unused type_vocab_size

* Remove unused initializer_factor

* Remove unused n_embd

* Remove unused scale_embedding

* Remove unused scale_attn_weights

* fix

* fix

* Remove unused head_hidden_scale

* Remove unused activation_dropout

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-03 13:41:15 +01:00
3560ae6d94 Add inputs_embeds support for .generate() with BLOOM models (#21430)
Add accepting `.generate()` calls with `inputs_embeds` on BLOOM models
2023-02-03 07:31:14 -05:00
f21af26279 🚨🚨 Generate: standardize beam search behavior across frameworks (#21368) 2023-02-03 10:24:02 +00:00
ea55bd86b9 Add VQGAN-CLIP research project (#21329)
* Add VQGAN-CLIP research project

* fixed style issues

* Update examples/research_projects/vqgan-clip/README.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/VQGAN_CLIP.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/requirements.txt

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/README.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/VQGAN_CLIP.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/VQGAN_CLIP.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/VQGAN_CLIP.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/loaders.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* replace CLIPProcessor with tokenizer, change asserts to exceptions

* rm unused import

* remove large files (jupyter notebook linked in readme, imgs migrated to hf dataset)

* add tokenizers dependency

* Remove comment

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* rm model checkpoints

---------

Co-authored-by: Erwann Millon <erwann@Erwanns-MacBook-Air.local>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-02-02 14:45:35 -05:00
fbee82951f Update task summary (#21067)
* first draft of audio section

* make style

* first draft of computer vision section

* add convnext and encoder tasks

* finish up nlp tasks

* minor edits

* add arch images, more edits

* fix image links

* apply sanchit feedback

* model naming convention

* apply niels vit feedback

* replace detr for segmentation with mask2former

* apply feedback

* apply feedback
2023-02-02 11:41:27 -08:00
6a3d1a98e0 Fixes bug in the creation of ExponentialDecayLengthPenalty (#21423)
input_ids_seq_length doesn't exist in the GenerationConfig, it exists as local variable in the function.

Setting exponential_decay_length_penalty therefore results in an error:
`AttributeError: 'GenerationConfig' object has no attribute 'input_ids_seq_length'`

This simple change fixes this issue, and the exponential_decay_length_penalty works as expected.
2023-02-02 18:51:53 +00:00
0a75717602 Fix task guide formatting (#21409)
fix formatting
2023-02-02 10:06:26 -08:00
a6d8a149a8 Fix some pipeline tests (#21401)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-02 19:03:31 +01:00
145bf41c13 Allow to add more information in is_flaky (#21426)
* Allow to add more information

* fix style

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-02 17:41:22 +01:00
8298e4ec02 [bnb] Fine-tuning HF 8-bit models (#21290)
* force `memory_efficient_backward=True`

* enhancements

- trainer support
- add new flag

* some changes

- internal changes in `Trainer`
- small refactor

* make quality

* Fixes

- add new testing util
- add new test
- change test in Trainer

* fix CI test

* educate users on how to ft 8bit models

* more checks

* fix `logger` error

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* adapt from review

* fix

* add comment

* use return instead

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-02 16:39:23 +01:00
67a3920d85 Fix Graphormer test suite (#21419)
* [FIX] path for Graphormer checkpoint

* [FIX] Test suite for graphormer

* [FIX] Update graphormer default num_classes
2023-02-02 16:29:13 +01:00
e006ab51ac Add the GeLU activation from pytorch with the tanh approximation (#21345)
* gelu_python_tanh

* rename

* Version check, add test

* Pr comment
2023-02-02 09:33:04 -05:00
53d374f1b9 Add distinct section names for PyTorch and TF (#21422)
* Add distinct section names for PyTorch and TF

* Remove extra space
2023-02-02 14:29:58 +00:00
0ae8dc0adf Fix image_processor_class bug (#21410)
Co-authored-by: Shreshth Tuli <shreshthtuli@gmail.com>
2023-02-02 09:20:52 -05:00
db572b3854 Use torch 1.13.1 in push/schedule CI (#21421)
Use torch 1.13.1 in push/scheduled CI

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-02 14:58:52 +01:00
92ce53aab8 Generate: decoder-only models can generate with inputs_embeds (#21405) 2023-02-01 21:50:38 +00:00
e5db7051a8 Add TF image classification example script (#19956)
* TF image classification script

* Update requirements

* Fix up

* Add tests

* Update test fetcher
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix directory path

* Adding `zero-shot-object-detection` pipeline doctest. (#20274)

* Adding `zero-shot-object-detection` pipeline doctest.

* Remove nested_simplify.

* Add generate kwargs to `AutomaticSpeechRecognitionPipeline` (#20952)

* Add generate kwargs to AutomaticSpeechRecognitionPipeline

* Add test for generation kwargs

* Trigger CI

* Data collator returns np

* Update feature extractor -> image processor

* Bug fixes - updates to reflect changes in API

* Update flags to match PT & run faster

* Update instructions - Maria's comment

* Update examples/tensorflow/image-classification/README.md

* Remove slow decorator

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: bofeng huang <bofenghuang7@gmail.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2023-02-01 19:09:36 +00:00
3fadb4b211 Added DagshubCallback (#21404)
* integrated logger

* bugifx

* added data

* bugfix

* model + state artifacts should log

* fixed paths

* i lied, trying again

* updated function call

* typo

this is painful :( what a stupid error

* typo

this is painful :( what a stupid error

* pivoted to adding a directory

* silly path bug

* multiple experiments

* migrated to getattr

* syntax fix

* syntax fix

* fixed repo pointer

* fixed path error

* added dataset if dataloader is present, uploaded artifacts

* variable in scope

* removed unnecessary line

* updated error type

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* trimmed unused variables, imports

* style formatting

* removed type conversion reliance

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* reverted accidental line deletion

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-01 13:51:46 -05:00
8d580779a3 Skip batches fast with accelerate (#21390)
* Skip batches fast with Accelerate

* remove debug statement

* Hack seed reload at the right time

* Reorganize RNG sync

* Fix accelerate version comp
2023-02-01 10:22:05 -05:00
77db257e2a Fix the issue of using only inputs_embeds in convbert model (#21398)
* Fix the input embeds issue with tests

* Fix black and isort issue

* Clean up tests

* Add slow tag to the test introduced

* Incorporate PR feedbacks
2023-02-01 09:47:25 -05:00
65b5035a1d Moved LiLT under multimodal models in TOC (#21393)
moved LiLT under multimodal models
2023-02-01 08:03:00 -05:00
90cddfa824 Add variant to transformers (#21332)
* Bump onnx in /examples/research_projects/decision_transformer

Bumps [onnx](https://github.com/onnx/onnx) from 1.11.0 to 1.13.0.
- [Release notes](https://github.com/onnx/onnx/releases)
- [Changelog](https://github.com/onnx/onnx/blob/main/docs/Changelog.md)
- [Commits](https://github.com/onnx/onnx/compare/v1.11.0...v1.13.0)

---
updated-dependencies:
- dependency-name: onnx
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

* adapt

* finish

* Update examples/research_projects/decision_transformer/requirements.txt

* up

* add tests

* Apply suggestions from code review

Co-authored-by: Lucain <lucainp@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* fix test

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Lucain <lucainp@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-02-01 09:21:52 +01:00
bc44e947f3 Update Graphormer and fix its torchscript test failures (#21380)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-31 17:32:25 +01:00
19d67bfecb Generate: fix TF XLA tests on models with max_position_embeddings or max_target_positions (#21389) 2023-01-31 15:49:34 +00:00
6342427353 Remove more unused attributes in config classes (#21327)
* remove unused classifier_dropout

* remove unused dropout

* remove unused pooler_fn

* remove unnecessary is_encoder_decoder

* remove unnecessary drop_rate

* remove unused classifier_dropout

* remove unused classifier_dropout

* remove unused dropout

* remove unused dropout

* remove unused summary_* attributes

* remove unused tie_word_embeddings

* remove unused summary_* attributes

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-31 16:35:38 +01:00
da2a4d95a2 Add support of backward_prefetch and forward_prefetch (#21237)
* Add support of backward_prefetch and forward_prefetch

* Fix format issue

* Fix isort issue

* Fix doc style issue

* Update src/transformers/trainer.py

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>

* Fix black issue

* Fix doc-style issue

* Make additional fsdp parameters into fsdp config

* Fix black issue

* Remove unused imports

* Fix doc style issues

* Incorporate PR feedbacks

* Remove unused imports

* Fix tests

* Fix tests

* Fix tests

* Fix tests

* Fix tests

* Update src/transformers/training_args.py

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>

* Fix tests

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Fix black issues

---------

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
2023-01-31 09:51:35 -05:00
074d6b75fd Simplify column_names in run_clm/mlm (#21382)
* simplify column_names in run_clm

* simplify column_names in run_mlm

* minor
2023-01-31 15:23:47 +01:00
c21298a69b [Docs] Minor fixes (#21383)
* Improve docs

* Add DETA resources

---------

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-31 15:13:12 +01:00
d31497b196 Do not log the generation config for each prediction step in TrainerSeq2Seq (#21385)
Do not log the generation config for each iteration
2023-01-31 09:05:22 -05:00
98d40fed3a Cleanup the usage of layer_norm_eps in some models (#21336)
* fix

* fix

* make style

* For CLIP

* For OwlViT

* For XCLIP

* For CLIPSeg

* For GroupViT

* fix docstrings

* fix docstrings

* For AltCLIP

* For ChineseCLIP

* For Blip

* For GiT

* make style

* update

* update

* update

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-31 13:54:16 +01:00
623346ab18 Template for framework-agnostic tests (#21348) 2023-01-31 11:33:18 +00:00
5451f8896c Add DETA (#20983)
* First draft

* Add initial draft of conversion script

* Convert all weights

* Fix config

* Add image processor

* Fix DetaImageProcessor

* Run make fix copies

* Remove timm dependency

* Fix dummy objects

* Improve loss function

* Remove conv_encoder attribute

* Update conversion scripts

* Improve postprocessing + docs

* Fix copied from statements

* Add tests

* Improve postprocessing

* Improve postprocessing

* Update READMEs

* More improvements

* Fix rebase

* Add is_torchvision_available

* Add torchvision dependency

* Fix typo and README

* Fix bug

* Add copied from

* Fix style

* Apply suggestions

* Fix thanks to @ydshieh

* Fix another dependency check

* Simplify image processor

* Add scipy

* Improve code

* Add threshold argument

* Fix bug

* Set default threshold

* Improve integration test

* Add another integration test

* Update setup.py

* Address review

* Improve deformable attention function

* Improve copied from

* Use relative imports

* Address review

* Replace assertions

* Address review

* Update dummies

* Remove dummies

* Address comments, update READMEs

* Remove custom kernel code

* Add image processor tests

* Add requires_backends

* Add minor comment

* Update scripts

* Update organization name

* Fix defaults, add doc tests

* Add id2label for object 365

* Fix tests

* Update task guide
2023-01-31 10:43:10 +01:00
98d88b23f5 [run_(clm|mlm).py examples] add streaming dataset support (#21343)
* [run_clm example] add streaming dataset support

* unrefactor kwargs

* fix

* fix

* require datasets>=2.0.0

* port to mlm
2023-01-30 14:01:35 -08:00
95be242adc translate index to zh(#20095) (#21351)
translate index to zh

Co-authored-by: bfss <bfss@bfss.com>
2023-01-30 16:50:57 -05:00
914e5009fa Adding resource section to GPT-J docs (#21270)
* Added resource section to GPT-J docs

* Added most of the links found

* Addressing review comments

* Fixing formatting

* Update docs/source/en/model_doc/gptj.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Fixing one of the labels

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-01-30 16:48:04 -05:00
14d989a91d Fixes path for Graphormer checkpoint (#21367)
[FIX] path for Graphormer checkpoint
2023-01-30 21:48:04 +01:00
42b60f8b02 Generate: Relaxed max_length and max_new_tokens coexistence (#21347)
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-30 17:53:54 +00:00
6eb3c66a96 Add cPython files in build (#21372) 2023-01-30 11:19:30 -05:00
59611a0f3a Fix DETR tests after #21144 (#21365)
* Fix annotation check

* Fix annotation check

* Update type annotations
2023-01-30 15:55:00 +00:00
7a2e13204f Remove duplicate declarations in dummy inputs for TFLongformer (#21352)
Remove duplicate declarations
2023-01-30 10:03:19 -05:00
96addecff8 Corrected (#21350) 2023-01-30 09:38:15 -05:00
f3a7befffa fix the issue that the output dict of jit model could not get [0] (#21354) 2023-01-30 09:23:55 -05:00
c749bd405e Pipeline testing - using tiny models on Hub (#20426)
* rework pipeline tests

* run pipeline tests

* fix

* fix

* fix

* revert the changes in get_test_pipeline() parameter list

* fix expected error message

* skip a test

* clean up

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-30 10:39:43 +01:00
a582cfce3c Fix GitModelIntegrationTest.test_batched_generation device issue (#21362)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-30 10:37:56 +01:00
73a2ff6974 Automated compatible models list for task guides (#21338)
* initial commit. added tip placeholders and a script

* removed unused imports, fixed paths

* fixed generated links

* make style

* split language modeling doc into two: causal language modeling and masked language modeling

* added check_task_guides.py to make fix-copies

* review feedback addressed
2023-01-27 13:19:28 -05:00
8f3b4a1d5b Little cleanup: let huggingface_hub manage token retrieval (#21333)
* Let huggingface_hub manage token retrieval

* flake8

* code quality

* adapt in every PushToHubMixin children

* add explicit return type
2023-01-27 12:09:49 -05:00
0dff407d71 [Whisper] another patch (#21324)
* another patch

* fix timestamp test modeling

* let it be negative when the token is None
2023-01-27 16:35:16 +01:00
e5eb3e22ea Fix RobertaPreLayerNorm doctest (#21337)
* add mask="<mask>"

* update

* update

* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-27 16:20:25 +01:00
36b668fa06 Bump onnx from 1.11.0 to 1.13.0 in /examples/research_projects/decision_transformer (#21331)
Bump onnx in /examples/research_projects/decision_transformer

Bumps [onnx](https://github.com/onnx/onnx) from 1.11.0 to 1.13.0.
- [Release notes](https://github.com/onnx/onnx/releases)
- [Changelog](https://github.com/onnx/onnx/blob/main/docs/Changelog.md)
- [Commits](https://github.com/onnx/onnx/compare/v1.11.0...v1.13.0)

---
updated-dependencies:
- dependency-name: onnx
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-01-27 10:13:13 -05:00
938f437c53 Fix M2M100 positional embedding creation for ONNX (#21328)
* Fix M2M100 positional embedding creation for ONNX

* Restore READMEs

* Trigger CI
2023-01-27 10:43:19 +01:00
7d2a5fa749 Update Hebrew language code to he per IANA registry (#21310)
Here's my original PR into whisper that changes the same: 
https://github.com/openai/whisper/pull/401

Per [IANA registry](https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry), `iw` was deprecated as the code for Hebrew in 1989 and the preferred code is `he`

The correct subtag: 
```
%%
Type: language
Subtag: he
Description: Hebrew
Added: 2005-10-16
Suppress-Script: Hebr
%%
``` 
And the deprecation
```
%%
Type: language
Subtag: iw
Description: Hebrew
Added: 2005-10-16
Deprecated: 1989-01-01
Preferred-Value: he
Suppress-Script: Hebr
%%
```
2023-01-26 13:34:39 -05:00
b225ee6ea0 [Doctest] Fix Perceiver doctest (#21318)
fix `Perceiver` doctest
2023-01-26 17:16:37 +01:00
2b8feffad5 Generate: better compute_transition_scores examples (#21323) 2023-01-26 16:06:05 +00:00
449df41f01 Fix TFEncoderDecoder tests (#21301)
remove max_length=None

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-26 16:56:42 +01:00
857bad6e53 check paths in utils/documentation_tests.txt (#21315)
* check paths in utils/documentation_tests.txt

* check paths in utils/documentation_tests.txt

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-26 15:33:47 +01:00
fd0ef8b66d Small QoL for qa. (#21316) 2023-01-26 14:50:09 +01:00
a01dd3818f [i18n-KO] Translated quicktour page to Korean (#20946)
docs: ko: quicktour page

review by @ArthurZucker
docs: fix: remove duplicate

Co-Authored-By: Arthur <48595927+ArthurZucker@users.noreply.github.com>

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-01-26 14:10:02 +01:00
31336dcf3f Fix 2 paths in the doctest list (#21314)
fix the list

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-26 12:07:08 +01:00
4e41b87e3d Use model_class.__name__ and compare against XXX_MAPPING_NAMES (#21304)
* update

* update all

* clean up

* make quality

* clean up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-26 11:31:31 +01:00
d18a1cba24 Accept batched tensor of images as input to image processor (#21144)
* Accept a batched tensor of images as input

* Add to all image processors

* Update oneformer
2023-01-26 10:15:26 +00:00
6f3faf3863 [WHISPER] Small patch (#21307)
* add small patch

* update tests, forced decoder ids is not prioritary against generation config

* fix two new tests
2023-01-25 22:49:23 +01:00
140c6edeb9 Small fix to ExponentialDecayLengthPenalty docstring (#21308)
Currently, it incorrectly states that the exponential_decay_length_penalty tuple parameter is optional.

Also changed the corresponding type hint to be more specific.
2023-01-25 14:46:08 -05:00
3a6e4a221c Add BridgeTower model (#20775)
* Commit with BTModel and latest HF code

* Placeholder classes for BTForMLM and BTForITR

* Importing Bert classes from transformers

* Removed objectives.py and dist_utils.py

* Removed swin_transformer.py

* Add image normalization, BridgeTowerForImageAndTextRetrieval

* Add center_crop

* Removing bert tokenizer and LCI references

* Tested config loading from HF transformers hub

* Removed state_dict updates and added path to hub

* Enable center crop

* Getting image_size from config, renaming num_heads and num_layers

* Handling max_length in BridgeTowerProcessor

* Add BridgeTowerForMaskedLM

* Add doc string for BridgeTowerConfig

* Add doc strings for BT config, processor, image processor

* Adding docs, removed swin

* Removed convert_bridgetower_original_to_pytorch.py

* Added doc files for bridgetower, removed is_vision

* Add support attention_mask=None and BridgeTowerModelOutput

* Fix formatting

* Fixes with 'make style', 'make quality', 'make fixup'

* Remove downstream tasks from BridgeTowerModel

* Formatting fixes, add return_dict to BT models

* Clean up after doc_test

* Update BTModelOutput return type, fix todo in doc

* Remove loss_names from init

* implement tests and update tuples returned by models

* Add image reference to bridgetower.mdx

* after make fix-copies, make fixup, make style, make quality, make repo-consistency

* Rename class names with BridgeTower prefix

* Fix for image_size in BTImageProcessor

* implement feature extraction bridgetower tests

* Update image_mean and image_std to be list

* remove unused import

* Removed old comments

* Rework CLIP

* update config in tests followed config update

* Formatting fixes

* Add copied from for BridgeTowerPredictionHeadTransform

* Update bridgetower.mdx

* Update test_feature_extraction_bridgetower.py

* Update bridgetower.mdx

* BridgeTowerForMaskedLM is conditioned on image too

* Add BridgeTowerForMaskedLM

* Fixes

* Call post_init to init weights

* Move freeze layers into method

* Remove BTFeatureExtractor, add BT under multimodal models

* Remove BTFeatureExtractor, add BT under multimodal models

* Code review feedback - cleanup

* Rename variables

* Formatting and style to PR review feedback

* Move center crop after resize

* Use named parameters

* Style fix for modeling_bridgetower.py

* Update docs/source/en/model_doc/bridgetower.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/bridgetower.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/bridgetower.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/bridgetower/modeling_bridgetower.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/bridgetower/modeling_bridgetower.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/bridgetower.mdx

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/bridgetower/modeling_bridgetower.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Rename config params, copy BERT classes, clean comments

* Cleanup irtr

* Replace Roberta imports, add BTTextConfig and Model

* Update docs, add visionconfig, consistent arg names

* make fixup

* Comments for forward in BTModel and make fixup

* correct tests

* Remove inconsistent roberta copied from

* Add BridgeTowerTextModel to dummy_pt_objects.py

* Add BridgeTowerTextModel to IGNORE_NON_TESTED

* Update docs for BT Text and Vision Configs

* Treat BridgeTowerTextModel as a private model

* BridgeTowerTextModel as private

* Run make fix-copies

* Adding BTTextModel to PRIVATE_MODELS

* Fix for issue with BT Text and Image configs

* make style changes

* Update README_ja.md

Add から to BridgeTower's description

* Clean up config, .mdx and arg names

* Fix init_weights. Remove nn.Sequential

* Formatting and style fixes

* Re-add tie_word_embeddings in config

* update test implementation

* update style

* remove commented out

* fix style

* Update README with abs for BridgeTower

* fix style

* fix mdx file

* Update bridgetower.mdx

* Update img src in bridgetower.mdx

* Update README.md

* Update README.md

* resolve style failed

* Update _toctree.yml

* Update README_ja.md

* Removed mlp_ratio, rename feats, rename BTCLIPModel

* Replace BTCLIP with BTVisionModel,pass in vision_config to BTVisionModel

* Add test_initialization support

* Add support for output_hidden_states

* Update support for output_hidden_states

* Add support for output_attentions

* Add docstring for output_hidden_states

* update tests

* add bridgetowervisionmodel as private model

* rerun the PR test

* Remove model_type, pass configs to classes, renames

* Change self.device to use weight device

* Remove image_size

* Style check fixes

* Add hidden_size and num_hidden_layers to BridgeTowerTransformer

* Update device setting

* cosmetic update

* trigger test again

* trigger tests again

* Update test_modeling_bridgetower.py

trigger tests again

* Update test_modeling_bridgetower.py

* minor update

* re-trigger tests

* Update docs/source/en/model_doc/bridgetower.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove pad, update max_text_len, doc cleanup, pass eps to LayerNorm

* Added copied to, some more review feedback

* make fixup

* Use BridgeTowerVisionEmbeddings

* Code cleanup

* Fixes for BridgeTowerVisionEmbeddings

* style checks

* re-tests

* fix embedding

* address comment on init file

* retrigger tests

* update import prepare_image_inputs

* update test_image_processing_bridgetower.py to reflect test_image_processing_common.py

* retrigger tests

Co-authored-by: Shaoyen Tseng <shao-yen.tseng@intel.com>
Co-authored-by: Tiep Le <tiep.le@intel.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Tiep Le <97980157+tileintel@users.noreply.github.com>
2023-01-25 14:04:32 -05:00
39799fbf85 [CI-Daily] replace past in prepare inputs for generation (#21296)
replace `past` in prepare inputs for generation
2023-01-25 18:25:59 +01:00
238449414f Documentation code sample fixes (#21302)
* Fixed the following:
pipe -> pipeline
out in pipe(data()) is a list of dict, not a dict

* Fixed the TypeError: __init__() missing 1 required positional argument: 'key'

* Added a tip: code sample requires additional libraries to run

* Fixed custom config's name

* added seqeval to the required libraries

* fixed a missing dependency,
fixed metric naming,
added checkpoint to fix the datacollator

* added checkpoint to fix the datacollator,
added missing dependency
2023-01-25 11:33:39 -05:00
015443f42b [Doctest] Fix Blenderbot doctest (#21297)
fix blenderbot doctest

- add correct expected value
2023-01-25 17:28:29 +01:00
cc714d74c4 Update OneFormerModelIntegrationTest expected values (#21295)
* update values

* update values

* update values

* Update tests/models/oneformer/test_modeling_oneformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-25 17:27:02 +01:00
63b204eadd [Hubert] Fix Hubert processing auto (#21299)
* fix Hubert processing auto

* remove unneeded space
2023-01-25 16:36:31 +01:00
de2d793e83 Fix EfficientFormer (#21294)
* fix

* fix checkpoint

* fix style

* tiny update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-25 16:09:15 +01:00
8788fd0ceb Moving to cleaner tokenizer version or oneformer. (#21292)
Moving to cleaner tokenizer version.
2023-01-25 15:46:10 +01:00
255257f3ea [Whisper] Refactor whisper (#21252)
* update whisper logit processor

* add generate for whisper

* remove part of the whisper specific code from pipeline

* update logit processes

* major update

* enforce first timestamp

* update generate

* add more tests

* update new decoding strategy

* Apply suggestions from code review

* update docstring

* fixup

* default config will not have multilingual ar

* update expected tokenizer size, see pull on the hub for whisper-tiny
2023-01-25 13:09:43 +01:00
f83135eb76 [Mask2Former] Add doc tests (#21232)
* Add doc tests

* Add OneFormer resourcesé

* Fix merge

* Fix style

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-25 12:34:43 +01:00
99e7905422 Supporting ImageProcessor in place of FeatureExtractor for pipelines (#20851)
* Fixing the pipeline with image processor.

* Update the slow test.

* Using only the first image processor.

* Include exclusion mecanism for Image processor.

* Do not handle Gitconfig, deemed as a bug.

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove `conversational` changes. They are not supposed to be here.

* Address first row of comments.

* Remove OneFormer modifications.

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-01-25 10:16:31 +01:00
efdbad56ab [GIT] Add test for batched generation (#21282)
* Add test

* Apply suggestions

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-25 10:14:18 +01:00
de1ca3a0c5 Update expected values for doctest (#21284)
update expected values
2023-01-24 13:32:31 -08:00
1f981215dd Fix TrainingArguments.label_names docs to reflect the correct default value behaviour (#21288)
* Update TrainingArguments.label_names docs

* Change wording

* Change wording
2023-01-24 14:48:24 -05:00
14d058b940 [W2V2 with LM] Fix decoder test with params (#21277) 2023-01-24 19:27:56 +01:00
94a7edd938 [GenerationConfig] add additional kwargs handling (#21269)
* add additional kwargs handling

* fix issue when serializing

* correct order of kwargs removal for serialization in from dict

* add `dict_torch_dtype_to_str` in case a dtype is needed for generation

* add condition when adding the kwargs : not from config

* Add comment based on review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* add test function

* default None when poping arg

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-01-24 19:04:42 +01:00
9286039c2a [examples/deepspeed] fix renamed api (#21283) 2023-01-24 09:54:33 -08:00
e2e393c6f2 [t5] Fix T5 inference in float16 + bnb error (#21281)
* attempts to fix:

- upcast input for `T5DenseActDense`
- add the condition `self.wo.weight.dtype != torch.int8`
- added tests on `test/mixed_int8`
- `make fixup`

* fix ci test
2023-01-24 18:14:38 +01:00
f424b09410 Fix MaskFormerImageProcessor.post_process_instance_segmentation (#21256)
* fix instance segmentation post processing

* add Mask2FormerImageProcessor
2023-01-24 18:49:29 +03:00
767939af52 Use logger.info instead of print to emit a logging message in hub.py (#21273)
use logger.info() instead of print() to emit a debug message
2023-01-24 10:37:10 -05:00
67316444b0 Hotifx remove tuple for git config image processor. (#21278) 2023-01-24 16:07:50 +01:00
071529bd54 Use return_tensors="np" instead of "tf" (#21266)
Return NP instead of TF tensors for our data loading pipeline
2023-01-24 13:37:49 +00:00
f0fc791298 [Doc] fix broken link (#21276)
fix broken link
2023-01-24 11:18:48 +01:00
bde7378bf0 Skip test_multi_gpu_data_parallel_forward for UperNetModelTest (#21216)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-24 10:41:16 +01:00
7119bb052a v4.27.0.dev0 2023-01-23 16:52:35 -05:00
fd5cdaeea6 Models docstring (#21225)
* Clean all models

* Style

* Last to remove

* address review comments

* Address review comments
2023-01-23 14:33:18 -05:00
9e86c4e193 Supported pipeline tasks update (#21268)
* added tasks from SUPPORTED_TASKS to docstrings

* make style

* sorted the tasks in the docstrtings in alphabetical order
2023-01-23 14:23:20 -05:00
d8415ba42e [Whisper] fix all issues with unk token (#21250)
* fix all issues with unk token

* fixup
2023-01-23 20:19:57 +01:00
c18b4fbe9f Add class properties with warnings (#21195)
* Replace reduce_labels with do_reduce_labels

* Replace only for __init__ and preprocess

* Add class properties with warnings

* Update tests
2023-01-23 18:45:27 +00:00
b80b2218b5 [ci-daily] Fix pipeline tests (#21257)
* use streaming dataset

* fix whisper's test

* add rescale argument to chunk_iter
2023-01-23 19:32:49 +01:00
275ad9d80a Add: TensorFlow example for semantic segmentation task guide (#21223)
* wip: adding tf example for semantic segmentation guide

* completed the working example in tf

* make style

* Update docs/source/en/tasks/semantic_segmentation.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/semantic_segmentation.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fixed a callback doc links

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-01-23 13:32:15 -05:00
2218dac5d2 Notebook examples grouping and update (#21265)
* Split the examples by modality, added missing examples

* fixed a link
2023-01-23 12:51:24 -05:00
e2bd7f80d0 Update tests: replace feature extractor tests with image processor (#20768)
* Update imports and test fetcher

* Revert but keep test fetcher update

* Fix imports

* Fix all imports

* Replace fe with ip names

* Add generate kwargs to `AutomaticSpeechRecognitionPipeline` (#20952)

* Add generate kwargs to AutomaticSpeechRecognitionPipeline

* Add test for generation kwargs

* Update image processor parameters if creating with kwargs (#20866)

* Update parameters if creating with kwargs

* Shallow copy to prevent mutating input

* Pass all args in constructor dict - warnings in init

* Fix typo

* Rename tester class

* Rebase and tidy up

* Fixup

* Use ImageProcessingSavingTestMixin

* Update property ref in tests

* Update property ref in tests

* Update recently merged in models

* Small fix

Co-authored-by: bofeng huang <bofenghuang7@gmail.com>
2023-01-23 17:25:41 +00:00
354ea44340 Replace reduce_labels with do_reduce_labels (#21218)
* Replace reduce_labels with do_reduce_labels

* Replace only for __init__ and preprocess

* Update tests
2023-01-23 17:21:33 +00:00
1eda4a4102 Generate: save generation config with the models' .save_pretrained() (#21264) 2023-01-23 16:21:44 +00:00
cf1a1eed70 Add missing checkpoint for doctest (#21258) 2023-01-23 15:27:25 +00:00
5603f78fc4 Add scikit-learn dependency to train langage-modeling (#21229) 2023-01-23 09:54:45 -05:00
929111698c Add Japanese translation installation.mdx (#21241)
* Add Japanese translation installation.mdx

* Fixed for consistency with english version
2023-01-23 15:38:30 +01:00
cb6b56859a Fix reformer CI (#21254)
* fix ReformerForSequenceClassification doc example

* fix ReformerForMaskedLM doc example

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-23 15:34:14 +01:00
eaace0c668 Optimize by not computing gradients for parameters set to requires_grad=False (#21236)
* Optimize by not computing gradients for parameters set to requires_grad=False

* Make change to retrigger the build

* Fix isort issue

* Fix issue
2023-01-23 09:27:59 -05:00
6e4d3f0859 [GIT] Convert more checkpoints (#21245)
* Extend conversion script

* Remove print statement

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-23 15:19:27 +01:00
66459ce319 Add test_image_processing_common.py (#20785)
* Add test_image_processing_common.py

* Fix typo

* Update imports and test fetcher

* Revert but keep test fetcher update

* Fix imports

* Fix all imports

* Formatting fix

* Update tests/test_image_processing_common.py
2023-01-23 13:48:30 +00:00
96b2b2de12 Extend Script to enable conversion of Encoder Only T5x Models to Pytorch (#20907)
* add converter for t5x_retrieval model

* update args

* Update src/transformers/models/t5/convert_t5x_checkpoint_to_pytorch.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* style  editing -> convert t5x to pytorch

* make style

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-01-23 14:41:43 +01:00
91ff7efeeb [DETR and friends] Use AutoBackbone as alternative to timm (#20833)
* First draft

* More improvements

* Add conversion script

* More improvements

* Add docs

* Address review

* Rename class to ConvEncoder

* Address review

* Apply suggestion

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update all DETR friends

* Add corresponding test

* Improve test

* Fix bug

* Add more tests

* Set out_features to last stage by default

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-23 12:15:47 +01:00
c8d719ff7e Generate: precision fix in compute_transition_scores doctests (#21251) 2023-01-23 11:13:51 +00:00
e1cd78634a [BLIP] fix doctest (#21217)
* fix `blip` doctest

* Update src/transformers/models/blip/modeling_blip.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2023-01-23 11:16:23 +01:00
4e730b3873 Skip failing test for now (#21226)
skip failing test for now
2023-01-20 20:46:11 -05:00
7fd902d335 [BLIP] fix docstring for BlipTextxxx (#21224)
* fix `blip` docstring

* fix typo

* fix another typo
2023-01-20 23:16:42 +01:00
d54d7598bd Microphone live inference catching up when inference is too slow (whisper). (#21219)
* Microphone live inference catching up when inference is too slow
(whisper).

* Adding copyright.
2023-01-20 21:33:43 +01:00
7fc1cb150c Remove all hf-internal-testing checkpoints that can be removed (#21199)
* Remove all hf-internal-testing checkpoints that can be removed

* Fix copies

* Put back processor_class in TF example

* Address review comment
2023-01-20 13:19:58 -05:00
142ad1a1cc Fix task summary doctest (#21200)
* add outputs to code snippets

* fix example text

* apply feedback

* style changes

* make style
2023-01-20 09:58:07 -08:00
425ff71c4e Fix OneFormer Docstrings (#21215)
* Fix processor

* Fix shape in docstring
2023-01-20 17:37:11 +01:00
b0969cafd0 Make parallelism for CircleCI jobs work - but keep it 1 for now (#21157)
* split tests

* test CI

* add if else

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-20 16:41:33 +01:00
2553363826 Fix code example in training tutorial (#21201)
change text to sentence
2023-01-20 07:38:15 -08:00
7419d807ff Declare __len__ method in PreTrainedTokenizerBase (#21210) 2023-01-20 15:54:33 +01:00
ef53017520 Fix GPTJ doctest (#21213)
Replace the checkpoint - the current one has shape issue

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-20 15:35:00 +01:00
6ee6993fd9 Fix CONFIG_ARCHIVE_MAP_MAPPING_NAMES (#21207)
fix typo + remove non-existent entry

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-20 15:22:10 +01:00
50540e18ff Update huggingface_hub version (#21212)
* update huggingface_hub version

* revert changes in setup.py

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-20 09:15:59 -05:00
202d6863ce deleted references of self.vocab_size and self.type_vocab_size for multiple models [TF implementation] (#21164) 2023-01-20 13:11:01 +00:00
af37d183b3 Generate: documented function to compute the transition scores (#21191)
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-20 12:50:01 +00:00
91c2278b97 Update modeling doc strings FE -> IP (#21106)
* Update docs examples FE -> IP

* Remove _IMAGE_PROCESSOR_FOR_DOC
2023-01-20 11:18:10 +00:00
5d3cb760a0 [Whispe] Fix pipeline after timestamp merges (#21198)
* pass return_timestamps to pre-process

* add a test to test it

* test does not need device 0

* remove failing bit

* update test
2023-01-20 10:31:40 +01:00
5326460f14 Enabling live automatic-speech-recognition asr for Whisper. (#21196)
* Enabling live `automatic-speech-recognition` asr for Whisper.

* Dummy change.
2023-01-20 10:15:26 +01:00
1b37fb5e17 Efficientformer (#20459)
- Adds EfficientFormer V1 to transformers
- PR co-authored by @novice03  and @Bearnardd 

Co-authored-by: novice <pranavpulijala@gmail.com>
Co-authored-by: novice <44259234+novice03@users.noreply.github.com>
2023-01-20 11:35:42 +03:00
862888a358 Add disclaimer for necessary fake models (#21178)
* Add disclaimer for necessary fake models

* Address review comments

* Use for GPT-NeoX as well
2023-01-19 14:16:15 -05:00
87208a05af Graphormer model for Graph Classification (#20968)
* [FT] First commit for graphormer architecture.

The model has no tokenizer, as it uses a collator and preprocessing function for its input management.
Architecture to be tested against original one.
The arch might need to be changed to fit the checkpoint, but a revert to the original arch will make the code less nice to read.
TODO: doc

* [FIX] removed test model

* [FIX] import error

* [FIX] black and flake

* [DOC] added paper refs

* [FIX] [DOC]

* [FIX] black

* [DOC] Updated READMEs

* [FIX] Order of imports + rm Tokenizer calls

* [FIX] Moved assert in class to prevent doc build failure

* [FIX] make fix-copies

* [Doc] update from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* [FIX] Removed Graphormer from Sequence classification model list

* [DOC] Added HF copyright to Cython file

* [DOC] Fixed comments

* [FIX] typos in class doc + removed config classes.

Todo: update doc from paper definitions

* [FIX] Removed dependency to fairseq, and replaced all asserts with Exception management

* [FIX] Homogeneized initialization of weights to pretrained constructor

* [FIX] [CP] Updated multi_hop parameter to get same results as in original implementation

* [DOC] Relevant parameter description in the configuration file

* [DOC] Updated doc and comments in main graphormer file

* [FIX] make style and quality checks

* [DOC] Fix doc format

* [FIX] [WIP] Updated part of the tests, though still a wip

* [FIX] [WIP]

* [FIX] repo consistency

* [FIX] Changed input names for more understandability

* [FIX] [BUG] updated num_classes params for propagation in the model

* simplified collator

* [FIX] Updated tests to follow new naming pattern

* [TESTS] Updated test suite along with model

* |FIX] rm tokenizer import

* [DOC] add link to graphormerdoc

* Changed section in doc from text model to graph model

* Apply suggestions from code review

Spacing, inits

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* [DOC] Explain algos_graphormer functions

* Cython soft import protection

* Rm call to Callable in configuration graphormer

* [FIX] replaced asserts with Exceptions

* Add org to graphormer checkpoints

* Prefixed classes with Graphormer

* Management of init functions

* format

* fixes

* fix length file

* update indent

* relaunching ci

* Errors for missing cython imports

* fix style

* fix style doc

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-19 13:05:59 -05:00
758bd39e81 revert Copyright 2023 2023-01-19 18:23:59 +01:00
705e332b46 Add Japanese translation index.mdx (#21186)
* Add Japanese translation index.mdx

* Fix the year of the license

* Change the models list to Japanese
2023-01-19 17:53:28 +01:00
cbaaa2f6ac Flax dtype-dependent numerical masking (#21197) 2023-01-19 16:43:42 +00:00
0b86e330b1 [CVT] Fix module initialization issue (#21193)
fix cvt init
2023-01-19 17:36:38 +01:00
b9403e9516 Add hallucination filter (#18675)
* Add hallucination penalty

* Make quality changes

* Inverse penalty

* Fix imports & quality

* Fix name spelling issue

* set encoder_repetition_penalty and fix quality

* Fix failing test

* Add to config_common_kwargs

* Fix modelling_rag error

* Update src/transformers/generation_logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Remove breakpoint

* Make style fixes

* Update encoder_repetition_penalty default value

* Merge latest main changes

* Make fixup changes

* Add EncoderRepetitionPenaltyLogitsProcessor to generation/__init__.py

* Fix repo-inconsistency

* Remove venv

* Remove tensorflow-macos & add tests

* Add documentation

* Fix quality issues

* move encoder_repetition_penalty to config

* Update src/transformers/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Remove encoder_repetition_penalty from tests

* Fix type error

* Fix format error

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-01-19 11:20:25 -05:00
e9b4800dda [Whisper] Fix timestamp processor (#21187)
* add draft logit processor

* add template functions

* update timesapmt processor parameters

* draft script

* simplify code

* cleanup

* fixup and clean

* update pipeline

* style

* clean up previous idea

* add tokenization utils

* update tokenizer and asr output

* fit whisper type

* style and update test

* clean test

* style test

* update tests

* update error test

* udpate code (not based on review yet)

* update tokenization

* update asr pipeline

* update code

* cleanup and update test

* fmt

* remove text verificatino

* cleanup

* cleanup

* add model test

* update tests

* update code add docstring

* update code and add docstring

* fix pipeline tests

* add draft logit processor

add template functions

update timesapmt processor parameters

draft script

simplify code

cleanup

fixup and clean

update pipeline

style

clean up previous idea

add tokenization utils

update tokenizer and asr output

fit whisper type

style and update test

clean test

style test

update tests

update error test

udpate code (not based on review yet)

update tokenization

update asr pipeline

update code

cleanup and update test

fmt

remove text verificatino

cleanup

cleanup

add model test

update tests

update code add docstring

update code and add docstring

fix pipeline tests

* Small update.

* Fixup.

* Tmp.

* More support.

* Making `forced_decoder_ids` non mandatory for users to set.

* update and fix first bug

* properly process sequence right after merge if last

* tofo

* allow list inputs + compute begin index better

* start adding tests

* add the 3 edge cases

* style

* format sequences

* fixup

* update

* update

* style

* test passes, edge cases should be good

* update last value

* remove Trie

* update tests and expec ted values

* handle bigger chunk_length

* clean tests a bit

* refactor chunk iter and clean pipeline

* update tests

* style

* refactor chunk iter and clean pipeline

* upade

* resolve comments

* Apply suggestions from code review

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* take stride right into account

* update test expected values

* Update code based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* major refactor

* add correct strides for tests

* Update src/transformers/pipelines/automatic_speech_recognition.py

* fix whisper timestamp test

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
2023-01-19 16:25:56 +01:00
9b42c68f7c hertz is already per second (#21188) 2023-01-19 10:21:08 -05:00
4bc18e7a83 Update examples with image processors (#21155)
* Update examples to use image processors

* Small fixes

* Resolve conflicts
2023-01-19 15:14:58 +00:00
fc8a93507c Rename GLPN image processor tests (#21194) 2023-01-19 14:46:07 +00:00
0359e2e15f Updates to computer vision section of the Preprocess doc (#21181)
* Extended the CV preprocessing section with more details and refactored the example

* added padding to the CV section, though it is a special case

* Added a tip about post processing methods

* make style

* link update

* Apply suggestions from review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* review feedback

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-01-19 08:43:36 -05:00
5761ceb35a Fix device issue in UperNetModelIntegrationTest (#21192)
fix device

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-19 14:26:14 +01:00
35920c9715 Trigger CI 2023-01-19 07:52:32 -05:00
9b468a7cd7 workaround documentation rendering bug (#21189) 2023-01-19 07:50:59 -05:00
464c86ac93 Update year 2020 to 2023 in one file (#21190)
* update year

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-19 13:16:28 +01:00
1d33f55cb8 Fix Mask2FormerForUniversalSegmentation (#21175)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-19 10:15:08 +01:00
5b949623c7 Add OneFormer Model (#20577)
* Add Oneformer Model

* Add OneFormer Tests

* Add UNIVERSAL_SEGMENTATION_MAPPING

* Fix config

* 🐛 Fix error encountered while writing tests

* 🔨 Fix instance segmentation post processing

* Format Files and Add Documentation

* Add Documentation mdx file

* Run make fixup

* Run make fix-copies

* Remove unnecessary code

* Format modeling_oneformer.py

* Add OneFormer to ImageSegmentationPipeline

* Format files

* Add Demo link to Readme

* Fix fomatting errors

* Fix test failures

* Update Table in index.mdx

* Fix version

* Fix style

* Remove OneFormer from TF

* Fix Imports

* Fix dummy objects

* Fix tests

* Add newline

* Remove OneFormerFeatureExtractor

* Remove CUDA Kernels

* Use AutoBackbone for Swin

* Fix description

* Use Image Processor

* Fix copies

* Fix formatting

* Fix import order

* Fix flake8 errors

* Fix doc errors

* Add Hindi Readme entry

* Update supported backbones

* Update supported backbones

* Undo Changes

* Fix type of config

* Fix isort

* Fix auto.mdx

* Fix swin config

* Replace DinatBackbone with AutoBackbone

* Use SwinBackbone

* Use SwinBackbone

* Fix conversion script

* Fix arguments

* Add argument description

* Fix style

* Add OneFormerProcessor

* Fix OneFormerProcessor Tests

* Fix mapping

* Fix imports

* Fix inits

* Fix style

* Fix comment

* Fix docstring

* Move OneFormer to MultiModal

* Fix Copies

* Remove size divisor

* Fix check_repo.py

* Fix copies

* Add Processor for Testing Pipeline

* Fix padding for tokens

* Fix variables

* Fix formatting with correct black version

* Add Image Processor Test

* Apply suggestions

* Revert common modeling

* Add check for task

* Fix conversion script

* Fix initialization order

* Fix tests

* Undo Pipeline Changes

* Fix layers in MLP

* Fix copies

* Update image paths

* Fix copies

* Apply suggestions
2023-01-19 09:31:07 +01:00
6d67664380 [issues template] update deepspeed owners (#21027)
* [issues template] update deepspeed owners

add the right contact for deepspeed@accelerate

* pr-template
2023-01-18 17:23:36 -08:00
00ba7cadd8 Rewrite a couple of lines in the TF XLA doc (#21177)
* Rewrite a couple of lines in the TF XLA doc to explain that jit_compile can be used in model.compile() too

* Remove extra )
2023-01-18 17:53:05 +00:00
c59d71b282 Add AWS Neuron torchrun support (#20806)
* Add XLA torchrun support

* Clarify that currently DDP doesn't work with torch.distributed XLA backend yet

* Enable DDP with torchrun and XLA (now available in PT-XLA 1.13)

* Add check for AWS Neuron availability and AWS Neuron specific compiler flag

* Change the new test's name to TestTrainerDistributedNeuronCore

* Remove "assert" and replace raised exception

* Remove compiler flag as it is optional. If needed, will be another PR.

* Use TORCHELASTIC_RUN_ID to determine whether torchrun is used
2023-01-18 11:21:19 -05:00
f70ee51029 Bump future from 0.18.2 to 0.18.3 in /examples/research_projects/visual_bert (#21173)
Bump future in /examples/research_projects/visual_bert

Bumps [future](https://github.com/PythonCharmers/python-future) from 0.18.2 to 0.18.3.
- [Release notes](https://github.com/PythonCharmers/python-future/releases)
- [Changelog](https://github.com/PythonCharmers/python-future/blob/master/docs/changelog.rst)
- [Commits](https://github.com/PythonCharmers/python-future/compare/v0.18.2...v0.18.3)

---
updated-dependencies:
- dependency-name: future
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-01-18 11:17:35 -05:00
0194665c33 Bump future from 0.18.2 to 0.18.3 in /examples/research_projects/lxmert (#21169)
Bumps [future](https://github.com/PythonCharmers/python-future) from 0.18.2 to 0.18.3.
- [Release notes](https://github.com/PythonCharmers/python-future/releases)
- [Changelog](https://github.com/PythonCharmers/python-future/blob/master/docs/changelog.rst)
- [Commits](https://github.com/PythonCharmers/python-future/compare/v0.18.2...v0.18.3)

---
updated-dependencies:
- dependency-name: future
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-01-18 11:16:43 -05:00
05e72aa0c4 Adapt repository creation to latest hf_hub (#21158)
* Adapt repository creation to latest hf_hub

* Update all examples

* Fix other tests, add Flax examples

* Address review comments
2023-01-18 11:14:00 -05:00
32525428e1 Fix doctest CI (#21166)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-18 16:54:24 +01:00
8ad06b7c13 using raw string for regex to search <extra_id> (#21162)
* using raw string for regex to search <extra_id>

* fix the same issue in test file:`tokenization_t5.py`
2023-01-18 09:43:54 -05:00
8a17da2f7f fix the issue that the output dict of jit model could not get [:2] (#21146)
"TypeError: unhashable type: 'slice'"

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-01-18 09:41:28 -05:00
e1ad188641 Fix git model for generate with beam search. (#21071)
* Fix git model for generate with beam search.

* Update comment

* Fix bug on multi batch

* Add generate tests

* Clean up tests

* Fix style

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-18 09:40:24 -05:00
e15f0d73db OPT: Fix batched generation with FLAX (#21150)
* Fix Flax OPT numerical masking

* re-enable test

* add fix to bart and reintroduce copied from in opt
2023-01-18 14:24:53 +00:00
f4786d7f39 Fix typos in documentation (#21160)
* Fix typos in documentation

* Small fix

* Fix formatting
2023-01-18 09:05:25 -05:00
defdcd2862 Remove Roberta Dependencies from XLM Roberta Flax and Tensorflow models (#21047)
* Added flax model code

* Added tf changes

* missed some

* Added copy comments

* Added style hints

* Fixed copy statements

* Added suggested fixes

* Made some fixes

* Style fixup

* Added necessary copy statements

* Fixing copy statements

* Added more copies

* Final copy fix

* Some bugfixes

* Adding imports to init

* Fixed up all make fixup errors

* Fixed doc errors

* Auto model changes
2023-01-18 07:49:39 -05:00
023f51fe16 blip support for training (#21021)
* `blip` support for training

* remove labels creation

* remove unneeded `decoder_input_ids` creation

* final changes

- add colab link to documentation
- reduction = mean for loss

* fix nits

* update link

* clearer error message
2023-01-18 11:24:37 +01:00
c8849583ad Make test_save_pretrained_signatures slow test (#21105)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-18 10:43:05 +01:00
14154f7238 Add Japanese translation to multilingual.mdx (#21084)
* Create toctree for Japanese translations

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Copy English version

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add Japanese translations

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add Japanese translations

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>
2023-01-18 10:08:18 +01:00
30c12301f8 🌐 [i18n-KO] Translated installation.mdx to Korean (#20948)
docs: ko: installation.mdx
2023-01-18 10:05:23 +01:00
44caf4f6f4 Fixed num_channels!=3 normalization training (#20630)
* Fixed num_channels!=3 normalization training

* empty commit to trigger CI

* Empty-Commit for CircleCI

* Empty-Commit

* Empty Commit try-3: https://discuss.circleci.com/t/github-code-checkout-suddenly-failing/31558

* Empty commit to trigger CI

Co-authored-by: Lay Jain <layjain@basil.csail.mit.edu>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-17 13:06:20 -05:00
865da84abb Add Epsilon- and Eta-Sampling (#21121)
* Add epsilon- and eta-sampling.

Add epsilon- and eta-sampling, following the official code from https://github.com/john-hewitt/truncation-sampling and adapting to be more configurable, as required by Huggingface transformers.

* Add unit tests for epsilon- and eta-sampling.

* Black: fix code formatting.

* Fix docstring spacing.

* Clean up newlines.

* Fix implementation bugs and their associated tests.

* Remove epsilon- and eta-sampling parameters from PretrainedConfig.

* Clarify and clean up the documentation.

* Remove parameters for PretrainedConfig test.
2023-01-17 13:04:32 -05:00
0248810300 Refactoring of the text generate API docs (#21112)
* initial commit, refactoring the text generation api reference

* removed repetitive code examples

* Refactoring the text generation docs to reduce repetition

* make style
2023-01-17 12:23:48 -05:00
d386fd646a Add: An introductory guide for text generation (#21090)
* Part of the "text generation" rework: adding a high-level overview of the text generation strategies

* code samples update via make style

* fixed a few formatting issues

* Apply suggestions from review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fixed spaces, and switched two links to markdown

* Apply Steven's suggestions from review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* new lines after headers to fix link rendering

* review feedback addressed. added links to image captioning and audio transcription examples

* minor capitalization fix

* addressed the review feedback

* Apply suggestions from review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Applied review suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-01-17 12:23:22 -05:00
868d37165f Add: tensorflow example for image classification task guide (#21038)
* Added TF example for image classification

* Code style polishing

* code style polishing

* minor polishing

* fixed a link in a tip, and a typo in the inference TF content

* Apply Amy's suggestions from review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_classification.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* review feedback addressed

* make style

* added PushToHubCallback with save_strategy="no"

* minor polishing

* added PushToHubCallback with save_strategy=no

* minor polishing

* Update docs/source/en/tasks/image_classification.mdx

* added data augmentation

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* make style

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-01-17 12:20:08 -05:00
3a9bd972e2 Add resources (#20872)
* Add resources

* Add more resources

* Remove pipeline tag

* Add more resources

* Add more resources

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-17 17:42:33 +01:00
d96098c641 CLI: update hub PR URL (#21154) 2023-01-17 16:36:47 +00:00
f3feaf7f22 Change variable name to prevent shadowing (#21153)
fix: input -> input_string.
2023-01-17 11:29:23 -05:00
cf028d0c3d Add batch of resources (#20647)
* Add resources

* Add more resources

* Add more resources

* Add TAPAS

* Fix pipeline tag

* Fix pipeline tags

* Remove pipeline tag

* Remove depth-estimation tag

* Update docs/source/en/model_doc/segformer.mdx

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Apply suggestion

* Fix segformer

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Maria Khalusova <kafooster@gmail.com>
2023-01-17 17:18:56 +01:00
bb300ac686 Whisper Timestamp processor and prediction (#20620)
* add draft logit processor

* add template functions

* update timesapmt processor parameters

* draft script

* simplify code

* cleanup

* fixup and clean

* update pipeline

* style

* clean up previous idea

* add tokenization utils

* update tokenizer and asr output

* fit whisper type

* style and update test

* clean test

* style test

* update tests

* update error test

* udpate code (not based on review yet)

* update tokenization

* update asr pipeline

* update code

* cleanup and update test

* fmt

* remove text verificatino

* cleanup

* cleanup

* add model test

* update tests

* update code add docstring

* update code and add docstring

* fix pipeline tests

* add draft logit processor

add template functions

update timesapmt processor parameters

draft script

simplify code

cleanup

fixup and clean

update pipeline

style

clean up previous idea

add tokenization utils

update tokenizer and asr output

fit whisper type

style and update test

clean test

style test

update tests

update error test

udpate code (not based on review yet)

update tokenization

update asr pipeline

update code

cleanup and update test

fmt

remove text verificatino

cleanup

cleanup

add model test

update tests

update code add docstring

update code and add docstring

fix pipeline tests

* Small update.

* Fixup.

* Tmp.

* More support.

* Making `forced_decoder_ids` non mandatory for users to set.

* update and fix first bug

* properly process sequence right after merge if last

* tofo

* allow list inputs + compute begin index better

* start adding tests

* add the 3 edge cases

* style

* format sequences

* fixup

* update

* update

* style

* test passes, edge cases should be good

* update last value

* remove Trie

* update tests and expec ted values

* handle bigger chunk_length

* clean tests a bit

* refactor chunk iter and clean pipeline

* update tests

* style

* refactor chunk iter and clean pipeline

* upade

* resolve comments

* Apply suggestions from code review

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* take stride right into account

* update test expected values

* Update code based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
2023-01-17 15:50:09 +01:00
25ddd91b24 Fixing offline mode for pipeline (when inferring task). (#21113)
* Fixing offline mode for pipeline (when inferring task).

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Updating test to reflect change in exception.

* Fixing offline mode.

* Clean.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-17 15:24:40 +01:00
8896ebb9a9 Clarify and add missing typical_p argument docstring. (#21095)
* Clarify and add missing typical_p docstring.

* Make the docstring easier to understand.

* Clarify typical_p docstring

Accept the suggestion by @stevhliu for paraphrasing the docstring.

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Use the same docstring as in GenerationConfig

Follow the suggestion suggested by @stevhliu in the pull request conversation.

* Fix docstring spacing.

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-01-17 09:23:47 -05:00
f30bcd5357 feat: add standalone guide on XLA support. (#21141)
* feat: add standalone guide on XLA support.

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Empty commit to trigger CI

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address PR comments.

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-17 15:07:59 +01:00
3bbc2451b1 Small simplification to TopKLogitsWarper (#21130)
The max of top_k and min_tokens_to_keep performed on every call can just be done once up-front.
2023-01-17 09:06:03 -05:00
0dde58978a Rename test_feature_extraction files (#21140)
* Rename files

* Update file names in tests
2023-01-17 14:04:07 +00:00
7b5e943cb6 Generate: TF contrastive search must pop use_cache from model_kwargs (#21149) 2023-01-17 13:42:52 +00:00
7f3dab39b5 TF: serializable hubert (#20966)
* serializable hubert
2023-01-17 13:07:37 +00:00
e5dcceb82c Fixes to TF collators (#21143)
* Add num_workers for prepare_tf_dataset

* Bugfix in the default collator and change default tensor type

* Remove the "num_workers" arg and move it to a new PR
2023-01-17 12:18:56 +00:00
2411f0e465 Add Mask2Former (#20792)
* Adds Mask2Former to transformers

Co-authored-by: Shivalika Singh <shivalikasingh95@gmail.com>
Co-authored-by: Shivalika Singh <73357305+shivalikasingh95@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-16 20:37:07 +03:00
9edf375834 [GIT] Fix training (#21133)
* Fix training

* Add test

* Fix failing tests

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-16 15:37:38 +01:00
0fb27dc988 Update TFTapasEmbeddings (#21107)
Update TFTapasEmbeddings

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-16 15:29:50 +01:00
4bbbabcb2c Added clefourrier as ref point for graph models in bug reports (#21139)
* Added clefourrier as ref point for graph models in bug reports

* Update PULL_REQUEST_TEMPLATE.md
2023-01-16 15:12:42 +01:00
a45914193a Fix RealmModelIntegrationTest.test_inference_open_qa (#21136)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-16 15:09:52 +01:00
a5327c6a9a Fixed issue #21053 (#21065)
Co-authored-by: susnato <susnato@tensorflow123456@gmail.com>
2023-01-16 15:06:35 +01:00
488a179ce1 Fixing batching pipelines on single items for ChunkPipeline (#21132)
* Fixing #20783

* Update src/transformers/pipelines/base.py

* Fixing some tests.

* Fixup.

* Remove ffmpeg dep + a bit more relaxed for bigbird QA precision.

* Better dataset.

* Prevent failing on TF.

* Better condition. We can't use `can_use_iterator` since we cannot use it
directly.
2023-01-16 15:04:27 +01:00
fa906a264b Add min_new_tokens argument in generate() (implementation based on MinNewTokensLengthLogitsProcessor) (#21044)
add a new parameter min_new_tokens for generate()
2023-01-16 15:02:08 +01:00
125f137562 [LongT5] Remove duplicate encoder_attention_mask default value check (#21124)
- Remove duplicate encoder_attention_mask default value assignment
2023-01-16 14:26:56 +01:00
05b8e25fff [VideoMAE] Fix docstring (#21111)
Fix docstring

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-16 09:39:35 +01:00
4ed89d48ab Add UperNet (#20648)
* First draft

* More improvements

* Add convnext backbone

* Add conversion script

* Add more improvements

* Comment out to_dict

* Add to_dict method

* Add default config

* Fix config

* Fix backbone

* Fix backbone some more

* Add docs, auto mapping, tests

* Fix some tests

* Fix more tests

* Fix more tests

* Add conversion script

* Improve conversion script

* Add support for getting reshaped undownsampled hidden states

* Fix forward pass

* Add print statements

* Comment out set_shift_and_window_size

* More improvements

* Correct downsampling layers conversion

* Fix style

* First draft

* Fix conversion script

* Remove config attribute

* Fix more tests

* Update READMEs

* Update ConvNextBackbone

* Fix ConvNext tests

* Align ConvNext with Swin

* Remove files

* Fix index

* Improve docs

* Add output_attentions to model forward

* Add backbone mixin, improve tests

* More improvements

* Update init_weights

* Fix interpolation of logits

* Add UperNetImageProcessor

* Improve image processor

* Fix image processor

* Remove print statements

* Remove script

* Update import

* Add image processor tests

* Remove print statements

* Fix test

* Add integration test

* Add convnext integration test

* Update docstring

* Fix README

* Simplify config

* Apply suggestions

* Improve docs

* Rename class

* Fix test_initialization

* Fix import

* Address review

* Fix confg

* Convert all checkpoints

* Fix default backbone

* Usage same processor as segformer

* Apply suggestions

* Fix init_weights, update conversion scripts

* Improve config

* Use Auto API instead of creating a new image processor

* Fix docs

* Add doctests

* Remove ResNetConfig dependency

* Add always_partition argument

* Fix rebaseé

* Improve docs

* Convert checkpoints

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2023-01-16 09:39:13 +01:00
5db9abde43 Fixed typo in docstring (#21115)
Fixed typo
2023-01-15 11:03:30 +01:00
15adc24208 Use raw string for regex in tokenization_t5_fast.py (#21125)
Suppress deprecation warning
2023-01-15 10:56:31 +01:00
056218dab1 [CI-doc-daily] Remove RobertaPreLayernorm random tests (#20992)
* Remove random output

* remove values

* fix copy statements
2023-01-14 19:47:32 +01:00
c8f35a9ce3 Rework automatic code samples in docstrings (#20757)
* Rework automatic code samples in docstrings

* ImageProcessor->AutoImageProcessor

* Add models to fix copies

* Last typos

* A couple more models

* Fix copies
2023-01-14 09:49:36 +01:00
7f65d2366a Add Spanish translation to community.mdx (#21055)
* Add community to toctree

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Copy English content

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add some translations

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add some translations

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add some translations

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Fix position of community

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Fix translation

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add translation

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add translation

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add translation

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add translation

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>
2023-01-14 09:25:05 +01:00
f58248b824 Update task summary part 1 (#21014)
* first draft of new task summary

* make style

* review

* apply feedback

* apply feedbacks

* final touches
2023-01-13 11:01:53 -08:00
95f0dd2123 [Tokenizers] Fix a small typo (#21104)
* typo

* change name in `__repr__`

* fix my mistake
2023-01-13 16:21:34 +01:00
b210c83a78 Fix torchscript tests for AltCLIP (#21102)
fix torchscript tests for AltCLIP

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-13 10:03:19 +01:00
b3a0aad37d Fix past CI (#20967)
* Fix for Past CI

* make style

* clean up

* unindent 2 blocks

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-12 18:04:21 +01:00
41b0564b35 [bnb optim] fixing test (#21030)
* [bnb optim] fixing test

* force 1 gpu

* fix

* fix

* fix

* finalize

* improve commentary

* fix

* cleanup

* more fixes
2023-01-12 08:52:54 -08:00
212829ade6 Remove more unused attributes in config classes (#21000)
* Remove gradient_checkpointing from MarkupLMConfig

* Remove predict_special_tokens from OpenAIGPTConfig

* Remove enable_cls from RoCBertConfig

* Remove batch_size from TrajectoryTransformerConfig

* Remove searcher_seq_len from RealmConfig

* Remove feat_quantizer_dropout from WavLMConfig

* Remove position_biased_input from SEWDConfig

* Remove max_source_positions from Speech2Text2Config

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-12 13:32:04 +01:00
b5be744d3c Fixed issue #21039 (#21062)
Fixed issue #21039 and added test for low_cpu_mem_usage
2023-01-12 10:03:13 +01:00
e849e5bb4a Optimize inference only mode memory if ipex is used (#21083)
* Optimize inference only mode memory if ipex is used

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix code style

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-01-12 10:01:17 +01:00
zzz
6767ce71d6 fix typo in comment (#21088)
fix typo

Signed-off-by: xiaoyang zhu <zhuxiaoyang1996@gmail.com>

Signed-off-by: xiaoyang zhu <zhuxiaoyang1996@gmail.com>
2023-01-11 17:51:41 +01:00
64b6b2b273 Update docstring for CLIPConfig (#21066)
Update doc for CLIPConfig
2023-01-11 14:22:26 +01:00
8f796960f6 Fix header level (#21072)
fix header level
2023-01-10 10:24:10 -08:00
07cde58bdb feature: update wandb callback to upload checkpoints (#21035)
* docs: add wandb metrics and model checkpointing to callback docstrings

* docs: update reference to wandb documentation

* fix: change default of `"WANDB_WATCH"` from ``"gradients"` to ``"false"`

* feature: add `on_save` method and update `"WANDB_LOG_MODEL` behaviour

* fix: use default wandb run names instead of `output_dir`

- removes duplicated run names from wandb workspace
- models can be logged with corresponding run names

* fix: edit deprecation warning based on review suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix: change indentation of docstrings

* fix: change indentation of docstrings and run fixup

* fix: empty commit for circleci permissions issue

* fix: format deprecation doc strings review suggestion

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* docs: Highlight WANDB_DISABLED arg in documentaion

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: run fixup after updating docstrings

Co-authored-by: Bharat Ramanathan <ramanathan.parameshwaran@gohuddl.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-01-10 18:43:22 +01:00
a3c37825cc Make the attention_head_size in distilbert an object attribute (#20970)
* [Fix] Make the attention head size in distilbert an object attribute

* Fix code style

Co-authored-by: Felix Joehnk <fjoehnk@N73GCH2NDH.corp.proofpoint.com>
2023-01-09 18:17:16 +01:00
e3ecbaa4ab Patch-past-refactor (#21050)
* small patches, forgot a line

* refactor PT

* the actual fix
2023-01-09 18:12:13 +01:00
48d4e147d8 remove flax file from documentation_tests.txt (#21036)
remove flax file from `documentation_tests.txt`

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-08 12:33:25 +01:00
d0f324f1e1 Fix warning for MCTC model (#21049) 2023-01-08 10:55:23 +01:00
9a046cc14e Skip failing test until Athur looks at it. 2023-01-08 04:53:20 -05:00
f0577df6de Replace past with past_key_values (#20944)
* start cleanup

* more updates

* more models are affected

* more updates

* update generation utils

* style

* revert change that removed reorder cachce

* update generation utils

* style

* style

* remove reorder cache
2023-01-08 10:21:40 +01:00
7cb596fa22 fix typo (#21048)
Typo fix: Corrected the word metada --> metadata
2023-01-08 10:03:01 +01:00
bd9d51263a fix typo (#21042) 2023-01-07 10:13:26 +01:00
f93c90d217 fix levit timm conversion file (#20938)
* fix levit timm conversion file

* remove set_defaults
2023-01-06 13:27:30 +01:00
c29bec485e fix parameter name in docstring (#21032) 2023-01-06 07:23:16 -05:00
61e068e5a2 Support turning off the model uploading in ClearML (#20969)
* Add support for turning off the model uploading in ClearML

* Add documentation for the CLEARML_LOG_MODEL environment variable

* Adjust new doc addition to the new style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Dudu Lasry <dudu.lasry@viz.ai>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-06 07:22:19 -05:00
ff8dcb5efa Fix arguments passed to predict function in QA Seq2seq training script (#21026)
fix args passed to predict function
2023-01-06 07:19:42 -05:00
35a7052b61 [NumPy] Remove references to deprecated NumPy type aliases (#21022)
[NumPy] Remove references to deprecated NumPy type aliases.

This change replaces references to a number of deprecated NumPy type aliases (np.bool, np.int, np.float, np.complex, np.object, np.str) with their recommended replacement (bool, int, float, complex, object, str).

NumPy 1.24 drops the deprecated aliases, so we must remove uses before updating NumPy.

Co-authored-by: Peter Hawkins <phawkins@google.com>

Co-authored-by: Peter Hawkins <phawkins@google.com>
2023-01-05 13:02:10 -05:00
1d21471c78 Added mask_time_prob and mask_time_length arguments to wav2vec2 pretraining script (#20985)
Added mask_time_prob and mask_time_length arguments to wav2vec2 pretraining script and readme - new branch
2023-01-05 16:24:55 +00:00
bc53fc6265 Generate: FLAX uses GenerationConfig as the basis for .generate() parametrization (#21007) 2023-01-05 15:41:37 +00:00
4f1c9d162e [CLIPSeg] Fix integration test (#20995)
Fix integration test

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-05 14:30:32 +01:00
12313838d3 Make sure dynamic objects can be saved and reloaded (#21008)
* Make sure dynamic objects can be saved and reloaded

* Remove processor test
2023-01-05 07:30:25 -05:00
bf82c9b74f [BLIP] Fix daily CI failing test (#20877) 2023-01-05 13:24:31 +01:00
beb24f2a36 Generate: FLAX infers pad token in its absence and has functional example (#21009) 2023-01-05 11:52:58 +00:00
480799f718 Generate: post-generate config TF doctest fix (#21018) 2023-01-05 11:38:37 +00:00
8fb4d0e4b4 Fix callback docstrings (#21005)
* fix callback docstrings

* format as markdown list

* apply feedback
2023-01-04 12:59:23 -08:00
b7417bee87 Bump gitpython from 3.0.2 to 3.1.30 in /examples/research_projects/distillation (#21011)
Bump gitpython in /examples/research_projects/distillation

Bumps [gitpython](https://github.com/gitpython-developers/GitPython) from 3.0.2 to 3.1.30.
- [Release notes](https://github.com/gitpython-developers/GitPython/releases)
- [Changelog](https://github.com/gitpython-developers/GitPython/blob/main/CHANGES)
- [Commits](https://github.com/gitpython-developers/GitPython/compare/3.0.2...3.1.30)

---
updated-dependencies:
- dependency-name: gitpython
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-01-04 15:36:42 -05:00
05b736c16e Bump gitpython from 3.1.18 to 3.1.30 in /examples/research_projects/decision_transformer (#21010)
Bump gitpython in /examples/research_projects/decision_transformer

Bumps [gitpython](https://github.com/gitpython-developers/GitPython) from 3.1.18 to 3.1.30.
- [Release notes](https://github.com/gitpython-developers/GitPython/releases)
- [Changelog](https://github.com/gitpython-developers/GitPython/blob/main/CHANGES)
- [Commits](https://github.com/gitpython-developers/GitPython/compare/3.1.18...3.1.30)

---
updated-dependencies:
- dependency-name: gitpython
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-01-04 15:36:33 -05:00
94db82573e Fix (DeepSpeed) docker image build issue (#21002)
* Fix docker image build issue

* remove comment

* Add comment

* Update docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2023-01-04 21:28:33 +01:00
b91048968b Generate: Fix CI related to #20727 (#21003) 2023-01-04 20:26:56 +00:00
263fd3c4c7 add: task guide on video classification model fine-tuning. (#20827)
* add: task guide on video classification model fine-tuning.

* apply make style from hf-formatting.

* add: toc entry.

* chore: address PR comments.

Co-authored-by Maria Khalusova

* Reflect Maria's contributions.

Co-authored-by: Maria Khalusova <1065417+MKhalusova@users.noreply.github.com>

* chore: minor correction.

* Apply suggestions from code review

Co-authored-by: Nathan Raw <nxr9266@g.rit.edu>

* PyTorch Video -> PyTorchVideo.

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* change licensing year.

* minor rewording.

* apply make style.

* address Sylvain's comments.

* replace links.

Co-authored-by: Maria Khalusova <1065417+MKhalusova@users.noreply.github.com>
Co-authored-by: Nathan Raw <nxr9266@g.rit.edu>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-01-05 00:43:40 +05:30
d53f329d88 Update PR template (#21006)
add maria to pr template
2023-01-04 11:01:52 -08:00
7804177af9 Fix repo consistency 2023-01-04 14:00:45 -05:00
15e17c99f9 Remove T5 dependency from mT5 model (#20949)
make mt5 independent from t5
2023-01-04 13:51:54 -05:00
9dcc881fa6 Update bug report template (#21004)
add maria to bug report
2023-01-04 10:33:15 -08:00
a6c850e4f4 Generate: TF uses GenerationConfig as the basis for .generate() parametrization (#20994) 2023-01-04 18:23:20 +00:00
3b309818e7 Refactor the function get_results (#20999) 2023-01-04 12:05:36 -05:00
926452298d Fix model hub link (#20998) 2023-01-04 12:04:33 -05:00
56397471b4 Don't call deprecated method (#20904) 2023-01-04 16:59:11 +00:00
52c9e6af29 Fix bug in segmentation postprocessing (#20198)
* Fix post_process_instance_segmentation
* Add test for label fusing
2023-01-04 18:34:58 +03:00
292acd71d6 Update image processor parameters if creating with kwargs (#20866)
* Update parameters if creating with kwargs

* Shallow copy to prevent mutating input

* Pass all args in constructor dict - warnings in init

* Fix typo
2023-01-04 14:29:48 +00:00
f9e977be70 auxiliary_loss works for Deformable Detr (#20959)
fix: auxiliary_loss works

Co-authored-by: Jeongyeon Nam <jy.nam@navercorp.com>
2023-01-04 09:01:08 -05:00
b493fee958 Add: doc page for the object detection task (#20925)
* Added Object Detection task guide (new branch)

* Polished code examples after running make style

* Update docs/source/en/tasks/object_detection.mdx

Rephrasing suggestion from Sayak

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/object_detection.mdx

A rephrasing suggestion from Sayak

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/object_detection.mdx

typo

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Applied reviewers suggestions
>
>
Co-authored-by: sayakpaul <spsayakpaul@gmail.com>
Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* polished code examples

* Added a visualization of the inference result. Slightly changed hyperparameters, and updated the results.

* polished code examples

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Applying Steven's review suggestions

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* minor punctuation fix

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-01-04 08:36:37 -05:00
d7b66d9b44 update template (#20885)
* update template

* replace redme entries

* make style
2023-01-04 10:15:45 +01:00
ce85686a1f Add AltCLIP (#20446)
* add altclip

* update

* fix wrong title

* fix the copyright in readme

* add altclip model

* add altclip

* fix test_gradient_checkpointing_enable_disable

* code

* add return class

* add projection_state

* "fix pretrained model bug"

* delete print and fix 2 test instances.

* delete token

* rm xlmr

* one model one file.

* empty commit to trigger CI

* Fix modeling_outputs.py

* Fix __init__

* Fix quality

* Fix modeling file docstring

* Fix README.md

* Fix test file

* add vision model

* empty commit to trigger CI

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* del token in mdx file

* fix

* fix

* fix

* remove altrob from test list

* add vision test

* fix fx

* fix

* fix

* fix

* trigger CI

* fix copies

* fix tests

* fix style

* fix quality

* update

* recover import

* recover

* add ,

* recover

* fix copies

* trigger CI

* fix

* some of review

* update

* remove import

* last 2

* fix

* fix style

* fix style

* fix bug

* fix uncomment

* fix

* update

* fix

* second review

* empty commit to trigger CI

* empty commit to trigger CI

* fix position

* fix

* empty commit to trigger CI

* empty commit to trigger CI

* third comment

* Update docs/source/en/model_doc/altclip.mdx

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update docs/source/en/model_doc/altclip.mdx

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/altclip/configuration_altclip.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/altclip/modeling_altclip.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/altclip/processing_altclip.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/altclip/modeling_altclip.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* fix merge

* fix copies

* update

* update

* empty commit to trigger CI

* fix code example

* empty commit to trigger CI

* fix

* empty commit to trigger CI

* empty commit to trigger CI

Co-authored-by: shunxing1234 <xw747777271@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: shunxing1234 <33774367+shunxing1234@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-01-04 09:18:57 +01:00
45da7cec5a Add custom stop token ids for generation (#20727)
* Add StopIdStoppingCriteria

* add a working test for stop id criteria

* add to global scope

* add stop_ids to generate

* add pipeline test

* use tokenizer encode in test

* add test to generation utils

* reformat

* fixup

* make-fix-copies

* rename to stop_token_id

* use stop_tokens instead

* add to text to text generation

* make fixup

* make repo-consistency

* Add support for list of ints for eos_token_id inside generation/utils.py

* Instead of having if elses, cast the eos_token_id into a List[int]

* Add List[int] support for logits_process.py

* add List[int] for beam_search.py

* add List[int] for forced_eos_token_id

* revert stop token id stopping criteria changes

* make fixup

* fix tests

* add eos_token_id to generation/utils.py and added tests test_utils.py

* add eos_token_id type hints and fix for pad tokens

* add comments

* remove some prints and remove forced false test

* fix

* put back test_stop_sequence_stopping_criteria

* remove unused import and make fixup

* add a none check

* update docstring

* add more docstring for list ints

* make fixup
2023-01-03 15:18:24 -05:00
cd918492c6 Fix race condition on cleaning checkpoints when save_total_limit set to 1 (#20989)
* Update trainer.py

* fix style

Co-authored-by: Radhwane Chebaane <rchebaane.external@epo.org>
2023-01-03 15:16:12 -05:00
cd2457809f Improve OWL-ViT postprocessing (#20980)
* add post_process_object_detection method

* style changes
2023-01-03 19:25:09 +03:00
e901914da7 Fix for LXMERT (#20986)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-03 17:16:52 +01:00
8f09dd89f6 Avoid CI runs under users' own CircleCI personal account (#20981)
* Avoid null CI

* Avoid null CI

* rename

* more clear error message

* Update .circleci/config.yml

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* clean up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-03 16:19:38 +01:00
7b0727a401 Ignore errors when deleting old checkpoints in trainer (#20984) 2023-01-03 10:10:59 -05:00
15c68c67f4 Enable decoder_attention_mask in generate function (#20726)
* Enable `decoder_attention_mask` in `generate` function

* Make style corrections

* Run `make repo-consistency`

* Add integration test
2023-01-03 09:59:08 -05:00
a9653400d3 Fix valid ratio for Deformable Detr (#20958)
* fix: valid ratio has right value

* chore: remove unnecessary line

Co-authored-by: Jeongyeon Nam <jy.nam@navercorp.com>
2023-01-03 09:43:26 -05:00
9c9fe89f84 [run_clm example] add torch_dtype option for model load. (#20971)
* [run_clm example] add torch_dtype option for model load.
for BLOOM 175B model. peak memory will reduce about 350G for inference. the weight of BLOOM in model hub is bfloat16

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add other type in option

* fix style

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-01-03 09:33:11 -05:00
e697c912c2 Remove more unused attributes in config classes (#20858)
Remove more unused attributes in config classes

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-03 14:37:40 +01:00
9c6f7485a6 Add GIT (GenerativeImage2Text) (#20295)
* First draft

* Make model instantiation work

* Fix copied from statement

* More fixes

* Add correct output head

* Improve configuration

* Add conversion script

* Improve conversion script

* Remove token_type_ids

* Fix conversion of projection layers

* Convert all weights

* Use cats image

* Make logits match

* Generate caption on cats image

* Add GITProcessor

* Update conversion script

* Add support for more checkpoints

* Fix conversion script

* Add initial tests

* Remove cross-attention

* More improvements

* Remove is_decoder

* Improve model tests

* Improve tests

* Improve model outputs

* Fix model outputs equivalence

* Fix more tests

* Remove unused code

* Use generate to generate text, no use of cache for now

* Use generate more appropriately

* Fix config tests

* Fix style

* Add support for use_cache

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fix style

* Fix GIT vision encoder

* Update README

* Fix integration test

* Set bos and eos token ids

* Improve docs

* Improve code

* Add support for provided attention_mask

* Add copied from statement

* Fix gradient checkpointing test

* Set model_input_names

* Investigate model_input_names

* Remove script

* Fix model inputs

* Fix docstring

* Rename GIT to Git

* Support more models

* Add support for textvqa model

* Add video support

* Extend conversion script for video

* Add support for large variant

* Add support for more models

* Fix config archive map

* Update integration test

* Fix README

* Fix CLIP mean and std

* Update processor

* Fix use_cache for video, thanks @gante

* Remove print statements

* Remove assertion

* Add processor tests

* Fix model_input_names

* Use Auto API for processor

* Fix processor tests

* Fix integration test

* Fix pipeline test

* Make tests faster

* Update conversion script

* Update conversion script

* Convert more checkpoints

* Update conversion script

* Fix typo

* Update docstrings

* Improve code snippets

* Fix doc tests

* Add more code examplesé

* Fix doc tests

* Add integration tests

* Fix unused variable

* revert

* Add GIT to Japanese README

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-03 14:17:18 +01:00
305f41e4de Fix post_process_object_detection method descriptions (#20977)
fix post_process_object_detection descriptions
2023-01-03 15:56:02 +03:00
367fdf3330 MinNewTokensLengthLogitsProcessor for .generate method #20814 (#20892)
* feat: add min new length logit processor

* test: add min new length logit processor

* docs: add MinNewTokensLengthLogitsProcessor

* feat: import MinNewTokensLengthLogitsProcessor

* fix: update pytorch dummy objects

* refactor & fix: rename attributes and var and get rid of dynamic attribute

* tests: align test with new interface

* docs: fix typo

* docs: minor clarification

* Empty-Commit

* empty commit

* run automated quality edits

Co-authored-by: Joao Gante <joao@huggingface.co>
2023-01-03 06:29:02 -05:00
4fd89e4978 Generate: delete unused TF _reorder_cache (#20964) 2023-01-03 10:54:56 +00:00
a3e8d3cb1c Fix T5 docstring (#20957)
Fix start_docstring for deparallelize method
2023-01-03 05:53:33 -05:00
588faad106 Generate: TF XLA beam sample (#20927)
* beam sample in beam search

* rag now works with the updated beam search

* delete legacy (non-XLA) generation code related to beam sample
2023-01-02 10:25:44 +00:00
375801d5e6 update pyknp to rhoknp (#20890)
* update pyknp to rhoknp

* fix linter

* fix linter

* fix linter

* fix linter

* fix linter

* support rhoknp==1.1.0, fix testcase
2022-12-31 01:22:26 -05:00
092d4d49dd Add generate kwargs to AutomaticSpeechRecognitionPipeline (#20952)
* Add generate kwargs to AutomaticSpeechRecognitionPipeline

* Add test for generation kwargs
2022-12-31 01:13:39 -05:00
47c9b22d08 Add generate kwargs to AutomaticSpeechRecognitionPipeline (#20952)
* Add generate kwargs to AutomaticSpeechRecognitionPipeline

* Add test for generation kwargs
2022-12-31 01:13:28 -05:00
9e6da0a7ed [trainer: distributed_concat] ensure all_gather's inputs are contiguous (#20951)
[trainer: distributed_concat] ensure all_gather's input are contiguous
2022-12-30 21:55:12 -08:00
17292440c0 Fixing DistilBert error message (#20945)
Fixing error message
2022-12-30 03:44:09 -05:00
881fa716c8 Fix error message in WhisperFeatureExtractor (#20936)
* Fix error message

* Fix code quality
2022-12-30 02:37:37 -05:00
491a33d138 Adds type checking to PreTrainedConfig. (#20926) 2022-12-30 02:35:01 -05:00
8637316e5e Remove Bert tokenizer dependency from DistillBert (slow/fast) tokenizers (#20933) 2022-12-29 02:36:27 -05:00
fe65657de1 Fix FP16 inference in TextGenerationPipeline (#20913)
* add torch_dtype attribute to Pipeline

* Use torch_dtype to cast input tensor type in AutomaticSpeechRecognitionPipeline

* Fix code quality

* Add TextGenerationPipeline fp16 test

* Fix code quality

* Remove useless require in tests

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2022-12-29 02:19:25 -05:00
11c49ed23b Load the state dict on CPU to prevent unnecessary GPU memory surge (#20920)
load the state dict on cpu.
2022-12-29 02:18:03 -05:00
0b686a8a1e Remove non-breaking spaces (#20929)
* Remove non-breaking space in comment

It was likely added unintionally.

* Remove remaining non-breaking spaces
2022-12-29 02:12:40 -05:00
bbcd961897 Generate: correctly detect default max length (#20911)
correctly detect default max length
2022-12-28 10:05:25 +00:00
5f9b2ce0ea Avoid collisions in writing metrics via 2 APIs - azureml + mlflow (#20837)
* Avoid collisions in writing metrics via 2 APIs - azureml + mlflow

MLflow tracking API is enabled by default in AzureML and HF MLflow integration is more fully featured. I'd remove the AzureML integration but leaving the current behavior for backwards compatibility (though it should really be removed)

* Trigger CI
2022-12-28 02:24:54 -05:00
5fa0b17c3d [Past CI] 🔥 Leave Past CI failures in the past 🔥 (#20861)
* torch.jit._state

* Fix past CI

* Fix for perceiver

* Fix REALM

* Fix for Bloom

* Fix for SwinMode

* Fix for TrajectoryTransformerModel

* Fix for test_wav2vec2_with_lm

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-27 18:37:25 +01:00
e35bc46af6 fix docs typos in "add_new_model" (#20900)
fix Jupyter typos
2022-12-27 02:49:15 -05:00
d1b3011292 Update flan-t5 original model link (#20897)
Update flan-t5.mdx
2022-12-27 02:26:14 -05:00
accad48e5b [ T5] fix fp16 loading issue (#20878)
* fix fp16 loading issue

* add backward compatibility

* better refactor

* better readability

- remove `force_upcast_dtype` as it is used once
- use `inspect`
- add `TODO`
2022-12-26 10:01:03 +01:00
47146721b8 typo fix (#20891) 2022-12-26 02:06:23 -05:00
3830b3f74a Fixes typo in the help text for --max_length (#20883) 2022-12-24 02:07:06 -05:00
a081f292ca [RobertaPreLayernom] Fixes the CI daily test (#20886)
get correct checkpoint
2022-12-23 19:55:17 +01:00
cab7799f7b Add japanese translation of template (#20870)
* add japanese translation of template

* fix japanese translation

- fix special cases
- fix typos
- manually translate special cases

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2022-12-23 14:39:42 +01:00
efed8a2794 Add script to convert T5X T5 (v1.0 and v1.1) checkpoints to PyTorch (#20801)
* Add script to convert T5X T5 (v1.0 and v1.1) checkpoints to PyTorch

* Remove unnecessary check and update docstring

* Format docstring

* Fix whitespace in docstring
2022-12-23 14:36:46 +01:00
f7f0ec2f54 Adding support for fp16 for asr pipeline. (#20864)
* Supporting `fp16` for asr pipeline

* Adding test.

* Style.

* Oops.

* Flake8 update ?

* Fixing flake8 ?

* Revert "Flake8 update ?"

This reverts commit 0b917fcb520e5f34d1933d9d37d8f32b64553048.

* Style (acctidentally deleted flake8 F401.)

* Move to a bigger test (no small whisper model, and s2t doesn't seem to
accept torch_dtype=fp16).

Also we need to use a GPU to actually compute on fp16.

* Using BatchFeature capability.
2022-12-23 10:18:45 +01:00
15bc776fec Add Onnx Config for PoolFormer (#20868)
poolformer onnx

Co-authored-by: syed <syed.abdul@sandlogic.com>
2022-12-23 01:30:57 -05:00
4a4cd6cd02 having new model entries in Hindi for Hindi README (#20869) 2022-12-23 12:00:48 +05:30
52dd2b61bf [MobileNet-v2] Fix ONNX typo (#20860)
* fix typo `onnx`

* fix test
2022-12-22 18:52:54 +01:00
4d10ffd506 [FSMT] Make it compatible with xxxForConditionalGeneration models (#20825)
* add `get_encoder` and `get_decoder`

* add additional kwargs support

* fix condition

* add better checks

* better checks

* fix embed positions

* better test to consider padding

* fix debug statement

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add arguments on docstring

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2022-12-22 11:11:19 +01:00
2222740f50 change strings to f-strings in image_processing_utils.py (#20865)
change strings to f-strings
2022-12-22 02:06:50 -05:00
829e889418 Generate: post-generate config doctest fix (#20804)
* fix doctests

* revert unwanted change
2022-12-21 19:18:45 +00:00
39e620c134 Update HubertModelIntegrationTest.test_inference_keyword_spotting (#20863)
fix ci

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-21 18:40:14 +01:00
4a433e321f Add-warning-tokenizer (#20826)
* add fast not use warning

* update
2022-12-21 18:18:34 +01:00
76d02feadb Fix doctest (#20843)
* fix doc for generation, dinat, nat and prelayernorm

* style

* update

* fix cpies

* use auto config and auto tokenizer

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* als modify roberta and the depending models

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
2022-12-21 16:34:31 +01:00
aaa6296de2 Fix whisper export (#20800)
* fix_whisper_export

* update input

* update input
2022-12-21 16:28:42 +01:00
3090e70857 Fix past CI by skipping LevitModelTest.test_problem_types (#20859)
* Fix past CI

* Fix past CI

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-21 14:29:13 +01:00
04c560225b Adding evaluate to the list of libraries required in generated notebooks (#20850)
Adding `evaluate` to the list of libraries to be installed for every generated notebook in transformers
2022-12-21 14:04:08 +01:00
0ae58204c6 Add visual prompt to processor of CLIPSeg model (#20816)
Adds visual_prompt argument to CLIPSegProcessor to enable image-guided segmentation
2022-12-21 15:23:45 +03:00
2da82bb4a7 fix past_key_values in GPTNeoXForCausalLM.prepare_inputs_for_generation (#20621)
* fix past_key_values in GPTNeoXForCausalLM.prepare_inputs_for_generation

* fix formatting
2022-12-21 11:46:04 +00:00
852e7ebaa2 Use config.num_channels in CLIP-like modeling files (#20857)
Use config.num_channels in CLIP-like modeling files

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-21 11:51:23 +01:00
d87e381f93 [Examples] Update big table (#20845)
Update big table

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-12-21 11:34:31 +01:00
9efad4efed [Swin2SR] Add doc tests (#20829)
* Fix doc tests

* Use Auto API

* Apply suggestion

* Revert "Apply suggestion"

This reverts commit cd9507a86644b4877c3e4a3d6c2d5919d9272dd7.

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-12-21 10:09:50 +01:00
0d284bd574 Add BLIP (#20716)
* add new model like

* add v1

* v1

* v1

* vision encoder logits match

* v2

* fix

* add docstring

* CI tests pass

* fix tests

* make fixup

* add to `toctree`

* fix processors

* fix processors

* fix doc

* fill title

* add content doc

* remove from tokenization auto

* fix config

* change order

* add `# Copied from`

* few fixes

- add correct license on modeling text
- remove dummy argument

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* replace name

* refactor a bit

* more refactor

* remove unused arg

* make fixup + remove some `# Adapted from ...`

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* more `# Copied from`

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* now `generate` supports no prefix

* remove `FeatureExtractor`

* fix path

* correct dependency

* fix tests

* few fixes

* add integration tests

* add correct conversion script

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add `blip` to tokenization auto

* fix docstrings

* fix test + add image

* remove processor from uncorrect place

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* clean up a bit

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* clean pixel mask

* clean pixel mask

* fix `F`

* Update src/transformers/models/blip/modeling_blip.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix output

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix pad token id

* remove `token_type_ids`

* make fixup

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* make fixup

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add comments

* Update src/transformers/models/blip/modeling_blip.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* remove `token_type_ids`

* make fixup

* better name

* replace with `image_attention_mask`

* refactor

* make fixup

* better docstring

* replace `answer_xx`

* remove ununsed args

* add `labels`

* add `labels`

* fix processing tests

* make fixup

* make fixup

* put correct repo

* remove `pad`

* remove `crop` and `center_crop`

* Update src/transformers/models/blip/image_processing_blip.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix

* remove `size_divisor`

* fix weights `init`

* remove unneeded functions

* add suggestions

* minor changes

- change slow test output for PT 1.13
- docstring order

* replace `feature_extractor` by `image_processor`

* fix doctests

* fix weight init order + add fp16 slow test

* add `blip` to doctest

* add correct repo name and fix test

* Update src/transformers/models/blip/processing_blip.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix tests

* use `convert_to_rgb` from `image_transforms`

* make fixup

* fix large loading issue

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-21 09:39:10 +01:00
3be028bc9d Embed circle packing chart for model summary (#20791)
* embed circle packing chart

* trim whitespace from bottom

* explain bubble sizes
2022-12-20 10:26:52 -08:00
bd1a43b699 [S2T, Whisper] Add copied from statements (#20787)
* [S2T, Whisper] Add copied from statements

* rebase and fix-copies
2022-12-20 18:13:56 +00:00
5eecf3ff17 Clarify use_fast parameter in docstring (#20840)
* clarify use_fast parameter

* make style

* remove check frameworks, apply review
2022-12-20 08:42:26 -08:00
2875fa971c [SegFormer] Add support for segmentation masks with one label (#20279)
* Add support for binary segmentation

* Fix loss calculation and add test

* Remove space

* use fstring

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-12-20 16:46:50 +01:00
2280880cb7 remove unused use_cache in config classes (#20844)
remove unused use_cache in config classes

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-20 16:46:43 +01:00
d0bfdd20f4 TF AdamWeightDecay fix for 2.11 (#20848)
* Fix incorrect import for the base optimizer for AdamWeightDecay

* Fix incorrect import for the base optimizer for AdamWeightDecay
2022-12-20 13:40:45 +00:00
d1d3ac9403 [mBART] fix erroneous italics in docstring (#20835)
* [mBART] fix erroneous italics in docstring

* fix-copies
2022-12-20 10:23:36 +00:00
244dd0f150 Remove unused max_position_embeddings in config classes (#20836)
Removed unused max_position_embeddings in config classes

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-20 10:09:34 +01:00
ae3cbbcaf6 Fix tiny typo (#20841)
* Fix typo

* Update README.md

* Update run_mlm_flax_stream.py

* Update README.md
2022-12-20 03:17:59 -05:00
7ef3f19c3c fix typo output not ouput in bitsandbytes trainer test (#20839)
fix typo output not ouput

typo was causing an error on pytest collection
2022-12-20 03:16:26 -05:00
bdb84e2bad Add model resources for ViT (#20723)
* Set up overall resources documentation structure

* Update vit.mdx

* Removing irrelevant sections on text models

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx
2022-12-19 10:59:34 -08:00
f76518e56a [clip] fix error message (#20818)
* [clip] fix error message

* sync
2022-12-19 08:25:16 -08:00
76924384af Vilt - use image_transforms pad (#20780)
Use image_transforms pad
2022-12-19 11:43:07 +00:00
ecd7de3dff [Vision] [Refactor] Initialize weights on the correct place (#20803)
* fix nit

- initialization on `_init_weights`
- fix copies

* add copied from
2022-12-19 10:37:14 +01:00
6b5a8f83ce lazy import torch._softmax_backward_data for better compatibility (#20796)
lazy import torch._softmax_backward_data

Signed-off-by: daquexian <daquexian566@gmail.com>

Signed-off-by: daquexian <daquexian566@gmail.com>
2022-12-19 03:37:20 -05:00
b4b613b102 Implement Roberta PreLayerNorm (#20305)
* Copy RoBERTa

* formatting

* implement RoBERTa with prelayer normalization

* update test expectations

* add documentation

* add convertion script for DinkyTrain weights

* update checkpoint repo

Unfortunately the original checkpoints assumes a hacked roberta model

* add to RoBERTa-PreLayerNorm docs to toc

* run utils/check_copies.py

* lint files

* remove unused import

* fix check_repo reporting wrongly a test is missing

* fix import error, caused by rebase

* run make fix-copies

* add RobertaPreLayerNormConfig to ROBERTA_EMBEDDING_ADJUSMENT_CONFIGS

* Fix documentation <Facebook> -> Facebook

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup: Fix documentation <Facebook> -> Facebook

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add missing Flax header

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* expected_slice -> EXPECTED_SLICE

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* update copies after rebase

* add missing copied from statements

* make fix-copies

* make prelayernorm explicit in code

* fix checkpoint path for the original implementation

* add flax integration tests

* improve docs

* update utils/documentation_tests.txt

* lint files

* Remove Copyright notice

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make fix-copies

* Remove EXPECTED_SLICE calculation comments

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-19 09:30:17 +01:00
7032e02032 Install sentencepiece in DeepSpeed CI image (#20795)
* Install sentencepiece in DS CI image

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-16 18:23:46 +01:00
26dd041c6e Add Swin2SR (#19784)
* First draft

* Add more improvements

* Improve forward pass

* Fix layernorm

* Add upscaler

* More improvements

* More improvements

* More improvements

* Improve conversion script

* Add preprocessing

* Make output match original implementation

* Add additional attributes

* Add support for more models

* Support more models

* Add support for real world sr

* Add initial Swin2SRFeatureExtractor

* Add ImageSuperResolutionOutput

* Make more tests pass

* Use BaseModelOutput

* Fix one more test

* Fix more tests

* Fix another test

* Fix all tests

* Rename to Swin2SRImageProcessor

* Fix toctree

* Fix toctree

* Fix rebase

* Improve Swin2SRImageProcessor

* Remove feature extractor file

* Improve model

* Improve conversion script

* Fix integration test

* Fix init

* Fix conversion script

* Address comments

* Improve upsampler

* Add NearestConvUpsampler

* Improve pixel shuffle upsampler

* Improve auxiliary upsampler

* Improve conversion script

* Rename conv_last to final_convolution

* Fix rebase

* Improve upsample module

* Add padding to image processor

* Fix bug

* Update padding

* Remove print statement and fix integration test

* Improve docs

* Add image processor tests

* Convert all checkpoints, fix testsé

* Remove print statements

* Fix import

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-16 16:24:01 +01:00
7f99861218 Add Universal Segmentation class + mapping (#20766)
* Add mapping

* Add mapping to pipeline

* Apply suggestions

* Fix feature extractor tests

* Use ForInstance, add model to universal mapping

* More fixes

* Remove model from deprecated objectsé

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-16 14:22:46 +01:00
e65445b4d6 Stop calling expand_1d on newer TF versions (#20786) 2022-12-16 13:10:07 +00:00
3ee958207a Fix object detection2 (#20798)
* Revert "Fixing object detection with `layoutlm` (#20776)"

This reverts commit fca66abe2af2dfd49a399b851e32a6ef8feda23b.

* Better fix for layoutlm object detection.

* Style.
2022-12-16 13:25:36 +01:00
4341f4e224 [Pipeline] skip feature extraction test if in IMAGE_PROCESSOR_MAPPING (#20790)
skip feature extraction test if in `IMAGE_PROCESSOR_MAPPING`
2022-12-16 12:46:58 +01:00
1543cee7c8 Recompile apex in DeepSpeed CI image (#20788)
Recompile apex in DeepSpeed CI image

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-15 21:35:27 +01:00
491e951875 Move convert_to_rgb to image_transforms module (#20784)
* Move convert_to_rgb to image_transforms module

* Fix tests
2022-12-15 18:47:04 +00:00
4bc723f87d Generate: use GenerationConfig as the basis for .generate() parametrization (#20388)
* generate from config mvp

* fix failing tests

* max_time test

* Load default gen config at model load time; Update docs

* further documentation; add tests

* adapt rag to the new structure

* handle models not instantiated with from_pretained (like in tests)

* better default generation config

* add can_generate fn

* handle legacy use case of ad hoc model config changes

* initialize gen config from config in individual methods, if gen config is none

* fix _get_decoder_start_token_id when called outside GenerationMixin

* correct model config load order (set attr > model config > decoder config)

* update rag to match latest changes

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* load gen config from model config in model.from_pretrained

* fix can_generate fn

* handle generate calls without a previous from_pretrained (e.g. tests)

* add legacy behavior (and a warning)

* lower logger severity

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-15 18:27:20 +00:00
b1706f6908 Install video dependency for pipeline CI (#20777)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-15 18:47:05 +01:00
fca66abe2a Fixing object detection with layoutlm (#20776)
* Fixing object detection with layoutlm.

* Fixup.
2022-12-15 18:46:43 +01:00
8891193e83 [Pipeline] fix failing bloom pipeline test (#20778)
fix failing `pipeline` test
2022-12-15 18:46:00 +01:00
b9b70b0e66 Patch for FlanT5-XXL 8bit support (#20760)
* Workaround for #20287: FlanT5-XXL 8bit support

* Make fix-copies

* revert unrelated change

* Dont apply to longt5 and switch transformers
2022-12-15 12:26:58 -05:00
fe9152f67c Install vision for TF pipeline tests (#20771)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-15 11:16:37 +01:00
a9912d2fca Even more validation. (#20762)
* Even more validation.

* Fixing order.
2022-12-15 10:05:54 +01:00
67acb07e9e Add Swin backbone (#20769)
* Add Swin backbone

* Remove line

* Add code example

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-14 19:35:28 +01:00
94f8e21c70 Install torch-tensorrt 1.3.0 for DeepSpeed CI (#20764)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-14 17:30:36 +01:00
7b23a582b9 Replaces xxx_required with requires_backends (#20715)
* Replaces xxx_required with requires_backends

* Fixup
2022-12-14 14:38:44 +00:00
7c9e2f248c [CI-Test] Fixes but also skips the mT5 tests (#20755)
* weight -> weights

* model embedding resize does not work with both v2 and noraml

* remove useless test
2022-12-14 15:36:04 +01:00
dfd818420d Fix attribute error problem (#20765)
fix: 修复Trainer无法使用use_legacy_prediction_loop参数的问题

解决使用use_legacy_prediction_loop参数在predict阶段使用prediction_loop进行预测时,遇到AttributeError: 'PredictionOutput' object has no attribute 'num_samples'的问题

Co-authored-by: ZhouHang <zhouhang@idataway.com>
2022-12-14 09:26:06 -05:00
11745b4e45 [Tests] Improve test_attention_outputs (#20701)
* Improve tests

* Improve TF tests

* Apply suggestion

* Fix test

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-14 14:41:40 +01:00
722bf7efcc Fix missing () in some usage of is_flaky (#20749)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-14 11:37:29 +01:00
9bafedc0fa Remove image_transforms functions from init (#20704) 2022-12-14 10:17:11 +00:00
d994473b05 Uninstall torch_tensorrt in DeepSpeed CI image for now (#20758)
Uninstall torch_tensorrt for now

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-13 22:25:47 +01:00
ba9da49aa2 Fixing the pipeline tutorial test (#20746)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-13 19:08:30 +01:00
f28c918c7e Add docs xlm roberta (#20742)
* added model resources for xlm-roberta

* added model resources for xlm-roberta

* resolve suggested changes

* add resources to xlm-roberta
2022-12-13 09:25:55 -08:00
6ef42587ae [NAT, DiNAT] Add backbone class (#20654)
* Add first draft

* Add out_features attribute to config

* Add corresponding test

* Add Dinat backbone

* Add BackboneMixin

* Add Backbone mixin, improve tests

* Fix embeddings

* Fix bug

* Improve backbones

* Fix Nat backbone tests

* Fix Dinat backbone tests

* Apply suggestions

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-13 17:06:59 +01:00
30d8919ab1 in the resize() function in image_transforms.py, the line 267: (#20728)
`image = to_channel_dimension_format(image, ChannelDimension.LAST)`
is redundant as this same conversion is also applied in to_pil_image().

This redundant call actually makes the training fail in rare cases.
The problem can be reproduced with the following code snippet:
```
from transformers.models.clip import CLIPFeatureExtractor
vision_processor = CLIPFeatureExtractor.from_pretrained('openai/clip-vit-large-patch14')
images = [
    torch.rand(size=(3, 2, 10), dtype=torch.float),
    torch.rand(size=(3, 10, 1), dtype=torch.float),
    torch.rand(size=(3, 1, 10), dtype=torch.float)
]
for image in images:
    processed_image = vision_processor(images=image, return_tensors="pt")['pixel_values']
    print(processed_image.shape)
    assert processed_image.shape == torch.Size([1, 3, 224, 224])
```

The last image has a height of 1 pixel.
The second call to to_channel_dimesion_format() will transpose the image, and the height
dimension is wrongly treated as the channels dimension afterwards.
Because of this, the following normalize() step will result in an
exception.
2022-12-13 08:55:08 -05:00
4f1788b34d Fix AdamWeightDecay for TF 2.11 (#20735)
* Fix AdamWeightDecay for TF

* Fix AdamWeightDecay for TF

* make fixup
2022-12-13 12:51:07 +00:00
a12c5cbcd8 Change a logic in pipeline test regarding TF (#20710)
* Fix the pipeline test regarding TF

* Fix the pipeline test regarding TF

* update comment

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-13 13:42:36 +01:00
1af4bee896 Add keep_in_fp32_modules support (#20683)
* add `keep_in_fp32_modules` support

* pass it as class attribute

* few modifs

- make tests `slow`
- fix logic

* better logic

* fix failing test

* `bfloat16` support

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix

* simplify tests

* simplify tests

* fix test

* modify message

* more checks

* fix failing tests

* add more conditions

- add `is_accelerate_available`
- fixes pipleine tests that failed

* add suggestions

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix failing `bnb` test

* add last safety checker

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-13 11:59:57 +01:00
d4bf9ee1ff Update CI to torch 1.13.0 (#20687)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-12 20:04:56 +01:00
f41a11a16f rename layoutlm_job to exotic_models_job (#20736)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-12 20:02:16 +01:00
1416b5d9d8 Add decorator for flaky Donut tests (#20739)
* Add decorator for flaky tests

* Fix up
2022-12-12 18:25:27 +00:00
a450789d9a Disambiguate test for required_input in tokenization base file. (#20731)
* Disambiguate test for required_input in tokenization base file.

* Add test for size
2022-12-12 13:13:09 -05:00
29ff8716a2 Add a progress bar for large model loading (#20713) 2022-12-12 13:12:56 -05:00
5f94855dc3 Add gpt-sw3 model to transformers (#20209)
* Add templates for gpt-sw3

* Add templates for gpt-sw3

* Added sentencepiece tokenizer

* intermediate commit with many changes

* fixed conflicts

* Init commit for tokenization port

* Tokenization progress

* Remove fast tokenizer

* Clean up and rename spm.model -> spiece.model

* Remove TF -> PT conversion script template, Clean up Megatron -> PT script

* Optimize encode & decode performance

* added new attention

* added new attention

* attention for gpt-sw3 working

* attention good

* Cache is now working

* fixed attention mask so that it works with causal attention

* fixed badbmm bug for cpu and caching

* updated config with correct parameters

* Refactor and leave optimizations as separate functions to avoid breaking expected functionality

* Fix special tokens mapping for both tokenizers

* cleaning up of code and comments

* HF compatible attention outputs

* Tokenizer now passing tests, add documentation

* Update documentation

* reverted back to base implementation after checking that it is identical to pretrained model

* updated gpt-sw3 config

* updated conversion script

* aligned parameters with gpt-sw3 config

* changed default scale_attn_by_inverse_layer_idx to true

* removed flag from conversion script

* added temporary model path

* reverted back to functioning convert script

* small changes to default config

* updated tests for gpt-sw3

* make style, make quality, minor cleanup

* Change local paths to testing online repository

* Change name: GptSw3 -> GPTSw3

* Remove GPTSw3TokenizerFast references

* Use official model repository and add more model sizes

* Added reference to 6.7b model

* Add GPTSw3DoubleHeadsModel to IGNORE_NON_AUTO_CONFIGURED, like GPT2DoubleHeadsModel

* Remove pointers to non-existing TFGPTSw3

* Add GPTSw3 to docs/_toctree.yml

* Remove TF artifacts from GPTSw3 in __init__ files

* Update README:s with 'make fix-copies'

* Add 20b model to archive list

* Add documentation for GPT-Sw3

* Fix typo in documentation for GPT-Sw3

* Do 'make fix-copies' again after having updated docs

* Fix some typos in docs

* Update src/transformers/models/gpt_sw3/configuration_gpt_sw3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/configuration_gpt_sw3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/modeling_gpt_sw3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/models/gpt_sw3/test_tokenization_gpt_sw3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/modeling_gpt_sw3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/modeling_gpt_sw3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Resolve comments from PR feedback

* Resolve more comments from PR feedback, also set use_cache=True in convert script

* Add '# Copied from' comments for GPTSw3 modeling

* Set 'is_parallelizable = False'

* Remove '# Copied from' where code was modified and add 'with x->y' when appropriate

* Remove parallelize in mdx

* make style, make quality

* Update GPTSw3Config default values and corresponding documentation

* Update src/transformers/models/gpt_sw3/tokenization_gpt_sw3.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Clean up and protect GPTSw3Tokenizer imports with is_sentencepiece_available

* Make style, make quality

* Add dummy object for GPTSw3Tokenizer via 'make fix-copies'

* make fix-copies

* Remove GPTSw3 modeling classes

* make style, make quality

* Add GPTSw3 auto-mappings for other GPT2 heads

* Update docs/source/en/model_doc/gpt-sw3.mdx

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/tokenization_gpt_sw3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove old TODO-comment

* Add example usage to GPTSw3Tokenizer docstring

* make style, make quality

* Add implementation details and example usage to gpt-sw3.mdx

Co-authored-by: JoeyOhman <joeyoh@kth.se>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-12 13:12:13 -05:00
b58beebe72 Add vision requirement to image transforms (#20712)
* Add require_vision decorator

* Fixup

* Use requires_backends

* Add requires_backend to utils functions
2022-12-12 17:43:45 +00:00
fd2bed7f9f Clarify return_tensor and return_text parameters (#20662)
* clarify docstring

* make style
2022-12-12 09:16:13 -08:00
c1b9a11dd4 Convert tokenizer outputs for Keras in doc example (#20732)
* Convert tokenizer outputs for Keras in doc example

* Das deutsche Beispiel auch korrigieren
2022-12-12 16:14:04 +00:00
0ba94aceb6 Spanish translation of the file debugging.mdx (#20566)
* Create and translate to Spanish debugging.mdx

* solved typo error in a header

* Update debugging.mdx

* Update debugging.mdx

* Update docs/source/es/debugging.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/debugging.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/debugging.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/debugging.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/debugging.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update _toctree.yml

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-12 10:38:56 -05:00
a413c725d4 fsdp fix (#20719) 2022-12-12 20:37:52 +05:30
17c742bbf5 Very small edit to change name to OpenAI GPT (#20722) 2022-12-12 09:43:43 -05:00
8f1f59ce86 Add type hints for Whisper models (#20396)
* Initial commit

* Add type hints for two major classes

* Run make fixup

* Fix output type for Whisper

* Run isort to fix imports
2022-12-12 14:39:21 +00:00
53357e8196 Adding ValueError when imcompatible parameters are used. (#20729) 2022-12-12 15:39:13 +01:00
5ba2dbd9b1 Fix AutoModelTest.test_model_from_pretrained (#20730)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-12 15:37:43 +01:00
a3345c1f13 Add accelerate support for LongT5 models (#20341)
*  add accelerate support for LongT5 models

Signed-off-by: peter szemraj <peterszemraj@gmail.com>

* fix `accelerate` tests

* Trigger CI test

Signed-off-by: peter szemraj <peterszemraj@gmail.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2022-12-12 09:25:52 -05:00
8286af6f54 Spanish translation of asr.mdx and add_new_pipeline.mdx (#20569)
* Fix minor typo in question_answering.mdx

* Fixes minor typo in the english version of tasks/asr.mdx

* Update _toctree.yml

* Translate add_new_pipeline.mdx into Spanish

* Fixes some typos in the English version of add_new_pipeline.mdx

* Translate asr.mdx into Spanish

* Fixes small typos in add_new_pipeline.mdx

* Update docs/source/es/add_new_pipeline.mdx

Suggestion by @osanseviero

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/add_new_pipeline.mdx

Suggestion by @osanseviero: use "biblioteca" instead of "librería."

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/tasks/asr.mdx

Suggestion by @osanseviero.

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/add_new_pipeline.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/add_new_pipeline.mdx

Suggestion by @osanseviero.

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/add_new_pipeline.mdx

Suggestion by @osanseviero.

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/add_new_pipeline.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/tasks/asr.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/tasks/asr.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/tasks/asr.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update asr.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
2022-12-12 09:23:23 -05:00
8d2fca07e8 Made LUKE Tokenizer independent from RoBERTa (#20720) 2022-12-12 09:22:08 -05:00
799cea64ac Fix rendering issue in quicktour (#20708)
* Fix rendering issue in quicktour

* Separate in two blocks
2022-12-09 13:51:35 -05:00
74330083b5 [ViTHybrid] fix last accelerate slow test (#20705)
* fix last slow test

* revert deletion

* Update src/transformers/models/vit_hybrid/modeling_vit_hybrid.py
2022-12-09 16:46:32 +01:00
7319850902 Replace FE references (#20702) 2022-12-09 12:24:00 +00:00
a95fd35426 Vision processors - replace FE with IPs (#20590)
* Replace FE references with IPs

* Update processor tests

* Update src/transformers/models/clip/processing_clip.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/clip/processing_clip.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update warning messages v4.27 -> v5

* Fixup

* Update Chinese CLIP processor

* Add feature_extractor property

* Add attributes

* Add tests

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-09 10:48:34 +00:00
704027f0ef skip test_multi_gpu_data_parallel_forward for MaskFormerSwinModelTest (#20688)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-09 11:10:00 +01:00
6a062a3ed9 Change transformers.onnx to use optimum.exporters.onnx (#20529)
* Change transformers.onnx to use optimum.exporters.onnx

* Update doc

* Remove print

* Fix transformers.onnx cli

* Update documentation

* Update documentation

* Small fixes

* Fix log message

* Apply suggestions

* Update src/transformers/onnx/__main__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions

* Add missing line break

* Ran make fix-copies

* Update src/transformers/onnx/__main__.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update src/transformers/onnx/__main__.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

Co-authored-by: Michael Benayoun <michael@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-12-09 10:42:02 +01:00
9a6c6ef97f [Backbones] Improve out features (#20675)
* Improve ResNet backbone

* Improve Bit backbone

* Improve docstrings

* Fix default stage

* Apply suggestions from code review

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-09 09:14:52 +01:00
9e56aff58a Add video classification pipeline (#20151)
* 🚧 wip video classification pipeline

* 🚧 wip - add is_decord_available check

* 🐛 add missing import

*  add tests

* 🔧 add decord to setup extras

* 🚧 add is_decord_available

*  add video-classification pipeline

* 📝 add video classification pipe to docs

* 🐛 add missing VideoClassificationPipeline import

* 📌 add decord install in test runner

*  fix url inputs to video-classification pipeline

*  updates from review

* 📝 add video cls pipeline to docs

* 📝 add docstring

* 🔥 remove unused import

* 🔥 remove some code

* 📝 docfix
2022-12-08 16:22:43 -05:00
c56ebbbea6 Add deprecation warning when image FE instantiated (#20427)
* Add deprecation warning when image FE instantiated

* Update src/transformers/models/beit/feature_extraction_beit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update v2.7 -> v5 and add for new IPs

* Add message to Chinese CLIP

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-08 20:47:35 +00:00
183af58b11 Added missing test_tokenization_led (#20568)
* Create test_tokenization_led.py

* Update test_tokenization_led.py

* Update test_tokenization_led.py

* Update test_tokenization_led.py

* Update test_tokenization_led.py

* Update test_tokenization_led.py

* Update test_tokenization_led.py

* Update test_tokenization_led.py

* Update test_tokenization_led.py
2022-12-08 20:55:22 +01:00
cf1b8c34cc Fix donut image processor (#20625)
* fix donut image processor

* Update test values

* Apply lower bound on resizing size

* Add in missing size param

* Resolve resize channel_dimension bug

* Update src/transformers/image_transforms.py
2022-12-08 19:10:40 +00:00
e3cc4487fe Fix CIs for PyTorch 1.13 (#20686)
* fix 1

* fix 2

* fix 3

* fix 4

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-08 18:51:54 +01:00
bcc069ddb8 Enable bf16 option for XLA devices (#20684) 2022-12-08 12:34:40 -05:00
9858ecd706 [ViTHybrid] Fix accelerate slow tests (#20679)
* fix failing `accelerate` tests

* make fixup

* smaller values

* even lower
2022-12-08 17:39:32 +01:00
69038ce009 Whilelist Transformers private method in DummyObject (#20681) 2022-12-08 11:19:11 -05:00
9cc65f8701 Migrate torchdynamo to torch.compile (#20634)
* Migrate torchdynamo to torch.compile

* Add docstring and generic option

* Properly use the function...

* Reorg args
2022-12-08 11:18:52 -05:00
da95f6ca4c Bump certifi in /examples/research_projects/visual_bert (#20673)
Bumps [certifi](https://github.com/certifi/python-certifi) from 2020.6.20 to 2022.12.7.
- [Release notes](https://github.com/certifi/python-certifi/releases)
- [Commits](https://github.com/certifi/python-certifi/compare/2020.06.20...2022.12.07)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-12-08 11:15:42 -05:00
efd7c021ee Bump certifi in /examples/research_projects/decision_transformer (#20677)
Bumps [certifi](https://github.com/certifi/python-certifi) from 2021.10.8 to 2022.12.7.
- [Release notes](https://github.com/certifi/python-certifi/releases)
- [Commits](https://github.com/certifi/python-certifi/compare/2021.10.08...2022.12.07)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-12-08 11:15:11 -05:00
9e33e19bf5 Bump certifi in /examples/research_projects/lxmert (#20672)
Bumps [certifi](https://github.com/certifi/python-certifi) from 2020.6.20 to 2022.12.7.
- [Release notes](https://github.com/certifi/python-certifi/releases)
- [Commits](https://github.com/certifi/python-certifi/compare/2020.06.20...2022.12.07)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-12-08 11:14:54 -05:00
6eae3f7801 Add BackboneMixin (#20660)
* add BackboneBaseModel

* add BackboneBaseModel

* Rename to BackboneMixin

* remove nn.Module

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-08 16:55:48 +01:00
be3d6c84cc Fix expected values for TF-ESM tests (#20680) 2022-12-08 15:26:09 +00:00
c83703cbdb Update the list of contributors to reflect current organization (#20603)
* Update the list of contributors to reflect current organization

* Proper indent
2022-12-08 10:05:43 -05:00
a03f7514db Fix load from PT-formatted checkpoint in composite TF models (#20661)
* Fix load from PT-formatted checkpoint in composite TF models

* Leave the from_pt part as it was
2022-12-08 09:33:07 -05:00
521da6518f Fix gpt2 fp16 training when tracing is enabled (#20656)
* ONNX tracing fix

* Remove conditional
2022-12-08 08:55:59 -05:00
93b54368f5 [BiT] Small patch fix (#20657)
* patch fix for `fp16`

* use `np` instead
2022-12-08 12:41:33 +01:00
0526a075c5 run_speech_recognition_seq2seq.py: add cache_dir param to dataset (#20540) 2022-12-07 18:23:16 +00:00
fc95386ea1 Add TFBartForSequenceClassification (#20570)
* read to load

* base functionality

* revert init

* fix dummy data

* moving right along

* moving right along

* finally

* cleanup

* pull out comment

* add test

* update docstring for main class

* flake comments and rewriting copies from make repo-consistency`

* remove irrelevant differences/accidental spaces

* put copies back after space removals

* mid

* final test pass

* stray comment

* update test file

* update test file

* fixup

* black

* missed

* black missed one more

* sytle

* add doc update

* fix order of output class

* comment

* Revert "comment"

This reverts commit 03f86b6948808461939cc8ad4ad74305dfb67700.

* remove redundant function, and redundant reshape

* move change out of common

* style

* put common spaces back

* reorder kwargs in output

* doc style
2022-12-07 18:05:39 +01:00
77382e918d [Whisper] Fix forced decoder ids (#20652)
* [Whisper] Fix forced decoder ids

* fix test
2022-12-07 16:44:13 +00:00
7c5eaf9e5a Add dpt-hybrid support (#20645)
* add `dpt-hybrid` support

* refactor

* final changes, all tests pass

* final cleanups

* final changes

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix docstring

* fix typo

* change `vit_hybrid` to `hybrid`

* replace dataclass

* add docstring

* move dataclasses

* fix test

* add `PretrainedConfig` support for `backbone_config`

* fix docstring

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove `embedding_type` and replace it by `is_hybrid`

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-07 17:01:55 +01:00
3ac040bca1 Updated Trainer args typing (#20655) 2022-12-07 09:57:39 -05:00
3994c04585 Speed up git-lfs detection on error (#20641)
Prevent read and discard of entire checkpoint file.
2022-12-07 09:51:02 -05:00
147fa37fb1 pin TF 2.11 in docker files (#20642)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-07 15:46:48 +01:00
cec5f7abd1 Update summarization run_pipeline_test (#20623)
* update summarization run_pipeline_test

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-07 15:46:12 +01:00
3e4c9e5c64 [ViTHybrid] + [BiT] cleaner __init__ (#20649)
* cleaner `__init__`

* add docstring for `backbone_config`
2022-12-07 15:35:37 +01:00
aac7b0d232 [Trainer] add error when passing 8bitmodels (#20651)
* add error when passing `8bit`models

* fix

* improve message
2022-12-07 15:30:56 +01:00
d151a8c550 Add BiT + ViT hybrid (#20550)
* First draft

* More improvements

* Add backbone, first draft of ViT hybrid

* Add AutoBackbone

* More improvements

* Fix bug

* More improvements

* More improvements

* Convert ViT-hybrid

* More improvements

* add patch bit

* Fix style

* Improve code

* cleaned v1

* more cleaning

* more refactoring

* Improve models, add tests

* Add docs and tests

* Make more tests pass

* Improve default backbone config

* Update model_type

* Fix more tests

* Add more copied from statements

* More improvements

* Add push to hub to conversion scripts

* clean

* more cleanup

* clean

* replace to

* fix

* Update src/transformers/models/bit/configuration_bit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix base model prefix

* more cleaning

* get rid of stem

* clean

* replace flag

* Update src/transformers/models/bit/configuration_bit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/bit/configuration_bit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add check

* another check

* fix for hybrid vit

* final fix

* update config

* fix class name

* fix `make fix-copies`

* remove `use_activation`

* Update src/transformers/models/bit/configuration_bit.py

* rm unneeded file

* Add BiT image processor

* rm unneeded file

* add doc

* Add image processor to conversion script

* Add ViTHybrid image processor

* Add resources

* Move bit to correct position

* Fix auto mapping

* Rename hybrid to Hybrid

* Fix name in toctree

* Fix READMEs'

* Improve config

* Simplify GroupNormActivation layer

* fix test + make style

* Improve config

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* remove comment

* remove comment

* replace

* replace

* remove all conv_layer

* refactor norm_layer

* revert x

* add copied from

* last changes + integration tests

* make fixup

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix name

* fix message

* remove assert and refactor

* refactor + make fixup

* refactor - add  + sfety checker

* fix docstring + checkpoint names

* fix merge issues

* fix function name

* fix copies

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix model checkpoint

* fix doctest output

* vit name on doc

* fix name on doc

* fix small nits

* fixed integration tests

* final changes - slow tests pass

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-07 11:03:39 +01:00
b610c47f89 [MaskFormer] Add support for ResNet backbone (#20483)
* Add SwinBackbone

* Add hidden_states_before_downsampling support

* Fix Swin tests

* Improve conversion script

* Add id2label mappings

* Add vistas mapping

* Update comments

* Fix backbone

* Improve tests

* Extend conversion script

* Add Swin conversion script

* Fix style

* Revert config attribute

* Remove SwinBackbone from main init

* Remove unused attribute

* Use encoder for ResNet backbone

* Improve conversion script and add integration test

* Apply suggestion

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-07 09:42:38 +01:00
6c1a0b3931 Pin TensorFlow to the next release (#20635) 2022-12-06 18:28:59 -05:00
c95f84700c Clip floating point constants to bf16 range to avoid inf conversion (#20605)
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-40-169.us-west-2.compute.internal>
2022-12-06 17:25:26 -05:00
f68796bd60 Fix natten installation in docker file (#20632)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-06 22:23:06 +01:00
f821bea0ad Fix link to speech encoder decoder model in speech recognition readme (#20633) 2022-12-06 15:46:41 -05:00
4f78bcb287 add missing is_decoder param (#20631) 2022-12-06 12:18:58 -08:00
7586a1a367 Fix dtype of weights in from_pretrained when device_map is set (#20602) 2022-12-06 12:16:17 -05:00
bf9a5882a7 Update some GH action versions (#20537)
* update actions versions

* update actions versions

* update actions versions

* update actions versions

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-06 16:54:40 +01:00
acc439ba17 Ci-jukebox (#20613)
* fix cuda OOM by using single Prior

* only send to device when used

* use custom model

* Skip the big slow test

* Update tests/models/jukebox/test_modeling_jukebox.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-12-06 16:14:03 +01:00
9b14c1b6bf Fix AutomaticSpeechRecognitionPipelineTests.run_pipeline_test (#20597)
* Remove assert exception not triggered

* Fix wrong expected exception string

* fix

* use assertRaisesRegex

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-06 15:48:49 +01:00
6a707cf586 Repo consistency 2022-12-06 08:08:37 -05:00
97a51b0c7d updating T5 and BART models to support Prefix Tuning (#20601)
* updating T5 and BART models to support Prefix Tuning

* `make fix-copies`

* address comments

* address comments
2022-12-06 18:24:39 +05:30
b9a0ede6ab Check if docstring is None before formating it (#20592)
docstrings could be `None` if Python optimize level is set to 2.
2022-12-06 07:44:17 -05:00
ae06bce888 exclude jit time from the speed metric calculation of evaluation and prediction (#20553)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-12-06 07:37:01 -05:00
25e10da427 Adding anchor links to Hindi README (#20606) 2022-12-06 18:06:25 +05:30
e842e181df Documentation fixes (#20607) 2022-12-06 07:32:46 -05:00
28f3d431d4 Rework the pipeline tutorial (#20437)
* [WIP] Rework the pipeline tutorial

- Switch to `asr` instead of another NLP task.
- It also has simpler to understand results.
- Added a section with interaction with `datasets`.
- Added a section with writing a simple webserver.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Addressing comments.

* Links.

* Fixing docs format.

* Adding pipeline_webserver to _toctree.

* Warnig -> Tip warnings={true}.

* Fix link ?

* Links ?

* Fixing link, adding chunk batching.

* Oops.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/pipeline_tutorial.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2022-12-06 10:47:31 +01:00
5764efe544 Fix test for file not found (#20604) 2022-12-05 18:33:56 -05:00
720e9599c1 Split autoclasses on modality (#20559)
* split autoclasses on modality

* apply review

* auto classes
2022-12-05 12:28:44 -08:00
7d1c1c5b21 Fix code sample in preprocess (#20561)
* change to image_processor

* apply review
2022-12-05 11:49:43 -08:00
73ec12eafb README in Hindi 🇮🇳 (#20097)
* Created README_hd.md

A Hindi Translation for README

* updated check_copies.py

Added the Proper info for Hindi Translation of README File !

* updated README_hd.md

Fixed some translation issues !

* Update README_hd.md

* Update README_hd.md

* Update README_hd.md

* fixing 🐛 for `make fix-copies`

* run `make fix-copies`

* `make fix-copies` 😅

Co-authored-by: Akshit Gulyan <103456810+AkshitGulyan@users.noreply.github.com>
2022-12-06 01:04:40 +05:30
aef9aac312 Add-whisper-conversion (#20600)
* add whisper conversion scrip

* update conversion script

* update arg names

* fix missing encoder_ffn_dim

* fixup

* ast nits
2022-12-05 20:02:57 +01:00
74fb524e20 [Whisper] Fix decoder ids methods (#20599)
* [Whisper] Fix decoder ids methods

* enum property
2022-12-05 18:45:22 +00:00
ef0f85cd57 [Vision] .to function for ImageProcessors (#20536)
* add v1 with tests

* add checker

* simplified version

* update docstring

* better version

* fix docstring + change order

* make style

* tests + change conditions

* final tests

* modify docstring

* Update src/transformers/feature_extraction_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* replace by `ValueError`

* fix logic

* apply suggestions

* `dtype` is not needed

* adapt suggestions

* remove `_parse_args_to_device`

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2022-12-05 19:10:54 +01:00
67d32f4649 Replace set-output by $GITHUB_OUTPUT (#20547)
* remove set-output

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 18:25:13 +01:00
9763f829a5 Fix whisper and speech to text doc (#20595)
* Fix whisper and speech to text doc
# What does this PR do?
Previously the documentation was badly indented for both models and indicated that
> If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`.`
Which is on valid for the forward pass of the `ForConditionnalGeneration` not for the model alone.

* other fixes
2022-12-05 18:23:36 +01:00
4430b91298 clean up unused classifier_dropout in config (#20596)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 18:04:33 +01:00
eefae413d1 Fix link to table transformer detection microsoft model (#20560)
* Fix link to table transformer detection microsoft model

* Fix doc styles
2022-12-05 11:43:27 -05:00
d5af5a0c87 Fix link to swin transformers v2 microsoft model (#20558) 2022-12-05 11:43:04 -05:00
ac3bccdc74 Fix link to Swin Model contributor novice03 (#20557) 2022-12-05 11:42:29 -05:00
87282cb73c Add RemBERT ONNX config (#20520)
* rembert onnx config

* formatting

Co-authored-by: Ho <erincho@bcd0745f972b.ant.amazon.com>
2022-12-05 11:39:09 -05:00
afe2a466bb ESM openfold_utils type hints (#20544)
* add type annotations for esm chunk_utils

use isinstance builtin instead of 'type(x) is y'; add assertions to aid in type inferencing; use bools instead of ints in _get_minimal_slice_set for improved type clarity; refactor to avoid re-assigning to the same variable with a different type

* add type annotations for esm data_transforms

refactor to avoid re-assigning to the same variable with a different type

* add type annotations for esm feats utils

refactor to avoid re-assigning to the same variable with a different type

* add type annotations for esm loss utils

* add/fix type annotations for esm rigit_utils

refactor to avoid re-assigning to the same variable with a different type; fix Callable, Tuple type hints; match conditional structure to other methods; fix return type on Rotation.cat and Rotation.unsqueeze

* add type annotations for esm tensor_utils

overload for tree_map; use insinstance builtin instead of 'type(x) is y'; export dict_multimap, flatten_final_dims, permute_final_dims in openfold_utils

* add type annotations for esm protein utils

add FIXME for attempted string mutation; add missing None check in get_pdb_headers; fix potentially unbound variable 'chain_tag' in to_pdb; modify get_pdb_headers return type

* add type annotations for esm residue constants

hints on collection constants; remove magic trailing comma to reduce number of lines; change list -> tuple for rigid_group_atom_positions for improved hinting

* code style fixup

Co-authored-by: Matt <rocketknight1@gmail.com>
2022-12-05 16:23:15 +00:00
8ea6694d92 Make convert_to_onnx runable as script again (#20009)
* Make convert_to_onnx runable as script again

Fix `convert_graph_to_onnx.py` relative import so it can be run as a script again.

* Trigger CI
2022-12-05 11:08:39 -05:00
84c9bf7421 cross platform from_pretrained (#20538)
* add support for `from_pt`

* add tf_flax utility file

* Update src/transformers/modeling_tf_flax_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove flax related modifications

* add test

* remove FLAX related commits

* fixup

* remove safetensor todos

* revert deletion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-05 16:56:17 +01:00
538e5248b0 Ci-whisper-asr (#20588)
* Expected output for the test changed

* fix failing asr test
2022-12-05 16:50:38 +01:00
13e736685a Add BioGPT (#20420)
* biogpt initial commit

* updated init

* fix faster decoding with use_cache

* 1. fix input_ids and input_embeds with correct device
2. added _keys_to_ignore_on_load_missing
3. updated prepare_inputs_for_generation

* add activation_dropout and scale_embedding

* replace fsmt attention with bart attention

* added test

* run make fix-copies

* doc init and fix build

* updated README with proper information

* 1. added tips to docs
2. updated BioGptTokenizer func

* 1. added tokenizer test
2. refactor tokenizer

* make fixup

* add biogpt fairseq to hf converter

* updated layer names more
similar to original checkpoints

* config update doc string and set defaults

* added "#copied" from bart model and
updated doc strings

* enable model_input_names in tokenizer

* 1.  positionalembedding depending on attention_mask
2. added attention mask to prepare for generation

* added test to verify past and generation

* BioGptLMHeadModel -> BioGptForCausalLM

* fix typo

* tokenization and test
Copyright and updated assertion

* updated Copyright and
one func at time in line

* Copyright updates and
minor doc fix

* replace assertion with ValueError

* rm extra space

* added code syntax

* revert cmnt position change

* add tokenizer to auto

* updated doc string

* tokenizer doc string update

* biogpt hub model update to microsoft/biogpt

* make fixup

* rm cmnt to fix flake8 5.0.4 vs 6 error
2022-12-05 10:12:03 -05:00
91182e3a70 Install tensorflow_probability for TF pipeline CI (#20586)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 16:07:25 +01:00
cc8aec6740 Add require_torch to 2 pipeline tests (#20585)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 16:06:39 +01:00
e7e6d1818a [Whisper] Move decoder id method to tokenizer (#20589) 2022-12-05 14:54:04 +00:00
9ffbed26c0 Cleanup some config attributes (#20554)
* Remove is_encoder_decoder from some vision models

* cleanup more

* cleanup more

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 15:12:10 +01:00
e17826539b Add entries to FEATURE_EXTRACTOR_MAPPING_NAMES (#20551)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 15:10:17 +01:00
8639cfb4c2 Install natten with CUDA version (#20546)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 15:08:32 +01:00
6276b437a6 Fix repo consistency 2022-12-05 09:02:56 -05:00
0911057744 [Vision] fix small nit on BeitDropPath layers (#20587)
* fix small nit

* add last file
2022-12-05 14:53:49 +01:00
e135a6c931 Fix flax GPT-J-6B linking model in tests (#20556) 2022-12-05 14:00:05 +01:00
24124709ca Fix torch device issues (#20584)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 13:57:34 +01:00
699e90437f flan-t5.mdx: fix link to large model (#20555) 2022-12-02 19:27:46 +01:00
c54646b13d Add ESM contact prediction (#20535)
* Draft addition of new head

* Finish adding contact heads + tests for ESM

* Add TF contact prediction head

* make fixup

* Minor fix to convert_esm.py

* Clean up function names and comments
2022-12-02 14:03:30 +00:00
cc3d0e1b01 [New Model] Add TimeSformer model (#18908)
* init timesformer

* apply fix-copies

* reformat style

* revert back some incoorect style updates

* init timesformer

* apply fix-copies

* reformat style

* revert back some incoorect style updates

* update timseformer doc

* add some functions and classes

* add new config params

* implement multiple classes

* update TimeSformerLayer

* update TimeSformerModel, TimeSformerPreTrainedModel, TimeSformerEncoder

* several fixes

* reformat

* temporary update

* fix some typos

* fix weight converter

* more fixes

* fix a typo

* fix typo

* remove redundant params

* fix for latest hf-hub

* merge fix

* fix some checks

* video classification works with einops

* add paper info to docs

* merge fix

* remove redundant line

* remove redundant docstring

* update config

* fix some typos

* fix converter

* update some test constants

* refactor einops functions

* reformat

* fix a comment

* remove redundat imports

* reformat

* fix a typo

* remove comment

* remove unused imports

* remove redundant doc line

* reformat

* add missing line

* fix docs

* fix timesformer auto feat ext

* add unittests

* reformat

* fix docs

* some fixes and updates

* fix readme

* fix modeling

* fix readme

* update index

* revert _toctree.yml changes

* update timseformer.mdx

* update drop_path_prob to drop_path_rate

* add dosctring for drop_path_rate

* update TimeSformerPatchEmbed naming

* remove to_2tuple

* explicit use of nn.functional

* reformat

* many updates from review comments

* fix a typo

* reformat

* remove assert, better variable name

* make variable names more explicit

* add some adapted from

* more explicit variable names

* remove redundant docstring

* fix initilaization

* move permute inside embedding

* update class names

* remove unused imports

* add test for video classification

* update PretrainedModel with PreTrainedModel

* remove double permute

* update based on sylvain's review

* aply auto fix

* update image_processing_auto for timesformer

* update hub urls

* reformat

* remove duplicate import

* update doc link
2022-12-02 09:13:25 +01:00
3a9476d1b4 fix cuda OOM by using single Prior (#20486)
* fix cuda OOM by using single Prior

* only send to device when used

* use custom model
2022-12-02 09:05:45 +01:00
60d1f31bb0 v4.26.0.dev0 2022-12-01 16:19:33 -05:00
5011efbec8 Fix link in pipeline device map (#20517)
* fix link in pipeline device map

* oops this is the correct link

* make style
2022-12-01 09:58:44 -08:00
504ae9181c Fix Hubert models in TFHubertModel and TFHubertForCTC documentation code (#20516) 2022-12-01 12:22:23 -05:00
6cb7d6ec36 Fix doctest (#20534)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-01 18:19:37 +01:00
d752337baa QnA example: add speed metric (#20522) 2022-12-01 12:04:19 -05:00
b67ac44296 update post_process_image_guided_detection (#20521) 2022-12-01 12:03:17 -05:00
d51e7c7e82 Update ZeroShotObjectDetectionPipeline doc example (#20528)
* Update ZeroShotObjectDetectionPipeline expect output

* Update src/transformers/pipelines/zero_shot_object_detection.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2022-12-01 16:53:24 +01:00
8b486c0310 add doc for (#20525) 2022-12-01 16:52:13 +01:00
cdb7eeca46 Fix ConditionalDetrForSegmentation doc example (#20531)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-01 16:49:59 +01:00
876a9e084e Fix PLBart doctest (#20527)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-01 16:49:04 +01:00
373bfe70a0 Change Doctests CI launch time (#20523)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-01 16:38:41 +01:00
55ab71ee5b [modelcard] Update dataset tags (#20506) 2022-12-01 10:52:17 +00:00
e342ac7e03 Add some warning for Dynamo and enable TF32 when it's set (#20515) 2022-11-30 15:42:17 -05:00
68cfffc4b4 Fix Data2VecTextForCasualLM example code documentation (#20510)
* Fix Data2VecTextForCasualLM example code documentation

* Change RobertaTokenizer to AutoTokenizer in data2vectext example code
2022-11-30 15:03:46 -05:00
dd6fb1319b Add natten for CI (#20511)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-30 19:49:34 +01:00
afb66749a6 Update AutomaticSpeechRecognitionPipeline doc example (#20512)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-30 19:48:18 +01:00
04c653a354 Fix style 2022-11-30 13:32:19 -05:00
721764028e Add Chinese-CLIP implementation (#20368)
* init chinese-clip model from clip

* init model tests and docs

* implement chinese-clip into hf

* implement chinese-clip into hf

* implement chinese-clip into hf

* implement chinese-clip into hf

* implement chinese-clip into hf

* update usecase example in model implementation

* fix codestyle

* fix model_type typo in readme

* add placeholder in doc

* add placeholder in doc

* update the init script

* update usecase

* fix codestyle

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* forward the convert_rgb

* update testcase

* update testcase

* update testcase

* merge the recent update from clip about model_input_name property

* update the doc

* update the doc

* update the doc

* update the doc

* remove unused imports

* reformat code style

* update the doc

* fix isort style

* bypass a weird failed unit test which is unrelated with my PR

* update the doc

* implement independent vision config class

* implement independent vision model class

* fix refactor bug

* fix refactor bug

* fix refactor bug

* make style

* fix refactor bug

* make style

* fix refactor bug

* fix refactor bug

* make style

* fix refactor bug

* fix refactor bug

* doc-build restyle

* implement independent text config class

* implement independent text model class

* implement independent text model class

* make style

* make fix-copies

* fix refactor bug

* fix refactor bug

* fix refactor bug

* fix refactor bug

* fix refactor bug

* fix refactor bug

* fix refactor bug

* fix refactor bug

* fix refactor bug

* fix refactor bug

* make style

* update doc

* black and isort

* update doc

* Update src/transformers/models/chinese_clip/configuration_chinese_clip.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/auto/tokenization_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* modify the model type from chinese-clip to chinese_clip

* format the example comment of ChineseCLIPVisionConfig

* correct the copyright comment

* fix the tokenizer specification

* add copied from for loss function

* remove unused class

* update CHINESE_CLIP_TEXT_INPUTS_DOCSTRING

* update CHINESE_CLIP_INPUTS_DOCSTRING

* update doc

* update doc

* update code comment in config

* update copied from statement

* make style

* rename the doc file

* add copied statement

* remove unused attention_mask, causal_attention_mask in ChineseCLIPVisionEncoder

* remove ChineseCLIPTextPreTrainedModel

* fix bug

* fix bug

* fix bug

* update doc

* make style

* Update src/transformers/models/chinese_clip/configuration_chinese_clip.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/chinese_clip/configuration_chinese_clip.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* update ChineseCLIPImageProcessor in image_processing_auto

* fix config_class of chinesecliptextmodel

* fix the test case

* update the docs

* remove the copied from comment for ChineseCLIPTextModel, since it has diverged from BertModel with customed config_class

* update the testcase

* final fix

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-30 19:22:23 +01:00
396a6a2ed0 Fix minimum version for device_map (#20489) 2022-11-30 11:10:55 -05:00
08b4621899 Repurpose torchdynamo training args towards torch._dynamo (#20498)
* Repurpose torchdynamo training args towards torch._dynamo

* Add doc
2022-11-30 11:10:45 -05:00
829374e4fc Fix Typo in Docs for GPU (#20509) 2022-11-30 10:41:18 -05:00
17a7b49bda Update doc examples feature extractor -> image processor (#20501)
* Update doc example feature extractor -> image processor

* Apply suggestions from code review
2022-11-30 14:50:55 +00:00
afad0c18d9 Fix TF nightly tests (#20507)
* Fixed test_saved_model_extended

* Fix TFGPT2 tests

* make fixup

* Make sure keras-nlp utils are available for type hinting too

* Update src/transformers/testing_utils.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* make fixup

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-11-30 14:47:54 +00:00
761b3fad92 Expected output for the test changed (#20493) 2022-11-30 15:07:28 +01:00
a4beb37b81 fix ipex+fp32 jit trace error in ipex 1.13 (#20504)
error show like: “Currently the auto_kernel_selection does not support the grad mode! Please add torch.no_grad() before the inference runtime..”
since jit mode only work in inference mode, it's safe to add such logic.
2022-11-30 08:58:01 -05:00
105c3a48be Support extraction of both train and eval XLA graphs (#20492)
Neuron supports extraction of XLA graphs for compilation.
However, when both do_train and do_eval options are enabled,
sizes returned by tensor operator can be 0. To avoid
INVALID_ARGUMENT error, we use inequality in the check whether
a tensor needs padding or not.
2022-11-30 08:43:46 -05:00
b75255cd9d [OPT/Galactica] Load large galactica models (#20390)
* fix `opt` bias

* revert unneeded assignment
2022-11-30 13:55:15 +01:00
293991d44b Make add_special_tokens more clear (#20424)
* make add_special_tokens more clear

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-30 12:56:32 +01:00
d0c1ded5f3 remove attention_mask truncation in whisper (#20488)
* remove truncation

* For TFWhisper

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-30 11:46:01 +01:00
de6d19ea92 Add segmentation + object detection image processors (#20160)
* Add transforms for object detection

* DETR models + Yolos

* Scrappy additions

* Maskformer image processor

* Fix up; MaskFormer tests

* Update owlvit processor

* Add to docs

* OwlViT tests

* Update pad logic

* Remove changes to transforms

* Import fn directly

* Update to include pad transformation

* Remove uninstended changes

* Add new owlvit post processing function

* Tidy up

* Fix copies

* Fix some copies

* Include device fix

* Fix scipy imports

* Update _pad_image

* Update padding functionality

* Fix bug

* Properly handle ignore index

* Fix up

* Remove defaults to None in docstrings

* Fix docstrings & docs

* Fix sizes bug

* Resolve conflicts in init

* Cast to float after resizing

* Tidy & add size if missing

* Allow kwards when processing for owlvit

* Update test values
2022-11-30 10:24:03 +00:00
ae3cbc9548 [modelcard] Set model name if empty (#20496)
* [modelcard] Set model name if empty

* no magic

Co-authored-by: Sylvain Gugger <sylvain@huggingface.co>

Co-authored-by: Sylvain Gugger <sylvain@huggingface.co>
2022-11-30 09:55:43 +00:00
08fad080e3 [modelcard] Check for IterableDataset (#20495) 2022-11-30 09:55:07 +00:00
ab9fe45236 Fix disk offload for full safetensors checkpoints (#20497) 2022-11-29 14:58:30 -05:00
4aa630eeab Fix documentation code to import facebook/detr-resnet-50 model (#20491) 2022-11-29 13:30:26 -05:00
86e435bbb1 fixed small typo (#20490)
Co-authored-by: Sandeep Kumar <sandeep.kumar@woven-planet.global>
2022-11-29 11:35:12 -05:00
73e2faa6c2 Replace assert statements with raise exceptions (#20478)
* replace assert statements with exceptions

* made conditions more readable
2022-11-29 11:34:08 -05:00
fb2b45e562 add in layer gpt2 tokenizer (#20421)
* add minimal working gpt2 tokenizer

* graph mode and output equivalence tests working

* not today tensorflow. serialization test passing!

* fix style, documentation, docstrings and all that jazz

* passing consistency checks

* move keras nlp to tf dependencies

* fix tf modeling utils and gpt2 attention to enable compiling

* fix (I hope) keras nlp dependencies

* rever changes on generation

* remove debug prints

* remove redundant tf dummy objects

* add from config, get config and max length settings to address review

* let flake ignore the error on distillation you are welcome

* test from config

* add padding test

* address sgugger review
2022-11-29 10:02:40 -05:00
e8d448edcf extract warnings in GH workflows (#20487)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-29 15:58:54 +01:00
bbcd5eea3b Fix init import_structure sorting (#20477)
* Fix init import_structure sorting

* Fix rebase
2022-11-29 09:46:10 -05:00
3b91f96fc9 Fix torch meshgrid warnings (#20475)
* fix torch meshgrid warnings

* support lower torch versions

* don't edit examples

* dont edit examples

* fix ci

* fix style

* rebase cleanup

* fix ci again
2022-11-29 08:38:23 -05:00
ae1cffaf3c Add Donut image processor (#20425)
* Add Donut image processor

* Update src/transformers/image_transforms.py

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

* Fix docstrings

* Full var names in docstring

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
2022-11-29 10:38:01 +00:00
28247e7881 Extract warnings from CI artifacts (#20474)
* extract warning from CI artifacts

* fix path

* fix logic

* fix comment

* update default values

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-28 21:14:33 +01:00
6dc884abc8 [Maskformer] Add MaskFormerSwin backbone (#20344)
* First draft

* Fix backwards compatibility

* More fixes

* More fixes

* Make backbone more general

* Improve backbone

* Improve test

* Fix config checkpoint

* Address comments

* Use model_type

* Address more comments

* Fix special model names

* Remove MaskFormerSwinModel and MaskFormerSwinPreTrainedModel from main init

* Fix typo

* Update backbone

* Apply suggestion

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-28 20:33:49 +01:00
955780d3ab add timeout option for deepspeed engine (#20443) 2022-11-28 10:23:25 -08:00
d59d5a618b chore: add link to the video cls notebook. (#20386)
* chore: add link to the video cls notebook.

* chore: segregate as resources.
2022-11-28 12:10:24 -05:00
321ef388fe Include image processor in add-new-model-like (#20439) 2022-11-28 16:46:02 +00:00
0bae286de9 [AutoBackbone] Improve API (#20407)
* Add hidden states and attentions to backbone outputs

* Update ResNet

* Fix more tests

* Debug test

* Fix test_determinism

* Fix test_save_load

* Remove file

* Disable fx tests

* Test

* Add fx support for backbones

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-28 17:20:24 +01:00
39a72125e7 fix both failing RoCBert tests (#20469) 2022-11-28 17:08:57 +01:00
30163921ae Safetensors offload (#20321)
* INtegrate safetensos in weight offloading

* Use safetensors checkpoint for offload when available

* Make naming consistent

* Make load faster

* Quality

* Add default
2022-11-28 10:35:52 -05:00
ac2f6674a3 [FLAX] Add dtype to embedding for bert/bart/opt/t5 (#20340)
* [FLAX] Add dtype to embedding for bert/bart/opt/t5

* Fix all copies

* Add a test case
2022-11-28 10:21:42 -05:00
667ccea722 Replace assertion with ValueError exceptions in run_image_captioning_flax.py (#20365)
* replace 4 asserts with ValueError exception for control flow

* Update examples/flax/image-captioning/run_image_captioning_flax.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update examples/flax/image-captioning/run_image_captioning_flax.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* reformatted file

* uninstalled trasformers and applied make style

Co-authored-by: Bibi <Bibi@katies-mac.local>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2022-11-28 15:06:25 +00:00
0a6193252e [Doctest] Add configuration_fsmt.py (#19936)
* fsmt doctest

* Update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-28 09:47:45 -05:00
98122794d4 Replace assertions with value errors on distilbert model (#20463)
* Changed assert into 7-8 exceptions

* updated syntax error

* updated error

* updated file (Co-autho: Batese2001)

* Successful test on test_modeling_distilbert.py 

Successful raising errors and exceptions on the revised code in test_modeling_distilbert.py .

Co-credit: @batese2001

* Delete test_modeling_distilbert.ipynb

* Update modeling_distilbert.py

* Successful raising of exceptions with the conditions that are contrary to defined condition that asserts statements (Co-author: Batese2001)

* Successful raising of exceptions with the conditions that are contrary to defined condition that asserts statements (Co-author: Batese2001)

* committing the reformatted distilbert model

* reformatted distilbert model

* reformatted distilbert model

* reformatted distilbert model

* reformatted distilbert model with black

* Changed comments that explain better about raising exceptions for not having the even number of multi heads

* Changed comments that explain better about raising exceptions for not having the even number of multi heads

* changed based on the feedback

* Changed line 833 based on the suggestion made from @younesbelkada

* Changed line 833 based on the suggestion made from @younesbelkada draft2

* reformatted file

* Update src/transformers/models/distilbert/modeling_distilbert.py

* Update src/transformers/models/distilbert/modeling_distilbert.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2022-11-28 09:44:03 -05:00
134a8e21ae [CLIPTokenizer] Improve warning (#20458) 2022-11-28 15:20:14 +01:00
de53e4bf1f with pytorch cpu only version. without --no_cuda, using --bf16 will trigger error like "Your setup doesn't support bf16/gpu. You need torch>=1.10, using Ampere GPU with cuda>=11.0" (#20445) 2022-11-28 08:56:09 -05:00
ca3b652bbd update cpu related doc (#20444) 2022-11-28 08:54:35 -05:00
8f7078e822 make tensors in function build_relative_position created on proper device instead of always on cpu (#20434)
Co-authored-by: wenhanli <wenhanli@tencent.com>
2022-11-28 08:45:01 -05:00
de4159a318 More TF int dtype fixes (#20384)
* Add a test to ensure int dummy inputs are int64

* Move the test into the existing int64 test and update a lot of existing dummies

* Fix remaining dummies

* Fix remaining dummies

* Test for int64 serving sigs as well

* Update core tests to use tf.int64

* Add better messages to the assertions

* Update all serving sigs to int64

* More sneaky hiding tf.int32s

* Add an optional int32 signature in save_pretrained

* make fixup

* Add Amy's suggestions

* Switch all serving sigs back to tf.int32

* Switch all dummies to tf.int32

* Adjust tests to check for tf.int32 instead of tf.int64

* Fix base dummy_inputs dtype

* Start casting to tf.int32 in input_processing

* Change dtype for unpack_inputs test

* Add proper tf.int32 test

* Make the alternate serving signature int64
2022-11-28 13:24:44 +00:00
72b19ca680 Fix ESM checkpoints for tests (#20436)
* Re-enable TF ESM tests, make sure we use facebook checkpoints

* make fixup
2022-11-28 13:19:28 +00:00
f244a97801 Fix doctests for audio models (#20468)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-28 11:13:34 +01:00
df938fc1b4 Fix links for contrastive_loss (#20455)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-28 11:02:59 +01:00
2cdac665b0 Fix device issues in CLIPSegModelIntegrationTest (#20467)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-28 10:41:28 +01:00
61d3928bfb Fix typo in FSMT Tokenizer (#20456)
* Fix typo

* Update tokenization_fsmt.py
2022-11-25 16:04:01 -08:00
3c39c07f11 fix word_to_tokens docstring format (#20450)
* fix docstring

* fix 2

* add details
2022-11-25 20:28:00 +01:00
a547d5bda5 [AnyPrecisionAdamW] test fix (#20454) 2022-11-25 09:02:10 -08:00
a1d4563f7a accelerate support for OwlViT (#20411)
* `accelerate` support for `OwlViT`

- added `accelerate` support
- added slow `fp16` tests

* apply suggestions
2022-11-25 11:20:44 +01:00
afce73bd9d Fix ModelOutput instantiation when there is only one tuple (#20416) 2022-11-23 15:09:21 -05:00
993a187c6f fix device in longformer onnx path (#20419) 2022-11-23 15:07:01 -05:00
bc00c29d11 Add Spanish translation of pr_checks.mdx (#20339)
* Update _toctree and clone original doc

* Forgot to translate (lol)

* Translate documentation and update toctree

* Add suggested changes from review
2022-11-23 15:06:29 -05:00
9a5b84a007 Use updated model_max_length when saving tokenizers (#20401)
* Use updated values

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-23 18:16:26 +01:00
ad654e4484 [BNB] Throw ValueError when trying to cast or assign (#20409)
* `bnb` ValueError when tries to cast or assign

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove docstrings

* change error log

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-23 15:51:50 +01:00
03ae1f060b change the way sentinel tokens can retrived (#20373)
* change the way sentinel tokens can retrived

* Fix line length for doc string

* Fix line length for doc string

* Add more stronger test for t5 tokenization

* Format file changes

* Make a stronger test for filtering sentinel tokens

* fix file format issues
2022-11-23 09:35:44 -05:00
81d82e4f78 fix nasty bnb bug (#20408) 2022-11-23 08:31:08 -05:00
658e5d8f58 make daily CI happy (#20410) 2022-11-23 14:24:56 +01:00
81c46679bd [Image Transformers] to_pil fix float edge cases (#20406)
* Correct type checking

* up
2022-11-23 13:47:59 +01:00
1c6309bf79 Fix doctest file path (#20400)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-23 13:40:34 +01:00
0ee71188ff [bloom] convert script tweaks (#18593)
* [bloom] convert script tweaks

* Update src/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* improve the 2nd assert

* add conversion readme

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2022-11-22 16:09:43 -08:00
e53331c905 Generate: fix plbart generation tests (#20391) 2022-11-22 17:56:04 +00:00
2e17db8a86 [ESM] fix accelerate tests for esmfold (#20387)
* fix `accelerate` tests for esmfold

* cleaner solution
2022-11-22 18:26:55 +01:00
d2357a0133 Use tiny models for ONNX tests - text modality (#20333)
* Use tiny ONNX models

* Fix broken tests

* Add tiny perceiver

* Add tiny convbert
2022-11-22 17:11:17 +01:00
3d0c0ae437 Fix longformer onnx broken export (#20292)
* fix controlflow for onnx export

* fix warning

* fix the case padding_len = 0, explicit the recorded control flows

* style

* style

* fix bug

* fix copy

* nits
2022-11-22 11:07:19 -05:00
9ef46659da Improve backbone (#20380)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-22 17:00:08 +01:00
5efd074af0 Indicate better minimal version of PyTorch in big model inference (#20385) 2022-11-22 10:41:50 -05:00
dfc3deafa3 Optimizes DonutProcessor token2json method for speed (#20283)
* Optimizes DonutProcessor token2json method for speed

* Applies black formatting

* Updates Donut pretrained model name in test file

* remaining pytorch type hints (#20217)

* Update modeling_flava.py

* Update modeling_markuplm.py

* Update modeling_glpn.py

* Update modeling_roc_bert.py

* Update modeling_segformer.py

* Update modeling_tapas.py

* Update modeling_tapas.py

* Update modeling_tapas.py

* Update modeling_tapas.py

* Update modeling_trocr.py

* Update modeling_videomae.py

* Update modeling_videomae.py

* Update modeling_videomae.py

* Update modeling_yolos.py

* Update modeling_wav2vec2.py

* Update modeling_jukebox.py

* Update modeling_jukebox.py

* Update modeling_jukebox.py

* Update modeling_jukebox.py

* Data collator for token classification pads labels column when receives pytorch tensors (#20244)

* token cls data_collator pads labels column

* remove walrus operator for code quality

* remove redundat space

* remove comment that was fixed

* PR comments fix

Co-authored-by: Alexander Markov <amarkov.me@gmail.com>

* [Doctest] Add configuration_deformable_detr.py (#20273)

* Update configuration_deformable_detr.py comment

* Add DeformableDetrConfig to documentation_tests.txt

* Fix summarization script (#20286)

* [DOCTEST] Fix the documentation of RoCBert (#20142)

* update part of the doc

* add temp values, fix part of the doc

* add template outputs

* add correct models and outputss

* style

* fixup

* [bnb] Let's warn users when saving 8-bit models (#20282)

* add warning on 8-bit models

- added tests
- added wrapper

* move to a private attribute

- remove wrapper
- changed `save_pretrained` method

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Adding `zero-shot-object-detection` pipeline doctest. (#20274)

* Adding `zero-shot-object-detection` pipeline doctest.

* Remove nested_simplify.

* Adding doctest for `object-detection` pipeline. (#20258)

* Adding doctest for `object-detection` pipeline.

* Removed nested_simplify.

* Image transforms functionality used instead (#20278)

* Image transforms functionality used instead

* Import torch

* Import rather than copy

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

* TF: add test for `PushToHubCallback` (#20231)

* test hub tf callback

* create repo before cloning it

* Generate: general TF XLA constrastive search are now slow tests (#20277)

* move contrastive search test to slow

* Fixing the doctests failures. (#20294)

* Fixing the doctests failures.

* Fixup.

* set the default cache_enable to True, aligned with the default value in pytorch cpu/cuda amp autocast (#20289)

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Add docstrings for canine model (#19457)

* Add docstrings for canine model

* Update CanineForTokenClassification

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Add AutoBackbone + ResNetBackbone (#20229)

* Add ResNetBackbone

* Define channels and strides as property

* Remove file

* Add test for backbone

* Update BackboneOutput class

* Remove strides property

* Fix docstring

* Add backbones to SHOULD_HAVE_THEIR_OWN_PAGE

* Fix auto mapping name

* Add sanity check for out_features

* Set stage names based on depths

* Update to tuple

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Add missing report button for Example test (#20293)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* refactor test (#20300)

- simplifies the devce checking test

* [Tiny model creation] deal with `ImageProcessor` (#20298)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fix blender bot missleading doc (#20301)

* fix the doc to specify that add_prefix_space = False

* add correct expected output

* remove two tokens that should not be suppressed (#20302)

* [ASR Examples] Update README for Whisper (#20230)

* [ASR Examples] Update README for seq2seq

* add language info

* add training results

* re-word

* Add padding image transformation (#19838)

* Add padding transformation

* Add in upstream changes

* Update tests & docs

* Code formatting tuples in docstring

* Pin TensorFlow (#20313)

* Pin to the right version...

* Also pin TensorFlow CPU

* Add AnyPrecisionAdamW optimizer (#18961)

* Add AnyPrecisionAdamW optimizer

* Add optim_args argument to TrainingArgs

* Add tests for AnyPrecisionOptimizer

* Change AnyPrecisionAdam default params to float32

* Move default_anyprecision_kwargs in trainer test

* Rename AnyPrecisionAdamW

* [Proposal] Breaking change `zero-shot-object-detection` for improved     consistency. (#20280)

* [Proposal] Breaking change `zero-shot-object-detection` for improved
consistency.

This is a proposal to modify the output of `zero-shot-object-detection`
to provide better alignment with other pipelines.

The output is now strictly the same as `object-detection` whereas before
it would output lists of lists.

The name `candidate_labels` is used throughout for consistency with
other `zero-shot` pipelines.

The pipeline is changed to `ChunkPipeline` to support batching cleanly.

This removes all the lists and list of lists shenanigans, it's now a
matter of the base pipeline handling all this not this specific one.

**Breaking change**: It did remove complex calls potentials `pipe(images = [image1, image2],
text_queries=[candidates1, candidates2])` to support only
`pipe([{"image": image1, "candidate_labels": candidates1}, {"image": image2, "candidate_labels": candidates2}])`
when dealing with lists and/or datasets.
We could keep them, but it will add a lot of complexity to the code
base, since the pipeline is rather young, I'd rather break to keep the
code simpler, but we can revert this.

**Breaking change**: The name of the argument is now `image` instead of
`images` since it expects by default only 1 image. This is revertable
like the previous one.

**Breaking change**: The types is now simplified and flattened:

`pipe(inputs) == [{**object1}, {**object2}]`
instead of the previous
`pipe(inputs) == [[{**object1}, {**object1}], [{**object2}]]`
Where the different instances would be grouped by candidate labels
within lists.
IMHO this is not really desirable, since it would output empty lists and
is only adding superflous indirection compared to
`zero-shot-object-detection`.

It is relatively change free in terms of how the results, it does change
computation however since now the batching is handled by the pipeline
itself. It **did** change the results for the small models so there
seems to be a real difference in how the models handle this.

* Fixing the doctests.

* Behind is_torch_available.

* Fix flakey test with seed (#20318)

* Pin TF 2.10.1 for Push CI (#20319)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Remove double brackets (#20307)

* remove double brackets

* oops get other bracket

* TF: future proof our keras imports (#20317)

* future proof our tf code

* parse tf versions

* Add Neighborhood Attention Transformer (NAT) and Dilated NAT (DiNAT) models (#20219)

* Add DiNAT

* Adds DiNAT + tests

* Minor fixes

* Added HF model

* Add natten to dependencies.

* Cleanup

* Minor fixup

* Reformat

* Optional NATTEN import.

* Reformat & add doc to _toctree

* Reformat (finally)

* Dummy objects for DiNAT

* Add NAT + minor changes

Adds NAT as its own independent model + docs, tests
Adds NATTEN to ext deps to ensure ci picks it up.

* Remove natten from `all` and `dev-torch` deps, add manual pip install to ci tests

* Minor fixes.

* Fix READMEs.

* Requested changes to docs + minor fixes.

* Requested changes.

* Add NAT/DiNAT tests to layoutlm_job

* Correction to Dinat doc.

* Requested changes.

* organize pipelines by modality (#20306)

* Fix torch device issues (#20304)

* fix device issue

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Generate: add generation config class (#20218)

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* translate zh quicktour(#20095) (#20181)

* zh quicktour(#20095)

* add zh to doc workflow

* remove untranslation from toctree

Co-authored-by: BeifangSusu <BeifangSusu@bfss.com>

* Add Spanish translation of serialization.mdx (#20245)

* Update _toctree and clone original content

* Translate first three sections

* Add more translated chapters. Only 3 more left.

* Finish translation

* Run style from doc-builder

* Address recommended changes from reviewer

* Add LayerScale to NAT/DiNAT (#20325)

* Add LayerScale to NAT/DiNAT.

Completely dropped the ball on LayerScale in the original PR (#20219).
This is just an optional argument in both models, and is only activated for larger variants in order to provide training stability.

* Add LayerScale to NAT/DiNAT.

Minor error fixed.

Co-authored-by: Ali Hassani <ahassanijr@gmail.com>

* [Switch Transformers] Fix failing slow test (#20346)

* run slow test on GPU

* remove unnecessary device assignment

* use `torch_device` instead

* fix: "BigSicence" typo in docs (#20331)

* add MobileNetV1 model (#17799)

* add model files etc for MobileNetV2

rename files for MobileNetV1

initial implementation of MobileNetV1

fix conversion script

cleanup

write docs

tweaks

fix conversion script

extract hidden states

fix test cases

make fixup

fixup it all

remove main from doc link

fixes

fix tests

fix up

use google org

fix weird assert

* fixup

* use google organization for checkpoints

* Generate: `model_kwargs` can also be an input to `prepare_inputs_for_generation` (#20353)

* Update Special Language Tokens for PLBART (#19980)

* Update Special Language Tokens for PLBART

* fix format

* making mapping for language codes and updating tests:

* fix format

* fix consistency

* add assert to both tokenizer tests.

* fix format

* Update src/transformers/models/plbart/tokenization_plbart.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* improvin readability, setting self.tgt_lang

* fixing

* readability

Co-authored-by: jordiclive <jordiclive19@imperial.ac.uk>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add resources (#20296)

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Enhance HfArgumentParser functionality and ease of use (#20323)

* Enhance HfArgumentParser

* Fix type hints for older python versions

* Fix and add tests (+formatting)

* Add changes

* doc-builder formatting

* Remove unused import "Call"

* Add Audio Spectogram Transformer (#19981)

* First draft

* Make conversion script work

* Add id2label mapping, run code quality

* Fix copies

* Add first draft of feature extractor

* Update conversion script to use feature extractor

* Make more tests pass

* Add docs

* update input_features to input_values + pad by default to max length

* Fix doc tests

* Add feature extractor tests

* Add proper padding/truncation to feature extractor

* Add support for conversion of all audioset checkpoints

* Improve docs and extend conversion script

* Fix README

* Rename spectogram to spectrogram

* Fix copies

* Add integration test

* Remove dummy conv

* Update to ast

* Update organization

* Fix init

* Rename model to AST

* Add require_torchaudio annotator

* Move import of ASTFeatureExtractor under a is_speech_available

* Fix rebase

* Add pipeline config

* Update name of classifier head

* Rename time_dimension and frequency_dimension for clarity

* Remove print statement

* Fix pipeline test

* Fix pipeline test

* Fix index table

* Fix init

* Fix conversion script

* Rename to ForAudioClassification

* Fix index table

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Add inference section to task guides (#18781)

* 📝 start adding inference section to task guides

*  make style

* 📝 add multiple choice

* add rest of inference sections

* make style

* add compute_metric, push_to_hub, pipeline

* make style

* add updated sequence and token classification

* make style

* make edits in token classification

* add audio classification

* make style

* add asr

* make style

* add image classification

* make style

* add summarization

* make style

* add translation

* make style

* add multiple choice

* add language modeling

* add qa

* make style

* review and edits

* apply reviews

* make style

* fix call to processor

* apply audio reviews

* update to better asr model

* make style

* Fix toctree for Section 3 in Spanish Documentation (#20360)

* Order and group topics in the right section

* Translate "Computer Vision"

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: IMvision12 <88665786+IMvision12@users.noreply.github.com>
Co-authored-by: Alexander Markov <almarkv@yandex.ru>
Co-authored-by: Alexander Markov <amarkov.me@gmail.com>
Co-authored-by: Saad Mahmud <shuvro.mahmud79@gmail.com>
Co-authored-by: Zachary Mueller <muellerzr@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: raghavanone <115454562+raghavanone@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: atturaioe <76523524+atturaioe@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Ali Hassani <68103095+alihassanijr@users.noreply.github.com>
Co-authored-by: BFSS <31245245+bfss@users.noreply.github.com>
Co-authored-by: BeifangSusu <BeifangSusu@bfss.com>
Co-authored-by: Ian C <7807897+donelianc@users.noreply.github.com>
Co-authored-by: Ali Hassani <ahassanijr@gmail.com>
Co-authored-by: Raj Rajhans <me@rajrajhans.com>
Co-authored-by: Matthijs Hollemans <mail@hollance.com>
Co-authored-by: Jordan Clive <jordan.clive19@imperial.ac.uk>
Co-authored-by: jordiclive <jordiclive19@imperial.ac.uk>
Co-authored-by: Konstantin Dobler <konstantin.j.dobler@gmail.com>
2022-11-22 10:40:59 -05:00
72eaaf6d55 Fix nightly runs (#20352)
* Fix nightly runs

* Fix type

* Address review comment
2022-11-22 10:38:38 -05:00
f3a1efd1cf Skip failing test 2022-11-22 09:53:56 -05:00
624ae09f5c Bump pillow in /examples/research_projects/decision_transformer (#20378)
Bumps [pillow](https://github.com/python-pillow/Pillow) from 9.0.1 to 9.3.0.
- [Release notes](https://github.com/python-pillow/Pillow/releases)
- [Changelog](https://github.com/python-pillow/Pillow/blob/main/CHANGES.rst)
- [Commits](https://github.com/python-pillow/Pillow/compare/9.0.1...9.3.0)

---
updated-dependencies:
- dependency-name: pillow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-11-22 08:15:42 -05:00
ac3952b443 add accelerate support for ESM (#20379) 2022-11-22 14:06:00 +01:00
c0fe912840 revert keys_to_ignore for M2M100 (#20381) 2022-11-22 13:56:23 +01:00
f2e7d270ec Generate: shorter XLA contrastive search tests (#20354) 2022-11-22 11:47:12 +00:00
c3eb01013b Fix toctree for Section 3 in Spanish Documentation (#20360)
* Order and group topics in the right section

* Translate "Computer Vision"
2022-11-21 16:44:34 -05:00
d896029e27 Add inference section to task guides (#18781)
* 📝 start adding inference section to task guides

*  make style

* 📝 add multiple choice

* add rest of inference sections

* make style

* add compute_metric, push_to_hub, pipeline

* make style

* add updated sequence and token classification

* make style

* make edits in token classification

* add audio classification

* make style

* add asr

* make style

* add image classification

* make style

* add summarization

* make style

* add translation

* make style

* add multiple choice

* add language modeling

* add qa

* make style

* review and edits

* apply reviews

* make style

* fix call to processor

* apply audio reviews

* update to better asr model

* make style
2022-11-21 10:06:21 -08:00
4973d2a04c Add Audio Spectogram Transformer (#19981)
* First draft

* Make conversion script work

* Add id2label mapping, run code quality

* Fix copies

* Add first draft of feature extractor

* Update conversion script to use feature extractor

* Make more tests pass

* Add docs

* update input_features to input_values + pad by default to max length

* Fix doc tests

* Add feature extractor tests

* Add proper padding/truncation to feature extractor

* Add support for conversion of all audioset checkpoints

* Improve docs and extend conversion script

* Fix README

* Rename spectogram to spectrogram

* Fix copies

* Add integration test

* Remove dummy conv

* Update to ast

* Update organization

* Fix init

* Rename model to AST

* Add require_torchaudio annotator

* Move import of ASTFeatureExtractor under a is_speech_available

* Fix rebase

* Add pipeline config

* Update name of classifier head

* Rename time_dimension and frequency_dimension for clarity

* Remove print statement

* Fix pipeline test

* Fix pipeline test

* Fix index table

* Fix init

* Fix conversion script

* Rename to ForAudioClassification

* Fix index table

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-21 18:58:54 +01:00
1e3f17b5ab Enhance HfArgumentParser functionality and ease of use (#20323)
* Enhance HfArgumentParser

* Fix type hints for older python versions

* Fix and add tests (+formatting)

* Add changes

* doc-builder formatting

* Remove unused import "Call"
2022-11-21 12:33:37 -05:00
96783e53b4 Add resources (#20296)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-21 18:24:32 +01:00
149483b252 Update Special Language Tokens for PLBART (#19980)
* Update Special Language Tokens for PLBART

* fix format

* making mapping for language codes and updating tests:

* fix format

* fix consistency

* add assert to both tokenizer tests.

* fix format

* Update src/transformers/models/plbart/tokenization_plbart.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* improvin readability, setting self.tgt_lang

* fixing

* readability

Co-authored-by: jordiclive <jordiclive19@imperial.ac.uk>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2022-11-21 11:53:08 -05:00
4cf38148dc Generate: model_kwargs can also be an input to prepare_inputs_for_generation (#20353) 2022-11-21 16:20:27 +00:00
d21c97cc0f add MobileNetV1 model (#17799)
* add model files etc for MobileNetV2

rename files for MobileNetV1

initial implementation of MobileNetV1

fix conversion script

cleanup

write docs

tweaks

fix conversion script

extract hidden states

fix test cases

make fixup

fixup it all

remove main from doc link

fixes

fix tests

fix up

use google org

fix weird assert

* fixup

* use google organization for checkpoints
2022-11-21 10:21:28 -05:00
22d7161a52 fix: "BigSicence" typo in docs (#20331) 2022-11-21 09:44:54 -05:00
74297d0a55 [Switch Transformers] Fix failing slow test (#20346)
* run slow test on GPU

* remove unnecessary device assignment

* use `torch_device` instead
2022-11-21 15:36:49 +01:00
11f3ec7224 Add LayerScale to NAT/DiNAT (#20325)
* Add LayerScale to NAT/DiNAT.

Completely dropped the ball on LayerScale in the original PR (#20219).
This is just an optional argument in both models, and is only activated for larger variants in order to provide training stability.

* Add LayerScale to NAT/DiNAT.

Minor error fixed.

Co-authored-by: Ali Hassani <ahassanijr@gmail.com>
2022-11-21 09:08:35 -05:00
d28448c5cd Add Spanish translation of serialization.mdx (#20245)
* Update _toctree and clone original content

* Translate first three sections

* Add more translated chapters. Only 3 more left.

* Finish translation

* Run style from doc-builder

* Address recommended changes from reviewer
2022-11-21 08:46:54 -05:00
05d80d856c translate zh quicktour(#20095) (#20181)
* zh quicktour(#20095)

* add zh to doc workflow

* remove untranslation from toctree

Co-authored-by: BeifangSusu <BeifangSusu@bfss.com>
2022-11-21 08:44:18 -05:00
3de07473da Generate: add generation config class (#20218)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-21 13:30:15 +00:00
8503cc7550 Fix torch device issues (#20304)
* fix device issue

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-21 10:12:25 +01:00
d316037ad7 organize pipelines by modality (#20306) 2022-11-18 12:06:25 -08:00
fc4a993e1b Add Neighborhood Attention Transformer (NAT) and Dilated NAT (DiNAT) models (#20219)
* Add DiNAT

* Adds DiNAT + tests

* Minor fixes

* Added HF model

* Add natten to dependencies.

* Cleanup

* Minor fixup

* Reformat

* Optional NATTEN import.

* Reformat & add doc to _toctree

* Reformat (finally)

* Dummy objects for DiNAT

* Add NAT + minor changes

Adds NAT as its own independent model + docs, tests
Adds NATTEN to ext deps to ensure ci picks it up.

* Remove natten from `all` and `dev-torch` deps, add manual pip install to ci tests

* Minor fixes.

* Fix READMEs.

* Requested changes to docs + minor fixes.

* Requested changes.

* Add NAT/DiNAT tests to layoutlm_job

* Correction to Dinat doc.

* Requested changes.
2022-11-18 13:08:26 -05:00
8d6de0b9cf TF: future proof our keras imports (#20317)
* future proof our tf code

* parse tf versions
2022-11-18 17:38:48 +00:00
b2c863a319 Remove double brackets (#20307)
* remove double brackets

* oops get other bracket
2022-11-18 09:29:23 -08:00
f10cdba22e Pin TF 2.10.1 for Push CI (#20319)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-18 18:24:35 +01:00
9d1ef009b8 Fix flakey test with seed (#20318) 2022-11-18 11:33:25 -05:00
8e777b3ba4 [Proposal] Breaking change zero-shot-object-detection for improved consistency. (#20280)
* [Proposal] Breaking change `zero-shot-object-detection` for improved
consistency.

This is a proposal to modify the output of `zero-shot-object-detection`
to provide better alignment with other pipelines.

The output is now strictly the same as `object-detection` whereas before
it would output lists of lists.

The name `candidate_labels` is used throughout for consistency with
other `zero-shot` pipelines.

The pipeline is changed to `ChunkPipeline` to support batching cleanly.

This removes all the lists and list of lists shenanigans, it's now a
matter of the base pipeline handling all this not this specific one.

**Breaking change**: It did remove complex calls potentials `pipe(images = [image1, image2],
text_queries=[candidates1, candidates2])` to support only
`pipe([{"image": image1, "candidate_labels": candidates1}, {"image": image2, "candidate_labels": candidates2}])`
when dealing with lists and/or datasets.
We could keep them, but it will add a lot of complexity to the code
base, since the pipeline is rather young, I'd rather break to keep the
code simpler, but we can revert this.

**Breaking change**: The name of the argument is now `image` instead of
`images` since it expects by default only 1 image. This is revertable
like the previous one.

**Breaking change**: The types is now simplified and flattened:

`pipe(inputs) == [{**object1}, {**object2}]`
instead of the previous
`pipe(inputs) == [[{**object1}, {**object1}], [{**object2}]]`
Where the different instances would be grouped by candidate labels
within lists.
IMHO this is not really desirable, since it would output empty lists and
is only adding superflous indirection compared to
`zero-shot-object-detection`.

It is relatively change free in terms of how the results, it does change
computation however since now the batching is handled by the pipeline
itself. It **did** change the results for the small models so there
seems to be a real difference in how the models handle this.

* Fixing the doctests.

* Behind is_torch_available.
2022-11-18 15:57:28 +01:00
84c9cc6d15 Add AnyPrecisionAdamW optimizer (#18961)
* Add AnyPrecisionAdamW optimizer

* Add optim_args argument to TrainingArgs

* Add tests for AnyPrecisionOptimizer

* Change AnyPrecisionAdam default params to float32

* Move default_anyprecision_kwargs in trainer test

* Rename AnyPrecisionAdamW
2022-11-18 09:27:08 -05:00
37e016331f Also pin TensorFlow CPU 2022-11-18 08:50:56 -05:00
a3f7458066 Pin to the right version... 2022-11-18 07:12:55 -05:00
f7ab8c4251 Pin TensorFlow (#20313) 2022-11-18 06:57:15 -05:00
b98269425e Add padding image transformation (#19838)
* Add padding transformation

* Add in upstream changes

* Update tests & docs

* Code formatting tuples in docstring
2022-11-18 11:27:21 +00:00
c29a2f7c9c [ASR Examples] Update README for Whisper (#20230)
* [ASR Examples] Update README for seq2seq

* add language info

* add training results

* re-word
2022-11-18 11:24:25 +00:00
95754b47a6 remove two tokens that should not be suppressed (#20302) 2022-11-18 08:57:42 +01:00
532e60bedf Fix blender bot missleading doc (#20301)
* fix the doc to specify that add_prefix_space = False

* add correct expected output
2022-11-18 08:57:07 +01:00
df56c843be [Tiny model creation] deal with ImageProcessor (#20298)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-17 20:49:46 +01:00
4bb0764750 refactor test (#20300)
- simplifies the devce checking test
2022-11-17 15:59:22 +01:00
700e0cd65f Add missing report button for Example test (#20293)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-17 15:55:00 +01:00
6b217c52e6 Add AutoBackbone + ResNetBackbone (#20229)
* Add ResNetBackbone

* Define channels and strides as property

* Remove file

* Add test for backbone

* Update BackboneOutput class

* Remove strides property

* Fix docstring

* Add backbones to SHOULD_HAVE_THEIR_OWN_PAGE

* Fix auto mapping name

* Add sanity check for out_features

* Set stage names based on depths

* Update to tuple

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-17 15:43:20 +01:00
904ac21020 Add docstrings for canine model (#19457)
* Add docstrings for canine model

* Update CanineForTokenClassification

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-17 09:41:11 -05:00
8b8b23a8cd set the default cache_enable to True, aligned with the default value in pytorch cpu/cuda amp autocast (#20289)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-11-17 09:21:06 -05:00
07b8f249cd Fixing the doctests failures. (#20294)
* Fixing the doctests failures.

* Fixup.
2022-11-17 15:13:32 +01:00
0f78529f98 Generate: general TF XLA constrastive search are now slow tests (#20277)
* move contrastive search test to slow
2022-11-17 12:34:46 +00:00
2062c28552 TF: add test for PushToHubCallback (#20231)
* test hub tf callback

* create repo before cloning it
2022-11-17 12:33:44 +00:00
3a780cc57a Image transforms functionality used instead (#20278)
* Image transforms functionality used instead

* Import torch

* Import rather than copy

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py
2022-11-17 11:16:13 +00:00
3fad6ae3fd Adding doctest for object-detection pipeline. (#20258)
* Adding doctest for `object-detection` pipeline.

* Removed nested_simplify.
2022-11-17 11:59:59 +01:00
6c2be845dd Adding zero-shot-object-detection pipeline doctest. (#20274)
* Adding `zero-shot-object-detection` pipeline doctest.

* Remove nested_simplify.
2022-11-17 10:55:55 +01:00
7d65efec29 [bnb] Let's warn users when saving 8-bit models (#20282)
* add warning on 8-bit models

- added tests
- added wrapper

* move to a private attribute

- remove wrapper
- changed `save_pretrained` method

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-17 08:16:36 +01:00
0a144b8c6b [DOCTEST] Fix the documentation of RoCBert (#20142)
* update part of the doc

* add temp values, fix part of the doc

* add template outputs

* add correct models and outputss

* style

* fixup
2022-11-17 06:40:47 +01:00
441811ecd7 Fix summarization script (#20286) 2022-11-16 15:57:07 -05:00
5e012f8e3c [Doctest] Add configuration_deformable_detr.py (#20273)
* Update configuration_deformable_detr.py comment

* Add DeformableDetrConfig to documentation_tests.txt
2022-11-16 18:20:06 +01:00
610acc5ae9 Data collator for token classification pads labels column when receives pytorch tensors (#20244)
* token cls data_collator pads labels column

* remove walrus operator for code quality

* remove redundat space

* remove comment that was fixed

* PR comments fix

Co-authored-by: Alexander Markov <amarkov.me@gmail.com>
2022-11-16 12:18:46 -05:00
d4d23141c4 remaining pytorch type hints (#20217)
* Update modeling_flava.py

* Update modeling_markuplm.py

* Update modeling_glpn.py

* Update modeling_roc_bert.py

* Update modeling_segformer.py

* Update modeling_tapas.py

* Update modeling_tapas.py

* Update modeling_tapas.py

* Update modeling_tapas.py

* Update modeling_trocr.py

* Update modeling_videomae.py

* Update modeling_videomae.py

* Update modeling_videomae.py

* Update modeling_yolos.py

* Update modeling_wav2vec2.py

* Update modeling_jukebox.py

* Update modeling_jukebox.py

* Update modeling_jukebox.py

* Update modeling_jukebox.py
2022-11-16 16:53:40 +00:00
9ea1dbd2be Adding doctest for token-classification pipeline. (#20265)
* Adding doctest for `token-classification` pipeline.

* Adding doctest to `token-classification` pipeline.

* Remove nested_simplify.
2022-11-16 17:22:00 +01:00
21b0ad05a0 Adding doctest for image-to-text pipeline. (#20257)
* Adding `zero-shot-object-detection` pipeline doctest.

* Adding doctest for `image-to-text` pipeline.

* Remove nested_simplify.
2022-11-16 17:17:40 +01:00
389702242d [Docs] Add resources of OpenAI GPT (#20084)
* Add resources of OpenAI GPT

* Delete Deploy section and add .

* Add scripts

* Update docs/source/en/model_doc/openai-gpt.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Delete causal-language-modeling section

* Add TFOpenAIGPTLMHeadModel

* Add resources from community

* Delete a link

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2022-11-16 11:17:32 -05:00
9accbe531e Adding doctest for question-answering pipeline. (#20259)
* Adding doctest for `question-answering` pipeline.

* Remove nested simplify.
2022-11-16 17:16:19 +01:00
d9efb36cf6 Adding doctest for text-classification pipeline. (#20262)
* Adding doctest for `text-classification` pipeline.

* Remove nested_simplify.
2022-11-16 17:15:34 +01:00
c282e93a74 Adding doctest for visual-question-answering pipeline. (#20266)
* Adding doctest for `visual-question-answering` pipeline.

* Remove nested_simplify.
2022-11-16 17:15:25 +01:00
e06657a798 Adding doctest for zero-shot-classification pipeline. (#20268)
* Adding doctest for `zero-shot-classification` pipeline.

* Removing nested_simplify.
2022-11-16 17:15:01 +01:00
69715f2ee0 Adding doctest for zero-shot-image-classification pipeline. (#20272)
* Adding doctest for `zero-shot-image-classification` pipeline.

* Remove nested_simplify.
2022-11-16 17:14:48 +01:00
291c17f608 Adding doctest example for image-classification pipeline. (#20254)
* adding doctest example for `image-classification` pipeline.

* Remove nested simplify.
2022-11-16 17:09:57 +01:00
a239bdd28f Rephrasing the link. (#20253)
* Rephrasing the link.

* Removing `nested_simplify` within doctests.

* Fixup.
2022-11-16 17:09:45 +01:00
e9d9982e7c Add TF protein notebook to notebooks doc (#20271) 2022-11-16 16:08:51 +00:00
5ca479d252 Adding doctest for text-generation pipeline. (#20264) 2022-11-16 16:57:46 +01:00
449f2ae459 Adding doctest for text2text-generation pipeline. (#20261) 2022-11-16 16:57:08 +01:00
f6490180eb Adding doctest for image-segmentation pipeline. (#20256)
* Adding doctest for `image-segmentation` pipeline.

* Fixup.
2022-11-16 16:56:54 +01:00
c389d35a7f Adding a doctest for table-question-answering pipeline. (#20260) 2022-11-16 16:45:42 +01:00
9681f052a1 Fix result saving errors of pytorch examples (#20276) 2022-11-16 09:51:04 -05:00
e627e9b5ae Complete doc migration (#20267) 2022-11-16 08:43:37 -05:00
4fb34de99e Adding an example for depth-estimation pipeline. (#20237)
* Adding an example for `depth-estimation` pipeline.

* Adding missing internal link to tutorial.
2022-11-16 09:52:45 +01:00
1f029b6ae7 Adding doctest for document-question-answering (#20239)
* Adding doctest for doc qa.

* Adding doctest for doc qa.

* Fixup.
2022-11-16 09:52:35 +01:00
443aaaa1a7 Adding ASR pipeline example. (#20226)
* Adding ASR pipeline example.

* De indent.

* Example deindent.

* Fixing example ?

* Putting the example in a more prominent place.

* Fixup.

* Adding the file.

* Adding the doctest to the daily test.

* Fixing comments.

* transcriber name.

* Adding `>>>`.

* Removing assert.
2022-11-16 09:51:45 +01:00
e434627858 Adding doctest for feature-extraction. (#20240)
* Adding doctest for `feature-extraction`.

* Update feature_extraction.py
2022-11-16 09:51:31 +01:00
529037fda5 Adding doctest for fill-mask pipeline. (#20241) 2022-11-16 09:51:20 +01:00
5e080c11bf Updating the doctest for conversational. (#20236)
* Updating the doctest for conversational.

- Make it tested against
- Add explicit output in the test.

* Removing assert.

* Adding missing link.
2022-11-16 09:51:12 +01:00
860ea8a574 Adding audio-classification example in the doc. (#20235)
* Adding `audio-classification` example in the doc.

* Adding `>>>` to get the real test.

* Removing assert.

* Fixup.
2022-11-16 09:51:03 +01:00
a00b7e85ea Adds image-guided object detection support to OWL-ViT (#20136)
Adds image-guided object detection method to OwlViTForObjectDetection class as described in the original paper. One-shot/ image-guided object detection enables users to use a query image to search for similar objects in the input image.

Co-Authored-By: Dhruv Karan k4r4n.dhruv@gmail.com
2022-11-16 09:07:46 +03:00
0d0d77693f Allow trainer to return eval. loss for CLIP-like models (#20214)
* Allow trainer to return loss for CLIP-like models

* Apply suggestions

* update

* update

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-15 19:47:10 +01:00
822ae69c1b Update reqs to include min gather_for_metrics Accelerate version (#20242)
* Update reqs to include min gather_for_metrics Accelerate version

* Other reqs
2022-11-15 13:28:00 -05:00
c19aa7acce Add clip resources to the transformers documentation (#20190)
* WIP: Added CLIP resources from HuggingFace blog

* ADD: Notebooks documentation to clip

* Add link straight to notebook

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Change notebook links to colab

Co-authored-by: Ambuj Pawar <your_email@abc.example>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2022-11-15 13:26:46 -05:00
5b62f8ea2b Add to DeBERTa resources (#20155)
* Add to DeBERTa resources

* Fix mistakes with chapter number

* Add fill-mask pipeline

* Add sequence, token and QA pipeline

* Change token classification pipeline order

* Remove flax script and notebook links
2022-11-15 13:26:07 -05:00
26ec7928d0 Slightly alter Keras dummy loss (#20232)
* Slightly alter Keras dummy loss

* Slightly alter Keras dummy loss

* Add sample weight to test_keras_fit

* Fix test_keras_fit for datasets

* Skip the sample_weight stuff for models where the model tester has no batch_size
2022-11-15 16:58:43 +00:00
7f74433814 [CLIP] allow loading projection layer in vision and text model (#18962)
* allow loading projection in text and vision model

* begin tests

* finish test for CLIPTextModelTest

* style

* add slow tests

* add new classes for projection heads

* remove with_projection

* add in init

* add in doc

* fix tests

* fix some more tests

* fix copies

* fix docs

* remove leftover from fix-copies

* add the head models in IGNORE_NON_AUTO_CONFIGURED

* fix docstr

* fix tests

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add docstr for models

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-11-15 17:50:07 +01:00
9643ecf8ca Enable PyTorch 1.13 (#20168)
* Try PT1.13 by removing torch scatter

* Skip failing tests

* Style

* Remvoe testing extras for repo utils

* Try with all decorators

* Try to wipe the cache

* Fix all tests?

* Try this way

* Fix comma

* Update to main

* Try with less deps

* Quality
2022-11-15 11:33:09 -05:00
777b1bfe62 New logging support to "Trainer" Class (ClearML Logger) (#20184)
* Init Update

* ClearML Callbacks integration

* update corrections

* args reporting updated

* {'tensorboard': False, 'pytorch': False}

* ClearML Tests added

* add clearml

* output_uri=True in Task.init

* reformatted integrations.py

* reformatted and fixed

* IF-ELSE statement issue on "has_clearml" resolved

* Add clearml in main callback docs

* Add additional clearml documentation

* Update src/transformers/integrations.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Accept suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Accept suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Small change in comments

* Make style clearml

* Accept suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Victor Sonck <victor.sonck@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-15 10:08:59 -05:00
b4997382da Fix MaskformerFeatureExtractor (#20100)
* Fix bug

* Add another fix

* Add print statement

* Apply fix

* Fix feature extractor

* Fix feature extractor

* Add print statements

* Add print statements

* Remove print statements

* Add instance segmentation integration test

* Add integration test for semantic segmentation

* Add draft for panoptic segmentation integration test

* Fix integration test for panoptic segmentation

* Remove slow annotator

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-15 16:00:37 +01:00
6e3b014471 Fix docstring of CLIPTokenizer(Fast) (#20233) 2022-11-15 10:00:16 -05:00
cf7b98b807 Fix run_clip.py (#20234)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-15 15:45:21 +01:00
683cbc4c34 fixed spelling error in testing.mdx (#20220) 2022-11-15 09:40:06 -05:00
6ed6ed29b1 fix device issue (#20227)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-15 15:21:16 +01:00
d3d5fa3e85 Add missing ESM autoclass (#20177)
* Add missing ESM autoclass

* Correct ESMFold checkpoint
2022-11-15 14:20:22 +00:00
92cfe8b074 Remove authorized_missing_keysin favor of _keys_to_ignore_on_load_missing (#20228) 2022-11-15 15:12:41 +01:00
2d92001076 Typo on doctring in ElectraTokenizer (#20192)
* chore: typo on docstring in tokenization_electra

* chore: typo on docstring in tokenization_electra

* update for check copies
2022-11-15 09:10:20 -05:00
4c7e8d0900 Add object detection + segmentation transforms (#20003)
* Add transforms for object detection

* Update src/transformers/image_transforms.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Better var names & docstring

* Remove unused var desc in docstring

* Update src/transformers/image_transforms.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-15 12:50:03 +00:00
163ac3d3ee Add Switch transformers (#19323)
* first commit

* add more comments

* add router v1

* clean up

- remove `tf` modeling files

* clean up

- remove `tf` modeling files

* clean up

* v0 routers

* added more router

- Implemented `ExpertsChooseMaskedRouter`

- added tests
- 2 more routers to implement

* last router

* improved docstring

- completed the docstring in `router.py`
- added more args in the config

* v0 sparse mlp

* replace wrong naming

* forward pass run

* update MOE layer

* small router update

* fixup

* consistency

* remove scatter router

* remove abstract layer

* update test and model for integration testing

* v1 conversion

* update

* hardcode hack

* all keys match

* add gin conversion, without additional libraries

* update conversion sctipy

* delete router file

* update tests wrt router deletion

* fix router issues

* update expert code

* update, logits match, code needsREFACTORING

* Refactor code

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* add generate tests

Co-authored-by: younesbelkada <younesbelkada@gmail.com>

* add support for router loss

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* fix forward error

* refactor a bit

* remove `FlaxSwitchTransformers` modules

* more tests pass

* Update code

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* fixup

* fix tests

* fix doc

* fix doc + tokenization

* fix tokenizer test

* fix test

* fix loss output

* update code for backward pass

* add loss support

* update documentation

* fix documentation, clean tokenizer

* more doc fix, cleanup example_switch

* fix failing test

* fix test

* fix test

* fix loss issue

* move layer

* update doc and fix router capacity usage

* fixup

* add sparse mlp index for documentation on hub

* fixup

* test sparse mix architecture

* Apply suggestions from code review

* Update docs/source/en/model_doc/switch_transformers.mdx

* fixup on update

* fix tests

* fix another test

* attempt fix

* Update src/transformers/models/switch_transformers/configuration_switch_transformers.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/switch_transformers/convert_switch_transformers_original_flax_checkpoint_to_pytorch.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* try

* all tests pass

* fix jitter noise

* Apply suggestions from code review

* doc tests pass

* Update src/transformers/models/switch_transformers/modeling_switch_transformers.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/switch_transformers/modeling_switch_transformers.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove assert

* change config order

* fix readme japanese

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove parallelizable tests + add one liners

* remove ONNX config

* fix nits

- add `T5Tokenizer` in auto mapping
- remove `Switch Transformers` from ONNX supported models

* remove `_get_router`

* remove asserts

* add check in test for `router_dtype`

* add `SwitchTransformersConfig` in `run_pipeline_test`

* Update tests/pipelines/test_pipelines_summarization.py

* add huge model conversion script

* fix slow tests

- add better casting for `Linear8bitLt`
- remove `torchscript` tests

* add make dir

* style on new script

* fix nits

- doctest
- remove `_keys_to_ignore_on_load_unexpected`

* Update src/transformers/models/switch_transformers/configuration_switch_transformers.py

* add google as authors

* fix year

* remove last `assert` statements

* standardize vertical spaces

* fix failing import

* fix another failing test

* Remove strange àuthorized_keys`

* removing todo and padding that is never used

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: ybelkada <younes@huggingface.co>
Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Arthur Zucker <arthur@huggingface.co>
2022-11-15 13:06:45 +01:00
55ba31908a Add param_name to size_dict logs & tidy (#20205) 2022-11-15 10:52:58 +00:00
f1e8c48c5e Add accelerate support for ViT family (#20174)
* add `accelerate` support for `ViT` family

- add `_no_split_modules`
- manually cast to the right `dtype`: to change

* enable `float16` for `deit`

* fix `make fixup`

* add `slow` test for `fp16` inference

* another safety check

* Update src/transformers/models/deit/modeling_deit.py
2022-11-15 11:06:01 +01:00
11b2e45ccc [WHISPER] Update modeling tests (#20162)
* Update modeling tests

* update tokenization test

* typo

* nit

* fix expected attention outputs

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update tests from review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* remove problematics kwargs passed to the padding function

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-15 11:04:58 +01:00
f60eec4003 update relative positional embedding (#20203)
* update relative positional embedding

* make fix copies

* add `use_cache` to list of arguments

* fixup

* 1line fucntion

* add `test_decoder_model_past_with_large_inputs_relative_pos_emb`

* add relative pos embedding test for more models

* style
2022-11-15 10:46:34 +01:00
f9909fbf85 Make ImageSegmentationPipelineTests less flaky (#20147)
* Fix ImageSegmentationPipelineTests

* Use 0.9

* no zip

* links to show images

* links to show images

* rebase

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-15 09:14:55 +01:00
9625924c60 Update tokenizer_summary.mdx (#20135) 2022-11-15 01:18:13 +01:00
8fadfd5035 [docs] set overflowing image width to auto-scale (#20197)
* docs: fix: set overflowing image width to auto-scale

* docs: fix: new language Korean is also affected

* docs: fix: unnecessary line break in index page
2022-11-15 01:13:40 +01:00
25c451e5a0 Adding chunking for whisper (all seq2seq actually). Very crude matching algorithm. (#20104)
* Very crude matching algorithm.

* Fixing tests.

* Removing comments

* Adding warning + fix short matches.

* Cleanup tests.

* Quality.

* Less noisy.

* Fixup.
2022-11-14 22:32:50 +01:00
938cb04789 Generate: add Bloom fixes for contrastive search (#20213) 2022-11-14 18:34:11 +00:00
fda125638f Downgrade log warning -> info (#20202) 2022-11-14 17:56:52 +00:00
36b063ed4f Update README.md (#20188)
There is typo in the original hyperlink.

Below is the original version:
Based on the script [`run_translation_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/translation/**run_translationn_no_trainer.py**).
2022-11-14 12:53:02 -05:00
536e60d2c7 mark test_save_load_fast_init_from_base as is_flaky (#20200)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-14 18:51:33 +01:00
af1a7c8ca3 [Examples] Generalise Seq2Seq ASR to handle Whisper (#19519)
* merge conflicts

* bos and eos in datacollator

* (temp) hardcode removal of attention mask

* freeze encoder

* actually freeze encoder

* set max length / num beams according to gen kwargs

* (temp) fix tests

* don't pop attn mask

* override return attention mask config from Hub

* Hub configs updated 🤗

* final fixes

* update type annotations

* backward comp
2022-11-14 17:45:46 +00:00
7ecb039176 feat: add i18n issue template (#20199)
Part of #20183
docs: add relevant labels to i18n issue template
fix: typo on completion count
2022-11-14 12:36:58 -05:00
07d8d6e2f7 docs: translated index page to korean (#20180)
docs: i18n: first draft of index page
docs: fix: first revision of index page
docs: i18n: missed section - supported frameworks
docs: fix: second revision of index page
review by @ArthurZucker

refactor: remove untranslated files from korean
docs: fix: remove untranslated references from toctree.yml
feat: enable korean docs in gh actions
docs: feat: add in_translation page as placeholder
docs: bug: testing if internal toc need alphabet chars
docs: fix: custom english anchor for non-alphanumeric headings
review by @sgugger

docs: i18n: translate comments on install methods in _config.py
docs: refactor: more concise wording for translations
2022-11-14 12:09:21 -05:00
c149d366bb add _keys_to_ignore_on_load_unexpected = [r"pooler"] (#20210) 2022-11-14 18:05:19 +01:00
8dcf494ef1 [ROC_BERT] Make CI happy (#20175)
* fix slow test

* Update tests/models/roc_bert/test_modeling_roc_bert.py
2022-11-14 18:04:25 +01:00
7b55bb4540 Generate: TF sample doctest result update (#20208) 2022-11-14 15:42:48 +00:00
d24e84d9ed Pytorch type hints (#20112)
* initial commit

* Update modeling_whisper.py

* Fixing Tests

* modeling_vision_text_dual_encoder

* modeling_vision_encoder_decoder

* Update modeling_vit.py

* Update modeling_vit_msn.py

* Update modeling_trajectory_transformer.py

* style

* Update modeling_time_series_transformer.py

* Update modeling_time_series_transformer.py

* Update modeling_segformer.py

* Update modeling_plbart.py

* Update modeling_dpt.py

* Update modeling_deit.py

* Update modeling_dpt.py

* Update modeling_esm.py

* Update modeling_fnet.py

* Update modeling_fnet.py

* Update modeling_fnet.py

* Update modeling_flava.py

* Update modeling_flava.py

* Update modeling_layoutlmv3.py

* Update modeling_levit.py
2022-11-14 12:39:18 +00:00
03bc6ece1b Proposal Remove the weird inspect in ASR pipeline and make WhisperEncoder just nice to use. (#19571)
* Proposal Remove the weird `inspect` in ASR pipeline and make
WhisperEncoder just nice to use.

It seems that accepting `attention_mask` is kind of an invariant of our
models. For Seq2Seq ASR models, we had a special comment on how it
actually was important to send it.

`inspecting` seems pretty brittle way to handle this case.
My suggestion is to simply add it as an kwarg that and just ignoring
it with the docstring explaining why it's ignored.

* Fixup.

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Doc fixing .

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2022-11-14 09:34:30 +01:00
2308f3d42c Update README.md (#19530)
Fixed a grammatical error.
2022-11-14 01:36:38 -05:00
78a471ff71 Fix tapas scatter (#20149)
* First draft

* Remove scatter dependency

* Add require_torch

* update vectorized sum test, add clone call

* remove artifacts

* fix style

* fix style v2

* remove "scatter" mentions from the code base

* fix isort error

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-14 01:04:26 -05:00
f711d683b5 add MobileNetV2 model (#17845)
* add model files etc for MobileNetV2

* rename files for MobileNetV1

* initial implementation of MobileNetV1

* fix conversion script

* cleanup

* write docs

* tweaks

* fix conversion script

* extract hidden states

* fix test cases

* make fixup

* fixup it all

* rename V1 to V2

* fix checkpoints

* fixup

* implement first block + weight conversion

* add remaining layers

* add output stride and dilation

* fixup

* add tests

* add deeplabv3+ head

* a bit of fixup

* finish deeplab conversion

* add link to doc

* fix issue with JIT trace

in_height and in_width would be Tensor objects during JIT trace, which caused Core ML conversion to fail on the remainder op. By making them ints, the result of the padding calculation becomes a constant value.

* cleanup

* fix order of models

* fix rebase error

* remove main from doc link

* add image processor

* remove old feature extractor

* fix converter + other issues

* fixup

* fix unit test

* add to onnx tests (but these appear broken now)

* add post_process_semantic_segmentation

* use google org

* remove unused imports

* move args

* replace weird assert
2022-11-14 01:00:10 -05:00
6cc06d1739 Fix type - update any PIL.Image.Resampling (#20172) 2022-11-11 16:55:59 +00:00
cbbeca3d17 [OWL-ViT] Make model consistent with CLIP (#20144)
* Apply fix

* Fix test

* Remove another argument which is not used

* Fix pipeline test

* Add argument back, add deprecation warning

* Add warning add other location

* Use warnings instead

* Add num_channels to config

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-11-11 11:36:17 +01:00
d3c0566679 Fix object-detection bug (height, width inversion). (#20167) 2022-11-11 10:14:48 +01:00
61a51f5f23 Add Jukebox model (replaces #16875) (#17826) 2022-11-10 21:05:27 +01:00
9740a03f61 Skip broken test 2022-11-10 14:59:32 -05:00
905e5773a3 [processor] Add 'model input names' property (#20117)
* [processor] Add 'model input names' property

* add test

* no f string

* add generic property method to mixin

* copy to multimodal

* copy to vision

* tests for all audio

* remove ad-hoc tests

* style

* fix flava test

* fix test

* fix processor code
2022-11-10 19:29:20 +00:00
68187c4642 Fix arg names for our models (#20166)
* Fix arg names for our models

* Clean out the other uses of "residx" in infer()

* make fixup
2022-11-10 16:47:58 +00:00
6dda14dc47 Generate: fix TF doctests (#20159) 2022-11-10 15:30:39 +00:00
e0d7c831c7 Update OnnxConfig.generate_dummy_inputs to check ImageProcessingMixin (#20157)
* Check ImageProcessingMixin in OnnxConfig.generate_dummy_inputs

* Check ImageProcessingMixin in OnnxConfig.generate_dummy_inputs

* Add back

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-10 16:04:51 +01:00
daf4436e07 doc comment fix: Args was in wrong place (#20164) 2022-11-10 10:02:24 -05:00
9f0c72f93b Add doc tests (#20158)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-11-10 15:25:30 +01:00
d066c3731b Adding support for LayoutLMvX variants for object-detection. (#20143)
* Adding support for LayoutLMvX variants for `object-detection`.

* Revert bogs `layoutlm` feature extractor which does not exist (it was a
V2 model) .

* Updated condition.

* Handling the comments.
2022-11-10 11:33:38 +01:00
7ec1dc8817 Add RoCBertTokenizer to TOKENIZER_MAPPING_NAMES (#20141)
* Add RoCBertTokenizer to TOKENIZER_MAPPING_NAMES

* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-09 20:58:56 +01:00
67b3789133 Make DummyObject more robust (#20146) 2022-11-09 12:57:27 -05:00
93e14486d6 [CLIPSeg] Add resources (#20118)
* Add resource

* Add tag

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-09 18:31:22 +01:00
f3d99e49d4 Update VisionEncoderDecoder to use an image processor (#20137)
* TrOCR processor uses an image processor

* Update VisionEncoderDecoder

* Add feature_extractor_class property
2022-11-09 16:31:05 +00:00
a44985b41c add cv + audio labels (#20114) 2022-11-09 07:40:15 -08:00
f270b960d6 Generate: move generation_*.py src files into generation/*.py (#20096)
* move generation_*.py src files into generation/*.py

* populate generation.__init__ with lazy loading

* move imports and references from generation.xxx.object to generation.object
2022-11-09 15:34:08 +00:00
bac2d29a80 Attempting to test automatically the _keys_to_ignore. (#20042)
* Attempting to test automatically the `_keys_to_ignore`.

* Style.

* First fix pass.

* Moving test on its own.

* Another batch.

* Second round removing BatchNorm

* Fixing layoutlmv{2,3} + support older Python.

* Disable miss missing warning.

* Removing dodgy additions.

* Big pass.

* mbart.

* More corrections.

* Fixup.

* Updating test_correct_missing_keys

* Add escape hatch for when the head has no extra params so doesn't need

the missing keys check.

* Fixing test.

* Greener.

* Green ! (except for weird splinter bug).

* Adding a test about `named_parameters` usage.

* Shorten message.

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* After rebase modifications.

* More explicit condition checking.

* Fixing slow tests issues.

* Remove extra pdb.

* Remove print.

* Attempt to make failure consistent + fixing roc_bert.

* Removing the seed  (all tests passing with it).

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-09 16:03:36 +01:00
d606d566ab Update SwinForMaskedImageModeling doctest values (#20139)
* Update doctest values

* Update copy statement
2022-11-09 14:53:01 +00:00
c4cad8e301 Update CLIPSegModelTester (#20134)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-09 15:21:52 +01:00
0946ed94fd Remove BertConfig inheritance from RobertaConfig (#20124)
* Remove BertConfig inheritance from RobertaConfig

* Fix Typo: BERT to RoBERTa
2022-11-09 08:51:12 -05:00
316bf04d3d Improve tiny model creation script (#20119)
* Improve tiny model creation script

* sort the list of models to upload

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-09 11:34:35 +01:00
4eb918e656 AutoImageProcessor (#20111)
* AutoImageProcessor skeleton

* Update references

* Add mapping in init

* Add model image processors to __init__ for importing

* Add AutoImageProcessor tests

* Fix up

* Image Processor documentation

* Remove pdb

* Update docs/source/en/model_doc/mobilevit.mdx

* Update docs

* Don't add whitespace on json files

* Remove fixtures

* Move checking model config down

* Fix up

* Add check for image processor

* Remove FeatureExtractorMixin in docstrings

* Rename model_tmpfile to config_tmpfile

* Don't make None if not in image processor map
2022-11-08 19:54:41 +00:00
c08a1e26ab Adapt has_labels test when no labels were found (#20113)
* Make default labels for non-pretrained models

* Fix the has_labels test instead
2022-11-08 13:53:04 -05:00
e2a23b6ce9 Update github pr docs actions (#20125) 2022-11-08 10:37:24 -05:00
2d6a92f22a Fix repo consistency 2022-11-08 10:04:30 -05:00
efa889d2e4 Add RocBert (#20013)
* add roc_bert

* update roc_bert readme

* code style

* change name and delete unuse file

* udpate model file

* delete unuse log file

* delete tokenizer fast

* reformat code and change model file path

* add RocBertForPreTraining

* update docs

* delete wrong notes

* fix copies

* fix make repo-consistency error

* fix files are not present in the table of contents error

* change RocBert -> RoCBert

* add doc, add detail test

Co-authored-by: weiweishi <weiweishi@tencent.com>
2022-11-08 10:03:43 -05:00
258963062b Add CLIPSeg (#20066)
* Add first draft

* Update conversion script

* Improve conversion script

* Improve conversion script some more

* Add conditional embeddings

* Add initial decoder

* Fix activation function of decoder

* Make decoder outputs match original implementation

* Make decoder outputs match original implementation

* Add more copied from statements

* Improve model outputs

* Fix auto tokenizer file

* Fix more tests

* Add test

* Improve README and docs, improve conditional embeddings

* Fix more tests

* Remove print statements

* Remove initial embeddings

* Improve conversion script

* Add interpolation of position embeddings

* Finish addition of interpolation of position embeddings

* Add support for refined checkpoint

* Fix refined checkpoint

* Remove unused parameter

* Improve conversion script

* Add support for training

* Fix conversion script

* Add CLIPSegFeatureExtractor

* Fix processor

* Fix CLIPSegProcessor

* Fix conversion script

* Fix most tests

* Fix equivalence test

* Fix README

* Add model to doc tests

* Use better variable name

* Convert other checkpoint as well

* Update config, add link to paper

* Add docs

* Update organization

* Replace base_model_prefix with clip

* Fix base_model_prefix

* Fix checkpoint of config

* Fix config checkpoint

* Remove file

* Use logits for output

* Fix tests

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-08 10:55:47 +01:00
3e39fd09a9 [Audio Processor] Only pass sr to feat extractor (#20022)
* [Audio Processor] Only pass sr to feat extractor

* move out of if/else

* copy to other processors
2022-11-08 08:59:03 +00:00
fb1c8db78a Fix AutoTokenizer with subfolder passed (#20110) 2022-11-07 17:59:46 -05:00
6156bffa2b Replace awkward timm link with the expected one (#20109) 2022-11-07 13:57:39 -05:00
71f772ebd0 Add new terms to the glossary (#20051)
* add new terms

* apply review
2022-11-07 10:45:27 -08:00
d44ac47bac docs: Fixed variables in f-strings (#20087)
* docs: Fixed variables in f-strings

* Replace unknown `block` with known `block_type` in ValueError

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add missing torch import in docs code block

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-07 13:18:09 -05:00
2bdd9fa284 Fix generate_dummy_inputs for ImageGPTOnnxConfig (#20103)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-07 16:31:26 +01:00
cfaeb1539e use huggingface_hub.model_inifo() to get pipline_tag (#20077) 2022-11-07 10:07:59 -05:00
3222fc645b docs: Resolve many typos in the English docs (#20088)
* docs: Fix typo in ONNX parser help: 'tolerence' => 'tolerance'

* docs: Resolve many typos in the English docs

Typos found via 'codespell ./docs/source/en'
2022-11-07 09:19:04 -05:00
b8112eddec Replace unsupported facebookresearch/bitsandbytes (#20093)
With https://github.com/TimDettmers/bitsandbytes, which is by the same author and is still being updated
2022-11-07 08:52:03 -05:00
4ab6e9e2f8 Skip 2 tests in VisionTextDualEncoderProcessorTest (#20098)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-07 14:51:05 +01:00
b77406bcb2 Removing RobertaConfig inheritance from CamembertConfig (#20059)
* swap RobertaConfig with PretrainedConfig

* Add camembert specific attributes

* Add PretrainedConfig docstring

* Add arguments docstring

* Change CamembertConfig docstring definition

* Fix typo CamembertConfig -> CamembertModel

* Fix typo BertModel -> CamembertModel

* Fix style of CamembertConfig
2022-11-07 08:50:10 -05:00
9617b1304e [Doctest] Add configuration_dpr.py (#20080)
* Add example docstring for DPRConfig

* Add DPRConfig to documentation_tests
2022-11-07 14:49:59 +01:00
a0f8674303 Generate: TF contrastive search with XLA support (#20050)
* Add contrastive search
2022-11-07 10:54:29 +00:00
504db92e7d Update hub.py (#20075) 2022-11-04 22:25:02 +01:00
4b86e44693 Update modeling_tf_utils.py (#20076) 2022-11-04 22:24:37 +01:00
d68c46026b Update defaults and logic to match old FE (#20065)
* Update defaults and logic to match old FE

* Use docker run rest values
2022-11-04 19:14:56 +00:00
c06d555647 Show installed libraries and their versions in GA jobs (#20069)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-04 18:03:18 +01:00
2d02178e5c Allow passing arguments to model testers for CLIP-like models (#20044)
* POC

* For more CLIP-like models

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-04 18:01:41 +01:00
3bd0007e87 Update documentation on seq2seq models with absolute positional embeddings, to be in line with Tips section for BERT and GPT2 (#20068)
Co-authored-by: jordiclive <jordiclive19@imperial.ac.uk>
2022-11-04 11:32:44 -04:00
6e1c5786dc Update READMEs for ESMFold and add notebooks (#20067)
* Update READMEs for ESMFold and add notebooks

* Fix PyCharm formatting

* make fix-copies
2022-11-04 15:10:13 +00:00
707b12a353 change constant torch.tensor to torch.full (#20061) 2022-11-04 10:41:56 -04:00
787620e2a2 [Swin] Add Swin SimMIM checkpoints (#20034)
* Fix Swin

* Remove file

* Update code snippet

* Add copied from to maskformer

* Fix docstring

* Add whole name to replace

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-04 15:32:44 +01:00
3936411b9d PoolformerImageProcessor defaults to match previous FE (#20048)
* Poolformer image processor defaults to previous FE

* Remove unnecessary math.floor
2022-11-04 13:52:58 +00:00
94e17c456c [Trainer] Fix model name in push_to_hub (#20064) 2022-11-04 13:40:21 +00:00
19067711e7 fix tokenizer_type to avoid error when loading checkpoint back (#20062) 2022-11-04 19:04:01 +05:30
3502c202f9 Update README.md (#20063) 2022-11-04 08:56:54 -04:00
1076d587b5 Fix ESM LM head test (#20045)
* Fix esm lm head test

* make fixup
2022-11-04 12:45:34 +00:00
d447c460b1 Speed up TF token classification postprocessing by converting complete tensors to numpy (#19976)
* Speed up TF postprocessing by converting to numpy before

* Fix bug that was triggered when offset_mapping was None

Co-authored-by: Patrick Deutschmann <patrick.deutschmann@dedalus.com>
2022-11-03 16:56:22 +00:00
06886d5a68 Only resize embeddings when necessary (#20043)
* Only resize embeddings when necessary

* Add comment
2022-11-03 12:05:04 -04:00
9080607b2c Fixed torch.finfo issue with torch.fx (#20040) 2022-11-03 16:14:44 +01:00
6f257bb3c2 Update esmfold conversion script (#20028)
* Update ESM conversion script for ESMfold

* Fix bug in ESMFold example

* make fixup and move restypes to one line
2022-11-03 14:58:06 +00:00
2564f0c21d fix jit trace error for model forward sequence is not aligned with jit.trace tuple input sequence, update related doc (#19891)
* fix jit trace error for classification usecase, update related doc

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add implementation in torch 1.14.0

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update_doc

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update_doc

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-11-03 10:50:03 -04:00
737bff6a36 [FuturWarning] Add futur warning for LEDForSequenceClassification (#19066)
* fix led eos_mask

* add Futur Warning

* revert uselesss cahnges

* Update src/transformers/models/led/modeling_led.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-03 15:26:09 +01:00
06d488061f [Whisper Tokenizer] Make more user-friendly (#19921)
* [Whisper Tokenizer] Make more user-friendly

* use property

* make indexing rigorous

* small clean-up

* tests

* skip seq2seq tests

* remove multilingual arg

* reorder args

* collapse to one function

Co-authored-by: ArthurZucker <arthur@huggingface.co>

* option to override attributes

Co-authored-by: ArthurZucker <arthur@huggingface.co>

* add to docs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make comment more clear

Co-authored-by: sgugger <sylvain@huggingface.co>

* don't add special tokens in get_decoder_prompt_ids

* add test for set_prefix_tokens

Co-authored-by: ArthurZucker <arthur@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: sgugger <sylvain@huggingface.co>
2022-11-03 14:22:40 +00:00
790ff2544a [Doctest] Add configuration_camembert.py (#20039)
* Add example docstring for CamembertConfig

* Add configuration_camembert to documentation_tests
2022-11-03 14:50:42 +01:00
9ccea7acb1 Fix some doctests after PR 15775 (#20036)
* Add skip_special_tokens=True in some doctest

* For T5

* Fix for speech_to_text.mdx

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-03 14:18:45 +01:00
a639ea9e8a Add **kwargs (#20037) 2022-11-03 12:51:49 +00:00
ec6878f6ca Now supporting pathlike in pipelines too. (#20030) 2022-11-03 09:14:45 +01:00
aa39967b28 reorganize glossary (#20010) 2022-11-02 16:58:17 -07:00
305e8718b4 Show installed libraries and their versions in CI jobs (#20026)
* Show versions

* check

* store outputs

* revert

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-02 20:52:39 +01:00
9f9ddcc2de 🚨 🚨 🚨 Fix Issue 15003: SentencePiece Tokenizers Not Adding Special Tokens in convert_tokens_to_string (#15775)
* Add test for SentencePiece not adding special tokens to strings

* Add SentencePieceStringConversionMixin to fix issue 15003

* Fix conversion from tokens to string for most SentencePiece tokenizers

Tokenizers fixed:
- AlbertTokenizer
- BarthezTokenizer
- CamembertTokenizer
- FNetTokenizer
- M2M100Tokenizer
- MBart50Tokenizer
- PegasusTokenizer
- Speech2TextTokenizer

* Fix MarianTokenizer, adjust SentencePiece test to accomodate vocab

* Fix DebertaV2Tokenizer

* Ignore LayoutXLMTokenizer in SentencePiece string conversion test

* Run 'make style' and 'make quality'

* Clean convert_tokens_to_string test

Instead of explicitly ignoring LayoutXLMTokenizer in the test,
override the test in LayoutLMTokenizationTest and do nothing in it.

* Remove commented out code

* Improve robustness of convert_tokens_to_string test

Instead of comparing lengths of re-tokenized text and input_ids,
check that converting all special tokens to string yields a string
with all special tokens.

* Inline and remove SentencePieceStringConversionMixin

The convert_tokens_to_string method is now implemented
in each relevant SentencePiece tokenizer.

* Run 'make style' and 'make quality'

* Revert removal of space in convert_tokens_to_string

* Remove redundant import

* Revert test text to original

* Uncomment the lowercasing of the reverse_text variable

* Mimic Rust tokenizer behavior for tokenizers

- Albert
- Barthez
- Camembert
- MBart50
- T5

* Fix accidentally skipping test in wrong tokenizer

* Add test for equivalent Rust and slow tokenizer behavior

* Override _decode in BigBirdTokenizer to mimic Rust behavior

* Override _decode in FNetTokenizer to mimic Rust behavior

* Override _decode in XLNetTokenizer to mimic Rust behavior

* Remove unused 're' import

* Update DebertaV2Tokenizer to mimic Rust tokenizer

* Deberta tokenizer now behaves like Albert and its `convert_tokens_to_string` is not tested.

* Ignore problematic tests in Deberta V2

* Add comment on why the Deberta V2 tests are skipped
2022-11-02 15:45:38 -04:00
fb7cbe236b Fix doctest (#20023)
* Fix doctest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-02 19:37:25 +01:00
f69eb24b5a Improve model tester (#19984)
* part 1

* part 2

* part 3

* fix

* For CANINE

* For ESMFold

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-02 17:38:44 +01:00
7487743793 [Doctest] Add configuration_deberta_v2.py (#19995)
* Add example docstring for DebertaV2Config

* Add DebertaV2Config to documentation_tests

* Fix mistake with directory name
2022-11-02 16:22:11 +01:00
9aedce99b0 Update auto processor to check image processor created (#20021) 2022-11-02 15:19:33 +00:00
49b77b89ea Quality (#20002) 2022-11-02 09:53:37 -04:00
c6c9db3d0c Fix gradient checkpoint test in encoder-decoder (#20017)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-02 14:15:09 +01:00
a6b7759880 Add Image Processors (#19796)
* Add CLIP image processor

* Crop size as dict too

* Update warning

* Actually use logger this time

* Normalize doesn't change dtype of input

* Add perceiver image processor

* Tidy up

* Add DPT image processor

* Add Vilt image processor

* Tidy up

* Add poolformer image processor

* Tidy up

* Add LayoutLM v2 and v3 imsge processors

* Tidy up

* Add Flava image processor

* Tidy up

* Add deit image processor

* Tidy up

* Add ConvNext image processor

* Tidy up

* Add levit image processor

* Add segformer image processor

* Add in post processing

* Fix up

* Add ImageGPT image processor

* Fixup

* Add mobilevit image processor

* Tidy up

* Add postprocessing

* Fixup

* Add VideoMAE image processor

* Tidy up

* Add ImageGPT image processor

* Fixup

* Add ViT image processor

* Tidy up

* Add beit image processor

* Add mobilevit image processor

* Tidy up

* Add postprocessing

* Fixup

* Fix up

* Fix flava and remove tree module

* Fix image classification pipeline failing tests

* Update feature extractor in trainer scripts

* Update pad_if_smaller to accept tuple and int size

* Update for image segmentation pipeline

* Update src/transformers/models/perceiver/image_processing_perceiver.py

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

* Update src/transformers/image_processing_utils.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/beit/image_processing_beit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* PR comments - docstrings; remove accidentally added resize; var names

* Update docstrings

* Add exception if size is not in the right format

* Fix exception check

* Fix up

* Use shortest_edge in tuple in script

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-11-02 11:57:36 +00:00
2e3452af0f make sentencepiece import conditional in bertjapanesetokenizer (#20012) 2022-11-02 07:44:37 -04:00
8827e1b217 clean up vision/text config dict arguments (#19954)
* clean up

* For backward compatibility

* clean up

* Same changes for more models

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-02 12:03:43 +01:00
cb630ffab8 Update object detection pipeline to use post_process_object_detection methods(#20004) 2022-11-02 10:26:36 +03:00
79c720c062 fix typo (#20006) 2022-11-01 11:30:36 -07:00
831590f6a9 Generate: contrastive search with full optional outputs (#19963)
* Use beam search functionality; Add extra outputs and test

* Add full tests for contrastive search

* Add error message on unconventional cache format
2022-11-01 18:15:36 +00:00
ab74ac11e4 Add LayoutLMv3 resource (#19932)
* add layoutlmv3 resource

* add layoutlmv2 resources

* fix button
2022-11-01 11:10:46 -07:00
dec8578e70 Add BERT resources (#19852)
* add resources for bert

* add course chapters

* apply reviews

* add pipeline icons and community resource

* fix buttons
2022-11-01 11:09:53 -07:00
1f6885bad0 add dataset (#20005) 2022-11-01 10:37:20 -07:00
4f1e5e4efd Add ESMFold code sample (#20000)
* Add ESMFold code sample

* sorry sylvain

* make fixup

* sorry sylvain again
2022-11-01 13:21:12 +00:00
38e5b71abb Add Japanese translated README (#19945)
* Add japanese translated README.md

* Add README_ja.md link

* Add japanese transkate to check_copies.py

* Add guide to Japanese README.md

* Update README_ja.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update utils/check_copies.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-01 09:18:08 -04:00
4f90fc1db8 typo (#20001) 2022-11-01 09:04:53 -04:00
c87ae86a8f Update image_classification.mdx (#19996) 2022-11-01 07:54:41 -04:00
c796b6dea6 Added onnx config whisper (#19525)
* Added onnx config whisper

* added whisper support onnx

* add audio input data

* added whisper support onnx

* fixed the seqlength value

* Updated the whisper onnx ocnfig

* restore files to old version

* removed attention mask from inputs

* Updated get_dummy_input_onnxruntime docstring

* Updated relative imports and token generation

* update docstring
2022-11-01 07:50:42 -04:00
c3a93d8d82 v4.25.0.dev0 2022-10-31 21:48:40 -04:00
7f9b7b3f0e Add ESMFold (#19977)
* initial commit

* First draft that gets outputs without crashing!

* Add all the ported openfold dependencies

* testing

* Restructure config files for ESMFold

* Debugging to find output discrepancies

* Mainly style

* Make model runnable without extra deps

* Remove utils and merge them to the modeling file

* Use correct gelu and remove some debug prints

* More cleanup

* Update esm docs

* Update conversion script to support ESMFold properly

* Port some top-level changes from ESMFold repo

* Expand EsmFold docstrings

* Make attention_mask optional (default to all 1s)

* Add inference test for ESMFold

* Use config and not n kwargs

* Add modeling output class

* Remove einops

* Remove chunking in ESM FFN

* Update tests for ESMFold

* Quality

* REpo consistency

* Remove tree dependency from ESMFold

* make fixup

* Add an error in case my structure map function breaks later

* Remove needless code

* Stop auto-casting the LM to float16 so CPU tests pass

* Stop auto-casting the LM to float16 so CPU tests pass

* Final test updates

* Split test file

* Copyright and quality

* Unpin PyTorch to see built doc

* Fix config file to_dict() method

* Add some docstrings to the output

* Skip TF checkpoint tests for ESM until we reupload those

* make fixup

* More docstrings

* Unpin to get even with main

* Flag example to write

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-10-31 21:32:58 -04:00
4c9e0f029e Add support for gradient checkpointing (#19990)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-10-31 18:37:17 +01:00
8214a9f66a Pin torch to < 1.13 temporarily (#19989)
* pin torch to < 1.13

* pin torch to < 1.13

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-31 18:22:52 +01:00
6aede2d602 Tranformers documentation translation to Italian #17459 (#19988) 2022-10-31 13:19:15 -04:00
f38a145418 [ASR] Update 'tasks' for model card (#19986) 2022-10-31 16:50:17 +00:00
9406c7bc82 [modelcard] Update for ASR (#19985)
* [modelcard] Update for ASR

* style
2022-10-31 16:49:58 +00:00
225c36fbe5 gradient checkpointing for GPT-NeoX (#19946)
* gradient checkpointing for GPT-NeoX

* initialize gradient checkpointing flag

* must set flag before init
2022-10-31 12:32:46 -04:00
6176e13612 [Doctest] Add configuration_deberta.py (#19968)
* Add Example docstring to DebertaConfig

* Add configuration_deberta to documentation_tests

* Add microsoft/deberta-base to example docstring

* Fix example docstring mistake
2022-10-31 17:22:01 +01:00
b047472650 donut -> donut-swin (#19920)
* donut -> donut-swin

* remove ("donut-swin", "DonutProcessor")

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-31 14:56:16 +01:00
a83bb45fb8 Fix repo consistency 2022-10-31 06:42:46 -04:00
243439a827 Fix ONNX tests for ONNX Runtime v1.13.1 (#19950)
* Fix ONNX tests for ONNX Runtime v1.13.1

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-31 09:21:45 +01:00
0b294c2334 [Conditional, Deformable DETR] Add postprocessing methods (#19709)
* Add postprocessing methods

* Update docs

* Add fix

* Add test

* Add test for deformable detr postprocessing

* Add post processing methods for segmentation

* Update code examples

* Add post_process to make the pipeline work

* Apply updates

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-10-31 08:28:44 +01:00
2e35bac4e7 Add wav2vec2 resources (#19931)
* add wav2vec2 resources

* apply review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2022-10-28 13:28:18 -07:00
9d2788b46b add resources for distilbert (#19930) 2022-10-28 13:16:07 -07:00
b0a2c3a2d6 add resources for bart (#19928) 2022-10-28 13:15:43 -07:00
98c9c5add9 Update Code of Conduct to Contributor Covenant v2.1 (#19935)
* Update Code of Conduct to Contributor Covenant v2.1

* Update CODE_OF_CONDUCT.md
2022-10-28 11:03:38 -04:00
0d4c45c585 Add Onnx Config for ImageGPT (#19868)
* add Onnx Config for ImageGPT

* add generate_dummy_inputs for onnx config

* add TYPE_CHECKING clause

* Update doc for generate_dummy_inputs

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-28 09:39:53 -04:00
9b1dcba94a Use self._trial to generate trial_name for Trainer. (#19874)
* Do not generate trial_name when trail is None

* Use (trial or self._trial) to generate trial_name

* Follow comments
2022-10-28 08:47:47 -04:00
347ba38cb4 Support segformer fx (#19924)
* Support segformer fx

* Add fx_compatible attribute to test_modeling_segformer.py

* Update glpn model (fx support)

glpn model was copied from segformer.

* Update utils/fx.py | add semantic-segmentation

for SegformerForSemanticSegmentation model

* Fix minor import order(isort)

* Add random input generation for segformer fx

Co-authored-by: noelbird <lduldu00228@gmail.com>
2022-10-28 08:44:38 -04:00
dcca71be61 Create dummy models (#19901)
* create dummy models

* quality

* update

* update

* Make Wav2Vec2Conformer work

* style

* deal with models with text_config and vision_config

* apply suggestions

* Composite models

* style

* style

* fix shape issue

* fix shape issue

* For VisionTextDualEncoderModel

* show_progress=False when converting tokenizers

* Fix for OwlViT

* Fix for VisualBert

* Update

* final

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-28 13:05:41 +02:00
4cef546ffc Add accelerate support for BART-like models (#19927)
* forward contrib credits from suggestion

* add `accelerate` support for BART-like models

Co-authored-by: sgugger <sgugger@users.noreply.github.com>
2022-10-27 23:14:53 +02:00
ebfd7229d2 Let inputs of fast tokenizers be tuples as well as lists (#19898)
* Let inputs of fast tokenizers be tuples as well as lists

* Update src/transformers/tokenization_utils_fast.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Style

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-10-27 16:03:11 -04:00
6c24443ff5 Safetensors tf (#19900)
* Wip

* Add safetensors support for TensorFlow

* First tests

* Add final test for now

* Retrigger CI like this

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-10-27 15:56:29 -04:00
e4132952a1 Add GPT2 resources (#19879)
* add resources for gpt2

* add pipeline icons and community resources
2022-10-27 11:34:00 -07:00
d818dd3a41 Add BLOOM resources (#19881)
* add bloom resources

* add pipeline icon
2022-10-27 11:33:52 -07:00
50f5266b2c Add T5 resources (#19878)
* add resources for t5

* add pipeline icons and community resources
2022-10-27 11:33:37 -07:00
536a8ae6ad Add RoBERTa resources (#19911)
* add roberta resources

* fix typo
2022-10-27 11:33:15 -07:00
d56d723fad Add accelerate support for M2M100 (#19912)
* add `accelerate` support for M2M100

* fix device set nit
2022-10-27 18:06:55 +02:00
c766a2d70a Remove embarrassing debug print() in save_pretrained (#19922) 2022-10-27 10:56:48 -04:00
1e6141c3d4 Add type hints to TFPegasusModel (#19858)
* added typing to call in TFPegasusModel and TFPegasusForConditionalGeneration

* fixed type for TFPegasusForConditionalGeneration call
2022-10-27 15:43:58 +01:00
ecf29db0e5 Fix warning when collating list of numpy arrays (#19846) 2022-10-27 09:00:39 -04:00
ea118ae2e1 Fix bug in Wav2Vec2's GPU tests (#19803)
* Fix tests when running on GPU

* Fix tests that require mp.set_start_method
2022-10-27 09:00:03 -04:00
f1e42bc50e Some fixes regarding auto mappings and test class names (#19923)
* Add pegasus_x

* ViTMSN

* ESM

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-27 14:38:59 +02:00
bec78ba154 Convert None logits processor/stopping criteria to empty list. (#19880)
* Convert None logits processor/stopping criteria to empty list.

* Initialize stopping_criteria, logits_processor in generate.

* Default stopping_criteria, logits_processor to None.

Co-authored-by: Chandler May <chandler.j.may@gmail.com>
2022-10-27 08:00:18 -04:00
568e578310 Generate: contrastive search uses existing abstractions and conventions (#19896) 2022-10-27 12:20:14 +01:00
803475fb69 Add checkpoint links in a few config classes (#19910)
* For CLIP

* Others

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-27 09:26:10 +02:00
7629656926 accelerate support for RoBERTa family (#19906) 2022-10-26 22:41:53 +02:00
6d023270f6 Allow flax subfolder (#19902)
* add first generation tutorial

* [Flax] Add subfolder functionality

* [Flax] Add subfolder functionality

* up

* finish

* delete file and re-add test
2022-10-26 18:33:23 +02:00
7a1c68a845 Add flan-t5 documentation page (#19892)
* add `flan-t5` documentation page

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add more content

* revert `_toctree` modif

* revert `toctree` modif - 2

* Update README.md

* Revert "Update README.md"

This reverts commit 56607144299c5fdf7b18abdb776efd0d03287727.

* Update README_es.md

* Update README_zh-hans.md

* Update README_zh-hant.md

* Update README_ko.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-26 17:22:57 +02:00
688c3e8e40 Update max_diff in test_save_load_fast_init_to_base (#19849)
* Fix test_save_load_fast_init_to_base

* Fix test_save_load_fast_init_to_base

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-26 17:09:47 +02:00
7829c890db Change the import of kenlm from github to pypi (#19770)
* Change the import of kenlm from github to pypi

* Change the import of kenlm from github to pypi in circleci config

* Fix code quality issues

* Fix isort issue, add kenlm in extras for audio

* Add kenlm to deps

* Add kenlm to deps

* Commit 'make fixup' changes

* Remove version from kenlm deps

* commit make fixup changes

* Remove manual installation of kenlm

* Remove manual installation of kenlm

* Remove manual installation of kenlm
2022-10-26 17:06:46 +02:00
aeae97829f Add missing information on token_type_ids for roberta model (#19766)
* Add missing information on token_type_ids for roberta model

* Fix code format issues

* Fix code format issues

* Add more explicit document for token_type_ids for roberta

* Fix flake8 issues

* Fix flake8 issues

* Fix flake8 issues

* Fix flake8 issues

* Fix flake8 issues
2022-10-26 10:44:34 -04:00
fdffee8a60 No conv bn folding in ipex to avoid warning (#19870)
* no conv bn folding in ipex

* no flag in training

* comment

Co-authored-by: Sander Land <sander@chatdesk.com>
2022-10-26 08:58:52 -04:00
802b98c72b Correct README image text (#19883)
swap "right" and "left" so description is correct.
2022-10-26 08:38:01 -04:00
5d2d51a0fb Fix LR (#19875) 2022-10-26 08:35:53 -04:00
1f1cc09df6 [DOCTEST] Config doctest for MCTCT, MBart and LayoutLM (#19889)
* Update documentation_tests.txt

* Update configuration_mbart.py

* Update configuration_mctct.py

* Update configuration_layoutlm.py

* Update configuration_layoutlmv2.py

* Update configuration_layoutlmv3.py

* Update documentation_tests.txt
2022-10-26 12:05:44 +02:00
5fd5990dce Factored out some code in the image-segmentation pipeline. (#19727)
* Factored out some code in the image-segmentation pipeline

Re-enable `small_model_pt`.

Re-enable `small_model_pt`.

Enabling the current test with the current values.

Debugging the values on the CI.

More logs ? Printing doesn't work ?

Using the CI values instead. Seems to be a Pillow sensitivity.

Added a test showcasing that models not supporting some tasks get a
clear error.

Factored out code.

Further factor out.

Fixup.

Bad rebase.

Put `panoptic` before `instance` as it should be a superset.

* Fixing tests.

* Adding subtasks tests

+ Fixes `instance` segmentation which was broken due to default and
non kwargs arguments.

* Fix bad replace.
2022-10-26 10:44:36 +02:00
2447672269 Update doc for revision and token (#19793)
* Update doc for revision and token

* Update src/transformers/configuration_utils.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Push changes on other from_pretrained methods

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-10-25 12:32:15 -04:00
f9257843b5 Fix incorrect model<->tokenizer mapping in tokenization testing (#19872)
* Fix model-tokenizer mapping

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-25 16:02:13 +02:00
eedaba682f [Past CI] Vilt only supports PT >= v1.10 (#19851)
* Support for Vilt in v1.9

* Skip if not higher or equal than 1.10

* Move test :)

* I am bad at python
2022-10-25 15:59:35 +02:00
d39f794eda Generate: contrastive search cosmetic tweaks (#19871) 2022-10-25 14:43:06 +01:00
0a77249178 Added translation of serialization.mdx to Portuguese Issue #16824 (#19869)
* [ custom_models.mdx ] - Translated to Portuguese the custom models tutorial.

* [ run_scripts.mdx ] - Translated to Portuguese the run scripts tutorial.

* [ converting_tensorflow_models.mdx ] - Translated to Portuguese the converting tensorflow models tutorial.

* [ converting_tensorflow_models.mdx ] - Translated to Portuguese the converting tensorflow models tutorial.

* [ serialization.mdx ] - Translated to Portuguese the serialization tutorial.
2022-10-25 09:34:28 -04:00
ab108a0e31 Add missing lang tokens in M2M100Tokenizer.get_vocab (#18416) 2022-10-25 09:18:24 -04:00
0bd6d9340e Fix doctest for GenerationMixin.contrastive_search (#19863)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-25 14:51:16 +02:00
371337a95b Spanish translation of multiple_choice.mdx, question_answering.mdx. (#19821)
* Translated multiple_choice.mdx, question_answering.mdx. Added them to _toctree.yml

* Added translation for a missed line.

* Update _toctree.yml as per Omar's suggestions

* Update multiple_choice.mdx as per Omar's comments

* Updt question_answering.mdx as per Omar's comments
2022-10-24 20:11:34 -04:00
d4eb52d13d Refactor conversion function (#19799)
* Refactor conversion function

* Remove dupe line

* Fixes

* Fixes

* Use the right variable...

* Fix last test
2022-10-24 13:48:40 -04:00
9ecb13d63a add small updates only (#19847) 2022-10-24 10:18:20 -07:00
072ed01c38 Fix doctest for MarkupLM (#19845)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-24 17:54:23 +02:00
1f7e40d04f Improve check copies (#19829)
* print first diff line intead of first code part line

* fix style
2022-10-24 11:24:18 -04:00
8b2501b4b9 Update LEDModelIntegrationTests expected values (#19841)
* Update expected values

* fix style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-24 16:05:26 +02:00
5cbf1fa8ca fixed typo in fp16 training section for perf_train_gpu_one (#19736) 2022-10-24 10:04:28 -04:00
8db92dbe26 Fix nightly CircleCI (#19837)
* Fix nightly CircleCI

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-24 16:00:02 +02:00
743995e0e6 Added translation of converting_tensorflow_models.mdx to Portuguese Issue #16824 (#19824)
* [ custom_models.mdx ] - Translated to Portuguese the custom models tutorial.

* [ run_scripts.mdx ] - Translated to Portuguese the run scripts tutorial.

* [ converting_tensorflow_models.mdx ] - Translated to Portuguese the converting tensorflow models tutorial.

* [ converting_tensorflow_models.mdx ] - Translated to Portuguese the converting tensorflow models tutorial.
2022-10-24 09:50:16 -04:00
d3f4cef74d fix image2test args forwarding (#19648)
* fix image2test args forwarding

* fix issues

* Proposing the update to the PR.

* Fixup.

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2022-10-24 09:49:24 -04:00
3b419cfc6f fix broken links in testing.mdx (#19820) 2022-10-24 09:48:02 -04:00
7ccd6fc47c Fix OOM in Config doctest (#19840)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-24 15:33:00 +02:00
18adc40d87 replace reference to Datasets in metrics deprecation with Evaluate (#19812) 2022-10-24 09:25:57 -04:00
0b59ecdefd Display the number of trainable parameters when lauching a training (#19835) 2022-10-24 09:15:52 -04:00
536f338441 [Doctest] Add configuration_nezha.py (#19810)
* [Doctest] Add `configuration_nezha.py`

* Revert line order
2022-10-24 13:50:43 +02:00
f58b211ed3 [Doctest] Add configuration_electra.py (#19807) 2022-10-24 12:34:43 +02:00
c949188b9d [Doctest] Add configuration_poolformer.py (#19808) 2022-10-24 12:33:46 +02:00
82df83a96b [Doctest] Add configuration_plbart.py (#19809)
Additionally, I updated the doctest format to be consistent with BERT.
2022-10-24 12:32:55 +02:00
22502ebb85 [Doctest] MaskFormerConfig doctest (#19817) 2022-10-24 11:08:32 +02:00
6f8064da6b install GitPython 2022-10-24 09:54:15 +02:00
674f750a57 Generate: minor docstring fix (#19801) 2022-10-23 10:46:47 +01:00
74b3eb3dea Added translation of run_scripts.mdx to Portuguese Issue #16824 (#19800)
* [ custom_models.mdx ] - Translated to Portuguese the custom models tutorial.

* [ run_scripts.mdx ] - Translated to Portuguese the run scripts tutorial.
2022-10-21 17:38:35 -04:00
3436842102 Run some TF Whisper tests in subprocesses to avoid GPU OOM (#19772)
* Run some TF Whisper tests in subprocesses to avoid GPU OOM

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-21 21:59:18 +02:00
e0b825a8d0 Generate: contrastive search test updates (#19787)
* contrastive search test updates

* make fixup
2022-10-21 19:10:08 +01:00
c4a997cd85 Use None to detect if truncation was unset (#19794)
* Use None to detect if truncation was unset

* Fix repo consistency
2022-10-21 12:53:37 -04:00
2e5c6f5975 Fix error/typo in docstring of TokenClassificationPipeline (#19798) 2022-10-21 12:53:16 -04:00
cca51aa151 Fix image segmentation pipeline errors, resolve backward compatibility issues (#19768)
* Fix panoptic segmentation and pipeline
* Update ImageSegmentationPipeline tests and reenable test_small_model_pt
* Resolve backward compatibility issues
2022-10-21 18:09:58 +03:00
b58d4f70f6 Fix nightly test setup (#19792) 2022-10-21 10:26:30 -04:00
3a1aeea3c5 Fix CTRL test_torchscrip_xxx CI by updating _create_and_check_torchscript (#19786)
* Run inputs before trace

* Run inputs before trace

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-21 16:23:13 +02:00
31565ff0fd Add sentencepiece to BertJapaneseTokenizer (#19769)
* support sentencepiece for bertjapanesetokenizer

* add test vocab file for sentencepiece, bertjapanesetokenizer

* make BasicTokenizer be identical to transformers.models.bert.tokenization_bert.BasicTokenizer

* fix missing of \n in comment

* fix init argument missing in tests

* make spm_file be optional, exclude spiece.model from tests/fixtures, and add description comments

* make comment length less than 119

* apply doc style check
2022-10-21 10:04:49 -04:00
2ebf4e6a7b [ custom_models.mdx ] - Translated to Portuguese the custom models tutorial. (#19779) 2022-10-21 09:48:19 -04:00
c1f009ad9a Update training.mdx (#19791) 2022-10-21 09:46:44 -04:00
9151e649a5 Make public versions of private tensor utils (#19775)
* Make public versions of private utils

* I need sleep
2022-10-21 09:34:01 -04:00
3aaabaa214 Update ImageToTextPipelineTests.test_small_model_tf (#19785)
* update expected values for the correct TF checkpoint

* Run test

* Clean up

* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-21 14:35:20 +02:00
7487829a23 Added support for multivariate independent emission heads (#19453)
* Added support for multivariate independent emission heads

* fix typo

* rename distr_cls

* scale is a vector for multivariate

* set affine transform event_dim

* fix typo

* added variable

* added beta in the config

* set beta

* remove beta-nll option in nll
2022-10-21 08:32:10 -04:00
a5da6f1817 Add warning about restarting runtime to import errors (#19774)
* Add warning about restarting runtime to import errors

* Fix some linebreaks
2022-10-21 11:52:29 +01:00
84f6bee5da PT <-> TF for composite models (#19732)
* First step of PT->TF for composite models

* Update the tests

* For VisionEncoderDecoderModel

* Fix

* Fix

* Add comment

* Fix

* clean up import

* Save memory

* For (TF)EncoderDecoderModel

* For (TF)EncoderDecoderModel

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-21 12:40:39 +02:00
12ce2941c7 Fix docker image build (#19759)
* Use 2 jobs for the docker image build (latest torch + DS)

* fix

* Add comment

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-20 20:36:13 +02:00
15fd39ea0e Install tf2onnx dev version (#19755)
* pin tf2onnx<=1.12.0

* Install tf2onnx main

* Pin to a specific commit

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-20 20:24:39 +02:00
5ed9bd1896 TF: sample generation compatible with XLA and dynamic batch sizes (#19773) 2022-10-20 19:01:22 +01:00
c186e816bd [FLAX] Add dtype to embedding for gpt2 model (#18462)
* [FLAX] Add dtype to embedding for gpt2 model

* lint
2022-10-20 18:15:49 +02:00
baa00f65ae Fix exception thrown using MishActivation (#19739)
* Fix exception thrown using MishActivation

* Update activations.py
2022-10-20 09:13:35 -04:00
2dd1b8f0c5 adding key pair dataset (#19765) 2022-10-20 09:05:49 -04:00
17d7aec895 Update modeling_layoutlmv3.py (#19753) 2022-10-20 13:47:17 +01:00
a40386669f image-segmentation pipeline: re-enable small_model_pt test. (#19716)
* Re-enable `small_model_pt`.

Re-enable `small_model_pt`.

Enabling the current test with the current values.

Debugging the values on the CI.

More logs ? Printing doesn't work ?

Using the CI values instead. Seems to be a Pillow sensitivity.

* Update src/transformers/pipelines/image_segmentation.py

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
2022-10-20 11:57:11 +02:00
eb98da9880 [Doctest] OpenAIGPTConfig and OPTConfig (#19763) 2022-10-20 10:22:00 +02:00
506355ca75 [Doctest] SpeechToTextTransformer2 Config for doctest (#19756) 2022-10-20 10:19:06 +02:00
123f65eea6 [Doctest] SqueezeBERT Config for doctest (#19758) 2022-10-20 10:16:39 +02:00
cc03063366 [Doctest] SpeechToTextTransformer Config for doctest (#19757) 2022-10-20 10:15:07 +02:00
bbe2c8b126 All broken links were fixed in contributing file (#19760) 2022-10-19 16:44:03 -04:00
5602a3ae1e Fixed spacing errors (#19754)
Co-authored-by: Shreya <>
2022-10-19 14:54:30 -04:00
0a03741590 [Doctest] Add configuration_detr.py (#19752) 2022-10-19 18:13:34 +02:00
65d36ee861 [Doctest] Add configuration_decision_transformer.py (#19751) 2022-10-19 18:12:34 +02:00
5041bc3511 Image transforms add center crop (#19718)
* Add center crop to transforms library

* Return PIL images if PIL image input by default

* Fixup and add docstring

* Trigger CI

* Update src/transformers/image_transforms.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/image_transforms.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* PR comments - move comments; unindent

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-19 16:15:01 +01:00
44a40c1466 Fix cache version file creation (#19750) 2022-10-19 10:55:57 -04:00
bed2edb99f Specify TF framework explicitly in more pipeline tests (#19748)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-19 16:24:03 +02:00
c206fc8779 [Doctest] Add configuration_wavlm.py (#19749)
* Change the import order of the model and configuration classes

* Add (with random weights) in the comment before model initialization

* Add configuration_wavlm to doctest
2022-10-19 16:10:13 +02:00
b17a5e0074 Fix issue #19300 (#19483)
* Fix issue #19300

* Fixing import order

* Fix issue #19300

* Fix formatting issues

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Refactor method

* Refactor method

* Fix the issue of sending wrong output dir

* Remove unused code

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-19 09:55:37 -04:00
d2ed8134f1 Update modeling_markuplm.py (#19723) 2022-10-19 13:46:11 +01:00
7df0751cc6 [Doctest] GPTNeoConfig , GPTNeoXConfig , GPTNeoXJapaneseConfig (#19741) 2022-10-19 14:22:41 +02:00
71786b10c5 Adding the state-of-the-art contrastive search decoding methods for the codebase of generation_utils.py (#19477)
* add: the contrastive search for generaton_utils

* add: testing scripts for contrastive search under examples/text-generation

* update the quality of codes

* revise the docstring; make the generation_contrastive_search.py scripts;

* revise the examples/pytorch/text-generation/run_generation_contrastive_search.py to the auto-APIs format

* revise the necessary documents

* fix: revise the docstring of generation_contrastive_search.py

* Fix the code indentation

* fix: revise the nits and examples in contrastive_search docstring.

* fix the copyright

* delete generation_contrastive_search.py

* revise the logic in contrastive_search

* update the intergration test and the docstring

* run the tests over

* add the slow decorate to the contrastive_search intergrate test

* add more test

* do the style, quality, consistency checks
2022-10-19 10:17:46 +01:00
fc5fdc109d [Doctest] Add configuration_clip.py (#19647)
* CLIP Config for doctest

* add doc example to CLIPConfig

* add from_text_vision_configs example

* added comment explaining objective
2022-10-19 09:51:26 +02:00
c9a0da1e12 [Doctest] XLM Config for doctest (#19685) 2022-10-19 07:10:30 +02:00
eccbdbcd4d [Doctest] Add wav2vec2_conformer for doctest (#19734) 2022-10-19 06:47:41 +02:00
32670805fc Update contribution guide (#19700)
* update the contribution guide

* apply review feedback

* fix checkboxes

* checkbox fix #2

* clarify force push
2022-10-18 17:20:12 -07:00
ebee0a2794 Remove debug statement 2022-10-18 13:58:09 -04:00
fa8ed9ca76 [Doctest] Add doctest for FlavaConfig and FNetConfig (#19724) 2022-10-18 19:56:49 +02:00
31ec424b3d Add decorator to flaky test (#19674) 2022-10-18 18:51:37 +01:00
a929f81e92 Repo utils test (#19696)
* Create repo utils test job

* Last occurence

* Add tests for tests_fetcher

* Better filtering

* Let's learn more

* Should fix

* Should fix

* Remove debug

* Style

* WiP

WiP

WiP

WiP

WiP

WiP

WiP

WiP

WiP

* Quality

* address review comments

* Fix link
2022-10-18 13:47:36 -04:00
a23819ed6a Clean up deprecation warnings (#19654)
* Clean up deprecation warnings

Notes:
Changed some strings in tests to raw strings, which will change the literal content of the strings as they are fed into whatever machine handles them.
Test cases for past in the past/past_key_values switch changed/removed due to warning of impending removal

* Add PILImageResampling abstraction for PIL.Image.Resampling
2022-10-18 13:34:47 -04:00
af556a09f6 add accelerate support for Whisper (#19697) 2022-10-18 18:25:49 +02:00
fb0bd7b7a8 Fix activations being all the same module (#19728) 2022-10-18 11:56:45 -04:00
14fe3e0410 Add docs (#19729)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-10-18 17:42:46 +02:00
06a82a49ae Specify TF framework in TF-related pipeline tests (#19719)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-18 17:40:28 +02:00
f3ed26a3fb [Doctest] Fixing doctest configuration_pegasus_x.py (#19725)
* Fixed pegasus_x config doctest

* Test commit

Co-authored-by: mukesh663 <mukesh13034@gmail.com>
2022-10-18 17:19:31 +02:00
5864051109 [Doctest] Adding config files for convnext (#19717)
* Adding config files for configuration_clip.py

* Adding config files for convnext

* Undoing

* making the required changes

* Update documentation_tests.txt
2022-10-18 17:10:09 +02:00
63d13d768b Improving image-segmentation pipeline tests. (#19710)
This PR (https://github.com/huggingface/transformers/pull/19367) introduced a few breaking changes:

- Removed an argument `mask_threshold`.
- Broke the default behavior (instance vs panoptic in the function call)
  https://github.com/huggingface/transformers/pull/19367/files#diff-60f846b86fb6a21d4caf60f5b3d593a04accb8f248de3029cccae2ff898c5bc3R119-R120
- Broke the actual masks: https://github.com/huggingface/transformers/pull/1961

This PR is the start of a handful that will aim at bringing back the old
behavior(s).

- tests should not have to specify `task` by default, unless we want to
  modify the behavior and have a lower form of segmentation running)
- `test_small_model_pt` should be working.

This specific PR starts with adding more information to the masks hash
because missing the actual mask was actual easy to miss (the hashes do
change, but it was easy to miss that one code path wasn't properly
updated).

So we go from a simple `hash` to
```
{"hash": #smaller hash, "shape": (h, w), "white_pixels": n}
```

The `shape` should help make sure the interpolation of the mask works
correctly, the `white_pixels` hopefully helps detect big regressions in
their amount when the hash gets modified.
2022-10-18 16:33:53 +02:00
ee2a80ecc0 add return_tensors parameter for feature_extraction 2 (#19707)
* add return_tensors parameter for feature_extraction  w/ test

add return_tensor parameter for feature extraction

Revert "Merge branch 'feature-extraction-return-tensor' of https://github.com/ajsanjoaquin/transformers into feature-extraction-return-tensor"

This reverts commit d559da743b87914e111a84a98ba6dbb70d08ad88, reversing
changes made to bbef89278650c04c090beb65637a8e9572dba222.

call parameter directly

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

Fixup.

Update src/transformers/pipelines/feature_extraction.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix the imports.

* Fixing the test by not overflowing the model capacity.

Co-authored-by: AJ San Joaquin <ajsanjoaquin@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-18 16:29:00 +02:00
02b63702d9 fix seq2seqtrainer predict without labels (#19721) 2022-10-18 09:42:15 -04:00
fac1f4b188 ]Fixed pegasus config doctest (#19722)
Co-authored-by: mukesh663 <mukesh13034@gmail.com>
2022-10-18 15:38:57 +02:00
dd523da577 Add table transformer [v2] (#19614)
* First draft

* Add conversion script

* Make conversion work

* Upload checkpoints

* Add final fixes

* Revert changes of conditional and deformable detr

* Fix toctree, add and remove copied from

* Use model type

* Improve docs

* Improve code example

* Update copies

* Add copied formt

* Don't update conditional detr

* Don't update deformable detr
2022-10-18 15:20:09 +02:00
713eab45d3 🚨 🚨 🚨 [Breaking change] Deformable DETR intermediate representations (#19678)
* [Breaking change] Deformable DETR intermediate representations

- Fixes naturally the `object-detection` pipeline.
- Moves from `[n_decoders, batch_size, ...]` to `[batch_size,
  n_decoders, ...]` instead.

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-18 09:00:39 -04:00
fd99ce3329 [Doctest] Add configuration_wav2vec2.py to documentation_tests.py (#19698) 2022-10-18 14:57:34 +02:00
8fcbbd3d53 [Doctest] CVT config for doctest (#19695) 2022-10-18 14:55:56 +02:00
af150e4a1c Allow user-managed Pool in Wav2Vec2ProcessorWithLM.batch_decode (#18351)
* [Wav2Vec2] Allow user-managed Pool in Wav2Vec2ProcessorWithLM.batch_decode

* [Wav2Vec2] Add user-managed LM's pool tests and usage examples

* Improve styling

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* [Wav2Vec2] Fix hyperlink references

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-18 08:48:03 -04:00
bf0e094142 Fix redundant normalization of OWL-ViT text embeddings (#19712) 2022-10-18 15:15:36 +03:00
71ca79448c Fix typo in perf docs (#19705) 2022-10-18 12:18:19 +02:00
fd5eac5f71 Small fixes for TF-ESM1b and ESM-1b weight conversions (#19683) 2022-10-18 10:41:09 +01:00
90071fe42b Improve DETR models (#19644)
* Improve DETR models

* Fix Deformable DETR loss and matcher

* Fixup

* Fix integration tests

* Improve variable names

* Apply suggestion

* Fix copies

* Fix DeformableDetrLoss

* Make Conditional DETR copy from Deformable DETR

* Copy from deformable detr's hungarian matcher

* Fix bug
2022-10-18 10:29:14 +02:00
072dfdaee4 update documentation (#19706) 2022-10-18 10:07:15 +02:00
fd9a027aca Fix docs (#19687)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-10-18 09:52:51 +02:00
3e07196f89 check decoder_inputs_embeds is None before shifting labels (#19671) 2022-10-18 09:14:12 +02:00
d356b89f3c fix test whisper with new max length (#19668) 2022-10-18 08:56:37 +02:00
d51ca32404 fix tests (#19670) 2022-10-18 06:45:48 +02:00
344e2664d4 Fix dtype in radnomly initialized head (#19690) 2022-10-17 15:54:23 -04:00
07f6690206 Fix checkpoint used in VisualBertConfig doc example (#19692)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-17 21:22:59 +02:00
2400eb4ca2 Fix some CI torch device issues for PyTorch 1.13 (#19681)
* fix some device issues for pt 1.13

* Update src/transformers/models/ctrl/modeling_ctrl.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-17 20:57:38 +02:00
2add2007c1 [Doctest] Add configuration_data2vec_vision.py (#19637)
* Data2Vec Vision Config for doctest

* made suggested changes

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-10-17 20:56:42 +02:00
563b42faf0 Update CONTRIBUTING.md (#19689)
punctuation missing
2022-10-17 14:55:59 -04:00
684165b882 [Doctest] Add configuration_realm.py (#19646)
* Update configuration_realm.py

* realm config for doctest

* Update configuration_realm.py doc

* Update documentation_tests

* clean up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-17 20:53:24 +02:00
5ac2f82267 [Doctest] Add configuration_convbert.py (#19643)
* ConvBERT config for doctest

* Add empty lines
2022-10-17 20:29:18 +02:00
94d7c3ba44 [Examples] make default preprocessing_num_workers=1 (#19684)
* [Examples] make default preprocessing_num_workers=1

* [Examples] revert changes in research projects
2022-10-17 14:17:01 -04:00
c7edde1a69 Fix quality 2022-10-17 13:32:08 -04:00
ed858f5354 Removed XLMModel inheritance from FlaubertModel(torch+tf) (#19432)
* FlaubertModel inheritance from XLMModel removed

* Fix style and add FlaubertPreTrainedModel to __init__

* Fix formatting issue

* Fix Typo and repo-consistency

* Fix style

* add FlaubertPreTrainedModel to TYPE_HINT

* fix repo consistency

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_tf_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_tf_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* removed redundant Copied from comments

* added missing copied from comments

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-17 13:25:30 -04:00
5fda1fbd46 Update ESM checkpoints to point to facebook/ (#19675)
* Update checkpoints to point to `facebook/`

* make fixup
2022-10-17 18:09:24 +01:00
4d77f18cba [Doctest] Data2VecAudio Config for doctest (#19635) 2022-10-17 18:39:15 +02:00
4181320b8c Add normalize to image transforms module (#19544)
* Adapt FE methods to transforms library

* Mixin for saving the image processor

* Base processor skeleton

* BatchFeature for packaging image processor outputs

* Initial image processor for GLPN

* REmove accidental import

* Fixup and docs

* Mixin for saving the image processor

* Fixup and docs

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Fixup and docs

* Fixup and docs

* Fixup and docs

* BatchFeature for packaging image processor outputs

* Import BatchFeature from feature_extraction_utils

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Fixup and docs

* BatchFeature for packaging image processor outputs

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Mixin for saving the image processor

* Fixup and docs

* Add rescale back and remove ImageType

* fix import mistake

* Fix enum var reference

* Can transform and specify image data format

* Remove redundant function

* Update reference

* Data format flag for rescale

* Fix typo

* Fix dimension check

* Fixes to make IP and FE outputs match

* Add tests for transforms

* Add test for utils

* Update some docstrings

* Make sure in channels last before converting to PIL

* Remove default to numpy batching

* Fix up

* Add docstring and model_input_types

* Use feature processor config from hub

* Alias GLPN feature extractor to image processor

* Alias feature extractor mixin

* Add return_numpy=False flag for resize

* Fix up

* Fix up

* Use different frameworks safely

* Safely import PIL

* Call function checking if PIL available

* Only import if vision available

* Address Sylvain PR comments
Co-authored-by: Sylvain.gugger@gmail.com

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/image_transforms.py

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

* Update src/transformers/models/glpn/feature_extraction_glpn.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add in docstrings

* Fix TFSwinSelfAttention to have relative position index as non-trainable weight (#18226)

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Refactor `TFSwinLayer` to increase serving compatibility (#18352)

* Refactor `TFSwinLayer` to increase serving compatibility

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix missed parameters while refactoring

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix window_reverse to calculate batch size

Signed-off-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add TF prefix to TF-Res test class (#18481)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Remove py.typed (#18485)

* Fix pipeline tests (#18487)

* Fix pipeline tests

* Make sure all pipelines tests run with init changes

* Use new huggingface_hub tools for download models (#18438)

* Draft new cached_file

* Initial draft for config and model

* Small fixes

* Fix first batch of tests

* Look in cache when internet is down

* Fix last tests

* Bad black, not fixing all quality errors

* Make diff less

* Implement change for TF and Flax models

* Add tokenizer and feature extractor

* For compatibility with main

* Add utils to move the cache and auto-do it at first use.

* Quality

* Deal with empty commit shas

* Deal with empty etag

* Address review comments

* Fix `test_dbmdz_english` by updating expected values (#18482)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Move cache folder to huggingface/hub for consistency with hf_hub (#18492)

* Move cache folder to just huggingface

* Thank you VsCode for this needless import

* Move to hub

* Forgot one

* Update some expected values in `quicktour.mdx` for `resampy 0.3.0` (#18484)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Forgot one new_ for cache migration

* disable Onnx test for google/long-t5-tglobal-base (#18454)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Typo reported by Joel Grus on TWTR (#18493)

* Just re-reading the whole doc every couple of months 😬 (#18489)

* Delete valohai.yaml

* NLP => ML

* typo

* website supports https

* datasets

* 60k + modalities

* unrelated link fixing for accelerate

* Ok those links were actually broken

* Fix link

* Make `AutoTokenizer` auto-link

* wording tweak

* add at least one non-nlp task

* `transformers-cli login` => `huggingface-cli login` (#18490)

* zero chance anyone's using that constant no?

* `transformers-cli login` => `huggingface-cli login`

* `transformers-cli repo create` => `huggingface-cli repo create`

* `make style`

* Add seed setting to image classification example (#18519)

* [DX fix] Fixing QA pipeline streaming a dataset. (#18516)

* [DX fix] Fixing QA pipeline streaming a dataset.

QuestionAnsweringArgumentHandler would iterate over the whole dataset
effectively killing all properties of the pipeline.
This restores nice properties when using `Dataset` or `Generator` since
those are meant to be consumed lazily.

* Handling TF better.

* Clean up hub (#18497)

* Clean up utils.hub

* Remove imports

* More fixes

* Last fix

* update fsdp docs (#18521)

* updating fsdp documentation

* typo fix

* Fix compatibility with 1.12 (#17925)

* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* fix torch.onnx.symbolic_opset12 import

* Reject bad version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Remove debug statement

* Specify en in doc-builder README example (#18526)

Co-authored-by: Ankur Goyal <ankur@impira.com>

* New cache fixes: add safeguard before looking in folders (#18522)

* unpin resampy (#18527)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

*  update to use interlibrary links instead of Markdown (#18500)

* Add example of multimodal usage to pipeline tutorial (#18498)

* 📝 add example of multimodal usage to pipeline tutorial

* 🖍 apply feedbacks

* 🖍 apply niels feedback

* [VideoMAE] Add model to doc tests (#18523)

* Add videomae to doc tests

* Add pip install decord

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Update perf_train_gpu_one.mdx (#18532)

* Update no_trainer.py scripts to include accelerate gradient accumulation wrapper (#18473)

* Added accelerate gradient accumulation wrapper to run_image_classification_no_trainer.py example script

* make fixup changes

* PR comments

* changed input to Acceletor based on PR comment, ran make fixup

* Added comment explaining the sync_gradients statement

* Fixed lr scheduler max steps

* Changed run_clm_no_trainer.py script to use accelerate gradient accum wrapper

* Fixed all scripts except wav2vec2 pretraining to use accelerate gradient accum wrapper

* Added accelerate gradient accum wrapper for wav2vec2_pretraining_no_trainer.py script

* make fixup and lr_scheduler step inserted back into run_qa_beam_search_no_trainer.py

* removed changes to run_wav2vec2_pretraining_no_trainer.py script and fixed using wrong constant in qa_beam_search_no_trainer.py script

* Add Spanish translation of converting_tensorflow_models.mdx (#18512)

* Add file in spanish docs to be translated

* Finish translation to Spanish

* Improve Spanish  wording

* Add suggested changes from review

* Spanish translation of summarization.mdx (#15947) (#18477)

* Add Spanish translation of summarization.mdx

* Apply suggestions from code review

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Let's not cast them all (#18471)

* add correct dtypes when checking for params dtype

* forward contrib credits

* Update src/transformers/modeling_utils.py

Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>

* more comments

- added more comments on why we cast only floating point parameters

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: sgugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>

* fix: data2vec-vision Onnx ready-made configuration. (#18427)

* feat: add the data2vec conf that are missing https://huggingface.co/docs/transformers/serialization

* fix: wrong config

* Add mt5 onnx config (#18394)

* update features

* MT5OnnxConfig added with updated with tests and docs

* fix imports

* fix onnc_config_cls for mt5

Co-authored-by: Thomas Chaigneau <thomas.deeptools.ai>

* Minor update of `run_call_with_unpacked_inputs` (#18541)

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* BART - Fix attention mask device issue on copied models (#18540)

* attempt to fix attn mask device

* fix bart `_prepare_decoder_attention_mask`

- add correct device
- run `make fix-copies` to propagate the fix

* Adding a new `align_to_words` param to qa pipeline. (#18010)

* Adding a new `align_to_words` param to qa pipeline.

* Update src/transformers/pipelines/question_answering.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Import protection.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* 📝 update metric with evaluate (#18535)

* Restore _init_weights value in no_init_weights (#18504)

* Recover _init_weights value in no_init_weights

For potential nested use. 
In addition, users might modify private no_init_weights as well.

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove private variable change check

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Clean up comment

* 📝 update documentation build section (#18548)

* `bitsandbytes` - `Linear8bitLt` integration into `transformers` models (#17901)

* first commit

* correct replace function

* add final changes

- works like charm!
- cannot implement tests yet
- tested

* clean up a bit

* add bitsandbytes dependencies

* working version

- added import function
- added bitsandbytes utils file

* small fix

* small fix

- fix import issue

* fix import issues

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit

- move bitsandbytes utils to utils
- change comments on functions

* reformat docstring

- reformat docstring on init_empty_weights_8bit

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* revert bad formatting

* change to bitsandbytes

* refactor a bit

- remove init8bit since it is useless

* more refactoring

- fixed init empty weights issue
- added threshold param

* small hack to make it work

* Update src/transformers/modeling_utils.py

* Update src/transformers/modeling_utils.py

* revmoe the small hack

* modify utils file

* make style + refactor a bit

* create correctly device map

* add correct dtype for device map creation

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply suggestions

- remove with torch.grad
- do not rely on Python bool magic!

* add docstring

 - add docstring for new kwargs

* add docstring

- comment `replace_8bit_linear` function
- fix weird formatting

* - added more documentation
- added new utility function for memory footprint tracking
- colab demo to add

* few modifs

- typo doc
- force cast into float16 when load_in_8bit is enabled

* added colab link

* add test architecture + docstring a bit

* refactor a bit testing class

* make style + refactor a bit

* enhance checks

- add more checks
- start writing saving test

* clean up a bit

* male style

* add more details on doc

* add more tests

- still needs to fix 2 tests

* replace by "or"

- could not fix it from GitHub GUI

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit testing code + add readme

* make style

* fix import issue

* Update src/transformers/modeling_utils.py

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* add few comments

* add more doctring + make style

* more docstring

* raise error when loaded in 8bit

* make style

* add warning if loaded on CPU

* add small sanity check

* fix small comment

* add bitsandbytes on dockerfile

* Improve documentation

- improve documentation from comments

* add few comments

* slow tests pass on the VM but not on the CI VM

* Fix merge conflict

* make style

* another test should pass on a multi gpu setup

* fix bad import in testing file

* Fix slow tests

- remove dummy batches
- no more CUDA illegal memory errors

* odify dockerfile

* Update docs/source/en/main_classes/model.mdx

* Update Dockerfile

* Update model.mdx

* Update Dockerfile

* Apply suggestions from code review

* few modifications

- lm head can stay on disk/cpu
- change model name so that test pass

* change test value

- change test value to the correct output
- torch bmm changed to baddmm in bloom modeling when merging

* modify installation guidelines

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* replace `n`by `name`

* merge `load_in_8bit` and `low_cpu_mem_usage`

* first try - keep the lm head in full precision

* better check

- check the attribute `base_model_prefix` instead of computing the number of parameters

* added more tests

* Update src/transformers/utils/bitsandbytes.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Merge branch 'integration-8bit' of https://github.com/younesbelkada/transformers into integration-8bit

* improve documentation

- fix typos for installation
- change title in the documentation

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* TF: XLA-trainable DeBERTa v2 (#18546)

* fix deberta issues

* add different code paths for gpu and tpu

* shorter gpu take along axis

* Stable Dropout without tf cond

* variable must be float

* Preserve hub-related kwargs in AutoModel.from_pretrained (#18545)

* Preserve hub-related kwargs in AutoModel.from_pretrained

* Fix tests

* Remove debug statement

* TF Examples Rewrite (#18451)

* Finished QA example

* Dodge a merge conflict

* Update text classification and LM examples

* Update NER example

* New Keras metrics WIP, fix NER example

* Update NER example

* Update MC, summarization and translation examples

* Add XLA warnings when shapes are variable

* Make sure batch_size is consistently scaled by num_replicas

* Add PushToHubCallback to all models

* Add docs links for KerasMetricCallback

* Add docs links for prepare_tf_dataset and jit_compile

* Correct inferred model names

* Don't assume the dataset has 'lang'

* Don't assume the dataset has 'lang'

* Write metrics in text classification

* Add 'framework' to TrainingArguments and TFTrainingArguments

* Export metrics in all examples and add tests

* Fix training args for Flax

* Update command line args for translation test

* make fixup

* Fix accidentally running other tests in fp16

* Remove do_train/do_eval from run_clm.py

* Remove do_train/do_eval from run_mlm.py

* Add tensorflow tests to circleci

* Fix circleci

* Update examples/tensorflow/language-modeling/run_mlm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/test_tensorflow_examples.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/translation/run_translation.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/token-classification/run_ner.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fix save path for tests

* Fix some model card kwargs

* Explain the magical -1000

* Actually enable tests this time

* Skip text classification PR until we fix shape inference

* make fixup

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Use commit hash to look in cache instead of calling head (#18534)

* Use commit hash to look in cache instead of calling head

* Add tests

* Add attr for local configs too

* Stupid typos

* Fix tests

* Update src/transformers/utils/hub.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Address Julien's comments

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* `pipeline` support for `device="mps"` (or any other string) (#18494)

* `pipeline` support for `device="mps"` (or any other string)

* Simplify `if` nesting

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix? @sgugger

* passing `attr=None` is not the same as not passing `attr` 🤯

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update philosophy to include other preprocessing classes (#18550)

* 📝 update philosophy to include other preprocessing classes

* 🖍 apply feedbacks

* Properly move cache when it is not in default path (#18563)

* Adds CLIP to models exportable with ONNX (#18515)

* onnx config for clip

* default opset as 14

* changes from the original repo

* input values order fix

* outputs fix

* remove unused import

* ran make fix-copies

* black format

* review comments: forward ref, import fix, model change revert, .to cleanup

* make style

* formatting fixes

* revert groupvit

* comment for cast to int32

* comment fix

* make .T as .t() for onnx conversion

* ran make fix-copies

* remove unneeded comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix copies

* remove comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* raise atol for MT5OnnxConfig (#18560)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* fix string (#18568)

* Segformer TF: fix output size in documentation (#18572)

* Segformer TF: fix output size in doc

* Segformer pytorch: fix output size in doc

Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>

* Fix resizing bug in OWL-ViT (#18573)

* Fixes resizing bug in OWL-ViT
* Defaults to square resize if size is set to an int
* Sets do_center_crop default value to False

* Fix LayoutLMv3 documentation (#17932)

* fix typos

* fix sequence_length docs of LayoutLMv3Model

* delete trailing white spaces

* fix layoutlmv3 docs more

* apply make fixup & quality

* change to two versions of input docstring

* apply make fixup & quality

* Skip broken tests

* Change BartLearnedPositionalEmbedding's forward method signature to support Opacus training (#18486)

* changing BartLearnedPositionalEmbedding forward signature and references to it

* removing debugging dead code (thanks style checker)

* blackened modeling_bart file

* removing copy inconsistencies via make fix-copies

* changing references to copied signatures in Bart variants

* make fix-copies once more

* using expand over repeat (thanks @michaelbenayoun)

* expand instead of repeat for all model copies

Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>

* german docs translation (#18544)

* Create _config.py

* Create _toctree.yml

* Create index.mdx

not sure about "du / ihr" oder "sie"

* Create quicktour.mdx

* Update _toctree.yml

* Update build_documentation.yml

* Update build_pr_documentation.yml

* fix build

* Update index.mdx

* Update quicktour.mdx

* Create installation.mdx

* Update _toctree.yml

* Deberta V2: Fix critical trace warnings to allow ONNX export (#18272)

* Fix critical trace warnings to allow ONNX export

* Force input to `sqrt` to be float type

* Cleanup code

* Remove unused import statement

* Update model sew

* Small refactor

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Use broadcasting instead of repeat

* Implement suggestion

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Match deberta v2 changes in sew_d

* Improve code quality

* Update code quality

* Consistency of small refactor

* Match changes in sew_d

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* [FX] _generate_dummy_input supports audio-classification models for labels (#18580)

* Support audio classification architectures for labels generation, as well as provides a flag to print warnings or not

* Use ENV_VARS_TRUE_VALUES

* Fix docstrings with last version of hf-doc-builder styler (#18581)

* Fix docstrings with last version of hf-doc-builder styler

* Remove empty Parameter block

* Bump nbconvert from 6.0.1 to 6.3.0 in /examples/research_projects/lxmert (#18565)

Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* Bump nbconvert in /examples/research_projects/visual_bert (#18566)

Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* fix owlvit tests, update docstring examples (#18586)

* Return the permuted hidden states if return_dict=True (#18578)

* Load sharded pt to flax (#18419)

* initial commit

* add small test

* add cross pt tf flag to test

* fix quality

* style

* update test with new repo

* fix failing test

* update

* fix wrong param ordering

* style

* update based on review

* update related to recent new caching mechanism

* quality

* Update based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* quality and style

* Update src/transformers/modeling_flax_utils.py
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add type hints for ViLT models (#18577)

* Add type hints for Vilt models

* Add missing return type for TokenClassification class

* update doc for perf_train_cpu_many, add intel mpi introduction (#18576)

* update doc for perf_train_cpu_many, add mpi introduction

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* typos (#18594)

* FSDP bug fix for `load_state_dict` (#18596)

* Add `TFAutoModelForSemanticSegmentation` to the main `__init__.py` (#18600)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Generate: validate `model_kwargs` (and catch typos in generate arguments) (#18261)

* validate generate model_kwargs

* generate tests -- not all models have an attn mask

* Supporting seq2seq models for `bitsandbytes` integration (#18579)

* Supporting seq2seq models for `bitsandbytes` integration

- `bitsandbytes` integration supports now seq2seq models
- check if a model has tied weights as an additional check

* small modification

- tie the weights before looking at tied weights!

* Add Donut (#18488)

* First draft

* Improve script

* Update script

* Make conversion work

* Add final_layer_norm attribute to Swin's config

* Add DonutProcessor

* Convert more models

* Improve feature extractor and convert base models

* Fix bug

* Improve integration tests

* Improve integration tests and add model to README

* Add doc test

* Add feature extractor to docs

* Fix integration tests

* Remove register_buffer

* Fix toctree and add missing attribute

* Add DonutSwin

* Make conversion script work

* Improve conversion script

* Address comment

* Fix bug

* Fix another bug

* Remove deprecated method from docs

* Make Swin and Swinv2 untouched

* Fix code examples

* Fix processor

* Update model_type to donut-swin

* Add feature extractor tests, add token2json method, improve feature extractor

* Fix failing tests, remove integration test

* Add do_thumbnail for consistency

* Improve code examples

* Add code example for document parsing

* Add DonutSwin to MODEL_NAMES_MAPPING

* Add model to appropriate place in toctree

* Update namespace to appropriate organization

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Fix URLs (#18604)

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Update BLOOM parameter counts (#18531)

* Update BLOOM parameter counts

* Update BLOOM parameter counts

* [doc] fix anchors (#18591)

the manual anchors end up being duplicated with automatically added anchors and no longer work.

* [fsmt] deal with -100 indices in decoder ids (#18592)

* [fsmt] deal with -100 indices in decoder ids

Fixes: https://github.com/huggingface/transformers/issues/17945

decoder ids get the default index -100, which breaks the model - like t5 and many other models add a fix to replace -100 with the correct pad index. 

For some reason this use case hasn't been used with this model until recently - so this issue was there since the beginning it seems.

Any suggestions to how to add a simple test here? or perhaps we have something similar already? user's script is quite massive.

* style

* small change (#18584)

* Flax Remat for LongT5 (#17994)

* [Flax] Add remat (gradient checkpointing)

* fix variable naming in test

* flip: checkpoint using a method

* fix naming

* fix class naming

* apply PVP's suggestions from code review

* add gradient_checkpointing to examples

* Add gradient_checkpointing to run_mlm_flax

* Add remat to longt5

* Add gradient checkpointing test longt5

* Fix args errors

* Fix remaining tests

* Make fixup & quality fixes

* replace kwargs

* remove unecessary kwargs

* Make fixup changes

* revert long_t5_flax changes

* Remove return_dict and copy to LongT5

* Remove test_gradient_checkpointing

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>

* mac m1 `mps` integration (#18598)

* mac m1 `mps` integration

* Update docs/source/en/main_classes/trainer.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* addressing comments

* Apply suggestions from code review

Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>

* resolve comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>

* Change scheduled CIs to use torch 1.12.1 (#18644)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Add checks for some workflow jobs (#18583)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* TF: Fix generation repetition penalty with XLA (#18648)

* Update longt5.mdx (#18634)

* Update run_translation_no_trainer.py (#18637)

* Update run_translation_no_trainer.py

found an error in selecting `no_decay` parameters and some small modifications when the user continues to train from a checkpoint

* fixs `no_decay` and `resume_step` issue

1. change `no_decay` list
2. if use continue to train their model from provided checkpoint, the `resume_step` will not be initialized properly if `args.gradient_accumulation_steps != 1`

* [bnb] Minor modifications (#18631)

* bnb minor modifications

- refactor documentation
- add troubleshooting README
- add PyPi library on DockerFile

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* put in one block

- put bash instructions in one block

* update readme

- refactor a bit hardware requirements

* change text a bit

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* apply suggestions

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* add link to paper

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update tests/mixed_int8/README.md

* Apply suggestions from code review

* refactor a bit

* add instructions Turing & Amperer

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add A6000

* clarify a bit

* remove small part

* Update tests/mixed_int8/README.md

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Examples: add Bloom support for token classification (#18632)

* examples: add Bloom support for token classification (FLAX, PyTorch and TensorFlow)

* examples: remove support for Bloom in token classication (FLAX and TensorFlow currently have no support for it)

* Fix Yolos ONNX export test (#18606)

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fixup

* Fix up

* Move PIL default arguments inside function for safe imports

* Add image utils to toctree

* Update `rescale` method to reflect changes in #18677

* Update docs/source/en/internal/image_processing_utils.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Address Niels PR comments

* Add normalize method to transforms library

* Apply suggestions from code review - remove defaults to None

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix docstrings and revert to PIL.Image.XXX resampling

Use PIL.Image.XXX resampling values instead of PIL.Image.Resampling.XXX enum as it's only in the recent version >= 9.10 and version is not yet pinned and older version support deprecated

* Some more docstrings and PIL.Image tidy up

* Reorganise arguments so flags by modifiers

* Few last docstring fixes

* Add normalize to docs

* Accept PIL.Image inputs with deprecation warning

* Update src/transformers/image_transforms.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update warning to include version

* Trigger CI - hash clash on doc build

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Co-authored-by: Ankur Goyal <ankrgyl@gmail.com>
Co-authored-by: Ankur Goyal <ankur@impira.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Mishig Davaadorj <dmishig@gmail.com>
Co-authored-by: Rasmus Arpe Fogh Jensen <Rasmus.arpe@gmail.com>
Co-authored-by: Ian Castillo <7807897+donelianc@users.noreply.github.com>
Co-authored-by: AguilaCudicio <aguila.cudicio@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>
Co-authored-by: Niklas Hansson <niklas.sven.hansson@gmail.com>
Co-authored-by: Thomas Chaigneau <t.chaigneau.tc@gmail.com>
Co-authored-by: YouJiacheng <1503679330@qq.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Dhruv Karan <k4r4n.dhruv@gmail.com>
Co-authored-by: Michael Wyatt <mrwyattii@gmail.com>
Co-authored-by: Maxime G <joihn@users.noreply.github.com>
Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>
Co-authored-by: Wonseok Lee (Jack) <rollerkid02@snu.ac.kr>
Co-authored-by: Dan Jones <dan.j.jones2@gmail.com>
Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>
Co-authored-by: flozi00 <flozi00.fz@gmail.com>
Co-authored-by: iiLaurens <iiLaurens@users.noreply.github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Karim Foda <35491698+KMFODA@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>
Co-authored-by: zhoutang776 <47708118+zhoutang776@users.noreply.github.com>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-17 17:02:14 +01:00
82e360b7cb Fixed the docstring and type hint for forced_decoder_ids option in Ge… (#19640) 2022-10-17 17:00:02 +01:00
f2ecb9eec4 Revert "add return_tensor parameter for feature extraction (#19257)" (#19680)
This reverts commit 35bd089a241788a43a43e27de1ef3f5cede7954b.
2022-10-17 11:56:29 -04:00
bf0addc56e Fix code examples of DETR and YOLOS (#19669)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-10-17 17:48:22 +02:00
35bd089a24 add return_tensor parameter for feature extraction (#19257)
* add return_tensors parameter for feature_extraction  w/ test

add return_tensor parameter for feature extraction

Revert "Merge branch 'feature-extraction-return-tensor' of https://github.com/ajsanjoaquin/transformers into feature-extraction-return-tensor"

This reverts commit d559da743b87914e111a84a98ba6dbb70d08ad88, reversing
changes made to bbef89278650c04c090beb65637a8e9572dba222.

* call parameter directly

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* Fixup.

* Update src/transformers/pipelines/feature_extraction.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-17 11:17:26 -04:00
59e29be363 object-detection instead of object_detection (#19677) 2022-10-17 10:57:29 -04:00
aa629e7a7c Update perf_train_gpu_one.mdx (#19676) 2022-10-17 16:54:35 +02:00
0027edf905 [Doctest] Add configuration_transfo_xl.py (#19651)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-17 16:47:54 +02:00
f4e31a9aa1 word replacement line #231 (#19662)
install->installation
2022-10-17 10:40:35 -04:00
b6204c9e9b fix warnings in deberta (#19458)
* fix warnings in deberta

* fix copies

* Revert "fix copies"

This reverts commit 324cb3fed11e04190ba7b4662644baa8143b60be.

* fix copies

* fix copies again

* revert changes to whitespace that make style did since it results in an infinite chain of fix-copies

* argh

Co-authored-by: Sander Land <sander@chatdesk.com>
2022-10-17 10:15:02 -04:00
de64d671dc Removed Bert interdependency from Funnel transformer (#19655)
* Removed Bert interdependency from Funnel transformer

* passed consistency check

* Revert "passed consistency check"

This reverts commit ba55a0813549938fc54626794e666ee13a85c2d8.

* Fixed docstrings

Co-authored-by: mukesh663 <mukesh13034@gmail.com>
2022-10-17 10:04:11 -04:00
cbc1abc4af A few CI fixes for DocumentQuestionAnsweringPipeline (#19584)
* Fixes

* update expected values

* style

* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-17 15:35:27 +02:00
0b7b07ef03 added type hints for Yolos Pytorch model (#19545)
* added type hints for Yolos Pytorch model

* make fixup

* Update src/transformers/models/yolos/convert_yolos_to_pytorch.py

* Update src/transformers/models/yolos/convert_yolos_to_pytorch.py

* Update src/transformers/models/yolos/convert_yolos_to_pytorch.py

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-10-17 14:34:22 +01:00
3b3024da70 TF port of ESM (#19587)
* Partial TF port for ESM model

* Add ESM-TF tests

* Add the various imports for TF-ESM

* TF weight conversion almost ready

* Stop ignoring the decoder weights in PT

* Add tests and lots of fixes

* fix-copies

* Fix imports, add model docs

* Add get_vocab() to tokenizer

* Fix vocab links for pretrained files

* Allow multiple inputs with a sep

* Use EOS as SEP token because ESM vocab lacks SEP

* Correctly return special tokens mask from ESM tokenizer

* make fixup

* Stop testing unsupported embedding resizing

* Handle TF bias correctly

* Skip all models with slow tokenizers in the token classification test

* Fixing the batch/unbatcher of pipelines to accomodate the `None` being

passed around.

* Fixing pipeline bug caused by slow tokenizer  being different.

* Update src/transformers/models/esm/modeling_tf_esm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/esm/modeling_tf_esm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/esm/modeling_tf_esm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update set_input_embeddings and the copyright notices

Co-authored-by: Your Name <you@example.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2022-10-17 14:16:16 +01:00
d7754c43d0 Type hints MCTCT (#19618)
* add type hints to mctct

* run auto style corrections

* change torch.bool to bool#

* Update src/transformers/models/mctct/modeling_mctct.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove optional tags for attention_mask and head_mask'

* fix optional tags'

* Update src/transformers/models/mctct/modeling_mctct.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-10-17 14:15:21 +01:00
8aad4363d8 Fix pipeline predict transform methods (#19657)
* Remove key word argument X from pipeline predict and transform methods

As __call__ of pipeline clasees require one positional argument, passing
the input as a keyword argument inside predict, transform methods, causing
__call__ to fail. Hence in this commit the keyword argument is modified
into positional argument.

* Implement basic tests for scikitcompat pipeline interface

* Seperate tests instead of running with parameterized based on framework as both frameworks will not be active at the same time
2022-10-17 09:06:20 -04:00
e4d56e818a add return types for tf gptj, xlm, and xlnet (#19638) 2022-10-17 13:47:21 +01:00
2af36f957f Add pillow to layoutlmv3 example requirements.txt (#19663) 2022-10-17 08:41:57 -04:00
d2e5b19b82 Add doctest info in testingmdx (#19623) 2022-10-17 11:23:20 +02:00
9bb26f2505 [Doctest] Add configuration_trocr.py (#19658)
* trocr Config for doctest

* ran make style
2022-10-17 10:53:36 +02:00
c06a5a3101 [Doctest] XLNet config for doctest (#19649) 2022-10-17 10:45:37 +02:00
57505b1def [Doctest] Conditional DETR config for doctest (#19641) 2022-10-17 10:42:55 +02:00
339c5a5d9a [Doctest] Add configuration_data2vec_text.py (#19636)
* Data2Vec Text Config for doctest

* typo fix

* made suggested changes
2022-10-17 10:34:33 +02:00
dd464e22a7 [Doctest] CodeGen config for doctest (#19633) 2022-10-15 12:35:35 +02:00
3e4900208a Tokenizer from_pretrained should not use local files named like tokenizer files (#19626) 2022-10-14 14:06:56 -04:00
8fcf562603 [Doctest] Add configuration_time_series_transformer.py (#19582)
* initial changes

* update the suggested order of import
2022-10-14 19:39:56 +02:00
31cfe9c429 [Doctest] Add configuration_vision_encoder_decoder.py (#19583)
* adds vision_encoder_decoder to Doc tests

* keep the initial order
2022-10-14 19:30:14 +02:00
7972f995b3 [Doctest] Add configuration_vision_text_dual_encoder.py (#19580)
* initial commit

* few suggested changes
2022-10-14 18:45:15 +02:00
2bd2de62c9 Sharding fails in TF when absolute scope was modified if . in layer name (#19124)
* simplify loop

* fix layer map split

* update

* update for special variables

* add rag test

* fixup

* revert change : for next PR
2022-10-14 18:34:33 +02:00
614f7d28a8 Fix whisper doc (#19608)
* update feature extractor params

* update attention mask handling

* fix doc and pipeline test

* add warning when skipping test

* add whisper translation and transcription test

* fix build doc test

* Correct whisper processor

* make fix copies

* remove sample docstring as it does not fit whisper model

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix, doctests are passing

* Nit

* last nit

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-14 18:12:32 +02:00
66dd80213c [Doctest] Add configuration_resnet.py (#19620)
* ResNet Config for doctest

* added empty lines as suggested

* ran make style
2022-10-14 18:10:17 +02:00
4e196df8c4 [Whisper] Fix gradient checkpointing (again!) (#19548)
* [Whisper] Fix gradient checkpointing (again!)

* [Whisper] Fix checkpointing (again!)
2022-10-14 17:08:36 +01:00
585f9c6d9e [Doctest] DistilBERT Config for doctest (#19621) 2022-10-14 17:22:29 +02:00
96f243c399 [Doctest] LeViT Config for doctest (#19622) 2022-10-14 17:21:24 +02:00
463226e2ee Improve error messaging for ASR pipeline. (#19570)
* Improve error messaging for ASR pipeline.

- Raise error early (in `_sanitize`) so users don't waste time trying to
  run queries with invalid params.

- Fix the error was after using `config.inputs_to_logits_ratio` so our
  check was masked by the failing property does not exist.

- Added some manual check on s2t for the error message.
  No non ctc model seems to be used by the default runner (they are all
  skipped).

* Removing pdb.

* Stop the early error it doesn't really work :(.
2022-10-14 17:12:21 +02:00
5ef2186692 fix: small error (#19612)
* fix: small error

* fix: another typo error
2022-10-14 11:10:33 -04:00
78c1e7d253 xlm roberta xl config for doctest (#19610)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-14 11:04:10 -04:00
10ea45b902 Ernie config for doctest (#19611) 2022-10-14 10:57:51 -04:00
637af90d7f xlm roberta config for doctest (#19609) 2022-10-14 10:48:38 -04:00
2d4572b5c9 GPTTokenizer dependency removed from deberta class (#19551)
* GPTTOkenizer dependency removed from deberta class

Fixup

made the Deberta Tokenizer fast independent of GPT-2 tokenizer

Copied annotation added

Done the dependency removal

* Added some missing copied statement

* Added some copied statements
2022-10-14 10:46:38 -04:00
f8244014a5 Visual Bert config for doctest (#19605) 2022-10-14 10:45:37 -04:00
db94b746db Fix FlaubertTokenizer (#19552)
* fix flaubert tokenizer

* update

* update

* Final cleanup

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-14 16:31:01 +02:00
62f28bc152 Fix ImageToTextPipelineTests.test_small_model_tf (#19565)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-14 16:29:54 +02:00
e82c1cb78e add gloo backend support for CPU DDP (#19555)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-10-14 10:18:16 -04:00
0e0b7cb72a Allow usage of TF Text BertTokenizer on TFBertTokenizer to make it servable on TF Serving (#19590)
* add suport for non fast tf bert tokenizer

* add tests for non fast tf bert tokenizer

* fix fast bert tf tokenizer flag

* double tokenizers list on tf tokenizers test to aovid breaking zip on test output equivalence

* reformat code with black to comply with code quality checks

* trigger ci
2022-10-14 15:18:02 +01:00
59b7334c87 Fix test_tf_encode_plus_sent_to_model for TAPAS (#19559)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-14 16:10:36 +02:00
1967be98fa fix BLOOM ONNX config (#19573)
* fix BLOOM ONNX config
- `value` params have `seq_len` as their 2nd axe as opposed to other models which have it as 3rd

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-14 16:04:48 +02:00
4f0337a08f [Time Series Transformer] Add doc tests (#19607)
* Add doc tests

* Make it more consistent

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-10-14 15:57:03 +02:00
c937f0b954 [Whisper] Don't return attention mask in feat extractor (#19521)
* [Whisper] Don't return attention mask in feat extractor

* remove attention mask from test

* fix failing tests

* quality
2022-10-14 14:36:03 +01:00
83a2e694f1 Cast masks to np.unit8 before converting to PIL.Image.Image (#19616)
* Cast masks to np.unit8 before converting to PIL.Image.Image

* Update tests

* Fixup
2022-10-14 09:30:45 -04:00
909f07092a [Doctest] Add configuration_bigbird_pegasus.py and configuration_big_bird.py (#19606)
* [Doctest] Add `configuration_bigbird_pegasus.py` and `configuration_big_bird`

[Doctest] Re-style `configuration_big_bird.py`

* [Doctest] One python instruction per line

* [Doctest] Fix styling

* [Doctest] More styling fixes
2022-10-14 15:17:36 +02:00
6deac5c824 Adding type hints for TFXLnet (#19344)
* Added type hints for TF: XLNet

* Added type hints for TF: XLNet

* Added type hints for TF: XLNet

* Added type hints for TF: XLNet

* Added type hints for TF: XLNet

* Added type hints for TF: XLNet

* Add type hints for XLnet (TF)
* Added type hints for XLnet (TF)

* Update src/transformers/models/xlnet/modeling_tf_xlnet.py
2022-10-14 12:28:08 +01:00
7036c956fe [Doctest] fix doc test for megatron bert (#19600) 2022-10-14 12:08:55 +02:00
c7d1fb6964 [Doctest] SEW-D Config for doctest (#19598) 2022-10-14 12:07:32 +02:00
0ac6b90563 [Doctest] UniSpeech Config for doctest (#19596) 2022-10-14 12:03:35 +02:00
71a27e3952 [Doctest] SEW Config for doctest (#19597) 2022-10-14 11:47:29 +02:00
e64798296f [Doctest] Swin Config for doctest (#19594) 2022-10-14 11:37:37 +02:00
7178b29a8e [Doctest] Swin V2 Config for doctest (#19595) 2022-10-14 11:16:38 +02:00
76b4239ec8 [Doctests] add configuration_blenderbot_small.py (#19589)
* yoso config for doctest

* Revert "yoso config for doctest"

This reverts commit eae128d6f1b3631b676ffbcc181390e338819bd1.

* add configurations_blenderbot_small.py for doctests
2022-10-14 09:42:29 +02:00
3d320c78c3 [Doctest] adds trajectory_transformer config to Docs test (#19586) 2022-10-13 19:07:10 +02:00
1f6a28c71c [Doctests] add configuration_blenderbot.py (#19577)
* yoso config for doctest

* Revert "yoso config for doctest"

This reverts commit eae128d6f1b3631b676ffbcc181390e338819bd1.

* add configurations.blenderbot.py for doctests

* add configuration.blenderbot for doctest
2022-10-13 18:46:12 +02:00
f06a6f7e37 [WIP] Add type hints for Lxmert (TF) (#19441)
* Add type hints for Lxmert (TF)

* Update src/transformers/models/lxmert/modeling_tf_lxmert.py

Co-authored-by: Emmanuel Lusenji <elusenji@Emmanuels-MacBook-Pro.local>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-10-13 15:53:27 +01:00
036e808517 Added type hints to DebertaV2ForMultipleChoice Pytorch (#19536)
* Update modeling_deberta_v2.py

* Update modeling_deberta_v2.py
2022-10-13 14:52:43 +01:00
7180e17256 [Doctests] Config files for ViTMAE and YOSO (#19567) 2022-10-13 15:05:02 +02:00
05a287ec1a [Doctest] Add configuration_canine.py (#19575) 2022-10-13 14:12:49 +02:00
117098421c [Doctest] CTRL config (#19574) 2022-10-13 14:10:04 +02:00
0e83c9664b Fix fairseq wav2vec2-xls-r pretrained weights conversion scripts (#19508)
* fix loading fairseq wav2vec2 pretrained weights

Specified fairseq task as "audio_pretraining" when loading fairseq weights,
since loading wav2vec2-xls-r weights fails if the task is unspecified.

Resolves: #19319

* fix style
2022-10-13 11:48:42 +01:00
4212bb0d60 [Re-submit] Compute true loss Flax examples (#19504)
* Compute true loss

* fixup

* final

* final

* final

* Update examples/flax/language-modeling/run_bart_dlm_flax.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* jax.tree_map => jax.tree_util.tree_map

* Compute true loss

* final

* fixup

* final

* final

* Update examples/flax/language-modeling/run_bart_dlm_flax.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* jax.tree_map => jax.tree_util.tree_map

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2022-10-13 11:33:36 +01:00
0903fc80b5 [Doctest] bloom config update (#19566) 2022-10-13 12:14:38 +02:00
0ae3ec5b9d [Doctest] Add configuration_vit.py (#19561)
* ViT Config for doctest
2022-10-13 12:07:14 +02:00
f173ceefc0 [Doctest] RoBERTa Config for doctest (#19563) 2022-10-13 12:06:18 +02:00
2719599a22 [Doctest] Reformer Config for doctest (#19562) 2022-10-13 12:03:15 +02:00
4a3578f23f [Doctest] DeiT Config for doctest (#19560) 2022-10-13 12:02:40 +02:00
f4b386765d [Doctest] Fixing doctest bert_generation configuration (#19558)
* Added (with random weights) in the comment before model initialization line

* Added configuration_bert_generation.py to utils/documentation_tests.txt

Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
2022-10-13 11:59:02 +02:00
1d4d9dc3c9 [Doctest] Fixing mobile bert configuration doctest (#19557)
* Fixing mobile bert configuration doctest

* Fixed build failures by removing empty line
2022-10-13 11:56:35 +02:00
3ae21936e5 [Doctest] Fixing the Doctest for imageGPT config (#19556) 2022-10-13 11:54:35 +02:00
bbd150e92f [Whisper] Freeze params of encoder (#19527)
* [Whisper] Freeze params of encoder

* add tests
2022-10-13 09:50:02 +01:00
504cd71a6b add a note to whisper docs clarifying support of long-form decoding (#19497) 2022-10-13 10:39:03 +02:00
5dcb10d82a Fix checkpoint used in MarkupLMConfig (#19547)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-13 09:37:30 +02:00
5418e3cef0 Build Push CI images also in a daily basis (#19532)
* Build Push CI images also in a daily basis

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-13 07:31:12 +02:00
ef5899bf34 [Doctest] GPT2 Config for doctest (#19549) 2022-10-13 05:58:59 +02:00
f6fa0f0bf0 Create the arange tensor on device for enabling CUDA-Graph for Clip Encoder (#19503)
* create the arange tensor on device for enabling CUDA-Graph at higher-performace for SD

* sync

Co-authored-by: Stas Bekman <stas@stason.org>
2022-10-12 23:32:50 +02:00
6cd8676cf3 [Doctest] Beit Config for doctest (#19542) 2022-10-12 20:38:13 +02:00
096838836d Throw an error if getattribute_from_module can't find anything (#19535)
* return None to avoid recursive call

* Give error

* Give error

* Add test

* More tests

* Quality

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-12 20:09:45 +02:00
383ad81e68 [Doctest] Add configuration_whisper.py (#19540)
* Whisper Config for doctest

* restyle fix
2022-10-12 14:03:22 -04:00
4a5d63c958 Albert config update (#19541) 2022-10-12 14:02:55 -04:00
51d21b7619 [Doctest] Add configuration_yolos.py (#19539)
* YOLOS Config for doctest

* fix
2022-10-12 14:01:25 -04:00
209bec4636 Add a decorator for flaky tests (#19498)
* Add a decorator for flaky tests

* Quality

* Don't break the rest

* Address review comments

* Fix test name

* Fix typo and print to stderr
2022-10-12 14:00:17 -04:00
1973b7716b Image transforms library (#18520)
* Adapt FE methods to transforms library

* Mixin for saving the image processor

* Base processor skeleton

* BatchFeature for packaging image processor outputs

* Initial image processor for GLPN

* REmove accidental import

* Fixup and docs

* Mixin for saving the image processor

* Fixup and docs

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Fixup and docs

* Fixup and docs

* Fixup and docs

* BatchFeature for packaging image processor outputs

* Import BatchFeature from feature_extraction_utils

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Fixup and docs

* BatchFeature for packaging image processor outputs

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Mixin for saving the image processor

* Fixup and docs

* Add rescale back and remove ImageType

* fix import mistake

* Fix enum var reference

* Can transform and specify image data format

* Remove redundant function

* Update reference

* Data format flag for rescale

* Fix typo

* Fix dimension check

* Fixes to make IP and FE outputs match

* Add tests for transforms

* Add test for utils

* Update some docstrings

* Make sure in channels last before converting to PIL

* Remove default to numpy batching

* Fix up

* Add docstring and model_input_types

* Use feature processor config from hub

* Alias GLPN feature extractor to image processor

* Alias feature extractor mixin

* Add return_numpy=False flag for resize

* Fix up

* Fix up

* Use different frameworks safely

* Safely import PIL

* Call function checking if PIL available

* Only import if vision available

* Address Sylvain PR comments
Co-authored-by: Sylvain.gugger@gmail.com

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/image_transforms.py

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

* Update src/transformers/models/glpn/feature_extraction_glpn.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add in docstrings

* Fix TFSwinSelfAttention to have relative position index as non-trainable weight (#18226)

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Refactor `TFSwinLayer` to increase serving compatibility (#18352)

* Refactor `TFSwinLayer` to increase serving compatibility

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix missed parameters while refactoring

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix window_reverse to calculate batch size

Signed-off-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add TF prefix to TF-Res test class (#18481)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Remove py.typed (#18485)

* Fix pipeline tests (#18487)

* Fix pipeline tests

* Make sure all pipelines tests run with init changes

* Use new huggingface_hub tools for download models (#18438)

* Draft new cached_file

* Initial draft for config and model

* Small fixes

* Fix first batch of tests

* Look in cache when internet is down

* Fix last tests

* Bad black, not fixing all quality errors

* Make diff less

* Implement change for TF and Flax models

* Add tokenizer and feature extractor

* For compatibility with main

* Add utils to move the cache and auto-do it at first use.

* Quality

* Deal with empty commit shas

* Deal with empty etag

* Address review comments

* Fix `test_dbmdz_english` by updating expected values (#18482)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Move cache folder to huggingface/hub for consistency with hf_hub (#18492)

* Move cache folder to just huggingface

* Thank you VsCode for this needless import

* Move to hub

* Forgot one

* Update some expected values in `quicktour.mdx` for `resampy 0.3.0` (#18484)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Forgot one new_ for cache migration

* disable Onnx test for google/long-t5-tglobal-base (#18454)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Typo reported by Joel Grus on TWTR (#18493)

* Just re-reading the whole doc every couple of months 😬 (#18489)

* Delete valohai.yaml

* NLP => ML

* typo

* website supports https

* datasets

* 60k + modalities

* unrelated link fixing for accelerate

* Ok those links were actually broken

* Fix link

* Make `AutoTokenizer` auto-link

* wording tweak

* add at least one non-nlp task

* `transformers-cli login` => `huggingface-cli login` (#18490)

* zero chance anyone's using that constant no?

* `transformers-cli login` => `huggingface-cli login`

* `transformers-cli repo create` => `huggingface-cli repo create`

* `make style`

* Add seed setting to image classification example (#18519)

* [DX fix] Fixing QA pipeline streaming a dataset. (#18516)

* [DX fix] Fixing QA pipeline streaming a dataset.

QuestionAnsweringArgumentHandler would iterate over the whole dataset
effectively killing all properties of the pipeline.
This restores nice properties when using `Dataset` or `Generator` since
those are meant to be consumed lazily.

* Handling TF better.

* Clean up hub (#18497)

* Clean up utils.hub

* Remove imports

* More fixes

* Last fix

* update fsdp docs (#18521)

* updating fsdp documentation

* typo fix

* Fix compatibility with 1.12 (#17925)

* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* fix torch.onnx.symbolic_opset12 import

* Reject bad version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Remove debug statement

* Specify en in doc-builder README example (#18526)

Co-authored-by: Ankur Goyal <ankur@impira.com>

* New cache fixes: add safeguard before looking in folders (#18522)

* unpin resampy (#18527)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

*  update to use interlibrary links instead of Markdown (#18500)

* Add example of multimodal usage to pipeline tutorial (#18498)

* 📝 add example of multimodal usage to pipeline tutorial

* 🖍 apply feedbacks

* 🖍 apply niels feedback

* [VideoMAE] Add model to doc tests (#18523)

* Add videomae to doc tests

* Add pip install decord

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Update perf_train_gpu_one.mdx (#18532)

* Update no_trainer.py scripts to include accelerate gradient accumulation wrapper (#18473)

* Added accelerate gradient accumulation wrapper to run_image_classification_no_trainer.py example script

* make fixup changes

* PR comments

* changed input to Acceletor based on PR comment, ran make fixup

* Added comment explaining the sync_gradients statement

* Fixed lr scheduler max steps

* Changed run_clm_no_trainer.py script to use accelerate gradient accum wrapper

* Fixed all scripts except wav2vec2 pretraining to use accelerate gradient accum wrapper

* Added accelerate gradient accum wrapper for wav2vec2_pretraining_no_trainer.py script

* make fixup and lr_scheduler step inserted back into run_qa_beam_search_no_trainer.py

* removed changes to run_wav2vec2_pretraining_no_trainer.py script and fixed using wrong constant in qa_beam_search_no_trainer.py script

* Add Spanish translation of converting_tensorflow_models.mdx (#18512)

* Add file in spanish docs to be translated

* Finish translation to Spanish

* Improve Spanish  wording

* Add suggested changes from review

* Spanish translation of summarization.mdx (#15947) (#18477)

* Add Spanish translation of summarization.mdx

* Apply suggestions from code review

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Let's not cast them all (#18471)

* add correct dtypes when checking for params dtype

* forward contrib credits

* Update src/transformers/modeling_utils.py

Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>

* more comments

- added more comments on why we cast only floating point parameters

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: sgugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>

* fix: data2vec-vision Onnx ready-made configuration. (#18427)

* feat: add the data2vec conf that are missing https://huggingface.co/docs/transformers/serialization

* fix: wrong config

* Add mt5 onnx config (#18394)

* update features

* MT5OnnxConfig added with updated with tests and docs

* fix imports

* fix onnc_config_cls for mt5

Co-authored-by: Thomas Chaigneau <thomas.deeptools.ai>

* Minor update of `run_call_with_unpacked_inputs` (#18541)

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* BART - Fix attention mask device issue on copied models (#18540)

* attempt to fix attn mask device

* fix bart `_prepare_decoder_attention_mask`

- add correct device
- run `make fix-copies` to propagate the fix

* Adding a new `align_to_words` param to qa pipeline. (#18010)

* Adding a new `align_to_words` param to qa pipeline.

* Update src/transformers/pipelines/question_answering.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Import protection.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* 📝 update metric with evaluate (#18535)

* Restore _init_weights value in no_init_weights (#18504)

* Recover _init_weights value in no_init_weights

For potential nested use. 
In addition, users might modify private no_init_weights as well.

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove private variable change check

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Clean up comment

* 📝 update documentation build section (#18548)

* `bitsandbytes` - `Linear8bitLt` integration into `transformers` models (#17901)

* first commit

* correct replace function

* add final changes

- works like charm!
- cannot implement tests yet
- tested

* clean up a bit

* add bitsandbytes dependencies

* working version

- added import function
- added bitsandbytes utils file

* small fix

* small fix

- fix import issue

* fix import issues

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit

- move bitsandbytes utils to utils
- change comments on functions

* reformat docstring

- reformat docstring on init_empty_weights_8bit

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* revert bad formatting

* change to bitsandbytes

* refactor a bit

- remove init8bit since it is useless

* more refactoring

- fixed init empty weights issue
- added threshold param

* small hack to make it work

* Update src/transformers/modeling_utils.py

* Update src/transformers/modeling_utils.py

* revmoe the small hack

* modify utils file

* make style + refactor a bit

* create correctly device map

* add correct dtype for device map creation

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply suggestions

- remove with torch.grad
- do not rely on Python bool magic!

* add docstring

 - add docstring for new kwargs

* add docstring

- comment `replace_8bit_linear` function
- fix weird formatting

* - added more documentation
- added new utility function for memory footprint tracking
- colab demo to add

* few modifs

- typo doc
- force cast into float16 when load_in_8bit is enabled

* added colab link

* add test architecture + docstring a bit

* refactor a bit testing class

* make style + refactor a bit

* enhance checks

- add more checks
- start writing saving test

* clean up a bit

* male style

* add more details on doc

* add more tests

- still needs to fix 2 tests

* replace by "or"

- could not fix it from GitHub GUI

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit testing code + add readme

* make style

* fix import issue

* Update src/transformers/modeling_utils.py

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* add few comments

* add more doctring + make style

* more docstring

* raise error when loaded in 8bit

* make style

* add warning if loaded on CPU

* add small sanity check

* fix small comment

* add bitsandbytes on dockerfile

* Improve documentation

- improve documentation from comments

* add few comments

* slow tests pass on the VM but not on the CI VM

* Fix merge conflict

* make style

* another test should pass on a multi gpu setup

* fix bad import in testing file

* Fix slow tests

- remove dummy batches
- no more CUDA illegal memory errors

* odify dockerfile

* Update docs/source/en/main_classes/model.mdx

* Update Dockerfile

* Update model.mdx

* Update Dockerfile

* Apply suggestions from code review

* few modifications

- lm head can stay on disk/cpu
- change model name so that test pass

* change test value

- change test value to the correct output
- torch bmm changed to baddmm in bloom modeling when merging

* modify installation guidelines

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* replace `n`by `name`

* merge `load_in_8bit` and `low_cpu_mem_usage`

* first try - keep the lm head in full precision

* better check

- check the attribute `base_model_prefix` instead of computing the number of parameters

* added more tests

* Update src/transformers/utils/bitsandbytes.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Merge branch 'integration-8bit' of https://github.com/younesbelkada/transformers into integration-8bit

* improve documentation

- fix typos for installation
- change title in the documentation

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* TF: XLA-trainable DeBERTa v2 (#18546)

* fix deberta issues

* add different code paths for gpu and tpu

* shorter gpu take along axis

* Stable Dropout without tf cond

* variable must be float

* Preserve hub-related kwargs in AutoModel.from_pretrained (#18545)

* Preserve hub-related kwargs in AutoModel.from_pretrained

* Fix tests

* Remove debug statement

* TF Examples Rewrite (#18451)

* Finished QA example

* Dodge a merge conflict

* Update text classification and LM examples

* Update NER example

* New Keras metrics WIP, fix NER example

* Update NER example

* Update MC, summarization and translation examples

* Add XLA warnings when shapes are variable

* Make sure batch_size is consistently scaled by num_replicas

* Add PushToHubCallback to all models

* Add docs links for KerasMetricCallback

* Add docs links for prepare_tf_dataset and jit_compile

* Correct inferred model names

* Don't assume the dataset has 'lang'

* Don't assume the dataset has 'lang'

* Write metrics in text classification

* Add 'framework' to TrainingArguments and TFTrainingArguments

* Export metrics in all examples and add tests

* Fix training args for Flax

* Update command line args for translation test

* make fixup

* Fix accidentally running other tests in fp16

* Remove do_train/do_eval from run_clm.py

* Remove do_train/do_eval from run_mlm.py

* Add tensorflow tests to circleci

* Fix circleci

* Update examples/tensorflow/language-modeling/run_mlm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/test_tensorflow_examples.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/translation/run_translation.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/token-classification/run_ner.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fix save path for tests

* Fix some model card kwargs

* Explain the magical -1000

* Actually enable tests this time

* Skip text classification PR until we fix shape inference

* make fixup

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Use commit hash to look in cache instead of calling head (#18534)

* Use commit hash to look in cache instead of calling head

* Add tests

* Add attr for local configs too

* Stupid typos

* Fix tests

* Update src/transformers/utils/hub.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Address Julien's comments

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* `pipeline` support for `device="mps"` (or any other string) (#18494)

* `pipeline` support for `device="mps"` (or any other string)

* Simplify `if` nesting

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix? @sgugger

* passing `attr=None` is not the same as not passing `attr` 🤯

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update philosophy to include other preprocessing classes (#18550)

* 📝 update philosophy to include other preprocessing classes

* 🖍 apply feedbacks

* Properly move cache when it is not in default path (#18563)

* Adds CLIP to models exportable with ONNX (#18515)

* onnx config for clip

* default opset as 14

* changes from the original repo

* input values order fix

* outputs fix

* remove unused import

* ran make fix-copies

* black format

* review comments: forward ref, import fix, model change revert, .to cleanup

* make style

* formatting fixes

* revert groupvit

* comment for cast to int32

* comment fix

* make .T as .t() for onnx conversion

* ran make fix-copies

* remove unneeded comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix copies

* remove comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* raise atol for MT5OnnxConfig (#18560)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* fix string (#18568)

* Segformer TF: fix output size in documentation (#18572)

* Segformer TF: fix output size in doc

* Segformer pytorch: fix output size in doc

Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>

* Fix resizing bug in OWL-ViT (#18573)

* Fixes resizing bug in OWL-ViT
* Defaults to square resize if size is set to an int
* Sets do_center_crop default value to False

* Fix LayoutLMv3 documentation (#17932)

* fix typos

* fix sequence_length docs of LayoutLMv3Model

* delete trailing white spaces

* fix layoutlmv3 docs more

* apply make fixup & quality

* change to two versions of input docstring

* apply make fixup & quality

* Skip broken tests

* Change BartLearnedPositionalEmbedding's forward method signature to support Opacus training (#18486)

* changing BartLearnedPositionalEmbedding forward signature and references to it

* removing debugging dead code (thanks style checker)

* blackened modeling_bart file

* removing copy inconsistencies via make fix-copies

* changing references to copied signatures in Bart variants

* make fix-copies once more

* using expand over repeat (thanks @michaelbenayoun)

* expand instead of repeat for all model copies

Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>

* german docs translation (#18544)

* Create _config.py

* Create _toctree.yml

* Create index.mdx

not sure about "du / ihr" oder "sie"

* Create quicktour.mdx

* Update _toctree.yml

* Update build_documentation.yml

* Update build_pr_documentation.yml

* fix build

* Update index.mdx

* Update quicktour.mdx

* Create installation.mdx

* Update _toctree.yml

* Deberta V2: Fix critical trace warnings to allow ONNX export (#18272)

* Fix critical trace warnings to allow ONNX export

* Force input to `sqrt` to be float type

* Cleanup code

* Remove unused import statement

* Update model sew

* Small refactor

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Use broadcasting instead of repeat

* Implement suggestion

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Match deberta v2 changes in sew_d

* Improve code quality

* Update code quality

* Consistency of small refactor

* Match changes in sew_d

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* [FX] _generate_dummy_input supports audio-classification models for labels (#18580)

* Support audio classification architectures for labels generation, as well as provides a flag to print warnings or not

* Use ENV_VARS_TRUE_VALUES

* Fix docstrings with last version of hf-doc-builder styler (#18581)

* Fix docstrings with last version of hf-doc-builder styler

* Remove empty Parameter block

* Bump nbconvert from 6.0.1 to 6.3.0 in /examples/research_projects/lxmert (#18565)

Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* Bump nbconvert in /examples/research_projects/visual_bert (#18566)

Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* fix owlvit tests, update docstring examples (#18586)

* Return the permuted hidden states if return_dict=True (#18578)

* Load sharded pt to flax (#18419)

* initial commit

* add small test

* add cross pt tf flag to test

* fix quality

* style

* update test with new repo

* fix failing test

* update

* fix wrong param ordering

* style

* update based on review

* update related to recent new caching mechanism

* quality

* Update based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* quality and style

* Update src/transformers/modeling_flax_utils.py
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add type hints for ViLT models (#18577)

* Add type hints for Vilt models

* Add missing return type for TokenClassification class

* update doc for perf_train_cpu_many, add intel mpi introduction (#18576)

* update doc for perf_train_cpu_many, add mpi introduction

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* typos (#18594)

* FSDP bug fix for `load_state_dict` (#18596)

* Add `TFAutoModelForSemanticSegmentation` to the main `__init__.py` (#18600)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Generate: validate `model_kwargs` (and catch typos in generate arguments) (#18261)

* validate generate model_kwargs

* generate tests -- not all models have an attn mask

* Supporting seq2seq models for `bitsandbytes` integration (#18579)

* Supporting seq2seq models for `bitsandbytes` integration

- `bitsandbytes` integration supports now seq2seq models
- check if a model has tied weights as an additional check

* small modification

- tie the weights before looking at tied weights!

* Add Donut (#18488)

* First draft

* Improve script

* Update script

* Make conversion work

* Add final_layer_norm attribute to Swin's config

* Add DonutProcessor

* Convert more models

* Improve feature extractor and convert base models

* Fix bug

* Improve integration tests

* Improve integration tests and add model to README

* Add doc test

* Add feature extractor to docs

* Fix integration tests

* Remove register_buffer

* Fix toctree and add missing attribute

* Add DonutSwin

* Make conversion script work

* Improve conversion script

* Address comment

* Fix bug

* Fix another bug

* Remove deprecated method from docs

* Make Swin and Swinv2 untouched

* Fix code examples

* Fix processor

* Update model_type to donut-swin

* Add feature extractor tests, add token2json method, improve feature extractor

* Fix failing tests, remove integration test

* Add do_thumbnail for consistency

* Improve code examples

* Add code example for document parsing

* Add DonutSwin to MODEL_NAMES_MAPPING

* Add model to appropriate place in toctree

* Update namespace to appropriate organization

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Fix URLs (#18604)

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Update BLOOM parameter counts (#18531)

* Update BLOOM parameter counts

* Update BLOOM parameter counts

* [doc] fix anchors (#18591)

the manual anchors end up being duplicated with automatically added anchors and no longer work.

* [fsmt] deal with -100 indices in decoder ids (#18592)

* [fsmt] deal with -100 indices in decoder ids

Fixes: https://github.com/huggingface/transformers/issues/17945

decoder ids get the default index -100, which breaks the model - like t5 and many other models add a fix to replace -100 with the correct pad index. 

For some reason this use case hasn't been used with this model until recently - so this issue was there since the beginning it seems.

Any suggestions to how to add a simple test here? or perhaps we have something similar already? user's script is quite massive.

* style

* small change (#18584)

* Flax Remat for LongT5 (#17994)

* [Flax] Add remat (gradient checkpointing)

* fix variable naming in test

* flip: checkpoint using a method

* fix naming

* fix class naming

* apply PVP's suggestions from code review

* add gradient_checkpointing to examples

* Add gradient_checkpointing to run_mlm_flax

* Add remat to longt5

* Add gradient checkpointing test longt5

* Fix args errors

* Fix remaining tests

* Make fixup & quality fixes

* replace kwargs

* remove unecessary kwargs

* Make fixup changes

* revert long_t5_flax changes

* Remove return_dict and copy to LongT5

* Remove test_gradient_checkpointing

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>

* mac m1 `mps` integration (#18598)

* mac m1 `mps` integration

* Update docs/source/en/main_classes/trainer.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* addressing comments

* Apply suggestions from code review

Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>

* resolve comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>

* Change scheduled CIs to use torch 1.12.1 (#18644)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Add checks for some workflow jobs (#18583)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* TF: Fix generation repetition penalty with XLA (#18648)

* Update longt5.mdx (#18634)

* Update run_translation_no_trainer.py (#18637)

* Update run_translation_no_trainer.py

found an error in selecting `no_decay` parameters and some small modifications when the user continues to train from a checkpoint

* fixs `no_decay` and `resume_step` issue

1. change `no_decay` list
2. if use continue to train their model from provided checkpoint, the `resume_step` will not be initialized properly if `args.gradient_accumulation_steps != 1`

* [bnb] Minor modifications (#18631)

* bnb minor modifications

- refactor documentation
- add troubleshooting README
- add PyPi library on DockerFile

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* put in one block

- put bash instructions in one block

* update readme

- refactor a bit hardware requirements

* change text a bit

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* apply suggestions

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* add link to paper

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update tests/mixed_int8/README.md

* Apply suggestions from code review

* refactor a bit

* add instructions Turing & Amperer

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add A6000

* clarify a bit

* remove small part

* Update tests/mixed_int8/README.md

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Examples: add Bloom support for token classification (#18632)

* examples: add Bloom support for token classification (FLAX, PyTorch and TensorFlow)

* examples: remove support for Bloom in token classication (FLAX and TensorFlow currently have no support for it)

* Fix Yolos ONNX export test (#18606)

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fixup

* Fix up

* Move PIL default arguments inside function for safe imports

* Add image utils to toctree

* Update `rescale` method to reflect changes in #18677

* Update docs/source/en/internal/image_processing_utils.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Address Niels PR comments

* Apply suggestions from code review - remove defaults to None

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix docstrings and revert to PIL.Image.XXX resampling

Use PIL.Image.XXX resampling values instead of PIL.Image.Resampling.XXX enum as it's only in the recent version >= 9.10 and version is not yet pinned and older version support deprecated

* Some more docstrings and PIL.Image tidy up

* Reorganise arguments so flags by modifiers

* Few last docstring fixes

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Co-authored-by: Ankur Goyal <ankrgyl@gmail.com>
Co-authored-by: Ankur Goyal <ankur@impira.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Mishig Davaadorj <dmishig@gmail.com>
Co-authored-by: Rasmus Arpe Fogh Jensen <Rasmus.arpe@gmail.com>
Co-authored-by: Ian Castillo <7807897+donelianc@users.noreply.github.com>
Co-authored-by: AguilaCudicio <aguila.cudicio@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>
Co-authored-by: Niklas Hansson <niklas.sven.hansson@gmail.com>
Co-authored-by: Thomas Chaigneau <t.chaigneau.tc@gmail.com>
Co-authored-by: YouJiacheng <1503679330@qq.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Dhruv Karan <k4r4n.dhruv@gmail.com>
Co-authored-by: Michael Wyatt <mrwyattii@gmail.com>
Co-authored-by: Maxime G <joihn@users.noreply.github.com>
Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>
Co-authored-by: Wonseok Lee (Jack) <rollerkid02@snu.ac.kr>
Co-authored-by: Dan Jones <dan.j.jones2@gmail.com>
Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>
Co-authored-by: flozi00 <flozi00.fz@gmail.com>
Co-authored-by: iiLaurens <iiLaurens@users.noreply.github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Karim Foda <35491698+KMFODA@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>
Co-authored-by: zhoutang776 <47708118+zhoutang776@users.noreply.github.com>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-12 18:32:02 +01:00
a2c90a7f7b Remove MarkupLMForMaskedLM from MODEL_WITH_LM_HEAD_MAPPING_NAMES (#19534)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-12 19:21:49 +02:00
f4ef78af54 using trunc_normal for weight init & cls_token (#19486) 2022-10-12 13:20:47 -04:00
5760a8fcf6 Syntax issues (paragraphs 122, 130, 147, 155) Documentation: @sgugger (#19437)
* Syntax issues (paragraphs 122, 130, 147, 155)

`preentramiento` > `preentrenamiento`
* semantic issue (paragraph 220 & 232 & 252)

* Update docs/source/es/create_a_model.mdx

with approval of @ignacioct and scrutiny of @sgugger

Co-authored-by: Ignacio Talavera <ignaciotalaveracepeda@gmail.com>

Co-authored-by: Ignacio Talavera <ignaciotalaveracepeda@gmail.com>
2022-10-12 13:18:11 -04:00
bdfcbe60cc [Whisper] Fix gradient checkpointing (#19538) 2022-10-12 18:07:37 +01:00
4edb3e49f6 Make MobileBert tokenizers independent from Bert (#19531)
* Make `MobileBert` tokenizers independent from `Bert`

* Update src/transformers/models/mobilebert/tokenization_mobilebert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fixed the name in the error message

* Update src/transformers/models/mobilebert/tokenization_mobilebert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Removed extra space from the "copied" comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-12 11:50:36 -04:00
c7ad3ff593 Update Marian config default vocabulary size (#19464)
* update marian default vocab size

* also update docstring
2022-10-12 16:15:11 +01:00
9e29080439 [X-CLIP] Fix doc tests (#19523)
* Fix XCLIP doc tests

* Add model to doc test list

* Fix tests
2022-10-12 17:05:12 +02:00
eefcecaa35 [Examples] Fix typos in run speech recognition seq2seq (#19514) 2022-10-12 15:33:22 +01:00
72153ba611 Remove bert fast dependency from electra (#19520)
* Replaced ElectraTokenizerFast with  BertTokenzier class

* Fixed Styling issue

Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
2022-10-12 10:14:38 -04:00
2720d5fc18 made tokenization_roformer independent of bert (#19426)
* made tokenization_roformer independent of bert

* added missing imports

* added missing function and import

* Fixed copy commands

* Update tokenization_roformer.py
2022-10-12 10:13:09 -04:00
af554e9de2 Remove roberta dependency from longformer fast tokenizer (#19501)
* remove roberta fast tokenizer dependency

* fix flake8

* Update src/transformers/models/longformer/tokenization_longformer_fast.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-12 10:12:00 -04:00
3ccda6d0b0 [Doctest] Bart configuration update (#19524)
* Update configuration_bart.py

* Update documentation_tests.txt

* Update documentation_tests.txt

Putting this line in a sorted order
2022-10-12 15:11:46 +02:00
af539d6f0a fix MarkupLMProcessor option flag (#19526) 2022-10-12 15:08:48 +02:00
5a8a532dcf Adding links to pipelines parameters documentation (#19227)
* Adding links to pipelines parameters documentation

Adding PR based on suggestion in this issue https://github.com/huggingface/transformers/issues/19038#issuecomment-1259592359

* styling

* Updated config.yml

* Updated config.yml

* update README_es.md
2022-10-12 08:57:08 -04:00
e94384e4d8 Add depth estimation pipeline (#18618)
* Add initial files for depth estimation pipelines

* Add test file for depth estimation pipeline

* Update model mapping names

* Add updates for depth estimation output

* Add generic test

* Hopefully fixing the tests.

* Check if test passes

* Add make fixup and make fix-copies changes after rebase with main

* Rebase with main

* Fixing up depth pipeline.

* This is not used anymore.

* Fixing the test. `Image` is a module `Image.Image` is the type.

* Update docs/source/en/main_classes/pipelines.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-12 08:54:20 -04:00
4ed0fa3676 Fix pytorch seq2seq qa (#19258)
* fixed typo for SQuAD

* Fixed the preprocess_validation_function function for the labels to reflect the remaining truncated instances

* Rolled back the trainer_seq2seq_qa.py for UnboundLocalError: local variable 'metrics' referenced before assignment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-12 08:33:44 -04:00
c60381e90d Syntax issue (line 497, 526) Documentation @ssuggen (#19442) 2022-10-12 08:28:54 -04:00
84125d7e73 Fix whisper doc (#19518) 2022-10-12 12:44:30 +02:00
4d367a3c81 Add LiLT (#19450)
* First draft

* Fix more things

* Improve more things

* Remove some head models

* Fix more things

* Add missing layers

* Remove tokenizer

* Fix more things

* Fix copied from statements

* Make all tests pass

* Remove print statements

* Remove files

* Fix README and docs

* Add integration test and fix organization

* Add tips

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Make tests faster, improve docs

* Fix doc tests

* Add model to toctree

* Add docs

* Add note about creating new checkpoint

* Remove is_decoder

* Make tests smaller, add docs

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-12 10:11:20 +02:00
e2dc558e9c [Doctest] Add configuration_bert.py to doctest (#19485)
* BertConfig for doctest

* Change import order

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-12 09:44:07 +02:00
e81cb010f8 Avoid Push CI failing to report due to many commits being merged (#19496)
* Change the depth to 20

* Add comment

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-12 09:25:05 +02:00
7543e275d4 update doc for perf_train_cpu_many (#19506)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-10-11 22:54:19 -04:00
bb2cfd1824 Add multi-node conditions in trainer_qa.py and trainer_seq2seq.py (#19502)
* Add multi-node conditions in trainer_qa.py and trainer_seq2seq.py

* Code improvement
2022-10-11 22:48:56 -04:00
69b81c0a5f Use a dynamic configuration for circleCI tests (#19325)
* Generate config on the file

* Fake modif for all test launch

* Upload more artifacts

* Typo and quality

* Try converting th yml to txt

* Leave my long lines alone yaml

* Debug prints

* Debug prints v2

* Try without sorting

* Was it really working before?

* Typo

* Use a parameter

* Use a parameter?

* Typo

* Here is some JSON

* Another try

* Learning to read...

* Check default is used

* Does this work?

* With continuation

* WiP

* Use a parameter for test list

* Other fake modif

* With the comma

* Name the test step so it doesn't blow up

* Just one example modification

* Final steps

* Add nightlies

* Move config generator

* Add trigger for nightlies

* Better workflow

* Rebase on recent changes

* Fix config creation

* Fake modif in an example

* Now fake modif in one config file

* Fix install step in custom tokenizers test

* Fix generated config

* Better fix hopefully

* Finally test modif in setup

* final cleanup
2022-10-11 16:31:24 -04:00
fa9e18c65f Fix OPTForQuestionAnswering doctest (#19479)
* Fix doc example for OPTForQuestionAnswering

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 20:13:04 +02:00
957ce6465a New (#19481) 2022-10-11 13:46:25 -04:00
67a3511443 Update PT to TF CLI for audio models (#19465)
* Update PT to TF CLI model inputs

* Get padding strategy if specified

* Make False comparison explicit
2022-10-11 18:25:29 +01:00
8d68878cc0 python3 instead of python in push CI setup job (#19492)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 19:18:39 +02:00
5ca131f3d4 [CvT] Tensorflow implementation (#18597)
* implemented TFCvtModel and TFCvtForImageClassification and modified relevant files, added an exception in convert_tf_weight_name_to_pt_weight_name, added quick testing file to compare with pytorch model

* added docstring + testing file in transformers testing suite

* added test in testing file, modified docs to pass repo-consistency, passed formatting test

* refactoring + passing all test

* small refacto, removing unwanted comments

* improved testing config

* corrected import error

* modified acces to pretrained model archive list, to pass tf_test

* corrected import structure in init files

* modified testing for keras_fit with cpu

* correcting PR issues + Refactoring

* Refactoring : improving readability and reducing the number of permutations

* corrected momentum value + cls_token initialization

* removed from_pt as weights were added to the hub

* Update tests/models/cvt/test_modeling_tf_cvt.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2022-10-11 18:16:52 +01:00
0b7b4c60c6 Adding the README_es.md and reference to it in the others files readme (#19427)
* Adding the README_es.md and reference to it in the others files readme

* Updating the check_copies.py

* Updating README_es.md

* Updating chec_copies
2022-10-11 12:56:25 -04:00
70a058bc65 Added tokenize keyword arguments to feature extraction pipeline (#19382)
* Added tokenize keyword arguments to feature extraction pipeline

* Reverted truncation parameter

* Import numpy moved to top
2022-10-11 12:54:41 -04:00
d0d5aee1dd Make bert_japanese and cpm independent of their inherited modules (#19431)
* Make cpm tokenization independent of xlnet

* Make bert japanese tokenization independent of bert
2022-10-11 12:09:17 -04:00
462cd641d9 🚨🚨🚨 TF: Remove TFWrappedEmbeddings (breaking: TF embedding initialization updated for encoder-decoder models) (#19263)
* added test

* correct embedding init

* some changes in blenderbot (incomplete)

* update blenderbot (diff to be used as reference)

* update blenderbot_small

* update LED

* update marian

* update T5 and remove TFWrappedEmbeddings

* nullcontext() -> ContextManagers()

* fix embedding init
2022-10-11 16:48:03 +01:00
8e4ee28e34 Update TF whisper doc tests (#19484) 2022-10-11 16:05:31 +01:00
6c66c6c860 Add warning in generate & device_map=auto & half precision models (#19468)
* fix device mismatch

* make fixup

* added slow tests

- added slow tests on `bnb` models to make sure generate works correctly

* replace with `self.device`

* revert force device assign

* Update src/transformers/generation_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* set the warning in `generate` instead of `sample`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-11 16:58:49 +02:00
a3008c5a6d Implement multiple span support for DocumentQuestionAnswering (#19204)
* Implement multiple span support

* Address comments

* Add tests + fix bugs
2022-10-11 10:47:55 -04:00
h
ab856f68df Decouples XLMProphet model from Prophet (#19406)
* decouples xlm_prophet from prophet and adds copy patterns that pass the copy check

* adds copy patterns to copied docstrings too

* restores autodoc for XLMProphetNetModel

* removes all-casing in a bunch of places to ensure that the model is compatible with all checkpoints on the hub

* adds missing model to main init

* adds autodocs to make document checker happy

* adds missing pretrained model import

* adds missing pretrained model import to main init

* adds XLMProphetNetPreTrainedModel to the dummy pt objects

* removes examples from the source-doc file since docstrings contain them already

* adds a missing new line to make check_repo happy
2022-10-11 10:45:23 -04:00
c66466133a Fix get_embedding dtype at init. time (#19473)
* cast positions dtype in XGLMModel

* Get the correct dtype at init time

* Get the correct dtype at init time

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 16:05:39 +02:00
e38cf93e7c Make XLMRoberta model and config independent from Roberta (#19359)
* remove config dependence

* remove dependencies from xlm_roberta

* Fix style

* Fix comments

* various fixes

* Fix pre-trained model name
2022-10-11 09:56:42 -04:00
8cb44aaf17 Make LayoutLM tokenizers independent from BertTokenizer (#19351)
* fixing tokenizer

* adding all missing classes

* fast tokenizer | fixing format

* revert to full class copy flag

* fixing different casing
2022-10-11 09:49:23 -04:00
9ed80b0000 TF: TFBart embedding initialization (#19460)
* correct embedding init
2022-10-11 14:44:46 +01:00
b651efe59e [Swin] Replace hard-coded batch size to enable dynamic ONNX export (#19475)
* [Swin] Replace hard-coded batch size to enable dynamic ONNX export
2022-10-11 15:21:29 +02:00
440bbd44aa Update WhisperModelIntegrationTests.test_large_batched_generation (#19472)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 14:39:24 +02:00
e1a5cc338b Fix doctests for DeiT and TFGroupViT (#19466)
* Fix some doctests

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 14:30:42 +02:00
d7dc774a79 Fix TFGroupViT CI (#19461)
* Fix TFGroupViT CI

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 14:29:15 +02:00
a293a0e8a3 CLI: add import protection to datasets (#19470) 2022-10-11 13:19:32 +01:00
ae710425d2 Syntax issues (lines 126, 203) (#19444) 2022-10-11 08:14:21 -04:00
335f9bcd34 Extend nested_XXX functions to mappings/dicts. (#19455)
* Extend `nested_XXX` functions to mappings/dicts.

* Update src/transformers/trainer_pt_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer_pt_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer_pt_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Style updated file

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-11 08:13:21 -04:00
b722a6be72 Fix whisper for pipeline (#19482)
* update feature extractor params

* update attention mask handling

* fix doc and pipeline test

* add warning when skipping test

* add whisper translation and transcription test

* fix build doc test
2022-10-11 07:17:53 -04:00
df8faba4db Enabling custom TF signature draft (#19249)
* Custom TF signature draft

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Adding tf signature tests

* Fixing signature check and adding asserts

* fixing model load path

* Adjusting signature tests

* Formatting file

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Dimitre Oliveira <dimitreoliveira@Dimitres-MacBook-Air.local>
2022-10-11 10:56:08 +01:00
10100979ed Dev version 2022-10-10 17:25:40 -04:00
df2f28120d wrap forward passes with torch.no_grad() (#19412) 2022-10-10 15:04:10 -04:00
5f5e264a12 wrap forward passes with torch.no_grad() (#19413) 2022-10-10 15:03:46 -04:00
c6a928cadb wrap forward passes with torch.no_grad() (#19414) 2022-10-10 15:03:24 -04:00
d739a707d9 wrap forward passes with torch.no_grad() (#19416) 2022-10-10 15:03:09 -04:00
870a9542be wrap forward passes with torch.no_grad() (#19438) 2022-10-10 14:54:54 -04:00
692c5be74e wrap forward passes with torch.no_grad() (#19439) 2022-10-10 14:54:36 -04:00
a7bc4221c0 fix (#19469)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-10 14:35:23 -04:00
25cfd911d0 Fixed a non-working hyperlink in the README.md file (#19434)
* Fixed a non-working hyperlink in the README.md file

The hyperlink to the community notebooks was outdated.

* Fixing missing double slash in hyperlink
2022-10-10 12:57:28 -04:00
9df953a855 Fix misspelled word in docstring (#19415) 2022-10-10 17:33:57 +01:00
d866b4858a Generate: corrected exponential_decay_length_penalty type hint (#19376) 2022-10-10 17:32:03 +01:00
4dd784c32f Fix momentum and epsilon values (#19454)
The momentum value for PyTorch and TensorFlow batch normalization layers is not equivalent. The TensorFlow value should be (1 - pytorch_momentum) in order to ensure the correct updates are applied to the running mean and running variance calculations. We wouldn't observe a difference loading a pretrained model and performing inference, but evaluation outputs would change after some training steps.
2022-10-10 15:17:41 +01:00
b0b962ccca Add Italian translation for add_new_model.mdx (#18713)
* fix conflicts

* start translating

* proof check

* add toc

* fix errors and typos
2022-10-10 10:12:40 -04:00
e150c4e2fe Fix the error message in run_t5_mlm_flax.py (#19282) 2022-10-10 14:51:11 +01:00
e3f028f3af Add TF whisper (#19378)
* simplify loop

* add featur extractor

* add model

* start conversion

* add dropout

* initial commit of test files

* copnversion for all models

* update processor for correct padding

* update feature extraction

* update integration test logits match

* fmnt: off for the logits

* on the fly mel bank

* small nit

* update test

* update tokenizer

* nit feature extraction

* update

* update tokenizer test

* adds logit processor and update tokenizer to get supress tokens

* style

* clean convert

* revert to original modeling tf utils

* Update

* update

* nit

* clean convert file

* update tests and nits

* quality

* slow generation test

* ffn_dim to allow customization

* update readme

* add to toctreee

* start fixing integration tests

* update tests and code

* fix feature extractor

* fix config tests common

* update code to fix tests

* fix feature exctractor

* nit feature extraction

* update test for new feature extractor

* style

* add absrtact

* large logits wioth custom decoder input ids

* wraap around is otrch available

* fix feature extractor

* correct logits for whisper small.en

* nit

* fix encoder_attentino_mask

* some fixes

* remove unnecessary inputs

* nits

* add normalizer file

* update etst tokenization

* fix attention mask not defined

* fix generate

* remove uncoder attention mask useless

* update test modeling whisper

* update condfig to add second non supress tokens

* nits on feature exrtactor

* nit for test tokenizers

* update etsts

* update tests

* update tokenization test

* fixup

* invalidated hf token. Clean convert openai to whisper

* fix logit tests

* fixup

* Add model to README

* Fix doc tests

* clean merge

* revert toc_tree changes

* remove useless LogitProcessor

* Update whisper .mdx

* update config file doc

* update configuration docstring

* update test tokenization

* update test tokenization

* update tokenization whisper
Added copied from where needed

* update feature extraction

* nit test name

* style

* quality

* remove get suppress tokens and update non_speech tokens global variables

* Update src/transformers/models/whisper/feature_extraction_whisper.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* clean modeling whisper and test
Removed the attention mask arguments that are deprecated

* fix large test

* Add multilingual audio test, and translate test

* style

* fix larg multilingual test

* nits

* add copied from for attention layer

* remove attention masks in doc

* add english normalizer

* Update docs/source/en/model_doc/whisper.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update tokenization test

* remove copied from in whisper attention : no bias in k_proj only

* wrap around dependencies in english normalizer

* style

* correct import generation logits

* for now, wrap feature extractor with torch

* remove torch depencies for feature extraction and style

* Update src/transformers/models/whisper/convert_openai_whisper_to_tfms.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/whisper.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixup

* nit

* update logitds

* style

* nit

* nits and fix final tests

* add `is_more_itertools_available` to utils

* quality

* add begin supress tokens, supress tokens to generate args and config

* clean supressTokensLogitProcessor in generation logits

* Nit naming

* add supressTokensAtBegin

* udpate tests, supress tokens to None or correct values

* nit and style

* update RAG to fit test and generate_logit

* add copy pasted statment on english normalizer

* add arguments to config_common_kwargs

* Update src/transformers/generation_utils.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/generation_logits_process.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* revert changes based on reviews

* update doc and nits

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* more nits

* last nits

* update test configuration common

* add BART name in decoder attention mask documentation

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* style

* nit

* nit

* add english.json file to git

* nits on documentation

* nit

* nits

* last styling

* add main toctree file

* remove sentence piece dependency

* clean init file

* fix tokenizer that has no dependencies on sentencepiece

* update whisper init file, nit

* remove english.json file

* add get decoder prompt id

* All weights loading

* Remove hanging pdb

* Fixup and tidy up

* Use same copied from as PT model

* Remove whitespace changes

* Remove torch references

* Tie embeddings

* Remove logits processor input to generate

* Update logit values

* revert changes and add forced logit processor

* nit

* clean normalizer

* remove protected

* Add logit processors and update generation code & tests

* Some tidy up

* Update docstring

* update

* update based on review

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update to reflect changes on the PT model branch

* Tidy up

* Remove extra whitespace

* Fix test - make input ids small enough we can append

* Include upstream changes on main

* PR comments - add batch tests, remove comments & defaults

* Fix model output imports

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation_tf_logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/models/whisper/test_modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update docstring example

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove changes to adjust_logits_during_generation function

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Tidy up imports that don't require TF

* Update tests - skip and no more skip

* Update tests/generation/test_generation_tf_logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Add training flags

* Add (skipped) XLA generation tests

* Add embedding correctness test

* Add constant ids for generation tests

* Make logits finding a bit tidier

* Remove unused args

* xla generation enabled

* Don't skip XLA tests anymore

* Fix tests - add position ids to expected signature and update rag generation

* Undo method reorder

* Remove added whitespace

* Remove copy-paste gradient checkopint ref

* Remove

* Trigger CI - (issue with refs when pulling)

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: NielsRogge <niels.rogge1@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
2022-10-10 14:48:17 +01:00
af69360bf9 Add OPTForQuestionAnswering (#19402)
* Add `OPTForQuestionAnswering`

- added `OPTForQuestionAnswering` class based on `BloomForQuestionAnswering`
- added `OPTForQuestionAnswering` in common tests
- all common tests pass
- make fixup done

* added docstrings for OPTForQuestionAnswering

* Fix docstrings for OPTForQuestionAnswering
2022-10-10 09:30:59 -04:00
ba71bf4cae fix: renamed variable name (#18850)
The sequence_masked variable is actually the part of the sequence that is kept unmasked for the encoder. This commit renames the variable.
2022-10-10 09:26:36 -04:00
4824741c4c Remove dependency of Roberta in Blenderbot (#19411)
* Remove dependency of Roberta in Blenderbot

* Move Copied from statements to each method of the Roberta classes

* Remove copied from line for mask_token.setter

* update output from example in docs
2022-10-10 09:25:22 -04:00
3080bb4754 Add onnx support for VisionEncoderDecoder (#19254)
* Add onnx support for VisionEncoderDecoder

* Add onnx support for VisionEncoderDecoder

* Removed unused import

* Rename encoder hidden state

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update docstrings and removed redundant code

* Added test function for enc-dec models

* Update doc string text

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* fixed code style

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-10 09:20:19 -04:00
298f6a98c2 Stop relying on huggingface_hub's private methods (#19392)
* Leverage hfh for move cache

* Style
2022-10-10 15:19:33 +02:00
7d5ce6802e Fix typo in image-classification/README.md (#19424)
Fix link typo of the following content.
PyTorch version, Trainer
PyTorch version, no Trainer
2022-10-10 09:16:58 -04:00
c523a86929 fix marianMT convertion to onnx (#19287)
* fix marianMT convertion to onnx

* Update src/transformers/onnx/convert.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update src/transformers/onnx/convert.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-10 09:11:29 -04:00
3410705730 Fixed duplicated line (paragraph #83) Documentation: @sgugger (#19436)
* Fixed duplicated line (paragraph #83) @omarespejel @sgugger

* Datasets map denomination fixed (paragraph 42)
2022-10-10 09:08:34 -04:00
83dc49b69b Backtick fixed (paragraph 68) (#19440) 2022-10-10 08:47:14 -04:00
1241a4993b remove RobertaConfig inheritance from MarkupLMConfig (#19404)
* remove RobertaConfig inheritance from MarkupLMConfig

* Update src/transformers/models/markuplm/configuration_markuplm.py

fixed typo in docstring

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-10 08:44:59 -04:00
4107445a0f Fix repo names for ESM tests (#19451) 2022-10-10 13:20:00 +01:00
cbb8a37929 Skip BloomEmbeddingTest.test_embeddings for PyTorch < 1.10 (#19261)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-10 10:05:30 +02:00
8b6bba54a7 Fix ViTMSNForImageClassification doctest (#19275)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-10 09:51:30 +02:00
d92e22d1f2 Remove ref to is_pipeline_test 2022-10-07 21:38:07 -04:00
9ac586b3c8 Rework pipeline tests (#19366)
* Rework pipeline tests

* Try to fix Flax tests

* Try to put it before

* Use a new decorator instead

* Remove ignore marker since it doesn't work

* Filter pipeline tests

* Woopsie

* Use the fitlered list

* Clean up and fake modif

* Remove init

* Revert fake modif
2022-10-07 18:01:58 -04:00
983451a13e Improve and fix ImageSegmentationPipeline (#19367)
- Fixes the image segmentation pipeline test failures caused by changes to the postprocessing methods of supported models
- Updates the ImageSegmentationPipeline tests
- Improves docs, adds 'task' argument to optionally perform semantic, instance or panoptic segmentation
2022-10-07 23:34:41 +03:00
de4d71ea07 Removed Bert dependency from BertGeneration code base. (#19370)
* Copied all the code required from transformers.models.bert.modeling_bert to here

* Fixed styling issues

* Reformatted copied names with Model specific name.

* Reverted BertEncoder part as there is already a class called BertGenerationEncoder

* Added prefixes in missing places.

Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
2022-10-07 13:45:24 -04:00
34e0cc6d86 Make Camembert TF version independent from Roberta (#19364)
* camembert tf version independent

* fixup

* fixup, all working

* remove comments

* Adding copied from roberta

Co-authored-by: Mustapha AJEGHRIR <mustapha.ajeghrir@kleegroup.com>
2022-10-07 13:42:24 -04:00
7418a48e34 Removed Bert interdependency in tokenization_electra.py (#19356)
* Copied from BertTokenizer() in tokenization_bert

* Added BasicTokenizer and WordPieceTokenizer Class

* Update src/transformers/models/electra/tokenization_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Added copied from comments for basicTokenizer and WordPieceTokenizer

* Updated the comments for the tokenizerClasses

* Update src/transformers/models/electra/tokenization_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/electra/tokenization_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Formatted tokenization_electra with `make style`

* Fix repo inconsistencies

* Update src/transformers/models/electra/tokenization_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Set the logger

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-07 12:24:04 -04:00
6ef16f2b67 Remove Dependency between Bart and LED (slow/fast) (#19408)
* removed dependency from bart(slow)

* removed dependency from bart(slow)

* adding copying comments (copied from bart to led)

* updated led docstring

* updated led docstring

* removed dependency from Bart (fast)

* replaced bart with LED in docstrings

* complying flake8

* added more copy comments

* fixing copying comments

* added comments back

* fix copy comments

* fixing copied from comments

* fixing copied from comments
2022-10-07 12:19:50 -04:00
06514b3e1a Clip device map (#19409)
* add first generation tutorial

* uP

* [Clip] Add text model to device map
2022-10-07 18:19:15 +02:00
c2b83d540e Removed Bert and XML Dependency from Herbert (#19410)
Co-authored-by: harry7337 <hari.8jan@gmail.com>
2022-10-07 11:49:09 -04:00
e6fc2016ad Remove dependency of Bert from Squeezebert tokenizer (#19403)
* Remove dependency of Bert from Squeezebert tokenizer

* run style corrections

* update copies from BertTokenizers

* Update changes and style to Squeezebert files

* update copies for bert-fast
2022-10-07 11:32:55 -04:00
994b7a4eea update attention mask handling (#19385)
* update feature extractor params

* update attention mask handling
2022-10-07 16:54:08 +02:00
a26d71d6ae Export TensorFlow models to ONNX with dynamic input shapes (#19255)
* validate onnx models with a different input geometry than saved with

* only test working features for now

* simpler test skipping

* rm TODO

* expose batch_size/seq_length on vit

* skip certain name, feature, framework parameterizations known to fail validation

* Trigger CI

* Trigger CI
2022-10-07 10:53:03 -04:00
5fef17f490 Copy BertTokenizer dependency into retribert tokenizer (#19371) 2022-10-07 10:14:00 -04:00
fa4bcd5274 edit: cast attention_mask to long in DataCollatorCTCWithPadding (#19369)
* edit: casting attention_mask to long in DataCollatorCTCWithPadding

* edit: casting attention_mask to long in DataCollatorCTCWithPadding
2022-10-07 10:05:48 -04:00
e9a49babee [WIP] Add ZeroShotObjectDetectionPipeline (#18445) (#18930)
* Add ZeroShotObjectDetectionPipeline (#18445)

* Add AutoModelForZeroShotObjectDetection task

This commit also adds the following

- Add explicit _processor method for ZeroShotObjectDetectionPipeline.
  This is necessary as pipelines don't auto infer processors yet and
  `OwlVitProcessor` wraps tokenizer and feature_extractor together, to
  process multiple images at once

- Add auto tests and other tests for ZeroShotObjectDetectionPipeline

* Add AutoModelForZeroShotObjectDetection task

This commit also adds the following

- Add explicit _processor method for ZeroShotObjectDetectionPipeline.
  This is necessary as pipelines don't auto infer processors yet and
  `OwlVitProcessor` wraps tokenizer and feature_extractor together, to
  process multiple images at once

- Add auto tests and other tests for ZeroShotObjectDetectionPipeline

* Add batching for ZeroShotObjectDetectionPipeline

* Fix doc-string ZeroShotObjectDetectionPipeline

* Fix output format: ZeroShotObjectDetectionPipeline
2022-10-07 10:00:19 -04:00
331ea019d7 Remove unneded words from audio-related feature extractors (#19405) 2022-10-07 15:52:52 +02:00
56af8df359 HF <-> megatron checkpoint reshaping and conversion for GPT (#19317)
* HF <-> megatron checkpoint conversion handling reshaping from different tensor and parallel sizes

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* addressing comments

* add doc strings and  🐛 fixes

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-07 19:16:55 +05:30
41ec5d0ced Added type hints for TF: TransfoXL (#19380)
* Added type hints for TF: TransfoXL
* Added type hints for TF: TransfoXL

* Change type hints for training

* Change type hints for training
2022-10-07 14:44:58 +01:00
h
b29ebdf4d8 removes prophet config dependencies from xlm-prophet (#19400) 2022-10-07 09:26:23 -04:00
e162cebfa3 add ONNX support for swin transformer (#19390)
* swin transformer onnx support

* Updated image dimensions as dynamic

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-07 09:23:24 -04:00
969534af4b Added Type hints for XLM TF (#19333)
* Update modeling_tf_xlm.py

* Updates

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-10-07 13:44:50 +01:00
46fd04b481 Fix gather for metrics (#19389) 2022-10-07 08:36:05 -04:00
7e348aac96 Making ConvBert Tokenizer independent from bert Tokenizer (#19347)
* ConvBert

* added comment

* Updated

* Final_updates

* Update tokenization_convbert.py

* Update tokenization_convbert_fast.py

* Update tokenization_convbert.py

* Update tokenization_convbert.py

* Update tokenization_convbert_fast.py

* Update tokenization_convbert.py

* Update tokenization_convbert_fast.py

* Updates

* Updates

* Updated

* Final Updates
2022-10-07 07:59:02 -04:00
ae3e3bc60a fix docs example, add object_detection to DETR docs (#19377) 2022-10-07 00:02:26 +02:00
ce2620194b Change link of repojacking vulnerable link (#19393)
The link to https://github.com/vasudevgupta7/bigbird is vulnerable to repojacking (it redirects to the orignial project that changed name), you should change the link to the current name of the project. if you won't change the link, an attacker can open the linked repository and attacks users that trust your links
2022-10-06 23:06:39 +02:00
f0b490151e 🚨 🚨 🚨 Fix ViT parameter initialization (#19341)
This PR aims to rectify the discrepancy between the training performances of HF and Timm ViT implementations.

- Initializes torch and flax ViT dense layer weights with trunc_normal instead of normal (consistent with the TF implementation.
- Initializes cls_token and positional_embeddings with trunc_normal
- Updates DeiT copy to reflect the changes
2022-10-06 12:04:01 +03:00
7e7f62bfa7 Fix pipeline tests for Roberta-like tokenizers (#19365)
* Fix pipeline tests for Roberta-like tokenizers

* Fix fix
2022-10-05 17:48:14 -04:00
bad353cebf Fix DETR segmentation postprocessing output (#19363)
Ensures post_process_instance_segmentation and post_process_panoptic_segmentation methods return a tensor of shape (target_height, target_width) filled with -1 values if no segment with score > threshold is found.
2022-10-06 00:16:36 +03:00
45e14038f2 Add WhisperModel to transformers (#19166)
* simplify loop

* add featur extractor

* add model

* start conversion

* add dropout

* initial commit of test files

* copnversion for all models

* update processor for correct padding

* update feature extraction

* update integration test logits match

* fmnt: off for the logits

* on the fly mel bank

* small nit

* update test

* update tokenizer

* nit feature extraction

* update

* update tokenizer test

* adds logit processor and update tokenizer to get supress tokens

* style

* clean convert

* revert to original modeling tf utils

* Update

* update

* nit

* clean convert file

* update tests and nits

* quality

* slow generation test

* ffn_dim to allow customization

* update readme

* add to toctreee

* start fixing integration tests

* update tests and code

* fix feature extractor

* fix config tests common

* update code to fix tests

* fix feature exctractor

* nit feature extraction

* update test for new feature extractor

* style

* add absrtact

* large logits wioth custom decoder input ids

* wraap around is otrch available

* fix feature extractor

* correct logits for whisper small.en

* nit

* fix encoder_attentino_mask

* some fixes

* remove unnecessary inputs

* nits

* add normalizer file

* update etst tokenization

* fix attention mask not defined

* Add model to README

* Fix doc tests

* fix generate

* remove uncoder attention mask useless

* update test modeling whisper

* update condfig to add second non supress tokens

* nits on feature exrtactor

* nit for test tokenizers

* update etsts

* update tests

* update tokenization test

* fixup

* invalidated hf token. Clean convert openai to whisper

* fix logit tests

* fixup

* clean merge

* revert toc_tree changes

* remove useless LogitProcessor

* Update whisper .mdx

* update config file doc

* update configuration docstring

* update test tokenization

* update test tokenization

* update tokenization whisper
Added copied from where needed

* update feature extraction

* nit test name

* style

* quality

* remove get suppress tokens and update non_speech tokens global variables

* Update src/transformers/models/whisper/feature_extraction_whisper.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* clean modeling whisper and test
Removed the attention mask arguments that are deprecated

* fix large test

* Add multilingual audio test, and translate test

* style

* fix larg multilingual test

* nits

* Update docs/source/en/model_doc/whisper.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add copied from for attention layer

* remove attention masks in doc

* add english normalizer

* update tokenization test

* remove copied from in whisper attention : no bias in k_proj only

* wrap around dependencies in english normalizer

* style

* correct import generation logits

* for now, wrap feature extractor with torch

* Update src/transformers/models/whisper/convert_openai_whisper_to_tfms.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/whisper.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* remove torch depencies for feature extraction and style

* fixup

* nit

* update logitds

* style

* nit

* nits and fix final tests

* add `is_more_itertools_available` to utils

* quality

* add begin supress tokens, supress tokens to generate args and config

* clean supressTokensLogitProcessor in generation logits

* Nit naming

* add supressTokensAtBegin

* udpate tests, supress tokens to None or correct values

* nit and style

* update RAG to fit test and generate_logit

* add copy pasted statment on english normalizer

* add arguments to config_common_kwargs

* Update src/transformers/generation_utils.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/generation_logits_process.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* revert changes based on reviews

* update doc and nits

* more nits

* last nits

* update test configuration common

* add BART name in decoder attention mask documentation

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* style

* nit

* nit

* add english.json file to git

* nits on documentation

* nit

* nits

* last styling

* add main toctree file

* remove sentence piece dependency

* clean init file

* fix tokenizer that has no dependencies on sentencepiece

* update whisper init file, nit

* remove english.json file

* add get decoder prompt id

* revert changes and add forced logit processor

* nit

* clean normalizer

* remove protected

* update

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* update based on review

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add batched tests

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: NielsRogge <niels.rogge1@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-05 22:28:31 +02:00
7598791c09 Fix MaskFormer failing postprocess tests (#19354)
Ensures post_process_instance_segmentation and post_process_panoptic_segmentation methods return a tensor of shape (target_height, target_width) filled with -1 values if no segment with score > threshold is found.
2022-10-05 23:25:58 +03:00
ad98642a82 Fix gather for metrics (#19360) 2022-10-05 14:52:01 -04:00
d9101b71bc Removes Roberta and Bert config dependencies from Longformer (#19343)
* removes roberta and bert config dependencies from longformer

* adds copied from statements

* fixes style

* removes excessive comments and replace bert with longformer in a couple places

* fixes style
2022-10-05 13:50:15 -04:00
226b8ef063 correct typos in README (#19304) 2022-10-05 10:40:38 -07:00
071df6eb13 Call _set_save_spec() when creating TF models (#19321)
* Add a build_from_serving_sig_and_dummies method and replace all calls like model(model.dummy_inputs) with it.

* make fixup

* Remove the overridden save() as this is no longer necessary

* Also call _set_save_spec(), the last missing piece

* Ensure we set the save spec when loading from config too

* Turn this whole thing into a one-line PR

* Turn this whole thing into a one-line PR

* Turn this whole thing into a one-line PR

Co-authored-by: Your Name <you@example.com>
2022-10-05 18:03:49 +01:00
c875a96eb1 Test failing test while we resolve the issue. (#19355) 2022-10-05 12:23:48 -04:00
4cbc797b27 Change BloomConfig docstring (#19336)
* change `BloomConfig` docstring

- slightly change the docstring of the `BloomConfig`
- Use correct default vocab size
- Use correct default `hidden_dim`, `n_head`

* Update src/transformers/models/bloom/configuration_bloom.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/bloom/configuration_bloom.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* make style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-10-05 18:12:13 +02:00
e794ca5b16 Frees LongformerTokenizer of the Roberta dependency (#19346)
* copies over roberta tokenizer to longformertokenizer since they are both identical

* adds Copied from patterns to pass copy check
2022-10-05 11:49:14 -04:00
2f53ab5745 Add sudachi and jumanpp tokenizers for bert_japanese (#19043)
* add sudachipy and jumanpp tokenizers for bert_japanese

* use ImportError instead of ModuleNotFoundError in SudachiTokenizer and JumanppTokenizer

* put test cases of test_tokenization_bert_japanese in one line

* add require_sudachi and require_jumanpp decorator for testing

* add sudachi and pyknp(jumanpp) to dependencies

* remove sudachi_dict_small and sudachi_dict_full from dependencies

* empty commit for ci
2022-10-05 11:41:37 -04:00
60db81ff60 Making camembert independent from roberta, clean (#19337)
Co-authored-by: Mustapha AJEGHRIR <mustapha.ajeghrir@kleegroup.com>
2022-10-05 09:31:33 -04:00
c54bb1ad79 [WIP]remove XLMTokenizer inheritance from FlaubertTokenizer (#19330)
* remove XLMTokenizer inheritance from FlaubertTokenizer

* remove XLMTokenizer inheritance from FlaubertTokenizer

* remove XLMTokenizer inheritance from FlaubertTokenizer

* remove XLMTokenizer inheritance from FlaubertTokenizer: fixed styling

* removed repo-consistensy issue
2022-10-05 09:19:04 -04:00
e12bbe3b4d Remove bert interdependency from clip tokenizer (#19332) 2022-10-05 09:15:14 -04:00
512fa41c53 Removed interdependency of BERT's Tokenizer in tokenization of prophetnet (#19331)
* removed interdependency of BERTTokenizer in tokenization of prophetnet

* fix: style
2022-10-05 09:12:47 -04:00
07e94bf159 Maskformer post-processing fixes and improvements (#19172)
- Improves MaskFormer docs, corrects minor typos
- Restructures MaskFormerFeatureExtractor.post_process_panoptic_segmentation for better readability, adds target_sizes argument for optional resizing
- Adds post_process_semantic_segmentation and post_process_instance_segmentation methods.
- Adds a deprecation warning to post_process_segmentation method in favour of post_process_instance_segmentation
2022-10-05 15:27:15 +03:00
6268694e27 removing XLMConfig inheritance from FlaubertConfig (#19326)
* removing XLMConfig inheritance from FlaubertConfig

* removing XLMConfig inheritance from FlaubertConfig

* Fixed styling issue

* Update configuration_flaubert.py

Co-authored-by: Druhin Abrol <druhinabrol@192.168.1.6>
2022-10-04 19:39:47 -04:00
bf7eb0c9b3 Remove interdependency from OpenAI tokenizer (#19327)
* Remove interdependency from OpenAI tokenizer

* Adjust import order for linter
2022-10-04 17:51:55 -04:00
971da2e6ec Clamping hidden state values to allow FP16 (#19229)
* Clamping hidden state values to allow FP16

* Reformating

* Adding missing if condition

* Update src/transformers/models/longt5/modeling_longt5.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/longt5/modeling_longt5.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/longt5/modeling_longt5.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Formating file

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2022-10-04 20:28:28 +02:00
587d84b178 Add BloomForQuestionAnswering (#19310)
* add bloom for question answering

- attempt to add Bloom for question answering
- adapted from `GPTJForQuestionAnswering`
- Fixed `num_labels` to `2` for common tests
- Added a bit of docstring
- All common tests pass

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* revert changes related to `num_labels`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-04 17:52:13 +02:00
6dce9e0cdd docker-build: Update actions/checkout to v3 (#19288) 2022-10-04 16:26:52 +02:00
6fd254a37d Removing BertConfig inheritance from LayoutLMConfig (#19307)
* removing BertConfig inheritance

* fix missing arguments
2022-10-04 10:24:07 -04:00
a9782881a4 wrap forward passes with torch.no_grad() (#19273) 2022-10-04 16:13:22 +02:00
d6e920449e wrap forward passes with torch.no_grad() (#19274) 2022-10-04 16:12:03 +02:00
2403dbd607 wrap forward passes with torch.no_grad() (#19278) 2022-10-04 16:09:23 +02:00
f134d38553 wrap forward passes with torch.no_grad() (#19279) 2022-10-04 16:08:29 +02:00
cd024da6f8 ci(workflows): update actions/checkout to v3 (#19280)
in stale.yml
2022-10-04 16:07:53 +02:00
ca3ebc44e0 ci(stale.yml): upgrade actions/setup-python to v4 (#19281) 2022-10-04 16:07:33 +02:00
cc263e9bb4 alter retrived to retrieved (#18863) 2022-10-04 16:00:47 +02:00
9b630168a9 Added type hints for TF: rag model (#19284)
* Added type hints for TF: rag model

* TFModelInputType added in place of TF.Tensor

* reformatting by black
2022-10-04 14:56:35 +01:00
ac5ea74ee8 Added Type hints for LED TF (#19315)
* Update modeling_tf_led.py

* Update modeling_tf_led.py
2022-10-04 14:55:15 +01:00
3a1a56a8fe Fix for sequence regression fit() in TF (#19316)
Co-authored-by: Your Name <you@example.com>
2022-10-04 14:48:27 +01:00
fe10796f4f [Docs] Fix link (#19313) 2022-10-04 09:00:52 -04:00
534cd8ff94 Update README.md (#19309) 2022-10-04 07:46:50 -04:00
4c962d5e79 Bump joblib in /examples/research_projects/visual_bert (#19269)
Bumps [joblib](https://github.com/joblib/joblib) from 0.16.0 to 1.2.0.
- [Release notes](https://github.com/joblib/joblib/releases)
- [Changelog](https://github.com/joblib/joblib/blob/master/CHANGES.rst)
- [Commits](https://github.com/joblib/joblib/compare/0.16.0...1.2.0)

---
updated-dependencies:
- dependency-name: joblib
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-10-03 23:57:50 +02:00
c7ec0afce0 Bump joblib in /examples/research_projects/decision_transformer (#19270)
Bumps [joblib](https://github.com/joblib/joblib) from 1.1.0 to 1.2.0.
- [Release notes](https://github.com/joblib/joblib/releases)
- [Changelog](https://github.com/joblib/joblib/blob/master/CHANGES.rst)
- [Commits](https://github.com/joblib/joblib/compare/1.1.0...1.2.0)

---
updated-dependencies:
- dependency-name: joblib
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-10-03 23:57:37 +02:00
ca26277e33 Bump joblib from 0.16.0 to 1.2.0 in /examples/research_projects/lxmert (#19268)
Bumps [joblib](https://github.com/joblib/joblib) from 0.16.0 to 1.2.0.
- [Release notes](https://github.com/joblib/joblib/releases)
- [Changelog](https://github.com/joblib/joblib/blob/master/CHANGES.rst)
- [Commits](https://github.com/joblib/joblib/compare/0.16.0...1.2.0)

---
updated-dependencies:
- dependency-name: joblib
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-10-03 23:49:35 +02:00
008531c18a Update Protobuf dependency version to fix known vulnerability (#19247)
* Update protobuf dependency to fix vulnerability

* Update `dependency_versions_table.py` to include updated protobuf.
2022-10-03 23:37:09 +02:00
68f50f3453 Breakup export guide (#19271)
* split onnx and torchscript docs

* make style

* apply reviews
2022-10-03 13:18:29 -07:00
18c06208c4 Don't automatically add bug label (#19302) 2022-10-03 12:42:04 -04:00
c28d04e9e2 Update no_trainer script for summarization (#19277)
* Update no_trainer script for summarization

* removed unnecessary import

* fixes notation mistake

* removed: unused variable
2022-10-03 09:21:51 -04:00
36f52e9593 Restructure DETR post-processing, return prediction scores (#19262)
* Restructure DetrFeatureExtractor post-processing methods
* Update post_process_instance_segmentation and post_process_panoptic_segmentation methods to return prediction scores
* Update DETR models docs
2022-10-03 12:02:51 +03:00
5cd16f01db time series forecasting model (#17965)
* initial files

* initial model via cli

* typos

* make a start on the model config

* ready with configuation

* remove tokenizer ref.

* init the transformer

* added initial model forward to return dec_output

* require gluonts

* update dep. ver table and add as extra

* fixed typo

* add type for prediction_length

* use num_time_features

* use config

* more config

* typos

* opps another typo

* freq can be none

* default via transformation is 1

* initial transformations

* fix imports

* added transform_start_field

* add helper to create pytorch dataloader

* added inital val and test data loader

* added initial distr head and loss

* training working

* remove TimeSeriesTransformerTokenizer

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed copyright

* removed docs

* remove time series tokenizer

* fixed docs

* fix text

* fix second

* fix default

* fix order

* use config directly

* undo change

* fix comment

* fix year

* fix import

* add additional arguments for training vs. test

* initial greedy inference loop

* fix inference

* comment out token inputs to enc dec

* Use HF encoder/decoder

* fix inference

* Use Seq2SeqTSModelOutput output

* return Seq2SeqTSPredictionOutput

* added default arguments

* fix return_dict true

* scale is a tensor

* output static_features for inference

* clean up some unused bits

* fixed typo

* set return_dict if none

* call model once for both train/predict

* use cache if future_target is none

* initial generate func

* generate arguments

* future_time_feat is required

* return SampleTSPredictionOutput

* removed unneeded classes

* fix when params is none

* fix return dict

* fix num_attention_heads

* fix arguments

* remove unused shift_tokens_right

* add different dropout configs

* implement FeatureEmbedder, Scaler and weighted_average

* remove gluonts dependency

* fix class names

* avoid _variable names

* remove gluonts dependency

* fix imports

* remove gluonts from configuration

* fix docs

* fixed typo

* move utils to examples

* add example requirements

* config has no freq

* initial run_ts_no_trainer

* remove from ignore

* fix output_attentions and removed unsued getters/setters

* removed unsed tests

* add dec seq len

* add test_attention_outputs

* set has_text_modality=False

* add config attribute_map

* make style

* make fix-copies

* add encoder_outputs to TimeSeriesTransformerForPrediction forward

* Improve docs, add model to README

* added test_forward_signature

* More improvements

* Add more copied from

* Fix README

* Fix remaining quality issues

* updated encoder and decoder

* fix generate

* output_hidden_states and use_cache are optional

* past key_values returned too

* initialize weights of distribution_output module

* fixed more tests

* update test_forward_signature

* fix return_dict outputs

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* removed commented out tests

* added neg. bin and normal output

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* move to one line

* Add docstrings

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add try except for assert and raise

* try and raise exception

* fix the documentation formatting

* fix assert call

* fix docstring formatting

* removed input_ids from DOCSTRING

* Update input docstring

* Improve variable names

* Update order of inputs

* Improve configuration

* Improve variable names

* Improve docs

* Remove key_length from tests

* Add extra docs

* initial unittests

* added test_inference_no_head test

* added test_inference_head

* add test_seq_to_seq_generation

* make style

* one line

* assert mean prediction

* removed comments

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix order of args

* make past_observed_mask optional as well

* added Amazon license header

* updated utils with new fieldnames

* make style

* cleanup

* undo position of past_observed_mask

* fix import

* typo

* more typo

* rename example files

* remove example for now

* Update docs/source/en/_toctree.yml

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update modeling_time_series_transformer.py

fix style

* fixed typo

* fix typo and grammer

* fix style

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: NielsRogge <niels.rogge1@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-30 15:32:59 -04:00
cfb777f27c Docs - Guide to add a new TensorFlow model (#19256)
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-09-30 20:30:38 +01:00
6a08162ad4 Fix cached lookup filepath on windows for hub (#19178)
* Update hub.py commit_hash extraction

Add safety mechanism for windows systems to unify logic (replace double backslashes with /)

* Fix string quotetype

* Aaaa circleci is messing with me.

* Switch to using as_posix() method from pathlib

* Update src/transformers/utils/hub.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/utils/hub.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-30 15:13:39 -04:00
f33858d18a Fix Encoder-Decoder testing issue about repo. names (#19250)
* Change "../gpt2" to "gpt2"

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-30 18:15:07 +02:00
2fba98e585 Add beautifulsoup4 to the dependency list (#19253)
* Add `beautifulsoup4` to extras["testing"]

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-30 18:14:01 +02:00
3e2dd7f92d Poc to use safetensors (#19175)
* Poc to use safetensors

* Typo

* Final version

* Add tests

* Save with the right name!

* Update tests/test_modeling_common.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Support for sharded checkpoints

* Test from Hub part 1

* Test from hub part 2

* Fix regular checkpoint sharding

* Bump for fixes

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2022-09-30 10:58:04 -04:00
dad578e4c3 Add notebooks (#19259) 2022-09-30 10:04:36 -04:00
e396358104 Add stop sequence to text generation pipeline (#18444) 2022-09-30 14:26:51 +01:00
582d085bb2 Add expected output to the sample code for ViTMSNForImageClassification (#19183)
* chore: add expected output to the sample code.

* add: imagenet-1k labels to the model config.

* chore: apply code formatting.

* chore: change the expected output.
2022-09-30 15:25:41 +02:00
368b649af6 Rebase ESM PR and update all file formats (#19055)
* Rebase ESM PR and update all file formats

* Fix test relative imports

* Add __init__.py to the test dir

* Disable gradient checkpointing

* Remove references to TFESM... FOR NOW >:|

* Remove completed TODOs from tests

* Convert docstrings to mdx, fix-copies from BERT

* fix-copies for the README and index

* Update ESM's __init__.py to the modern format

* Add to _toctree.yml

* Ensure we correctly copy the pad_token_id from the original ESM model

* Ensure we correctly copy the pad_token_id from the original ESM model

* Tiny grammar nitpicks

* Make the layer norm after embeddings an optional flag

* Make the layer norm after embeddings an optional flag

* Update the conversion script to handle other model classes

* Remove token_type_ids entirely, fix attention_masking and add checks to convert_esm.py

* Break the copied from link from BertModel.forward to remove token_type_ids

* Remove debug array saves

* Begin ESM-2 porting

* Add a hacky workaround for the precision issue in original repo

* Code cleanup

* Remove unused checkpoint conversion code

* Remove unused checkpoint conversion code

* Fix copyright notices

* Get rid of all references to the TF weights conversion

* Remove token_type_ids from the tests

* Fix test code

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add credit

* Remove _ args and __ kwargs in rotary embedding

* Assertively remove asserts

* Replace einsum with torch.outer()

* Fix docstring formatting

* Remove assertions in tokenization

* Add paper citation to ESMModel docstring

* Move vocab list to single line

* Remove ESMLayer from init

* Add Facebook copyrights

* Clean up RotaryEmbedding docstring

* Fix docstring formatting

* Fix docstring for config object

* Add explanation for new config methods

* make fix-copies

* Rename all the ESM- classes to Esm-

* Update conversion script to allow pushing to hub

* Update tests to point at my repo for now

* Set config properly for tests

* Remove the gross hack that forced loss of precision in inv_freq and instead copy the data from the model being converted

* make fixup

* Update expected values for slow tests

* make fixup

* Remove EsmForCausalLM for now

* Remove EsmForCausalLM for now

* Fix padding idx test

* Updated README and docs with ESM-1b and ESM-2 separately (#19221)

* Updated README and docs with ESM-1b and ESM-2 separately

* Update READMEs, longer entry with 3 citations

* make fix-copies

Co-authored-by: Your Name <you@example.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Tom Sercu <tsercu@fb.com>
Co-authored-by: Your Name <you@example.com>
2022-09-30 14:16:25 +01:00
4fd32a1f49 Catch HFValidationError in TrainingSummary (#19252)
* Catch HfValidationError in TrainingSummary

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-30 13:45:56 +02:00
f3d2f7a6e0 Add MarkupLM (#19198)
* First draft

* Make basic test work

* Fix most tokenizer tests

* More improvements

* Make more tests pass

* Fix more tests

* Fix some code quality

* Improve truncation

* Implement feature extractor

* Improve feature extractor and add tests

* Improve feature extractor tests

* Fix pair_input test partly

* Add fast tokenizer

* Improve implementation

* Fix rebase

* Fix rebase

* Fix most of the tokenizer tests.

* propose solution for fast

* add: integration test for fasttokenizer, warning for decode, fix template in slow tokenizer

* add: modify markuplmconverter

* add: some modify on converter and tokenizerfast

* Fix style, copies

* Make fixup

* Update tokenization_markuplm.py

* Update test_tokenization_markuplm.py

* Update markuplm related

* Improve processor, add integration test

* Add processor test file

* Improve processor

* Improve processor tests

* Fix more processor tests

* Fix processor tests

* Update docstrings

* Add Copied from statements

* Add more Copied from statements

* Add code examples

* Improve code examples

* Add model to doc tests

* Adding dependency check

* Add dummy file

* Add requires_backends

* Add model to toctree

* Fix more things, disable dependency check for now

* Apply more suggestions

* Add soft dependency

* Add annotators to tests

* Fix style

* Remove from_slow=True

* Remove print statements

* Add sanity check

* Fix processor test

* Fix processor tests, add more docs

* Add doc tests for mdx file

* Add more tips

* Apply suggestions

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: lockon-n <45759388+lockon-n@users.noreply.github.com>
Co-authored-by: SaulLu <lucilesaul.com@gmail.com>
Co-authored-by: lockon-n <dd098309@126.com>
2022-09-30 08:25:43 +02:00
49d62b0178 [Wav2Vec2] Fix None loss in doc examples (#19218)
* pass sampled_negative_indices parameter to the model to avoid getting a None loss
* concerns doc examples for Wav2Vec2ForPreTraining and Wav2Vec2ConformerForPreTraining
2022-09-29 19:23:14 +02:00
1a1893e5d8 Update Past CI report script (#19228)
* Simplify the error report

* Add status placeholder

* Add job links

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-29 19:22:23 +02:00
163cd15279 Add job names in Past CI artifacts (#19235)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-29 19:18:24 +02:00
f16bbf1475 Skip pipeline tests (#19248) 2022-09-29 12:25:15 -04:00
cca6e6fea1 Cast TF generate() inputs (#19232)
* Just stick a couple of casts into generate()

* Cast decoder_input_ids too

* Don't accidentally cast floats

* Move to _generate()

* Move to after input validation

Co-authored-by: Your Name <you@example.com>
2022-09-29 16:51:08 +01:00
01eb34ab45 Improve DETR post-processing methods (#19205)
* Ensures consistent arguments and outputs with other post-processing methods
* Adds post_process_semantic_segmentation, post_process_instance_segmentation, post_process_panoptic_segmentation, post_process_object_detection methods to DetrFeatureExtractor
* Adds deprecation warnings to post_process, post_process_segmentation and post_process_panoptic
2022-09-29 17:33:13 +03:00
655f72a689 Fix test fetching for examples (#19237)
* Fix test fetching for examples

* Fake example modif

* Debug statements

* Typo

* You need to persist the file...

* Revert change in example

* Remove debug statements
2022-09-29 09:36:42 -04:00
b79028f0b6 Fix TrainingArgs argument serialization (#19239) 2022-09-29 09:13:56 -04:00
902d30b31a Use hf_raise_for_status instead of deprecated _raise_for_status (#19244)
* Use  instead of  from huggingface_hub

* bump huggingface_hub to 0.10.0 + make deps_table_update
2022-09-29 08:58:39 -04:00
3a27ba3d18 Fix opt softmax small nit (#19243)
* fix opt softmax nit

- Use the same logic as 1eb09537550734a783c194e416029cb9bc4cb119 for consistency

* Update src/transformers/models/opt/modeling_opt.py
2022-09-29 13:40:55 +02:00
ba9e336fa3 Fix m2m_100.mdx doc example missing labels (#19149)
The `labels` variable is not defined, the `model_inputs` already contain this information.
2022-09-29 13:27:58 +02:00
0dc7b3a785 [TensorFlow] Adding GroupViT (#18020)
* chore: initial commit

* chore: adding util methods

yet to work on the nn.functional.interpolate port with align_corener=True

* chore: refactor the utils

* used tf.compat.v1.image.resize to align the F.interpolate function
* added type hints to the method signatures
* added references to the gists where one 2 one alignment of torch and tf has been shown

* chore: adding the layers

* chore: porting all the layers from torch to tf

This is the initial draft, nothing is tested yet.

* chore: aligning the layers with reference to tf clip

* chore: aligning the modules

* added demaraction comments
* added copied and adapted from comments

* chore: aligning with CLIP

* chore: wrangling the layers to keep it tf compatible

* chore: aligning the names of the layers for porting

* chore: style changes

* chore: adding docs and inits

* chore: adding tfp dependencis

the code is taken from TAPAS

* chore: initial commit for testing

* chore: aligning the vision embeddings with the vit implementatino

* chore: changing model prefix

* chore: fixing the name of the model and the layer normalization test case

* chore: every test passes but the slow ones

* chore: fix style and integration test

* chore: moving comments below decorators

* chore: make fixup and fix-copies changes

* chore: adding the Vision and Text Model to check_repo

* chore: modifying the prefix name to align it with the torch implementation

* chore: fix typo in configuration

* choer: changing the name of the model variable

* chore: adding segmentation flag

* chore: gante's review

* chore: style refactor

* chore: amy review

* chore: adding shape_list to parts that have been copied from other snippets

* chore: init batchnorm with torch defaults

* chore: adding shape_list to pass the tests

* test fix: adding seed as 0

* set seed

* chore: changing the straight through trick to fix -ve dimensinos

* chore: adding a dimension to the loss

* chore: adding reviewers and contributors names to the docs

* chore: added changes after review

* chore: code quality fixup

* chore: fixing the segmentation snippet

* chore: adding  to the layer calls

* chore: changing int32 to int64 for inputs of serving

* chore: review changes

* chore: style changes

* chore: remove from_pt=True

* fix: repo consistency

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-29 10:48:04 +01:00
bb6fa06f2d Add a getattr method, which replaces _module_getattr in torch.fx.Tracer from PyTorch 1.13+ (#19233) 2022-09-29 11:04:49 +02:00
9d732fd2dd XGLM - Fix Softmax NaNs when using FP16 (#18057)
* fix fp16 for xglm

* Removed misleading comment

* Fix undefined variable

Co-authored-by: Gabriele Sarti <gsarti@amazon.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2022-09-29 10:42:07 +02:00
99c32493e0 Fix confusing working directory in Push CI (#19234)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-29 08:36:46 +02:00
6957350c2b Focus doc around preprocessing classes (#18768)
* 📝 reframe docs around preprocessing classes

* small edits

* edits and review

* fix typo

* apply review

* clarify processor
2022-09-28 17:09:44 -07:00
990936a868 Move AutoClasses under Main Classes (#19163)
* move autoclasses to main classes

* keep auto.mdx in model_doc
2022-09-28 17:09:29 -07:00
0fc68a7e14 Fix seq2seq QA example 2022-09-28 15:45:49 -04:00
64998a57fb Fix cache names in CircleCI jobs (#19223)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-28 18:26:12 +02:00
4a0b958d61 Fix trainer seq2seq qa.py evaluate log and ft script (#19208)
* fix args option

* fix trainer eval log

* fix out of memory qa script

* do isort, black, flake

* fix tokenize target

* take it back.

* fix: comment
2022-09-28 10:55:46 -04:00
9c6aeba353 Document and validate typical_p in generation (#19128)
* Document and validate typical_p in generation
2022-09-28 15:45:05 +01:00
de359c4593 Fix doctest for TFDeiTForImageClassification (#19173)
* Fix doctest for TFDeiTForImageClassification

* Remove unnecessary tf.random.set_seed

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-28 15:53:21 +02:00
22d37a9d2c Fix deprecation warning for return_all_scores (#19217)
* Improve deprecation warning for return_all_scores

* Fix formatting
2022-09-28 08:57:43 -04:00
a357ed50e7 Generate: add warning when left padding should be used (#19067)
* add warning when left padding should be used

* PT: check for pad token; FLAX: can only check while not tracing
2022-09-28 13:07:08 +01:00
942fa8ced8 Fix small use_cache typo in the docs (#19191) 2022-09-28 13:03:20 +01:00
2df602870b Added tests for yaml and json parser (#19219)
* Added tests for yaml and json

* Added tests for yaml and json
2022-09-27 16:25:57 -04:00
2d95695825 Use math.pi instead of torch.pi in MaskFormer (#19201)
* Use math.pi

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-27 17:30:58 +02:00
34be08efcd More tests for regression in cached non existence (#19216)
* More tests for regression in cached non existence

* Style
2022-09-27 09:36:34 -04:00
e3a30e2b99 translated add_new_pipeline (#19215) 2022-09-27 08:55:41 -04:00
226b0e46d5 Add a use_parallel_residual argument to control the residual computing way (#18695)
* Add a gpt_j_residual argument to control the residual computing way

* Put duplicate code outside of the if block

* Rename parameter "gpt_j_residual" to "use_parallel_residual" and set the default value to True
2022-09-27 07:54:05 -04:00
88f597ba6a add doc for hyperparameter search (#19192)
* add doc for hyperparameter search

* update doc
2022-09-27 07:51:51 -04:00
ea540a5977 add wav2vec2_alignment (#16782)
* add wav2vec2_alignment

* Update alignment.py

* Update examples/research_projects/wav2vec2/alignment.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update examples/research_projects/wav2vec2/alignment.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update examples/research_projects/wav2vec2/alignment.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update examples/research_projects/wav2vec2/alignment.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update README.md

* fix style

* fix imports

* fix multithread

* fix bash script

* [@anton-l] Style fixes and docstrings

* [@anton-l] Style fixes and docstrings

* Update alignment.py

fix blank id in backtrack

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: anton-l <aglozhkov@gmail.com>
2022-09-27 13:12:56 +02:00
7132d55ca1 Remove unused cur_len in generation_utils.py (#18874)
* remove unused cur_len in generation_utils.py

* linting
2022-09-27 10:39:31 +02:00
a32f97c37d Fix cached_file in offline mode for cached non-existing files (#19206)
* Fix cached_file in offline mode for cached non-existing files

* Add tests

* Test with offline mode
2022-09-26 18:01:00 -04:00
ca0886395b Add warning for torchaudio <= 0.10 in MCTCTFeatureExtractor (#19203)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-26 23:58:02 +02:00
be4f269979 Updated hf_argparser.py (#19188)
* Changed json_file_parser function and added yaml parser function

* update hf_argparser

* Added allow_extra_keys argument
2022-09-26 17:02:57 -04:00
c20b2c7e18 Use repo_type instead of deprecated datasets repo IDs (#19202)
* Use repo_type instead of deprecated datasets repo IDs

* Add missing one in doc
2022-09-26 09:50:48 -04:00
216b2f9e80 Move the model type check (#19027)
Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-09-26 09:43:34 -04:00
ea75e9f10e Use assertAlmostEqual in BloomEmbeddingTest.test_logits (#19200)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-26 14:56:41 +02:00
98af4f9b54 Bump protobuf in /examples/research_projects/decision_transformer (#19176)
Bumps [protobuf](https://github.com/protocolbuffers/protobuf) from 3.19.4 to 3.19.5.
- [Release notes](https://github.com/protocolbuffers/protobuf/releases)
- [Changelog](https://github.com/protocolbuffers/protobuf/blob/main/generate_changelog.py)
- [Commits](https://github.com/protocolbuffers/protobuf/compare/v3.19.4...v3.19.5)

---
updated-dependencies:
- dependency-name: protobuf
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-09-26 14:55:16 +02:00
408b5e307b Remove pos arg from Perceiver's Pre/Postprocessors (#18602)
* Remove pos arg from Perceiver's Pre/Postprocessors

* Revert the removed pos args in public methods
2022-09-26 08:50:58 -04:00
71fc331746 Separate Push CI images from Scheduled CI (#19170)
* separate images

* Fix condition

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-26 10:55:42 +02:00
fa4eeb4fd3 german training, accelerate and model sharing (#19171)
* correct spelling in README

* processing

* german training

* accelerate

* german model sharing

* build doc

* ttf links

* casing
2022-09-23 14:52:09 -04:00
5da6afdd8d Update run_clip.py (#19130)
The overwrite_cache parameter is declared twice.
2022-09-23 20:48:41 +02:00
6395d1227f Fixed type hint for pipelines/check_task (#19150) 2022-09-23 20:35:19 +02:00
ece762443e Fix incorrect comments about atten mask for pytorch backend (#18728)
* fix incorrect comments about atten mask

* typo

* Update for CodeGen

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-23 13:52:27 -04:00
0cea8d5555 Add offline runners info in the Slack report (#19169)
* send slack report for offline runners

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-23 19:23:05 +02:00
49bf569830 Add doctests to Perceiver examples (#19129)
* Fix bug in example and add to tests

* Fix failing tests

* Check the size of logits

* Code style

* Try again...

* Add expected loss for PerceiverForMaskedLM doctest

Co-authored-by: Steven Anton <antonstv@amazon.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-23 19:19:35 +02:00
fe01ec343b Detr preprocessor fix (#19007)
* fix in-place preprocessing of inputs
2022-09-23 18:49:31 +03:00
7e84723fe4 Add semantic segmentation post-processing method to MobileViT (#19105)
* add post-processing method for semantic segmentation

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-23 16:24:28 +03:00
905635f5d3 [WIP] Trainer supporting evaluation on multiple datasets (#19158)
* support for multiple eval datasets

* support multiple datasets in seq2seq trainer

* add documentation

* update documentation

* make fixup

* revert option for multiple compute_metrics

* revert option for multiple compute_metrics

* revert added empty line
2022-09-23 09:14:53 -04:00
49629e7ba8 fix HPO DDP GPU problem (#19168)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-23 09:13:35 -04:00
8d59385f12 Fix TrainingArguments documentation (#19162)
* Fix TrainingArguments documentation

* Fix TFTrainingArguments documentation
2022-09-22 14:38:32 -04:00
3a396c59b8 fix: ckpt paths. (#19159) 2022-09-22 11:03:01 -04:00
74a3ea4737 Bump oauthlib in /examples/research_projects/decision_transformer (#19080)
Bumps [oauthlib](https://github.com/oauthlib/oauthlib) from 3.2.0 to 3.2.1.
- [Release notes](https://github.com/oauthlib/oauthlib/releases)
- [Changelog](https://github.com/oauthlib/oauthlib/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/oauthlib/oauthlib/compare/v3.2.0...v3.2.1)

---
updated-dependencies:
- dependency-name: oauthlib
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-09-22 17:01:40 +02:00
e5b7cff5fe update perf_train_cpu_many doc (#19151)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-22 09:20:15 -04:00
83dc6377d0 Reduce LR for TF MLM example test (#19156) 2022-09-22 08:51:27 -04:00
1b5ab39cf4 TF: check embeddings range (#19102) 2022-09-22 13:21:51 +01:00
cf6308ef9b Improve conditional detr docs (#19154)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-22 13:21:05 +02:00
2d9853b226 MSN (Masked Siamese Networks) for ViT (#18815)
* feat: modeling and conversion scripts for msn.

* chore: change license year.

* chore: remove unneeded modules.

* feat: direct loading of state_dict from remote url.

* fix: import paths.

* add: rest of the files.

* add and fix rest of the files.

Co-authored-by: Niels <niels.rogge1@gmail.com>

* chore: formatting.

* code quality fix.

* chore: remove pooler.

* feat: add classification top.

* fix: configuration object.

* add: initial test cases (one failing).

* fix: basemodeloutput.

* add: caution on using the classification head.

* add: rest of the model related files.

* add: vit msn readme.

* fix: copied from statement.

* fix: dummy objects.

* add: ViTMSNPreTrainedModel to inits.

* fix: repo consistency.

* minor change in the model doc.

* fix: tests.

* Empty-Commit

* Update src/transformers/models/vit_msn/configuration_vit_msn.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address PR comments.

* Update src/transformers/models/vit_msn/modeling_vit_msn.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* chore: put model in no_grad() and formatting.

Co-authored-by: Niels <niels.rogge1@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2022-09-22 07:15:03 -04:00
4d0f8c05f5 Add accelerate support for ViLT (#18683) 2022-09-22 13:14:39 +02:00
9393f966bc [fix] Add DeformableDetrFeatureExtractor (#19140)
* Add DeformableDetrFeatureExtractor

* Fix post_process

* Fix name

* Add tests for feature extractor

* Fix doc tests

* Fix name

* Address comments

* Apply same fix to DETR and YOLOS as well

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-22 09:45:24 +02:00
126a739058 Add support for conditional detr (#18948)
* added conditional_detr files

* checked copies

* checked copies

* fixed style and copies

* fixed style and copies

* fixed hub

* fixed style

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/index.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/conditional_detr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed some doc issue

* changed prefix to ConditionalDetr

* fixed docs

* Update README_ko.md

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fixed use_pretrained issue

* changed post-process

* added conditional_detr files

* checked copies

* checked copies

* fixed style and copies

* fixed style and copies

* fixed hub

* fixed style

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/index.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed some doc issue

* Update docs/source/en/model_doc/conditional_detr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* changed prefix to ConditionalDetr

* fixed docs

* Update README_ko.md

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fixed use_pretrained issue

* changed post-process

* fix style quality and copies

* fix style quality and copies

* fix style quality and copies

* fix style quality and copies

* add more fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed some variable names & added more fix-copies

* fixed some variable names & added more fix-copies

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added more copied from

* fixed quality

* changed pretrained config

* added more copied-from and fixed the issue in feature_extraction_auto

* added conditional_detr files

* checked copies

* checked copies

* fixed style and copies

* fixed style and copies

* fixed hub

* fixed style

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/index.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed some doc issue

* Update docs/source/en/model_doc/conditional_detr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* changed prefix to ConditionalDetr

* fixed docs

* Update README_ko.md

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fixed use_pretrained issue

* changed post-process

* added conditional_detr files

* checked copies

* fixed style and copies

* fixed some doc issue

* changed prefix to ConditionalDetr

* fixed docs

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fix style quality and copies

* fix style quality and copies

* fix style quality and copies

* add more fix-copies

* fixed some variable names & added more fix-copies

* fixed some variable names & added more fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added more copied from

* fixed quality

* changed pretrained config

* added more copied-from and fixed the issue in feature_extraction_auto

* fixed style

* added conditional_detr files

* checked copies

* checked copies

* fixed style and copies

* fixed style and copies

* fixed hub

* fixed style

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/index.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed some doc issue

* Update docs/source/en/model_doc/conditional_detr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* changed prefix to ConditionalDetr

* fixed docs

* Update README_ko.md

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fixed use_pretrained issue

* changed post-process

* added conditional_detr files

* checked copies

* fixed style and copies

* fixed some doc issue

* changed prefix to ConditionalDetr

* fixed docs

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fix style quality and copies

* fix style quality and copies

* fix style quality and copies

* add more fix-copies

* fixed some variable names & added more fix-copies

* fixed some variable names & added more fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added more copied from

* fixed quality

* changed pretrained config

* added more copied-from and fixed the issue in feature_extraction_auto

* rebased

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Depu Meng <depumeng@Depus-MacBook-Pro.local>
2022-09-22 09:45:04 +02:00
c7fd28999f Fixed typo in generation_utils.py (#19145)
Changed "unfeasable" to "unfeasible"
2022-09-21 20:59:52 +02:00
3c7b965bcd Add some tests for check_dummies (#19146) 2022-09-21 14:54:09 -04:00
d5848a574a Allowing users to use the latest tokenizers release ! (#19139)
* Allowing users to use the latest `tokenizers` release !

* Upgrading the versions table too.
2022-09-21 17:46:04 +02:00
451df725d6 Fix dummy creation for multi-frameworks objects (#19144) 2022-09-21 11:41:45 -04:00
66154a6c87 suppoer deps from github (#19141) 2022-09-21 16:15:31 +02:00
114295c010 Refuse Datasets 2.5.0 while waiting for a patch 2022-09-21 09:37:53 -04:00
486134e5a0 Fix FlaxPretTrainedModel pt weights check (#19133)
* Fix FlaxPretTrainedModel pt weights check

* Update src/transformers/modeling_flax_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix raise comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-21 14:17:04 +02:00
e7fdfc720a Add post_process_semantic_segmentation method to DPTFeatureExtractor (#19107)
* add post-processing method for semantic segmentation

* add test for post-processing
2022-09-21 15:15:26 +03:00
da6a1b6ca1 [BugFix] Fix fsdp option on shard_grad_op. (#19131) 2022-09-21 07:56:22 -04:00
9e95706648 Add post_process_semantic_segmentation method to SegFormer (#19072)
* add post_process_semantic_segmentation method to SegformerFeatureExtractor
* add test for semantic segmentation post-processing
2022-09-21 11:40:35 +03:00
ef6741fe65 Fix GLUE MNLI when using max_eval_samples (#18722) 2022-09-21 09:33:22 +02:00
18643ff29a Skip test_export_to_onnx for LongT5 if torch < 1.11 (#19122)
* Skip if torch < 1.11

* fix quality

* fix import

* fix typo

* fix condition

* fix condition

* fix condition

* fix quality

* fix condition

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-20 21:52:18 +02:00
06f341de4f Add a missing space in a script arg documentation (#19113) 2022-09-20 21:43:32 +02:00
36b9a99433 Fix BeitFeatureExtractor postprocessing (#19119)
* return post-processed segmentations as list, add test
* use torch to resize logits
* fix assertion error if no target_size is specified
2022-09-20 18:53:40 +03:00
36e356caa4 Fix: update ltp word segmentation call in mlm_wwm (#19047)
* Fix: update ltp word segmentation call in mlm_wwm

* Fix: update ltp word segmentation call in mlm_wwm

* Fix: update ltp word segmentation call in mlm_wwm
2022-09-20 09:20:38 -04:00
de26241645 german processing (#19121)
* correct spelling in README

* processing
2022-09-20 09:18:21 -04:00
67403413bd Change document question answering pipeline to always return an array (#19071)
Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-09-20 15:17:57 +02:00
cc567e0063 Fix the wrong schedule (#19117)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-20 13:46:55 +02:00
c81ebd1c39 Beit postprocessing (#19099)
* add post_process_semantic_segmentation method to BeiTFeatureExtractor
2022-09-20 10:41:56 +03:00
261301d388 Added type hints for YolosForObjectDetection (#19086) 2022-09-20 00:04:25 +02:00
801ebd045d Add documentation of Trainer.create_model_card (#19110)
* Add documentation of Trainer.create_model_card

* Expand to TF version
2022-09-19 16:55:50 -04:00
6227078d0a HPO: keep the original logic if there's only one process, pass the trial to trainer (#19096)
need to find out solution for following cases
     *if we need to use trial in model_init, how to do it for non-main rank, sync the model with rank0 in app?
     *how to use optuna prune feature for DDP, if we do it in rank0, how does other rank know it.

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-19 16:42:18 -04:00
3b0cecb627 Don't warn of move if cache is empty (#19109) 2022-09-19 15:27:18 -04:00
6be338f1b9 correct spelling in README (#19092) 2022-09-19 19:51:43 +02:00
e7206ceab9 Improve vision models docs (#19103)
* Add tips

* Add BEiT figure

* Fix URL

* Move tip to start

* Add tip to TF model as well

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-19 19:22:34 +02:00
0d1ba2dd0b added type hints (#19076) 2022-09-19 14:10:21 +01:00
6f25d107fd Added type hints to ResNetForImageClassification (#19084)
* Added type hints to ResNetForImageClassification

* Resolved check_repository_consistency failure issue

Running fix-copies changed the type hints for RegNetForImageClassification in modeling_regnet.py file
2022-09-19 13:42:13 +01:00
fe5e7cea4a Add type hints for TF MPNet models (#19089)
* Added type hints for TFMPNetModel

* Added type hints for TFMPNetForMaskedLM

* Added type hints for TFMPNetForSequenceClassification

* Added type hints for TFMPNetForMultipleChoice

* Added type hints for TFMPNetForTokenClassification

* Added Type hints for TFMPNetForQuestionAnswering
2022-09-19 13:37:32 +01:00
1bbad7a2da Added Type hints for VIT MAE (#19085)
* Added Type hints for VIT MAE

* Ran make fixup
2022-09-19 13:37:18 +01:00
fbe8464b5b Added type hints for TFConvBertModel (#19088) 2022-09-19 13:28:13 +01:00
22264f933d fix working dir (#19101)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-19 07:09:24 -04:00
ba7f2173cc Add runner availability check (#19054)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-19 12:27:06 +02:00
ca485e562b Add tests for legacy load by url and fix bugs (#19078) 2022-09-16 23:20:02 +02:00
ae219532e3 german autoclass (#19049)
* german autoclass

* Update _toctree.yml
2022-09-16 16:16:00 -04:00
7d0486c106 Bump mako in /examples/research_projects/decision_transformer (#19077)
Bumps [mako](https://github.com/sqlalchemy/mako) from 1.2.0 to 1.2.2.
- [Release notes](https://github.com/sqlalchemy/mako/releases)
- [Changelog](https://github.com/sqlalchemy/mako/blob/main/CHANGES)
- [Commits](https://github.com/sqlalchemy/mako/commits)

---
updated-dependencies:
- dependency-name: mako
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-09-16 22:15:02 +02:00
56c548f17c Note about developer mode (#19075) 2022-09-16 22:12:59 +02:00
9017ba4ca4 Fix tokenizer load from one file (#19073)
* Fix tokenizer load from one file

* Add a test

* Style

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2022-09-16 16:11:47 -04:00
773314ab80 replace logger.warn by logger.warning (#19068) 2022-09-16 21:01:57 +02:00
5e636eee4a Add type hints for PyTorch UniSpeech, MPNet and Nystromformer (#19039)
* added type hints pytorch unispeech

* added type hints pytorch  MPNet

* added type hints nystromformer

* resolved copy inconsistencies

* make fix-copies

Co-authored-by: matt <rocketknight1@gmail.com>
2022-09-16 17:59:40 +01:00
658010c739 TF: tests for (de)serializable models with resized tokens (#19013)
* resized models that we can actually load

* separate embeddings check

* add test for embeddings out of bounds

* add fake slows
2022-09-16 16:38:08 +01:00
70ba10e6d4 Fix LeViT checkpoint (#19069)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-16 16:23:58 +02:00
bc5d0b1046 Automatically tag CLIP repos as zero-shot-image-classification (#19064)
* Add CLIP to zero-shot-image-classification

* Make mapping private as it's not used for AutoClassing
2022-09-16 15:40:38 +02:00
820cb97a3f Organize test jobs (#19058)
* Tests conditional run

* Syntax

* Deps

* Try early exit

* Another way

* Test with no tests to run

* Test all

* Typo

* Try this way

* With tests to run

* Mostly finished

* Typo

* With a modification in one file only

* No change, no tests

* Final cleanup

* Address review comments
2022-09-16 09:19:51 -04:00
d63bdf78d4 Add FP32 cast in ConvNext LayerNorm to prevent rounding errors with FP16 input (#18746)
* Adding cast to fp32 in convnext layernorm to prevent rounding errors in the case of fp16 input

* Trigger CI
2022-09-16 08:42:57 -04:00
532ca05079 [doc] Fix link in PreTrainedModel documentation (#19065) 2022-09-16 07:31:39 -04:00
c603c80f46 FX support for ConvNext, Wav2Vec2 and ResNet (#19053)
* Support for ConvNext

* Support for Wav2Vec2

* Support for Resnet

* Fix small issue in test_modeling_convnext
2022-09-16 10:57:41 +02:00
c8e40d6fa1 fix use_cache (#19060)
- set `use_cache` to `True` for consistency with other `transformers` models
2022-09-16 09:07:02 +02:00
0b5c7e4838 Adds package and requirement spec output to version check exception (#18702)
* Adds package and requirement spec output to version check exception

It's difficult to understand what package is affected when `got_ver`
here comes back None, so output the requirement and the package. The
requirement probably contains the package but let's output both for good
measure.

Non-exhaustive references for this problem aside from my own encounter:

* https://stackoverflow.com/questions/70151167/valueerror-got-ver-is-none-when-importing-tensorflow
* https://discuss.huggingface.co/t/valueerror-got-ver-is-none/17465
* https://github.com/UKPLab/sentence-transformers/issues/1186
* https://github.com/huggingface/transformers/issues/13356

I speculate that the root of the error comes from a conflict of
conda-managed and pip-managed Python packages but I've not yet proven
this.

* Combines version presence check and streamlines exception message

See also: https://github.com/huggingface/transformers/pull/18702#discussion_r953223275

Co-authored-by: Stas Bekman <stas@stason.org>
2022-09-15 12:53:36 -07:00
f3d3863255 fix arg name in BLOOM testing and remove unused arg document (#18843) 2022-09-15 20:25:32 +02:00
16242e1bf0 Run torchdynamo tests (#19056)
* Enable torchdynamo tests

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-15 11:10:16 -07:00
f7ce4f1ff7 Fix custom tokenizers test (#19052)
* Fix CI for custom tokenizers

* Add nightly tests

* Run CI, run!

* Fix paths

* Typos

* Fix test
2022-09-15 11:31:09 -04:00
68bb33d770 Fixing OPT fast tokenizer option. (#18753)
* Fixing OPT fast tokenizer option.

* Remove dependency on `pt`.

* Move it to GPT2 tokenization tests.

* Added a few tests.
2022-09-15 17:12:58 +02:00
578e18e002 🚨🚨🚨 Optimize Top P Sampler and fix edge case (#18984)
* init PR

* optimize top p and add edge case

* styling

* style

* revert tf and flax test

* add edge case test for FLAX and TF

* update doc with smallest set sampling for top p

* make style
2022-09-15 15:50:11 +02:00
2700ba66d9 Move cache: expand error message (#19051) 2022-09-15 09:39:59 -04:00
2322eb8e2f Update serving signatures and make sure we actually use them (#19034)
* Override save() to use the serving signature as the default

* Replace int32 with int64 in all our serving signatures

* Remember one very important line so as not to break every test at once

* Dtype fix for TFLED

* dtype fix for shift_tokens_right in general

* Dtype fixes in mBART and RAG

* Fix dtypes for test_unpack_inputs

* More dtype fixes

* Yet more mBART + RAG dtype fixes

* Yet more mBART + RAG dtype fixes

* Add a check that the model actually has a serving method
2022-09-15 14:34:22 +01:00
9b80a0bc18 Pin minimum PyTorch version for BLOOM ONNX export (#19046) 2022-09-15 15:22:31 +02:00
0a42b61ede Fix test_save_load for TFViTMAEModelTest (#19040)
* Fix test_save_load for TFViTMAEModelTest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-15 15:21:57 +02:00
30a28f5227 Update image segmentation pipeline test (#18731)
* Updated test values

The image segmentation pipeline tests - tests/pipelines/test_pipelines_image_segmentation.py - were failing after the merging of #1849  (49e44b216b2559e34e945d5dcdbbe2238859e29b). This was due to the difference in rescaling. Previously the images were rescaled by `image = image / 255`. In the new commit, a `rescale` method was added, and images rescaled using `image = image * scale`. This was known to cause small differences in the processed images (see
[PR comment](https://github.com/huggingface/transformers/pull/18499#discussion_r940347575)).

Testing locally, changing the `rescale` method to divide by a scale factor (255) resulted in the tests passing. It was therefore decided the test values could be updated, as there was no logic difference between the commits.

* Use double quotes, like previous example

* Fix up
2022-09-15 07:32:31 -04:00
7743caccb9 [bnb] Small improvements on utils (#18646)
* Small replacement

- replace `modules_to_not_convert` by `module_to_not_convert`

* refactor a bit

- changed variables name
- now output a list
- change error message

* make style

* add list

* make style

* change args name

Co-authored-by: stas00 <stas00@users.noreply.github.com>

* fix comment

* fix typo

Co-authored-by: stas00 <stas00@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: stas00 <stas00@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-15 13:01:19 +02:00
8edf196310 [doc] debug: fix import (#19042)
correct the import statement
2022-09-14 16:29:58 -07:00
abca1741cf Fix a broken link for deepspeed ZeRO inference in the docs (#19001)
* Fix a broken link for deepspeed ZeRO inference

* fix link

Co-authored-by: Stas Bekman <stas@stason.org>
2022-09-14 16:21:06 -07:00
16913b3c92 Dev version 2022-09-14 14:58:20 -04:00
3774010161 Automate check for new pipelines and metadata update (#19029)
* Automate check for new pipelines and metadata update

* Add Datasets to quality extra
2022-09-14 14:06:49 -04:00
0efbb6e93e fix GPT2 token's special_tokens_mask when used with add_bos_token=True (#19036) 2022-09-14 19:32:12 +02:00
0e24548081 Add safeguards for CUDA kernel load in Deformable DETR (#19037) 2022-09-14 13:28:40 -04:00
31be02f14b TF: tf.debugging assertions without tf.running_eagerly() protection (#19030) 2022-09-14 18:19:15 +01:00
693ba2cc79 Fix GPT-NeoX doc examples (#19033) 2022-09-14 17:53:42 +02:00
4eb36f2921 Mark right save_load test as slow (#19031) 2022-09-14 10:38:39 -04:00
f5f430e5c8 Add support for Japanese GPT-NeoX-based model by ABEJA, Inc. (#18814)
* add gpt-neox-japanese model and tokenizer as new model

* Correction to PR's comment for GPT NeoX Japanese
- Fix to be able to use gpu
- Add comment # Copied... at the top of RotaryEmbedding
- Implement nn.Linear instead of original linear class
- Add generation test under @slow

* fix bias treatment for gpt-neox-japanese

* Modidy gpt-neox-japanese following PR
- add doc for bias_dropout_add
- style change following a PR comment

* add document for gpt-neox-japanese

* remove unused import from gpt-neox-japanese

* fix README for gpt-neox-japanese
2022-09-14 10:17:40 -04:00
6a9726ec0e Fix DocumentQuestionAnsweringPipelineTests (#19023)
* Fix DocumentQuestionAnsweringPipelineTests

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-14 16:13:20 +02:00
1207deb806 Typo fix 2022-09-14 10:02:14 -04:00
e1224a2a0f Making save_load test slow as it times out 2022-09-14 10:01:22 -04:00
0b567aa430 Add Document QA pipeline metadata (#19028) 2022-09-14 09:25:15 -04:00
77b18783c2 Fix CI for PegasusX (#19025)
* Skip test_torchscript_output_attentions for PegasusXModelTest

* fix test_inference_no_head

* fix test_inference_head

* fix test_seq_to_seq_generation

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-14 14:45:00 +02:00
77ea35b93a added type hints (#19015) 2022-09-14 12:58:05 +01:00
fc21c9be62 [CookieCutter] Clarify questions (#18959)
* Clarify cookiecutter questions

* Update first question

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-14 13:52:54 +02:00
6f8f2f6a77 Make AutoProcessor a magic loading class for all modalities (#18963)
* Make AutoProcessor a magic loading class for all modalities

* Quality
2022-09-14 07:36:12 -04:00
a2a3afbc8d PyTorch >= 1.7.0 and TensorFlow >= 2.4.0 (#19016) 2022-09-14 07:19:02 -04:00
9f4acd059f Generate: add missing comments after refactoring of generate() (#18981) 2022-09-14 11:06:29 +01:00
59407bbeb3 Add Deformable DETR (#17281)
* First draft

* More improvements

* Improve model, add custom CUDA code

* Import torch before

* Add script that imports custom layer

* Add everything in new ops directory

* Import custom layer in modeling file

* Fix ARCHIVE_MAP typo

* Creating the custom kernel on the fly.

* Import custom layer in modeling file

* More improvements

* Fix CUDA loading

* More improvements

* Improve conversion script

* Improve conversion script

* Make it work until encoder_outputs

* Make forward pass work

* More improvements

* Make logits match original implementation

* Make implementation also support single_scale model

* Add support for single_scale and dilation checkpoint

* Add support for with_box_refine model

* Support also two stage model

* Improve tests

* Fix more tests

* Make more tests pass

* Upload all models to the hub

* Clean up some code

* Improve decoder outputs

* Rename intermediate hidden states and reference points

* Improve model outputs

* Move tests to dedicated folder

* Improve model outputs

* Fix retain_grad test

* Improve docs

* Clean up and make test_initialization pass

* Improve variable names

* Add copied from statements

* Improve docs

* Fix style

* Improve docs

* Improve docs, move tests to model folder

* Fix rebase

* Remove DetrForSegmentation from auto mapping

* Apply suggestions from code review

* Improve variable names and docstrings

* Apply some more suggestions from code review

* Apply suggestion from code review

* better docs and variables names

* hint to num_queries and two_stage confusion

* remove asserts and code refactor

* add exception if two_stage is True and with_box_refine is False

* use f-strings

* Improve docs and variable names

* Fix code quality

* Fix rebase

* Add require_torch_gpu decorator

* Add pip install ninja to CI jobs

* Apply suggestion of @sgugger

* Remove DeformableDetrForObjectDetection from auto mapping

* Remove DeformableDetrModel from auto mapping

* Add model to toctree

* Add model back to mappings, skip model in pipeline tests

* Apply @sgugger's suggestion

* Fix imports in the init

* Fix copies

* Add CPU implementation

* Comment out GPU function

* Undo previous change

* Apply more suggestions

* Remove require_torch_gpu annotator

* Fix quality

* Add logger.info

* Fix logger

* Fix variable names

* Fix initializaztion

* Add missing initialization

* Update checkpoint name

* Add model to doc tests

* Add CPU/GPU equivalence test

* Add Deformable DETR to pipeline tests

* Skip model for object detection pipeline

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-09-14 11:45:21 +02:00
5a70a77bfa Add Support to Gradient Checkpointing for LongT5 (#18977)
FlaxLongT5PreTrainedModel is missing "enable_gradient_checkpointing" function. This gives an error if someone tries to enable gradient checkpointing for longt5.
This pull request fixes it.
2022-09-14 09:12:51 +01:00
4157e3cd7e new length penalty docstring (#19006) 2022-09-13 13:16:36 -04:00
f89f16a51e Re-add support for single url files in objects download (#19014) 2022-09-13 13:11:24 -04:00
ad5045e3e3 add missing require_tf for TFOPTGenerationTest (#19010)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-13 18:10:11 +02:00
d14af22c5c add DDP HPO support for optuna (#19002)
only main_process will have HPO, and pass argument to other process

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-13 17:56:20 +02:00
00fc9217d1 Fixed bug which caused overwrite_cache to always be True (#19000)
* fixed bug which caused overwrite_cache to always be True (#18967).

* reformatting changes
2022-09-13 11:29:48 -04:00
420f6c5ee3 Update default revision for document-question-answering (#18938)
Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-09-13 10:04:03 -04:00
2886f7f08a Fix tokenizer for XLMRobertaXL (#19004)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-13 14:04:14 +02:00
2848c9ce42 Add type hints for M2M (#18998)
* added type hints

* fixed typo
2022-09-13 12:58:46 +01:00
4bd36f1853 Generate: add model class validation (#18902) 2022-09-13 09:19:43 +01:00
69df33f180 Fix MaskFormerFeatureExtractor instance segmentation preprocessing bug (#18997)
* fix preprocessing for instance segmentation maps

* add support for per-image instance2class_id mapping

* edit docstrings for clarity
2022-09-13 09:36:03 +03:00
470799b3a6 Removed issue in wav2vec link (#18945)
Fix connected to [this issue](https://github.com/huggingface/transformers/issues/18944)
2022-09-12 21:59:19 +02:00
4c2e983f44 Fixed typo (#18921)
Fixed typo itmes --> items
2022-09-12 21:03:48 +02:00
1182b945a6 TF: TF 2.10 unpin + related onnx test skips (#18995) 2022-09-12 19:30:27 +01:00
7f4708e1a2 added type hints (#18996) 2022-09-12 19:11:40 +01:00
39b5bb79d9 fix checkpoint name for wav2vec2 conformer (#18994)
* fix checkpoint name for wav2vec2 conformer

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-12 19:39:01 +02:00
8a6928e28b TF: correct TFBart embeddings weights name when load_weight_prefix is passed (#18993) 2022-09-12 18:35:45 +01:00
c126a239bc Fix tflongformer int dtype (#18907)
* Use int64 throughout TFLongFormer

* make style

* Do some more fixed casting in TFLongFormer

* Fix some wonky "is None" conditionals

* Cast all the dtypes, salt the earth

* Fix copies to TFLED as well and do some casting there

* dtype fix in TFLongformer test

* Make fixup

* Expand tolerances on the LED tests too (I think this is a TF32 thing)

* Expand test tolerances for LED a tiny bit (probably a Tensorfloat thing again)
2022-09-12 17:51:10 +01:00
f7ceda345d Align try_to_load_from_cache with huggingface_hub (#18966)
* Align try_to_load_from_cache with huggingface_hub

* Fix tests
2022-09-12 12:09:37 -04:00
cf450b776f Fix TF start docstrings (#18991)
* Update our TF 2.0 input format tip across all models

* make style
2022-09-12 16:33:56 +01:00
adbf3a40de Remove dropout in embedding layer of OPT (#18845) 2022-09-12 16:32:38 +02:00
367026000b create Past CI results as tables for GitHub issue (#18953)
* create Past CI results as tables for GitHub issue

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-12 15:20:31 +02:00
0b36970371 Remove decoder_position_ids from check_decoder_model_past_large_inputs (#18980)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-12 15:19:48 +02:00
a86acb75ad add DDP HPO support for sigopt (#18931)
only main_process will have HPO, and pass argument to other process

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-12 07:37:25 -04:00
9faa9f9dac remove unused activation dropout (#18842) 2022-09-12 11:00:24 +02:00
a26114777e Revert "TF: unpin maximum TF version (#18917)" (#18972)
This reverts commit d8cf3b20875baee97f4bea64ffd17670aa57c37b.
2022-09-10 09:11:46 -04:00
d8cf3b2087 TF: unpin maximum TF version (#18917) 2022-09-10 13:33:01 +01:00
00cbadb870 RFC: Replace custom TF embeddings by Keras embeddings (#18939) 2022-09-10 11:34:49 +01:00
855dcae8bb update black target version (#18955)
* update black target version

* add comment

as per https://github.com/huggingface/transformers/pull/18955#issuecomment-1242081649

* revert change

Will only update to 3.7 after black 2023 upgrade in January
2022-09-09 17:30:05 -04:00
645f174286 Exit early in load if no weights are in the sharded state dict (#18937) 2022-09-09 15:07:09 -04:00
660e0b97bd Fix train_step, test_step and tests for CLIP (#18684)
* Fix train_step and test_step, correctly enable CLIP fit test

* Stop using get_args on older Python versions

* Don't use get_origin either

* UnionType is actually even newer, don't use that either

* Apply the same fix to test_loss_computation

* Just realized I was accidentally skipping a bunch of tests!

* Fix test_loss_computation for models without separable labels

* Fix scalar losses in test_step and train_step

* Stop committing your breakpoints

* Fix Swin loss shape

* Fix Tapas loss shape

* Shape fixes for TAPAS, DeIT, HuBERT and ViTMAE

* Add loss computation to TFMobileBertForPreTraining

* make fixup and move copied from statement

* make fixup and move copied from statement

* Correct copied from

* Add labels and next_sentence_label inputs to TFMobileBERT

* Make sure total_loss is always defined

* Update tests/test_modeling_tf_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix copied from

* Ensure CTC models get labels in tests

* Ensure CTC models get labels in tests

* Fix tests for vit_mae

* Fix tests for vit_mae

* Fix tests for vit_mae

* Reduce batch size for wav2vec2 testing because it was causing OOM

* Skip some TAPAS tests that are failing

* Skip a failing HuBERT test

* make style

* Fix mobilebertforpretraining test

* Skip Wav2Vec2 tests that use huge amounts of mem

* Skip keras_fit for Wav2Vec2 as well

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2022-09-09 20:01:02 +01:00
f1a6df3210 Generate: Simplify is_pad_token_not_equal_to_eos_token_id (#18933) 2022-09-09 16:44:56 +01:00
85125fcffd Neptune.ai integration improvements (#18934)
* NeptuneCallback improvements

* After review suggestions and deduplication of initial run

* Added volatile checkpoints support due to missing post-rebase commit

* Update README per review comments

- Remove list formatting
- Correct Neptune docs link

Co-authored-by: Sabine <sabine.nyholm@neptune.ai>
2022-09-09 11:37:34 -04:00
e6f221c8d4 [JAX] Replace all jax.tree_* calls with jax.tree_util.tree_* (#18361)
* [JAX] Replace all jax.tree_* calls with jax.tree_util.tree_*

* fix double tree_util
2022-09-09 15:18:56 +02:00
22f7218560 add task_type_id to BERT to support ERNIE-2.0 and ERNIE-3.0 models (#18686)
* add_ernie

* remove Tokenizer in ernie

* polish code

* format code style

* polish code

* fix style

* update doc

* make fix-copies

* change model name

* change model name

* fix dependency

* add more copied from

* rename ErnieLMHeadModel to ErnieForCausalLM
do not expose ErnieLayer
update doc

* fix

* make style

* polish code

* polish code

* fix

* fix

* fix

* fix

* fix

* final fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-09 07:36:46 -04:00
895c528886 Update translation requests contact (#18941)
* Update TRANSLATING.md

Update the contact to @GuggerSylvain

* Update docs/TRANSLATING.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-09 09:15:24 +02:00
bb6f6d5338 Add X-CLIP (#18852)
* First draft

* Improve conversion script

* Make vision encoder work

* More improvements

* Improve conversion script

* Fix quality

* Add MultiframeIntegrationTransformer

* More improvements

* Make MiT output work

* Fix quality

* Add prompts generator

* Add tests

* Fix some tests

* Fix some more tests

* Fix more tests

* Improve conversion script

* Fix model outputs

* Fix more tests

* Add XClipProcessor

* Use processor in conversion script

* Fix integration test

* Update README, fix docs

* Fix all tests

* Add MIT output to XClipOutput

* Create better variable names

* Rename XClip to XCLIP

* Extend conversion script

* Add support for large models

* Add support for 16 frame models

* Add another model'

* Fix module issue

* Apply suggestions from code review

* Add figure to docs

* Fix CLIPProcessor issue

* Apply suggestions from code review

* Delete file

* Convert more checkpoints

* Convert last checkpoint

* Update nielsr to microsoft
2022-09-08 14:50:30 +02:00
9832ac7c73 Fix LayoutXLM wrong link in README (#18932)
* fix LayoutXLM wrong link in README

* fix LayoutXLM worng link in index.mdx
2022-09-08 07:32:41 -04:00
90f6fe9155 Skip some doctests in quicktour (#18927)
* skip some code examples for doctests

* make style

* fix code snippet formatting

* separate code snippet into two blocks
2022-09-07 14:45:22 -07:00
6519150c31 Add image height and width to ONNX dynamic axes (#18915) 2022-09-07 22:42:46 +02:00
737f6ad1f7 Starts on a list of external deps required for dev (#18929)
* Starts on a list of external deps required for dev

I've found that I need to install MeCab manually on my AS Mac.

* Generalizes OS nascent dependency list

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-07 16:33:03 -04:00
6394221871 Fix XLA fp16 and bf16 error checking (#18913)
* Fix XLA fp16 and bf16 error checking

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-07 15:45:17 -04:00
6690ba3f4d pin TF 2.9.1 for self-hosted CIs (#18925)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-07 19:46:14 +02:00
2ef7742117 Add DocumentQuestionAnswering pipeline (#18414)
* [WIP] Skeleton of VisualQuestionAnweringPipeline extended to support LayoutLM-like models

* Fixup

* Use the full encoding

* Basic refactoring to DocumentQuestionAnsweringPipeline

* Cleanup

* Improve args, docs, and implement preprocessing

* Integrate OCR

* Refactor question_answering pipeline

* Use refactored QA code in the document qa pipeline

* Fix tests

* Some small cleanups

* Use a string type annotation for Image.Image

* Update encoding with image features

* Wire through the basic docs

* Handle invalid response

* Handle empty word_boxes properly

* Docstring fix

* Integrate Donut model

* Fixup

* Incorporate comments

* Address comments

* Initial incorporation of tests

* Address Comments

* Change assert to ValueError

* Comments

* Wrap `score` in float to make it JSON serializable

* Incorporate AutoModeLForDocumentQuestionAnswering changes

* Fixup

* Rename postprocess function

* Fix auto import

* Applying comments

* Improve docs

* Remove extra assets and add copyright

* Address comments

Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-09-07 13:38:49 -04:00
3059d80d80 [DeepSpeed ZeRO3] Fix performance degradation in sharded models (#18911)
* [DeepSpeed] Fix performance degradation in sharded models

* style

* polish

Co-authored-by: Stas Bekman <stas@stason.org>
2022-09-07 07:44:20 -07:00
10c774cf60 remvoe _create_and_check_torch_fx_tracing in specific test files (#18667)
* remvoe _create_and_check_torch_fx_tracing defined in specific model test files

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-07 16:22:09 +02:00
0eabab0998 TF: final bias as a layer in seq2seq models (replicate TFMarian fix) (#18903) 2022-09-07 14:03:02 +01:00
2b9513fdab Update TF fine-tuning docs (#18654)
* Update TF fine-tuning docs

* Fix formatting

* Add some section headers so the right sidebar works better

* Squiggly it

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Explain things in the text, not the comments

* Make the two dataset creation methods into a list

* Move the advice about collation out of a <Tip>

* Edits for clarity

* Edits for clarity

* Edits for clarity

* Replace `to_tf_dataset` with `prepare_tf_dataset` in the fine-tuning pages

* Restructure the page a little bit

* Restructure the page a little bit

* Restructure the page a little bit

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-07 13:30:07 +01:00
d842f2d5b9 update the train_batch_size in case HPO change batch_size_per_device (#18918)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-07 08:01:30 -04:00
4f299b2446 Accelerator end training (#18910)
* add accelerator.end_training()

Some trackers need this to end their runs.

* fixup and quality

* add space

* add space again ?!?
2022-09-07 07:46:26 -04:00
7a8118947f Add checks for more workflow jobs (#18905)
* add check for scheduled CI

* Add check to other CIs

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-07 12:51:37 +02:00
c25f27fa6a [VideoMAE] Improve code examples (#18919)
* Simplify code example

* Add seed
2022-09-07 12:24:12 +02:00
0a632f076d Fix incorrect size of input for 1st strided window length in Perplexity of fixed-length models (#18906)
* update the PPL for stride 512

* fix 1st strided window size

* linting

* fix typo

* styling
2022-09-06 15:20:12 -04:00
7d5fde991d unpin slack_sdk version (#18901)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-06 18:42:00 +02:00
71ff88fa4f Further reduce the number of alls to head for cached objects (#18871)
* Further reduce the number of alls to head for cached models/tokenizers/pipelines

* Fix tests

* Address review comments
2022-09-06 12:34:37 -04:00
6678350c01 fixes bugs to handle non-dict output (#18897) 2022-09-06 16:13:34 +03:00
998a90bc7d Fix test_tf_encode_plus_sent_to_model for LayoutLMv3 (#18898)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-06 14:51:03 +02:00
f85acb4d73 Fix decode_input_ids to bare T5Model and improve doc (#18791)
* use tokenizer to output tensor

* add preprocessing for decoder_input_ids for bare T5Model

* add preprocessing to tf and flax

* linting

* linting

* Update src/transformers/models/t5/modeling_flax_t5.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/t5/modeling_tf_t5.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/t5/modeling_t5.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-09-06 14:12:26 +02:00
3b19c0317b updating gather function with gather_for_metrics in run_wav2vec2_pretraining (#18877)
Co-authored-by: Arun Rajaram <arunrajaram@Aruns-MacBook-Pro.local>
2022-09-06 07:36:37 -04:00
Had
734b7e2a5a Mask t5 relative position bias then head pruned (#17968)
* add position bias head masking if heads pruned

* fix pruning function in t5 encoder

* make style

* make fix-copies

* Revert added folder

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-09-06 10:39:31 +02:00
d4dbd7ca59 Generate: get the correct beam index on eos token (#18851) 2022-09-05 19:35:47 +01:00
c6d3daba54 Update Chinese documentation (#18893)
* update the translation
2022-09-05 19:56:12 +02:00
cfd623a859 Add type hints to XLM-Roberta-XL models (#18475)
* Add type hints to XLM-Roberta-XL models

* Format
2022-09-05 13:38:08 +01:00
17c634fd5b Update perf_train_gpu_one.mdx (#18442) 2022-09-05 14:06:36 +02:00
badb9d2aaa Correct naming pegasus x (#18896)
* add first generation tutorial

* [Pegasus X] correct naming

* [Generation] Remove
2022-09-05 11:25:00 +02:00
591cfc6c90 Mention TF and Flax checkpoints (#18894) 2022-09-05 11:09:39 +02:00
7f27e002fd TF: TFMarianMTModel final logits bias as a layer (#18833)
* bias as a layer

* alias the bias (hah, it rhymes)

* add comment with info
2022-09-05 09:20:27 +01:00
65fb71bc76 Add Trainer to quicktour (#18723)
* 📝 update quicktour

* 📝 add trainer section

* 🖍 markdown table, apply feedbacks

*  make style

* add tf training section

* make style
2022-09-02 15:05:31 -05:00
ae32f3afef Finetune guide for semantic segmentation (#18640)
* 📝 first draft

* oops add to toctree

* make style

* 📝 add inference section

* 🖍 make style

* 📝 add images

* 🖍 apply feedbacks

* remove num_labels and pytorch block

* apply feedbacks, add colab notebook

Co-authored-by: Steven <stevhliu@gmail.com>
2022-09-02 14:29:51 -05:00
bf9d506137 Update docs landing page (#18590)
* 📝 update docs landing page

* 🖍 apply feedbacks

* apply feedbacks

* apply feedbacks, use <br> for list
2022-09-02 14:29:06 -05:00
53e33e6f1b PEGASUS-X (#18551)
* PegasusX Initial commit

* rename

* pegasus X implementation

* pegx update

* pegx fix

* pegasus-x fixes

* pegx updates

* cleanup

* cleanup

* cleanup

* tests

* stylefixes

* Documentation update

* Model hub fix

* cleanup

* update

* update

* testfix

* Check fix

* tweaks for merging

* style

* style

* updates for pr

* style

* change pegasus-x repo
2022-09-02 19:54:02 +02:00
ecdf9b06bc Remove cached torch_extensions on CI runners (#18868)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-02 18:17:58 +02:00
4e29b3f884 A script to download artifacts and perform CI error statistics (#18865)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-02 17:59:26 +02:00
9196f48b95 Generate: validate model_kwargs on TF (and catch typos in generate arguments) (#18651) 2022-09-02 16:25:26 +01:00
c5be7cae59 postpone bnb load until it's needed (#18859) 2022-09-02 08:22:46 -07:00
9e346f7436 Fix number of examples for iterable datasets in multiprocessing (#18856)
* Fix number of examples for iterable datasets in multiprocessing

* Add stronger check
2022-09-02 10:49:39 -04:00
0ab465a5d2 pin Slack SDK to 3.18.1 to avoid failing issue (#18869)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-02 16:49:08 +02:00
38c3cd52fb Clean up utils.hub using the latest from hf_hub (#18857)
* Clean up utils.hub using the latest from hf_hub

* Adapt test

* Address review comment

* Fix test
2022-09-02 10:30:06 -04:00
17981faf67 Add OWL-ViT to the appropriate section (#18867)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-02 15:59:25 +02:00
c60dd98e87 [LayoutLM] Add clarification to docs (#18716)
* Add clarification

* Add another clarification

* Apply suggestion

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-02 14:48:19 +02:00
129d73294e Fix naming issue with ImageToText pipeline (#18864)
Co-authored-by: Olivier Dehaene <olivier@huggingface.co>
2022-09-02 07:55:30 -04:00
9b3eb81014 if learning rate is a tensor, get item (float) (#18861) 2022-09-02 07:46:31 -04:00
142e12afb4 Split docs on modality (#18205)
* update

* 🖍 add missing files

* 📝 add nested sections

* 🖍 align titles with tasks

* oops

* remove quotes from titles
2022-09-01 15:19:11 -05:00
23fab60b67 Pin revision for LayoutLMForQuestionAnswering and TFLayoutLMForQuestionAnswering tests (#18854)
* Pin revision for tests

* Fixup

* Update revision in models

* Shorten revisions

Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-09-01 12:52:33 -04:00
ddb69e5af8 Add Image To Text Generation pipeline (#18821)
* Add Image2TextGenerationPipeline to supported pipelines

* Add Flax and Tensorflow support

* Add Flax and Tensorflow small tests

* Add default model for Tensorflow

* Add docstring

* Fix doc style

* Add tiny models for pytorch and flax

* Remove flax from pipeline.
Fix tests

* Use ydshieh/vit-gpt2-coco-en as a default for both PyTorch and Tensorflow

* Fix Tensorflow support

Co-authored-by: Olivier Dehaene <olivier@huggingface.co>
2022-09-01 12:07:14 -04:00
c61f116b63 Tie weights after preparing the model in run_clm (#18855) 2022-09-01 12:06:56 -04:00
1c381f3600 Cache results of is_torch_tpu_available() (#18777)
* Cache results of is_torch_tpu_available()

* Update src/transformers/utils/import_utils.py

* Update src/transformers/utils/import_utils.py
2022-09-01 11:45:33 -04:00
954e18ab97 TensorFlow MobileViT (#18555)
* initial implementation.

* add: working model till image classification.

* add: initial implementation that passes intg tests.

Co-authored-by: Amy <aeroberts4444@gmail.com>

* chore: formatting.

* add: tests (still breaking because of config mismatch).

Coo-authored-by: Yih <2521628+ydshieh@users.noreply.github.com>

* add: corrected tests and remaning changes.

* fix code style and repo consistency.

* address PR comments.

* address Amy's comments.

* chore: remove from_pt argument.

* chore: add full-stop.

* fix: TFLite model conversion in the doc.

* Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply formatting.

* chore: remove comments from the example block.

* remove identation in the example.

Co-authored-by: Amy <aeroberts4444@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-01 10:35:15 -04:00
fe58929ad6 Adds timeout argument to training_args to avoid socket timeouts in DDP (#18562)
* chore(training_args): Adds support for timeout argument.

* fix(training_args): Passes make style through changes.

* fix(training_args): Removes wrong docstring sentence.

* fix(training_args): Fixes timeout not being JSON serializable.

* fix(training_args_sm): Also updates timeout to timeout_delta.

* fix(training_args): Fixes PR according to suggestions.
2022-09-01 10:33:53 -04:00
ab663b2274 reflect max_new_tokens in Seq2SeqTrainer (#18786)
* reflect max_new_tokens in gen_kwargs to `trainer.generate()`

* reflect max_new_tokens in `Seq2SeqTrainer`

* remove unnecessary variable

* Trigger CI

* fix style
2022-09-01 09:12:38 -04:00
f719c0377f Minor typo in prose of model outputs documentation. (#18848) 2022-09-01 12:05:40 +02:00
fafbb57df1 Pin rouge_score (#18247)
* Pin rouge_score

* Pin also in dependency_versions_table

* Update excluded versions

* Revert "Update excluded versions"

This reverts commit 0d0362df30a816108835f5c061272ee2bafec270.

* Revert "Revert "Update excluded versions""

This reverts commit 66c47af8a6baff253575631b0ba392e0354b6d56.
2022-09-01 12:04:49 +02:00
e7da38f5dc add a script to get time info. from GA workflow jobs (#18822)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-01 12:02:52 +02:00
6e016634f1 Generate: smaller TF serving test (#18840) 2022-09-01 10:53:39 +01:00
563a8d58db Delete state_dict to release memory as early as possible (#18832)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-01 10:55:30 +02:00
a26c752353 Unpin fsspec (#18846) 2022-09-01 10:20:15 +02:00
359f7b4b8d Create pipeline_tutorial.mdx german docs (#18625)
* Create pipeline_tutorial.mdx

* Update _toctree.yml
2022-09-01 09:57:59 +02:00
5d81a56833 Owlvit memory leak fix (#18734)
* fix memory leak
* fix typos
* use singular last hidden state variable names
* eliminate double call to self.owlvit to return last hidden states
* eliminate 2nd call to self.vision_model in OwlViTModel
2022-09-01 10:31:08 +03:00
80367cd1fb Add security warning about the from_pretrained() method (#18801)
* Add security warning about from_pretrained() method

* Add sentence about malware scanner

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2022-08-31 21:48:40 +02:00
7e7f743481 Add SegFormer ONNX support (#18006)
* Add ONNX support

* Make height and width dynamic axes

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-31 20:58:44 +02:00
89514f0541 Improve Text Generation doc (#18788)
* fix args for bram search decoding in generation utils

* fix missing PAD token in gpt2

* add PAD EOS change to TF

* Update src/transformers/generation_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/generation_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/generation_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-31 20:30:29 +02:00
86387fe87f Add an option to HfArgumentParser.parse_{dict,json_file} to raise an Exception when there extra keys (#18692)
* Update parser to track unneeded keys, off by default

* Fix formatting

* Fix docstrings and defaults in HfArgparser

* Fix formatting
2022-08-31 20:26:45 +02:00
f210e2a414 Improve GPT2 doc (#18787)
* Minor typo in GPT2 doc

* improve gpt2 label doc

* update dim of label in GPT2ForTokenClassification

* add change to tf
2022-08-31 19:26:39 +02:00
74690b62a1 Pin ffspec (#18837)
* Pin ffspec

* Typo
2022-08-31 19:04:04 +02:00
3b6943e7a3 [DETR] Add num_channels attribute (#18714)
* Add num_channels attribute

* Fix code quality

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-31 18:04:42 +02:00
811c4c9f79 fix bug: register_for_auto_class should be defined on TFPreTrainedModel instead of TFSequenceSummary (#18607) 2022-08-31 16:37:18 +02:00
ee407024c4 Update location identification (#18834) 2022-08-31 15:10:25 +02:00
e4910213be Warn on TPUs when the custom optimizer and model device are not the same (#18668)
* Check optimizer for device on TPU

* Typo
2022-08-31 08:46:31 -04:00
cdde85a0a0 oob performance improvement for cpu DDP (#18595)
* oob performance improvement for cpu DDP

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add is_psutil_available check

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-08-31 14:35:10 +02:00
c3be98ebab Fix cost condition in DetrHungarianMatcher and YolosHungarianMatcher to allow zero-cost (#18647)
* Fix loss condition in DetrHungarianMatcher

* Fix costs condition in YolosHungarianMatcher
2022-08-31 14:28:58 +02:00
fea4636cfa Pin max tf version (#18818) 2022-08-31 10:07:53 +02:00
5c4c869014 Add LayoutLMForQuestionAnswering model (#18407)
* Add LayoutLMForQuestionAnswering model

* Fix output

* Remove TF TODOs

* Add test cases

* Add docs

* TF implementation

* Fix PT/TF equivalence

* Fix loss

* make fixup

* Fix up documentation code examples

* Fix up documentation examples + test them

* Remove LayoutLMForQuestionAnswering from the auto mapping

* Docstrings

* Add better docstrings

* Undo whitespace changes

* Update tokenizers in comments

* Fixup code and remove `from_pt=True`

* Fix tests

* Revert some unexpected docstring changes

* Fix tests by overriding _prepare_for_class

Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-08-31 10:05:33 +02:00
e88e9ff045 Disable nightly CI temporarily (#18820)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-30 18:33:09 +02:00
73c6273d48 Improving the documentation for "word", within the pipeline. (#18763)
* Improving the documentation for "word", within the pipeline.

* Quality.
2022-08-30 15:29:48 +02:00
5727dfcebe Added Docstrings for Deberta and DebertaV2 [PyTorch] (#18610)
* Added Doctest for Deberta Pytorch

* Added path in documentation test file

* Added docstrings for DebertaV2

* Revert "Added docstrings for DebertaV2"

This reverts commit 307185e62a21b3bd0923444cc8a8af1747fd2600.

* Added DebertaV2 Docstrings
2022-08-30 14:46:21 +02:00
a98f6a1da0 LayoutXLMProcessor: ensure 1-to-1 mapping between samples and images, and add test for it (#18774) 2022-08-30 14:43:14 +02:00
220da3b8a1 Adds GroupViT to models exportable with ONNX (#18628)
* groupvit to onnx

* dynamic shape for pixel values dim
2022-08-30 14:31:35 +02:00
46d0e26a27 Adds OWLViT to models exportable with ONNX (#18588)
* onnx conversion for owlvit

* .T to .t()

* dynamic shapes for pixel values
2022-08-30 14:30:59 +02:00
b83796ded7 Remove ViltForQuestionAnswering from check_repo (#18762)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-30 14:15:36 +02:00
ef91a2d135 Run tests if skip condition not met (#18764)
* Run tests if skip condition not met

* Update comment - remove outdated ref to TF 2.8
2022-08-30 14:03:28 +02:00
de8548ebf3 [LayoutLMv3] Add TensorFlow implementation (#18678)
Co-authored-by: Esben Toke Christensen <esben.christensen@visma.com>
Co-authored-by: Lasse Reedtz <lasse.reedtz@visma.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2022-08-30 11:48:11 +01:00
7320d95d98 [Swin, Swinv2] Fix attn_mask dtype (#18803)
* Add dtype

* Fix Swinv2 as well

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-30 12:31:34 +02:00
5c702175eb up (#18805) 2022-08-30 12:30:46 +02:00
da02b4035c Add docstring for BartForCausalLM (#18795)
* add docstring for BartForCausalLM

* doc-style fic
2022-08-30 12:19:03 +02:00
8c4a11493f Revert to and safely handle flag in owlvit config (#18750) 2022-08-29 18:48:24 +02:00
da5bb29219 send model to the correct device (#18800)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-29 18:46:30 +02:00
f1fd460694 Add SegFormer and ViLT links (#18808)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-29 18:46:07 +02:00
169b8cde47 Fix mock in test_cached_files_are_used_when_internet_is_down (#18804) 2022-08-29 15:56:08 +02:00
8b67f20935 Fix memory leak issue in torch_fx tests (#18547)
Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-29 11:43:20 +02:00
b10a3b3760 fix a possible typo in auto feature extraction (#18779) 2022-08-29 11:24:53 +02:00
5f06a09b9f fix missing block when there is no failure (#18775)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-29 09:10:13 +02:00
f2fbe44753 Fix broken link DeepSpeed documentation link (#18783)
* Fix broken link

* Trigger CI

Co-authored-by: Stas Bekman <stas@stason.org>
2022-08-28 19:32:19 -07:00
21f6f58721 Fix incomplete outputs of FlaxBert (#18772)
* Fix incomplete FlaxBert outputs

* fix big_bird electra roberta
2022-08-26 21:04:18 +02:00
62ceb4d661 [Wav2vec2 + LM Test] Improve wav2vec2 with lm tests and make torch version dependent for now (#18749)
* add first generation tutorial

* remove generation

* make version dependent expected values

* Apply suggestions from code review

* Update tests/models/wav2vec2_with_lm/test_processor_wav2vec2_with_lm.py

* fix typo
2022-08-26 14:11:55 +02:00
8869bf41fe [VisionEncoderDecoder] Add gradient checkpointing (#18697)
* add first generation tutorial

* VisionEnocderDecoder gradient checkpointing

* remove generation

* add tests
2022-08-26 14:11:27 +02:00
06a6a4bd51 CLI: Improved error control and updated hub requirement (#18752) 2022-08-25 17:08:05 +01:00
e9442440fc streamlining 'checkpointing_steps' parsing (#18755) 2022-08-25 11:00:38 -04:00
fbf382c84d Determine framework automatically before ONNX export (#18615)
* Automatic detection for framework to use when exporting to ONNX

* Log message change

* Incorporating PR comments, adding unit test

* Adding tf for pip install for run_tests_onnxruntime CI

* Restoring past changes to circleci yaml and test_onnx_v2.py, tests moved to tests/onnx/test_features.py

* Fixup

* Adding test to fetcher

* Updating circleci config to log more

* Changing test class name

* Comment typo fix in tests/onnx/test_features.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Moving torch_str/tf_str to self.framework_pt/tf

* Remove -rA flag in circleci config

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-08-25 16:31:34 +02:00
3223d49354 Add ONNX support for Longformer (#17176)
* Implement ONNX support for Longformer

Fix repo consistency check complaints

Fix value mismatches

Add pooler output for default model

Increase validation atol to accommodate multiple-choice error

Fix copies

Fix chunking for longer sequence lengths

Add future comment

* Fix issue in mask_invalid_locations

* Remove torch imports in configuration_longformer

* Change config access to fix LED

* Push opset version to support tril

* Work in review comments (mostly style)

* Add Longformer to ONNX tests
2022-08-25 08:34:42 +02:00
c55d6e4e10 examples/run_summarization_no_trainer: fixed incorrect param to hasattr (#18720)
* fixed incorrect param to hasattr

* simplified condition checks

* code cleanup
2022-08-24 12:12:42 -04:00
6667b0d7bf add warning to let the user know that the __call__ method is faster than encode + pad for a fast tokenizer (#18693)
* add warning to let the user know that the  method is slower that  for a fast tokenizer

* user warnings

* fix layoutlmv2

* fix layout*

* change warnings into logger.warning
2022-08-24 06:27:56 -04:00
dcff504e18 fixed docstring typos (#18739)
* fixed docstring typos

* Added missing colon

Co-authored-by: 김주영 <juyoung@zezedu.com>
2022-08-24 06:20:27 -04:00
e49c71fc4c Bump nbconvert from 6.3.0 to 6.5.1 in /examples/research_projects/lxmert (#18742)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.3.0 to 6.5.1.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.3.0...6.5.1)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-24 06:12:56 -04:00
5b24949669 Bump nbconvert in /examples/research_projects/visual_bert (#18741)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.3.0 to 6.5.1.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.3.0...6.5.1)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-24 06:12:48 -04:00
c72d7d91bf Add TF implementation of XGLMModel (#16543)
* Add TFXGLM models 

* Add todo: self.supports_xla_generation = False

Co-authored-by: Daniel Stancl <stancld@Daniels-MacBook-Pro.local>
Co-authored-by: Daniel Stancl <stancld@daniels-mbp.home>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Daniel <daniel.stancl@rossum.ai>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-08-24 10:51:05 +01:00
cecf9f9b27 fix pipeline_tutorial.mdx doctest (#18717)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-24 05:38:03 -04:00
a442884b87 Add minor doc-string change to include hp_name param in hyperparameter_search (#18700)
* Add minor doc-string change to include hp_name

* fix: missing type-information for kwargs

* fix: missing white-space in hyperparameter_search doc-strings
2022-08-24 05:07:17 -04:00
c12dbdc246 Update perf_infer_gpu_many.mdx (#18744) 2022-08-24 10:37:52 +02:00
6faf283288 CLI: Don't check the model head when there is no model head (#18733) 2022-08-23 15:38:59 +01:00
438698085c improve add_tokens docstring (#18687)
* improve add_tokens documentation

* format
2022-08-23 07:23:51 -04:00
891704b3c2 Removing warning of model type for microsoft/tapex-base-finetuned-wtq (#18711)
and friends.
2022-08-23 13:17:06 +02:00
84beb8a49b Unpin detectron2 (#18727)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-23 11:10:07 +02:00
d90a36d192 remove check for main process for trackers initialization (#18706) 2022-08-22 11:16:27 -04:00
0f257a8774 Add missing tokenizer tests - Longformer (#17677) 2022-08-22 12:13:20 +02:00
3fa45dbd91 Fix Data2VecVision ONNX test (#18587)
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-22 11:28:23 +02:00
30992ef0d9 [Hotfix] pin detectron2 5aeb252 to avoid test fix (#18701)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-20 00:37:38 +02:00
1f3c2282b5 Temp fix for broken detectron2 import (#18699)
* add first generation tutorial

* [Circle CI] Temporary fix for broken detectron2 import

* remove generation
2022-08-19 22:55:33 +02:00
e95d433d77 Generate: add missing **model_kwargs in sample tests (#18696) 2022-08-19 16:14:27 +01:00
e54a1b49aa model.tie_weights() should be applied after accelerator.prepare() (#18676)
* `model.tie_weights()` should be applied after `accelerator.prepare`

Weight tying should be done after the model has been moved to XLA device as mentioned on PyTorch/XLA Troubleshooting guide [here](https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md#xla-tensor-quirks)

* format code
2022-08-18 13:46:57 -04:00
bbbb453e58 Add an examples folder for code downstream tasks (#18679)
* add examples subfolder

* mention examples in codeparrot readme

* use Trainer optimizer and scheduler type and add output_dir as argument

* add example of text-to-python and python-to-text models

* mention the downstream examples in the readme

* fix typo
2022-08-18 18:24:24 +02:00
a123eee9df [bnb] Move documentation (#18671)
* fix bnb documentation

- move bnb documentation to `infer_gpu_many`

* small refactoring

- added text on infer_gpu_one
- added a small note on infer_gpu_many
- added customized multi gpu example on infer_gpu_many

* Update docs/source/en/perf_infer_gpu_many.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* apply suggestions

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-08-18 17:34:48 +02:00
358fc18613 Add evaluate to examples requirements (#18666) 2022-08-18 10:57:39 -04:00
d243112b65 Fix breaking change in onnxruntime for ONNX quantization (#18336)
* Fix quantization

* Save model

* Remove unused comments

* Fix formatting
2022-08-18 10:06:16 -04:00
5987c637ee Fix repo consistency (#18682) 2022-08-18 09:47:50 -04:00
76454b08c8 Rename second input dimension from "sequence" to "num_channels" for CV models (#17976) 2022-08-18 15:13:54 +02:00
780253ce3d Rename method to avoid clash with property (#18677) 2022-08-18 12:56:27 +01:00
2c947d2939 Ping detectron2 for CircleCI tests (#18680)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-18 12:57:18 +02:00
a541d97477 Generate: validate model_kwargs on FLAX (and catch typos in generate arguments) (#18653) 2022-08-18 10:56:21 +01:00
0ea53822f8 [LongT5] Correct docs long t5 (#18669)
* add first generation tutorial

* [LongT5 Docs] Correct docs

* correct expected string

* remove incorrect file
2022-08-18 10:03:50 +02:00
582c537175 Allow users to force TF availability (#18650)
* Allow users to force TF availability

* Correctly name the envvar!
2022-08-18 03:09:09 -04:00
49e44b216b Update feature extractor methods to enable type cast before normalize (#18499)
* Update methods to optionally rescale
This is necessary to allow for casting our images / videos to numpy arrays within the feature extractors' call. We want to do this to make sure the behaviour is as expected when flags like  are False. If some transformations aren't applied, then the output type can't be unexpected e.g. a list of PIL images instead of numpy arrays.

* Cast images to numpy arrays in call to enable consistent behaviour with different configs

* Remove accidental clip changes

* Update tests to reflect the scaling logic
We write a generic  function to handle rescaling of our arrays. In order for the API to be intuitive, we take some factor c and rescale the image values by that. This means, the rescaling done in normalize and to_numpy_array are now done with array * (1/255) instead of array / 255. This leads to small differences in the resulting image. When testing, this was in the order of 1e-8, and so deemed OK
2022-08-17 19:57:07 +01:00
86d0b26d6c Fix matmul inputs dtype (#18585) 2022-08-17 15:59:43 +02:00
c99e984657 Fix Yolos ONNX export test (#18606)
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-17 10:04:49 +02:00
358478e729 Examples: add Bloom support for token classification (#18632)
* examples: add Bloom support for token classification (FLAX, PyTorch and TensorFlow)

* examples: remove support for Bloom in token classication (FLAX and TensorFlow currently have no support for it)
2022-08-17 09:50:57 +02:00
6d175c1129 [bnb] Minor modifications (#18631)
* bnb minor modifications

- refactor documentation
- add troubleshooting README
- add PyPi library on DockerFile

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* put in one block

- put bash instructions in one block

* update readme

- refactor a bit hardware requirements

* change text a bit

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* apply suggestions

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* add link to paper

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update tests/mixed_int8/README.md

* Apply suggestions from code review

* refactor a bit

* add instructions Turing & Amperer

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add A6000

* clarify a bit

* remove small part

* Update tests/mixed_int8/README.md

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-08-17 00:48:10 +02:00
25e651a2de Update run_translation_no_trainer.py (#18637)
* Update run_translation_no_trainer.py

found an error in selecting `no_decay` parameters and some small modifications when the user continues to train from a checkpoint

* fixs `no_decay` and `resume_step` issue

1. change `no_decay` list
2. if use continue to train their model from provided checkpoint, the `resume_step` will not be initialized properly if `args.gradient_accumulation_steps != 1`
2022-08-16 13:25:57 -04:00
a27195b1de Update longt5.mdx (#18634) 2022-08-16 10:20:46 -05:00
fd9aa82b07 TF: Fix generation repetition penalty with XLA (#18648) 2022-08-16 13:30:52 +01:00
81ab11124f Add checks for some workflow jobs (#18583)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-16 13:53:47 +02:00
510c2a0b32 Change scheduled CIs to use torch 1.12.1 (#18644)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-16 13:41:37 +02:00
9cf274685a mac m1 mps integration (#18598)
* mac m1 `mps` integration

* Update docs/source/en/main_classes/trainer.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* addressing comments

* Apply suggestions from code review

Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>

* resolve comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>
2022-08-16 16:34:51 +05:30
d6eeb87170 Flax Remat for LongT5 (#17994)
* [Flax] Add remat (gradient checkpointing)

* fix variable naming in test

* flip: checkpoint using a method

* fix naming

* fix class naming

* apply PVP's suggestions from code review

* add gradient_checkpointing to examples

* Add gradient_checkpointing to run_mlm_flax

* Add remat to longt5

* Add gradient checkpointing test longt5

* Fix args errors

* Fix remaining tests

* Make fixup & quality fixes

* replace kwargs

* remove unecessary kwargs

* Make fixup changes

* revert long_t5_flax changes

* Remove return_dict and copy to LongT5

* Remove test_gradient_checkpointing

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
2022-08-14 16:27:13 +01:00
1ccd2515ed small change (#18584) 2022-08-12 20:04:38 +02:00
b3ff7c680c [fsmt] deal with -100 indices in decoder ids (#18592)
* [fsmt] deal with -100 indices in decoder ids

Fixes: https://github.com/huggingface/transformers/issues/17945

decoder ids get the default index -100, which breaks the model - like t5 and many other models add a fix to replace -100 with the correct pad index. 

For some reason this use case hasn't been used with this model until recently - so this issue was there since the beginning it seems.

Any suggestions to how to add a simple test here? or perhaps we have something similar already? user's script is quite massive.

* style
2022-08-12 10:50:52 -07:00
37c5991843 [doc] fix anchors (#18591)
the manual anchors end up being duplicated with automatically added anchors and no longer work.
2022-08-12 10:49:59 -07:00
56ef0ba447 Update BLOOM parameter counts (#18531)
* Update BLOOM parameter counts

* Update BLOOM parameter counts
2022-08-12 19:36:18 +02:00
153d1361c7 Fix URLs (#18604)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-12 18:52:49 +02:00
2ab790e82d Add Donut (#18488)
* First draft

* Improve script

* Update script

* Make conversion work

* Add final_layer_norm attribute to Swin's config

* Add DonutProcessor

* Convert more models

* Improve feature extractor and convert base models

* Fix bug

* Improve integration tests

* Improve integration tests and add model to README

* Add doc test

* Add feature extractor to docs

* Fix integration tests

* Remove register_buffer

* Fix toctree and add missing attribute

* Add DonutSwin

* Make conversion script work

* Improve conversion script

* Address comment

* Fix bug

* Fix another bug

* Remove deprecated method from docs

* Make Swin and Swinv2 untouched

* Fix code examples

* Fix processor

* Update model_type to donut-swin

* Add feature extractor tests, add token2json method, improve feature extractor

* Fix failing tests, remove integration test

* Add do_thumbnail for consistency

* Improve code examples

* Add code example for document parsing

* Add DonutSwin to MODEL_NAMES_MAPPING

* Add model to appropriate place in toctree

* Update namespace to appropriate organization

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-12 16:40:58 +02:00
a5ca56ff15 Supporting seq2seq models for bitsandbytes integration (#18579)
* Supporting seq2seq models for `bitsandbytes` integration

- `bitsandbytes` integration supports now seq2seq models
- check if a model has tied weights as an additional check

* small modification

- tie the weights before looking at tied weights!
2022-08-12 16:15:09 +02:00
ed1924e801 Generate: validate model_kwargs (and catch typos in generate arguments) (#18261)
* validate generate model_kwargs

* generate tests -- not all models have an attn mask
2022-08-12 14:53:51 +01:00
2156619f10 Add TFAutoModelForSemanticSegmentation to the main __init__.py (#18600)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-12 15:10:00 +02:00
4eed2beca0 FSDP bug fix for load_state_dict (#18596) 2022-08-12 08:48:37 -04:00
d344534bf6 typos (#18594) 2022-08-12 08:40:53 -04:00
3cdaea47ec update doc for perf_train_cpu_many, add intel mpi introduction (#18576)
* update doc for perf_train_cpu_many, add mpi introduction

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-12 08:36:27 -04:00
46d09410eb Add type hints for ViLT models (#18577)
* Add type hints for Vilt models

* Add missing return type for TokenClassification class
2022-08-12 12:11:28 +01:00
bce36ee065 Load sharded pt to flax (#18419)
* initial commit

* add small test

* add cross pt tf flag to test

* fix quality

* style

* update test with new repo

* fix failing test

* update

* fix wrong param ordering

* style

* update based on review

* update related to recent new caching mechanism

* quality

* Update based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* quality and style

* Update src/transformers/modeling_flax_utils.py
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-12 09:48:10 +02:00
c8b6ae858d Return the permuted hidden states if return_dict=True (#18578) 2022-08-11 17:32:11 +01:00
f28f240828 fix owlvit tests, update docstring examples (#18586) 2022-08-11 19:10:25 +03:00
05d3a43c59 Bump nbconvert in /examples/research_projects/visual_bert (#18566)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-11 10:47:31 -04:00
713ab6fde5 Bump nbconvert from 6.0.1 to 6.3.0 in /examples/research_projects/lxmert (#18565)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-11 10:47:19 -04:00
c23cbdff4c Fix docstrings with last version of hf-doc-builder styler (#18581)
* Fix docstrings with last version of hf-doc-builder styler

* Remove empty Parameter block
2022-08-11 10:35:47 -04:00
42b8940b34 [FX] _generate_dummy_input supports audio-classification models for labels (#18580)
* Support audio classification architectures for labels generation, as well as provides a flag to print warnings or not

* Use ENV_VARS_TRUE_VALUES
2022-08-11 16:34:44 +02:00
d53dffec6e Deberta V2: Fix critical trace warnings to allow ONNX export (#18272)
* Fix critical trace warnings to allow ONNX export

* Force input to `sqrt` to be float type

* Cleanup code

* Remove unused import statement

* Update model sew

* Small refactor

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Use broadcasting instead of repeat

* Implement suggestion

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Match deberta v2 changes in sew_d

* Improve code quality

* Update code quality

* Consistency of small refactor

* Match changes in sew_d

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
2022-08-11 09:54:43 -04:00
5d3f037433 german docs translation (#18544)
* Create _config.py

* Create _toctree.yml

* Create index.mdx

not sure about "du / ihr" oder "sie"

* Create quicktour.mdx

* Update _toctree.yml

* Update build_documentation.yml

* Update build_pr_documentation.yml

* fix build

* Update index.mdx

* Update quicktour.mdx

* Create installation.mdx

* Update _toctree.yml
2022-08-11 09:52:27 -04:00
80468251bc Change BartLearnedPositionalEmbedding's forward method signature to support Opacus training (#18486)
* changing BartLearnedPositionalEmbedding forward signature and references to it

* removing debugging dead code (thanks style checker)

* blackened modeling_bart file

* removing copy inconsistencies via make fix-copies

* changing references to copied signatures in Bart variants

* make fix-copies once more

* using expand over repeat (thanks @michaelbenayoun)

* expand instead of repeat for all model copies

Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>
2022-08-11 09:45:04 -04:00
3f0707b2fe Skip broken tests 2022-08-11 09:33:41 -04:00
4c8ec66a74 Fix LayoutLMv3 documentation (#17932)
* fix typos

* fix sequence_length docs of LayoutLMv3Model

* delete trailing white spaces

* fix layoutlmv3 docs more

* apply make fixup & quality

* change to two versions of input docstring

* apply make fixup & quality
2022-08-11 08:51:39 -04:00
f762f373cc Fix resizing bug in OWL-ViT (#18573)
* Fixes resizing bug in OWL-ViT
* Defaults to square resize if size is set to an int
* Sets do_center_crop default value to False
2022-08-11 15:44:23 +03:00
76568d24b6 Segformer TF: fix output size in documentation (#18572)
* Segformer TF: fix output size in doc

* Segformer pytorch: fix output size in doc

Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>
2022-08-11 10:59:37 +02:00
051311ff66 fix string (#18568) 2022-08-10 15:28:19 -07:00
9a9a525be8 raise atol for MT5OnnxConfig (#18560)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-10 22:41:58 +02:00
f62cb8313c Adds CLIP to models exportable with ONNX (#18515)
* onnx config for clip

* default opset as 14

* changes from the original repo

* input values order fix

* outputs fix

* remove unused import

* ran make fix-copies

* black format

* review comments: forward ref, import fix, model change revert, .to cleanup

* make style

* formatting fixes

* revert groupvit

* comment for cast to int32

* comment fix

* make .T as .t() for onnx conversion

* ran make fix-copies

* remove unneeded comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix copies

* remove comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-10 15:47:31 -04:00
50949fab74 Properly move cache when it is not in default path (#18563) 2022-08-10 15:46:03 -04:00
6936e7c487 Update philosophy to include other preprocessing classes (#18550)
* 📝 update philosophy to include other preprocessing classes

* 🖍 apply feedbacks
2022-08-10 13:20:39 -05:00
9d4a45509a pipeline support for device="mps" (or any other string) (#18494)
* `pipeline` support for `device="mps"` (or any other string)

* Simplify `if` nesting

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix? @sgugger

* passing `attr=None` is not the same as not passing `attr` 🤯

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-10 18:52:15 +02:00
0d0aada564 Use commit hash to look in cache instead of calling head (#18534)
* Use commit hash to look in cache instead of calling head

* Add tests

* Add attr for local configs too

* Stupid typos

* Fix tests

* Update src/transformers/utils/hub.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Address Julien's comments

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2022-08-10 11:55:18 -04:00
6eb51450fa TF Examples Rewrite (#18451)
* Finished QA example

* Dodge a merge conflict

* Update text classification and LM examples

* Update NER example

* New Keras metrics WIP, fix NER example

* Update NER example

* Update MC, summarization and translation examples

* Add XLA warnings when shapes are variable

* Make sure batch_size is consistently scaled by num_replicas

* Add PushToHubCallback to all models

* Add docs links for KerasMetricCallback

* Add docs links for prepare_tf_dataset and jit_compile

* Correct inferred model names

* Don't assume the dataset has 'lang'

* Don't assume the dataset has 'lang'

* Write metrics in text classification

* Add 'framework' to TrainingArguments and TFTrainingArguments

* Export metrics in all examples and add tests

* Fix training args for Flax

* Update command line args for translation test

* make fixup

* Fix accidentally running other tests in fp16

* Remove do_train/do_eval from run_clm.py

* Remove do_train/do_eval from run_mlm.py

* Add tensorflow tests to circleci

* Fix circleci

* Update examples/tensorflow/language-modeling/run_mlm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/test_tensorflow_examples.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/translation/run_translation.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/token-classification/run_ner.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fix save path for tests

* Fix some model card kwargs

* Explain the magical -1000

* Actually enable tests this time

* Skip text classification PR until we fix shape inference

* make fixup

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2022-08-10 16:49:51 +01:00
d7e2d7b40b Preserve hub-related kwargs in AutoModel.from_pretrained (#18545)
* Preserve hub-related kwargs in AutoModel.from_pretrained

* Fix tests

* Remove debug statement
2022-08-10 08:00:18 -04:00
34aad0dac0 TF: XLA-trainable DeBERTa v2 (#18546)
* fix deberta issues

* add different code paths for gpu and tpu

* shorter gpu take along axis

* Stable Dropout without tf cond

* variable must be float
2022-08-10 12:57:21 +01:00
4a51075a96 bitsandbytes - Linear8bitLt integration into transformers models (#17901)
* first commit

* correct replace function

* add final changes

- works like charm!
- cannot implement tests yet
- tested

* clean up a bit

* add bitsandbytes dependencies

* working version

- added import function
- added bitsandbytes utils file

* small fix

* small fix

- fix import issue

* fix import issues

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit

- move bitsandbytes utils to utils
- change comments on functions

* reformat docstring

- reformat docstring on init_empty_weights_8bit

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* revert bad formatting

* change to bitsandbytes

* refactor a bit

- remove init8bit since it is useless

* more refactoring

- fixed init empty weights issue
- added threshold param

* small hack to make it work

* Update src/transformers/modeling_utils.py

* Update src/transformers/modeling_utils.py

* revmoe the small hack

* modify utils file

* make style + refactor a bit

* create correctly device map

* add correct dtype for device map creation

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply suggestions

- remove with torch.grad
- do not rely on Python bool magic!

* add docstring

 - add docstring for new kwargs

* add docstring

- comment `replace_8bit_linear` function
- fix weird formatting

* - added more documentation
- added new utility function for memory footprint tracking
- colab demo to add

* few modifs

- typo doc
- force cast into float16 when load_in_8bit is enabled

* added colab link

* add test architecture + docstring a bit

* refactor a bit testing class

* make style + refactor a bit

* enhance checks

- add more checks
- start writing saving test

* clean up a bit

* male style

* add more details on doc

* add more tests

- still needs to fix 2 tests

* replace by "or"

- could not fix it from GitHub GUI

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit testing code + add readme

* make style

* fix import issue

* Update src/transformers/modeling_utils.py

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* add few comments

* add more doctring + make style

* more docstring

* raise error when loaded in 8bit

* make style

* add warning if loaded on CPU

* add small sanity check

* fix small comment

* add bitsandbytes on dockerfile

* Improve documentation

- improve documentation from comments

* add few comments

* slow tests pass on the VM but not on the CI VM

* Fix merge conflict

* make style

* another test should pass on a multi gpu setup

* fix bad import in testing file

* Fix slow tests

- remove dummy batches
- no more CUDA illegal memory errors

* odify dockerfile

* Update docs/source/en/main_classes/model.mdx

* Update Dockerfile

* Update model.mdx

* Update Dockerfile

* Apply suggestions from code review

* few modifications

- lm head can stay on disk/cpu
- change model name so that test pass

* change test value

- change test value to the correct output
- torch bmm changed to baddmm in bloom modeling when merging

* modify installation guidelines

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* replace `n`by `name`

* merge `load_in_8bit` and `low_cpu_mem_usage`

* first try - keep the lm head in full precision

* better check

- check the attribute `base_model_prefix` instead of computing the number of parameters

* added more tests

* Update src/transformers/utils/bitsandbytes.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Merge branch 'integration-8bit' of https://github.com/younesbelkada/transformers into integration-8bit

* improve documentation

- fix typos for installation
- change title in the documentation

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
2022-08-10 09:13:36 +02:00
8cf4a6f0a6 📝 update documentation build section (#18548) 2022-08-09 18:22:55 -05:00
38a674599c Clean up comment 2022-08-09 15:15:01 -04:00
5e2f373705 Restore _init_weights value in no_init_weights (#18504)
* Recover _init_weights value in no_init_weights

For potential nested use. 
In addition, users might modify private no_init_weights as well.

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove private variable change check

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-09 14:23:30 -04:00
0c183cc2f4 📝 update metric with evaluate (#18535) 2022-08-09 11:58:11 -05:00
9f5fe63548 Adding a new align_to_words param to qa pipeline. (#18010)
* Adding a new `align_to_words` param to qa pipeline.

* Update src/transformers/pipelines/question_answering.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Import protection.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-09 18:50:02 +02:00
ab2006e3d6 BART - Fix attention mask device issue on copied models (#18540)
* attempt to fix attn mask device

* fix bart `_prepare_decoder_attention_mask`

- add correct device
- run `make fix-copies` to propagate the fix
2022-08-09 14:47:18 +02:00
6bea7b8178 Minor update of run_call_with_unpacked_inputs (#18541)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-09 14:33:41 +02:00
8cb5ecd912 Add mt5 onnx config (#18394)
* update features

* MT5OnnxConfig added with updated with tests and docs

* fix imports

* fix onnc_config_cls for mt5

Co-authored-by: Thomas Chaigneau <thomas.deeptools.ai>
2022-08-09 03:46:53 -04:00
fe785730dc fix: data2vec-vision Onnx ready-made configuration. (#18427)
* feat: add the data2vec conf that are missing https://huggingface.co/docs/transformers/serialization

* fix: wrong config
2022-08-09 03:35:05 -04:00
ab62a23d8c Let's not cast them all (#18471)
* add correct dtypes when checking for params dtype

* forward contrib credits

* Update src/transformers/modeling_utils.py

Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>

* more comments

- added more comments on why we cast only floating point parameters

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: sgugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>
2022-08-08 23:48:49 +02:00
499450ed75 Spanish translation of summarization.mdx (#15947) (#18477)
* Add Spanish translation of summarization.mdx

* Apply suggestions from code review

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-08-08 15:54:11 -04:00
ed70f24291 Add Spanish translation of converting_tensorflow_models.mdx (#18512)
* Add file in spanish docs to be translated

* Finish translation to Spanish

* Improve Spanish  wording

* Add suggested changes from review
2022-08-08 15:53:43 -04:00
a765b68aa6 Update no_trainer.py scripts to include accelerate gradient accumulation wrapper (#18473)
* Added accelerate gradient accumulation wrapper to run_image_classification_no_trainer.py example script

* make fixup changes

* PR comments

* changed input to Acceletor based on PR comment, ran make fixup

* Added comment explaining the sync_gradients statement

* Fixed lr scheduler max steps

* Changed run_clm_no_trainer.py script to use accelerate gradient accum wrapper

* Fixed all scripts except wav2vec2 pretraining to use accelerate gradient accum wrapper

* Added accelerate gradient accum wrapper for wav2vec2_pretraining_no_trainer.py script

* make fixup and lr_scheduler step inserted back into run_qa_beam_search_no_trainer.py

* removed changes to run_wav2vec2_pretraining_no_trainer.py script and fixed using wrong constant in qa_beam_search_no_trainer.py script
2022-08-08 15:52:47 -04:00
f1f5de31ed Update perf_train_gpu_one.mdx (#18532) 2022-08-08 20:33:34 +02:00
82bb682643 [VideoMAE] Add model to doc tests (#18523)
* Add videomae to doc tests

* Add pip install decord

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-08 19:28:51 +02:00
3632531ec6 Add example of multimodal usage to pipeline tutorial (#18498)
* 📝 add example of multimodal usage to pipeline tutorial

* 🖍 apply feedbacks

* 🖍 apply niels feedback
2022-08-08 11:31:31 -05:00
36b37990af update to use interlibrary links instead of Markdown (#18500) 2022-08-08 10:53:52 -05:00
ec8d26248f unpin resampy (#18527)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-08 17:44:10 +02:00
47e1676255 New cache fixes: add safeguard before looking in folders (#18522) 2022-08-08 10:22:27 -04:00
7495924007 Specify en in doc-builder README example (#18526)
Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-08-08 10:22:17 -04:00
aff5117f46 Remove debug statement 2022-08-08 09:54:10 -04:00
70b0d4e193 Fix compatibility with 1.12 (#17925)
* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* fix torch.onnx.symbolic_opset12 import

* Reject bad version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-08 09:53:08 -04:00
2fecde742d update fsdp docs (#18521)
* updating fsdp documentation

* typo fix
2022-08-08 18:56:51 +05:30
377cdded7a Clean up hub (#18497)
* Clean up utils.hub

* Remove imports

* More fixes

* Last fix
2022-08-08 08:48:10 -04:00
a4562552eb [DX fix] Fixing QA pipeline streaming a dataset. (#18516)
* [DX fix] Fixing QA pipeline streaming a dataset.

QuestionAnsweringArgumentHandler would iterate over the whole dataset
effectively killing all properties of the pipeline.
This restores nice properties when using `Dataset` or `Generator` since
those are meant to be consumed lazily.

* Handling TF better.
2022-08-08 14:25:56 +02:00
88a0ce57bb Add seed setting to image classification example (#18519) 2022-08-08 08:08:11 -04:00
9129fd0377 transformers-cli login => huggingface-cli login (#18490)
* zero chance anyone's using that constant no?

* `transformers-cli login` => `huggingface-cli login`

* `transformers-cli repo create` => `huggingface-cli repo create`

* `make style`
2022-08-06 09:42:55 +02:00
8d1f9039d0 Just re-reading the whole doc every couple of months 😬 (#18489)
* Delete valohai.yaml

* NLP => ML

* typo

* website supports https

* datasets

* 60k + modalities

* unrelated link fixing for accelerate

* Ok those links were actually broken

* Fix link

* Make `AutoTokenizer` auto-link

* wording tweak

* add at least one non-nlp task
2022-08-06 09:38:55 +02:00
b8c247b6d0 Typo reported by Joel Grus on TWTR (#18493) 2022-08-05 13:29:38 -04:00
38d656041b disable Onnx test for google/long-t5-tglobal-base (#18454)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-05 19:27:19 +02:00
56a55d3ce4 Forgot one new_ for cache migration 2022-08-05 13:24:53 -04:00
9d64f7f00c Update some expected values in quicktour.mdx for resampy 0.3.0 (#18484)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-05 19:17:51 +02:00
faacdf007b Move cache folder to huggingface/hub for consistency with hf_hub (#18492)
* Move cache folder to just huggingface

* Thank you VsCode for this needless import

* Move to hub

* Forgot one
2022-08-05 13:14:00 -04:00
280db2e39c Fix test_dbmdz_english by updating expected values (#18482)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-05 16:49:54 +02:00
5cd4032368 Use new huggingface_hub tools for download models (#18438)
* Draft new cached_file

* Initial draft for config and model

* Small fixes

* Fix first batch of tests

* Look in cache when internet is down

* Fix last tests

* Bad black, not fixing all quality errors

* Make diff less

* Implement change for TF and Flax models

* Add tokenizer and feature extractor

* For compatibility with main

* Add utils to move the cache and auto-do it at first use.

* Quality

* Deal with empty commit shas

* Deal with empty etag

* Address review comments
2022-08-05 10:12:40 -04:00
70fa1a8d26 Fix pipeline tests (#18487)
* Fix pipeline tests

* Make sure all pipelines tests run with init changes
2022-08-05 09:14:51 -04:00
c7849d9efc Remove py.typed (#18485) 2022-08-05 09:12:19 -04:00
893122f666 Add TF prefix to TF-Res test class (#18481)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-05 13:59:55 +02:00
bf174f916b Refactor TFSwinLayer to increase serving compatibility (#18352)
* Refactor `TFSwinLayer` to increase serving compatibility

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix missed parameters while refactoring

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix window_reverse to calculate batch size

Signed-off-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2022-08-05 07:40:14 -04:00
575aa6ef1a Fix TFSwinSelfAttention to have relative position index as non-trainable weight (#18226)
Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
2022-08-05 07:39:40 -04:00
586dcf6b21 Fixing issue where generic model types wouldn't load properly with the pipeline (#18392)
* Adding a better error message when the model is improperly configured

within transformers.

* Update src/transformers/pipelines/__init__.py

* Black version.

* Overriding task aliases so that tokenizer+feature_extractor

values are correct.

* Fixing task aliases by overriding their names early

* X.

* Fixing feature-extraction.

* black again.

* Normalizing `translation` too.

* Fixing last few corner cases.

translation need to use its non normalized name (translation_XX_to_YY,
so that the task_specific_params are correctly overloaded).
This can be removed and cleaned up in a later PR.

`speech-encode-decoder` actually REQUIRES to pass a `tokenizer` manually
so the error needs to be discarded when the `tokenizer` is already
there.

* doc-builder fix.

* Fixing the real issue.

* Removing dead code.

* Do not import the actual config classes.
2022-08-05 08:45:07 +02:00
14928921e2 Add TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING (#18469)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-04 20:41:15 +02:00
0bf1e1aca4 Update no trainer examples for QA and Semantic Segmentation (#18474)
* swag_no_trainer updated for with gather_metrics

* Removed unused variable samples_seen

* updated examples with gather_for_metrics
2022-08-04 13:22:19 -04:00
d2704c4143 Add machine type in the artifact of Examples directory job (#18459)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-04 18:52:01 +02:00
f9a0008d2d Add VideoMAE (#17821)
* First draft

* Add VideoMAEForVideoClassification

* Improve conversion script

* Add VideoMAEForPreTraining

* Add VideoMAEFeatureExtractor

* Improve VideoMAEFeatureExtractor

* Improve docs

* Add first draft of model tests

* Improve VideoMAEForPreTraining

* Fix base_model_prefix

* Make model take pixel_values of shape (B, T, C, H, W)

* Add loss computation of VideoMAEForPreTraining

* Improve tests

* Improve model testsé

* Make all tests pass

* Add VideoMAE to main README

* Add tests for VideoMAEFeatureExtractor

* Add integration test

* Improve conversion script

* Rename patch embedding class

* Remove VideoMAELayer from init

* Update design of patch embeddings

* Improve comments

* Improve conversion script

* Improve conversion script

* Add conversion of pretrained model

* Add loss verification of pretrained model

* Add loss verification of unnormalized targets

* Add integration test for pretraining model

* Apply suggestions from code review

* Fix bug to make feature extractor resize only shorter edge

* Address more comments

* Improve normalization of videos

* Add doc examples

* Move constants to dedicated script

* Remove scripts

* Transfer checkpoints, fix docs

* Update script

* Update image mean and std

* Fix doc tests

* Set return_tensors to NumPy by default

* Revert the previous change

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-04 18:02:55 +02:00
672b66262a Add FX support for torch.baddbmm andd torch.Tensor.baddbmm (#18363) 2022-08-04 16:02:16 +02:00
df28de0581 Fix load of model checkpoints in the Trainer (#18470) 2022-08-04 08:22:25 -04:00
330247ede2 Update no trainer scripts for multiple-choice (#18468)
* swag_no_trainer updated for with gather_metrics

* Removed unused variable samples_seen
2022-08-04 07:29:32 -04:00
c74befc9e3 HFTracer.trace can now take callables and torch.nn.Module (#18457)
* Enable HFTracer to trace with custom dummy inputs instead of pre-computed ones

* Add HFTracer.trace docstring, and make it possible to handle callable and torch.nn.Module in general

* Remove pdb comment

* Apply suggestions
2022-08-04 13:29:18 +02:00
fc1d841b2d change shape to support dynamic batch input in tf.function XLA generate for tf serving (#18372)
* change shape to support dynamic batch input in tf.generate

* add tests

Co-authored-by: nlpcatcode <nlpcodecat@gmail.com>
2022-08-04 11:26:11 +01:00
b69a62d579 [BLOOM] Clean modeling code (#18344)
* Cleanup some code

* Improve signatures

* Try to reduce the number of reshape/copies

* I don't think we actually need the layer_num scaling trick

* No need for duplication

* Try to fix beam_search

* Fix beam search

* Removing layer num normalization seems to be breaking

* Not sure self.layer_number normalization actually matters

* Try and be backward compatible

* Try to fix beam_search

* Revert attempt to be backward compatible

* Improve documentation on past_key_values format

* Optimize the device allocation in case of hidden_states in multiple devices

* No need to manually cast the values to a specific device

* Rename with long version of variables

* Improve type hinting

* Add comment that explains that some methods return views

* Actually i think the attention casting only makes sense when we use torch.float16

* We don't actually need layer_number to be passed anymore

* Fix FX test

* Bypass torch.baddbmm

* Apply suggestions from code review

* Add comment about support for torchScript v1.11

* fix ONNX support for bloom (#18456)

Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
2022-08-04 11:08:03 +02:00
02b176c4ce Fix torch version comparisons (#18460)
Comparisons like
version.parse(torch.__version__) > version.parse("1.6")
are True for torch==1.6.0+cu101 or torch==1.6.0+cpu

version.parse(version.parse(torch.__version__).base_version) are preferred (and available in pytorch_utils.py
2022-08-03 13:37:18 -04:00
be41eaf55f fix: keras fit tests for segformer tf and minor refactors. (#18412)
* fix: keras fit tests for segformer tf and minor refactors.

* refactor: test_keras_fit to make it simpler using the existing one.

* fix: styling issues.
2022-08-03 16:39:54 +01:00
fc546332d7 add zero-shot obj detection notebook to docs (#18453) 2022-08-03 17:14:39 +03:00
8fb7c908c8 Fix failing tests for XLA generation in TF (#18298)
* Fix failing test_xla_generate_slow tests

* Fix failing speech-to-text xla_generate tests
2022-08-03 09:45:15 -04:00
a507908cd3 Update pinned hhub version (#18448)
* Update pinned hhub version

* Make style
2022-08-03 08:37:42 -04:00
3db4378bd7 Update no trainer scripts for language modeling and image classification examples (#18443)
* Update no_trainer script for image-classification

* Update no_trainer scripts for language-modeling examples

* Remove unused variable

* Removing truncation from losses array for language modeling examples
2022-08-03 08:33:18 -04:00
10e1ec9a8c Add Spanish translation of run_scripts.mdx (#18415)
* Add file in spanish docs to be translated

* Translate first two sections to Spanish

* Translate four additional sections to Spanish

* Finish translation to Spanish

* Improve writing style in Spanish

* Add suggested changes from reviewer
2022-08-03 07:32:20 -04:00
9d7b70bcd7 support ONNX export of XDropout in deberta{,_v2} and sew_d (#17502)
* support ONNX export of XDropout in deberta{,_v2}

* black

* copy to sew_d

* add test

* isort

* use pytest.mark.filterwarnings

* review comments
2022-08-03 06:33:44 -04:00
92915ebec2 Update _toctree.yml (#18440)
This PR moves GroupViT and LXMert to their correct sections. As pointed out by @NielsRogge and @LysandreJik, GroupViT and LXMert are both multimodal models.
2022-08-03 12:26:01 +02:00
22a0dd2ef7 fixing error when using sharded ddp (#18435) 2022-08-03 08:39:58 +05:30
5096a654b7 Add programming languages (#18434)
The current wording makes it sound as if the programming languages are part of the 46 natural languages.
2022-08-02 16:02:25 -04:00
042f420364 Update pipeline word heuristic to work with whitespace in token offsets (#18402)
* Update pipeline word heuristic to work with whitespace in token offsets

This change checks for whitespace in the input string at either the
character preceding the token or in the first character of the token.
This works with tokenizers that return offsets excluding whitespace
between words or with offsets including whitespace.

fixes #18111

starting

* Use smaller model, ensure expected tokenization

* Re-run CI (please squash)
2022-08-02 15:31:01 -04:00
c382ed8a2f Accept trust_remote_code and ignore it in PreTrainedModel.from_pretrained (#18428)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-02 21:03:59 +02:00
dbd9641c8c Improve generate docstring (#18198)
* improve generate docstring

* Remove 'defaults to None' comment
2022-08-02 13:22:55 -04:00
5546fb61ab fix run_clip README (#18332)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-02 19:14:46 +02:00
2959d09072 Fix test_load_default_pipelines_tf test error (#18422)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-02 18:51:10 +02:00
8ae7784256 update maskformer docs (#18423)
* update maskformer docs

* fix typo
2022-08-02 18:43:58 +03:00
0b8c1b6994 Change audio kwarg to images in TROCR processor (#18421)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-02 15:04:45 +02:00
dd21fb378f Fix the hub user name in a longformer doctest checkpoint (#18418)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-02 15:04:10 +02:00
68a894a587 Fix uninitialized parameter in conformer relative attention. (#18368)
`torch.Tensor` creates an unitialized tensor (as via `torch.empty`), this leads to undeterministic behavior, poor initialization, and nans if you have unlucky init. The paper does not specify the initialization for bias terms, so I guess zero seems like a good choice - no bias initially. `torch.Tensor` is usually populated with zeros, so this fix will be close to the intended behavior:

```
>>> torch.Tensor(100, 100).sum()
tensor(0.)
>>> torch.Tensor(100, 100).sum()
tensor(nan)
>>> torch.Tensor(100, 100).sum()
tensor(0.)
```
2022-08-02 10:34:10 +01:00
df5e4232f5 fix: create a copy for tokenizer object (#18408) 2022-08-01 15:32:12 -04:00
24845aeb6d Layoutlmv2 tesseractconfig (#17733)
* Added option for users to modify config parameter used by pytesseract during feature extraction

- Added optional 'tess_config' kwarg when setting up LayoutLMV2 processor that is used by pytesseract during feature extraction
- Eg. Can be used to modify psm values by setting tess_config to '--psm 7'
- Different psm values significantly influences the output of layoutlmv2

* Update src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Updated variable names to be more explicit

* Fixed styles

* Added option for users to modify config parameter when calling pytesseract during feature extraction

- Added option to set "tesseract_config" parameter during LayoutLMV3 processor initialization
- Can be used to modify PSM values, eg. by setting tesseract_config="--psm 6"

* Removed  from function signature

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-08-01 12:24:43 -04:00
151a2aaa4e Split model list on modality (#18328)
* 📝 split up model list

* Adapt script to reorg

* apply niels feedback

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-08-01 11:10:20 -05:00
01db72abd4 Rewrite push_to_hub to use upload_files (#18366)
* Rewrite push_to_hub to use upload_files

* Adapt the doc a bit

* Address review comments and clean doc
2022-08-01 12:07:30 -04:00
3909d7f139 Add Flax BART pretraining script (#18297)
* add bart pretraining flax script

* fixup

* add bart pretraining flax script

* add BART to README

* add BART to README

* add BART to README

* add BART to README

* add BART to README

* add bos eos document

* Update README.md

* Update README.md

* Update examples/flax/language-modeling/run_bart_dlm_flax.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* final

* final

* final

* remove use_auth_token ing from_config

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2022-08-01 12:06:30 -04:00
941d233153 Fix ROUGE add example check and update README (#18398)
* Fix ROUGE add example check and update README

* Stay consistent in values
2022-08-01 11:14:49 -04:00
62098b9348 Adding fine-tuning models to LUKE (#18353)
* add LUKE models for downstream tasks

* add new LUKE models to docs

* fix typos

* remove commented lines

* exclude None items from tuple return values
2022-08-01 11:09:47 -04:00
7b9e995b70 Fix docs (#18399)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-01 17:02:51 +02:00
e0bc4c73e8 Add balanced strategies for device_map in from_pretrained (#18349)
* Add balanced strategies for device_map in from_pretrained

* Add safeguards for Accelerate version

* Update src/transformers/modeling_utils.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Style

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-08-01 10:28:26 -04:00
39e76d76fd Fix doc tests (#18397)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-01 15:56:10 +02:00
1141371103 Fix OPT doc tests (#18365) 2022-08-01 15:19:45 +02:00
af1e6b4d87 Add evaluate to test dependencies (#18396) 2022-08-01 08:55:44 -04:00
bd6d1b4300 Add a check regarding the number of occurrences of ``` (#18389)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-01 14:23:02 +02:00
1cd7c6f154 Fix from_pretrained kwargs passing (#18387)
Fix #18385
I don't know whether `use_auth_token`, `cache_dir` and `local_files_only` should be passed to `(cls.slow_tokenizer_class)._from_pretrained`, but I guess it should.
2022-08-01 08:16:24 -04:00
96b5d7db9c Remove pt-like calls on tf tensor (#18393) 2022-08-01 13:06:30 +01:00
679d68a11b Correct the spelling of bleu metric (#18375) 2022-08-01 07:51:27 -04:00
1f84399171 Migrate metric to Evaluate in Pytorch examples (#18369)
* Migrate metric to Evaluate in pytorch examples

* Remove unused imports
2022-08-01 07:40:25 -04:00
25ec12eaf7 Bump mistune from 0.8.4 to 2.0.3 in /examples/research_projects/lxmert (#18370)
Bumps [mistune](https://github.com/lepture/mistune) from 0.8.4 to 2.0.3.
- [Release notes](https://github.com/lepture/mistune/releases)
- [Changelog](https://github.com/lepture/mistune/blob/master/docs/changes.rst)
- [Commits](https://github.com/lepture/mistune/compare/v0.8.4...v2.0.3)

---
updated-dependencies:
- dependency-name: mistune
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-01 04:46:57 -04:00
a7360385f4 Bump mistune in /examples/research_projects/visual_bert (#18371)
Bumps [mistune](https://github.com/lepture/mistune) from 0.8.4 to 2.0.3.
- [Release notes](https://github.com/lepture/mistune/releases)
- [Changelog](https://github.com/lepture/mistune/blob/master/docs/changes.rst)
- [Commits](https://github.com/lepture/mistune/compare/v0.8.4...v2.0.3)

---
updated-dependencies:
- dependency-name: mistune
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-01 04:46:31 -04:00
b2e4b091f0 fix FSDP ShardedGradScaler (#18358)
renaming it
2022-07-30 10:07:56 +05:30
51227e26ab Fix TFSegformerForSemanticSegmentation doctest (#18362)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-29 16:30:59 +02:00
4e2f4a92dd [FX] Symbolic trace for Bloom (#18356)
* Bloom model can now be traced

* Bloom traced model can be torch scripted and serialized

* Bloom can be traced with variable keyword arguments

* Enable XLNet support

* Disable XLNet for now
2022-07-29 16:12:27 +02:00
1763770bd9 Fix some doctests (#18359)
* Fix some doctests

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-29 14:13:28 +02:00
986526a0e4 Replace as_target context managers by direct calls (#18325)
* Preliminary work on tokenizers

* Quality + fix tests

* Treat processors

* Fix pad

* Remove all uses of  in tests, docs and examples

* Replace all as_target_tokenizer

* Fix tests

* Fix quality

* Update examples/flax/image-captioning/run_image_captioning_flax.py

Co-authored-by: amyeroberts <amy@huggingface.co>

* Style

Co-authored-by: amyeroberts <amy@huggingface.co>
2022-07-29 08:09:09 -04:00
a64bcb564d Fix OwlViT torchscript tests (#18347)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-29 10:36:04 +02:00
a4ee463d95 [Docs] Fix Speech Encoder Decoder doc sample (#18346)
* [Docs] Fix Speech Encoder Decoder doc sample

* improve pre-processing comment

* make style
2022-07-29 09:11:28 +01:00
da503ea02f Migrate metrics used in flax examples to Evaluate (#18348)
Currently, tensorflow examples use the `load_metric` function from
Datasets library, commit migrates function call to `load` function
from Evaluate library.
2022-07-28 15:06:23 -04:00
a2586795e5 Migrate metric to Evaluate library for tensorflow examples (#18327)
* Migrate metric to Evaluate library in tf examples

Currently tensorflow examples use `load_metric` function from Datasets
library , commit migrates function call to `load` function to
Evaluate library.

Fix for #18306

* Migrate metric to Evaluate library in tf examples

Currently tensorflow examples use `load_metric` function from Datasets
library , commit migrates function call to `load` function to
Evaluate library.

Fix for #18306

* Migrate `metric` to Evaluate for all tf examples

Currently tensorflow examples use `load_metric` function from Datasets
library , commit migrates function call to `load` function to
Evaluate library.
2022-07-28 14:24:27 -04:00
7b0908769b [BLOOM] Deprecate position_ids (#18342) 2022-07-28 20:21:43 +02:00
9c336657a9 Include tensorflow-aarch64 as a candidate (#18345)
Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-07-28 12:45:02 -04:00
b53dab601c Remove Flax OPT from doctest for now (#18338)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-28 11:50:44 -04:00
286a18fa00 Fix codeparrot deduplication - ignore whitespaces (#18023)
* ignore whitspaces for hash

* reformat code

* Update README.md
2022-07-28 15:58:26 +02:00
5d1fed0740 Update automatic_speech_recognition.py (#18339) 2022-07-28 09:53:03 -04:00
985c7e3ac9 Updated _toctree.yml (#18337) 2022-07-28 09:04:32 -04:00
a8e279579b updated translation (#18333)
Left the term fine-tuning since there is no correct translation into Italian and the English term is generally used. The same was done with some terms like "learning rate"
2022-07-28 08:14:15 -04:00
1e380c7dcb fixed typo (#18331) 2022-07-28 06:14:56 -04:00
96be1b7f49 Update feature extractor docs (#18324)
As pointed out by @NielsRogge, a feature extractor is used to prepare inputs for a model with a single modality rather than multimodal models.
2022-07-27 15:32:57 -05:00
2b81f72be9 start from 1.12, torch_ccl is renamed as oneccl_bindings_for_pytorch … (#18229)
* start from 1.12, torch_ccl is renamed as oneccl_bindings_for_pytorch and should import it before use

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add doc for perf_train_cpu_many

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update doc

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-07-27 11:15:41 -04:00
e87ac9d18b Add swin transformer v2 (#17469)
* Add files generated using transformer-cli add-new-model-like command

* Add changes for swinv2 attention and forward method

* Add fixes

* Add modifications for weight conversion and remaining args in swin model

* Add changes for patchmerging

* Add changes for SwinV2selfattention

* Update conversion script

* Add final fixes for the swin_v2 model

* Add changes for conversion script for pretrained window size case

* Add pretrained window size value from config in SwinV2Encoder class

* Make fixup

* Add swinv2 to models_not_in_readme to utils/check_copies.py

* Modify Swinv2v2 to Swin Transformer V2

* Remove copied from, to run make fixup command

* Add updates to swinv2tf from main branch

* Add pretrained_window_size to config, to make tests pass

* Add modified weights from nandwalritik profile for swinv2

* Update model weights from swinv2 from nandwalritik profile

* Add fix for build_pr_documentation CI fix

* Add fixes for weight conversion

* Add change to make input with padding work

* Add fixes for test cases

* Add few changes from swin to swinv2 to pass test cases

* Remove tests for tensorflow as swinv2 for TF is not added yet

* Overide test_pt_tf_model_equivalence function as TF implementation for swinv2 is not added yet

* Add modeling_tf_swinv2 to _ignore_modules as test file is removed for this one right now.

* Update docs url for swinv2 in README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Undo changes for check_repo

* Update url in readme.md

* Remove overrided function to test pt_tf_model_equivalence

* Remove TF model imports for Swinv2 as its not implemented in this PR

* Add changes for index.mdx

* Add swinv2 papers link,abstract and contributors details

* Rename cpb_mlp to continous_position_bias_mlp

* Add tips for swinv2 model

* Update src/transformers/models/swinv2/configuration_swinv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/swinv2/configuration_swinv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Fix indentation for docstring example in src/transformers/models/swinv2/configuration_swinv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update import order in src/transformers/models/swinv2/configuration_swinv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add copyright statements in weights conversion script.

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Remove Swinv2 from models_not_in_readme

* Reformat code

* Remove TF implementation file for swinv2

* Update start docstring.

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add changes for docstring

* Update orgname for weights to microsoft

* Remove to_2tuple function

* Add copied from statements wherever applicable

* Add copied from to Swinv2ForMaskedImageModelling class

* Reformat code.

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add unittest.skip(with reason.) for test_inputs_embeds test case.

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add updates for test_modeling_swinv2.py

* Add @unittest.skip() annotation for clarity to create_and_test_config_common_properties function

* Add continuous_position_bias_mlp parameter to conversion script

* Add test for testing masked_image_modelling for swinv2

* Update Swinv2 to Swin Transformer v2 in docs/source/en/model_doc/swinv2.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update Swinv2 to Swin Transformer v2 in docs/source/en/model_doc/swinv2.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/swinv2.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/swinv2.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add suggested changes

* Add copied from to forward methods of Swinv2Stage and Swinv2Encoder

* Add push_to_hub flag to weight conversion script

* Change order or Swinv2DropPath class

* Add id2label mapping for imagenet 21k

* Add updated url for SwinV2 functions and classes used in implementation

* Update input_feature dimensions format, mentioned in comments.

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

* Add suggested changes for modeling_swin2.py

* Update docs

* Remove create_and_test_config_common_properties function, as test_model_common_attributes is sufficient.

* Fix indentation.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add changes for making Nit objects in code style

* Add suggested changes

* Add suggested changes for test_modelling_swinv2

* make fix-copies

* Update docs/source/en/model_doc/swinv2.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-27 11:14:47 -04:00
c89a592e87 Dev version 2022-07-27 17:13:57 +02:00
7490a97cac [Flax] Fix incomplete batches in example scripts (#17863)
* [Flax] Fix incomplete batches in example scripts

* fix dataloader batching

* convert jnp batch idxs to np array

* add missing `pad_shard_unpad` to final prediction generate step

* only `pad_shard_unpad` at inference time

* merge conflicts

* remove incomplete batch step from eval

* fix run_qa.py

* add `pad_shard_unpad` to run_flax_ner.py

* add `pad_shard_unpad` to run_flax_glue.py

* add `pad_shard_unpad` to run_image_classification.py

* make style

* fix mlm flax eval batches

* remove redundant imports
2022-07-27 15:50:47 +01:00
9caf68a638 Owlvit test fixes (#18303)
* fix owlvit test assertion errors

* fix gpu test error

* remove redundant lines

* fix styling
2022-07-27 17:26:27 +03:00
0077360d67 Fix sacremoses sof dependency for Transformers XL (#18321)
* Fix sacremoses sof dependency for Transofmers XL

* Add function to the submodule init
2022-07-27 09:37:02 -04:00
5c5676cdf9 sentencepiece shouldn't be required for the fast LayoutXLM tokenizer (#18320) 2022-07-27 09:09:32 -04:00
cf32b2ee42 Remove all uses of six (#18318)
* Remove all uses of six

* fix quality
2022-07-27 08:39:09 -04:00
170fcaa604 Generalize decay_mask_fn to apply mask to all LayerNorm params (#18273)
* generalize decay_mask_fn to find all layernorm params

* fixup

* generalising decay_mask_fn
2022-07-27 12:23:57 +01:00
83d2d74509 fix loading from pretrained for sharded model with `torch_dtype="auto" (#18061) 2022-07-27 07:20:35 -04:00
7996ef74dd fix module order (#18312)
- put gelu before 4h to h
2022-07-27 07:06:01 -04:00
70e7d1d656 Fixes torch jit tracing for LayoutLMv2 model (re-open) (#18313)
* Fixes torch jit tracing for LayoutLMv2 model.
Pytorch seems to reuse memory for input_shape which caused a mismatch in shapes later in the forward pass.

* Fixed code quality

* avoid unneeded allocation of vector for shape
2022-07-27 06:38:40 -04:00
1d71ad8905 Update CodeParrot readme to include training in Megatron (#17798)
* add info about megatron training

* upload models and datasets from CodeParrot organization

* upload models and datasets from CodeParrot organization

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* fix typo and add comment about codeparrot vs megatron

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
2022-07-27 11:59:08 +02:00
d5610b53fa [XLA] Improve t5 model performance (#18288) 2022-07-27 10:44:14 +02:00
e318cda9ee Apply type correction to TFSwinModelOutput (#18295)
Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
2022-07-27 04:35:56 -04:00
ccd4180f8a [EncoderDecoder] Improve docs (#18271)
* Improve docs

* Improve docs of speech one as well

* Apply suggestions from code review

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-07-27 10:08:59 +02:00
5dfec704da Remove duplicated line (#18310)
Removes a duplicated instantiation of device. I removed the second instance of the line to maintain code alignment with the GPT-J implementation of forward.
2022-07-27 04:00:47 -04:00
47c2af0951 [DETR] Improve code examples (#18262)
* Improve doc test

* Improve code example of segmentation model

* Apply suggestion

* Update src/transformers/models/detr/modeling_detr.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-27 09:54:41 +02:00
ee67e7ad4f patch for smddp import (#18244)
* add import

* format
2022-07-26 16:00:24 -04:00
68097dcce0 Fix Sylvain's nits on the original KerasMetricCallback PR (#18300)
* Fix Sylvain's nits on the original PR

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Re-add "optional" to docstring

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-26 17:08:16 +01:00
6649133124 Add PYTEST_TIMEOUT for CircleCI test jobs (#18251)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-26 17:57:59 +02:00
a5d504834d Add Spanish translation of custom_models.mdx (#17807)
* Update index

* Translate to Spanish two sections from custom_models

* Translate to Spanish custom models documentation

* Fixing typos and grammatical errors

* Add requested changes from reviewer
2022-07-26 10:10:37 -04:00
7ea7eba39d Add Italian translation of sharing_custom_models.mdx (#17631)
* work in progress: custom_models

* Update custom_models.mdx

* Update custom_models.mdx

* Update _toctree.yml

* Update _toctree.yml

* Update custom_models.mdx

* Update custom_models.mdx

* Update _toctree.yml

* Update _toctree.yml

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-26 09:48:58 -04:00
c4c6b4dbda Add PyTorch 1.11 to past CI (#18302)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-26 15:47:23 +02:00
bbc28106e0 Add Italian translation of converting_tensorflow_models.mdx (#18283)
* Add Italian translation of converting_tensorflow_models.mdx

* Update _toctree.yml

* Update converting_tensorflow_models.mdx

* Update docs/source/it/_toctree.yml

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-26 08:37:34 -04:00
a649de5551 Raise a TF-specific error when importing Torch classes (#18280)
* Raise a TF-specific error when importing Torch classes

* Update src/transformers/utils/import_utils.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Add an inverse error for PyTorch users

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-07-26 13:28:59 +01:00
5e0ffd9183 [ create_a_model.mdx ] translate to pt (#18098)
* [ fast_tokenizers.mdx ] - Added translation to portuguese to tutorial

* Delete docs/source/pt-br directory

* [ fast_tokenizers.mdx ] - Continuing work on file

* [ fast_tokenizers.mdx ] - Continuing work on file

* Add fast tokenizers to _toctree.yml

* Eliminated config and toctree.yml

* Nits in fast_tokenizers.mdx

* Finishing create_a_model

* [ create_a_model.mdx ] finishing create a model in pt-br

* [ Changing _toctree.yml ] adding create a model in pt

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-07-26 08:01:08 -04:00
f58b9c0522 Update translation.mdx (#18169)
* Update translation.mdx

* update translation.mdx by running make style
2022-07-26 07:56:40 -04:00
b51695274a Add TFAutoModelForImageClassification to pipelines.py (#18292)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-26 13:44:54 +02:00
f374d3918f Adding type hints of TF:OpenAIGPT (#18263) 2022-07-26 12:30:06 +01:00
5bb211be6e Adding type hints of TF:CTRL (#18264) 2022-07-26 12:27:02 +01:00
c8ed1b8b59 Replace false parameter by a buffer (#18259) 2022-07-26 13:02:58 +02:00
2844c5de10 Fix ORTTrainer failure on gpt2 fp16 training (#18017)
* Ensure value and attn weights have the same dtype

* Remove prints

* Modify decision transformers copied from gpt2

* Nit device

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Fix style

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-07-26 04:14:08 -04:00
2b09650885 Add ViltForTokenClassification e.g. for Named-Entity-Recognition (NER) (#17924)
* Add ViltForTokenClassification e.g. for Named-Entity-Recognition (NER)

* Add ViltForTokenClassification e.g. for Named-Entity-Recognition (NER)

* provide classifier only text hidden states

* add test_for_token_classification

* Update src/transformers/models/vilt/modeling_vilt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/vilt/modeling_vilt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/vilt/modeling_vilt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/vilt/modeling_vilt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add test_for_token_classification

Co-authored-by: gfuchs <gfuchs@ebay.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-07-26 10:11:32 +02:00
002915aa2a Owlvit docs test (#18257)
* fix docs and add owlvit docs test

* fix minor bug in post_process, add to processor

* improve owlvit code examples

* fix hardcoded image size
2022-07-26 10:55:14 +03:00
d32558cc7a Good difficult issue override for the stalebot (#18094) 2022-07-26 03:39:14 -04:00
f65307e498 Fix dtype of input_features in docstring (#18258)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-26 09:34:06 +02:00
bd87480d20 Fix command of doc tests for local testing (#18236)
* Fix command of doc tests for local testing

* Fix command for after running doc tests locally
2022-07-26 03:07:11 -04:00
45a1475462 Fix TF bad words filter with XLA (#18286)
* Fix bad words filter in XLA generation

* Remove my cool debug breakpoints (again)
2022-07-25 20:19:39 +01:00
f4e172716b Allows KerasMetricCallback to use XLA generation (#18265)
* Allows `KerasMetricCallback` to use XLA generation

* make fixup

* Slightly reword docstring
2022-07-25 12:51:37 +01:00
bbb62f2924 Skip passes report for --make-reports (#18250)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-25 11:09:23 +02:00
7e44226fc7 Generate: deprecate default max_length (#18018) 2022-07-23 18:02:03 +01:00
8e8384663d Update serving code to enable saved_model=True (#18153)
* Add serving_output and serving methods to some vision models

* Add serving outputs for DeiT

* Don't convert hidden states - differing shapes

* Make saveable

* Fix up

* Make swin saveable

* Add in tests

* Fix funnel tests (can't convert to tensor)

* Fix numpy call

* Tidy up a bit

* Add in hidden states - resnet

* Remove numpy

* Fix failing tests - tensor shape and skipping tests

* Remove duplicated function

* PR comments - formatting and var names

* PR comments
Add suggestions made by Joao Gante:
* Use tf.shape instead of shape_list
* Use @tooslow decorator on tests
* Simplify some of the logic

* PR comments
Address Yih-Dar Sheih comments - making tensor names consistent and make types float

* Types consistent with docs; disable test on swin (slow)

* CI trigger

* Change input_features to float32

* Add serving_output for segformer

* Fixup

Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
2022-07-22 18:05:38 +01:00
07505358ba Change how take_along_axis is computed in DeBERTa to stop confusing XLA (#18256)
* Change how `take_along_axis` is computed in DeBERTa to stop confusing XLA

* Greatly simplify take_along_axis() since the code wasn't using most of it
2022-07-22 17:01:30 +01:00
d95a32cc60 Fix torch version check in Vilt (#18260)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-22 16:24:49 +02:00
7cb4da13fe change bloom parameters to 176B (#18235) 2022-07-22 10:17:48 -04:00
1fc4b2a132 TF: use the correct config with (...)EncoderDecoder models (#18097) 2022-07-22 13:31:45 +01:00
4935409757 Add Italian translation of create_model.mdx and serialization.mdx (#17640)
* First commit

* final changes

* Changed create_model to create_a_model
Translated into crea un'architettura personalizzata in the file it/_toctree.yml

* Added _toctree.yml in the italian translation loca: serialization title Esporta modelli transformers

* Edit translation for create_model.mdx

* t with '#' will be ignored, and an empty message aborts the commit.

* Added file serialization for translation in italian

* Fix toctree serialization position

I checked the eng toctree and realized I made a mistake.

* Update _toctree.yml

Correct spacing

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-22 13:53:54 +02:00
06d98e272e Fix OwlViT tests (#18253)
* Fix OwlViT tests

* Forgot one
2022-07-22 13:32:19 +02:00
12d66b4701 Add OWL-ViT model for zero-shot object detection (#17938)
* add owlvit model skeleton

* add class and box predictor heads

* convert modified flax clip to pytorch

* fix box and class predictors

* add OwlViTImageTextEmbedder

* convert class and box head checkpoints

* convert image text embedder checkpoints

* add object detection head

* fix bugs

* update conversion script

* update conversion script

* fix q,v,k,out weight conversion conversion

* add owlvit object detection output

* fix bug in image embedder

* fix bugs in text embedder

* fix positional embeddings

* fix bug in inference mode vision pooling

* update docs, init tokenizer and processor files

* support batch processing

* add OwlViTProcessor

* remove merge conflicts

* readd owlvit imports

* fix bug in OwlViTProcessor imports

* fix bugs in processor

* update docs

* fix bugs in processor

* update owlvit docs

* add OwlViTFeatureExtractor

* style changes, add postprocess method to feature extractor

* add feature extractor and processor tests

* add object detection tests

* update conversion script

* update config paths

* update config paths

* fix configuration paths and bugs

* fix bugs in OwlViT tests

* add import checks to processor

* fix docs and minor issues

* fix docs and minor issues

* fix bugs and issues

* fix bugs and issues

* fix bugs and issues

* fix bugs and issues

* update docs and examples

* fix bugs and issues

* update conversion script, fix positional embeddings

* process 2D input ids, update tests

* fix style and quality issues

* update docs

* update docs and imports

* update OWL-ViT index.md

* fix bug in OwlViT feature ext tests

* fix code examples, return_dict by default

* return_dict by default

* minor fixes, add tests to processor

* small fixes

* add output_attentions arg to main model

* fix bugs

* remove output_hidden_states arg from main model

* update self.config variables

* add option to return last_hidden_states

* fix bug in config variables

* fix copied from statements

* fix small issues and bugs

* fix bugs

* fix bugs, support greyscale images

* run fixup

* update repo name

* merge OwlViTImageTextEmbedder with obj detection head

* fix merge conflict

* fix merge conflict

* make fixup

* fix bugs

* fix bugs

* add additional processor test
2022-07-22 13:35:32 +03:00
99eb9b523f Fix no_trainer CI (#18242)
* Fix all tests
2022-07-21 14:44:57 -04:00
561b9a8c00 [SegFormer] TensorFlow port (#17910)
* add: segformer utils and img. classification.

* add: segmentation layer.

* feat: working implementation of segformer.

* chore: remove unused variable.

* add test, remaining modifications.

* remove: unnecessary files.

* add: rest of the files.

Co-authored-by: matt <rocketknight1@gmail.com>

* chore: remove ModuleList comment.

* chore: apply make style.

* chore: apply make fixup-copies.

* add  to check_repo.py

* add decode head to IGNORE_NON_TESTED

* chore: run make style.

* chore: PR comments.

* chore: minor changes to model doc.

* tests: reduction across samples.

* add a note on the space.

* sort importats.

* fix: reduction in loss computation.

* chore: align loss function with that of NER.

* chore: correct utils/documentation_tests.txt

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* chore: simplify the interpolation of logits in loss computation.

* chore: return transposed logits when return_dict=False.

* chore: add link to the tf fine-tuning repo.

* address pr comments.

* address niels's comments.

* remove from_pt=True since tf weights are in.

* remove comment from pt model.

* address niels's comments.

Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2022-07-21 18:22:37 +01:00
2c5747edfe Update notification service (#17921)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-21 15:03:50 +02:00
07575e869d Italian/accelerate (#17698)
* Add 'accelerate' to _toctree file

* Fix 'training with a nb' title

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-21 14:23:47 +02:00
8881e58b22 Italian/model sharing (#17828)
* Add Italian translation of the doc file model_sharing.mdx

* Fix style

* Fix typo

* Update docs/source/it/_toctree.yml

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-21 14:07:53 +02:00
0d971be84f Italian translation of run_scripts.mdx gh-17459 (#17642)
* Run_scripts Italian translation gh-17459

* Updated run_scripts gh-17642

* Updated run_scripts gh-17642

Made the text more gender-neutral.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-21 12:02:08 +02:00
ba552dd027 Make errors for loss-less models more user-friendly (#18233) 2022-07-21 11:52:33 +02:00
43a5375cc1 Fix TrainingArguments help section (#18232) 2022-07-21 11:03:25 +02:00
9f787ce874 Translation/debugging (#18230)
* added debugging.mdx

* updated debugging.mdx

* updated translation

* updated translation debugging

* translated debugging

* updated _toctree.yml
2022-07-21 11:02:26 +02:00
5e2f2d7dd2 Better messaging and fix for incorrect shape when collating data. (#18119)
* More informative error message

* raise dynamic error

* remove_excess_nesting application

* incorrect shape assertion for collator & function to remove excess nesting from DatasetDict

* formatting

* eliminating datasets import

* removed and relocated remove_excess_nesting to the datasets library and updated docs accordingly

* independent assert instructions

* inform user of excess nesting
2022-07-21 10:35:41 +02:00
d23cf5b1f1 Add support for Sagemaker Model Parallel >= 1.10 new checkpoint API (#18221)
* Add support for Sagemaker Model Parallel >= 1.10 new checkpoint API

* Support loading checkpoints saved with SMP < 1.10 in SMP < 1.10 and SMP >= 1.10

* Support loading checkpoints saved with SMP >= 1.10 in SMP >= 1.10

* Fix bug and styling

* Update based on reviewer feedback
2022-07-21 07:56:20 +02:00
dbfeffd7c9 Update add_new_pipeline.mdx (#18224)
fix typo
2022-07-21 07:55:30 +02:00
ff56b8fbff Add custom config to quicktour (#18115)
* 📝 first draft of new quicktour

* make style

* 🖍 edit and review

* 🖍 small fixes

* 🖍 only add custom config section

* 🖍 use autoclass instead
2022-07-20 12:23:03 -05:00
9edff45362 skip some test_multi_gpu_data_parallel_forward (#18188)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-20 15:54:44 +02:00
bc6fe6fbcf Change to FlavaProcessor in PROCESSOR_MAPPING_NAMES (#18213)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-20 12:30:14 +02:00
dcec4c4387 Adding OPTForSeqClassification class (#18123)
* Adding OPTForSeqClassification class

* Fix import issues

* Add documentation for optforseqclassification

* Remove checkout

* fix failing tests

* fix typo

* Fix code formatting

* Incorporating the PR feedbacks

* Incorporate PR Feedbacks

* Fix failing test and add new test for multi label setup

* Fix formatting issue

* Fix failing tests

* Fix formatting issues

* Fix failing tests

* Fix failing tests

* Fix failing tests

* Fix failing tests

* PR feedback
2022-07-20 10:14:21 +02:00
0ed4d0dfb6 Fix LayoutXLM docstrings (#17038)
* Fix docstrings

* Fix legacy issue

* up

* apply suggestions

* up

* quality
2022-07-20 09:49:57 +02:00
4b1ed7979f update cache to v0.5 (#18203)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-20 08:14:10 +02:00
8a61fe0234 Reduce console spam when using the KerasMetricCallback (#18202)
* Reduce console spam when using the KerasMetricCallback

* Switch to predict_on_batch to improve performance
2022-07-19 17:00:35 +01:00
ec6cd7633f TF: Add missing cast to GPT-J (#18201)
* Fix TF GPT-J tests

* add try/finally block
2022-07-19 15:58:42 +01:00
05ed569c79 Use next-gen CircleCI convenience images (#18197)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-19 15:43:05 +02:00
9f12ec7d87 Typo in readme (#18195) 2022-07-19 15:28:37 +02:00
dc9147ff36 Custom pipeline (#18079)
* Initial work

* More work

* Add tests for custom pipelines on the Hub

* Protect import

* Make the test work for TF as well

* Last PyTorch specific bit

* Add documentation

* Style

* Title in toc

* Bad names!

* Update docs/source/en/add_new_pipeline.mdx

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Auto stash before merge of "custom_pipeline" and "origin/custom_pipeline"

* Address review comments

* Address more review comments

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-07-19 12:02:35 +02:00
3bb6356d4d [From pretrained] Allow download from subfolder inside model repo (#18184)
* add first generation tutorial

* [from_pretrained] Allow loading models from subfolders

* remove gen file

* add doc strings

* allow download from subfolder

* add tests

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply comments

* correct doc string

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-19 11:53:53 +02:00
ce0152819d Update docs README with instructions on locally previewing docs (#18196)
* Update docs README with instructions on locally previewing docs

* Add instructions to install `watchdog` before previewing the docs
2022-07-19 11:47:26 +02:00
798384467b bugfix: div-->dim (#18135) 2022-07-19 10:24:56 +02:00
e630dad555 Add vision example to README (#18194) 2022-07-19 09:46:18 +02:00
4bea6584e3 Remove use_auth_token from the from_config method (#18192)
* remove use_auth_token from from_config

* restore use_auth_token from_pretrained run_t5_mlm_flax
2022-07-19 08:13:20 +02:00
29fd471556 Use smaller variant of BLOOM for doc to fix tests 2022-07-18 15:17:29 -04:00
bc8e30bab9 FSDP integration enhancements and fixes (#18134)
* FSDP integration enhancements and fixes

* resolving comments

* fsdp fp16 mixed precision requires `ShardedGradScaler`
2022-07-19 00:02:10 +05:30
8e445ca51d Translation/training: italian translation training.mdx (#17662)
* added training.mdx

* updated training.mdx

* updated training.mdx

* updated training.mdx

* updated _toctree.yml

* fixed typos after review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-18 19:21:07 +02:00
6a1b1bf7a6 BLOOM minor fixes small test (#18175)
* minor fixes

- add correct revision
- corrected dosctring for test
- removed a test

* contrib credits

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
2022-07-18 19:18:19 +02:00
c4cc894086 Translation italian: multilingual.mdx (#17768)
* added multilingual.mdx

* updated multilingual.mdx

* italian translation multilingual.mdx

* updated _toctree.yml

* fixed typos _toctree.yml

* fixed typos after review

* fixed error after review
2022-07-18 19:09:08 +02:00
0a5b61d004 Added preprocessing.mdx italian translation (#17600)
* updated _toctree.yml

* added preprocessing

* updated preprocessing.mdx

* updated preprocessing.mdx

updated after review
2022-07-18 19:06:10 +02:00
ced1f1f5db fix typo inside bloom documentation (#18187) 2022-07-18 17:43:52 +02:00
edadfc58af Better default for offload_state_dict in from_pretrained (#18183) 2022-07-18 16:02:41 +02:00
aeeab1ffd0 Fix template for new models in README (#18182) 2022-07-18 16:01:51 +02:00
45255814a2 FIX: Typo (#18156) 2022-07-18 15:46:08 +02:00
6561fbcc6e Update TF(Vision)EncoderDecoderModel PT/TF equivalence tests (#18073)
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-18 15:29:14 +02:00
cb19c2afdc Fix expected loss values in some (m)T5 tests (#18177)
* fix expected loss values

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-18 15:26:21 +02:00
7417f3acb7 [HPO] update to sigopt new experiment api (#18147)
* [HPO] update to sigopt new experiment api
* follow https://docs.sigopt.com/experiments

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* [HPO] use new API if sigopt version >= 8.0.0

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-07-18 15:19:40 +02:00
8c14b342aa add ONNX support for LeVit (#18154)
Co-authored-by: Guilhem Chéron <guilhemc@authentifier.com>
2022-07-18 15:17:07 +02:00
c1c79b0655 NLLB tokenizer (#18126)
* NLLB tokenizer

* Apply suggestions from code review - Thanks Stefan!

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* Final touches

* Style :)

* Update docs/source/en/model_doc/nllb.mdx

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* PR reviews

* Auto models

Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-18 08:12:34 -04:00
a4f97e6ce0 Fix incorrect type hint for lang (#18161) 2022-07-18 09:53:18 +02:00
c46d39f390 Fix check for falsey inputs in run_summarization (#18155) 2022-07-18 09:50:32 +02:00
ccc0897804 Adding support for device_map directly in pipeline(..) function. (#17902)
* Adding support for `device_map` directly in `pipeline(..)` function.

* Updating the docstring.

* Adding a better docstring

* Put back type hints.

* Blacked. (`make fixup` didn't work ??!!)
2022-07-15 15:54:26 +02:00
fca66ec4ef Fixing a hard to trigger bug for text-generation pipeline. (#18131)
* Fixing a bug where attention mask was not passed to generate.

* Fixing zero-size prompts.

* Comment on top.
2022-07-15 15:54:07 +02:00
8581a798c0 Add TF DeiT implementation (#17806)
* Initial TF DeiT implementation

* Fix copies naming issues

* Fix up + docs

* Properly same main layer

* Name layers properly

* Initial TF DeiT implementation

* Fix copies naming issues

* Fix up + docs

* Properly same main layer

* Name layers properly

* Fixup

* Fix import

* Fix import

* Fix import

* Fix weight loading for tests whilst not on hub

* Add doc tests and remove to_2tuple

* Add back to_2tuple
Removing to_2tuple results in many downstream changes needed because of the copies checks

* Incorporate updates in Improve vision models #17731 PR

* Don't hard code num_channels

* Copy PyTorch DeiT embeddings and remove pytorch operations with mask

* Fix patch embeddings & tidy up

* Update PixelShuffle to move logic into class layer

* Update doc strings - remove PT references

* Use NHWC format in internal layers

* Fix up

* Use linear activation layer

* Remove unused import

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Move dataclass to top of file

* Remove from_pt now weights on hub

* Fixup

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
2022-07-13 18:04:08 +01:00
Wei
7ea6ccc2b3 Enable torchdynamo with torch_tensorrt(fx path) (#17765)
* enable fx2trt

* Update perf_train_gpu_one.mdx

* Update perf_train_gpu_one.mdx

* add lib check

* update

* format

* update

* fix import check

* fix isort

* improve doc

* refactor ctx manager

* fix isort

* black format

* isort fix

* fix format

* update args

* update black

* cleanups

* Update perf_train_gpu_one.mdx

* code refactor

* code refactor to init

* remove redundancy

* isort

* replace self.args with args

Co-authored-by: Stas Bekman <stas@stason.org>
2022-07-13 12:43:28 -04:00
37aeb5787a Make sharded checkpoints work in offline mode (#18125)
* Make sharded checkpoints work in offline mode

* Add test
2022-07-13 12:43:08 -04:00
0a21a48564 Revert "Make sharded checkpoints work in offline mode"
This reverts commit 3564c6578630a3bef29d2c7c36c7d29b68acd874.
2022-07-13 10:53:25 -04:00
3564c65786 Make sharded checkpoints work in offline mode 2022-07-13 10:51:56 -04:00
56e6487c40 add dataset split and config to model-index in TrainingSummary.from_trainer (#18064)
* added metadata to training summary

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-13 16:07:20 +02:00
fde22c75a1 Add summarization name mapping for MultiNews (#18117)
* Add summarization name mapping for MultiNews

* Add summarization name mapping for MultiNews
2022-07-13 08:19:20 -04:00
195133363e supported python versions reference (#18116)
* supported python versions reference

* Update CONTRIBUTING.md

removing commit hash from link

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-13 08:18:44 -04:00
20509ab0e0 TF: unpack_inputs decorator independent from main_input_name (#18110) 2022-07-13 10:43:41 +01:00
fcefa200b2 TF: remove graph mode distinction when processing boolean options (#18102) 2022-07-12 19:05:31 +01:00
bc34c21191 Fix BLOOM dtype (#17995)
* Add fp16 option

* Fix BLOOM dtype

* Formatting

* Remove torch_dtype arg

* Revert formatting

* Apply formatting

* Add n_embed backward compat
2022-07-12 10:36:08 -04:00
981714efe1 CLI: reenable pt_to_tf test (#18108) 2022-07-12 13:38:05 +01:00
f5221c06e4 Report value for a step instead of epoch. (#18095)
* Report value for a step instead of epoch.

Report an objective function value for a step instead of epoch to optuna.
I made this modification for the following reason:
If "eval_steps" is less than steps per epoch, there maybe warnings like this: "optuna/trial/_trial.py:592: UserWarning: The reported value is ignored because this `step` 0 is already reported.". So "step" are more appropriate than "epoch" here.

* MOD: make style.

Co-authored-by: zhaowei01 <zhaowei01@yuanfudao.com>
2022-07-12 08:18:35 -04:00
d4ebd4e112 speed up test (#18106) 2022-07-12 04:28:28 -04:00
b7d8bd378c Enhance IPEX integration in Trainer (#18072)
* enhance ipex import

* refine codes

* refine style

* add link

* style

Co-authored-by: Stas Bekman <stas@stason.org>
2022-07-11 21:34:09 -07:00
a462fc9232 Bloom Optimize operations (#17866)
* fix tolerance for a bloom slow test

* enhance alibi padding

- get rid of for loops
- deals better with padded batched input
- avoid useless cpu/gpu communication when creating alibi

Co-authored-by: justheuristic <justheuristic@gmail.com>

* optimize attention mask

* fix scaled softmax limit values

* optimize building alibi tensor

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* fix attention_mask shape when it's None

* minor fixes

- fix docstring + arg names

* remove colons in docstring

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* apply suggestion

* remove unsued arg

* refactor a bit

- use [:, None] for consistency

* refactor attention block

Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>

* quick fixes

* first attempt

* refactor attention block and fix all tests except "test_simple_generation"

- added comments to better explain attention block

* remove debug lines and add TODO comment

* change `torch.bmm` to `torch.baddbmm`
- fixes `test_simple_generation`but breaks `test_batch_generation_padd`

* styling

* all tests are passing now
- use `bmm`
- add explanation for `allow_fp16_reduced_precision_reduction`

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* styling

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* fix support for accelerate

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove attn softmax in fp32

* refactor comments

* refactor a bit

- remove warning message
- remove print on test

* refer to pytorch t5

* change the slow tests

- do the tests in fp32
- remove some comments
- keep large comments

* update expected output for `test_simple_generation`
- we now test using fp32

* make style + change comments a bit

* fix dtype padd test

Co-authored-by: justheuristic <justheuristic@gmail.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-11 13:16:13 -04:00
5ff6f853d7 Mark slow test as such 2022-07-11 12:48:57 -04:00
b1b8222d80 Add filename to info diaplyed when downloading things in from_pretrained (#18099) 2022-07-11 12:45:06 -04:00
6c8017a5c8 Fix image segmentation and object detection pipeline tests (#18100) 2022-07-11 12:41:56 -04:00
b0520f594c Skip failing tests 2022-07-11 10:16:54 -04:00
1e8140caad Fix RESOURCE_EXHAUSTED error when dealing with large datasets in Flax example scripts (#18069)
* Fix RESOURCE_EXHAUSTED error for large datasets on Flax example scripts

* using np.permutation for creating batch_idx

* train_samples_idx -> training_samples_idx

* fix type hints
2022-07-11 15:59:08 +02:00
ac98a88fbc Fix torchscript tests for GPT-NeoX (#18012)
* fix dtype issue in _attn

* fix RotaryEmbedding

* fix RotaryEmbedding 2

* clean up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-11 05:02:54 -04:00
95113d1365 Fix some typos. (#17560)
* Fix some typos.

Signed-off-by: Yulv-git <yulvchi@qq.com>

* Fix typo.

Signed-off-by: Yulv-git <yulvchi@qq.com>

* make fixup.
2022-07-11 05:00:13 -04:00
ad28ca291b [bloom] fix alibi device placement (#18087) 2022-07-10 09:11:46 -07:00
8b332a6a16 Make predict() close progress bars after finishing (#17952) (#18078)
* Make Trainer.predict call on_evaluate (#17952)

* Add on_predict

* Small fix

* Small and different fix

* Add tests
2022-07-08 16:44:24 -04:00
7c046c5c22 Update localized READMES when template is filled. (#18062) 2022-07-08 11:08:52 -04:00
94ca7d2faa Fix type issue in using bucketing with Trainer (#18051)
* Fix type issue in using bucketing with Trainer

- Fix type issues in LengthGrouperSampler,
  DistributedLengthGroupedSampler

refs: #18003

* Change logging type in LengthGroupedSampler

- Change `logger.warning` to `logger.info`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Change logging type in DistributedLengthGroupedSampler

- Change `logger.warning` to `logger.info`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove adundant clause in LengthGroupedSampler

- Use `elif`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove adundant clause in DistributedLengthGroupedSampler

- Use `elif`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply black, isort to modified codes in the script

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-08 11:06:00 -04:00
9bd3968509 Fix slow CI by pinning resampy (#18077)
* Fix slow CI by pinning resampy

* Actually put it in the speech dependencies
2022-07-08 10:51:24 -04:00
de46cde14b Drop columns after loading samples in prepare_tf_dataset (#17967)
* Drop columns after loading samples, rather than before, to avoid breaking transforms

* make fixup

* Add workaround so this PR can work with current datasets version
2022-07-07 18:02:22 +01:00
2544c1434f [Generate Tests] Make sure no tokens are force-generated (#18053) 2022-07-07 15:08:34 +02:00
91c4a3ab1a Added Command for windows VENV activation in installation docs (#18008)
* Added command for windows VENV activation

* changed linux and macos  specification
2022-07-07 08:18:44 -04:00
1b749a7f8d Sort doc toc (#18034)
* Add script to sort doc ToC

* Style and fixes

* Add check to quality job
2022-07-07 08:17:58 -04:00
1b5ea74783 Place inputs on device when include_inputs_for_metrics is True (#18046) 2022-07-07 08:17:49 -04:00
870ff9e1da Skip failing test until @gante fix it. 2022-07-06 15:13:28 -04:00
2e90c3df8f Doc to dataset (#18037)
* Link to the Datasets doc

* Remove unwanted file
2022-07-06 12:10:06 -04:00
be79cd7d8e Protect TFGenerationMixin.seed_generator so it's not created at import (#18044) 2022-07-06 16:36:28 +01:00
360719a6a4 TF: GPT-J compatible with XLA generation (#17986) 2022-07-06 15:02:07 +01:00
bf37e5c7f6 Fix T5 incorrect weight decay in Trainer and official summarization example (#18002)
* Add ALL_LAYERNORM_LAYERS for LayerNorm

* fix bug of appending layer norm
2022-07-06 09:44:19 -04:00
22edb68d49 Squash commits (#17981)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-07-06 08:11:48 -04:00
f681437203 Enable Past CI (#17919)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-05 18:08:36 +02:00
5ae087cf8e Fix T5/mT5 tests (#18029) 2022-07-05 16:22:03 +01:00
ec07eccc7d [Flax] Bump to v0.4.1 (#17966) 2022-07-05 15:17:17 +01:00
97db5b4223 Update expected values in DecisionTransformerModelIntegrationTest (#18016)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-05 14:53:43 +02:00
f0982682bd TF: T5 can now handle a padded past (i.e. XLA generation) (#17969)
* get the right slicing index for position_bias
2022-07-04 19:47:43 +01:00
e3139ad301 fixed calculation of ctc loss in TFWav2Vec2ForCTC (#18014)
Co-authored-by: Sreyan-G@NVIDIA <sreyang@nvidia.com>
2022-07-04 17:36:36 +01:00
96d833b211 Return scalar losses instead of per-sample means (#18013)
* Return scalar losses instead of per-sample means

* Make loss shape (1,) instead of scalar

* Allow scalar losses in test_loss_computation

* Allow scalar losses in test_loss_computation

* Allow scalar losses in test_loss_computation

* Remove XLA loss function for RAG
2022-07-04 17:26:19 +01:00
6cb19540c9 sort list of models (#18011) 2022-07-04 09:20:55 -04:00
7498db06a1 Replace BloomTokenizer by BloomTokenizerFast in doc (#18005) 2022-07-04 08:40:13 -04:00
3cfdefaa4d Fix typo in error message in generation_utils (#18000) 2022-07-04 06:04:58 -04:00
cf2578ae00 Refactor to inherit from nn.Module instead of nn.ModuleList (#17501)
* Refactor to inherit from nn.Module instead of nn.ModuleList

* Fix typo

* Empty to trigger CI re-run

Blender Bot tests failing (should be unrelated to this PR) and pass locally). I don't have sufficient permisisons to re-run the CI workflow (totally or from failed)
2022-07-04 06:03:42 -04:00
77ea5130a1 Add TF ResNet model (#17427)
* Rought TF conversion outline

* Tidy up

* Fix padding differences between layers

* Add back embedder - whoops

* Match test file to main

* Match upstream test file

* Correctly pass and assign image_size parameter

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Add in MainLayer

* Correctly name layer

* Tidy up AdaptivePooler

* Small tidy-up

More accurate type hints and remove whitespaces

* Change AdaptiveAvgPool

Use the AdaptiveAvgPool implementation by @Rocketknight1, which correctly pools if the output shape does not evenly divide by input shape c.f. 9e26607e22 (r900109509)

Co-authored-by: From: matt <rocketknight1@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Use updated AdaptiveAvgPool

Co-authored-by: matt <rocketknight1@gmail.com>

* Make AdaptiveAvgPool compatible with CPU

* Remove image_size from configuration

* Fixup

* Tensorflow -> TensorFlow

* Fix pt references in tests

* Apply suggestions from code review - grammar and wording

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add TFResNet to doc tests

* PR comments - GlobalAveragePooling and clearer comments

* Remove unused import

* Add in keepdims argument

* Add num_channels check

* grammar fix: by -> of

Co-authored-by: matt <rocketknight1@gmail.com>

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove transposes - keep NHWC throughout forward pass

* Fixup look sharp

* Add missing layer names

* Final tidy up - remove from_pt now weights on hub

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-07-04 10:59:15 +01:00
7b18702ca7 Add link to existing documentation (#17931) 2022-07-04 04:13:05 -04:00
a045cbd6c9 only a stupid typo, but it can lead to confusion (#17930) 2022-07-04 04:04:16 -04:00
49c8c67fb8 Exclude Databricks from notebook env only if the runtime is below 11.0 (#17988)
* Exclude Databricks from notebook env only if the runtime is below 11.0

* Dummy commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI
2022-07-01 16:17:40 -04:00
6890d1960f Shifting labels for causal LM when using label smoother (#17987)
* Shifting labels for causal LM when using label smoother

When training CausalLM, loss is computed within model's foward() function and
labels are shifted internally. However, if label smoothing is applied, loss is
computed in trainer's compute_loss function and labels are not shifted.
This causes unintended confusion during the alignment of labels and corresponding
inputs. This commit is for resolving this confusion.

Resolves #17960

On branch shift_labels_for_causalLM
Changes to be committed:
	modified:   src/transformers/trainer.py
	modified:   src/transformers/trainer_pt_utils.py

* Update trainer.py

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-01 14:55:35 -04:00
6f0723a9be Restore original task in test_warning_logs (#17985)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 20:44:27 +02:00
009171d1ba Ensure PT model is in evaluation mode and lightweight forward pass done (#17970) 2022-07-01 19:33:47 +01:00
d6cec45801 XLA train step fixes (#17973)
* Copy inputs to train and test step before modifying them, as this breaks things

* Add XLA tests, fix our loss functions to be XLA-compatible

* make fixup

* Update loss computation test to expect vector of per-sample losses

* Patch loss for TFLED

* Patch loss for TFAlbert

* Add a tf_legacy_loss config flag that enables old loss functions

* Stop using config.get() because it's not a dict

* Skip loss computation test for RAG because its loss is very strange and I'm afraid to rewrite it

* make fixup

* Add XLA-compatible RAG loss

* Fix dtype of loss mask for TFAlbert

* Fix test for XLNet too because it overrides the default one

* make fixup

* Fix config test

* No more depending on GPU NaN behaviour

* Add test, avoid potential zero division

* Fix test item assignment

* Fix loss computation masking test

* make fixup

* Fix dtype bugs
2022-07-01 19:11:14 +01:00
485bbe79d5 [Flax] Add remat (gradient checkpointing) (#17843)
* [Flax] Add remat (gradient checkpointing)

* fix variable naming in test

* flip: checkpoint using a method

* fix naming

* fix class naming

* apply PVP's suggestions from code review

* make fix-copies

* fix big-bird, electra, roberta

* cookie-cutter

* fix flax big-bird

* move test to common
2022-07-01 18:33:54 +01:00
664688b94f higher atol to avoid flaky trainer test failure (#17979)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 17:53:16 +02:00
8bb2c387f4 Fix FlaxBigBirdEmbeddings (#17842)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 16:46:01 +02:00
b68d408f1b add ONNX support for BLOOM (#17961)
* add onnx support for BLOOM

* use TYPE_CHECKING for type annotations

* fix past_shape for bloom (different from gpt2)

* use logical_or instead of `+` for onnx support

* bigger `atol_for_validation` for larger bloom models

* copied -> taken because it's no longer an exact copy

* remove "copied from" comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-01 10:44:42 -04:00
462b7f3a94 fixing fsdp autowrap functionality (#17922)
* fixing fsdp autowrap functionality

* update version and quality

* update torch version to latest stable version
2022-07-01 19:40:55 +05:30
3a064bd4dd fix bias keyword argument in TFDebertaEmbeddings (#17940) 2022-07-01 14:48:43 +01:00
569b679adb Update expected values in CodeGen tests (#17888)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 15:33:36 +02:00
cb42502410 Fix typo in perf_train_gpu_one.mdx (#17983) 2022-07-01 09:19:13 -04:00
14fb8a63b9 skip some gpt_neox tests that require 80G RAM (#17923)
* skip some gpt_neox tests that require 80G RAM

* remove tests

* fix quality

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 09:04:38 -04:00
49cd736a28 feat: add pipeline registry abstraction (#17905)
* feat: add pipeline registry abstraction

- added `PipelineRegistry` abstraction
- updates `add_new_pipeline.mdx` (english docs) to reflect the api addition
- migrate `check_task` and `get_supported_tasks` from
  transformers/pipelines/__init__.py to
  transformers/pipelines/base.py#PipelineRegistry.{check_task,get_supported_tasks}

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* fix: update with upstream/main

chore: Apply suggestions from sgugger's code review

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* chore: PR updates

- revert src/transformers/dependency_versions_table.py from upstream/main
- updates pipeline registry to use global variables

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* tests: add tests for pipeline registry

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* tests: add test for output warning.

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* chore: fmt and cleanup unused imports

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* fix: change imports to top of the file and address comments

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-30 12:11:08 -04:00
9cb7cef285 Add ONNX support for LayoutLMv3 (#17953)
* Add ONNX support for LayoutLMv3

* Update docstrings

* Update empty description in docstring

* Fix imports and type hints
2022-06-30 12:09:52 -04:00
fe14046421 skip some ipex tests until it works with torch 1.12 (#17964)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-30 18:05:29 +02:00
91e1f24ef3 CLI: convert sharded PT models (#17959)
* sharded conversion; add flag to control max hidden error

* better hidden name matching

* Add test: load TF from PT shards

* fix test (PT data must be local)
2022-06-30 16:51:03 +01:00
f25457b273 Fix number of examples for iterable dataset in distributed training (#17951) 2022-06-30 11:01:40 -04:00
e4d2588573 [Pipelines] Add revision tag to all default pipelines (#17667)
* trigger test failure

* upload revision poc

* Update src/transformers/pipelines/base.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* up

* add test

* correct some stuff

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* correct require flag

Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-30 16:37:18 +02:00
4f8361afe7 Unifying training argument type annotations (#17934)
* doc: Unify training arg type annotations

* wip: extracting enum type from Union

* blackening
2022-06-30 08:53:32 -04:00
205bc4152c Fix GPT-NeoX-20B past handling, attention computation (#17811)
* Fix GPT-NeoX-20B past handling, swap attention computation to hopefully avoid NaN, update docs

* 20B tests
2022-06-30 08:47:40 -04:00
692e61e91a Flax t5 Encoder (#17784)
* first draft adding Flax-t5-encoder and Flax-mt5-encoder

* imports

* after make fixup

* flax t5 encoder test

* black on test

* make fix-copies

* clean

* all_model_classes -> tuple

* clean test

* is_encoder_decoder=False in t5-enc tester

* remove file docstring before FlaxT5Encoder

* black

* isort

* commit suggestions on src/transformers/models/t5/modeling_flax_t5.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* commit suggestions on src/transformers/models/t5/modeling_flax_t5.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* remove _get_encoder_module

* self.decoder_seq_length -> self.encoder_seq_length as t5-enc does not have decoder

* bugfix - self.module_class is class itself, not instance;

* docs for mt5 and t5

* call -> __call__ in t5 doc

* FlaxMT5EncoderModel to TYPE_HINT

* run doc-builder to allow change the files

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-06-30 00:49:02 +02:00
eb1493b15d Fix #17893, removed dead code (#17917)
* Removed dead position_id code, fix #17893

* Removed unused var

* Now ignores removed (dead) dict key for backward comp
2022-06-29 17:54:26 -04:00
fbc7598bab add MobileViT model (#17354)
* add MobileViT

* fixup

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* remove empty line

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* use clearer variable names

* rename to MobileViTTransformerLayer

* no longer inherit from nn.Sequential

* fixup

* fixup

* not sure why this got added twice

* rename organization for checkpoints

* fix it up

* Update src/transformers/models/mobilevit/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/models/mobilevit/test_modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* code style improvements

* fixup

* Update docs/source/en/model_doc/mobilevit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/mobilevit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* download labels from hub

* rename layers

* rename more layers

* don't compute loss in separate function

* remove some nn.Sequential

* replace nn.Sequential with new MobileViTTransformer class

* replace nn.Sequential with MobileViTMobileNetLayer

* fix pruning since model structure changed

* fixup

* fix doc comment

* remove custom resize from feature extractor

* fix ONNX import

* add to doc tests

* use center_crop from image_utils

* move RGB->BGR flipping into image_utils

* fix broken tests

* wrong type hint

* small tweaks

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-29 16:07:51 -04:00
5feac3d080 Fix prepare_tf_dataset when drop_remainder is not supplied (#17950) 2022-06-29 19:23:39 +01:00
bc019b0e5f ExplicitEnum subclass str (JSON dump compatible) (#17933)
* ExplicitEnum subclass str (JSON dump compatible)

* allow union if one of the types is str
2022-06-29 13:49:31 -04:00
b089cca347 PyTorch 1.12.0 for scheduled CI (#17949)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 19:32:19 +02:00
d444edb3f6 OPT - Fix Softmax NaN in half precision mode (#17437) 2022-06-29 19:15:32 +02:00
9fe2403bc5 Use explicit torch version in deepspeed CI (#17942)
* use explicit torch version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 18:20:34 +02:00
4c722e9e22 fix regexes with escape sequence (#17943) 2022-06-29 08:55:22 -07:00
7c4c6f6084 Fix all is_torch_tpu_available issues (#17936)
* Fix all is_torch_tpu_available
2022-06-29 11:03:33 -04:00
77b76672e2 Fix img seg tests (load checkpoints from hf-internal-testing) (#17939)
* Revert "Skip failing test until they are fixed."

This reverts commit 8f400775fc5bc1011a2674dcfd5408d30d69f678.

* Use `tiny-detr` checkpts from `hf-internal-testing`
2022-06-29 10:19:37 -04:00
3cff4cc587 Add MVP model (#17787)
* Add MVP model

* Update README

* Remove useless module

* Update docs

* Fix bugs in tokenizer

* Remove useless test

* Remove useless module

* Update vocab

* Remove specifying

* Remove specifying

* Add #Copied ... statement

* Update paper link

* Remove useless TFMvp

* Add #Copied ... statement

* Fix style in test mvp model

* Fix some typos

* Fix properties of unset special tokens in non verbose mode

* Update paper link

* Update MVP doc

* Update MVP doc

* Fix README

* Fix typos in docs

* Update docs
2022-06-29 09:30:55 -04:00
8f400775fc Skip failing test until they are fixed. 2022-06-29 09:11:29 -04:00
47b9165109 Remove imports and use forward references in ONNX feature (#17926) 2022-06-29 09:02:53 -04:00
5cdfff5df3 Fix job links in Slack report (#17892)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 14:53:13 +02:00
a7eba83161 TF implementation of RegNets (#17554)
* chore: initial commit

Copied the torch implementation of regnets and porting the code to tf step by step. Also introduced an output layer which was needed for regnets.

* chore: porting the rest of the modules to tensorflow

did not change the documentation yet, yet to try the playground on the model

* Fix initilizations (#1)

* fix: code structure in few cases.

* fix: code structure to align tf models.

* fix: layer naming, bn layer still remains.

* chore: change default epsilon and momentum in bn.

* chore: styling nits.

* fix: cross-loading bn params.

* fix: regnet tf model, integration passing.

* add: tests for TF regnet.

* fix: code quality related issues.

* chore: added rest of the files.

* minor additions..

* fix: repo consistency.

* fix: regnet tf tests.

* chore: reorganize dummy_tf_objects for regnet.

* chore: remove checkpoint var.

* chore: remov unnecessary files.

* chore: run make style.

* Update docs/source/en/model_doc/regnet.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* chore: PR feedback I.

* fix: pt test. thanks to @ydshieh.

* New adaptive pooler (#3)

* feat: new adaptive pooler

Co-authored-by: @Rocketknight1

* chore: remove image_size argument.

Co-authored-by: matt <rocketknight1@gmail.com>

Co-authored-by: matt <rocketknight1@gmail.com>

* Empty-Commit

* chore: remove image_size comment.

* chore: remove playground_tf.py

* chore: minor changes related to spacing.

* chore: make style.

* Update src/transformers/models/regnet/modeling_tf_regnet.py

Co-authored-by: amyeroberts <aeroberts4444@gmail.com>

* Update src/transformers/models/regnet/modeling_tf_regnet.py

Co-authored-by: amyeroberts <aeroberts4444@gmail.com>

* chore: refactored __init__.

* chore: copied from -> taken from./g

* adaptive pool -> global avg pool, channel check.

* chore: move channel check to stem.

* pr comments - minor refactor and add regnets to doc tests.

* Update src/transformers/models/regnet/modeling_tf_regnet.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* minor fix in the xlayer.

* Empty-Commit

* chore: removed from_pt=True.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: amyeroberts <aeroberts4444@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-06-29 13:45:14 +01:00
e6d27ca5c8 TF: XLA beam search + most generation-compatible models are now also XLA-generate-compatible (#17857)
* working beam search 🎉

* XLA generation compatible with ALL classes

* add xla generation slow test
2022-06-29 12:41:01 +01:00
b8142753f9 Add missing comment quotes (#17379) 2022-06-29 06:16:36 -04:00
e113c5cb64 Remove render tags (#17897)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-29 06:06:42 -04:00
90415475bb Fix the Conda package build (#16737)
* Fix the Conda package build

* Update build.sh

* Update release-conda.yml
2022-06-29 06:03:16 -04:00
babd7b1a92 Remove DT_DOUBLE from the T5 graph (#17891) 2022-06-29 10:23:49 +01:00
6aae59d0b5 Compute min_resolution in prepare_image_inputs (#17915)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 10:30:20 +02:00
776855c752 Fixing a regression with return_all_scores introduced in #17606 (#17906)
Fixing a regression with `return_all_scores` introduced in #17606

- The legacy test actually tested `return_all_scores=False` (the actual
  default) instead of `return_all_scores=True` (the actual weird case).

This commit adds the correct legacy test and fixes it.

Tmp legacy tests.

Actually fix the regression (also contains lists)

Less diffed code.
2022-06-28 17:24:45 -04:00
5f1e67a566 Pin PyTorch in requirements as well 2022-06-28 15:56:10 -04:00
5a3d0cbdda Pin PyTorch while we fix compatibility with 1.12 2022-06-28 15:07:26 -04:00
6c8f4c9a93 Adding GroupViT Models (#17313)
* add group vit and fixed test (except slow)

* passing slow test

* addressed some comments

* fixed test

* fixed style

* fixed copy

* fixed segmentation output

* fixed test

* fixed relative path

* fixed copy

* add ignore non auto configured

* fixed docstring, add doc

* fixed copies

* Apply suggestions from code review

merge suggestions

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* resolve comment, renaming model

* delete unused attr

* use fix copies

* resolve comments

* fixed attn

* remove unused vars

* refactor tests

* resolve final comments

* add demo notebook

* fixed inconsitent default

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* rename stage->stages

* Create single GroupViTEncoderLayer class

* Update conversion script

* Simplify conversion script

* Remove cross-attention class in favor of GroupViTAttention

* Convert other model as well, add processor to conversion script

* addressing final comment

* fixed args

* Update src/transformers/models/groupvit/modeling_groupvit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-28 20:51:47 +02:00
b424f0b4a3 Mrbean/codegen onnx (#17903) 2022-06-28 14:57:53 +02:00
76d13de5ae Add ONNX support for DETR (#17904) 2022-06-28 14:48:43 +02:00
bfcd5743ee In group_texts function, drop last block if smaller than block_size (#17908) 2022-06-28 08:34:55 -04:00
f71895a633 Move logic into pixelshuffle layer (#17899)
* Move all pixelshuffle logic into layer

* Rename layer

* Use correct input to function
2022-06-28 13:04:19 +01:00
0094565fc5 Fix loss computation in TFBertForPreTraining (#17898) 2022-06-28 12:44:56 +01:00
1dfa03f12b Pin black to 22.3.0 to benefit from a stable --preview flag (#17918) 2022-06-28 04:32:18 -04:00
9eec4e937e [M2M100] update conversion script (#17916) 2022-06-28 10:15:07 +02:00
db2644b9eb Fix PyTorch/TF Auto tests (#17895)
* add loading_info

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-28 08:56:24 +02:00
f717d47fe0 Fix test_number_of_steps_in_training_with_ipex (#17889)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-28 08:55:02 +02:00
0b0dd97737 Update expected values in constrained beam search tests (#17887)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-28 08:53:53 +02:00
e02037b352 Fix bug in gpt2's (from-scratch) special scaled weight initialization (#17877)
* only special scale init each gpt2 c_proj weight once, on exact match

* fix double quotes

Co-authored-by: leandro <leandro.vonwerra@spoud.io>
2022-06-27 15:01:49 -04:00
6dd00f6bd4 Update README_zh-hans.md (#17861) 2022-06-27 13:09:20 -04:00
71b2839fd3 bert: add conversion script for BERT Token Dropping TF2 checkpoints (#17142)
* bert: add conversion script for BERT Token Dropping TF2 checkpoints

* bert: rename conversion script for BERT Token Dropping checkpoints

* bert: fix flake errors in BERT Token Dropping conversion script

* bert: make doc-builder happy!!1!11

* bert: fix pytorch_dump_path of BERT Token Dropping conversion script
2022-06-27 13:08:32 -04:00
98742829d3 Fix add new model like frameworks (#17869)
* Add new model like adds only the selected frameworks object in init

* Small fix
2022-06-27 13:07:34 -04:00
afb71b6726 Add type annotations for RoFormer models (#17878) 2022-06-27 14:50:43 +01:00
9a3453846b fix (#17890)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-27 14:36:11 +02:00
3ec7d4cfe4 fix mask (#17837) 2022-06-27 14:08:18 +02:00
ee0d001de7 Add a TF in-graph tokenizer for BERT (#17701)
* Add a TF in-graph tokenizer for BERT

* Add from_pretrained

* Add proper truncation, option handling to match other tokenizers

* Add proper imports and guards

* Add test, fix all the bugs exposed by said test

* Fix truncation of paired texts in graph mode, more test updates

* Small fixes, add a (very careful) test for savedmodel

* Add tensorflow-text dependency, make fixup

* Update documentation

* Update documentation

* make fixup

* Slight changes to tests

* Add some docstring examples

* Update tests

* Update tests and add proper lowercasing/normalization

* make fixup

* Add docstring for padding!

* Mark slow tests

* make fixup

* Fall back to BertTokenizerFast if BertTokenizer is unavailable

* Fall back to BertTokenizerFast if BertTokenizer is unavailable

* make fixup

* Properly handle tensorflow-text dummies
2022-06-27 12:06:21 +01:00
401fcca6c5 Fix TF GPT2 test_onnx_runtime_optimize (#17874)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-27 09:27:30 +02:00
cc5c061e34 CLI: handle multimodal inputs (#17839) 2022-06-25 16:17:11 +01:00
e8eb699ee8 Properly get tests deps in test_fetcher (#17870)
* Properly get tests deps in test_fetcher

* Remove print
2022-06-24 16:56:46 -04:00
b03be78a4b Fix test_inference_instance_segmentation_head (#17872)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 19:36:45 +02:00
494aac65a7 Skip test_multi_gpu_data_parallel_forward for MaskFormer (#17864)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 19:35:00 +02:00
0e0f1f4692 Use higher value for hidden_size in Flax BigBird test (#17822)
* Use higher value for hidden_size in Flax BigBird test

* remove 5e-5

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 19:31:30 +02:00
2ef94ee039 Fix: torch.utils.checkpoint import error. (#17849) 2022-06-24 13:23:29 -04:00
ef28a402a9 Add type hints for gptneox models (#17858)
* feat: Add type hints for GPTNeoxForCausalLM and GPTNeoXModel

* fix: removed imported Dict type

* fix: Removed unused List import
2022-06-24 17:12:36 +01:00
061a73d16f [CodeGen] support device_map="auto" for sharded checkpoints (#17871) 2022-06-24 18:06:30 +02:00
d6b6fb9963 Add CodeGen model (#17443)
* Add CodeGen model

* Add missing key and switch order of super()

* Fix torch.ones init with uint8 instead of bool

* Address comments: copy statements and doc

* update tests

* remove old model parallel

* fix batch gen tests

* fix batch gen test

* update test_gpt2_sample_max_time

* fix codgen test and revert gpt2 test change

* Fix incorrect tie_word_embedding value, typo, URL

* Fix model order in README and styling

* Reorder model list alphabetically

* Set tie_word_embedding to False by default

* Apply suggestions from code review

* Better attn mask name & remove attn masked_bias

* add tokenizer for codegen

* quality

* doc tokenizer

* fix-copies

* add CodeGenTokenizer in converter

* make truncation optional

* add test for truncation

* add copyright

* fix-copies

* fix fast tokenizer decode

* Update src/transformers/models/codegen/tokenization_codegen.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* increase vocab_size in tests

Co-authored-by: patil-suraj <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-06-24 17:10:38 +02:00
447490015a Fix Splinter test (#17854)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 16:26:14 +02:00
73a0496c2f [tests/VisionEncoderDecoder] import to_2tuple from test utils (#17865) 2022-06-24 15:23:30 +02:00
NaN
bc7a6fdc02 Fix Constrained beam search duplication and weird output issue (#17814)
* fix(ConstrainedBeamSearchScorer.step_sentence_constraint): avoid hypothesis duplication between topk and advance

* fix(GenerationMixin.constrained_beam_search): appropriately assign beam scores instead of token scores
2022-06-24 14:56:08 +02:00
c2c0d9db5f Improve encoder decoder model docs (#17815)
* Copied all the changes from the last PR

* added in documentation_tests.txt

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-06-24 14:48:19 +02:00
0917870510 Improve vision models (#17731)
* Improve vision models

* Add a lot of improvements

* Remove to_2tuple from swin tests

* Fix TF Swin

* Fix more tests

* Fix copies

* Improve more models

* Fix ViTMAE test

* Add channel check for TF models

* Add proper channel check for TF models

* Apply suggestion from code review

* Apply suggestions from code review

* Add channel check for Flax models, apply suggestion

* Fix bug

* Add tests for greyscale images

* Add test for interpolation of pos encodigns

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-24 11:34:51 +02:00
893ab12452 Auto-build Docker images before on-merge if setup.py was changed (#17573)
* Auto-build on setup modification

* Modify push-caller

* Make adjustments based on code review
2022-06-23 16:51:33 -04:00
75259b44bf Properly calculate the total train iterations and recalculate num epochs in no_trainer scripts (#17856) 2022-06-23 15:46:01 -04:00
7c1b91281f Index RNG states by global rank in saves (#17852) 2022-06-23 12:53:50 -04:00
7cf52a49de Nezha Pytorch implementation (#17776)
* wip

* rebase

* all tests pass

* rebase

* ready for PR

* address comments

* fix styles

* add require_torch to pipeline test

* remove remote image to improve CI consistency

* address comments; fix tf/flax tests

* address comments; fix tf/flax tests

* fix tests; add alias

* repo consistency tests

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* address comments

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* merge

* wip

* wip

* wip

* most basic tests passes

* all tests pass now

* relative embedding

* wip

* running make fixup

* remove bert changes

* fix doc

* fix doc

* fix issues

* fix doc

* address comments

* fix CI

* remove redundant copied from

* address comments

* fix broken test

Co-authored-by: Sijun He <sijunhe@Sijuns-MacBook-Pro.local>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-06-23 12:36:22 -04:00
acb709d551 Change no trainer image_classification test (#17635)
* Adjust test arguments and use a new example test
2022-06-23 11:11:16 -04:00
e70abdad1b Update modeling_cvt.py (#17846)
As shown in the colab notebook I added the missing type hints for " CvtForImageClassification
CvtModel
"
2022-06-23 16:08:36 +01:00
1a7ef3349f Fix broken test for models with batchnorm (#17841)
* Fix tests that broke when models used batchnorm

* Initializing the model twice does not actually...
...give you the same weights each time.
I am good at machine learning.

* Fix speed regression
2022-06-23 15:59:53 +01:00
18c263c4b6 BLOOM minor changes on tokenizer (#17823)
* few fixes:

- hardcode tokenizer padding side
- remove unused args

* few fixes:

- added new attribute on TokenizerTesterMixin
- added new slow test
- remove unused arg on tokenizer class

* make style

* Update src/transformers/models/bloom/tokenization_bloom_fast.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* make quality

* apply changes

- remove new attribute
- redefine test on the class

* add comments

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-06-23 15:57:12 +02:00
6f29029b05 Improve performance docs (#17750)
* add skeleton files

* fix cpu inference link

* add hint to make clear that single gpu section contains general info

* add new files to ToC

* update toctree to have subsection for performance

* add "coming soon" to the still empty sections

* fix missing title

* fix typo

* add reference to empty documents

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-06-23 14:51:54 +02:00
5bc779ae28 Fix an error message in BigBird (#17840)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-23 14:43:53 +02:00
3eed5530ec Fix properties of unset special tokens in non verbose mode (#17797)
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-06-23 14:40:13 +02:00
b2fdbaccdd change message (#17836) 2022-06-23 14:39:48 +02:00
d37a68e685 Add missing type hints for QDQBertModel (#17783)
* Feat: add missing type hints for QDQBertModel

* fix: ran black and isort

* feat: Add missing output type for QDQBertModel

* feat: Add type hints for QDQBertLMHeadModel and models starting with QDQBertFor

* fix: add missing return type for QDQBertModel

* fix: remove wrong return type for QDQBertEmbeddings

* fix: readded config argument to load_tf_weights_in_qdqbert

* fix: add BertConfig type to BertEmbeddings config due t checko error in ci

* fix: removed config type hints to avoid copy checks
2022-06-23 12:58:43 +01:00
4297f44b63 Update type hints modeling_yoso.py (#17827)
* Update modeling_yoso.py

* make fixup

* Update modeling_yoso.py

That should be it copied from previous PR
2022-06-23 12:37:29 +01:00
5cce3076c4 TF: generate without tf.TensorArray (#17801) 2022-06-23 12:28:08 +01:00
ab223fc148 add doctests for DETR (#17786)
* add: check labels for detr object detection doctests

* add: check shapes

* add: add detr to documentation_tests.py

* fix: make fixup output

* fix: add a comment
2022-06-23 13:26:14 +02:00
8d634b70e0 Fix push CI artifact path (#17788)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-23 12:31:22 +02:00
df8e6804c0 Offload fixes (#17810)
* Offload fixes

* Add a test
2022-06-22 12:23:07 -04:00
0d0c392c45 CLI: use hub's create_commit (#17755)
* use create_commit

* better commit message and description

* touch setup.py to trigger cache update

* add hub version gating
2022-06-22 16:50:21 +01:00
c366ce1011 Bump numpy from 1.21.0 to 1.22.0 in /examples/research_projects/lxmert (#17817)
Bumps [numpy](https://github.com/numpy/numpy) from 1.21.0 to 1.22.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.21.0...v1.22.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-22 09:29:40 -04:00
af0d21e741 Bump numpy in /examples/research_projects/visual_bert (#17816)
Bumps [numpy](https://github.com/numpy/numpy) from 1.21.0 to 1.22.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.21.0...v1.22.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-22 09:29:28 -04:00
56b83cf049 initial commit (#17818) 2022-06-22 14:26:03 +02:00
1357038164 Add logits_processor parameter, used by generate, to Seq2SeqTrainer methods evaluate and predict (#17805)
* Add logits_processor parameter, used by `generate`, to `Seq2SeqTrainer` methods `evaluate` and `predict`

* Add all generate parameters to `Seq2SeqTrainer`, and also to `QuestionAnsweringSeq2SeqTrainer` which overrides it

* Remove `self._num_beams` from trainer classes

* - Run fixup
- Fix "Constraint" not exposed
- Fix synced_gpus to actually read from param

* Use kwargs

* Copy kwargs before making changes to it

* Fix style issues unused imports
2022-06-22 08:11:39 -04:00
16c6eb7ca1 Flax sharded (#17760) 2022-06-22 07:04:35 +02:00
3b00b623b7 Fix top_k_top_p_filtering having unexpected behavior (#17744)
- Fix `top_k_top_p_filtering` not passing `filter_value` to
   `TopPLogitsWarper` causing any top-p filtered logits to be -inf
   instead of specified value

 - Add corresponding test
2022-06-21 21:35:55 +02:00
3ccff0d400 Remove duplicate code (#17708) 2022-06-21 21:30:40 +02:00
26a6a42608 Improve error message Union not allowed (#17769)
* Improve error message Union not allowed

* make style

* Update src/transformers/hf_argparser.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-21 14:27:01 -04:00
abc400b06a Add final_layer_norm to OPT model (#17785)
* Add final_layer_norm to OPT model

* Add JAX and TF version

* Fix Keras name

* Woops

* Allow for non breaking change

* Apply suggestions from code review

* add tests

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-06-21 20:26:36 +02:00
52404cbad4 Properly check for a TPU device (#17802) 2022-06-21 13:39:55 -04:00
ef23fae596 Fix test for BF16 detection (#17803) 2022-06-21 18:31:15 +02:00
7cced021fa TF Sharded (#17713)
* initial commit

* update modeeling tf utils

* quality

* clean and update args

* update

* remove potential bug

* code quality

* update

* update max shard

* update tests for sharding from pretrained

* fix remaining test

* make style

* h5py if tf available

* update and fix test

* fix test

* style

* modified push to hub to support shard for TF

* quick fix

* update code

* merge branch main and style

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update based on reviews

* update doc

* update and style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update based on reviews

* fix typo

* style

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-21 18:01:08 +02:00
f47afefb21 Use 5e-5 For BigBird PT/Flax equivalence tests (#17780)
* rename to check_pt_flax_outputs

* update check_pt_flax_outputs

* use 5e-5 for BigBird PT/Flax test

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-21 17:55:26 +02:00
6a5272b205 Prepare transformers for v0.8.0 huggingface-hub release (#17716)
* Prepare CI for v0.8.0

* pin hfh (revert before merge)

* Revert "pin hfh (revert before merge)"

This reverts commit a0103140e1c77b810ffcb735192968bc03be3e1f.

* Test rc3

* Test latest rc

* Unpin to the RC

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-06-21 11:51:18 -04:00
7bc88c0511 Fix forward reference imports in DeBERTa configs (#17800) 2022-06-21 11:21:06 -04:00
27e907386a Fix Automatic Download of Pretrained Weights in DETR (#17712)
* added use_backbone_pretrained

* style fixes

* update

* Update detr.mdx

* Update detr.mdx

* Update detr.mdx

* update using doc py

* Update detr.mdx

* Update src/transformers/models/detr/configuration_detr.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-21 16:45:35 +02:00
b681e12d59 [ViTMAE] Fix docstrings and variable names (#17710)
* Fix docstrings and variable names

* Rename x to something better

* Improve messages

* Fix docstrings and add test for greyscale images

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-21 15:56:00 +02:00
3fab17fce8 Add link to notebook (#17791)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-21 14:53:08 +02:00
da2bd2ae96 [CodeParrot] Near-deduplication with jaccard similarity (#17054)
* deduplication draft

* update style

* update style test

* dummy test main

* rename modules

* rename functions

* return extremes in deduplicate_clusters

* update style

* cast str for gzip

* update doc string

* time processing

* use dataset map to compute minhash

* fill value for short token

* remove da map method

* update style

* use share object to multiprocess

* update style

* use f-string and minor fix

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>

* update style

* use module parameters

* change ds_dedup to ds_filter

* save ds_dedup

* mv test to script tests

* make jaccard threshold a parameter of deduplicate_dataset

* update style

* add doc strings

* update style

* add doc string for DuplicationIndex

* save files into data dir

* update readme

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>

* make near deduplication optional

* move near deduplication in README

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* use f string

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>
2022-06-21 14:23:36 +02:00
eb16be415a add onnx support for deberta and debertav2 (#17617)
* add onnx support for debertav2

* debertav2 -> deberta-v2 in onnx features file

* remove causal lm

* add deberta-v2-xlarge to onnx tests

* use self.type().dtype() in xsoftmax

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* remove hack for deberta

* remove unused imports

* Update src/transformers/models/deberta_v2/configuration_deberta_v2.py

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* use generate dummy inputs

* linter

* add imports

* add support for deberta v1 as well

* deberta does not support multiple choice

* Update src/transformers/models/deberta/configuration_deberta.py

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* Update src/transformers/models/deberta_v2/configuration_deberta_v2.py

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* one line ordered dict

* fire build

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>
2022-06-21 11:04:15 +02:00
8fcbe275c3 Add UL2 (just docs) (#17740)
* Add UL2
Co-authored-by: Daniel Hesslow <Daniel.Hesslow@gmail.com>

* Correct naming

* sort better

* up

* apply sylvains suggestion
2022-06-21 10:24:50 +02:00
da27c4b398 Update modeling_longt5.py (#17777)
On line 180, `torch.tensor(-1.0, xxx)` gives the error "TypeError: 'float' object cannot be interpreted as an integer" 
This is because the dtype here is `int64`.  For `dtype=int64`, this needs to simply be `-1`.  
This impacts the long-t5-tglogbal-x model.  It does not impact the long-t5-local-x version which does not appear to call this line.
2022-06-20 18:49:08 +02:00
d3cb28886a Not use -1e4 as attn mask (#17306)
* Use torch.finfo(self.dtype).min

* for GPTNeoX

* for Albert

* For Splinter

* Update src/transformers/models/data2vec/modeling_data2vec_audio.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix -inf used in Bart-like models

* Fix a few remaining -inf

* more fix

* clean up

* For CLIP

* For FSMT

* clean up

* fix test

* Add dtype argument and use it for LayoutLMv3

* update FlaxLongT5Attention

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-06-20 16:16:16 +02:00
fdb120805c Fix cache for GPT-Neo-X (#17764)
* Fix cache for GPT-Neo-X

* Add more tests
2022-06-20 08:43:36 -04:00
a2d34b7c04 deprecate is_torch_bf16_available (#17738)
* deprecate is_torch_bf16_available

* address suggestions
2022-06-20 08:40:11 -04:00
132402d752 TF: BART compatible with XLA generation (#17479)
* Also propagate changes to blenderbot, blenderbot_small, marian, mbart, and pegasus
2022-06-20 11:07:46 +01:00
6589e510fa Attempt to change Push CI to workflow_run (#17753)
* Use workflow_run event for push CI

* change to workflow_run

* Add comments

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-18 08:35:03 +02:00
0d92798b45 Added translation of index.mdx to Portuguese Issue #16824 (#17565)
* Added translation of installation.mdx to Portuguese, as well
as default templates of _toctree.yml and _config.py

* [ build_documentation.yml ] - Updated doc_builder to build
documentation in Portuguese.
[ pipeline_tutorial.mdx ] - Created translation for the pipeline_tutorial.mdx.

* [ build_pr_documentation.yml ] - Added pt language to pr_documentation builder.

[ pipeline_tutorial.mdx ] - Grammar changes.

* [ accelerate.mdx ] - Translated to Portuguese the acceleration tutorial.

* [ multilingual.mdx ] - Added portuguese translation for multilingual tutorial.

[ training.mdx ] - Added portuguese translation for training tutorial.

* [ preprocessing.mdx ] - WIP

* Update _toctree.yml

* Adding Pré-processamento to _toctree.yml

* Update accelerate.mdx

* Nits and eliminate preprocessing file while it is ready

* [ index.mdx ] - Translated to Portuguese the index apresentation page.

* [ docs/source/pt ] - Updated _toctree.yml to match newest translations.

* Fix build_pr_documentation.yml

* Fix index nits

* nits in _toctree

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-06-17 20:06:05 -04:00
522a9ece4b Save huggingface checkpoint as artifact in mlflow callback (#17686)
* Fix eval to compute rouge correctly for rouge_score

* styling

* moving sentence tokenization to utils from run_eval

* saving ckpt in mlflow

* use existing format of args

* fix documentation

Co-authored-by: Swetha Mandava <smandava@nvidia.com>
2022-06-17 14:14:03 -04:00
21a772426d Migrate HFDeepSpeedConfig from trfrs to accelerate (#17623)
* Migrate HFDeepSpeedConfig from trfrs to accelerate

* add `accelerate` to testing dep

* addressing comments

* addressing comments

Using `_shared_state` and avoiding object creation. This is necessary as `notebook_launcher` in `launcers.py` checks `len(AcceleratorState._shared_state)>0` to throw an error.

* resolving comments

1. Use simple API from accelerate to manage the deepspeed config integration
2. Update the related documentation

* reverting changes and addressing comments

* docstring correction

* addressing nits

* addressing nits

* addressing nits 3

* bumping up the accelerate version to 0.10.0

* resolving import

* update setup.py to include deepspeed dependencies

* Update dependency_versions_table.py

* fixing imports

* reverting changes to CI dependencies for "run_tests_pipelines_tf*" tests

These changes didn't help with resolving the failures and I believe this needs to be addressed in another PR.

* removing `accelerate` as hard dependency

Resolves issues related to CI Tests

* adding `accelerate` as dependency for building docs

resolves failure in Build PR Documentation test

* adding `accelerate` as dependency in "dev" to resolve doc build issue

* resolving comments

1. adding `accelerate` to extras["all"]
2. Including check for accelerate too before import HFDeepSpeedConfig from there

Co-Authored-By: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* resolving comments

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-17 23:29:35 +05:30
e44a569fef Bump notebook in /examples/research_projects/lxmert (#17743)
Bumps [notebook](http://jupyter.org) from 6.4.10 to 6.4.12.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-17 12:10:33 -04:00
5089a2d412 Bump notebook in /examples/research_projects/visual_bert (#17742)
Bumps [notebook](http://jupyter.org) from 6.4.10 to 6.4.12.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-17 12:10:17 -04:00
2d7c1bb192 feat: add num_workers arg to DataLoader (#17751) 2022-06-17 10:53:45 -04:00
ca169dbdf1 Enable PyTorch nightly build CI (#17335)
* nightly build pytorch CI

* fix working dir

* change time and event name

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-17 16:42:27 +02:00
3c7e56fbb1 Remove needless file 2022-06-16 12:21:12 -04:00
7c6ec195ad v4.21.0.dev0 2022-06-16 12:20:53 -04:00
36d4647993 Refine Bf16 test for deepspeed (#17734)
* Refine BF16 check in CPU/GPU

* Fixes

* Renames
2022-06-16 11:27:58 -04:00
f44e2c2b6f Fix tf shared embedding (#17730)
* fix the naming

* from pt in test for now

* make style

* slow test and removed from_pt
2022-06-16 14:17:47 +02:00
2eadb7e54a Fix mask token in the example (#17725)
VIsualBert uses bert-base-uncased tokenizer, therefore, instead of {mask}, the mask token should be [MASK]
2022-06-16 07:54:45 -04:00
3981ee8650 Sort the model doc Toc Alphabetically (#17723) 2022-06-15 16:11:56 -04:00
66f893320c normalize keys_to_ignore (#17722) 2022-06-15 11:59:11 -07:00
c3c62b5d2c CLI: Add flag to push TF weights directly into main (#17720)
* Add flag to push weights directly into main
2022-06-15 19:25:50 +01:00
6ebeeeef81 Update requirements.txt (#17719) 2022-06-15 13:51:41 -04:00
50415b84d6 Revert "Change push CI to run on workflow_run event (#17692)" (#17717)
This reverts commit b76290f44ce432e2ee7678a76036e8509167bae6.
2022-06-15 18:42:43 +02:00
7f14839f55 [Wav2Vec2Conformer] Official release (#17709)
* [Wav2Vec2Conformer] Official release

* remove from not-in-readme
2022-06-15 18:34:15 +02:00
242cc6e265 Documentation: RemBERT fixes (#17641)
* rembert: fix python codeblock

* rembert: use correct google/rembert checkpoint name in documentation

* rembert: use correct google/rembert checkpoint name in TF documentation
2022-06-15 18:17:59 +02:00
b76290f44c Change push CI to run on workflow_run event (#17692)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-15 17:43:31 +02:00
d453ea6120 fix tolerance for a bloom slow test (#17634) 2022-06-14 18:14:12 +02:00
120649bf3a [LongT5] disable model parallel test (#17702) 2022-06-14 17:27:39 +02:00
7ec9128e5a FX function refactor (#17625)
* Function refactor

* Update src/transformers/utils/fx.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-14 17:22:21 +02:00
edb672ac5e Add BloomForSequenceClassification and BloomForTokenClassification classes (#17639)
* add new bloom classes

* (feat) add bloom classification tests; make style

* style: change import in test

* add some typehints to bloom classes

* merge main into branch

* fix: input checking in bloom seq classification

* fix tests

* change model class tests

* fix few tests

- more tests should pass
- one test left

* make token classifier return hidden states

* style: make BLOOM typehints consistent

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2022-06-14 17:10:12 +02:00
bd43151af4 Swin main layer (#17693)
* Swin models call TFSwinMainLayer

* Tidy up
2022-06-14 14:28:12 +01:00
3960ce917f Include a comment to reflect Amy's contributions (#17689)
* Add note on amy's contribution.

Co-authored-by: Amy Roberts <aeroberts4444@gmail.com>

* remove non-tech comment.

Co-authored by: Amy Roberts <aeroberts4444@gmail.com>

Co-authored-by: Amy Roberts <aeroberts4444@gmail.com>
2022-06-14 09:15:39 -04:00
9068fa6c57 Rag end2end new (#17650)
* check

* update the RAG-end2end with new PL and RAY

* removed unwanted comments
2022-06-14 14:56:32 +02:00
53496ac510 [LongT5] Rename checkpoitns (#17700) 2022-06-14 14:10:50 +02:00
3b29c9fdb7 Extend Transformers Trainer Class to Enable PyTorch Torchscript for Inference (#17153)
* add jit mode option and model wrap

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refine code

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add ut and refine code

* code refine

* refine code

* add inference doc

* Update src/transformers/trainer.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add cpu inference performance doc

* Update perf_infer_cpu.mdx

* Update perf_infer_cpu.mdx

* Update performance.mdx

* Update _toctree.yml

* refine jit func naming

* Update _toctree.yml

* Delete perf_infer_gpu_one.mdx

* Update perf_infer_cpu.mdx

* Update docs/source/en/perf_infer_cpu.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add none check before jit

* Update docs/source/en/perf_infer_cpu.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_infer_cpu.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-06-14 07:56:47 -04:00
df15703b42 Fix doc builder Dockerfile (#17435)
* Fix doc builder Dockerfile

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-14 09:58:48 +02:00
a72f1c9f5b Add LongT5 model (#16792)
* Initial commit

* Make some fixes

* Make PT model full forward pass

* Drop TF & Flax implementation, fix copies etc

* Add Flax model and update some corresponding stuff

* Drop some TF things

* Update config and flax local attn

* Add encoder_attention_type to config

* .

* Update docs

* Do some cleansing

* Fix some issues -> make style; add some docs

* Fix position_bias + mask addition + Update tests

* Fix repo consistency

* Fix model consistency by removing flax operation over attn_mask

* [WIP] Add PT TGlobal LongT5

* .

* [WIP] Add flax tglobal model

* [WIP] Update flax model to use the right attention type in the encoder

* Fix flax tglobal model forward pass

* Make the use of global_relative_attention_bias

* Add test suites for TGlobal model

* Fix minor bugs, clean code

* Fix pt-flax equivalence though not convinced with correctness

* Fix LocalAttn implementation to match the original impl. + update READMEs

* Few updates

* Update: [Flax] improve large model init and loading #16148

* Add ckpt conversion script accoring to #16853 + handle torch device placement

* Minor updates to conversion script.

* Typo: AutoModelForSeq2SeqLM -> FlaxAutoModelForSeq2SeqLM

* gpu support + dtype fix

* Apply some suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* * Remove (de)parallelize stuff
* Edit shape comments
* Update README.md
* make fix-copies

* Remove caching logic for local & tglobal attention

* Apply another batch of suggestions from code review

* Add missing checkpoints
* Format converting scripts
* Drop (de)parallelize links from longT5 mdx

* Fix converting script + revert config file change

* Revert "Remove caching logic for local & tglobal attention"

This reverts commit 2a619828f6ddc3e65bd9bb1725a12b77fa883a46.

* Stash caching logic in Flax model

* Make side relative bias used always

* Drop caching logic in PT model

* Return side bias as it was

* Drop all remaining model parallel logic

* Remove clamp statements

* Move test files to the proper place

* Update docs with new version of hf-doc-builder

* Fix test imports

* Make some minor improvements

* Add missing checkpoints to docs
* Make TGlobal model compatible with torch.onnx.export
* Replace some np.ndarray with jnp.ndarray

* Fix TGlobal for ONNX conversion + update docs

* fix _make_global_fixed_block_ids and masked neg  value

* update flax model

* style and quality

* fix imports

* remove load_tf_weights_in_longt5 from init and fix copies

* add slow test for TGlobal model

* typo fix

* Drop obsolete is_parallelizable and one warning

* Update __init__ files to fix repo-consistency

* fix pipeline test

* Fix some device placements

* [wip]: Update tests -- need to generate summaries to update expected_summary

* Fix quality

* Update LongT5 model card

* Update (slow) summarization tests

* make style

* rename checkpoitns

* finish

* fix flax tests

Co-authored-by: phungvanduy <pvduy23@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: patil-suraj <surajp815@gmail.com>
2022-06-13 22:36:58 +02:00
1690094bdb Add FP16 Support for SageMaker Model Parallel (#17386)
* Add FP16 supporot for sagemaker model parallel

* minor fix

* fix indentation

* handle mix precision exception for smmp

* minor fix

* remove amp implementation on SMMP

* remove redundant stuff

* reformat trainer

* restyling

* reformat
2022-06-13 13:45:25 -04:00
4aabf9b52c enable cpu distribution training using mpirun (#17570)
* enable cpu distribution training using mpirun

*command like
*    mpirun -n 2 python3 run_qa.py --no_cuda --xpu_backend ccl xxxx
*MASTER_ADDR and MASTER_PORT should be set as env
*export MASTER_ADDR=127.0.0.1
*export MASTER_PORT=29500

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix according to the review comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* use accelerate logic for cpu distribution training to set "RANK","LOCAL_RANK","WORLD_SIZE" environment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-06-13 13:34:07 -04:00
457d4a3245 Add Ray's scope to training arguments (#17629)
* allow scope from trainer arg

* add ray_scope to training args

* escape double quotes

* make style && quality

* attempt to solve doc style issues

* splitting up URLs for style

* make fixup

* Update src/transformers/training_args.py

Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>

* make style

Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2022-06-13 10:44:06 -04:00
5483388631 Update modeling_gpt_neox.py (#17575)
I'm guessing that the intention was to have the `_no_split_modules` class attribute for `GPTNeoXPreTrainedModel` to be set to `["GPTNeoXLayer"]`, akin to how its set as `["GPTJBlock"]` for `GPTJPreTrainedModel`.

If this is incorrect, please feel free to just close the PR.

Thanks!
2022-06-13 09:59:27 -04:00
a1344dbfb9 Fix dtype getter (#17668)
* Fix dtype getters

* Proper fix for dtype getter

* Style and commant

* Always use last for consistency

* Quality
2022-06-13 09:34:45 -04:00
73083581a4 explicitly set utf8 for Windows (#17664) 2022-06-13 08:05:45 -04:00
c1daf724ea Fixed documentation typo, parameter name is evaluation_strategy, not eval_strategy (#17669)
Co-authored-by: Saint <saint@st-mini.local>
2022-06-13 08:02:06 -04:00
66336dc183 Add Visual Question Answering (VQA) pipeline (#17286)
* wip

* rebase

* all tests pass

* rebase

* ready for PR

* address comments

* fix styles

* add require_torch to pipeline test

* remove remote image to improve CI consistency

* address comments; fix tf/flax tests

* address comments; fix tf/flax tests

* fix tests; add alias

* repo consistency tests

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* address comments

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* merge

* Update src/transformers/models/auto/modeling_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* merge

Co-authored-by: Sijun He <sijunhe@Sijuns-MacBook-Pro.local>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-13 07:49:44 -04:00
a5282ab4bc Fix typo in adding_a_new_model README (#17679) 2022-06-13 03:22:07 -04:00
224bde91ca Avoid GPU OOM for a TF Rag test (#17638)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-10 18:50:29 +02:00
39e146146b fix typo from emtpy to empty (#17643) 2022-06-10 18:50:11 +02:00
13e875cc07 [Generation Test] Make fast test actually fast (#17661) 2022-06-10 18:49:03 +02:00
b4eef63a1d [Data2Vec] Speed up test (#17660) 2022-06-10 18:48:58 +02:00
5e428b71b4 [BigBirdFlaxTests] Make tests slow (#17658)
* [BigBirdFlaxTests] Make tests slow

* up

* correct black with new version
2022-06-10 16:54:14 +02:00
3114df41f4 update README.md (#17657)
- use CodeParrot scores of v1.1
- change evaluation command to use accelerate
2022-06-10 15:55:24 +02:00
c99ddcc441 🐛 Properly raise RepoNotFoundError when not authenticated (#17651)
* Raise RepoNotFoundError in case of 401

* Include changes from revert-17646-skip_repo_not_found

* Add a comment

* 💄 Code quality

* 💚 Update `get_from_cache` test

* 💚 Code quality & skip failing test
2022-06-10 15:41:53 +02:00
35b16032cb Fixes #17128 . (#17356)
VisibleDeprecationWarning is addressed by specifying dtype=object when creating numpy array.
Update code based on review feedback.
Undo whitespace changes to tokenization_utils_base.py.

Co-authored-by: I like data <ilikedata@nym.hush.com>
2022-06-10 09:36:48 -04:00
b88090914d Fix dtype getters (#17656) 2022-06-10 07:43:13 -04:00
fd1e67033e Add skip logic for attentions test - Levit (#17633) 2022-06-10 12:46:30 +02:00
cdaed367b0 Fix style 2022-06-10 11:53:44 +02:00
2bc305107a Fix style 2022-06-10 11:20:14 +02:00
1d463303fe Bump cookiecutter in /examples/research_projects/decision_transformer (#17645)
Bumps [cookiecutter](https://github.com/cookiecutter/cookiecutter) from 1.7.2 to 2.1.1.
- [Release notes](https://github.com/cookiecutter/cookiecutter/releases)
- [Changelog](https://github.com/cookiecutter/cookiecutter/blob/master/HISTORY.md)
- [Commits](https://github.com/cookiecutter/cookiecutter/compare/1.7.2...2.1.1)

---
updated-dependencies:
- dependency-name: cookiecutter
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-10 04:27:51 -04:00
49becbaa55 Enable crop_center method to handle (W, H, C) images (#17626)
* enable crop_center method to handle (W, H, C) images

* minor style and comment edits
2022-06-10 09:18:42 +03:00
6e93d94792 Move Clip image utils to image_utils.py (#17628)
* move clip image utils to image_utils.py

* dont default to square images

* fix typo, revert change to test file

* edit convert_rgb comments
2022-06-10 09:12:17 +03:00
af4a1ecad0 Skip tests until bug is fixed. (#17646) 2022-06-09 21:32:19 -04:00
e0b58fb5ba Translation/autoclass (#17615)
* Add Italian translation for autoclass_tutorial.mdx

* Fix synthesis

Co-authored-by: martina.fumanelli <martina.fumanelli@MBP-di-martinafumanelli.local>
2022-06-09 20:56:44 -04:00
df1ec6b122 didn't exist in pt-1.9 (#17644) 2022-06-09 16:01:01 -07:00
fba0b6a820 convert assertion to raised exception in debertav2 (#17619)
* convert assertion to raised exception in debertav2

* change assert to raise exception in deberta

* fix messages
2022-06-09 18:18:29 -04:00
da0bed5f4a Pre-build DeepSpeed (#17607)
* pre-build deepspeed

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-09 23:02:33 +02:00
75343de938 [modeling_utils] torch_dtype/auto floating dtype fixes (#17614)
* [modeling_utils] torch_dtype/auto fixes

* add test

* apply suggestions

* add missing fallback

* Renaming things

* Use for else

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-06-09 10:18:26 -07:00
c38f4e1f1c Running a pipeline of float16. (#17637)
When we're preparing the tensors for CPU for postprocessing, we need
to upgrade the `float16` to `float32` since CPUs don't have instructions
for `[b]float16`.
2022-06-09 19:04:42 +02:00
90ed9ae2d1 fix use_amp rename after pr 17138 (#17636) 2022-06-09 09:38:48 -07:00
c70dacde94 Fix very long job failure text in Slack report (#17630)
* Fix very long job failure text in Slack report

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-09 18:37:48 +02:00
2351729f7d Adding top_k argument to text-classification pipeline. (#17606)
* Adding `top_k` and `sort` arguments to `text-classification` pipeline.

- Deprecate `return_all_scores` as `top_k` is more uniform with other
  pipelines, and a superset of what `return_all_scores` can do.
  BC is maintained though.
  `return_all_scores=True` -> `top_k=None`
  `return_all_scores=False` -> `top_k=1`

- Using `top_k` will imply sorting the results, but using no argument
  will keep the results unsorted for backward compatibility.

* Remove `sort`.

* Fixing the test.

* Remove bad doc.
2022-06-09 18:33:10 +02:00
29080643eb Mention in the doc we drop support for fairscale (#17610) 2022-06-09 12:20:39 -04:00
9fc34235fa Use shape_list to safely get shapes for Swin (#17591)
* Use shape_list to safely get shapes

* Add relevant test

* Tidy and add metrics

* Resolve dynamic shaping issues and move test

* Tidy up and all samples in batch

* Formatting
2022-06-09 15:50:50 +02:00
e0be053e43 Add ONNX support for ConvNeXT (#17627) 2022-06-09 09:31:02 -04:00
5323094a22 Add ONNX support for ResNet (#17585)
* Add ONNX support for ResNet

* Add ONNX test

* make fix-copies
2022-06-09 08:44:27 -04:00
ca2a55e9df BLOOM (#17474)
* adding template

* update model

* model update

* update conf for debug model

* update conversion

* update conversion script

* update conversion script

* fix missing keys check

* add tests to test the tokenizer in the local machine

* Change variable name

* add tests on xnli dataset

* add more description

* add descriptions + clearer code

* clearer code

* adding new tests + skipping few tests because of env problems

* change comment

* add dtype on the configuration

* add test embeddings

* add hardcoded test

* fix dtype issue

* adding torch.float16 to config

* adding more metrics (min, max, mean)

* add sum

* now the test passes with almost equal

* add files for conversion - test passes on cpu  gpu

* add final changes

* cleaning code

* add new args in the docstring

* fix one liner function

* remove macros

* remove forward attention

* clean up init funtion

* add comments on the issue

* rm scale mask softmax

* do make style

* fix dtype in init

* fixing for loop on att probs

* fix style with black

* fix style + doc error

* fix and debug CI errors (docs + style)

* some updates

- change new operations
- finally add scaled softmax
- added new args in the config

* make use cache working

* add changes

- save sharded models
- final changes on the modeling script

* add changes

- comment on alibi
- add TODO on seq length

* test commit

- added a text to test the commit

Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>

* final changes

- attention mask change
- generation works on BS176b

Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>

* changes - model + conversion

* move to correct dir

* put ,

* fex fixes

* fix tokenizer autodoc

* fix minor CI issues

* fix minor CI issues

* fix minor CI issues

* fix style issue

* fix minor import issues

* fix few issues

* remove def main on the test

* add require torch

* replace decorator with 'with'

* fix style

* change to bloom

* add quick fix tokenizer

* fix tokenizer file

* fix tokenizer

- merge tests
- small fixes

* fix import issue

* add bloom to readme

* fix consistency

* Update docs/source/en/model_doc/bloom.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

fix comment issues on file headers

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix doc issue

* small fix - modeling test

* some changes

- refactor some code
- taking into account reviews
- more tests should pass
- removed pruning tests

* remove useless division

* more tests should pass

* more tests should pass

* more tests should pass

* let's try this one

-add alibi offset
- remove all permutes to make the grad operations work
- finger crossed

* refactor

- refactor code
- style changes
- add new threshold for test

* major changes

- change BLOOM to Bloom
- add quick doc on bloom.mdx
- move embeddings test on modeling test

* modify readme

* small fixes

* small fix

- better threshold for a test

* remove old test file from fetcher

* fix small typo

* major change

- change BloomLMHead to BloomForCausalLM

* remove onnx config

* major changes

- refactor the code
- remove asserts
- change tol for test

* make style

* small change

* adding a slow test + commenting old ones for now

* make style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make style

* fix duplicates

* cleaning comments on config

* clean a bit conversion file

* refacor a bit modeling file

* refactor tokenizer file

* fix tokenization test issue

* fix tokenization issue #2

* fix tokenization issue second try

* fix test issue

* make style + add suggestions

* change test fetcher

* try this one

- slow tests should pass
- finger crossed

* possible final changes

* make style

* try fix padding side issue

* fix side

* fix padding issue

* fix ko-readme

* fix config auto

* cleaning modeling file

* keep bloom in caps in ko

* update config docs

* remove pretraining_pp

* remove model parallel

* update config

- add correct config files

* fix duplicates

* fix fetcher

* fix refactor issue

- remove divide function

* try to remove alibi

* small fixes

- fix alibi
- remove seq length
- refactor a bit the code

* put correct values

- fix bos and eos token ids

* fix attention mask loop

Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>

* small fixes:

- remove skip bias add

* small fixes

- fix typo in readme
- fix typos in config

* small changes

- remove a test
- add reconstruction test
- change config

* small changes

- change Scaled Softmax to BloomScaledSoftmax

* small fixes

- fix alibi dtype

* major changes

- removing explicit dtype when loading modules
- fixing test args (torch_dtype=auto)
- add dosctring

* fix readmes

* major changes

- now bloom supports alibi shifting
- refactor a bit the code
- better test tolerance now

* refactor a bit

* refactor a bit

* put correct name on test

* change docstring

* small changes

- fix docstring modeling
- fix test tolerance

* fix small nit

- take dtype from tensors in the conversion script

* minor fix

- fix mdx issue

* minor fix

- change config docstring

* forward contrib credits from PR14084

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* apply modifications

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* resolve softmax upcast

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>

* final changes modeling

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Merge commit 'd156898f3b9b2c990e5963f5030a7143d57921a2'

* merge commit

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* apply suggestions

Apply suggestions from Stas comments
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Fix gradient checkpointing

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add slow but exact

* add accelerate compatibility

Co-authored-by: Nicolas Patry <Narsil@users.noreply.github.com>

* forward contrib credits

Co-authored-by: thomasw21 <thomasw21@users.noreply.github.com>
Co-authored-by: sgugger <sgugger@users.noreply.github.com>
Co-authored-by: patrickvonplaten <patrickvonplaten@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: LysandreJik <LysandreJik@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix torch device on tests

* make style

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix nits

Co-authored-by: patrickvonplaten<patrickvonplaten@users.noreply.github.com>

* remove final nits

* fix doc

- add more details on the doc
- add links to checkpoints

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply suggestions

Co-authored-by: sgugger <sgugger@users.noreply.github.com>

* put test torchscript to false

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: justheuristic <justheuristic@gmail.com>

* fix alibi

- create alibi only once

* add small doc

* make quality

* replace torch.nn

* remove token type emb

* fix fused op + output bias

* add fused op

- now can control fused operation from config

* remove fused op

* make quality

* small changes

- remove unsed args on config
- removed bias gelu file
- make the model torchscriptable
- add torchscript slow tests

* Update src/transformers/models/bloom/modeling_bloom.py

* fix slow

* make style

* add accelerate support

* add bloom to deepspeed tests

* minor changes

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* minor change

* slow tests pass

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/model_doc/bloom.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* minor changes:

- change docstring
- add link to paper

Co-authored-by: Thomwolf <thomwolf@gmail.com>
Co-authored-by: Thomas Wolf <thomas@huggingface.co>
Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: sIncerass <sheng.s@berkeley.edu>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Nicolas Patry <Narsil@users.noreply.github.com>
Co-authored-by: thomasw21 <thomasw21@users.noreply.github.com>
Co-authored-by: sgugger <sgugger@users.noreply.github.com>
Co-authored-by: patrickvonplaten <patrickvonplaten@users.noreply.github.com>
Co-authored-by: LysandreJik <LysandreJik@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: justheuristic <justheuristic@gmail.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2022-06-09 12:00:40 +02:00
dfc76b2542 has_attentions - consistent test skipping logic and tf tests (#17495) 2022-06-09 09:50:03 +02:00
66e8656778 CLI: Print all different tensors on exception (#17612) 2022-06-08 18:30:03 +01:00
e9d5138768 TF: Merge PT and TF behavior for Bart when no decoder_input_ids are passed (#17593)
* Merge PT and TF behavior
2022-06-08 17:42:23 +01:00
e160a5dd62 Fix telemetry URL (#17608) 2022-06-08 11:34:05 -04:00
7d0b6fc340 CLI: Properly detect encoder-decoder models (#17605) 2022-06-08 16:15:59 +01:00
ee82c86bdc Fix link for community notebooks (#17602)
* Fix link for community notebooks

This fixes the link for community notebooks due to reorganization.

* Replace old link with fully link to the doc page

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-08 10:51:39 -04:00
34097b3304 Extend Transformers Trainer Class to Enable CPU AMP and Integrate Intel Extension for PyTorch (#17138)
* init PR

* fix import ipex

* minor fix on bf16

* refine optimizer

* refine args notes

* refine code

* refine ipex optimize args

* refine half_precision_backend

* black format

* isort format

* isort format files

* flake8 format

* doc builder format

* refine codes

* remove jit and optim bits

* black preview format

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refine code

* refine notes

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* code refine

* add ipex ut

* add performance cpu doc

* link to the cpu doc from main perf doc

* install ipex into CI's docker

* Update perf_train_cpu.mdx

* Update docs/source/en/perf_train_cpu.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update perf_train_cpu.mdx

* Update perf_train_cpu.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-06-08 09:41:57 -04:00
ae7bae8fe7 fix train_new_from_iterator in the case of byte-level tokenizers (#17549) 2022-06-08 15:30:41 +02:00
264128cb9d Explicit versions in docker files (#17586)
* Update docker file

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-08 15:04:22 +02:00
9d99489f2f Add TFData2VecVision for semantic segmentation (#17271)
* feat: initial implementation of data2vec segmentation model in TF.

* chore: minor corrections to make the segmenter work.

* chore: removed unncessary files.

* chore: add tests and other modifications.

* fix: loss computation for segmentation.

* chore: remove unused variable.

* chore: formatting.

* added a dummy adaptive pooling layer.

* removed unnecessary file.

* potentially add identifiers to layer names.

* fix: layer naming.

* chore: removed unnecessary print.

* Skipping unneeded test

* chore: add logging to debug tolerance.

* fix: segmentation tests for tfdata2vecvision

* chore: make style.

* fix: layer names, assertion to be resolved.

* Bumping test tolerance a bit

* chore: bump the tol in PT test.

Co-authored-by: matt <rocketknight1@gmail.com>
2022-06-08 14:03:18 +01:00
78c695eb62 CLI: add stricter automatic checks to pt-to-tf (#17588)
* Stricter pt-to-tf checks; Update docker image for related tests

* check all attributes in the output

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-08 10:45:10 +01:00
c6cea5a78c fix (#17589)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-08 01:50:59 +02:00
119e3c0fc8 M-CTC-T Model (#16402)
* added cbs to notebooks, made copy-paste error fix in generation_utils

* initial push for mctc model

* mctc feature extractor done

* added processor, tokenizer and their tests for MCTC. Have added an MCTC modeling test, adjusting model code accordingly.

* added processor, tokenizer and their tests for MCTC. Have added an MCTC modeling test, adjusting model code accordingly.

* passing attention, now struggling to figure out how attention masks make sense here

* works when excluding attention masks. ask later how one would integrate attention maskshere

* bizarre configuration error (model prefix comes first in config dict json and messes up the order)

* all passing but bizzarre config dict ordering issue when to_dict

* passing all major tests

* feature extraction, processor, tokenizer added & tests passing

* style & consistency & other logistical fixes

* copy paste fix

* model after feature extraction working

* commiting final feature extraction results; need to fix normalization

* feature extraction passing tests; probably should add tests on the specific flashlight-copied functions?

* delete print ; format code a bit

* fixing tests

* passing major tests

* fixing styles

* completed tokenization test with real example; not sure if these values are entirely correct.

* last test fixes from local

* reverting accidentally included custom setup configs

* remove load tf weights; fix config error

* testing couldnt import featureextractor

* fix docs

* fix docs

* resolving comments

* style fixes

* style fixes

* Update to MCTCConv1dSubSampler

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* relposemb fixes

* conv1d name issue; expecting config fail with paraentheses

* fix config issue

* fix config issue

* fix config issue

* change everything to MCTCT

* fixing naming change errors

* archive list

* copyrights and docs

* copyrights and docs

* copyrights and docs

* merge resolution

* move tests, fix to changed optionaldependency structure

* test directories changed

* fixing tests

* how to avoid tf tests?

* how to avoid tf tests?

* tests passing locally

* allow mctctprocessor imported any env

* allow mctctprocessor imported any env

* fixed second round of feedback, need to fix docs

* doc changes not being applied

* all fixed

* style fix

* feedback fixes

* fix copies and feature extraction style fix

* Update tests/models/visual_bert/test_modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* copy paste huggingface:main visual bert

* added eof newline to visual bert; all tests are passing otherwise

* fix slow tests by adding attention mask

* change model id to speechbrain

* make fix-copies

* fix readme unwanted deletes

* fixing readmes, make fix-copies

* consistent M-CTC-T naming

* Update src/transformers/models/mctct/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* all fixed but variable naming

* adjust double quotes

* fixed variable names

* copyright and mr quilter

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* correct slow tests

* make fix-copies

* Update src/transformers/models/mctct/configuration_mctct.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mctct/configuration_mctct.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* m-ctc-t not mctct

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-08 00:33:07 +02:00
706bb8364d quicktour.mdx en -> pt translation (#17074)
* Quicktour Portuguese Translation

Translated quicktour.mdx until line 161

* Finished translating quicktour.mdx

Ready to upload and adjust eventual .mdx or translation mistakes.

* Add _toctree.yml and fix nits

* Fixed pt-br mdx syntax problem

Closed <frameworkcontent> instance

* Changed </frameworkcontent> line

* Copied missing block from english version of quicktour.mdx

* Reviwed the entire file once again. It should be working now.

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-06-07 17:35:05 -04:00
5c8f601007 Fx support for Deberta-v[1-2], Hubert and LXMERT (#17539)
* Support for deberta and deberta-v2

* Support for LXMert

* Support for Hubert

* Fix for pt1.11

* Trigger CI
2022-06-07 18:05:20 +02:00
3cab90279f Add examples telemetry (#17552)
* Add examples telemetry

* Alternative approach

* Add to all other examples

* Add to templates as well

* Put framework separately

* Same for TensorFlow
2022-06-07 11:57:52 -04:00
9e72eb4416 Skip disk offload test for T5 2022-06-07 11:11:40 -04:00
b118730745 Fix gendered sentence in Spanish translation(#17558) 2022-06-07 14:09:39 +02:00
b6a65ae52a Fix circular import in onnx.utils (#17577)
* Fix circular import in onnx.utils

* Add comment for test fetcher

* Here too

* Style
2022-06-07 08:00:36 -04:00
9aa230aa2f Use latest stable PyTorch/DeepSpeed for Push & Scheduled CI (#17417)
* update versions

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-07 11:53:05 +02:00
ad71965246 Remove circular imports in layoutlm/__init__.py (#17576) 2022-06-06 22:41:41 +02:00
19a8a3036d Add magic method to our TF models to convert datasets with column inference (#17160)
* Add method to call to_tf_dataset() with column inference

* Add test for dataset creation

* Add a default arg for data collator

* Fix test

* Fix call with non-dev version of datasets

* Test correct column removal too

* make fixup

* More tests to make sure we remove unwanted columns

* Fix test to avoid predicting on unbuilt models

* Fix test to avoid predicting on unbuilt models

* Fix test to remove unwanted head mask columns from inputs

* Stop pushing your debug breakpoints to the main repo of the $2bn company you work for

* Skip the test in convnext because no grouped conv support

* Drop bools from the dataset dict

* Make style

* Skip the training test for models whose input dicts don't give us labels

* Skip transformerXL in the test because it doesn't return a simple loss

* Skip TFTapas because of some odd NaN losses

* make style

* make fixup

* Add docstring

* fixup

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove breakpoint from tests

* Fix assert, add requires_backends

* Protect tokenizer import with if TYPE_CHECKING

* make fixup

* Add noqa, more fixup

* More rearranging for ~* aesthetics *~

* Adding defaults for shuffle and batch_size to match to_tf_dataset()

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-06 15:53:49 +01:00
d28b7aa8cb [deepspeed / testing] reset global state (#17553)
* [deepspeed] fix load_best_model test

* [deepspeed] add state reset on unittest tearDown
2022-06-06 07:49:25 -07:00
34a886fce3 Translation/italian: added pipeline_tutorial.mdx [Issue: #17459] (#17507)
* added toctree.yml file

* first translation

* added pipeline_tutorial.mdx translation

added pipeline_tutorial.mdx
updated _toctree.yml

* updated pipeline_tutorial.mdx

* updated _toctree.yml

Updated preprocessing and training

* updated preprocessing.mdx

start translation

* Update _toctree.yml

* Delete preprocessing.mdx

* Update _toctree.yml

* updated _toctree.yml

* added preprocessing

* Update _toctree.yml

* updated _toctree.yml

* undo

* Revert "undo"

This reverts commit 5d38d768752dc80918bf60ada9d185f98b742520.

* Revert "Revert "undo""

This reverts commit 8aa0830b587f915ca7d154ebca282b782e82bd92.
2022-06-06 10:35:20 -04:00
2e37ef35d1 Remove RuntimeErrors for NaN-checking in 20B (#17563) 2022-06-06 09:29:06 -04:00
f6ad0e0556 Add installation.mdx Italian translation (#17530)
* Add the Italian translation of the file installation.mdx and edit _toctree

* Add the Italian translation of the file installation.mdx and edit _toctree
2022-06-06 07:48:08 -04:00
4aed1dc81b Adding the Portuguese version of the tasks/token_classification.mdx documentation (#17492)
* add tasks/token_classification pt doc structure

* add tasks/token_classification pt doc translation

* add tasks/token_classification pt doc translation
2022-06-06 07:47:34 -04:00
da71df1afc fix integration test levit (#17555) 2022-06-06 13:47:32 +02:00
26e5e129b4 [deepspeed] fix load_best_model test (#17550) 2022-06-03 11:19:03 -07:00
72f5b94984 Update index.mdx (#17547)
This PR updates our Expert Acceleration Program image with a new image featuring our experts.

This is similar to our Transformers/README.md image update that has proven to be successful.
2022-06-03 12:56:37 -05:00
c4e58cd8ba Clean imports to fix test_fetcher (#17531)
* Clean imports to fix test_fetcher

* Add dependencies printer

* Update utils/tests_fetcher.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Fix Perceiver import

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-06-03 12:34:41 -04:00
254d9c068e Update run_glue_no_trainer.py (#17546) 2022-06-03 12:29:37 -04:00
8343901263 Fix all offload and MP tests (#17533) 2022-06-03 09:59:13 -04:00
1c57242d7b Fix bug - layer names and activation from previous refactor (#17524)
* Fix activation and layers in MLP head

* Remove unused import
2022-06-03 09:31:10 -04:00
babeff5524 Add support for Perceiver ONNX export (#17213)
* Start adding perceiver support for ONNX

* Fix pad token bug for fast tokenizers

* Fix formatting

* Make get_preprocesor more opinionated (processor priority, otherwise tokenizer/feature extractor)

* Clean docs format

* Minor cleanup following @sgugger's comments

* Fix typo in docs

* Fix another docs typo

* Fix one more typo in docs

* Update src/transformers/onnx/utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/onnx/utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/onnx/utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-03 07:40:22 -04:00
5c17918fe4 Allow from transformers import TypicalLogitsWarper (#17477)
* Allow from transformers import TypicalLogitsWarper

* Added TypicalLogitsWarper

* Allow from transformers import TypicalLogitsWarper

* Allow from transformers import TypicalLogitsWarper

* Allow from transformers import TypicalLogitsWarper

* Allow from transformers import TypicalLogitsWarper

Added TypicalLogitsWarper

Allow from transformers import TypicalLogitsWarper

Allow from transformers import TypicalLogitsWarper

Allow from transformers import TypicalLogitsWarper
2022-06-03 11:08:35 +02:00
607acd4fbd Add Gated-SiLU to T5 (#17420)
* Add gated-silu to t5 architecture to support UL2

* Fix error message

* formatting

* formatting again

* refactor

* fix classnames in _init_weights

* remove is_gated

* add test

* fix test

* Try without the test?

* Add back the test.

* Improve error message.

Co-authored-by: Daniel Hesslow <daniel@lighton.ai>
2022-06-03 10:56:37 +02:00
1c220ced8e Update URL for Hub PR docs (#17532) 2022-06-02 21:52:30 +02:00
013462c57b fix OPT-Flax CI tests (#17512) 2022-06-02 18:52:46 +02:00
2f59ad1609 [trainer/deepspeed] load_best_model (reimplement re-init) (#17151)
* [trainer/deepspeed] load_best_model

* to sync with DS PR #1947

* simplify

* rework load_best_model test

* cleanup

* bump deepspeed>=0.6.5

Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com>
2022-06-02 09:14:21 -07:00
046c5ea906 Implemented loss for training AudioFrameClassification (#17513)
* Implemented loss for training AudioFrameClassification

* reported changes in wav2vec2 main class and used make copies to propagate

* running black for code formatting
2022-06-02 17:40:02 +02:00
085321c9a1 Update configuration_auto.py (#17527) 2022-06-02 10:37:00 -04:00
048dd73bba Check list of models in the main README and sort it (#17517)
* Script for README

* Fix copies

* Complete error message
2022-06-02 08:10:08 -04:00
588d8f1f26 Fix when Accelerate is not installed (#17518) 2022-06-02 07:45:41 -04:00
f128ccb997 Clean README in post release job as well. (#17519) 2022-06-02 07:44:03 -04:00
216499bfcc Fix CI tests hang forever (#17471)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-02 10:30:54 +02:00
659b27fd26 Print more library versions in CI (#17384)
* print more lib. versions and just befor test runs

* update print_env_pt.py

* rename to print_env

* Disable warning + better job name

* print python version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-02 10:24:16 +02:00
0932adb3e8 Split push CI into 2 workflows (#17369)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-02 10:19:26 +02:00
58fb3c9f98 Fix Tapas tests (#17510)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-01 21:01:32 +02:00
ca1f1c8685 CLI: tool to convert PT into TF weights and open hub PR (#17497) 2022-06-01 18:52:07 +01:00
3766df4fe1 Fix flakey no-trainer test (#17515) 2022-06-01 13:40:49 -04:00
028d4b7c8b Deal with the error when task is regression (#16330) 2022-06-01 11:15:53 -04:00
84aaadd8c5 Adding LeViT Model by Facebook (#17466)
* levit files

* levit tests

* weights script

* weights script

* update

* style fixes

* few minor corrections

* Added teacher model

* edit docs

* fix-copies

* style fixes

* pr error resolved

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/index.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/levit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/levit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/levit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/levit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/configuration_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/configuration_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* suggested pr changes

* style fixes

* minor bug

* update

* minor doc edit

* style

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/models/levit/test_modeling_levit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* residual layer readable

* style

* Update docs/source/en/model_doc/levit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update tests/models/levit/test_feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* change checkpoints and style

* update

* minor changes

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-01 17:06:20 +02:00
1d2b57b8a2 Fix CTRL tests (#17508)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-01 16:27:23 +02:00
693720e567 Fix LayoutXLMProcessorTest (#17506)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-01 16:26:37 +02:00
4d1ce39683 Debug LukeForMaskedLM (#17499)
* add a test for a word only input

* make LukeForMaskedLM work without entity inputs

* update test

* add LukeForMaskedLM to MODEL_FOR_MASKED_LM_MAPPING_NAMES

* restore pyproject.toml

* empty line at the end of pyproject.toml
2022-06-01 10:03:06 -04:00
4390151ba2 Fix MP and CPU offload tests for Funnel and GPT-Neo (#17503) 2022-06-01 09:59:40 -04:00
6813439fdc Exclude Databricks from notebook env (#17496) 2022-06-01 09:00:11 -04:00
3042ea4f6f Fix tokenizer type annotation in pipeline(...) (#17500)
I think you mean to accept either an instance of `PreTrainedTokenizer` or `PreTrainedTokenizerFast` inside of the `pipeline(...)` factory function, if the `tokenizer` argument isn't a `str`.
2022-06-01 08:43:28 -04:00
bdc01711d6 Refactor classes to inherit from nn.Module instead of nn.Sequential (#17493)
* Adapt Maskformer, VAN, ResNet and RegNet modules to inherit from nn.Module
2022-06-01 13:36:19 +01:00
b1160c0b56 Fix wav2vec2 export onnx model with attention_mask error (#16004)
* Fix wav2vec2 export onnx model with attention_mask error

* fix repository_consistency
2022-06-01 13:30:58 +02:00
d91da4c6df Add warning when using older version of torch for ViltFeatureExtractor (#16756)
* Update feature_extraction_vilt.py

* apply black

* Update imports

* Change warning to logging

* Use logger instead of logging.logging

* make fixup

* Move error message

* Update src/transformers/models/vilt/feature_extraction_vilt.py

Co-authored-by: Xing Han Lu <xhlperso@gmail.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-06-01 07:15:38 -04:00
24092b1464 Fix typo of variable names for key and query projection layer (#17155)
self.pos_proj and self.pos_q_proj should be changed to self.pos_key_proj and self.pos_query_proj as same as PyTorch implements.
2022-06-01 11:38:44 +01:00
811da2b8c2 Fixed wrong error message for missing weight file (#17216) 2022-06-01 06:24:20 -04:00
4f38808e9e Add OnnxConfig for SqueezeBert iss17314 (#17315)
* add onnx config for SqueezeBert

* add test for onnx config for SqueezeBert

* add automatically updated doc for onnx config for SqueezeBert

* Update src/transformers/onnx/features.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update src/transformers/models/squeezebert/configuration_squeezebert.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-06-01 06:16:15 -04:00
ba286fe7d5 [GPT2Tokenizer] Fix GPT2 with bos token (#17498) 2022-05-31 20:06:48 +02:00
7822a9b7a7 Opt in flax and tf (#17388)
* initial commit

* add init file

* update globakl init

* update index and dummy objects

* style

* update modelling auto

* fix initi typo in src/transformers

* fix typo in modeling tf auto, opt was in wrong mapping name

* fixed a slow test : saved_model

* style

* fix positionnal embedding if no position id is provided

* update tf test

* update test flax requirements

* fixed serialization

* update

* update tf name to allow smooth convertion

* update flax tests

* style

* fix test typo

* fix tf typo test

* add xla for generate support in causal LM

* fixed bug

* cleaned tf tests

* style

* removed from PT for slow tests

* fix typp

* opt test as slow

* trying to fix GPT2 undefined

* correct documentation and add to test doc

* update tf doc

* fix doc

* fake commit

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* update test based on review

* merged main layer for functionning test

* fixup + quality

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* update long comment

* make fix copies

Co-authored-by: Arthur <arthur@huggingface.co>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-31 18:41:22 +02:00
f394a2a50d [Json configs] Make json prettier for all saved tokenizer files & ensure same json format for all processors (tok + feat_extract) (#17457)
* [Json dump] Make json prettier

* correct more tokenizeirs

* more patterns

* add aggressive test

* the aggressive test was actually useful :-)

* more tests

* Apply suggestions from code review
2022-05-31 17:07:30 +02:00
6ee1474b67 Accumulate tokens into batches in PreTrainedTokenizerBase.add_tokens() (#17119)
* Accumulate tokens into batches in PreTrainedTokenizerBase.add_tokens()

For tokenizers with a small number of special tokens or special tokens
with consecutive token IDs, this reduces the time complexity of creating
the trie from quadratic to linear, see also #16936.

* Extend explanation of batching added tokens
2022-05-31 16:36:45 +02:00
52e7c92920 Add HF.co for PRs / Issues regarding specific model checkpoints (#17485)
* Add HF.co for PRs / Issues regarding specific model checkpoints

* Update .github/ISSUE_TEMPLATE/config.yml

Co-authored-by: Julien Chaumond <julien@huggingface.co>

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2022-05-31 15:58:39 +02:00
dfc38463b8 Setup for Italian translation and add quicktour.mdx translation (#17472)
* Setup for Italian translation and add first document

- Add 'it' folder for files translated into Italian
- Add _config.py and _toctree.yml files
- Add translation of quicktour.mdx

* Fix style issue of italian documentation files

* Add 'it' to the languages section in the .github/workflows

* Remove - installation from _toctree for Italian

* Translation for index file

- Add index to _toctree.yml
- Add translation of index.mdx

* Fix typo in docs/source/it/index.mdx

* Translate code comments in docs/source/it/_config.py

Co-authored-by: Martina Fumanelli <martinafumanelli@Martinas-MBP.homenet.telecomitalia.it>
2022-05-31 09:57:43 -04:00
8f8b3cbce4 Fix checkpoint name (#17484)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-31 15:40:48 +02:00
400b30936a Docker image build in parallel (#17434)
* docker image build in parallel

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-31 15:39:03 +02:00
5af38953bb Added XLM onnx config (#17030)
* Add onnx configuration for xlm

* Add supported features for xlm

* Add xlm to models exportable with onnx

* Add xlm architecture to test file

* Modify docs

* Make code quality fixes
2022-05-31 09:26:06 -04:00
567d9c061d Disk offload fix (#17428)
* Fix offload to disk for big models

* Add test

* Fix test for other models
2022-05-31 09:16:18 -04:00
975dd2bbbc TF: GPT-2 generation supports left-padding (#17426)
* TF GPT-2 now properly works with left padding

* throw a warning when eos token == pad token and there is no attention mask
2022-05-31 14:06:44 +01:00
c1a138613d Fix ViTMAEModelTester (#17470)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-31 15:01:54 +02:00
b0e0ac8a67 [Generate] Fix output scores greedy search (#17442) 2022-05-31 14:59:49 +02:00
2ef09ecfb8 Fix nits (#17349) 2022-05-31 08:41:54 -04:00
28d0048218 Fx support for multiple model architectures (#17393)
* Support for Bart and LayoutLM, and partial support for XLNet

* Support for mbart

* A lot of new models supported

* Support for other models

* LayoutLM fix

* Use strings instead of classes
2022-05-31 10:02:55 +02:00
04681c1d81 typo IBERT in __repr__ quant_mode (#17398)
fix #17397
2022-05-31 03:48:10 -04:00
13fd67346a Fix typo (remove parenthesis) (#17415) 2022-05-31 03:21:32 -04:00
d156898f3b Improve notrainer examples (#17449)
* improve no-trainer examples

* Trigger CI

* adding comment to clarify tracker init on main process

* Trigger CI

* Trigger CI

* Trigger CI
2022-05-28 00:06:31 +05:30
7999ec125f [OPT] Fix bos token id default (#17441) 2022-05-26 18:24:12 +02:00
98f6e1ee87 Fix model parallelism test (#17439) 2022-05-26 09:57:12 -04:00
7535d92e71 Pin protobouf that breaks TensorBoard in PyTorch (#17440) 2022-05-26 09:56:55 -04:00
2295bcaea8 Spanish translation of the file preprocessing.mdx (#16299)
* Spanish translation of the file training.mdx

* Settings - Spanish translation of the file training.mdx

* Latest changes to the Spanish translation of the training.mdx file

* Delete Hugging.mdx

* Last changes to the training fil Espanish version

* Latest modifications

* Latest changes, document ready for PR

* Nits

* Spanish translation of the preprocessing file

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Nits and add preprocessing to _toctree.yml

Co-authored-by: Yhary Arias <yharystefa@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-26 07:28:14 -04:00
8f46ac9849 Spanish translation of the files sagemaker.mdx and image_classification.mdx (#17262)
* Duplication of the source eng file

* Spanish translation of the file multilingual.mdx

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Fix nits and finish translation

* Spanish translation of sagemaker.mdx

* Was deleted in main

* Security saving

* Complete translation of image_classification.mdx

* Nits

* nits

* Update docs/source/es/image_classification.mdx

* Add files to _toctree.yml

* Fix toctree and add tasks folder

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-25 19:10:16 -04:00
5e7f085fcc Added es version of bertology.mdx doc (#17255)
* added bertology es doc

* toctree fix

* Update docs/source/es/bertology.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/bertology.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/bertology.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* change position of bertology in _toctree.yml

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-25 18:46:53 -04:00
70484a8d74 Adding the Portuguese version of the tasks/sequence_classification.mdx documentation (#17352)
* add sequence_classification pt doc structure

* add Portuguese tasks/sequence_classification.mdx
2022-05-25 16:21:27 -04:00
a9eca74372 Wav2vec2 finetuning shared file system (#17423)
* fix_torch_device_generate_test

* remove @

* [Fix shared file system]

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2022-05-25 22:04:43 +02:00
740a1574f1 fix link in performance docs (#17419) 2022-05-25 20:54:43 +02:00
284fc6c0bb Add link to Hub PR docs in model cards (#17421) 2022-05-25 20:38:56 +02:00
35e2d13f3c Upd AutoTokenizer.from_pretrained doc examples (#17416) 2022-05-25 11:35:50 -04:00
897a8dd89f Support compilation via Torchdynamo, AOT Autograd, NVFuser (#17308)
* Support compilation via Torchdynamo, AOT Autograd, NVFuser

* Address comments

* Lint

* Stas comments - missing quality test

* Lintere

* Quality test

* Doc lint

* Reset CUDA peak mem

* Add CustomTrainer

* require a single gpu

Co-authored-by: Stas Bekman <stas@stason.org>
2022-05-25 11:16:09 -04:00
31484afbed Add test for new model parallelism features (#17401) 2022-05-25 10:51:27 -04:00
56b35ce3eb Make check_init script more robust and clean inits (#17408) 2022-05-25 07:23:56 -04:00
bd908e9bb1 Fix README localizer script (#17407) 2022-05-25 07:23:40 -04:00
4d727bd2df Fix expected value for OPT test test_inference_no_head (#17395)
* Fix expected value

* 5e-5

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-25 11:19:06 +02:00
1ef9a1ed4a Bump tensorflow in /examples/research_projects/decision_transformer (#17400)
Bumps [tensorflow](https://github.com/tensorflow/tensorflow) from 2.8.0 to 2.8.1.
- [Release notes](https://github.com/tensorflow/tensorflow/releases)
- [Changelog](https://github.com/tensorflow/tensorflow/blob/master/RELEASE.md)
- [Commits](https://github.com/tensorflow/tensorflow/compare/v2.8.0...v2.8.1)

---
updated-dependencies:
- dependency-name: tensorflow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-05-24 19:36:55 -04:00
71e602725b [WIP] Adding GPT-NeoX-20B (#16659)
* initial

* first try

* working 20B

* 20B tokenizers

* Docs

* Import fixes for missing classes

* Update docs, fixup

* black formatting

* isort

* flake

* dummy objects

* documentation

* Documentation yml

* more docs

* tweaks for tests

* tokenization auto

* fix neox tests

* test

* test

* einsum

* address PR feedback

* Documentation

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gpt_neox/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gpt_neox/configuration_gpt_neox.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove undefined LaTeX syntax

* Update to full url to avoid confusion about if that's supposed to refer to the Hub

* fix auto

* move tests

* documentation fix

* more doc fixes

* test refactor

* fix import

* fix import

* fix import

* fix import

* fix import

* style fixes

* More modeling fixes

Co-authored-by: Jason Phang <zp489@gr057.hpc.nyu.edu>
Co-authored-by: Stella Biderman <stellabiderman@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-24 09:31:10 -04:00
374a2f693f Clean up CLIP tests (#17380)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-05-24 14:51:26 +02:00
d980929803 Enabling imageGPT auto feature extractor. (#16871)
* Enablign `imageGPT` auto feature extractor.

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Small updates.

* Update after rebase to use `input_ids` instead of `pixel_values`.

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-24 12:30:46 +02:00
31ee80d556 Add LayoutLMv3 (#17060)
* Make forward pass work

* More improvements

* Remove unused imports

* Remove timm dependency

* Improve loss calculation of token classifier

* Fix most tests

* Add docs

* Add model integration test

* Make all tests pass

* Add LayoutLMv3FeatureExtractor

* Improve integration test + make fixup

* Add example script

* Fix style

* Add LayoutLMv3Processor

* Fix style

* Add option to add visual labels

* Make more tokenizer tests pass

* Fix more tests

* Make more tests pass

* Fix bug and improve docs

* Fix import of processors

* Improve docstrings

* Fix toctree and improve docs

* Fix auto tokenizer

* Move tests to model folder

* Move tests to model folder

* change default behavior add_prefix_space

* add prefix space for fast

* add_prefix_spcae set to True for Fast

* no space before `unique_no_split` token

* add test to hightligh special treatment of added tokens

* fix `test_batch_encode_dynamic_overflowing` by building a long enough example

* fix `test_full_tokenizer` with add_prefix_token

* Fix tokenizer integration test

* Make the code more readable

* Add tests for LayoutLMv3Processor

* Fix style

* Add model to README and update init

* Apply suggestions from code review

* Replace asserts by value errors

* Add suggestion by @ducviet00

* Add model to doc tests

* Simplify script

* Improve README

* a step ahead to fix

* Update pair_input_test

* Make all tokenizer tests pass - phew

* Make style

* Add LayoutLMv3 to CI job

* Fix auto mapping

* Fix CI job name

* Make all processor tests pass

* Make tests of LayoutLMv2 and LayoutXLM consistent

* Add copied from statements to fast tokenizer

* Add copied from statements to slow tokenizer

* Remove add_visual_labels attribute

* Fix tests

* Add link to notebooks

* Improve docs of LayoutLMv3Processor

* Fix reference to section

Co-authored-by: SaulLu <lucilesaul.com@gmail.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-05-24 09:53:45 +02:00
13541b4aa2 Add support for device_map="auto" to OPT (#17382) 2022-05-23 15:25:51 -04:00
71cced8ae3 OPTForCausalLM lm_head input size should be config.word_embed_proj_dim (#17225) 2022-05-23 21:20:29 +02:00
56f50590d5 Use Accelerate in from_pretrained for big model inference (#17341)
* Initial work

* More or less finished with first draft

* Update src/transformers/modeling_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Fix randomly initialized weights

* Update src/transformers/modeling_utils.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Address review comments

* Rename DeepSpeed folder to temporarily fix the test issue?

* Revert to try if Accelerate fix works

* Use latest Accelerate release

* Quality and fixes

* Style

* Quality

* Add doc

* Test + fix

* More blocks

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-05-23 14:32:21 -04:00
2e7e4280aa Traced models serialization and torchscripting fix (#17206)
* Fix torch.jit.script and pickling issues

* Fix get_attr issues

* Fix import in function

* Fix GPT-J and T5 tracing for torch=1.11

* Gate graph surgery on torch version

* Modeling minor changes to enable TorchScripting

* Model serialization / deserialization test

* Remove _assert_is_none users
2022-05-23 17:50:40 +02:00
1cd01b0af3 Fix Comet ML integration (#17381)
Callback function `on_train_end` crashed if Comet ML integration was
used but `COMET_MODE` set to `DISABLE`
2022-05-23 10:43:10 -04:00
c86aad6110 Fix cvt docstrings (#17367) 2022-05-23 16:11:09 +02:00
7b8cb26953 Correct & Improve Doctests for LayoutLMv2 (#17168)
* add inference example to LayoutLMv2ForQuestionAnswering, passing doctest

* add loss example to LayoutLMv2ForQuestionAnswering, passing doctest

* Add correct doctest for LayoutLMv2ForTokenClassification, passing doctest

* add correct doctest for LayoutLMv2ForSequenceClassification, passing test

* add correct doctest for LayoutLMv2Model, passing test

* make fixup

* fix to address review comments

* make style

* fix doctest line break issue, add to documentaiton_tests.txt, address review comments

* move comment about layoutlmv2 dependencies to the doc page

* format doc page as suggested

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* delete extraneous backtick

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-23 08:02:31 -04:00
b48ac1a094 Fix CodeParrot training script (#17291)
* average loss over batches and accumulated steps for tracking

* fix layernorm weight decay

* use AdamW from Pytorch instead of Transformers

* add shuffling of sequences inside the batches

* add shuffling of sequences inside the batches

* add logging dir and reformat code

* fix lr tracking

* remove Mistral scaling

* keep Mistral scaling

* reformat code

* fix error

* fix error

* use shuffling function from Pytorch

* remove argument for shuffling batch sequences as it isn't optional

* update package versions and install accelerate from source

* remove unused package

* Update loss average over accumulated steps

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update loss average over accumulated steps

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* use one shuffle buffer argument

* compute avg_loss in one line

Co-authored-by: Loubna ben allal <loubnabenallal@gmail.com>
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
2022-05-23 12:55:35 +02:00
b9bb417324 Fix a typo relative_postion_if_large -> relative_position_if_large (#17366) 2022-05-20 18:41:12 +02:00
3fd7de49f4 Pin dill to fix examples (#17368)
* Pin dill for now

* Try this version?

* force install

* Actually use dep in testing

* Try a larger pin
2022-05-20 11:00:58 -04:00
54192058f3 [Test OPT] Add batch generation test opt (#17359)
* up

* up
2022-05-19 23:46:26 +02:00
48c22691e3 Fix bug in Wav2Vec2 pretrain example (#17326) 2022-05-19 22:42:44 +02:00
5d6feecf16 fix for 17292 (#17293) 2022-05-19 22:21:19 +02:00
518bd02c9b [Generation] Fix Transition probs (#17311)
* [Draft] fix transition probs

* up

* up

* up

* make it work

* fix

* finish

* update
2022-05-19 22:17:02 +02:00
e8714c0307 [OPT] Run test in lower precision on GPU (#17353)
* [OPT] Run test only in half precision

* up

* up

* up

* up

* finish

* fix on GPU

* Update tests/models/opt/test_modeling_opt.py
2022-05-19 22:15:36 +02:00
2b282296f1 Adding batch_size test to QA pipeline. (#17330) 2022-05-19 14:28:12 -04:00
a4386d7e40 [BC] Fixing usage of text pairs (#17324)
* [BC] Fixing usage of text pairs

The BC is actually preventing users from misusing the pipeline since
users could have been willing to send text pairs and the pipeline would
instead understand the thing as a batch returning bogus results.

The correct usage of text pairs is preserved in this PR even when that
makes the code clunky.

Adds support for {"text":..,, "text_pair": ...} inputs for both dataset
iteration and more explicit usage to pairs.

* Updating the doc.

* Update src/transformers/pipelines/text_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/text_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_text_classification.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* quality.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-05-19 10:29:16 +02:00
3601aa8fc9 [tests] fix copy-n-paste error (#17312)
* [tests] fix copy-n-paste error

* fix
2022-05-18 16:00:47 -07:00
1b20c970a2 Fix ci_url might be None (#17332)
* fix

* Update utils/notification_service.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-05-18 21:49:08 +02:00
6aad3872ce fix (#17337)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-18 15:26:44 -04:00
1762ded30a Fix metric calculation in examples and setup tests to run on multi-gpu for no_trainer scripts (#17331)
* Fix length in no_trainer examples

* Add setup and teardown

* Use new accelerator config generator to automatically make tests able to run based on environment
2022-05-18 14:17:40 -04:00
6e195eb9de docs for typical decoding (#17186)
Co-authored-by: Jader Martins <jadermcs94@gmail.com>
2022-05-18 19:18:43 +02:00
060fe61dff Not send successful report (#17329)
* send report only if there is any failure

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-18 19:07:48 +02:00
b3b9f99ed2 Fix test_t5_decoder_model_past_large_inputs (#17320)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-18 17:57:23 +02:00
6da76b9c2a Add onnx export cuda support (#17183)
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-05-18 17:52:13 +02:00
adc0ff2502 Add CvT (#17299)
* Adding cvt files

* Adding cvt files

* changes in init file

* Adding cvt files

* changes in init file

* Style fixes

* Address comments from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Format lists in docstring

* Fix copies

* Apply suggestion from code review

Co-authored-by: AnugunjNaman <anugunjjha@gmail.com>
Co-authored-by: Ayushman Singh <singhayushman13@protonmail.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-18 17:47:18 +02:00
4710702837 Fix style 2022-05-18 10:46:40 -04:00
5fdb54ece7 Add Information Gain Filtration algorithm (#16953)
* Add information gain filtration algorithm

* Complying with black requirements

* Added author

* Fixed import order

* flake8 corrections

Co-authored-by: Javier Turek <javier.turek@intel.com>
2022-05-18 10:39:02 -04:00
91ede485a7 Fix typo (#17328) 2022-05-18 10:29:53 -04:00
fe28eb9452 remove (#17325)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-18 10:06:41 -04:00
2cb2ea3fa1 Accepting real pytorch device as arguments. (#17318)
* Accepting real pytorch device as arguments.

* is_torch_available.
2022-05-18 10:06:24 -04:00
1c9d1f4ca8 Updating the docs for max_seq_len in QA pipeline (#17316) 2022-05-18 15:46:12 +02:00
60ad73448c [T5] Fix init in TF and Flax for pretraining (#17294)
* fix init

* Apply suggestions from code review

* fix

* finish

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-18 15:08:56 +02:00
7ba1d4e51f Add type hints for ProphetNet (Pytorch) (#17223)
* added type hints to prophetnet

* reformatted with black

* fix bc black misformatted some parts

* fix imports

* fix imports

* Update src/transformers/models/prophetnet/configuration_prophetnet.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* update OPTIONAL type hint and docstring

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-05-18 13:23:47 +01:00
d6b8e9cec7 Add trajectory transformer (#17141)
* Add trajectory transformer


Fix model init


Fix end of lines for .mdx files

Add trajectory transformer model to toctree

Add forward input docs

Fix docs, remove prints, simplify prediction test

Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Update docs, more descriptive comments

Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Update readme

Small comment update and add conversion script

Rebase and reformat

Fix copies

Fix rebase, remove duplicates

Fix rebase, remove duplicates

* Remove tapex

* Remove tapex

* Remove tapex
2022-05-17 19:07:43 -04:00
c35264007b fix (#17310) 2022-05-17 18:34:31 -04:00
d9050dc768 [LED] fix global_attention_mask not being passed for generation and docs clarification about grad checkpointing (#17112)
* [LED] fixed global_attention_mask not passed for generation + docs clarification for gradient checkpointing

* LED docs clarification

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [LED] gradient_checkpointing=True should be passed to TrainingArguments

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [LED] docs: remove wrong word

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [LED] docs fix typo

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-05-17 23:44:37 +02:00
bad358398a Add support for pretraining recurring span selection to Splinter (#17247)
* Add SplinterForSpanSelection for pre-training recurring span selection.

* Formatting.

* Rename SplinterForSpanSelection to SplinterForPreTraining.

* Ensure repo consistency

* Fixup changes

* Address SplinterForPreTraining PR comments

* Incorporate feedback and derive multiple question tokens per example.

* Update src/transformers/models/splinter/modeling_splinter.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/splinter/modeling_splinter.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Jean Vancoppenole <jean.vancoppenolle@retresco.de>
Co-authored-by: Tobias Günther <tobias.guenther@retresco.de>
Co-authored-by: Tobias Günther <github@tobigue.de>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-05-17 23:42:14 +02:00
0511305549 Add PR author in CI report + merged by info (#17298)
* Add author info to CI report

* Add merged by info

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-17 12:56:58 -04:00
032d63b976 Fix dummy creation script (#17304) 2022-05-17 12:56:24 -04:00
986dd5c5bf Fix style 2022-05-17 12:50:14 -04:00
38ddab10da Doctest longformer (#16441)
* Add initial doctring changes

* make fixup

* Add TF doc changes

* fix seq classifier output

* fix quality errors

* t

* swithc head to random init

* Fix expected outputs

* Update src/transformers/models/longformer/modeling_longformer.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-05-17 18:32:12 +02:00
10704e1209 [Test] Fix W2V-Conformer integration test (#17303)
* [Test] Fix W2V-Conformer integration test

* correct w2v2

* up
2022-05-17 18:20:36 +02:00
28a0811652 Improve mismatched sizes management when loading a pretrained model (#17257)
- Add --ignore_mismatched_sizes argument to classification examples

- Expand the error message when loading a model whose head dimensions are different from expected dimensions
2022-05-17 17:58:14 +02:00
1f13ba818e correct opt (#17301) 2022-05-17 15:48:23 +02:00
349f1c85d3 Rewrite TensorFlow train_step and test_step (#17057)
* Initial commit

* Better label renaming

* Remove breakpoint before pushing (this is your job)

* Test a lot more in the Keras fit() test

* make fixup

* Clarify the case where we flatten y dicts into tensors

* Clarify the case where we flatten y dicts into tensors

* Extract label name remapping to a method
2022-05-17 14:36:23 +01:00
651e48e1e5 Fix tests of mixed precision now that experimental is deprecated (#17300)
* Fix tests of mixed precision now that experimental is deprecated

* Fix mixed precision in training_args_tf.py too
2022-05-17 14:14:17 +01:00
6d211429ec fix retribert's test_torch_encode_plus_sent_to_model (#17231) 2022-05-17 14:33:13 +02:00
ec7f8af106 [ConvNeXT] Fix drop_path_rate (#17280)
* Fix drop_path_rate

* Fix TF's drop path rate
2022-05-17 07:37:48 -04:00
a26ab95e30 Fix wrong PT/TF categories in CI report (#17272)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-17 09:32:47 +02:00
1ac2b8fa7f Fix missing job action button in CI report (#17270)
* use matrix.machine_type

* fix job names used in job_link

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-17 08:31:06 +02:00
5a9957358c Add Wav2Vec2Conformer (#16812)
* save intermediate

* add wav2vec2 conformer

* add more code

* more

* first test passes

* make all checkpoints work

* update

* up

* more clean ups

* save clean-up

* save clean-up

* save more

* remove bogus

* finalize design conformer

* remove vision

* finish all tests

* more changes

* finish code

* add doc tests

* add slow tests

* fix autoconfig test

* up

* correct docstring

* up

* update

* fix

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update docs/source/en/model_doc/wav2vec2-conformer.mdx

* upload

* save copied from

* correct configs

* fix model outputs

* add to docs

* fix imports

* finish

* finish code

* correct copied from

* correct again

* correct make fix

* improve make fix copies

* save

* correct fix copy from

* correct init structure

* correct

* fix import

* apply suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
2022-05-17 00:43:16 +02:00
f0395cf58e Fix test_model_parallelization (#17249)
* Fix test_model_parallelization

* Modify
2022-05-16 23:30:49 +02:00
e705e1267c [Tests] Fix slow opt tests (#17282)
* fix opt tests

* remove unused tok

* make style

* make flake8 happy

* Update tests/models/opt/test_modeling_opt.py
2022-05-16 23:24:20 +02:00
f6a6388972 Add Tensorflow Swin model (#16988)
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-16 22:19:53 +01:00
6cb7187324 docs(transformers): fix typo (#17263) 2022-05-16 17:04:30 -04:00
053a80c606 logging documentation update (#17174)
* logging documentation

* style

Co-authored-by: Sander Land <sander@chatdesk.com>
2022-05-16 16:47:28 -04:00
8600d770d4 Use the PR URL in CI report (#17269)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-16 22:02:28 +02:00
3fb82f74fd Fix FlavaForPreTrainingIntegrationTest CI test (#17232)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-16 21:14:25 +02:00
9b0d2860eb Better error in the Auto API when a dep is missing (#17289) 2022-05-16 14:55:46 -04:00
66b3e106a1 Make TrainerHyperParameterSigOptIntegrationTest slow test (#17288)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-16 14:18:09 -04:00
ddb1a47ec8 Automatically sort auto mappings (#17250)
* Automatically sort auto mappings

* Better class extraction

* Some auto class magic

* Adapt test and underlying behavior

* Remove re-used config

* Quality
2022-05-16 13:24:20 -04:00
2f611f85e2 Mlflowcallback fix nonetype error (#17171)
* Fix edge cases TypeError: 'NoneType' object is not callable

* fix style
2022-05-16 12:18:30 -04:00
95b6bef624 Align logits and labels in OPT (#17237) 2022-05-16 09:37:39 -04:00
a5d1839679 Remove next sentence prediction from supported ONNX tasks (#17276) 2022-05-16 15:34:04 +02:00
05a90579a8 CodeParrot data pretokenization (#16932)
* add pretokenization arguments

* add pretokenization script

* add support for pretokenized data

* reformat code

* fix run command for training

* fix model call from config

* remove a package

* add comments on pretokenization in the readme

* remove explicit parallelization

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* update readme

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* update readme -remove username

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* update readme -remove username

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* keep data parallelization

* reformat code

* reformat code

* update readme

* reformat code

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna ben allal <loubnabenallal@gmail.com>
2022-05-16 15:32:16 +02:00
e730e12567 Update codeparrot data preprocessing (#16944)
* add new preprocessing arguments

* add new filters

* add new filters to readme

* fix config and test count, update function names and docstrings

* reformat code

* update readme

* Update readme

* rename config_test filter

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* rename few_assignments filter

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* rename tokenizer in arguments

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* rename functions and add limit_line argument for config_test filter

* update threshold for config_test filter

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna ben allal <loubnabenallal@gmail.com>
2022-05-16 14:43:25 +02:00
518dd1277e Updated checkpoint support for Sagemaker Model Parallel (#17219)
* adding partial checkpoint support for optimizer state

* formatted trainer.py

* Refactoring based on comments

* reformatting

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Cavdar <dcavdar@a07817b12d7e.ant.amazon.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-16 08:17:25 -04:00
71d18d0831 fixed bug in run_mlm_flax_stream.py (#17203)
* fixed bug run_mlm_flax_stream.py

Fixed bug caused by an update to tokenizer keys introduced in recent transformers versions (between `4.6.2` and `4.18.0`) where additional keys were introduced to the tokenizer output.

* Update run_mlm_flax_stream.py

* adding missing paranthesis

* formatted to black

* remove cols from dataset instead

* reformat to black

* moved rem. columns to map

* formatted to black

Co-authored-by: KennethEnevoldsen <kennethcenevolsen@gmail.com>
2022-05-16 13:40:27 +02:00
71abd3ade1 [WIP] [doc] performance/scalability revamp (#15723)
* [doc] performance/scalability revamp

* link the new docs

* no :

* mixed precision

* work on the first doc

* expand the main doc

* Trigger CI

* style

* revamp single GPU training section

* work on training performance

* remove files not used anymore or will be added later

* final touches

* fix rebase

* Add hardware section to toctree

* fix toctree again

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove `fast_tokenizers` entry that was copied in rebase

* add warning about DP vs DDP

* remove todo

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix missing closure of codeblock

* Update docs/source/en/perf_train_gpu_many.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* sync with #16860

* update toc

Co-authored-by: leandro <leandro.vonwerra@spoud.io>
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-16 13:36:41 +02:00
d3d87b451e TF - Fix convnext classification example (#17261) 2022-05-16 12:24:01 +01:00
e86faecfd4 Fix obvious typos in flax decoder impl (#17279)
Change config.encoder_ffn_dim -> config.decoder_ffn_dim for decoder.
2022-05-16 13:08:04 +02:00
ee393c009a Guide to create custom models in Spanish (#17158)
* file copied and toctree updated

* Intro and configuration translated

* model section translated

* enter hotfix

* Translation over, correction pending

* Typos and corrections

* Update docs/source/es/create_a_model.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/create_a_model.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/create_a_model.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/create_a_model.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-13 16:19:29 -04:00
16be422912 Translated version of model_sharing.mdx doc to spanish (#16184)
* Translated version of model_sharing to spanish

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Addind model sharing to _toctree.yml

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-13 16:18:46 -04:00
f9024814e1 [ fast_tokenizers.mdx ] - Added translation to portuguese to tutorial (#17076)
* [ fast_tokenizers.mdx ] - Added translation to portuguese to tutorial

* Delete docs/source/pt-br directory

* [ fast_tokenizers.mdx ] - Continuing work on file

* [ fast_tokenizers.mdx ] - Continuing work on file

* Add fast tokenizers to _toctree.yml

* Eliminated config and toctree.yml

* Nits in fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-13 16:18:14 -04:00
50d1867cf8 Add PR title to push CI report (#17246)
* add PR title to push CI report

* add link

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-13 21:50:40 +02:00
506899d147 Fix push CI channel (#17242)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-13 20:59:56 +02:00
7198b63362 install dev. version of accelerate (#17243)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-13 13:47:09 -04:00
b96cb1693f Fix Trainer for Datasets that don't have dict items (#17239) 2022-05-13 11:49:23 -04:00
9c8fde8e19 Handle copyright in add-new-model-like (#17218) 2022-05-13 11:47:19 -04:00
993553b2f1 fix --gpus option for docker (#17235)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-13 17:26:26 +02:00
38043d8453 Update self-push workflow (#17177)
* update push ci

* install git-python

* update comment

* update deepspeed jobs

* fix report

* skip 2 more tests that require fairscale

* Fix changes in test_fetcher.py (to deal with `setup.py` is changed)

* set RUN_PT_TF_CROSS_TESTS=1 and final clean-up

* remove SIGOPT_API_TOKEN

* remove echo "$matrix_folders"

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-13 16:28:00 +02:00
18d6b356c5 OPT - fix docstring and improve tests slighly (#17228)
* correct some stuff

* fix doc tests

* make style
2022-05-13 15:14:50 +02:00
dfc76018c1 OPT-fix (#17229)
* try fixes

* Revert "try fixes"

This reverts commit a8ad75ef69d4fc03a402ef61bd034b018aa8555e.

* add correct shape

* add correct path
2022-05-13 15:14:23 +02:00
85fc455972 Added translation of installation.mdx to Portuguese Issue #16824 (#16979)
* Added translation of installation.mdx to Portuguese, as well
as default templates of _toctree.yml and _config.py

* [ build_documentation.yml ] - Updated doc_builder to build
documentation in Portuguese.
[ pipeline_tutorial.mdx ] - Created translation for the pipeline_tutorial.mdx.

* [ build_pr_documentation.yml ] - Added pt language to pr_documentation builder.

[ pipeline_tutorial.mdx ] - Grammar changes.

* [ accelerate.mdx ] - Translated to Portuguese the acceleration tutorial.

* [ multilingual.mdx ] - Added portuguese translation for multilingual tutorial.

[ training.mdx ] - Added portuguese translation for training tutorial.

* [ preprocessing.mdx ] - WIP

* Update _toctree.yml

* Adding Pré-processamento to _toctree.yml

* Update accelerate.mdx

* Nits and eliminate preprocessing file while it is ready

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-13 07:55:44 -04:00
3f936df662 Fix typo in bug report template (#17178)
* Fix typo

* Force rerun workflows

Co-authored-by: Felix Marty <felix@huggingface.co>
2022-05-12 16:31:12 -04:00
afe5d42d8d Black preview (#17217)
* Black preview

* Fixup too!

* Fix check copies

* Use the same version as the CI

* Bump black
2022-05-12 16:25:55 -04:00
9bd67ac7bb update BART docs (#17212) 2022-05-12 19:25:16 +01:00
30be0da5da Fix dependency table 2022-05-12 11:29:32 -04:00
f04257fdbc Add test to ensure models can take int64 inputs (#17210)
* Add test to ensure models can take int64 inputs

* is_integer is an attribute, not a method

* Fix test when some inputs aren't tensors

* Add casts to blenderbot and blenderbot-small

* Add casts to the other failing models
2022-05-12 16:09:25 +01:00
5294fa12ee Dev version 2022-05-12 11:04:23 -04:00
9f16a1cc13 Update data2vec.mdx to include a Colab Notebook link (that shows fine-tuning) (#17194)
* Update data2vec.mdx

* Update data2vec.mdx

* Update docs/source/en/model_doc/data2vec.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-12 10:22:00 -04:00
a42242da7c migrate azure blob for beit checkpoints (#16902)
## Motivation

We are going to use a new blob account to store the checkpoints.

## Modification

Modify the azure blob storage URLs for BEiT checkpoints.
2022-05-12 13:08:15 +02:00
b971c769e8 Add OPT (#17088)
* First version - OPT model

* Final changes

- putting use cache to False

* few changes

- remove commented block

* few changes

- remove unecessary files

* fix style issues

* few changes

- remove a test file
- added the logits test

* Update src/transformers/models/auto/tokenization_auto.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add gen tests

* few changes

- rm mask filling example on docstring

* few changes

- remove useless args

* some changes

- more tests should pass now
- needs to clean more
- documentation still needs to be done

* fix code quality

* major changes

- change attention architecture to BART-like
- modify some tests
- style fix

* rm useless classes

- remove opt for:
- QA
- cond generation
- seq classif

* Removed autodoc calls to non-existant classes

TOkenizers are not implemented

* Update src/transformers/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/auto/modeling_tf_auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Replaced OPTTokeniser with GPT2 tokenizer

* added GPT2Tokenizer.from_pretrained("patrickvonplaten/opt_gpt2_tokenizer")

* Removed OPTTokenizer

* make style

* Make style replaces

``` ...).unsqueeze(```
by
``` >>>).unsqueeze(```

* make repo consistency

* Removed PretrainedOPTModel

* fix opt.mdx removed other heads

* fix init, removed 3 heads

* removed heads

* finished cleaning head

* removed seauence classif and question answering

* removed unused imports

* removed useless dummy object for QA, SC and CG

* removed tests for removed useless dummy object for QA, SC and CG

* Removed head_mask using encoder layers which don't exist

* fixed test

* fix line

* added OPT to toctree

* Updated model path with pushed weigths

* fix model path

* fixed code quality

* fixed embeddings and generation tests

* update paths

* clean comments

* removed OPTClassificationHead for sentence classification

* renamed hidden layer

* renamed num layers to standard num_hidden_layers

* num_attention_heads fix

* changes for 125m

* add first version for 125m

* add first version - flax

* add new version

* causal LM output

* replace output type with BaseModelOutputWithPastAndCrossAttentions

* revert working config from 150m to 350m

* clean

* removed decoder input ids

* fixed embed dim

* more embed_dim issues

* make style + removed enc_dec test

* update falx model

* removed troublesome copy

* added is_encoder_decoder=False to config

* added set_input emb fuinction to model class

* requires torch on embed test

* use head mask instead of decoder head mask input param solves a test

* 8 test remaining, update

* Updated create_and_check_decoder_model_past_large_inputs

* Make style

* update op tokenizer with condition

* make style

* See if I can push

* some clean up

* remove linear head hack

* save intermediate

* save correct attention

* add copied from from bart

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix part of the reviewss
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* same changes in naming / conversion

* correct mask

* more fixes

* delete FlaxOPT and TfOPT

* clean traces of Flax and Tf

* fix mask

* fixed positionnal embedding length when past key value is provoded

* get 125m, 6.7b to work

* Added do_layer_norm

* solved mismatch in load dictionnary

* clean up preapre opt input dict

* fixed past key value as bool

* fix previus

* fixed return dict False tuple issue

* All tests are passing

* Make style

* Ignore OPTDecoder non tested

* make fix-copies

* make repo consistency

* small fix

* removed uselss @torch.no_grad decorator

* make styl;e

* fix previous opt test

* style

* make style

* added opt documentation

* update OPT_PRETRAINED_MODEL_ARCHIVE_LIST

* up

* more fixes

* model & config work

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* added comment on padding hack (+2)

* cleaup

* review update

* docstring for missing arg

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/opt/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update pretrained map

* update path and tests

* make style

* styling

* make consistency

* add gpt2 tok new

* more tok fixes

* Update src/transformers/models/auto/tokenization_auto.py

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/models/opt/test_modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update based on reviews

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* make style

* make tokenizer auto tests pass

* apply Lysandre suggestion

* finish tests

* add some good tokenizer tests

* improve docs slighly

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-05-12 12:24:35 +02:00
8c7481f35c ViT and Swin symbolic tracing with torch.fx (#17182)
* Support tracing for ViT

* Swin support

* Fix copies

* Fix type annotation issue

* Removed unused import
2022-05-12 10:42:27 +02:00
1a688709b3 Fix contents in index.mdx to match docs' sidebar (#17198)
* Fix contents in index.mdx to match docs' sidebar

* Eliminates api section from contents
2022-05-12 02:37:13 -05:00
b17b78897b Fix style error in Spanish docs (#17197) 2022-05-12 08:51:46 +02:00
1a66a6c677 Translate index.mdx (to ES) and add Spanish models to quicktour.mdx examples (#16685)
* Change nits in Spanish for quicktour.mdx

- Add tasks names in English too.
- Fix small nits in Spanish

* Translate index.mdx to Spanish

* Translate body of index.
* Translated the compatible models list (not the papers´ names). Since this should not be updated manually, I can come back to the original text.

* Add models and a  dataset for Spanish in the code exmaples

* Replaced the English models to Spanish versions.

* Add index to _toctree.yml and fix Spanish

* Fix double ““ error

* Change negative example in ASR example

* make style

* Debug style in quicktour.mdx
2022-05-11 23:35:07 -05:00
e2d678b71c Documentation: Spanish translation of fast_tokenizers.mdx (#16882)
* Spanish translation of fast_tokenizers.mdx

* add fast_tokenizers to the spanish _toctree.yml

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-11 22:25:44 -05:00
ae82da2181 Added es version of language_modeling.mdx doc (#17021)
* Spanish version of language_modeling.mdx doc file

* modification to toctree.yml file

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Correct position of Guías conceptuales

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-11 22:04:56 -05:00
36ddcc0d35 Spanish translation of philosophy.mdx #15947 (#16922)
* adding philosophy.mdx translation to Spanish

* adding philosophy.mdx translation to Spanish

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* philosophy translation to Spanish

* Update _toctree.yml

* Update _toctree.yml

* nits

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-11 20:47:50 -05:00
d1d5ebb16c Remove duplicated os.path.join (#17192) 2022-05-11 20:28:32 -04:00
a10f61834d [feat] Add FLAVA model (#16654)
* [WIP] Add FLAVA model

This PR aims to add [FLAVA](ihttps://arxiv.org/abs/2112.04482) model to the transformers repo.

Following checklist delineates the list of things to be done for this PR
to be complete:

[x] Flava init
[x] Flava base models
[x] Flava layers
[x] Flava Configs
[x] Flava encoders
[x] Flava pretraining models
[ ] Flava classification/retrieval models (To be added in a separate PR)
[x] Documentation updates 
[x] Imports updates 
[x] Argstring updates
[x] Flava pretrained checkpoints 
[x] Flava tests
[x] Flava processors 
[x] Sanity check
[x] Lint
2022-05-11 14:56:48 -07:00
7b95825d7d Remove columns before passing to data collator (#17187) 2022-05-11 15:58:32 -04:00
934e21cd4b add shift_tokens_right in FlaxMT5 (#17188) 2022-05-11 20:31:41 +01:00
47412c7d43 Ensure tensors are at least 1d for pad and concat (#17179)
* Ensure tensors are at least 1d for pad and concat

* Compatibility

* Fix

* Fix

* Add test

* Retrigger CI

* Consistency with master

* Retrigger CI
2022-05-11 13:19:08 -04:00
c76afa511c Fix LED documentation (#17181)
* Fix markdown code block

* Use consistent spelling for self-attention

* Fix typos and phrasing

* Fix code style
2022-05-11 13:17:50 -04:00
edcc66d27c Remove unnecessary columns for all dataset types in Trainer (#17166)
* Remove unneeded columns for IterableDataset

* Add test

* Update trainer tests

* Edit docstring

* Lint

* Apply feedback

* Apply feedback
2022-05-11 11:11:26 -04:00
c33f6046c3 [WIP] Enable reproducibility for distributed trainings (#16907)
* add seed worker and set_deterministic_seed_for_cuda function to enforce reproducability

* change function name to enable determinism, add docstrings, reproducability support for tf

* change function name to enable_determinism_for_distributed_training

* revert changes in set_seed and call set_seed within enable_full_determinism

* add one position argument for seed_worker function

* add full_determinism flag in training args and call enable_full_determinism when it is true

* add enable_full_determinism to documentation

* apply make fixup after the last commit

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-11 09:37:13 -04:00
5229744b26 Add missing RetriBERT tokenizer tests (#17017)
* Create RetriBERT tests folder

* Add missing RetriBERT tokenizer test file

* Apply style corrections

* Add non-english filter

* Update tests/retribert/test_tokenization_retribert.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* Update tests/retribert/test_tokenization_retribert.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* Move test files to new directory

* Update import path for testing utils to new test file structure

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-05-11 15:04:07 +02:00
6bc6797e04 Convert image to rgb for clip model (#17101)
Co-authored-by: kuanwee.heng <kuanwee.heng@aaqua.live>
2022-05-11 13:09:54 +01:00
0a2bea4752 Fix repo consistency 2022-05-11 08:05:45 -04:00
0645b07daf propagate "attention_mask" dtype for "use_past" in OnnxConfig.generate_dummy_inputs (#17105)
* propagate attention_mask dtype

* fixup&style
2022-05-11 07:50:35 -04:00
0e6ec2a469 Extend Transformers Trainer Class to Enable PyTorch SGD/Adagrad Optimizers for Training (#17154)
* add torch SGD and Adagrad optimizer bits

* refine naming

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-11 07:24:11 -04:00
63517fdf48 [M2M100 doc] remove duplicate example (#17175)
* remove duplicate example

* remove code block
2022-05-11 12:16:46 +01:00
4a419d4995 MobileBERT tokenizer tests (#16896)
* unhardcode pretrained model path, make it a class var

* add tests for mobilebert tokenizer

* allow tempfiles for vocab & merge similarity test to autodelete

* add explanatory comments

* remove unused imports, let make style do its.. thing

* remove inheritance and use BERT tok tests for MobileBERT

* Update tests/mobilebert/test_tokenization_mobilebert.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* amend class names, remove unused import, add fix for mobilebert's hub pathname

* unhardcode pretrained model path, make it a class var

* add tests for mobilebert tokenizer

* allow tempfiles for vocab & merge similarity test to autodelete

* add explanatory comments

* remove unused imports, let make style do its.. thing

* remove inheritance and use BERT tok tests for MobileBERT

* Update tests/mobilebert/test_tokenization_mobilebert.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* amend class names, remove unused import, add fix for mobilebert's hub pathname

* amend paths for model tests being in models/ subdir of /tests

* explicitly rm test from prev path

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-05-10 16:39:58 -04:00
48a8f3daa1 Add DebertaV2ForMultipleChoice (#17135) 2022-05-10 16:21:44 -04:00
4ad2f68e34 Fix template init (#17163) 2022-05-10 15:24:23 -04:00
e99f0efedc Add MLFLOW_FLATTEN_PARAMS support in MLflowCallback (#17148)
* add support for MLFLOW_FLATTEN_PARAMS

* ensure key is str

* fix style and update warning msg

* Empty commit to trigger CI

* fix bug in check_inits.py

* add unittest for flatten_dict utils

* fix 'NoneType' object is not callable on __del__

* add generic flatten_dict unittest to SPECIAL_MODULE_TO_TEST_MAP

* fix style
2022-05-10 14:29:18 -04:00
976835d515 missing file (#17164) 2022-05-10 10:19:50 -07:00
259eeb6dab Fixing the output of code examples in the preprocessing chapter (#17162) 2022-05-10 12:16:28 -04:00
f861504466 [Deepspeed] add many more models to the model zoo test (#12695)
* model zoo take 2

* add deberta

* new param for zero2

* doc update

* doc update

* add layoutlm

* bump deepspeed

* add deberta-v2, funnel, longformer

* new models

* style

* add t5_v1

* update TAPAS status

* reorg problematic models

* move doc to another PR

* style

* fix checkpoint check test

* making progress on more models running

* cleanup

* new version

* cleanup
2022-05-10 08:22:42 -07:00
9aeacfe0ff [trainer] sharded _load_best_model (#17150)
* [trainer] sharded _load_best_model

probably needs a test?

* undo delete
2022-05-10 07:58:53 -07:00
1766fa2159 train args defaulting None marked as Optional (#17156)
Co-authored-by: Dom Miketa <dmiketa@exscientia.co.uk>
2022-05-10 10:09:34 -04:00
6d80c92c77 LogSumExp trick question_answering pipeline. (#17143)
* LogSumExp trick `question_answering` pipeline.

* Adding a failing test.
2022-05-10 10:03:55 +02:00
d719bcd46a Fix all docs for accelerate install directions (#17145) 2022-05-09 15:45:18 -04:00
766d4bf792 Fix MLflowCallback end_run() and add support for tags and nested runs (#17130)
* ensure mlflow.end_run() is executed at end of training when mlflow.start_run() was executed by the callback

* add debug msg

* add support for MLFLOW_TAGS, MLFLOW_RUN_ID, and MLFLOW_NESTED_RUN

* update to support python 3.6+

* Validate env variables using ENV_VARS_TRUE_VALUES

* Empty-Commit
2022-05-09 13:09:48 -04:00
2fbb237967 Add the auto_find_batch_size capability from Accelerate into Trainer (#17068)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

- Adds auto_batch_size finder 
- Moves training loop to an inner training loop
2022-05-09 12:29:18 -04:00
df735d1317 [WIP] Fix Pyright static type checking by replacing if-else imports with try-except (#16578)
* rebase and isort

* modify cookiecutter init

* fix cookiecutter auto imports

* fix clean_frameworks_in_init

* fix add_model_to_main_init

* blackify

* replace unnecessary f-strings

* update yolos imports

* fix roberta import bug

* fix yolos missing dependency

* fix add_model_like and cookiecutter bug

* fix repository consistency error

* modify cookiecutter, fix add_new_model_like

* remove stale line

Co-authored-by: Dom Miketa <dmiketa@exscientia.co.uk>
2022-05-09 11:28:53 -04:00
7783fa6bb3 Fix quality and repo consistency 2022-05-09 11:14:36 -04:00
05fc1766ff PyTorch FSDP integration in Trainer (#17136)
* PyTorch FSDP integration in Trainer

* reformatting

make style and make quality are now compliant.

* Updating dependency check

* Trigger CI

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-05-09 20:40:56 +05:30
dc3645dc9c add mobilebert onnx configs (#17029)
* update docs of length_penalty

* Revert "update docs of length_penalty"

This reverts commit 466bf4800b75ec29bd2ff75bad8e8973bd98d01c.

* add mobilebert onnx config

* address suggestions

* Update auto.mdx

* Update __init__.py

* Update features.py
2022-05-09 10:36:53 -04:00
a021f2b90c Add type hints for BigBirdPegasus and Data2VecText PyTorch models (#17123)
* Add type hints for remaining BigBirdPegasus models

Here I added type hints to the BigBirdPegasusForCausalLM class.

* Add missing type hints for Data2VecText models

Added type hints to the Data2VecTextForCausalLM, Data2VecTextForMaskedLM,
Data2VecTextForMultipleChoice, Data2VecTextForQuestionAnswering,
Data2VecTextForSequenceClassification, and
Data2VecTextForTokenClassification classes.
2022-05-09 12:45:43 +01:00
e9fd583ce0 LayoutLMv2Processor: ensure 1-to-1 mapping between images and samples in case of overflowing tokens (#17092)
* add get_overflowing_images function to ensure 1-to-1 mapping between samples and images in LayoutLMv2Processor

* make style

* add test for overflowing_tokens, change assert to ValueError, avoiding unrelated formatting changes

* change line length by passing --preview into black
2022-05-09 07:39:08 -04:00
3212afa614 split single_gpu and multi_gpu (#17083)
* split single_gpu and multi_gpu

* update needs in send_result

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-09 07:13:07 -04:00
215e0681e4 Added BigBirdPegasus onnx config (#17104)
* Add onnx configuration for bigbird-pegasus

* Modify docs
2022-05-06 17:31:00 +02:00
351cdbdfdc Fix self-push CI report path in cat (#17111)
* fix report cat path

* fix report cat path

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-06 07:45:17 -07:00
cad61b6839 Fix link to example scripts (#17103) 2022-05-05 15:20:27 -05:00
a59eb349c5 fix missing "models" in pipeline test module (#17090)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-05 16:12:01 +02:00
dd16a113a4 Remove torchhub test (#17097) 2022-05-05 10:02:47 -04:00
c849a61e65 Fix MLflowCallback and add support for MLFLOW_EXPERIMENT_NAME (#17091)
* Fix use of mlflow.active_run() and add proper support for MLFLOW_EXPERIMENT_NAME

* Fix code style (make style)
2022-05-05 09:49:55 -04:00
99289c08a1 Add type hints for BERTGeneration (#17047)
Added type hints for the BERTGenerationEncoder and BERTGenerationDecoder
classes.
2022-05-05 12:22:46 +01:00
45360e1a8e type hints for pytorch models (#17064)
* type hints for pytorch models

* fixed import error

* fixed some errors
2022-05-05 12:21:17 +01:00
db377a0b37 Added spanish translation of autoclass_tutorial. (#17069)
* Added spanish translation of autoclass_tutorial.
Added 'local' and 'title' fields for autoclass_tutorial.

* Fixed autoclass_tutorial title in _toctree.yml and autoclass_tutorial.mdx
2022-05-04 14:18:24 -05:00
6dc4c36acb minor change on TF Data2Vec test (#17085)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-04 18:39:30 +02:00
23619ef6b7 📝 open fresh PR for pipeline doctests (#17073) 2022-05-04 11:30:34 -05:00
870e6f29a6 Fix DeBERTa token_type_ids (#17082) 2022-05-04 18:23:37 +02:00
279bc5849b Allow saved_model export of TFCLIPModel in save_pretrained (#16886)
* CLIP Serving

* Add type hints per code review

* Use black, flake8, and isort

* Update src/transformers/models/clip/modeling_tf_clip.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Rollback serving_output and add TODO

* Remove irrelevant portions of failing tests

* Revert "Rollback serving_output and add TODO"

This reverts commit a4abfa6ba3b7875a13538dbc2ddc4eb17dfcca8d.

* Rollback to original test/serving_output

* Fix unused var

* Apply suggestions from code review

* Update formatting with black

* Fix style again from rebase

* Update tests/models/clip/test_modeling_tf_clip.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sean Moriarity <sean.l.moriarity.mil@army.mil>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-05-04 16:37:58 +02:00
ef20390291 Update to build via git for accelerate (#17084) 2022-05-04 09:42:36 -04:00
bb8d40529e Deprecate model templates (#17062)
* Deprecate model templates

* Address review comments
2022-05-04 09:36:38 -04:00
9c5ae87f13 Type hint complete Albert model file. (#16682)
* Type hint complete Albert model file.

* Update typing.

* Update src/transformers/models/albert/modeling_albert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-05-04 14:35:12 +01:00
2bf95e2b09 Bump notebook from 6.4.1 to 6.4.10 in /examples/research_projects/lxmert (#16634)
Bumps [notebook](http://jupyter.org) from 6.4.1 to 6.4.10.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-05-04 08:27:40 -04:00
7a229ef446 Bump notebook in /examples/research_projects/visual_bert (#16635)
Bumps [notebook](http://jupyter.org) from 6.4.1 to 6.4.10.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-05-04 08:27:27 -04:00
049e791758 Add Data2Vec for Vision in TF (#17008)
* add utilities till TFData2VecVisionLayer.

* chore: pass window_size to attention layer.

* feat: add TFData2VecVisionRelativePositionBias.

* feat: initial implementation ready for tf data2vec.

* fix: relative position bias index, table to be fixed.

* chore: implementation added, tests remaining.

* add: tests, other PR files.

* fix: code quality.

* fix: import structure in init.

* chore: run make fix-copies.

* chore: address PR feedback (round I).

* chore: styling nit.

* fix: tests due to removal of to_2tuple().

* chore: rebase with upstream main and move the test.

* Update src/transformers/models/auto/modeling_tf_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/auto/modeling_tf_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix: layer call.

* chore: remove from_pt=True and rerun test.

* chore: remove cast and tf.divide.

* chore: minor edits to the test script.

* Update src/transformers/models/data2vec/modeling_tf_data2vec_vision.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* fix: expand() on TF tensors with broadcast_to().

* fix: test import.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-05-04 08:08:25 -04:00
d76d2a2af7 Make sure telemetry arguments are not returned as unused kwargs (#17063)
* Make sure telemetry arguments are not returned as unused kwargs

* Fix test
2022-05-04 07:47:57 -04:00
675e2d1663 Remove masked image modeling from BEIT ONNX export (#16980)
* Add masked image modelling to task mapping

* Refactor ONNX features to be listed alphabetically

* Add warning about BEiT masked image modeling

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-04 10:05:24 +02:00
4bb1d0ec84 Skip RoFormer ONNX test if rjieba not installed (#16981)
* Skip RoFormer ONNX test if rjieba not installed

* Update deps table

* Skip RoFormer serialization test

* Fix RoFormer vocab

* Add rjieba to CircleCI
2022-05-04 10:04:10 +02:00
db034660fb Fix hashing for deduplication (#17048) 2022-05-04 08:40:24 +02:00
39f8eafc1b Remove device parameter from create_extended_attention_mask_for_decoder (#16894) 2022-05-03 11:06:11 -04:00
dd739f7045 Remove fetch in model templates test 2022-05-03 10:49:12 -04:00
1c9fcd0e04 Fix RNG reload in resume training from epoch checkpoint (#17055)
* Fix RNG reload in resume training from epoch checkpoint

* Fix test
2022-05-03 10:31:24 -04:00
6e17ba6aa5 Remove Python and use v2 action (#17059) 2022-05-03 10:12:17 -04:00
a8fa2f91f4 Make Trainer compatible with sharded checkpoints (#17053)
* Make Trainer compatible with sharded checkpoints

* Add doc
2022-05-03 09:55:10 -04:00
19420fd99e Move test model folders (#17034)
* move test model folders (TODO: fix imports and others)

* fix (potentially partially) imports (in model test modules)

* fix (potentially partially) imports (in tokenization test modules)

* fix (potentially partially) imports (in feature extraction test modules)

* fix import utils.test_modeling_tf_core

* fix path ../fixtures/

* fix imports about generation.test_generation_flax_utils

* fix more imports

* fix fixture path

* fix get_test_dir

* update module_to_test_file

* fix get_tests_dir from wrong transformers.utils

* update config.yml (CircleCI)

* fix style

* remove missing imports

* update new model script

* update check_repo

* update SPECIAL_MODULE_TO_TEST_MAP

* fix style

* add __init__

* update self-scheduled

* fix add_new_model scripts

* check one way to get location back

* python setup.py build install

* fix import in test auto

* update self-scheduled.yml

* update slack notification script

* Add comments about artifact names

* fix for yolos

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-03 14:42:02 +02:00
cd9274d010 [FlaxBert] Add ForCausalLM (#16995)
* [FlaxBert] Add ForCausalLM

* make style

* fix output attentions

* Add RobertaForCausalLM

* remove comment

* fix fx-to-pt model loading

* remove comment

* add modeling tests

* add enc-dec model tests

* add big_bird

* add electra

* make style

* make repo-consitency

* add to docs

* remove roberta test

* quality

* amend cookiecutter

* fix attention_mask bug in flax bert model tester

* tighten pt-fx thresholds to 1e-5

* add 'copied from' statements

* amend 'copied from' statements

* amend 'copied from' statements

* quality
2022-05-03 11:26:19 +02:00
31616b8d61 [T5 Tokenizer] Model has no fixed position ids - there is no hardcode… (#16990)
* [T5 Tokenizer] Model has no fixed position ids - there is no hardcoded max length

* [T5 Tokenizer] Model has no fixed position ids - there is no hardcoded max length

* correct t5 tokenizer

* correct t5 tokenizer

* fix test

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* finish

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-02 21:27:34 +02:00
1073f00d4e Clean up setup.py (#17045)
* Clean up setup.py

* Trigger CI

* Upgrade Python used
2022-05-02 12:58:17 -04:00
30ca529902 Make the sacremoses dependency optional (#17049)
* Make sacremoses optional

* Pickle
2022-05-02 12:47:47 -04:00
bb2e088be7 Allow all imports from transformers (#17050) 2022-05-02 12:47:39 -04:00
1ac698744c Add YOLOS (#16848)
* First draft

* Add YolosForObjectDetection

* Make forward pass work

* Add mid position embeddings

* Add interpolation of position encodings

* Add expected values

* Add YOLOS to tests

* Add integration test

* Support tiny model as well

* Support all models in conversion script

* Remove mid_pe_size attribute

* Make more tests pass

* Add model to README and fix config

* Add copied from statements

* Rename base_model_prefix to vit

* Add missing YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP

* Apply suggestions from code review

* Apply more suggestions from code review

* Convert remaining checkpoints

* Improve docstrings

* Add YolosFeatureExtractor

* Add feature extractor to docs

* Add corresponding tests

* Fix style

* Fix docs

* Apply suggestion from code review

* Fix bad rebase

* Fix some more bad rebase

* Fix missing character

* Improve docs and variable names

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-05-02 18:30:55 +02:00
f275e593bf Fix no_trainer examples to properly calculate the number of samples (#17046)
* Update all examples to properly calculate progress bar
2022-05-02 11:56:25 -04:00
35d48db881 Update no_trainer examples to use new logger (#17044)
* Propagate and fix imports
2022-05-02 11:56:15 -04:00
daecae1f1c [Trainer] Move logic for checkpoint loading into separate methods for easy overriding (#17043) 2022-05-02 10:40:37 -04:00
2de2c9ecca Clean up vision tests (#17024)
* Clean up tests

* Make fixup

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-05-02 16:28:58 +02:00
4be8b95a9f Disable Flax GPU tests on push (#17042) 2022-05-02 10:25:53 -04:00
bdd690a74d add torch.no_grad when in eval mode (#17020)
* add torch.no_grad when in eval mode

* make style quality
2022-05-02 07:49:19 -04:00
9586e222af Fix typo in RetriBERT docstring (#17018) 2022-05-02 07:48:20 -04:00
93b802c43e [Flax(Speech)EncoderDecoder] Fix bug in decoder_module (#17036)
* [FlaxSpeechEncoderDecoder] Fix bug in `decoder_module`

* [FlaxEncoderDecoder] Fix bug in `decoder_module`
2022-05-02 13:06:45 +02:00
1ae182d9a6 Fix style 2022-05-02 06:19:31 -04:00
2c2a2169b6 Fx with meta (#16836)
* Add meta proxy

* Uses meta data to trace data dependent control-flow

* Remove commented class

* Handles torch creating functions

* Added type annotation to fix tracing

* Tracing works for everything but T5 and GPT-J

* Almost all previously supported models pass

* All architectures can be traced except T5

* Intermediate commit to have a trace of the comparison operators for HFProxy

* Everything works, except loss computation

* Everything works

* Removed unused import

* Overriden methods do not use underlying ops (linear and torch.matmul), and model attributes are copied to the traced version

* Fix torch_matmul_override

* Change attributes reference to deepcopy

* Remove breakpoint and add torch_index_override

* Small fix

* Fix typo

* Replace asserts by explicit exceptions
2022-05-02 11:46:52 +02:00
ff846e9b28 [FlaxGenerate] Fix bug in decoder_start_token_id (#17035) 2022-05-02 11:05:27 +02:00
eb877f1fd0 update docs of length_penalty (#17022) 2022-05-02 11:01:18 +02:00
da47c264f9 Add translating guide (#17004)
* Add translating guide
2022-04-30 17:43:38 -05:00
ede5e04191 Add a check on config classes docstring checkpoints (#17012)
* Add the check

* add missing ckpts

* add a list to ignore

* call the added check script

* better regex pattern

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-30 10:40:46 +02:00
7152ed2bae Result of new doc style with fixes (#17015)
* Result of new doc style with fixes

* Add last two files

* Bump hf-doc-builder
2022-04-29 17:42:15 -04:00
18df440709 Replace dict/BatchEncoding instance checks by Mapping (#17014)
* Replace dict/BatchEncoding instance checks by Mapping

* Typo
2022-04-29 17:20:52 -04:00
b8dffd1f3e Revert "Updating variable names. (#16445)" (#17011)
This reverts commit 4f3a14e3c235c8b6b8cd2f5bc448a0cffacddf61.
2022-04-29 12:26:45 -04:00
4f3a14e3c2 Updating variable names. (#16445) 2022-04-29 17:44:28 +02:00
20fb5d51ea Update README_zh-hans.md (#16977) 2022-04-29 11:05:03 -04:00
63fbed5c59 Make create_extended_attention_mask_for_decoder static method (#16893) 2022-04-29 10:57:09 -04:00
fb0ae12947 TF: XLA bad words logits processor and list of processors (#16974) 2022-04-29 15:54:58 +01:00
57e6464ac9 Update all require decorators to use skipUnless when possible (#16999) 2022-04-29 08:55:38 -04:00
e952e049b4 use scale=1.0 in floats_tensor called in speech model testers (#17007)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-29 14:41:33 +02:00
e6f00a11d7 Update README to latest release (#16997) 2022-04-28 14:17:44 -04:00
3486a92a57 Fix savedir for by epoch (#16996) 2022-04-28 13:49:45 -04:00
5af5735f62 set eos_token_id to None to generate until max length (#16989)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-28 19:47:38 +02:00
01562dac7e Rename a class to reflect framework pattern AutoModelXxx -> TFAutoModelXxx (#16993) 2022-04-28 18:11:54 +01:00
1be8d56ec6 Add parameter --config_overrides for run_mlm_wwm.py (#16961)
* dd parameter --config_overrides for run_mlm_wwm.py

* linter
2022-04-28 10:44:55 -04:00
1f9e862507 Update check_models_are_tested to deal with Windows path (#16973)
* fix

* Apply suggestions from code review

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-28 15:31:57 +02:00
dced262409 Update tokenization_bertweet.py (#16941)
The emoji version must be either 0.5.4 or 0.6.0. Newer emoji versions have been updated to newer versions of the Emoji Charts, thus not consistent with the one used for pre-processing the pre-training Tweet corpus (i.e. not consistent with the vocab).
2022-04-27 16:54:31 -04:00
992996e9ca Add -e flag to some GH workflow yml files (#16959)
* Add -e flag

* add check

* create new keys

* run python setup.py build install

* add comments

* change to develop

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-27 21:44:21 +02:00
596afb4297 Fix check_all_models_are_tested (#16970)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-27 21:18:29 +02:00
691cdbb7d7 Fix doc notebooks links (#16969)
* Fix doc notebooks links

* Remove missing section
2022-04-27 14:59:53 -04:00
60e1d883f1 Fixup no_trainer save logic (#16968)
* Fixup all examples
2022-04-27 14:46:49 -04:00
c79bbc3ba5 Fix multiple deletions of the same files in save_pretrained (#16947)
* Fix multiple deletions of the same files in save_pretrained

* Add is_main_process argument
2022-04-27 12:28:42 -04:00
bfbec17765 Fix add-new-model-like when model doesn't support all frameworks (#16966) 2022-04-27 11:15:25 -04:00
cf8a7c2490 Update custom_models.mdx (#16964)
BertModelForSequenceClassification -> BertForSequenceClassification
2022-04-27 16:46:55 +02:00
5896b3ecce Fix distributed_concat with scalar tensor (#16963)
* Fix `distributed_concat` with scalar tensor

* Update trainer_pt_utils.py
2022-04-27 10:26:22 -04:00
084c38c59d [HF Argparser] Fix parsing of optional boolean arguments (#16946)
* Add fix

* Apply suggestion from code review

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-04-27 15:00:45 +02:00
c82e017aa9 Misc. fixes for Pytorch QA examples: (#16958)
1. Fixes evaluation errors popping up when you train/eval on squad v2 (one was newly encountered and one that was previously reported Running SQuAD 1.0 sample command raises IndexError #15401 but not completely fixed).
2. Removes boolean arguments that don't use store_true. Please, don't use these: *ANY non-empty string is being converted to True in this case and this clearly is not the desired behavior (and it creates a LOT of confusion).
3. All no-trainer test scripts are now saving metric values in the same way (with the right prefix eval_), which is consistent with the trainer-based versions.
4. Adds forgotten model.eval() in the no-trainer versions. This improved some results, but not everything (see the discussion in the end). Please, see the F1 scores and the discussion below.
2022-04-27 08:51:39 -04:00
49d5bcb0f3 Fix HubertRobustTest PT/TF equivalence test on GPU (#16943)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-27 10:50:03 +02:00
479fdc4925 Add semantic script, trainer (#16834)
* Add first draft

* Improve script and README

* Improve README

* Apply suggestions from code review

* Improve script, add link to resulting model

* Add corresponding test

* Adjust learning rate
2022-04-27 10:12:18 +02:00
a4a88fa09f [Research] Speed up evaluation for XTREME-S (#16785)
* Avoid repeated per-lang filtering

* Language groups and logits preprocessing

* Style
2022-04-27 08:34:21 +02:00
2d91e3c304 use original loaded keys to find mismatched keys (#16920) 2022-04-26 17:29:52 -04:00
d365f5074f Fix RuntimeError message format (#16906) 2022-04-26 17:08:28 -04:00
10dfa126b7 documentation: some minor clean up (#16850) 2022-04-26 16:56:08 -04:00
aaee4038c3 Add onnx config for RoFormer (#16861)
* add roformer onnx config
2022-04-26 16:51:15 +02:00
8afaaa26f5 FIx Iterations for decoder (#16934)
FIx Iterations for decoder
2022-04-26 12:54:14 +02:00
fa32247406 apply torch int div to layoutlmv2 (#15457)
* apply torch int div

* black linting fixup

* update path to torch_int_div

* clarify imports
2022-04-26 10:07:51 +02:00
344b9fb0c6 Limit the use of PreTrainedModel.device (#16935)
* Limit the use of PreTrainedModel.device

* Fix
2022-04-25 20:58:50 -04:00
6568752039 Fix issue probably-meant-fstring found at https://codereview.doctor (#16913) 2022-04-25 15:15:00 -04:00
fea94d6790 Replace deprecated logger.warn with warning (#16876) 2022-04-25 15:12:51 -04:00
e03966e404 TF: XLA stable softmax (#16892)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-25 20:10:51 +01:00
8246caf3eb added deit onnx config (#16887)
* added deit onnx config
2022-04-25 20:50:45 +02:00
9331b37967 TF: XLA Logits Warpers (#16899)
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-04-25 19:48:08 +01:00
809dac48f9 TF: XLA logits processors - minimum length, forced eos, and forced bos (#16912)
* XLA min len, forced eos, and forced bos

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-04-25 19:27:53 +01:00
f6210c49e2 Fix RemBertTokenizerFast (#16933)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-25 19:51:50 +02:00
32adbb26d6 Fix PyTorch RAG tests GPU OOM (#16881)
* add torch.cuda.empty_cache in some PT RAG tests

* torch.cuda.empty_cache in tearDownModule()

* tearDown()

* add gc.collect()

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-25 17:33:56 +02:00
3e47d19cfc Add missing ckpt in config docs (#16900)
* add missing ckpt in config docs

* add more missing ckpt in config docs

* fix wrong ckpts

* fix realm ckpt

* fix s2t2

* fix xlm_roberta ckpt

* Fix for deberta v2

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* use only one checkpoint for DPR

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-04-25 17:31:45 +02:00
3a71e94a92 Fix doc test quicktour dataset (#16929)
* fix doc test

* fix doc test

Co-authored-by: Patrick <patrick@pop-os.localdomain>
2022-04-25 16:26:59 +02:00
508baf1943 add bigbird typo fixes (#16897)
Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
2022-04-25 11:32:06 +02:00
72728be3db [DocTests] Fix some doc tests (#16889)
* [DocTests] Fix some doc tests

* hacky fix

* correct
2022-04-23 08:40:14 +02:00
22fc93c4d9 Changes in create_optimizer to support tensor parallelism with SMP (#16880)
* changes in create optimizer to support tensor parallelism with SMP

* Update src/transformers/trainer.py

Convert if check to one line.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Cavdar <dcavdar@a07817b12d7e.ant.amazon.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-22 15:24:38 -04:00
99c8226b12 TF: XLA repetition penalty (#16879) 2022-04-22 18:29:32 +01:00
ec81c11a18 Add OnnxConfig for ConvBERT (#16859)
* add OnnxConfig for ConvBert

Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
2022-04-22 18:19:15 +02:00
0d1cff1195 Add doc tests for Albert and Bigbird (#16774)
* Add doctest BERT

* make fixup

* fix typo

* change checkpoints

* make fixup

* define doctest output value, update doctest for mobilebert

* solve fix-copies

* update QA target start index and end index

* change checkpoint for docs and reuse defined variable

* Update src/transformers/models/bert/modeling_tf_bert.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* make fixup

* Add Doctest for Albert and Bigbird

* make fixup

* overwrite examples for Albert and Bigbird

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update longer examples for Bigbird

* using examples from squad_v2

* print out example text

* change name token-classification-big-bird checkpoint to random

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-04-22 18:07:16 +02:00
9fa88172c2 Minor fixes/improvements in convert_file_size_to_int (#16891)
* Minor improvements to `convert_file_size_to_int`

* Add <unit>bit version to kilos and megas

* Minor fix
2022-04-22 16:54:20 +02:00
6d90d76f5d TF: rework XLA generate tests (#16866) 2022-04-22 12:38:08 +01:00
3b1bbefc47 Add missing entries in mappings (#16857)
* add missing entries in some mappings

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-22 10:53:24 +02:00
d91841315a New features for CodeParrot training script (#16851)
* add tflops logging and fix grad accumulation

* add accelerate tracking and checkpointing

* scale loss of last batch correctly

* fix typo

* compress loss computation

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* add resume from checkpoint argument

* add load_state accelerate from checkpoint, register lr scheduler and add tflops function

* reformat code

* reformat code

* add condition on path for resume checkpoint

* combine if conditions

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* add source for tflops formula

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
2022-04-21 18:43:46 +02:00
eef2422e96 Fix doctest list (#16878)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-21 18:12:14 +02:00
0b1e0fcf7a Fix GPT-J onnx conversion (#16780)
* add gptj to TOKENIZER_MAPPING_NAMES

* fix int32 to float to avoid problem in onnx

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-04-21 15:55:30 +02:00
bae9b6458c Use ACT2FN to fetch ReLU activation (#16874)
- all activations should be fetched through ACT2FN
- it returns ReLU as `nn.Module`, which allows attaching hooks on the activation function and prints it to stdout when `print(model)`
2022-04-21 09:33:29 -04:00
cb555af2c7 Return input_ids in ImageGPT feature extractor (#16872) 2022-04-21 09:09:00 -04:00
e789418ebe Adding support for array key in raw dictionnaries in ASR pipeline. (#16827)
* Adding support for `array` key in raw dictionnaries in ASR pipeline.

* ES .

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Making it work by not popping `array` first.

* Black 22.3

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-21 14:39:10 +02:00
daf520b033 tiny tweak to allow BatchEncoding.token_to_char when token doesn't correspond to chars (#15901)
* tweak to allow BatchEncoding.char_to_token(0)

* update docstring

* remote trailing whitespace

* make fixup

* make value checking for span_indices explicit

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-21 08:07:54 -04:00
cb7e166428 t5: add conversion script for T5X to FLAX (#16853)
* t5: add conversion script for T5X to FLAX

* t5: make flake happy

* t5: add copyright message to t5x conversion script

* t5: fix lm head for v1.0 checkpoints
2022-04-21 13:00:35 +02:00
6620f60c0a Long QuestionAnsweringPipeline fix. (#16778)
* Temporary commit witht the long QA fix.

* Adding slow tests covering this fix.

* Removing fast test as it doesn't fail anyway.
2022-04-21 09:59:25 +02:00
705d65368f Fix multiproc metrics in no_trainer examples (#16865) 2022-04-20 17:26:27 -04:00
175da8d182 Fix custom init sorting script (#16864) 2022-04-20 17:05:39 -04:00
67ed0e43dc [docs] fix url (#16860) 2022-04-20 11:01:24 -07:00
afa1ef0992 [modeling_utils] use less cpu memory with sharded checkpoint loading (#16844)
* less cpu memory with sharded checkpoint loading

* Trigger CI

* Trigger CI
2022-04-20 07:44:37 -07:00
e13a91fe60 Fixing return type tensor with num_return_sequences>1. (#16828)
* Fixing return type tensor with `num_return_sequences>1`.

* Nit.
2022-04-20 16:11:51 +02:00
ff06b17791 add DebertaV2 fast tokenizer (#15529)
Co-authored-by: alcinos <carion.nicolas@gmail.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
Co-authored-by: Nicolas Carion <carion.nicolas@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-20 10:26:51 +02:00
e1c153cbaa [Typo] Fix typo in modeling utils (#16840) 2022-04-19 23:09:03 +02:00
3104036e7f Add support for bitsandbytes (#15622)
* Add initial BNB integration

* fixup! Add initial BNB integration

* Add bnb test decorator

* Update Adamw8bit option name

* Use the full bnb package name

* Overide bnb for all embedding layers

* Fix package name

* Formatting

* Remove unnecessary import

* Update src/transformers/trainer.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Rename AdamwBNB optimizer option

* Add training test checking that bnb memory utilization is lower

* fix merge

* fix merge; fix + extend new test

* cleanup

* expand bnb

* move all require_* candidates to testing_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2022-04-19 16:01:29 -04:00
e6d23a4b9b Improve test_pt_tf_model_equivalence on PT side (#16731)
* Update test_pt_tf_model_equivalence on PT side

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-19 21:13:27 +02:00
3dd57b15c5 Type hints added to Speech to Text (#16506)
* Type hints added

* return hints added

* Update src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-04-19 17:58:08 +01:00
1efca4e6c8 replace Speech2TextTokenizer by Speech2TextFeatureExtractor in some docstrings (#16835)
* replace `Speech2TextTokenizer` by `Speech2TextFeatureExtractor` in docstring

* quality
2022-04-19 18:32:22 +02:00
b5c6a63ed9 Correct Logging of Eval metric to Tensorboard (#16825)
* Correct Logging of Eval metric to Tensorboard

An empty dictionary ``eval_metrics`` was being logged, is replaced by ``eval_metric`` which is the output dictionary of ``metric.compute()``.

* Remove unused variable
2022-04-19 17:27:54 +02:00
f09c45e067 TF: Add sigmoid activation function (#16819) 2022-04-19 16:13:08 +01:00
74814574ae Add doc about attention_mask on gpt2 (#16829)
* Add doc about `attention_mask` on gpt2

Add a simple sentence describing how `attention_mask` needs to be constructed when ``past_key_values` is used.

* Add doc about attention_mask on gpt2_tf

* clean up style

* remove empty line white spaces

* remove whitespace in empty line
2022-04-19 16:32:26 +02:00
b96e82c80a Add image classification script, no trainer (#16727)
* Add first draft

* Improve README and run fixup

* Make script aligned with other scripts, improve README

* Improve script and add test

* Remove print statement

* Apply suggestions from code review

* Add num_labels to make test pass

* Improve README
2022-04-19 16:32:08 +02:00
db9f189121 [ASR Pipeline] Correct init docs (#16833)
* correct

* up
2022-04-19 16:12:36 +02:00
77de8d6c31 Add onnx export of models with a multiple choice classification head (#16758)
* Add export of models with a multiple-choice classification head
2022-04-19 15:51:51 +02:00
b74a955325 fix rum_clm.py seeking text column name twice (#16624) 2022-04-19 14:38:25 +01:00
3663fca41b Type hints added for TFMobileBert (#16505)
* Type hints added

* make style

* Return type hints added

* fixed typo

Co-authored-by: matt <rocketknight1@gmail.com>
2022-04-19 14:37:03 +01:00
a2392415e9 Some tests misusing assertTrue for comparisons fix (#16771)
* Fix issue avoid-misusing-assert-true found at https://codereview.doctor

* fix tests

* fix tf

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-04-19 14:44:08 +02:00
d3bd9ac728 [Flax] improve large model init and loading (#16148)
* begin do_init

* add params_shape_tree

* raise error if params are accessed when do_init is False

* don't allow do_init=False when keys are missing

* make shape tree a property

* assign self._params at the end

* add test for do_init

* add do_init arg to all flax models

* fix param setting

* disbale do_init for composite models

* update test

* add do_init in FlaxBigBirdForMultipleChoice

* better names and errors

* improve test

* style

* add a warning when do_init=False

* remove extra if

* set params after _required_params

* add test for from_pretrained

* do_init => _do_init

* chage warning to info

* fix typo

* add params in init_weights

* add params to gpt neo init

* add params to init_weights

* update do_init test

* Trigger CI

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update template

* trigger CI

* style

* style

* fix template

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-04-19 14:19:55 +02:00
6de4ee61a0 Wav2 vec2 phoneme ctc tokenizer optimisation (#16817)
* Solved href rendering issue in heading

Markdown references in headings such as '####' don't render well.
Replaced it with <h4>...<a></a></h> banners.

* PhonemeTokenizer optimization using phonemizer lib

The backend should only be initialized once, otherwise it is reloaded.
Added `init_backend` function, intializes a backend attribute.
Phonemize re-uses self.backend.
Should give ~10 times faster phonemization.

* formatted file with make style

* Documentation suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update /tokenization_wav2vec2_phoneme.py based on PR suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update CONTRIBUTING.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-19 07:39:04 -04:00
306c9ee966 Fix LayoutLMv2 tokenization docstrings (#16187)
* Fix docstrings

* Fix up

* Fix
2022-04-19 12:14:51 +02:00
7db7aab439 Add semantic script no trainer, v2 (#16788)
* Add first draft from previous PR

* First draft

* Improve README and remove num_labels

* Make script more aligned with other scripts

* Improve README and apply suggestion from code review
2022-04-19 09:07:29 +02:00
494c2a8c4d Clean up semantic segmentation tests (#16801)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-04-19 09:02:19 +02:00
989a15d173 fix _setup_devices in case where there is no torch.distributed package in build (#16821)
* fix _setup_devices in case where there is not torch.distributed

* in training_args_sm.py as well
2022-04-18 18:36:46 -04:00
c11a49573f Refactor issues with yaml (#16772)
* Refactor issues with yaml

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update .github/ISSUE_TEMPLATE/feature-request.yml

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Address review comments

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-04-18 16:43:21 -04:00
51e0ebedcb Allow passing encoder_ouputs as tuple to EncoderDecoder Models (#16814)
* Add passing encoder_outputs as tuple to existing test

* Add check for tuple

* Add check for tuple also for speech and vision

Co-authored-by: jsnfly <jsnfly@gmx.de>
2022-04-18 19:49:58 +02:00
51fa7191b1 use base_version to check torch version in torch_less_than_1_11 (#16806)
* use base_version

* make is_torch_less_than_1_8 match 1_11

Co-authored-by: Nicholas Broad <nicholas@nmbroad.com>
2022-04-18 13:02:00 -04:00
8d3f952adb [Data2Vec] Add data2vec vision (#16760)
* save intermediate

* add vision

* add vision

* save

* finish models

* finish models

* continue

* finish

* up

* up

* up

* tests all pass

* clean up

* up

* up

* fix bugs in beit

* correct docs

* finish

* finish docs

* make style

* up

* more fixes

* fix type hint

* make style

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/data2vec/test_modeling_data2vec_vision.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix test

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-18 17:52:13 +02:00
33cd4be576 fix megatron bert convert state dict naming (#15820) 2022-04-18 11:34:36 -04:00
9a2995ee39 [Quicktour Audio] Improve && remove ffmpeg dependency (#16723)
* [Quicktour Audio] Improve && remove ffmpeg dependency

* final fix

* final touches
2022-04-18 16:50:13 +02:00
d3c9d0e55f [ViT, BEiT, DeiT, DPT] Improve code (#16799)
* Improve code

* Fix bugs

* Fix another bug

* Clean up DTP as well

* Update DPT model outputs

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-04-18 09:25:08 -04:00
3785f4665a Fix syntax error in TorchHub workflow 2022-04-18 07:54:00 -04:00
6984848ed0 Create empty venv on cache miss (#16816) 2022-04-18 07:49:31 -04:00
438144832e Raise error and suggestion when using custom optimizer with Fairscale or Deepspeed (#16786)
* optimizer issues related to saving

* remove the "optimizer saving" option

* reformat using make style
2022-04-18 07:47:21 -04:00
b4ddd2677c TF generate refactor - XLA sample (#16713) 2022-04-18 10:58:24 +01:00
02de7a8e7f CI: non-remote GH Actions now use a python venv (#16789) 2022-04-18 09:47:38 +01:00
dee6f01636 Pin Jax to last working release (#16808)
* Pin Jax to last working release

* Try lower

* Try lower
2022-04-16 21:15:19 -04:00
78f346c2b5 Update README.md (#16797) 2022-04-15 14:10:16 +02:00
ee209d4d01 Fix PT TF ViTMAE (#16766)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-15 06:37:10 +02:00
5da33f8729 [modeling utils] revamp from_pretrained(..., low_cpu_mem_usage=True) + tests (#16657)
* add low_cpu_mem_usage tests

* wip: revamping

* wip

* install /usr/bin/time

* wip

* cleanup

* cleanup

* cleanup

* cleanup

* cleanup

* fix assert

* put the wrapper back

* cleanup; switch to bert-base-cased

* Trigger CI

* Trigger CI
2022-04-14 18:10:05 -07:00
ce2fef2ad2 [trainer / deepspeed] fix hyperparameter_search (#16740)
* [trainer / deepspeed] fix hyperparameter_search

* require optuna

* style

* oops

* add dep in the right place

* create deepspeed-testing dep group

* Trigger CI
2022-04-14 17:24:38 -07:00
1b7de41a07 Fix issue avoid-missing-comma found at https://codereview.doctor (#16768) 2022-04-14 16:42:27 -04:00
de8b06f9bf [SpeechEncoderDecoderModel] Fix bug in reshaping labels (#16748) 2022-04-14 19:02:40 +01:00
048443db86 Improve image classification example (#16585)
* Improve README

* Make dataset_name argument optional

* Improve local data

* Fix bug

* Improve README some more

* Apply suggestions from code review

* Improve README

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-04-14 18:10:52 +02:00
3e4eec47f5 Kill async pushes when calling push_to_hub with blocking=True (#16755) 2022-04-14 10:02:29 -04:00
c21e1071a7 [deepspeed / m2m_100] make deepspeed zero-3 work with layerdrop (#16717)
* [deepspeed / m2m_100] make deepspeed 3 work with layerdrop

* fix

* revert last
2022-04-14 06:51:55 -07:00
89293a0f6b Make nightly install dev accelerate (#16783) 2022-04-14 09:41:02 -04:00
b151ddb9b9 Fix batch size in evaluation loop (#16763)
* Fix batch size in evaluation loop

* remove debug statement
2022-04-14 09:22:54 -04:00
d8269eb4d5 [Flax .from_pretrained] Raise a warning if model weights are not in float32 (#16762)
* [Flax] Raise a warning if model weights are not in float32

* apply suggestions and few small changes

* reorder wording for better readability
2022-04-14 11:52:15 +02:00
195fbbb6cf Enabling Tapex in table question answering pipeline. (#16663)
* Enabling `Tapex` in table question answering pipeline.

* Questions are independant for Tapex, making the test respect that.

* Missing extra space.
2022-04-14 09:06:14 +02:00
442dc45645 [Doctest] added doctest changes for electra (#16675)
* added doctest changes for electra

* fixed doctest tests

* updated changes
2022-04-13 22:39:00 +02:00
be752d12f8 Fixup no_trainer examples scripts and add more tests (#16765)
* Change tracking to store_true

* Remove step param and use it in the log dictionary directly

* use vars(args) when passing args to init_trackers

* Include tracking tests since tensorboard is already a dep
2022-04-13 14:40:48 -04:00
3a16ab25c8 [self-scheduled ci] explain where dependencies are (#16757) 2022-04-13 12:28:02 -04:00
34ef029dc0 Add self training code for text classification (#16738)
* Add self-training code for text-classification

* Add self-training code for text-classification

* Add self-training code for text-classification

* Add self-training code for text-classification

* Add self-training code for text-classification

* Delete strata
2022-04-13 12:03:24 -04:00
8e0d3b427f Add defensive check for config num_labels and id2label (#16709)
* Add defensive check for config num_labels and id2label

* Actually check value...

* Only warning inside init plus better error message
2022-04-13 11:28:19 -04:00
6bed0647fe Reduce Funnel PT/TF diff (#16744)
* Make Funnel Test less flaky

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-13 17:19:52 +02:00
0b8f697219 CI: setup-dependent pip cache (#16751)
* Setup-dependent pip cache

* Do not restore from old versions
2022-04-13 16:19:14 +01:00
ac43a40e6a [modeling_utils] better explanation of ignore keys (#16741) 2022-04-13 08:03:20 -07:00
0235bc57ab Fix and improve CTRL doctests (#16573)
* Improve CTRL doctests

* Fix `CTRLForSequenceClassification` flakiness with inconsistent losses

* Remove unused

* Fixup

* Add CTRL to documentation_tests.txt

* Fix control code not being first

* Add output assertions

* Change from sshleifer/tiny-ctrl -> ctrl

* Run `make fixup`

* apply `list` to output logits shape for clarity

* Reduce output loss precision to make assertion more robust

* Add assertion of control code being first

* Fix docstyle

* upper case sentence following control code

* Weird bug fixes

* Add a better generation example

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-04-13 15:44:31 +02:00
06b4aac9eb Add Doc Test for GPT-J (#16507)
* Required the values GPTJ unfortunately cannot run the model =)

* Added the file to the doc tests

* Run Fixup and Style

* Fixed with the test versions of gptj. Ran Style and Fixup.

* Trigger ci

* A Minor Change to License

* Fixed spacing added to the benchmark_utils. Then refactored tests to const variables.

* Removed strings that were included as default parameters anyways.

Co-authored-by: ArEnSc <xx.mike.chung.xx@gmail.com>
2022-04-13 15:04:47 +02:00
12bfa97a43 [from_pretrained] refactor find_mismatched_keys (#16706) 2022-04-13 07:50:15 -04:00
9f8bfe703c Fix #16660 (tokenizers setters of ids of special tokens) (#16661)
* Fix setters of *_token_id properties of SpecialTokensMixin

* Test setters of common tokens ids

* Move to a separate test checks of setters of tokens ids

* Add independent test for ByT5

* Add Canine test

* Test speech to text
2022-04-13 07:49:06 -04:00
b24201fa44 [Doctests] Fix all T5 doc tests (#16646)
* [Doctests] Fix all T5 doc tests

* make style

* Update docs/source/en/model_doc/t5.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply Sylvains comments

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-13 11:36:54 +02:00
f7196f2e63 Fix decoding score comparison when using logits processors or warpers (#10638)
* Normalize using a logits warper

* Add a flag in `generate` to support the logit renormalization

* Add in RAG
2022-04-13 09:37:33 +01:00
eb5bdcdfa5 TF generate: handle case without cache in beam search (#16704) 2022-04-12 20:46:10 +01:00
9c9db751e2 add Bigbird ONNX config (#16427)
* add Bigbird ONNX config
2022-04-12 20:46:06 +02:00
a960406722 [FlaxWav2Vec2Model] Fix bug in attention mask (#16725)
* [FlaxWav2Vec2Model] Fix bug in attention mask

* more fixes

* add (Flax)SpeechEncoderDecoderModel PT-FX cross-test
2022-04-12 19:48:24 +02:00
6adefba3f0 [FlaxSpeechEncoderDecoder] Fix input shape bug in weights init (#16728)
* [FlaxSpeechEncoderDecoder] Fix input shape bug in weights init

* make style
2022-04-12 19:33:57 +02:00
1bac40db8a Add Doc Tests for Reformer PyTorch (#16565)
* start working

* fix: ReformerForQA doctest

* fix: ReformerModelWithLMHead doctest

* fix: ReformerModelForSC doctest

* fix: ReformerModelForMLM doctest

* add: documentation_tests.txt

* make fixup

* change: ReformerModelForSC doctest

* change: checkpoint
2022-04-12 18:52:31 +02:00
d7f7f29f29 TF: remove set_tensor_by_indices_to_value (#16729) 2022-04-12 17:51:47 +01:00
a315988bae Moved functions to pytorch_utils.py (#16625)
* Moved functions to pytorch_utils.py

* isort formatting

* Reverted tf changes

* isort, make fix-copies

* documentation fix

* Fixed Conv1D import

* Reverted research examples file

* backward compatibility for pytorch_utils

* missing import

* isort fix
2022-04-12 12:38:50 -04:00
0711c45eae Remove duplicate header (#16732) 2022-04-12 12:37:13 -04:00
a192f61e08 Change the chunk_iter function to handle (#16730)
* Change the chunk_iter function to handle

the subtle cases where the last chunk gets ignored since all the
data is in the `left_strided` data.

We need to remove the right striding on the previous item.

* Remove commented line.
2022-04-12 18:25:02 +02:00
cc034f72eb Replace assertion with exception (#16720)
* Updated assertions to exceptions

* updated assertions to exceptions

* bug fixes

* fix-copies

* Update modeling_ctrl.py

* Update src/transformers/models/ctrl/modeling_tf_ctrl.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gpt_neo/modeling_gpt_neo.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/modeling_tf_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update modeling_led.py

* Update modeling_led.py

* Update modeling_led.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-12 11:47:01 -04:00
14daa6102a Qdqbert example add benchmark script with ORT-TRT (#16592)
* add ort-trt benchmark script

* Update README.md

* ort version can be newer

* formatting

* specify ORT version
2022-04-12 11:13:59 -04:00
db3edd050b Update run_translation_no_trainer.py (#16652)
args.model_name_or_path -> args.config_name
fix it
2022-04-12 08:55:12 -04:00
b9f12bedd3 Only call get_output_embeddings when tie_word_embeddings is set (#16667)
This avoids an unnecessary call and avoids problems during
initialization of class hierarchies.

Co-authored-by: Samuel Melm <samuel.melm@stud.uni-heidelberg.de>
2022-04-12 07:55:44 -04:00
924484ee4a Add Doc Test GPT-2 (#16439)
* First Pass All Tests Pass

* WIP

* Adding file to documentation tests

* Change the base model for the example in the doc test.

* Fix Code Styling by running
make fixup

* Called Style

* Reverted to gpt2 model rather than distill gpt2
Then used a token classification model over a sequence model for an example.

* Fix Styling Issue

* Hopefully ignores the formatting issue.

Co-authored-by: ArEnSc <xx.mike.chung.xx@gmail.com>
2022-04-12 12:11:03 +02:00
70851a6bf0 [Bart] correct doc test (#16722) 2022-04-12 10:19:49 +02:00
69233cf03b Fix example logs repeating themselves (#16669)
Move declaration of log streams to before tests, so that results won't get compounded on top of each other
2022-04-11 16:25:16 -04:00
dce33f2150 Improve PT/TF equivalence test (#16557)
* add error message

* Use names in the error message

* allow ModelOutput

* rename to check_pt_tf_outputs and move outside

* fix style

* skip past_key_values in a better way

* Add comments

* improve code for label/loss

* make the logic clear by moving the ignore keys out

* fix _postprocessing_to_ignore

* fix _postprocessing_to_ignore: create new outputs from the remaining fields

* ignore past_key_values in TFGPT2 models for now

* make check_pt_tf_outputs better regarding names

* move check_pt_tf_models outside

* rename methods

* remove test_pt_tf_model_equivalence in TFCLIPModelTest

* Reduce TFViTMAEModelTest.test_pt_tf_model_equivalence

* move prepare_pt_inputs_from_tf_inputs outside check_pt_tf_models

* Fix quality

* Clean-up TFLxmertModelTester.test_pt_tf_model_equivalence

* Fix quality

* fix

* fix style

* Clean-up TFLEDModelTest.test_pt_tf_model_equivalence

* Fix quality

* add docstring

* improve comment

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 22:19:12 +02:00
7f7300856d Handle image_embeds in ViltModel (#16696)
* update

* batch_size -> text_batch_size

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 22:16:20 +02:00
161c0a2eec Private repo TrainingArgument (#16707)
* private repo argument to trainer

* format

Co-authored-by: Nicholas Broad <nicholas@nmbroad.com>
2022-04-11 13:37:16 -04:00
d4b3e359aa Don't push checkpoints to hub in no_trainer scripts (#16703)
Adds checkpoint prefixes to the gitignore if `push_to_hub` is used along with `checkpointint_steps`
2022-04-11 12:42:45 -04:00
c04619ecf3 Enable more test_torchscript (#16679)
* update _create_and_check_torchscript

* Enable test_torchscript

* clear_class_registry

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 18:23:35 +02:00
3918d6a9d6 Reduce memory leak in _create_and_check_torchscript (#16691)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 18:22:28 +02:00
2109afae71 Rename the method test_torchscript (#16693)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 18:21:45 +02:00
40618ec29e Fix TF_MASKED_LM_SAMPLE (#16698)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 18:19:28 +02:00
1471857f13 update decoder_vocab_size when resizing embeds (#16700) 2022-04-11 18:02:10 +02:00
5e68675755 Fix t5 shard on TPU Pods (#16527)
* Fix t5 shard on TPU Pods

The current script doesn't work properly on a TPU pod because the global batch is not divided correctly per host.
This pull request fixes this issue by dividing the global batch to each host before it is shared on each host.

* fix style

Co-authored-by: ahmed-elnaggar <ahmed.elnaggar@allianz.com>
2022-04-11 16:45:20 +02:00
2831826bc6 Add Doc Test for BERT (#16523)
* Add doctest BERT

* make fixup

* fix typo

* change checkpoints

* make fixup

* define doctest output value, update doctest for mobilebert

* solve fix-copies

* update QA target start index and end index

* change checkpoint for docs and reuse defined variable

* Update src/transformers/models/bert/modeling_tf_bert.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* make fixup

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-04-11 15:51:28 +02:00
098b002644 [Doctests] Correct task summary (#16644) 2022-04-11 14:59:35 +02:00
6ef7186b5d fixed crash when deleting older checkpoint and a file f"{checkpoint_prefix}-*" exist (#16686)
I create an archive of older checkpoints during training the checkpoint has a  name with `f"{checkpoint_prefix}-*.zip/.tar ` 
previously `glob(f"{checkpoint_prefix}-*")` takes all files/folders starting with the name checkpoint, and later `shutil.rmtree(checkpoint)` takes a folder name; since at some point it my get a zip file; it crashes training; adding this `if os.path.isdir(x)` allows only folders on `glob_checkpoints`
2022-04-11 07:32:07 -04:00
b0bf3011c1 Generate: min length can't be larger than max length (#16668)
* min length must be smaller than max length

* Update min_length in tests
2022-04-11 11:55:30 +01:00
4868a830db Jia multi gpu eval (#16428)
* add simple multi gpu complet

* add human_eval_multi_gpu

* use copy strategy to distribute across gpu, to avoid padding

* add doc string

* update code style

* use task id to arrange output

* truncate input to avoid zero pad

* Stop the copy mechanism

* update style

* restore copies to scale better in distributed mode

* update style

* replace human eval

* Apply suggestions from code review

1. Tokenize all input at the same time
2. use attention_mask to get the input length
3. other small fixes

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* correct typo and update docstring

* update code style

* remove num sample division constraint

* remove max len calculation

* use accelerator.gather once to speed up

* use accelerate set_seed; update accelerate version

* correct gather bug

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
2022-04-11 11:24:32 +02:00
8e93dc7eaf Fix some doc examples in task summary (#16666)
* Fix some doc examples

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 11:20:03 +02:00
1025a9b742 add a warning in SpmConverter for sentencepiece's model using the byte fallback feature (#16629)
* update proto sentencepiece model

* Revert "update proto sentencepiece model"

This reverts commit b07f671747fec35773d0b3d4788b8b15aefa0229.

* add check

* add test

* Revert "Revert "update proto sentencepiece model""

This reverts commit 46108257b8927b73627ec8f4f3eed53a95fc700d.

* test for log level

* test for log level 2

* warning at the warning level

* clean

* format

* add explanation in docstring
2022-04-11 11:06:10 +02:00
7c5d79912a Update audio examples with MInDS-14 (#16633)
*  update audio examples with minds dataset

* 🖍 make style

* 🖍 minor fixes for doctests
2022-04-08 15:55:42 -05:00
4d46106718 [Trainer] tf32 arg doc (#16674)
* [Trainer] tf32 arg doc

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-08 12:35:39 -07:00
f4d4f0a1ec only load state dict when the checkpoint is not None (#16673) 2022-04-08 13:42:04 -04:00
d57da99237 Add tests for no_trainer and fix existing examples (#16656)
* Fixed some bugs involving saving during epochs
* Added tests mimicking the existing examples tests
* Added in json exporting to all `no_trainer` examples for consistency
2022-04-08 10:03:56 -04:00
ab229663b5 Fix QA sample (#16648)
* fix QA sample

* For TF_QUESTION_ANSWERING_SAMPLE

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-08 15:31:43 +02:00
9a24b97b7f Fix style 2022-04-08 08:07:16 -04:00
5db2fcc61d Fix error in doc of DataCollatorWithPadding (#16662)
The defalut value of `padding` in `DataCollatorWithPadding` is `True`, not `False`.
2022-04-08 07:58:02 -04:00
9db2eebbe2 add vit tf doctest with @add_code_sample_docstrings (#16636)
* add vit tf doctest with @add_code_sample_docstrings

* add labels string back in

Co-authored-by: Johannes Kolbe <johannes.kolbe@tech.better.team>
2022-04-08 07:31:38 -04:00
4ef0abb738 Add TAPEX (#16473)
* Add TapexTokenizer

* Improve docstrings and provide option to provide answer

* Remove option for pretokenized inputs

* Add TAPEX to README

* Fix copies

* Remove option for pretokenized inputs

* Initial commit: add tapex fine-tuning examples on both table-based question answering and table-based fact verification.

* - Draft a README file for running the script and introducing some background.
- Remove unused code lines in tabfact script.
- Disable the deafult `pad_to_max_length` option which is memory-consuming.

* * Support `as_target_tokenizer` function for TapexTokenizer.
* Fix the do_lower_case behaviour of TapexTokenizer.
* Add unit tests for target scenarios and cased/uncased scenarios for both source and target.

* * Replace the label BartTokenizer with TapexTokenizer's as_target_tokenizer function.
* Fix typos in tapex example README.

* * fix the evaluation script - remove the property `task_name`

* * Make the label space more clear for tabfact tasks

* * Using a new fine-tuning script for tapex-base on tabfact.

* * Remove the lowercase code outside the tokenizer - we use the tokenizer to control whether do_lower_case
* Guarantee the hyper-parameter can be run without out-of-memory on 16GB card and report the new reproduced number on wikisql

* * Remove the default tokenizer_name option.
* Provide evaluation command.

* * Support for WikiTableQuestion dataset.

* Fix a typo in README.

* * Fix the datasets's key name in WikiTableQuestions

* Run make fixup and move test to folder

* Fix quality

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply some more suggestions from code review

* Improve docstrings

* Overwrite failing test

* Improve comment in example scripts

* Fix rebase

* Add TAPEX to Auto mapping

* Add TAPEX to auto config mappings

* Put TAPEX higher than BART in auto mapping

* Add TAPEX to doc tests

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
Co-authored-by: SivilTaram <qianlxc@outlook.com>
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-04-08 10:57:51 +02:00
33cb21150c bert: properly mention deprecation of TF2 conversion script (#16171) 2022-04-07 17:35:17 -04:00
af14c61973 RegNet (#16188)
* base model done

* make style

* done

* added files

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Trigger doc build

* resolved conversations

* resolved conversations

* seer models

* minor changes

* minor changes

* make fixup

* glob variables

* minor changes

* fix copies

* config when possibile

* resolved conflicts

* resolved conflicts

* resolved conflicts

* CI

* conversion script for 10b param

* fixed for 10b model

* minor updates in the doc + make style

* removed unused code

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* removed unused code

* removed unused code

* updated modeling_utils from main

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-04-07 21:58:00 +02:00
3e26e78b3b Update Support image on README.md (#16615)
* Update README.md Support Image

Updates the Support image linking to our EAP page (to give it a refresh + help avoid image fatigue).

Slack thread checking in with #open-source-internal on this update (https://huggingface.slack.com/archives/C021H1P1HKR/p1648838903316709)

* Compressed Updated Support image

* Improves Support Image Logo + Height

Updated the image based on logo + size feedback. Big thanks to Bibi for making quick edits to this image.
2022-04-07 15:06:50 -04:00
4099817bd6 Updated _load_pretrained_model_low_mem to check if keys are in the state_dict (#16643)
* Updated _load_pretrained_model_low_mem to check if keys are in the stored state_dict

* update after conversions
2022-04-07 20:48:04 +02:00
389f66151d Remove parent/child tests in auto model tests (#16653) 2022-04-07 11:05:10 -04:00
080e42d0ac [megatron-bert-uncased-345m] fix conversion (#16639) 2022-04-07 07:56:34 -07:00
09a272b02a Add inputs vector to calculate metric method (#16461)
* Add inputs vector to calculate metric method

* Include inputs for evaluation metrics with backwards compatibility

* Prevent inputs create OOM issue and documentation details

* Update style and code documentation

* Fix style formatting issues

* Update files format with make style
2022-04-07 10:02:43 -04:00
dc991805bf Fix doc example (#16448)
* Fix doc

* Make fixup

Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
2022-04-07 10:48:24 +02:00
febe42b5da Update no_trainer scripts with new Accelerate functionalities (#16617)
Adds logging and save/loading to the Accelerate scripts

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-06 15:29:32 -04:00
10c15d2d1e Allow the same config in the auto mapping (#16631) 2022-04-06 14:21:15 -04:00
8ac9b82724 Added Annotations for PyTorch models (#16619)
* Update modeling_mpnet.py

* Update modeling_ctrl.py

* formatting

* Formatting

* Formatting

* annotated FSMT

* Added annotations for LED

* Added Annotations for M2M

* Added annotations for nystromformer

* Added annotations for OpenAI

* Added annotations for RAG

* Removed unused imports

* fix isort errors

* Removed inputs_embeds docstring, corrected original

* flake8 fixes

* doc-builder fixes
2022-04-06 14:12:01 -04:00
3f43d824b9 TF generate refactor - Beam Search (#16374)
* refactor TF beam search

* refactored generate can now properly use attention masks

* add force bos/eos logit processors
2022-04-06 18:19:34 +01:00
4d10083539 [modeling_utils] rearrange text (#16632) 2022-04-06 09:35:42 -07:00
a180efe7fd Dev version 2022-04-06 11:08:12 -04:00
b9bf91a970 Revert "Allow the same config in the auto mapping"
This reverts commit b1a7dfe099b852340868f9aa7c75bb805ce57596.
2022-04-06 09:58:13 -04:00
b1a7dfe099 Allow the same config in the auto mapping 2022-04-06 09:57:47 -04:00
2aef4cfe58 Fix TFTransfoXLLMHeadModel outputs (#16590)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-06 15:42:15 +02:00
8d57c424e0 [FlaxSpeechEncoderDecoderModel] More Rigorous PT-Flax Equivalence Tests (#16589) 2022-04-06 15:33:32 +02:00
c65633156b [Speech2Text Doc] Fix docs (#16611)
* [Speech2Text Doc] Fix docs

* apply ydshiehs suggestions
2022-04-06 14:19:00 +02:00
fb3d0df454 typo (#16621) 2022-04-06 07:28:17 -04:00
ae6a7a763b Use CLIP model config to set some kwargs for components (#16609)
* Use CLIP model's config for some fields (if specified) instead of those of vision & text components.

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-06 12:15:09 +02:00
47c5c05932 don't load state_dict twice when using low_cpu_mem_usage in from_pretrained (#16602) 2022-04-06 11:43:02 +02:00
a2b7d19bd7 Fix seq2seq doc tests (#16606)
* fix bart and mbart

* add ckpt names as variables

* fix mbart

* fix plbart

* use varibale for ckot name
2022-04-06 11:32:39 +02:00
0bf18643f4 [Minds14] Correct quicktour (#16626) 2022-04-06 11:27:11 +02:00
Jun
d55fcbcc50 fix default num_attention_heads in segformer doc (#16612) 2022-04-06 09:51:58 +02:00
b18dfd95e1 added type hints to CTRL pytorch (#16593)
* Completed documentation of CTRL

* Missing optional None

* Added return types

* updated imports

* Update modeling_ctrl.py
2022-04-05 16:55:01 -04:00
208f4c109a Quality 2022-04-05 14:12:01 -04:00
f553c3ce4c Update summary of the tasks (#16528)
* 📝 add image/vision classification and asr

* 🖍 minor formatting fixes

* Fixed a typo in legacy seq2seq_trainer.py (#16531)

* Add ONNX export for BeiT (#16498)

* Add beit onnx conversion support

* Updated docs

* Added cross reference to ViT ONNX config

* call on_train_end when trial is pruned (#16536)

* Type hints added (#16529)

* Fix Bart type hints (#16297)

* Add type hints to PLBart PyTorch

* Remove pending merge conflicts

* Fix PLBart Type Hints

* Add changes from review

* Add VisualBert type hints (#16544)

* Adding missing type hints for mBART model (PyTorch) (#16429)

* added type hints for mbart tensorflow tf implementation

* Adding missing type hints for mBART model 

Tensorflow Implementation model added with missing type hints

* Missing Type hints - correction

For TF model

* Code fixup using make quality tests

* Hint types - typo error

* make fix-copies and make fixup

* type hints

* updated files

* type hints update

* making dependent modesls coherent

Co-authored-by: matt <rocketknight1@gmail.com>

* Remove MBart subclass of XLMRoberta in tokenzier docs (#16546)

* Remove MBart subclass of XLMRoberta in tokenzier

* Fix style

* Copy docs from MBart50 tokenizer

* Use random_attention_mask for TF tests (#16517)

* use random_attention_mask for TF tests

* Fix for TFCLIP test (for now).

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Improve code example (#16450)

Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>

* Pin tokenizers version <0.13 (#16539)

* Pin tokenizers version <0.13

* Style

* Add code samples for TF speech models (#16494)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* [FlaxSpeechEncoderDecoder] Fix dtype bug (#16581)

* [FlaxSpeechEncoderDecoder] Fix dtype bug

* more fixes

* Making the impossible to connect error actually report the right URL. (#16446)

* Fix flax import in __init__.py: modeling_xglm -> modeling_flax_xglm (#16556)

* Add utility to find model labels (#16526)

* Add utility to find model labels

* Use it in the Trainer

* Update src/transformers/utils/generic.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Quality

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Enable doc in Spanish (#16518)

* Reorganize doc for multilingual support

* Fix style

* Style

* Toc trees

* Adapt templates

* Add use_auth to load_datasets for private datasets to PT and TF examples (#16521)

* fix formatting and remove use_auth

* Add use_auth_token to Flax examples

* add a test checking the format of `convert_tokens_to_string`'s output (#16540)

* add new tests

* add comment to overridden tests

* TF: Finalize `unpack_inputs`-related changes (#16499)

* Add unpack_inputs to remaining models

* removed kwargs to `call()` in TF models

* fix TF T5 tests

* [SpeechEncoderDecoderModel] Correct Encoder Last Hidden State Output (#16586)

* initialize the default rank set on TrainerState (#16530)

* initialize the default rank set on TrainerState

* fix style

* Trigger doc build

* Fix CI: test_inference_for_pretraining in ViTMAEModelTest (#16591)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* add a template to add missing tokenization test (#16553)

* add a template to add missing tokenization test

* add cookiecutter setting

* improve doc

* Update templates/adding_a_missing_tokenization_test/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* made _load_pretrained_model_low_mem static + bug fix (#16548)

* handle torch_dtype in low cpu mem usage (#16580)

* [Doctests] Correct filenaming (#16599)

* [Doctests] Correct filenaming

* improve quicktour

* make style

* Adding new train_step logic to make things less confusing for users (#15994)

* Adding new train_step logic to make things less confusing for users

* DO NOT ASK WHY WE NEED THAT SUBCLASS

* Metrics now working, at least for single-output models with type annotations!

* Updates and TODOs for the new train_step

* Make fixup

* Temporary test workaround until T5 has types

* Temporary test workaround until T5 has types

* I think this actually works! Needs a lot of tests though

* MAke style/quality

* Revert changes to T5 tests

* Deleting the aforementioned unmentionable subclass

* Deleting the aforementioned unmentionable subclass

* Adding a Keras API test

* Style fixes

* Removing unneeded TODO and comments

* Update test_step too

* Stop trying to compute metrics with the dummy_loss, patch up test

* Make style

* make fixup

* Docstring cleanup

* make fixup

* make fixup

* Stop expanding 1D input tensors when using dummy loss

* Adjust T5 test given the new compile()

* make fixup

* Skipping test for convnext

* Removing old T5-specific Keras test now that we have a common one

* make fixup

* make fixup

* Only skip convnext test on CPU

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Avoiding TF import issues

* make fixup

* Update compile() to support TF 2.3

* Skipping model.fit() on template classes for now

* Skipping model.fit() on template class tests for now

* Replace ad-hoc solution with find_labels

* make fixup

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Adding missing type hints for BigBird model   (#16555)

* added type hints for mbart tensorflow tf implementation

* Adding missing type hints for mBART model 

Tensorflow Implementation model added with missing type hints

* Missing Type hints - correction

For TF model

* Code fixup using make quality tests

* Hint types - typo error

* make fix-copies and make fixup

* type hints

* updated files

* type hints update

* making dependent modesls coherent

* Type hints for BigBird

* removing typos

Co-authored-by: matt <rocketknight1@gmail.com>

* [deepspeed] fix typo, adjust config name (#16597)

* 🖍 apply feedback

Co-authored-by: Cathy <815244047@qq.com>
Co-authored-by: Jim Rohrer <jrohrer1@gmail.com>
Co-authored-by: Ferdinand Schlatt <fschlatt@gmail.com>
Co-authored-by: Dahlbomii <101373053+Dahlbomii@users.noreply.github.com>
Co-authored-by: Gunjan Chhablani <chhablani.gunjan@gmail.com>
Co-authored-by: Rishav Chandra Varma <rishavchandra.v16@iiits.in>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Daniel Stancl <46073029+stancld@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Karim Foda <35491698+KMFODA@users.noreply.github.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Andres Codas <andrescodas@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Francesco Saverio Zuppichini <francesco.zuppichini@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-04-05 12:48:42 -05:00
23fc4cba0d [benchmark tool] trainer-benchmark.py (#14934)
* [benchmark tool] trainer-benchmark.py

* improve

* massive rework/expansion

* fix

* mucho improved

* improved

* fix prefix

* fix

* fix diff calculation

* address suggestions
2022-04-05 10:27:29 -07:00
b33ab4eb59 Add global_attention_mask to gen_kwargs (#16485)
If global_attention_mask is found in the models inputs (used by certain
models, like LED) in the prediction_step method of Seq2SeqTrainer,
it is added to the gen_kwargs, which are passed to model.decode().
This allows us to properly set the global attention when decoding.
2022-04-05 13:05:27 -04:00
9fd5e6bbe6 [deepspeed] fix typo, adjust config name (#16597) 2022-04-05 08:13:12 -07:00
367558b90d Adding missing type hints for BigBird model (#16555)
* added type hints for mbart tensorflow tf implementation

* Adding missing type hints for mBART model 

Tensorflow Implementation model added with missing type hints

* Missing Type hints - correction

For TF model

* Code fixup using make quality tests

* Hint types - typo error

* make fix-copies and make fixup

* type hints

* updated files

* type hints update

* making dependent modesls coherent

* Type hints for BigBird

* removing typos

Co-authored-by: matt <rocketknight1@gmail.com>
2022-04-05 14:50:45 +01:00
4354005291 Adding new train_step logic to make things less confusing for users (#15994)
* Adding new train_step logic to make things less confusing for users

* DO NOT ASK WHY WE NEED THAT SUBCLASS

* Metrics now working, at least for single-output models with type annotations!

* Updates and TODOs for the new train_step

* Make fixup

* Temporary test workaround until T5 has types

* Temporary test workaround until T5 has types

* I think this actually works! Needs a lot of tests though

* MAke style/quality

* Revert changes to T5 tests

* Deleting the aforementioned unmentionable subclass

* Deleting the aforementioned unmentionable subclass

* Adding a Keras API test

* Style fixes

* Removing unneeded TODO and comments

* Update test_step too

* Stop trying to compute metrics with the dummy_loss, patch up test

* Make style

* make fixup

* Docstring cleanup

* make fixup

* make fixup

* Stop expanding 1D input tensors when using dummy loss

* Adjust T5 test given the new compile()

* make fixup

* Skipping test for convnext

* Removing old T5-specific Keras test now that we have a common one

* make fixup

* make fixup

* Only skip convnext test on CPU

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Avoiding TF import issues

* make fixup

* Update compile() to support TF 2.3

* Skipping model.fit() on template classes for now

* Skipping model.fit() on template class tests for now

* Replace ad-hoc solution with find_labels

* make fixup

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-05 14:23:27 +01:00
7ccacdf10f [Doctests] Correct filenaming (#16599)
* [Doctests] Correct filenaming

* improve quicktour

* make style
2022-04-05 14:15:02 +02:00
21decb7731 handle torch_dtype in low cpu mem usage (#16580) 2022-04-05 12:26:03 +02:00
8bf6d28c10 made _load_pretrained_model_low_mem static + bug fix (#16548) 2022-04-05 11:56:36 +02:00
02214cb3cc add a template to add missing tokenization test (#16553)
* add a template to add missing tokenization test

* add cookiecutter setting

* improve doc

* Update templates/adding_a_missing_tokenization_test/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-05 10:50:22 +02:00
765bafb8e4 Fix CI: test_inference_for_pretraining in ViTMAEModelTest (#16591)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-05 10:00:03 +02:00
104c065277 Trigger doc build 2022-04-04 14:06:49 -04:00
1cd2e21d1b initialize the default rank set on TrainerState (#16530)
* initialize the default rank set on TrainerState

* fix style
2022-04-04 12:20:26 -04:00
6f9d8dc156 [SpeechEncoderDecoderModel] Correct Encoder Last Hidden State Output (#16586) 2022-04-04 17:50:56 +02:00
dad5ca83b2 TF: Finalize unpack_inputs-related changes (#16499)
* Add unpack_inputs to remaining models

* removed kwargs to `call()` in TF models

* fix TF T5 tests
2022-04-04 16:37:33 +01:00
be9474bd35 add a test checking the format of convert_tokens_to_string's output (#16540)
* add new tests

* add comment to overridden tests
2022-04-04 16:57:24 +02:00
24a85cca61 Add use_auth to load_datasets for private datasets to PT and TF examples (#16521)
* fix formatting and remove use_auth

* Add use_auth_token to Flax examples
2022-04-04 10:27:45 -04:00
b9a768b3ff Enable doc in Spanish (#16518)
* Reorganize doc for multilingual support

* Fix style

* Style

* Toc trees

* Adapt templates
2022-04-04 10:25:46 -04:00
3951b9f390 Add utility to find model labels (#16526)
* Add utility to find model labels

* Use it in the Trainer

* Update src/transformers/utils/generic.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Quality

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-04-04 10:06:57 -04:00
ec4da72fe9 Fix flax import in __init__.py: modeling_xglm -> modeling_flax_xglm (#16556) 2022-04-04 14:54:25 +02:00
013a7dbe3d Making the impossible to connect error actually report the right URL. (#16446) 2022-04-04 14:26:23 +02:00
ad0cba08ea [FlaxSpeechEncoderDecoder] Fix dtype bug (#16581)
* [FlaxSpeechEncoderDecoder] Fix dtype bug

* more fixes
2022-04-04 13:53:54 +02:00
60d27b1f15 Add code samples for TF speech models (#16494)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-01 17:54:01 +02:00
53a4d6b115 Pin tokenizers version <0.13 (#16539)
* Pin tokenizers version <0.13

* Style
2022-04-01 11:53:18 -04:00
61ee26a892 Improve code example (#16450)
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
2022-04-01 17:19:36 +02:00
2199382dfd Use random_attention_mask for TF tests (#16517)
* use random_attention_mask for TF tests

* Fix for TFCLIP test (for now).

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-01 16:53:07 +02:00
823dbf8a41 Remove MBart subclass of XLMRoberta in tokenzier docs (#16546)
* Remove MBart subclass of XLMRoberta in tokenzier

* Fix style

* Copy docs from MBart50 tokenizer
2022-04-01 16:39:28 +02:00
5fe06b9bdd Adding missing type hints for mBART model (PyTorch) (#16429)
* added type hints for mbart tensorflow tf implementation

* Adding missing type hints for mBART model 

Tensorflow Implementation model added with missing type hints

* Missing Type hints - correction

For TF model

* Code fixup using make quality tests

* Hint types - typo error

* make fix-copies and make fixup

* type hints

* updated files

* type hints update

* making dependent modesls coherent

Co-authored-by: matt <rocketknight1@gmail.com>
2022-04-01 15:21:26 +01:00
9947dd077c Add VisualBert type hints (#16544) 2022-04-01 15:02:58 +01:00
59a9c83e40 Fix Bart type hints (#16297)
* Add type hints to PLBart PyTorch

* Remove pending merge conflicts

* Fix PLBart Type Hints

* Add changes from review
2022-04-01 14:50:22 +01:00
afc5a1ea3a Type hints added (#16529) 2022-04-01 14:27:41 +01:00
483a9450a0 call on_train_end when trial is pruned (#16536) 2022-04-01 08:50:47 -04:00
9de70f213e Add ONNX export for BeiT (#16498)
* Add beit onnx conversion support

* Updated docs

* Added cross reference to ViT ONNX config
2022-04-01 10:52:42 +02:00
bfeff6cc6a Fixed a typo in legacy seq2seq_trainer.py (#16531) 2022-04-01 09:17:31 +02:00
5807054bd3 [research] link to the XTREME-S paper (#16519)
* [research] link to the XTREME-S paper

* Update examples/research_projects/xtreme-s/README.md

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-03-31 23:26:50 +04:00
e4b234834a Fix syntax error in generate docstrings (#16516) 2022-03-31 08:45:47 -04:00
b808d8a596 added type hints to xglm pytorch (#16500)
* added type hints to xglm pytorch

* Update src/transformers/models/xglm/modeling_xglm.py

* Update src/transformers/models/xglm/modeling_xglm.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-03-31 13:43:04 +01:00
05b4c32908 fixed a typo (#16508) 2022-03-31 07:49:02 -04:00
6a4dbba1a3 Translate accelerate.mdx from english to spanish (#16176)
* Translate accelerate.mdx from english to spanish

* Update docs/source_es/accelerate.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Apply suggestions from code review

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Apply suggestions from code review

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Fix nits and finish translation

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-31 07:45:18 -04:00
c551addeb0 Translate installation.mdx to Spanish (#16229)
* Translate installation.mdx to Spanish

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Fix nits and finish translation

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-31 07:44:47 -04:00
98939e6aee Spanish translation of the file multilingual.mdx (#16329)
* Duplication of the source eng file

* Spanish translation of the file multilingual.mdx

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Fix nits and finish translation

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-31 07:43:31 -04:00
99a01423b9 make tuple annotation more specific to avoid failures during symbolic_trace (#16490)
* make tuple annotation more specific to avoid failures during symbolic_trace

* make tuple annotation more specific to avoid failures during symbolic_trace
2022-03-31 12:39:46 +01:00
a8b6443e06 Refactor Modeling Outputs (#16341)
* first proposal

* replace model outputs in various models

* conflicts

* docstring

* update poolformer

* minor change in docstring

* CI

* removed poolformer specific outputs from doc

* removed convnext specific outputs from doc

* CI

* weird char in segformer

* conversations

* reverted docstring for BaseModelOutputWithPooling

* update outputs

* changed docstring in BaseModelOutput

* updated docstring in modeling outputs

* typos :)

* fixed typo after copy & paste it all around

* CI

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* segformer

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-03-31 09:32:33 +02:00
857eb87cc4 Support reduce_bucket_size=auto for deepspeed stages <3 (#16496) 2022-03-30 14:12:29 -07:00
81ac45f85c update smddp api to v1.4.0 (#16371)
* update smddp api to v1.4.0

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address comments

* fix style

* remove unused import

* fix indent

* disable style check for import

* fix space

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-30 16:28:35 -04:00
a73281e3e4 [examples] max samples can't be bigger than the len of dataset (#16501)
* [examples] max samples can't be bigger than then len of dataset

* do tf and flax
2022-03-30 12:33:16 -07:00
c4deb7b3ae Feature Extractor accepts segmentation_maps (#15964)
* feature extractor accepts

* resolved conversations

* added examples in test for ADE20K

* num_classes -> num_labels

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* resolving conversations

* resolving conversations

* removed ADE

* CI

* minor changes in conversion script

* reduce_labels in feature extractor

* minor changes

* correct preprocess for instace segmentation maps

* minor changes

* minor changes

* CI

* debugging

* better padding

* going to update labels inside the model

* going to update labels inside the model

* minor changes

* tests

* removed changes in feature_extractor_utils

* conversation

* conversation

* example in feature extractor

* more docstring in modeling

* test

* make style

* doc

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-30 18:46:51 +02:00
c2f8eaf6bc TF: unpack inputs on Convbert, GPTJ, LED, and templates (#16491)
* Add unpack_inputs to remaining models

* remove stray use of inputs in the templates; fix tf.debugging of attn masks
2022-03-30 17:12:27 +01:00
ae189ef991 Add support for exporting GPT-J to ONNX-TRT (#16492)
Add support for exporting GPT-J to ONNX-TRT

Co-authored-by: Tomer Stav <stavt@amazon.com>
2022-03-30 17:56:03 +02:00
d04adc3521 Add length to PreTrainedTokenizer train_new_from_iterator (#16493) 2022-03-30 11:41:04 -04:00
147c816685 Nit: MCSCOCO -> MS COCO (#16481) 2022-03-30 10:06:32 -04:00
ffd19ee1de TF GPT-J Type hints and TF decorator (#16488)
* Type hints and TF decorator added

* Type hints and TF decorator added

* make style

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-30 14:03:54 +01:00
277d49a590 Do not initialize torch.distributed process group if one is already initailized (#16487)
* Do not initialize torch process group twice

* Apply suggestions from code review
2022-03-29 19:07:31 -04:00
2b483230a1 Raise diff tolerance value for TFViTMAEModelTest (#16483)
* Raise diff tolerance value

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-29 22:12:27 +02:00
ee18d4d2a9 TF GPT2: clearer model variable naming with @unpack_inputs (#16311)
* add unpack_inputs decorator to Main Layer

* add unpack_inputs decorator to Model

* add unpack_inputs decorator to LMHead Model

* add unpack_inputs decorator to Double Head Model

* add unpack_inputs decorator to Sequence Classification Model

* run fixup recipe

* make unpack_inputs the first decorator
2022-03-29 20:35:25 +01:00
d7c8ce57d4 Avoid accessing .dataset of a DataLoader in Trainer (#16451)
* Avoid accessing .dataset of a dataloader

* style

* fix

* cleaning up, reverting some misunderstandings

* black

* add train_dataset argument to get_train_dataloader, and fix other instances of length checks

* flake8

* address comments

* fix bug

* cleanup

* add test

* Update tests/trainer/test_trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* under torch

* merge

* stylistic suggestion

Co-authored-by: Sander Land <sander@chatdesk.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-29 15:00:18 -04:00
781af7362b added typehints for RAG pytorch models (#16416) 2022-03-29 18:24:25 +01:00
5b40a37bc4 Add TF ViT MAE (#16255)
* ported TFViTMAEIntermediate and TFViTMAEOutput.

* added TFViTMAEModel and TFViTMAEDecoder.

* feat: added a noise argument in the implementation for reproducibility.

* feat: vit mae models with an additional noise argument for reproducibility.

Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-29 18:24:15 +01:00
7a9ef8181c TF: properly handle kwargs in encoder_decoder architectures (#16465)
* properly handle kwargs in encoder_decoder architectures

* make fixup
2022-03-29 18:17:47 +01:00
0540d1b6c0 Add type hints for UniSpeech (#16399)
* Add type hints for UniSpeech

* Added type hints for UniSpeechSat

* Added type hints for Wave2Vec2 (PT)

* Added type hints for models dependent of wave2vec
2022-03-29 18:02:46 +01:00
875e07a9e3 [doc] Fix missing trainer import (#16469) 2022-03-29 18:57:43 +02:00
6358a4c8ec Add TF vision model code samples (#16477)
* add code samples

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-29 18:57:16 +02:00
3015d12bfb fix wrong variable name (#16467) 2022-03-29 18:55:40 +02:00
b62ac4d240 Fix example test and test_fetcher for examples (#16478) 2022-03-29 12:21:19 -04:00
86cff21cf6 Fix some TF GPT-J CI testings (#16454)
* Fix for test_mixed_precision

* Fix test_saved_model_creation by using shape_list instead of shape

* skit test_model_from_pretrained on GPU for now to avoid GPU OOM

* skip test_gptj_sample_max_time for now

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-29 18:04:20 +02:00
aebca696af Fix missing output_attentions in PT/Flax equivalence test (#16271)
* fix - set output_attentions to True

* Update tests/test_modeling_flax_common.py

* update for has_attentions

* overwrite check_outputs in FlaxBigBirdModelTest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-03-29 17:51:48 +02:00
45abb37ac9 Remove duplicate mLuke (#16460)
* Remove duplicate mLuke

* 🖍 apply feedback
2022-03-29 10:34:30 -05:00
5216607f8a [MNLI example] Prevent overwriting matched with mismatched metrics (#16475)
* Prevent overwriting matched with mismatched metrics

* Fix style
2022-03-29 10:38:14 -04:00
ed31ab3f10 Adding DocTest to TrOCR (#16398)
* docstring still WIP | adding to documentation_tests

* clean version | passes tests

* adding to documentation_test

* adding forward for training pass

* make fixup applied

* address comments

* fix doctest

* apply make fixup

* remove additional blank

* fix file to have correct split for prepare_for_doc_test

* Update src/transformers/models/trocr/modeling_trocr.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* address comments

* changing text | adding loss check | make fixup

* make fixup

* Update src/transformers/models/trocr/modeling_trocr.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/trocr/modeling_trocr.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/trocr/modeling_trocr.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* make fixup

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-03-29 16:19:06 +02:00
85295621f1 Fix blenderbot conversion script (#16472) 2022-03-29 11:32:13 +02:00
c85547af2b Remove kwargs argument from IBERT MLM forward pass (#16449) 2022-03-28 16:37:56 +02:00
da936942b0 Translation from english to spanish of file pipeline_tutorial.mdx (#16149)
* Add the translation from English to Spanish of the pipeline_tutorial.mdx file

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: fernando <fernando@gethitch.ai>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-28 10:31:19 -04:00
979b039c89 Add DPT (#15991)
* First draft

* More improvements

* Add fusion blocks

* Make conversion script work for dpt_large

* Make conversion script work

* Improve implementation

* Improve conversion script

* Add DPTForSemanticSegmentation

* Make conversion work for semantic segmentation

* Add tests

* Remove print statements

* First draft

* Redesign neck

* Improve tests

* Improve implementation some more

* Make neck output list of tensors

* Improve neck and feature extractor

* Fix integration tests

* Make more tests pass

* Make all tests pass

* Add missing config archive map

* Add in_index attribute to make heads accept list of tensors

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply some more suggestions

* Add copied from statements

* Remove assert

* Apply suggestions from code review

* Apply suggestions from code review

* Remove DPTInterpolate in favor of nn.Upsample

* Add comments

* Apply suggestions from code review

* Apply suggestions from code review

* Add proposed design

* Update design

* Add DPTReassembleLayer

* Add DPTFeatureFusionStage

* Apply more suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* Fix rebase

* Update in_index and out_indices

* Fix conversion script

* Fix code quality

* Add model to toctree and use DepthEstimatorOutput

* Fix rebase

* Fix code examples

* Improve code

* Fix copied from statements

* Apply suggestions from code review

* Remove compute_loss method

* Apply suggestions from code review

* Fix documentation tests file

* Remove test.py file

* Improve doc example

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
2022-03-28 16:28:10 +02:00
7ca4633555 [FlaxSpeechEncoderDecoderModel] Ensure Input and Output Word Embeddings Are **Not** Tied (#16444)
* [FlaxSpeechEncoderDecoderModel] Ensure Input and Output Word Embeddings Are **Not** Tied

* rebase
2022-03-28 14:14:10 +02:00
e0ac72b7bd Fix PerceiverMLP and test (#16405)
Co-authored-by: Jaesun Park <jaesun.park1@navercorp.com>
2022-03-28 14:06:48 +02:00
473709fc76 Use doc builder styler (#16412)
* Config update

* Use doc-builder styler

* Cleanup

* Adapt import

* We need it there too!
2022-03-28 07:45:18 -04:00
8049dfa427 Update run_t5_mlm_flax.py (#16421)
Fix typo in comment: proprocessed -> preprocessed
2022-03-28 06:00:53 -04:00
925fc57b70 [Flax] Improve Robustness of Back-Prop Tests (#16418)
* [Flax] Improve Robustness of Back-Prop Tests

* check equality of logits/outputs

* make fixup
2022-03-28 11:56:54 +02:00
7ecbb9c5e4 QDQBert example update (#16395)
* update Dockerfile and utils_qa

* Update README.md
2022-03-28 05:47:52 -04:00
f6f6866e9e cached_download ∘ hf_hub_url is hf_hub_download (#16375) 2022-03-28 05:43:39 -04:00
c88ff66cc8 Fix broken links (#16113)
* Update marian.mdx

* Update marian.mdx

* Update docs/source/model_doc/marian.mdx

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update marian.mdx

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-03-28 05:38:17 -04:00
Jia
342ff6eb41 Update comments in class BatchEncoding (#15932) 2022-03-28 05:19:12 -04:00
e02f95b229 remove references to PDF reading via PIL (#15293)
* fix confusing PIL instructions

As stated in the documentation
[here](https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html?highlight=pdf#write-only-formats),
PIL can only write PDF's, not read them. Remove references to reading
PDF's via PIL from this page to avoid confusion.

* mention PDF in doc examples using PIL

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Be explicit: PDFs must be converted to images

* fix formatting

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-03-28 05:00:29 -04:00
3dc8242716 TF: removed inputs_processing and replaced with decorator in lxmert (#16414) 2022-03-27 18:09:15 +01:00
b320d87ece Create concept guide section (#16369)
*  create concept guide section

* 🖍 make fixup

* 🖍 apply feedback

Co-authored-by: Steven <stevhliu@gmail.com>
2022-03-25 14:51:43 -05:00
ed2ee373d0 Add TF implementation of GPT-J (#15623)
* Initial commit

* Add TFGPTJModel

* Fix a forward pass

* Add TFGPTJCausalLM

* Add TFGPTJForSequenceClassification

* Add TFGPTJForQuestionAnswering

* Fix docs

* Deal with TF dynamic shapes

* Add Loss parents to models

* Adjust split and merge heads to handle 4 and 5-dim tensors

* Update outputs for @tooslow tests
2022-03-25 19:27:19 +00:00
aa4c0a86dc Fix Typo in Argument of FlaxWav2Vec2ForPreTrainingModule (#16084) 2022-03-25 17:49:37 +01:00
e231c72906 [FlaxSpeechEncoderDecoder] Fix feature extractor gradient test (#16407) 2022-03-25 17:46:53 +01:00
a97f3150c4 Add ONNX support for Blenderbot and BlenderbotSmall (#15875)
* Add ONNX support for Blenderbot

* Add BlenderbotSmall ONNX configuration

* Update serialization table
2022-03-25 17:04:43 +01:00
b473617d63 Checkpoint sharding (#16343)
* Sharded checkpoint support

* Handle distant sharded checkpoints

* Add tests

* TODO is done

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Fix docstring

* Add example and format

* Address review comments

* More review comments

* End of merge

* Revert unintentional change

* VsCode what did you do?

* Style

* Changes

* Address final comments

* Quality

* Moar tests

* Move import beneath is_pt_available

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-03-25 11:59:25 -04:00
7fa7408b26 Terminate previous pushes when we get to the final push (#16409) 2022-03-25 15:47:05 +00:00
867f3950fa Rename master to main for notebooks links and leftovers (#16397) 2022-03-25 09:12:23 -04:00
7e7490473e fixed typo from enable to disable in disable_progress_bar function (#16406) 2022-03-25 09:07:43 -04:00
088c1880b7 Big file_utils cleanup (#16396)
* Big file_utils cleanup

* This one still needs to be treated separately
2022-03-25 07:25:20 -04:00
2b23e0801a Make FeaturesManager.get_model_from_feature a static method (#16357) 2022-03-25 11:35:48 +01:00
aa6cfe9c4b Rename to SemanticSegmenterOutput (#15849)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-24 20:44:15 +01:00
70a9bc69a8 Added type hints (#16389)
* Added type hints for PyTorch T5 model

* removed a type hint

* ran make style

* added type hints for ibert pytorch

* added type hints for lxmert pytorch

* removed kwargs type hint and fixed arguments order
2022-03-24 19:14:34 +00:00
cae394c8fa Adapt import to new structure 2022-03-24 14:40:05 -04:00
4e0f583eea TF - variable naming for Distilbert model (unpack_inputs decorator) (#16384)
* variable naming for Distilbert model

* adding unpack inputs at top

* make style/quality

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-24 16:13:08 +00:00
3a0f1684c3 Fix readme links and add CI check (#16392)
* Fix doc links in README

* Fix name

* Fix links in READMEs and doc index

* Error if there is something wrong so the CI knows
2022-03-24 11:59:09 -04:00
8cbd9b8fb1 Fix style (#16391) 2022-03-24 11:47:49 -04:00
9d88be5778 bump cookiecutter version (#16387)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-24 11:08:31 -04:00
f571dc20ac Update PT Flax equivalence tests in PT test file (#16280)
* update PT/Flax equivalence tests on PT side

* overwrite check_outputs in BigBirdModelTest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-24 14:45:30 +01:00
41bfc1e262 Add type hints for ConvBert model (#16377)
* Add missing type hints for ConvBERT flavored models.

* Update src/transformers/models/convbert/modeling_convbert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-03-24 13:23:54 +00:00
23a75a5338 Type hints and decorator for TF T5 (#16376)
* Type hints and TF decorator added

* Re-add XLA generation method

* Re-add lines that were deleted by conflicting updates

* Re-add lines that were deleted by conflicting updates

* Re-add lines that were deleted by conflicting updates

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-24 13:19:40 +00:00
2a27c80063 Fix BigBirdModelTester (#16310)
* fix

* update the expected value in test_fast_integration

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-24 13:43:52 +01:00
f5e8c9bdea Update readme with how to train offline and fix BPE command (#15897)
* Update readme with how to train offline and fix BPE command

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
2022-03-24 11:00:46 +01:00
9badcecf69 [Doctests] Make TFRoberta-like meaningfull (#16370)
* update doc examples for TFRoberta

* fix style

* fix style

* use TF ckpt

* apply suggestion

* add the code file to test here

* fix style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-24 10:26:27 +01:00
77c5a80536 [Doctests] Make roberta-like meaningfull (#16363)
* [Doctests] Make roberta-like meaningfull

* correct

* final correct

* Trigger test

* make style

* apply suggestion from sylvain
2022-03-24 00:17:00 +01:00
5f0d07b36b Make BigBird model compatiable to fp16 dtype. (#16034)
* Make BigBird model compatiable to fp16 dtype.

* Use tree_map instead of map

* Reformat the code

* Fix import order

* Convert masks to the correct dtype

* Fix format issue

* Address comments.
2022-03-24 00:07:34 +01:00
1cf28da66d Update docs/README.md (#16333)
* Update docs/README.md

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-23 22:46:11 +01:00
029b0d95ed add GPT-J ONNX config to Transformers (#16274)
* add GPT-J ONNX config to Transformers

* remove token-classification features mapping

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* add question-answering features mapping

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* add GPT2 config init to GPT2 config + copie shebang for fix-copies

Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-03-23 16:36:11 -04:00
aff9bc405a Decision transformer gym (#15845)
* Created the Decision Transformer Modle

* updating tests, copy to other machine

* Added last hidden size to Decision Transformer modelling outputs

* Removed copy of original DT file

* made a temporary change to gpt2 to have it conform with the Decision Transformer version

* Updated tests

* Ignoring a file used to test the DT model

* added comments to config file

* added comments and argument descriptions to decision transformer file

* Updated doc

* Ran "make style"

* Remove old model imports

* Removed unused imports, cleaned up init file

* Update docs/source/model_doc/decision_transformer.mdx

added my username

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Reverted changes made to gpt2

* Removed datasets submodule

* Update the modeling outputs to include gpt2 attentions, hidden states and last hidden states

* Added support for return of hidden states, attentions and return dict of gpt2 model.

* Updated tests to include many of the ModelTesterMixin tests. 

The following tests are skipped: test_generate_without_input_ids, test_pruning, test_resize_embeddings, test_head_masking, test_attention_outputs, test_hidden_states_output, test_inputs_embeds, test_model_common_attributes

* Added missing line to the end of gpt2 file

* Added an integration test for the Decision Transformer

Test performs and autoregressive evaluation for two time steps

* Set done and info to _ to fix failing test

* Updated integration test to be deterministic and check expected outputs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Removed unnecessary config options

* Cleaned up commented code and old comments.

* Cleaned up commented code.

* Changed DecisionTransformer to Decision Transformer

* Added Decision Transformer to the main README file

* Added copy of GTP2 called DecisionTranformerGPT2Model

* isorted imports

* isorted imports

* Added model to non-English README files

* Ran make fix-copies and corrected some cases.

* Updated index file to include Decision Transformer

* Added gpt2 model as copy inside the Decision Transformer model file

* Added the unit test file to the list of TEST_FILES_WITH_NO_COMMON_TESTS

* Deleted redundant checkpoint files (I don't know how these got committed)

* Removed testing files. (These should have never been committed)

* Removed accidentally committed files

* Moved the Decision Transformer test to its own directory

* Add type hints for Pegasus (#16324)

* Funnel type hints (#16323)

* add pt funnel type hints

* add tf funnel type hints

* Add type hints for ProphetNet PyTorch (#16272)

* [GLPN] Improve docs (#16331)

* Add link to notebook

* Add link

* Fix bug

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Added type hints for Pytorch Marian calls (#16200)

* Added type hinting for forward functions in pytorch marian

* typo correction

* Removed type hints on functions from BART per Suraj Patil request

* fix import pb

* fix typo

* corrected tuple call

* ran black

* after fix-copies
Some optional tags on primitives were removed, past_key_values in MarianForCausalLM changed from Tuple of Tuple to List

* Fixing copies to roformer and pegasus

Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>

* Moved DecisionTransformOutput to modeling_decision_transformer

* Moved the example usage to research project and cleaned comments

* Made tests ignore the copy of gpt2 in Decision Transformer

* Added module output to modelling decision transformer

* removed copied gpt2 model from list of transformers models

* Updated tests and created __init__ file for new test location

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Removed unneeded summary type from config file

* Fixed copies

* Updated pretrained config map to refer to hopper-medium checkpoint

* done (#16340)

* Added Decision transformer to model docs

* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add type annotations for Rembert/Splinter and copies (#16338)

* undo black autoformat

* minor fix to rembert forward with default

* make fix-copies, make quality

* Adding types to template model

* Removing List from the template types

* Remove `Optional` from a couple of types that don't accept `None`

Co-authored-by: matt <rocketknight1@gmail.com>

* [Bug template] Shift responsibilities for long-range (#16344)

* Fix code repetition in serialization guide (#16346)

* Adopt framework-specific blocks for content (#16342)

*  refactor code samples with framework-specific blocks

*  update training.mdx

* 🖍 apply feedback

* Updates the default branch from master to main (#16326)

* Updates the default branch from master to main

* Links from `master` to `main`

* Typo

* Update examples/flax/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Updated model with custom docstring example

* Created the Decision Transformer Modle

* updating tests, copy to other machine

* Added last hidden size to Decision Transformer modelling outputs

* Removed copy of original DT file

* made a temporary change to gpt2 to have it conform with the Decision Transformer version

* Updated tests

* Ignoring a file used to test the DT model

* added comments to config file

* added comments and argument descriptions to decision transformer file

* Updated doc

* Ran "make style"

* Remove old model imports

* Removed unused imports, cleaned up init file

* Update docs/source/model_doc/decision_transformer.mdx

added my username

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Reverted changes made to gpt2

* Removed datasets submodule

* Update the modeling outputs to include gpt2 attentions, hidden states and last hidden states

* Added support for return of hidden states, attentions and return dict of gpt2 model.

* Updated tests to include many of the ModelTesterMixin tests. 

The following tests are skipped: test_generate_without_input_ids, test_pruning, test_resize_embeddings, test_head_masking, test_attention_outputs, test_hidden_states_output, test_inputs_embeds, test_model_common_attributes

* Added missing line to the end of gpt2 file

* Added an integration test for the Decision Transformer

Test performs and autoregressive evaluation for two time steps

* Set done and info to _ to fix failing test

* Updated integration test to be deterministic and check expected outputs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Removed unnecessary config options

* Cleaned up commented code and old comments.

* Cleaned up commented code.

* Changed DecisionTransformer to Decision Transformer

* Added Decision Transformer to the main README file

* Added copy of GTP2 called DecisionTranformerGPT2Model

* isorted imports

* isorted imports

* Added model to non-English README files

* Ran make fix-copies and corrected some cases.

* Updated index file to include Decision Transformer

* Added gpt2 model as copy inside the Decision Transformer model file

* Added the unit test file to the list of TEST_FILES_WITH_NO_COMMON_TESTS

* Deleted redundant checkpoint files (I don't know how these got committed)

* Removed testing files. (These should have never been committed)

* Removed accidentally committed files

* Moved the Decision Transformer test to its own directory

* Moved DecisionTransformOutput to modeling_decision_transformer

* Moved the example usage to research project and cleaned comments

* Made tests ignore the copy of gpt2 in Decision Transformer

* Added module output to modelling decision transformer

* removed copied gpt2 model from list of transformers models

* Updated tests and created __init__ file for new test location

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Removed unneeded summary type from config file

* Fixed copies

* Updated pretrained config map to refer to hopper-medium checkpoint

* Added Decision transformer to model docs

* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Updated model with custom docstring example

* Updated copies, config auto, and readme files.

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Tegzes <48134725+Tegzes@users.noreply.github.com>
Co-authored-by: Adam Montgomerie <adam@avanssion.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Clémentine Fourrier <22726840+clefourrier@users.noreply.github.com>
Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Francesco Saverio Zuppichini <francesco.zuppichini@gmail.com>
Co-authored-by: Jacob Dineen <54680234+jacobdineen@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-03-23 16:18:43 -04:00
c595b6e6a9 Make Transformers use cache files when hf.co is down (#16362)
* Make Transformers use cache files when hf.co is down

* Fix tests

* Was there a random circleCI failure?

* Isolate patches

* Style

* Comment out the failure since it doesn't fail anymore

* Better comment
2022-03-23 15:56:49 -04:00
8a69e023bf Swap inequalities (#16368)
* Swap inequalities

* Update src/transformers/trainer_callback.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer_callback.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-23 14:50:09 -04:00
9e8c37dc82 TF - Fix interchangeable past/past_key_values and revert output variable name in GPT2 (#16332)
* revert tf gpt2

* add test for unpack_inputs and fix test case

* add changes to vision encoder decoder
2022-03-23 18:41:18 +00:00
12428f0ef1 Fix style 2022-03-23 11:44:09 -04:00
1dfc11e9e0 complete the type annotations for config parameters (#16263) 2022-03-23 15:15:59 +00:00
bb3a1d345a Adding missing type hints for mBART model (TF) (#16281)
* added type hints for mbart tensorflow tf implementation

* Adding missing type hints for mBART model 

Tensorflow Implementation model added with missing type hints

* Missing Type hints - correction

For TF model

* Code fixup using make quality tests

* Hint types - typo error

* make fix-copies and make fixup

* type hints

* updated files

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-23 15:14:55 +00:00
935330ddfd Trainer evaluation delay (#16356)
* Initial commit

* Reversed signs, adjusted log entery.

* Check only when

* Cleanup checks

* Only trigger if we want to eval

* Run

* Move changes to callback
2022-03-23 11:11:34 -04:00
a220f160e0 [FlaxBart] make sure no grads are computed an bias (#16345)
* [FlaxBart] make sure no grads are computed an bias

* correct all other seq2seq models
2022-03-23 15:56:11 +01:00
4975002df5 Reorganize file utils (#16264)
* Split file_utils in several submodules

* Fixes

* Add back more objects

* More fixes

* Who exactly decided to import that from there?

* Second suggestion to code with code review

* Revert wront move

* Fix imports

* Adapt all imports

* Adapt all imports everywhere

* Revert this import, will fix in a separate commit
2022-03-23 10:26:33 -04:00
7135603423 [T5] Add t5 download script (#16328)
* [T5] Add bash download script

* up

* up

* up

* Update src/transformers/models/t5/download_from_gcp.sh
2022-03-23 13:25:30 +01:00
eca77f4719 Updates the default branch from master to main (#16326)
* Updates the default branch from master to main

* Links from `master` to `main`

* Typo

* Update examples/flax/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-23 03:46:59 -04:00
7732148124 Adopt framework-specific blocks for content (#16342)
*  refactor code samples with framework-specific blocks

*  update training.mdx

* 🖍 apply feedback
2022-03-22 16:14:58 -05:00
62cbd8423b Fix code repetition in serialization guide (#16346) 2022-03-22 16:57:19 -04:00
4f6c938342 [Bug template] Shift responsibilities for long-range (#16344) 2022-03-22 21:55:22 +01:00
ec3aace0ae Add type annotations for Rembert/Splinter and copies (#16338)
* undo black autoformat

* minor fix to rembert forward with default

* make fix-copies, make quality

* Adding types to template model

* Removing List from the template types

* Remove `Optional` from a couple of types that don't accept `None`

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-22 20:07:48 +00:00
c30798ec9d done (#16340) 2022-03-22 18:06:17 +01:00
d49f8d3189 Added type hints for Pytorch Marian calls (#16200)
* Added type hinting for forward functions in pytorch marian

* typo correction

* Removed type hints on functions from BART per Suraj Patil request

* fix import pb

* fix typo

* corrected tuple call

* ran black

* after fix-copies
Some optional tags on primitives were removed, past_key_values in MarianForCausalLM changed from Tuple of Tuple to List

* Fixing copies to roformer and pegasus

Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-22 14:45:59 +00:00
a2379b9257 [GLPN] Improve docs (#16331)
* Add link to notebook

* Add link

* Fix bug

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-22 15:45:29 +01:00
87a9af533c Add type hints for ProphetNet PyTorch (#16272) 2022-03-22 13:55:58 +00:00
7b262b9692 Funnel type hints (#16323)
* add pt funnel type hints

* add tf funnel type hints
2022-03-22 13:52:29 +00:00
deb61e5f07 Add type hints for Pegasus (#16324) 2022-03-22 13:17:55 +00:00
7cc2c9c6b0 Fix bugs of s2t fairseq model converting (#15593)
* Fix bugs for argument typo and positional embedding weight loading

* Reflect code review suggestion to cover different missing keys cases
2022-03-22 12:09:51 +01:00
7865f4d01f add xglm conversion script (#16305)
* add xglm conversion script

* style

* update script
2022-03-22 11:45:50 +01:00
0c55d47cde Add GLPN (#16199)
* First draft

* Fix logits calculation

* Improve tests

* Add copied from statements

* Fix base_model_prefix

* Improve implementation, upload new models

* Update design

* Fix integration test

* Add model to README and toctree

* Add document image

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add decoder_hidden_size attribute

* Update design of decoder

* Add DepthEstimatorOutput class

* Rename in_index to head_in_index and add feature extractor tests

* Apply suggestions from code review

* Apply suggestions from code review

* Update pretrained model name and add to doc tests

* Remove test.py script

* Update copied from statements and clean up

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-22 08:51:13 +01:00
df32b5d89b TFLongformer: Add missing type hints and unpack inputs decorator (#16228)
* Add type annotations for TF Longformer

* Update docstring data types to include numpy array

* Implement unpack_inputs decorator

* fixup after decorator updates

* Numpy array -> np.ndarray in docstring

Co-authored-by: Johnny Greco <johnny.greco@radpartners.com>
2022-03-21 22:56:17 +00:00
0aac9ba2da Add Flaubert OnnxConfig to Transformers (#16279)
* Add Flaubert to ONNX to make it available for conversion.

* Fixed features for FlauBERT. fixup command remove flaubert to docs list.

Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
2022-03-21 21:46:31 +01:00
9fef668338 TF - update (vision_)encoder_decoder past variable (#16260) 2022-03-21 19:55:41 +00:00
f9387c948d Update Makefile Phonies (#16306) 2022-03-21 15:28:23 -04:00
96cd5bcbb9 added type hints for blenderbot and blenderbot_small (#16307) 2022-03-21 19:13:58 +00:00
e226a24f84 [xtreme-s] Update Minds14 results (#16241)
* update results

* per-language metrics

* Format the per-language metrics
2022-03-21 19:33:59 +01:00
6f1727d83a Fix Seq2SeqTrainingArguments docs (#16295)
* Indent Seq2Seq Train Args docs

* Add Args keyword to Seq2Seq Train Args docs
2022-03-21 13:48:07 -04:00
7643b1caa6 Added type hints to PyTorch Longformer models (#16244) 2022-03-21 17:09:03 +00:00
c77092a5ed [FlaxGPTJ] Fix bug in rotary embeddings (#16298) 2022-03-21 18:07:56 +01:00
4b2774832d fix last element in hidden_states for XGLM (#16301)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-21 17:38:52 +01:00
5a42bb431e Update troubleshoot with more content (#16243)
* 📝 first draft

* 🖍 apply feedback
2022-03-21 11:37:18 -05:00
fbb454307d [SegFormer] Remove unused attributes (#16285)
* Remove unused attributes

* Add link to blog and add clarification about input size

* Improve readability of the code

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-21 17:34:10 +01:00
f0c00d8ca9 Fix Marian conversion script (#16300) 2022-03-21 17:23:40 +01:00
94be424308 Added type hints for PyTorch T5 model (#16257)
* Added type hints for PyTorch T5 model

* removed a type hint

* ran make style
2022-03-21 16:17:52 +00:00
250b478a2c GPT2 TensorFlow Type Hints (#16261)
* Add typing hints for base model class

* Add typing hints for causal LM model class

* Add typing hints for double heads model class

* Add typing hints for sequence classification model class

* Add typing hints for Main Layer

* Run fixup
2022-03-21 16:11:03 +00:00
9ad77affee test (#16294) 2022-03-21 16:59:47 +01:00
d50f62f2de added type hints for BART model (#16270)
* added type hints for BART model

* make fixup, adding imports to copied files

* Adding some missing types to cookiecutter

* Adding some missing types to cookiecutter

* Adding some missing types to cookiecutter

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-21 15:18:01 +00:00
460f36d352 Add type hints transfoxl (#16267)
* Add type hint for pt transfo_xl model

* Add type hint for tf transfo_xl model
2022-03-21 15:04:13 +00:00
Xia
2afe9cd279 Add argument "cache_dir" for transformers.onnx (#16284)
* Add argument "cache_dir" for transformers.onnx

* Reformate files that can't pass CI.
2022-03-21 15:26:44 +01:00
3f0f75e497 Remove disclaimer from Longformer docs (#16296) 2022-03-21 10:05:47 -04:00
c6f7ea194b Add type hints to xlnet (#16214)
* added type hints to xlnet PT

* added type hints to xlnet TF

* added type hints to xlnet TF
2022-03-21 13:04:18 +00:00
abf3cc7064 Fix a typo (add a coma) (#16291)
As mentioned: https://github.com/huggingface/transformers/issues/16277
2022-03-21 12:10:24 +00:00
641e5f3f55 Fix XGLM cross attention (#16290) 2022-03-21 13:07:28 +01:00
f393868073 Fixed Error Raised Due to Wrongly Accessing Training Sample (#16115)
* Update training.mdx

Fixed Error Raised Due to Wrongly Accessing Training Sample

* Ran make style

* Revert to Old Commit

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-03-21 12:54:54 +01:00
4ecb022eb1 Draft a guide with our code quirks for new models (#16237)
* Draft a guide with our code quirks for new models

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-21 07:44:03 -04:00
8bbd41369f removed the 'optional' string (#16266)
Co-authored-by: dinesh-GDK <dinesh.gna111@gmail.com1>
2022-03-21 07:39:45 -04:00
c36b856580 Framework split for Spanish version of doc quicktour.mdx (#16215)
* Apply framework changes

* Fix italics

* Fix nits

* correct syntax

Co-authored-by: Omar Espejel <espejelomar@Omars-MacBook-Air.local>
2022-03-21 07:37:45 -04:00
c1af180dfe Add Slack notification support for doc tests (#16253)
* up

* up

* up

* fix

* yeh

* ups

* Empty test commit

* correct quicktour

* correct

* correct

* up

* up

* uP

* uP

* up

* up

* uP

* up

* up

* up

* up

* up

* up

* up

* up

* up

* up

* Update src/transformers/models/van/modeling_van.py

* finish

* apply suggestions

* remove folder

* revert to daily testing
2022-03-21 11:33:18 +01:00
319cbbe191 Deberta v2 code simplification (#15732)
* Removed spurious substraction

* Fixed condition checking for attention type

* Fixed sew_d copy of DeBERTa v2 attention

* Removed unused `p2p` attention type from DebertaV2-class models

* Fixed docs style
2022-03-21 05:15:38 -04:00
0a5ef036e6 Make add-new-model-like work in an env without all frameworks (#16239)
* Make add-new-model-like work without all frameworks installed

* A few fixes

* Last default frameworks
2022-03-21 04:29:04 -04:00
f466936476 Add has_attentions to TFModelTesterMixin as done on PyTorch side (#16259)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-19 11:44:17 +01:00
8d7420768c Small fixes to the documentation (#16180) 2022-03-18 17:48:27 -04:00
ffc319e7b8 Fix links in guides (#16182)
* 🖍 fix links in guides

* 🖍 apply feedback
2022-03-18 16:16:16 -05:00
277fc2cc78 Update flaubert with tf decorator (#16258) 2022-03-18 17:57:55 +00:00
75c666b4a8 Aggressive PT/TF equivalence test on PT side (#16250)
* Aggressive PT/TF equivalence test on PT side

* Ugly fix for `TFTapasForQuestionAnswering`

* apply review suggestions

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-18 18:51:24 +01:00
d481b6414d Make Flax pt-flax equivalence test more aggressive (#15841)
* Make test_equivalence_pt_to_flax more aggressive

* Make test_equivalence_flax_to_pt more aggressive

* don't use to_tuple

* clean-up

* fix missing test cases + testing on GPU

* fix conversion

* fix `ValueError: assignment destination is read-only`

* Add type checking

* commit to revert later

* Fix

* fix

* fix device

* better naming

* clean-up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-18 18:15:36 +01:00
c03b6e4259 value check for typical sampling (#16165)
* value check for typical sampling

* value check for typical sampling

* change from float to int comparison

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-18 17:05:27 +01:00
fdc2e643c3 added cbs to notebooks, made copy-paste error fix in generation_utils (#16246) 2022-03-18 17:04:43 +01:00
b25b92ac4f update jax version and re-enable some tests (#16254) 2022-03-18 16:45:39 +01:00
5709a20416 Add unpack_inputs decorator for ctrl (#16242)
* add unpack_inputs decorator for ctrl

* replace "past" with "past_key_values"

Co-authored-by: Johannes Kolbe <johannes.kolbe@tech.better.team>
2022-03-18 15:33:24 +00:00
ddbc9ae00b Update XLM with TF decorator (#16247)
* update XLM with tf decorator

* move to top decorator

* set unpack_inputs as top decorator

Co-authored-by: Louis Owen <yellow@Louis-Owen.local>
2022-03-18 14:07:02 +00:00
a6271967c9 Override _pad in LEDTokenizer to deal with global_attention_mask (#15940)
* Override _pad in LEDTokenizer

* Override _pad in LEDTokenizerFast

* add Copied from

* calling the super method

* add comment about -1

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-18 13:30:08 +01:00
cb2b0276b6 Change assertion to warning when passing past_key_value to T5 encoder (#16153)
* Change assertion to warning when passing past_key_value to T5 encoder

* lint
2022-03-18 12:52:55 +01:00
ecb4662d17 Attention mask is important in the case of batching... (#16222)
* Attention mask is important in the case of batching...

* Improve the fix.

* Making the sentence different enough that they exhibit different
predictions.
2022-03-18 10:02:12 +01:00
ec4e421b7d Update expected slices for pillow > 9 (#16117)
* Update expected slices for pillow > 9

* Add expected slices depending on pillow version

* Add different slices depending on pillow version for other models

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-18 09:46:45 +01:00
12d1f07770 integrations: mlflow: skip start_run() if a run is already active and sanity check on enabling integration (#16131)
* integrations: mlflow: skip start_run() call if a run is already active

* integrations: typo fix

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-17 16:39:57 -04:00
47cccb5318 [Deepspeed] non-HF Trainer doc update (#16238) 2022-03-17 13:33:55 -07:00
8a96b0f10a [Generate Docs] Correct docs (#16133)
* [Generate Docs] Correct docs

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2022-03-17 20:05:28 +01:00
632ff3c39e [FlaxSpeechEncoderDecoderModel] Skip from_encoder_decoder_pretrained (#16236)
* skip the test

* fix

* fix skip
2022-03-17 20:05:14 +01:00
b6e06c845f fix(flax): generate with logits processor/warper (#16231) 2022-03-17 19:39:16 +01:00
1c1e377e99 TF - add unpack_inputs decorator for marian (#16226)
* add unpack_inputs decorator

* small fix for attn_mask string

Co-authored-by: Johannes Kolbe <johannes.kolbe@tech.better.team>
2022-03-17 18:23:40 +00:00
81643edda5 Support PEP 563 for HfArgumentParser (#15795)
* Support PEP 563 for HfArgumentParser

* Fix issues for Python 3.6

* Add test for string literal annotation for HfArgumentParser

* Remove wrong comment

* Fix typo

* Improve code readability

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Use `isinstance` to compare types to pass quality check

* Fix style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-17 13:51:37 -04:00
93d3fd8645 remove jax.ops.index (#16220) 2022-03-17 17:51:43 +01:00
8481ecefbd Fix Type Hint of Nan/Inf Logging Filter Arg (#16227) 2022-03-17 11:05:38 -04:00
5a6b3ccd28 Skip equivalence test for TransfoXL (#16224)
* Skip test for TransfoXL

* Single list
2022-03-17 09:03:07 -04:00
abd503d939 TF - Adding Unpack Decorator For DPR model (#16212)
* Adding Unpack Decorator

* Adding Unpack Decorator-moved it on top
2022-03-17 12:33:02 +00:00
d9b8d1a9f5 update test (#16219) 2022-03-17 08:11:55 -04:00
7e0d04bed1 Fix readmes (#16217) 2022-03-17 07:47:01 -04:00
e1da89ccb8 Fix reproducibility in Training for PyTorch 1.11 (#16209) 2022-03-17 07:42:58 -04:00
e5101c2e27 Fix typo (#16208) 2022-03-17 07:21:20 -04:00
25b8f9a85b Fix FlaxRoFormerClassificationHead activation (#16168)
* fix activation

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-17 11:45:50 +01:00
03c14a515f [Tests] Fix DiT test (#16218)
* Fix device

* Clean up

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-17 10:53:57 +01:00
73f0a5d1f6 Fixes Loss for TransfoXL when using Trainer API v2 (#16140)
* fix(transfo_xl): Fixes TransfoXL support when using Trainer.

* fix(tests): Uses losses_1 and losses_2 pattern with TransfoXL test.

* fix(transfo_xl): Adds requested changes to allow for backward compatibility.

fix(transfo_xl): Adds requested changes to allow for backward compatibility.

fix(transfo_xl): Fixes code styling.

* Backward compatibility

* Update src/transformers/models/transfo_xl/modeling_transfo_xl.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Gustavo de Rosa <gth.rosa@uol.com.br>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-17 05:49:24 -04:00
76c74b37c1 VAN: update modules names (#16201)
* done

* done
2022-03-17 10:25:09 +01:00
99e2982f3e Add/type annotations/model vision (#16151)
* add types annotations for Beit (PyTorch)

* add types annotations for ViT (PyTorch)

* add types annotations for Deit (PyTorch)

* change Optional[bool] to bool into some places at Beit

* change Optional[bool] to bool into some places at ViT
2022-03-16 20:27:54 +00:00
2410d0f8ed Fix generation min length (#16206)
* up

* fix min lengths
2022-03-16 18:49:23 +01:00
667b823b89 Swin support for any input size (#15986)
* padding done

* correctly return one attention per layer

* almost correct, attentions are not flatten one tuple per stage

* tests green

* doc

* conversations

* reshaping hidden_states

* view in the test

* reshape_hidden_states in Encoder and Model

* new outputs with reshaped_hidden_states

* conversations

* doc

* Update docs/source/model_doc/swin.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* conversations

* fix tests

* minor changes

* resolved conversations

* attentions one per stage

* typo

* typos

* typos

* function signature

* CI

* clean up tests

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-03-16 18:38:25 +01:00
204c54d411 TF: add beam search tests (#16202) 2022-03-16 15:44:33 +00:00
190994573a Fix loading CLIPVisionConfig and CLIPTextConfig (#16198)
* override from_pretrained

* add tests

* remove docstrings

* fix typo

* Trigger CI
2022-03-16 16:24:01 +01:00
09013efdf1 Update step name (#16189)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-16 11:19:38 -04:00
36f8c42519 ResNet: update modules names (#16196)
* updated names

* fit in one line

* typo
2022-03-16 15:59:56 +01:00
5bdf3313ef Adding type hints for Distilbert (#16090)
* Distillbert type - squash

* Update src/transformers/models/distilbert/modeling_distilbert.py

Undo cleanup

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update src/transformers/models/distilbert/modeling_distilbert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update src/transformers/models/distilbert/modeling_distilbert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update src/transformers/models/distilbert/modeling_distilbert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove type

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-03-16 14:54:50 +00:00
0b8b06185d clearer model variable naming: blenderbot_small (#16194)
Co-authored-by: utku saglam <utkusaglam@utku-MacBook-Pro.local>
2022-03-16 14:03:58 +00:00
f06c2c2ba1 TF unpack_input decorator for convnext (#16181)
* unpack_input decorator for tf_convnext

* set unpack_input as top decorator

Co-authored-by: Johannes Kolbe <johannes.kolbe@tech.better.team>
2022-03-16 14:01:32 +00:00
d35e0c6247 Minor fixes to XTREME-S (#16193)
* Minor fixes

* Fix vocab union

* Update examples/research_projects/xtreme-s/README.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update README

* unused import

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-16 17:23:00 +04:00
8cc925a241 TF clearer model variable naming: blenderbot (#16192)
Co-authored-by: utku saglam <utkusaglam@utku-MacBook-Pro.local>
2022-03-16 12:37:08 +00:00
0f35cda459 TF clearer model variable naming: funnel (#16178)
Co-authored-by: utku saglam <utkusaglam@utku-MacBook-Pro.local>
2022-03-16 10:37:47 +00:00
ee27b3d7df Replace all deprecated jax.ops operations with jnp's at (#16078)
* Replace all deprecated `jax.ops` operations with jnp's `at`

* np to jnp scores

* suggested changes
2022-03-16 09:08:55 +00:00
c2dc89be62 [Xtreme-S] fix some namings (#16183) 2022-03-16 01:21:31 +01:00
99fd3eb4a5 Add the XTREME-S fine-tuning example (#15985)
* CTC+classification draft

* CTC+classification draft

* style

* multilingual runs

* Fix race condition during processor.from_reatrained

* Merge covost experiments

* Add README

* Quality

* Switch to .all configs

* Fix typos
2022-03-16 00:21:06 +01:00
db4dd44ae3 Trigger doc build 2022-03-15 17:00:31 -04:00
ea05d67164 Fix some Flax models' hidden_states (#16167)
* fix the last element in `hidden_states`

* fix missing elements in outputs for FlaxWav2Vec2EncoderLayerStableLayerNormCollection

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-15 19:06:46 +01:00
88f7c564f0 Added type hints for Reformer (#16175) 2022-03-15 17:59:59 +00:00
16399d6197 Add type annotations for Perceiver (#16174) 2022-03-15 17:56:57 +00:00
015de6f081 TF clearer model variable naming: xlnet (#16150) 2022-03-15 17:50:30 +00:00
a23a7c0cd6 Add flaubert types (#16118)
* Add type hints for FlauBERT PyTorch Base model. Others downstream tasks are inherited from XLM RoBERTa.

* Add type hints for FlaubERT Tensorflow models.

* fix output for TFFlaubertWithLMHeadModel
2022-03-15 16:57:45 +00:00
366c18f473 TF clearer model variable naming: Deberta (#16146) 2022-03-15 16:53:25 +00:00
79465ac521 TF clearer model variable naming: Tapas (#16145) 2022-03-15 16:52:56 +00:00
a78565b7aa [MT5Config] add relative_attention_max_distance in config (#16170) 2022-03-15 16:26:52 +01:00
4f4e5ddbcb Framework split (#16030)
* First files

* More files

* Last files

* Style
2022-03-15 10:13:34 -04:00
4a353cacb7 added type hints to yoso (#16163) 2022-03-15 14:04:32 +00:00
c1c17bd0b3 update transformer XL with tf decorator (#16166)
* update transformer XL with tf decorator

* code fixup

* remove unused variables
2022-03-15 14:00:18 +00:00
611d3a09b2 Change unpacking of TF inputs: layoutlm, mpnet, rag, and roformer (#16112)
Co-authored-by: ChienVM <chien_vm@detomo.co.jp>
2022-03-15 13:47:45 +00:00
0d7322c1b7 TF clearer model variable naming: pegasus (#16152) 2022-03-15 13:45:59 +00:00
cd4c5c9060 TF XLA greedy generation (#15786)
* First attempt at TF XLA generation

* Fix comments

* Update XLA greedy generate with direct XLA calls

* Support attention mask, prepare_inputs_for_generation no longer hardcoded for greedy

* Handle position_ids correctly

* make xla generate work for non xla case

* force using xla generate

* refactor

* more fixes

* finish cleaning

* finish

* finish

* clean gpt2 tests

* add gpt2 tests

* correct more cases

* up

* finish

* finish

* more fixes

* flake 8 stuff

* final rag fix

* Update src/transformers/models/rag/modeling_tf_rag.py

* finish t5 as well

* finish

* Update src/transformers/generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-15 14:19:20 +01:00
e5bc438cc8 [Fix doc example] Fix 2 PyTorch Vilt docstring examples (#16076)
* fix 2 pytorch vilt docstring examples

* add vilt to doctest list file

* remove device

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-15 13:35:02 +01:00
bcaf566038 [Fix doc example] Fix first example for the custom_datasets tutorial (#16087)
* Fix inconsistent example variable naming

- Example code for a sequence classification in Tensorflow had spelling mistakes and incorrect and inconsistent naming
- Changed variable naming to be consistent with the two other TF examples

* Fix incorrect incorrect training examples
2022-03-15 08:17:51 -04:00
8bfd2fb8f0 Use templates (#16142)
* Use tempaltes for all doc building jobs

* Add this branch to the doc build

* Switch to main branch
2022-03-15 08:07:56 -04:00
daa4944759 Added spanish translation of quicktour.mdx (#16158)
* Added spanish translation of quicktour.mdx

* Suggestions applied in the revision of the translation

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-15 08:07:35 -04:00
57713443de Configurable Relative Position Max. Distance (#16155)
* Configurable Relative Position Max. Distance

* fix missing config

Co-authored-by: ahmed-elnaggar <ahmed.elnaggar@allianz.com>
2022-03-15 08:05:33 -04:00
cd1ffb40bf typo "conaining" -> "containing" (#16132) 2022-03-15 07:08:53 -04:00
5664d27622 Shift responsibilities a bit (#16154) 2022-03-15 11:07:17 +01:00
5a386fb05c Make transformers.utils.fx. _SUPPORTED_MODELS unique (#16015) 2022-03-15 10:15:03 +01:00
a7aca42fc4 Improve Swin for VisionEncoderDecoder (#16070)
* Add Swin2Bart test

* Fix swin tests

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-15 09:59:48 +01:00
0a057201a9 Visual Attention Network (VAN) (#16027)
* encoder works

* addded files

* norm in stage

* convertion script

* tests

* fix copies

* make fix-copies

* fixed __init__

* make fix-copies

* fix

* shapiro test needed

* make fix-copie

* minor changes

* make style + quality

* minor refactor conversion script

* rebase + tests

* removed unused variables

* updated doc

* toctree

* CI

* doc

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* resolved conversations

* make fixup

* config passed to modules

* config passed to modules

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* conversations

* conversations

* copyrights

* normal test

* tests

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-03-15 08:47:12 +01:00
8f3ea7a1e1 Add type hints for GPTNeo PyTorch (#16127)
* Add type hints for SqueezeBert PyTorch

* Add type hints for GPTNeo PyTorch

* style fixes

* chenged List with Tuple
2022-03-14 20:26:12 +01:00
e3008c679f [WIP] Resnet (#15770)
* first commit

* ResNet model correctly implemented.

basic modeling + weights conversion is done

removed unused doc

mdx file

doc and conversion script

added feature_extractor to auto

test

minor changes + style + quality

doc

test

Delete process.yml

A left over from my attempt of running circleci locally

* minor changes

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* new test format

* minor changes from conversations

* minor changes from conversations

* make style + quality

* readded the tests

* test + README

* minor changes from conversations

* error in README

* make fix-copies

* removed regression for classification head

* make quality

* fixed loss control flow

* fixed loss control flow

* resolved conversations

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* READMEs

* index.mdx

* minor changes

* updated tests and models

* unused import

* outputs

* Update docs/source/model_doc/resnet.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added embeddings_size

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* conversation

* added push to hub

* test

* embedding_size

* make fix-copies

* resolved conversations

* CI

* changed organization

* minor changes

* CI

* minor changes

* conversations

* conversation

* doc

* tests

* removed unused docstring

* conversation

* removed unused outputs

* CI

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-03-14 19:57:55 +01:00
6458236181 TF Electra - clearer model variable naming (#16143) 2022-03-14 18:10:07 +00:00
37793259bb update albert with tf decorator (#16147) 2022-03-14 18:09:19 +00:00
e109edf16f Use HF_ENDPOINT for custom endpoints (#16139) 2022-03-14 13:26:23 -04:00
0dcdfe8630 Add type hints for FNet PyTorch (#16123) 2022-03-14 17:11:19 +00:00
f86235ad1b Add type annotations for CLIP (torch) (#16059) (#16106)
* clip typhinting #16059

* removed optional type annotations for dataclass in CLIPOutput

* type annotation fixes per Rocket - Clip Torch
2022-03-14 16:56:04 +00:00
c1000e703b Dcoker images runtime -> devel (#16141)
* Runtime -> Devel

* Torch before DeepSpeed
2022-03-14 12:37:20 -04:00
10cf1ffdbf Added missing type hints - ELECTRA TF (#16104)
* Add missing type hints - ELECTRA TF

* bool -> Optional[bool]
2022-03-14 16:28:34 +00:00
6db8693086 Add type hints for SqueezeBert PyTorch (#16126)
* Add type hints for SqueezeBert PyTorch

* fixed unused List err

* style fixes
2022-03-14 16:21:08 +00:00
5493c10ecb Add type hints for PoolFormer in Pytorch (#16121) 2022-03-14 16:14:04 +00:00
6c2f3ed74c Add type hints for Luke in PyTorch (#16111)
* Add type hints for LukeModel

* Add type hints for entitypairclassification

* Remove blank space

Co-authored-by: bhavika <bhavika@debian-BULLSEYE-live-builder-AMD64>
2022-03-14 15:55:03 +00:00
37a9fc49f2 Choose framework for ONNX export (#16018)
* Can choose framework for ONNX export

* Fix docstring
2022-03-14 16:47:29 +01:00
3f8360a7b6 Add type hints for TFDistilBert (#16107)
* Add type hints for TFDistilBert

* Update src/transformers/models/distilbert/modeling_tf_distilbert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-03-14 15:39:59 +00:00
97e32b7854 Improve model variable naming - CLIP [TF] (#16128)
* First pass

* Fixup

* Fix broken tests

* Make unpack_inputs the first decorator
2022-03-14 15:26:40 +00:00
d02bd4f333 Better input variable naming for OpenAI (TF) (#16129)
* Replace input_processing

* move unpack_inputs
2022-03-14 15:25:45 +00:00
c8c8c114a3 [Fix doc example] Fix checkpoint name in docstring example in Speech2Text2 (#16083)
* Fix checkpoint name in docstring example

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-14 16:19:18 +01:00
72ae06b904 Added missing type hints - V1 and V2 (#16105) 2022-03-14 15:12:22 +00:00
1d43933fbc Added missing type hints (#16103) 2022-03-14 14:53:57 +00:00
efd6e9a82a Spanish translation of the file training.mdx (#16047)
* Spanish translation of the file training.mdx

* Settings - Spanish translation of the file training.mdx

* Latest changes to the Spanish translation of the training.mdx file

* Delete Hugging.mdx

* Last changes to the training fil Espanish version

* Latest modifications

* Latest changes, document ready for PR

* Nits

Co-authored-by: Yhary Arias <yharystefa@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-14 10:12:38 -04:00
9fd584e544 Add copied from statements and fix prefix (#16119)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-14 15:05:14 +01:00
f284aa320d steps strategy fix for PushtoHubCallback (#16138) 2022-03-14 13:37:07 +00:00
e3645fd280 Change unpacking of TF mobilebert inputs to use decorator (#16110)
* Change unpacking of TF mobilebert inputs to use decorator

* Move unpack_inputs as the top decorator

* make fixup

Co-authored-by: ChienVM <chien_vm@detomo.co.jp>
2022-03-14 13:15:08 +00:00
5dbf36bd4e Fix ProphetNetTokenizer (#16082)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-14 09:02:41 -04:00
923c35b5c5 Make TF pt-tf equivalence test more aggressive (#15839)
* Make TF pt-tf equivalence test more aggressive

* Fix for TFConvNextModelTest and TFTransfoXLModelTest

* fix kwargs for outputs

* clean-up

* Add docstring for check_outputs()

* remove: need to rename encoder-decoder

* clean-up

* send PyTorch things to the correct device

* Add back the accidentally removed test case in test_pt_tf_model_equivalence()

* Fix: change to tuple before calling check_outputs()

* Fix: tfo could be a list

* use to_tuple()

* allow tfo only to be tuple or tensor

* allow tfo to be list or tuple for now + style change

* minor fix

* remove np.copy and update comments

* tfo -> tf_output, same for pt

* Add more detailed comment

* remove the incorrect comment

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-14 13:31:32 +01:00
9e9f6b8a45 Update convert_marian_to_pytorch.py (#16124)
Configuration `tied-embeddings-all` implies `tied-embeddings-src`
2022-03-14 12:15:38 +01:00
2de99e6c43 Fix Loading of Flax(Speech)EncoderDecoderModel kwargs from PreTrained Encoder-Decoder Checkpoints (#16056)
* Fix Loading of Flax(Speech)EncoderDecoderModel kwargs from PreTrained Encoder-Decoder Checkpoints

* change wording
2022-03-14 10:12:29 +01:00
802984ad42 Fix and document Zero Shot Image Classification (#16079) 2022-03-14 08:50:36 +01:00
6e1e88fd38 Add TFCamembertForCausalLM and ONNX integration test (#16073)
* Make Camembert great again!

* Add Camembert to TensorFlow ONNX tests
2022-03-14 08:40:42 +01:00
20ab1582cf Add missing type hints for all flavors of LayoutLMv2 PyTorch models. (#16089)
* Add missing type hints for all flavors of LayoutLMv2 PyTorch models.

* Fixed return types and added type hints for LayoutLM.

* Fix removed arguments which breaks tests.
2022-03-13 18:54:01 +00:00
65cf33e7e5 Add type hints to XLM model (PyTorch) (#16108) 2022-03-12 19:28:48 +00:00
841620684b apply unpack_input decorator to ViT model (#16102) 2022-03-12 15:05:13 +00:00
62b05b6917 Add type annotations for segformer classes (#16099) 2022-03-12 12:37:09 +00:00
9042dfe35c add unpack_inputs decorator to mbart (#16097) 2022-03-12 12:30:43 +00:00
3e9d0f7f59 Change unpacking of TF Bart inputs (#16094) 2022-03-12 12:06:55 +00:00
580dd87c55 [Deepspeed] add support for bf16 mode (#14569)
* [WIP] add support for bf16 mode

* prep for bf16

* prep for bf16

* fix; zero2/bf16 is ok

* check bf16 is available

* test fixes

* enable zero3_bf16

* config files

* docs

* split stage_dtype; merge back to non-dtype-specific config file

* fix doc

* cleanup

* cleanup

* bfloat16 => bf16 to match the PR changes

* s/zero_gather_fp16_weights_on_model_save/zero_gather_16bit_weights_on_model_save/; s/save_fp16_model/save_16bit_model/

* test fixes/skipping

* move

* fix

* Update docs/source/main_classes/deepspeed.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* backticks

* cleanup

* cleanup

* cleanup

* new version

* add note about grad accum in bf16

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-11 17:53:53 -08:00
c1f209dadd [ZeRO] Fixes issue with embedding resize (#16093)
* gather z3 params for new_lm_head

* Update src/transformers/modeling_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-03-11 15:13:11 -08:00
ae2dd42be5 Audio/vision task guides (#15808)
* 📝 first draft of audio/vision guides

*  make fixup

* 🖍 fix typo

* 🖍 close parentheses

* 🖍 apply feedback

* 🖍 apply feedback, make fixup

* 🖍 more fixup for perceiver

* 🖍 apply feedback

*  make fixup

* 🖍 fix data collator
2022-03-11 16:43:49 -06:00
cb5e50c8c2 [Fix doc example] FSMT (#16085)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-11 21:21:31 +01:00
eaed6897da Add missing type hints for all flavors of RoBERTa PyTorch models. (#16086)
* Add missing type hints for all flavors of RoBERTa PyTorch models.

* Fixed type hints for all classes and fixed return types.
2022-03-11 19:40:50 +00:00
a01fe4cd32 Rebuild deepspeed (#16081)
* Rebuild deepspeed

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-03-11 14:35:48 -05:00
7f3d4440d6 add type annotations for ImageGPT (#16088) 2022-03-11 19:16:14 +00:00
5b4c97d09d Update troubleshoot guide (#16001)
* 📝 first draft

* 🖍 apply feedback

* 🖍 apply feedback
2022-03-11 13:05:44 -06:00
9442b3ce31 Add soft length regulation for sequence generation (#15245)
* add possibility to softly regulate length when using sampling method in model.generate() function

* fix test config, fix formatting

* fix rag integration, fix docstyling

* fix wrong docstring

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* change test according to new param

* fix formatting

* fix test case

* fix doc style

* move start_length calculation to Logitprocessor

* add possibility to softly regulate length when using sampling method in model.generate() function

* fix rag integration, fix docstyling

* fix test config, fix formatting

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* add possibility to softly regulate length when using sampling method in model.generate() function

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* remove unused import

* fix small errors

* fix test

* add possibility to softly regulate length when using sampling method in model.generate() function

* fix test config, fix formatting

* fix rag integration, fix docstyling

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* change test according to new param

* fix test case

* move start_length calculation to Logitprocessor

* add possibility to softly regulate length when using sampling method in model.generate() function

* fix rag integration, fix docstyling

* fix test config, fix formatting

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* add possibility to softly regulate length when using sampling method in model.generate() function

* fix test config, fix formatting

* fix rag integration, fix docstyling

* add possibility to softly regulate length when using sampling method in model.generate() function

* fix rag integration, fix docstyling

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* fix small errors

* Update src/transformers/generation_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/generation_utils.py

* Update src/transformers/generation_utils.py

* fix docstring, add type ind model rag

* fix docstrings

* introduce seq_length variable for cleaner code

* fix black formatting

* add input_ids_seq_length to modeling_rag

* add input_ids_seq_length to test

* retrigger checks

* retrigger checks

Co-authored-by: Kevin Bondzio <kev@AIM-LAP-02.local>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Kevin Bondzio <kev@AIM-LAP-02.fritz.box>
2022-03-11 19:36:44 +01:00
322c8533d7 Run daily test without time-out at least once (#16077) 2022-03-11 18:04:17 +01:00
7e00247fad check for key 'torch.dtype' in nested dicts in config (#16065) 2022-03-11 12:00:11 -05:00
5d2fed2e8c Adding type hints for TFRoBERTa (#16057)
* Adding type annotations for TFRoBERTa

* Add type hints to TFRobertaModel too
2022-03-11 16:13:47 +00:00
bb69d154c5 Add type annotations for BERT and copies (#16074)
* Add type annotations for BERT and copies

* make fixup
2022-03-11 16:13:29 +00:00
f7708e1bed Force default brnahc name via the config 2022-03-11 10:09:15 -05:00
ecf989ca73 Trigger doc build 2022-03-11 09:20:05 -05:00
0868fdef85 Fix torch-scatter version (#16072) 2022-03-11 09:03:27 -05:00
5b369dc5d8 Remove assertion over possible activation functions in DistilBERT (#16066)
* Remove assertion over possible activation functions

* Same for TF and Flax
2022-03-11 14:27:59 +01:00
f5741bcd02 Move QDQBert in just PyTorch block (#16062) 2022-03-11 07:58:02 -05:00
b6bdb943b2 Fix a TF test name (LayoutLMModelTest) (#16061)
* fix name

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-11 11:22:36 +01:00
96ac7549cb updating fine-tune classifier documentation (#16063) 2022-03-10 16:21:56 -05:00
6b09328368 Fix duplicate arguments passed to dummy inputs in ONNX export (#16045)
* Fix duplicate arguments passed to dummy inputs in ONNX export

* Fix M2M100 ONNX config

* Ensure we check PreTrained model only if torch is available

* Remove TensorFlow tests for models without PyTorch parity
2022-03-10 20:19:45 +01:00
ba21001f4c support new marian models (#15831)
* support not sharing embeddings

* update modeling

* update tokenizer

* fix conversion script

* always use self.shared

* boom boom

* begin tests

* update tests

* fix resize_decoder_token_embeddings

* address Patrick's comments

* style

* update conversion script

* fix conversion script

* fix tokenizer

* better name target vocab

* add integration test for tokenizer with two vocabs

* style

* address Patrick's comments

* add integration test for model
2022-03-10 19:41:56 +01:00
e66743e6c9 DeBERTa/DeBERTa-v2/SEW Support for torch 1.11 (#16043)
* Support for torch 1.11

* Address Sylvain's comment
2022-03-10 09:01:05 -05:00
741e49305d Fix Bug in Flax Seq2Seq Models (#16021)
* Fix Bug in Flax Seq2Seq Models

* incorporate suggested changes
2022-03-10 14:58:05 +01:00
b7018abf3c TF: Unpack model inputs through a decorator (#15907)
* MVP

* apply decorator to TFBertModel

* finish updating bert

* update rembert (copy-linked to bert)

* update roberta (copy-linked to bert); Fix args

* Now working for non-text modalities
2022-03-10 13:31:35 +00:00
19597998f6 Don't compute metrics in LM examples on TPU (#16029) 2022-03-10 07:44:51 -05:00
10591399d6 Build the doc in a seperate folder then move it (#16020)
* Build the doc in a seperate folder then move it

* Allow job

* Is this it?

* Dislike comments?

* Copy instead of move

* Removing version built

* Typos

* No variable

* Take _versions.yml into account

* Finish main job and add dev job

* Forgot the run

* Fix syntax error

* Execute builder from the repo

* Typo
2022-03-10 07:44:29 -05:00
2f463effb3 Fix TFDebertaV2ConvLayer in TFDebertaV2Model (#16031)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-10 12:23:46 +01:00
1da84ae02c Fix Bug in Flax-Speech-Encoder-Decoder Test (#16041)
* Fix Bug in Flax-Speech-Encoder-Decoder Test

* change thresholds for CPU precision
2022-03-10 12:09:29 +01:00
b2a1c994cb [README] fix url for Preprocessing tutorial (#16042) 2022-03-10 12:09:05 +01:00
8d83ebdf18 [Tests] Add attentions_option to ModelTesterMixin (#15909)
* Add attentions_option to common tester

* Fix tests, apply suggestion

* Apply suggestion from code review

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-10 12:00:30 +01:00
6ce11c2c0f [Docs] Improve PyTorch, Flax generate API (#15988)
* Move generate docs

* up

* Update docs/source/_toctree.yml

* correct

* correct some stuff

* correct tests

* more fixes

* finish generate

* add to doc stest

* finish

* finalize

* add warning to generate method
2022-03-10 11:54:45 +01:00
0951d31788 Fix dependency error message in ServeCommand (#16033)
"uvicorn" is misspelled as "unicorn".
2022-03-10 11:35:26 +01:00
0835119bf3 Add Document Image Transformer (DiT) (#15984)
* Add conversion script

* Improve script

* Fix bug

* Add option to push to hub

* Add support for classification models

* Update model name

* Upload feature extractor files first

* Remove hash checking

* Fix config

* Add id2label

* Add import

* Fix id2label file name

* Fix expected shape

* Add model to README

* Improve docs

* Add integration test and fix CI

* Fix code style

* Add missing init

* Add model to SPECIAL_MODULE_TO_TEST_MAP

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-10 11:34:44 +01:00
6c9010ef63 Update README.md 2022-03-10 10:20:37 +01:00
fde901877a Freeze Feature Encoder in FlaxSpeechEncoderDecoder (#15997)
* Freeze Feature Encoder in FlaxSpeechEncoderDecoder

* add backprop test
2022-03-10 09:59:19 +01:00
65f9653ed0 Fix warning message in ElectraForCausalLM (#16023) 2022-03-09 17:27:15 -05:00
a69e185074 add doctests for bart like seq2seq models (#15987)
* boom boom

* enable doctest for few seq2seq models

* add seq2seq models in documentation_tests.txt

* fix docstring blenderbot

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix seq classif doc sample

* don't check loss for seq classif examples

* +IGNORE_OUTPUT => +IGNORE_RESULT

* fix _SEQ_CLASS_EXPECTED_OUTPUT_SHAPE

* fix some docs

* more fixes

* last fix (hopefully)

* fix big bird gen example

* fix mbart gen example

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-09 20:30:38 +01:00
b256f3518d Add FlaxBartForCausalLM (#15995)
* add causal lm

* add CausalLM tests

* Add FlaxBartForCausalLM

* Add EncoderDecoder model tests

* change docstring

* make repo-consistency

* suggested changes

* remove jax ops

* correction

* rename pre-trained decoder model
2022-03-09 19:53:01 +01:00
50dd314d93 Add ONNX export for ViT (#15658)
* Add ONNX support for ViT

* Refactor to use generic preprocessor

* Add vision dep to tests

* Extend ONNX slow tests to ViT

* Add dummy image generator

* Use model_type to determine modality

* Add deprecation warnings for tokenizer argument

* Add warning when overwriting the preprocessor

* Add optional args to docstrings

* Add minimum PyTorch version to OnnxConfig

* Refactor OnnxConfig class variables from CONSTANT_NAME to snake_case

* Add reasonable value for default atol

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-09 17:36:59 +01:00
b7fa1e3dee Use tiny models for get_pretrained_model in TFEncoderDecoderModelTest (#15989)
* Use tiny model for TFRembertEncoderDecoderModelTest.get_pretrained_model()

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-09 17:16:25 +01:00
8feede229c Fix broken code blocks in README.md (#15967)
at transformers/examples/pytorch/contrastive-image-text
2022-03-09 17:07:52 +01:00
1e8f37992f done (#16012) 2022-03-09 15:51:56 +01:00
38bce1d4cf Make pos optional to avoid crashing PerceiverModel operation (#15972)
Updates `PerceiverAudioPreprocessor` `forward()` implementation to match most other preprocessors / postprocessors
2022-03-09 15:48:52 +01:00
cec89e1a0e Simplify release utils (#15921)
* Simplify release utils

* Quality
2022-03-09 08:47:58 -05:00
e493a3a5e2 Fix github actions comment (#16009)
* Add issue number

* Dev
2022-03-09 08:39:03 -05:00
e7f34ccd4f Swag example: Update doc format (#16014) 2022-03-09 13:25:34 +00:00
3ea046995e Removed an outdated check about hdf5_version (#16011)
* removed an outdated check about hdf5_version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-09 14:21:23 +01:00
c1aaa43935 [Doctests] Move doctests to new GPU & Fix bugs (#15969)
* test

* up

* up

* Empty test commit

* up

* update tests

* up

* fix some vision models

* correct

* correct docs

* Trigger notification

* finalize

* check

* correct quicktour

* Apply suggestions from code review

* improve doctests

* Trigger Build

* next try

* next try

* and again

* Output current clone information

* Output current clone information

* Correct path

* add tf round again

* revert to daily job

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2022-03-09 13:09:56 +01:00
f4e4ad34cc Add ForInstanceSegmentation models to image-segmentation pipelines (#15937)
* Adding ForInstanceSegmentation to pipelines.

* Last fix `category_id` renamed to `label_id`.

* Can't be none no more.

* No `is_thing_map` anymore.
2022-03-09 10:19:05 +01:00
5b7dcc7342 Seed _get_train_sampler's generator with arg seed to improve reproducibility (#15961)
* Seed get_train_sampler's generator with arg seed to improve reproducibility

and make the world_size<=1 code path more similar to the others

* move test file into trainer test explicitly

* dumb typo

* make style lint happy

* per discussion, switch to data_seed

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-08 13:45:41 -05:00
70203b5937 TF generate refactor - past without encoder outputs (#15944)
* Remove packed past from generation_tf_utils

* update models with the new past format

* update template accordingly
2022-03-08 14:46:44 +00:00
62d847602a Update TF multiple choice example (#15868) 2022-03-08 13:16:34 +00:00
ab2f8d12a7 add hf hub to env version command (#15981) 2022-03-08 14:03:03 +01:00
72983303c5 Fix TFEncoderDecoderModelTest - Pytorch device (#15979)
* fix device

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-08 13:37:20 +01:00
f5a080dd10 Do a pull in case docs were updated during build (#15922) 2022-03-08 07:19:41 -05:00
91fb62d01c Speedup training by using numpy instead of jnp for batch shuffling (#15963)
Speedup training by using numpy instead of jnp for batch shuffling

Co-authored-by: Yeb Havinga <y.t.havinga@mgrid.net>
2022-03-08 12:18:38 +01:00
ea07064a5c Returning outputs only when asked for for MaskFormer. (#15936)
* Returning outputs only when asked for for MaskFormer.

* Adding `output_auxiliary_logits` to the config.
2022-03-08 11:17:57 +01:00
b19f3e69a0 [Tests] Fix ViTMAE integration test (#15949)
* Fix test across both cpu and gpu

* Fix typo
2022-03-08 10:49:44 +01:00
9879a1d5f0 Fix LayoutLMv2 test (#15939)
* Fix LayoutLMv2 test

* Update black
2022-03-08 10:49:30 +01:00
8b9ae45549 Set scale_embedding to False in some TF tests (#15952)
* set scale_embedding to False to avoid large (> 1e-5) output differences between PT/TF

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-07 22:14:33 +01:00
38cc35069c Update training scripts docs (#15931)
* 📝 first draft

* 🖍 apply feedback

* 🖍 remove examples from toctree

* 🗑 remove examples from docs/source
2022-03-07 13:29:14 -06:00
c87cfd653c Better error message when inputs are empty 2022-03-07 13:29:16 -05:00
e9fa7cd5d7 Make is_thing_map in Feature Extractor post_process_panoptic_segmentation defaults to all instances (#15954)
* is_thing_map defaults to all instances

* better naming

* control flow

* resolving conversations
2022-03-07 19:10:32 +01:00
2596f95e84 Fix Embedding Module Bug in Flax Models (#15920) 2022-03-07 18:17:45 +01:00
1a62b25caf Backprop Test for Freeze FlaxWav2Vec2 Feature Encoder (#15938)
* Backprop Test for Freeze FlaxWav2Vec2 Feature Encoder

* remove jnp.ndarray type suggestion

* assert frozen grads are precisely zero
2022-03-07 18:10:15 +01:00
544fd9876b Support modern list type hints in HfArgumentParser (#15951)
* Support modern list type hint in HfArgumentParser

* Fix formatting with black
2022-03-07 10:22:48 -05:00
60b81dfa6f remove re-defination of FlaxWav2Vec2ForCTCModule (#15965) 2022-03-07 14:58:44 +01:00
ef9c3ca348 [Bug Fix] Beam search example in docs fails & a fix (integrating max_length in BeamScorer.finalize()) (#15555)
* added the test and fix

* had left out a comment
2022-03-07 09:10:18 +01:00
9932ee4b4b made MaskFormerModelTest faster (#15942) 2022-03-04 19:11:48 +01:00
e8efaecb87 Move dependency to call method (#15941) 2022-03-04 18:53:54 +01:00
5c6f57ee75 Constrained Beam Search [*With* Disjunctive Decoding] (#15761)
* added classes to get started with constrained beam search

* in progress, think i can directly force tokens now but not yet with the round robin

* think now i have total control, now need to code the bank selection

* technically works as desired, need to optimize and fix design choices leading to undersirable outputs

* complete PR #1 without disjunctive decoding

* removed incorrect tests

* Delete k.txt

* Delete test.py

* Delete test.sh

* revert changes to test scripts

* genutils

* full implementation with testing, no disjunctive yet

* shifted docs

* passing all tests realistically ran locally

* removing accidentally included print statements

* fixed source of error in initial PR test

* fixing the get_device() vs device trap

* fixed documentation docstrings about constrained_beam_search

* fixed tests having failing for Speech2TextModel's floating point inputs

* fix cuda long tensor

* added examples and testing for them and founx & fixed a bug in beam_search and constrained_beam_search

* deleted accidentally added test halting code with assert False

* code reformat

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

* fixing based on comments on PR

* took out the testing code that should but work fails without the beam search moditification ; style changes

* fixing comments issues

* docstrings for ConstraintListState

* typo in PhrsalConstraint docstring

* docstrings improvements

* finished adding what is sort of an opinionated implementation of disjunctive generation, but it revealed errors in inner beam search logic during testing.

* fixed bug found in constrained beam search that used beam_idx that were not global across all the batches

* disjunctive constraint working 100% correctly

* passing all tests

* Accidentally included mlruns

* Update src/transformers/generation_beam_constraints.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/generation_beam_constraints.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* complete overhaul of type complexities and other nits

* strict type checks in generate()

* fixing second round of feedback by narsil

* fixed failing generation test because of type check overhaul

* generation test fail fix

* fixing test fails

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-04 18:18:34 +01:00
040c11f6da Tests for MaskFormerFeatureExtractor's post_process*** methods (#15929)
* proper tests for post_process*** methods in feature extractor

* mask th == 0

* Update tests/maskformer/test_feature_extraction_maskformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-04 18:04:19 +01:00
f0aacc140b Do not change the output from tuple to list - to match PT's version (#15918)
* Do not change the output from tuple to list - to match PT's version

* Fix the same issues for 5 other models and the template

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-04 17:50:24 +01:00
10b76987fc [FlaxT5 Example] fix flax t5 example pretraining (#15835) 2022-03-04 17:04:43 +01:00
01485ceec3 Add missing support for Flax XLM-RoBERTa (#15900)
* Adding Flax XLM-RoBERTa

* Add Flax to __init__

* Adding doc and dummy objects

* Add tests

* Add Flax XLM-R models autodoc

* Fix tests

* Add Flask XLM-RoBERTa to TEST_FILES_WITH_NO_COMMON_TESTS

* Update src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update tests/xlm_roberta/test_modeling_flax_xlm_roberta.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update tests/xlm_roberta/test_modeling_flax_xlm_roberta.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Remove test on large Flask XLM-RoBERTa

* Add tokenizer to the test

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-03-04 14:36:28 +01:00
89c7d9cfba Making MaskFormerForInstanceSegmentation. (#15934)
Small adjustments.

Adding in type hint.

Last fix ?

Only include the default dict thing, not the pipelines.
2022-03-04 13:56:15 +01:00
7ade7c1794 Updating the slow tests: (#15893)
Linked to https://github.com/huggingface/transformers/pull/15826
2022-03-04 12:32:19 +01:00
6b104c5bb0 Support CLIPTokenizerFast for CLIPProcessor (#15913)
* Fix to support fast tokenizer with `CLIPProcessor`

* Update CLIPProcessor test for fast tokenizer

* Fix Docstring Style

* Rename into meaningful Variable name in test code
2022-03-04 11:57:09 +01:00
b71474895d Update README.md 2022-03-04 09:58:45 +01:00
a6e3b17981 Re-enabling all fast pipeline tests. (#15924) 2022-03-04 09:53:00 +01:00
a7df656f03 Update README.md (#15926) 2022-03-04 00:22:38 +01:00
c0281feb50 Fix #15898 (#15928) 2022-03-03 14:41:03 -05:00
9251427c38 Add vision models to doc tests (#15905)
* Add vision models to doc tests

* Apply suggestions from code review

* Add more models

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-03 19:46:31 +01:00
742273a52a fix for the output from post_process_panoptic_segmentation (#15916) 2022-03-03 19:35:48 +01:00
7c45fe747f Mark slow tests as slow 2022-03-03 11:03:24 -05:00
3822e4a563 Enabling MaskFormer in pipelines (#15917)
* Enabling MaskFormer in ppipelines

No AutoModel though :(

* Ooops local file.
2022-03-03 16:31:41 +01:00
79d28e80b6 v4.18.0.dev.0 2022-03-03 10:19:58 -05:00
6cbfa7bf4c [Doctests] Fix ignore bug and add more doc tests (#15911)
* finish speech doc tests

* finish

* boom

* Update src/transformers/models/speech_to_text/modeling_speech_to_text.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-03 16:01:56 +01:00
b693cbf99c The tests were not updated after the addition of torch.diag (#15890)
in the scoring (which is more correct)
2022-03-03 15:33:49 +01:00
3c4fbc616f Freeze FlaxWav2Vec2 Feature Encoder (#15873)
* Freeze FlaxWav2Vec2 Feature Encoder

* add to all module apply

* add backprop test
2022-03-03 14:17:13 +01:00
7b3bd1f21a Fix and improve REALM fine-tuning (#15297)
* Draft

* Add test

* Update src/transformers/models/realm/modeling_realm.py

* Apply suggestion

* Add block_mask

* Update

* Update

* Add block_embedding_to

* Remove no_grad

* Use AutoTokenizer

* Remove model.to overridding
2022-03-03 14:10:15 +01:00
439de3f7f9 [Fix link in pipeline doc] (#15906) 2022-03-03 07:43:13 -05:00
4cd7ed4b3b Fix a TF Vision Encoder Decoder test (#15896)
* send PyTorch inputs to the correct device

* Fix: TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-03 13:21:31 +01:00
39249c9589 Fix doc links in release utils (#15903) 2022-03-02 18:06:31 -05:00
3d2242869d Update delete-dev-doc job to match build-dev-doc (#15891)
* Update delete-dev-doc job to match build-dev-doc

* More debug info

* More debug info

* Stash if needed

* Remove the comment update

* Fix paths

* Wtf is going on..

* Fix git status test

* Try another way

* I don't understand what's happening

* Bash shell

* What's happening now...

* What's happening now...

* Try like this

* Back to trying to use bash

* And like that?

* Refine tests

* Stash after adding new files

* Stash after adding new files

* Proper commit sha and PR number

* Address review comments
2022-03-02 16:18:54 -05:00
89be34c36c Fix SegformerForImageClassification (#15895)
* Fix reshape

* Apply suggestion from code review

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-02 21:57:39 +01:00
130b987880 [XGLM] run sampling test on CPU to be deterministic (#15892)
* run sampling test on CPU to be deterministic

* input_ids on CPU
2022-03-02 17:55:49 +01:00
baab5e7cdf TF generate refactor - Sample (#15793)
* Add TF logits wrappers 

* Add sample method

* add tests for TF logit wrappers

* TF generate sample tests now run on CPU

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-03-02 16:13:54 +00:00
96ae92be8c [SegFormer] Add deprecation warning (#15889)
* Add deprecation warning

* Remove from docs and hide in kwargs

* Improve implementation

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-02 16:20:47 +01:00
8fd4731072 Fix Bug in FlaxWav2Vec2 Slow Test (#15887) 2022-03-02 16:02:26 +01:00
d83d22f578 Maskformer (#15682)
* maskformer

* conflicts

* conflicts

* minor fixes

* feature extractor test fix

refactor MaskFormerLoss following conversation

MaskFormer related types should not trigger a module time import error

missed one

removed all the types that are not used

update config mapping

minor updates in the doc

resolved conversation that doesn't need a discussion

minor changes

resolved conversations

fixed DetrDecoder

* minor changes

minor changes

fixed mdx file

test feature_extractor return types

functional losses -> classes

removed the return type test for the feature extractor

minor changes + style + quality

* conflicts?

* rebase master

* readme

* added missing files

* deleded poolformers test that where in the wrong palce

* CI

* minor changes

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* resolved conversations

* minor changes

* conversations

[Unispeech] Fix slow tests (#15818)

* remove soundfile old way of loading audio

* Adapt slow test

[Barthez Tokenizer] Fix saving (#15815)

[TFXLNet] Correct tf xlnet generate (#15822)

* [TFXLNet] Correct tf xlnet

* adapt test comment

Fix the push run (#15807)

Fix semantic segmentation pipeline test (#15826)

Fix dummy_inputs() to dummy_inputs in symbolic_trace doc (#15776)

Add model specific output classes to PoolFormer model docs (#15746)

* Added model specific output classes to poolformer docs

* Fixed Segformer typo in Poolformer docs

Adding the option to return_timestamps on pure CTC ASR models. (#15792)

* Adding the option to return_timestamps on pure CTC ASR models.

* Remove `math.prod` which was introduced in Python 3.8

* int are not floats.

* Reworking the PR to support "char" vs "word" output.

* Fixup!

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Quality.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

HFTracer.trace should use/return self.graph to be compatible with torch.fx.Tracer (#15824)

Fix tf.concatenate + test past_key_values for TF models (#15774)

* fix wrong method name tf.concatenate

* add tests related to causal LM / decoder

* make style and quality

* clean-up

* Fix TFBertModel's extended_attention_mask when past_key_values is provided

* Fix tests

* fix copies

* More tf.int8 -> tf.int32 in TF test template

* clean-up

* Update TF test template

* revert the previous commit + update the TF test template

* Fix TF template extended_attention_mask when past_key_values is provided

* Fix some styles manually

* clean-up

* Fix ValueError: too many values to unpack in the test

* Fix more: too many values to unpack in the test

* Add a comment for extended_attention_mask when there is past_key_values

* Fix TFElectra extended_attention_mask when past_key_values is provided

* Add tests to other TF models

* Fix for TF Electra test: add prepare_config_and_inputs_for_decoder

* Fix not passing training arg to lm_head in TFRobertaForCausalLM

* Fix tests (with past) for TF Roberta

* add testing for pask_key_values for TFElectra model

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

[examples/summarization and translation] fix readme (#15833)

Add ONNX Runtime quantization for text classification notebook (#15817)

Re-enable doctests for the quicktour (#15828)

* Re-enable doctests for the quicktour

* Re-enable doctests for task_summary (#15830)

* Remove &

Framework split model report (#15825)

Add TFConvNextModel (#15750)

* feat: initial implementation of convnext in tensorflow.

* fix: sample code for the classification model.

* chore: added checked for  from the classification model.

* chore: set bias initializer in the classification head.

* chore: updated license terms.

* chore: removed ununsed imports

* feat: enabled  argument during using drop_path.

* chore: replaced tf.identity with layers.Activation(linear).

* chore: edited default checkpoint.

* fix: minor bugs in the initializations.

* partial-fix: tf model errors for loading pretrained pt weights.

* partial-fix: call method updated

* partial-fix: cross loading of weights (4x3 variables to be matched)

* chore: removed unneeded comment.

* removed playground.py

* rebasing

* rebasing and removing playground.py.

* fix: renaming TFConvNextStage conv and layer norm layers

* chore: added initializers and other minor additions.

* chore: added initializers and other minor additions.

* add: tests for convnext.

* fix: integration tester class.

* fix: issues mentioned in pr feedback (round 1).

* fix: how output_hidden_states arg is propoagated inside the network.

* feat: handling of  arg for pure cnn models.

* chore: added a note on equal contribution in model docs.

* rebasing

* rebasing and removing playground.py.

* feat: encapsulation for the convnext trunk.

* Fix variable naming; Test-related corrections; Run make fixup

* chore: added Joao as a contributor to convnext.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* chore: corrected copyright year and added comment on NHWC.

* chore: fixed the black version and ran formatting.

* chore: ran make style.

* chore: removed from_pt argument from test, ran make style.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* fix: tests in the convnext subclass, ran make style.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* chore: moved convnext test to the correct location

* fix: locations for the test file of convnext.

* fix: convnext tests.

* chore: applied  sgugger's suggestion for dealing w/ output_attentions.

* chore: added comments.

* chore: applied updated quality enviornment style.

* chore: applied formatting with quality enviornment.

* chore: revert to the previous tests/test_modeling_common.py.

* chore: revert to the original test_modeling_common.py

* chore: revert to previous states for test_modeling_tf_common.py and modeling_tf_utils.py

* fix: tests for convnext.

* chore: removed output_attentions argument from convnext config.

* chore: revert to the earlier tf utils.

* fix: output shapes of the hidden states

* chore: removed unnecessary comment

* chore: reverting to the right test_modeling_tf_common.py.

* Styling nits

Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>

* minor changes

* doc fix in feature extractor

* doc

* typose

* removed detr logic from config

* removed detr logic from config

* removed num_labels

* small fix in the config

* auxilary -> auxiliary

* make style

* some test is failing

* fix a weird char in config prevending doc-builder

* retry to fix the doc-builder issue

* make style

* new try to fix the doc builder

* CI

* change weights to facebook

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-03-02 15:48:20 +01:00
e535c389aa Fix tiny typo (#15884) 2022-03-02 15:37:05 +01:00
2eb7bb15e7 Updates in Trainer to support new features in SM Model Parallel library (#15877)
* Create optimizer after model creation for SMP

* update dp_rank to rdp_rank for opt_state_dict

* update world_size and process_index for smp

* Address comments

* Lint fix

Co-authored-by: Cavdar <dcavdar@a07817b12d7e.ant.amazon.com>
2022-03-02 07:55:14 -05:00
05c237ea94 Update TF QA example (#15870) 2022-03-02 10:38:13 +00:00
6e57a56987 Adding timestamps for CTC with LM in ASR pipeline. (#15863)
* Adding timestamps for CTC with LM in ASR pipeline.

* iRemove print.

* Nit change.
2022-03-02 10:49:05 +01:00
8a133490bf Add TF generate sample tests with all logit processors (#15852)
* Add GPT2 TF generate sample test with all logits processor

* Add T5 generate sample test
2022-03-02 09:48:11 +00:00
40040727ab [Bart] Fix implementation note doc (#15879) 2022-03-02 10:24:32 +01:00
4bfe75bd08 M2M100 support for ONNX export (#15193)
* Add M2M100 support for ONNX export

* Delete useless imports

* Add M2M100 to tests

* Fix protobuf issue
2022-03-02 10:03:14 +01:00
d1a29078c0 Remove stash for now (#15882) 2022-03-01 22:36:19 -05:00
b842d7277a fix deepspeed tests (#15881)
* fix deepspeed tests

* style

* more fixes
2022-03-01 19:27:28 -08:00
6ccfa2170c Inference for multilingual models (#15836)
* 📝 first draft for multilingual models

* 🖍 make style
2022-03-01 15:10:31 -06:00
26426923b7 No self-hosted runner for dev documentation (#15710) 2022-03-01 14:05:54 -05:00
00eaffc81f Bump up doc node version to 16 (#15874) 2022-03-01 18:37:57 +01:00
afca0d5192 use python 3.7 for flax self-push tests (#15865)
* set python 3.7 for flax tests

* setup-python@v2

* python-dev

* install -y

* python3-dev

* install kenlm from source

* install cython

* cd to kenlm

* kenlm install

* don't install kenlm

* change flax pretrained to run flax tests

* cleanup

* remove python-dev
2022-03-01 18:26:30 +01:00
286fdc6b3c [vision] Add problem_type support (#15851)
* Add problem_type to missing models

* Fix deit test

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-01 18:09:52 +01:00
7ff9d450cd Scatter should run on CUDA (#15872) 2022-03-01 11:47:17 -05:00
c008afea3c Add link to notebooks (#15791)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-01 17:44:20 +01:00
e064f08150 Add time stamps for wav2vec2 with lm (#15854)
* [Wav2Vec2 With LM] add timestamps

* correct

* correct

* Apply suggestions from code review

* correct

* Update src/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py

* make style

* Update src/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* make style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-01 17:03:05 +01:00
3f2e636850 Update TF LM examples (#15855) 2022-03-01 14:12:58 +00:00
54f0db4066 Add PT + TF automatic builds (#15860)
* Add PT + TF automatic builds

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Wrap up

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-01 08:55:11 -05:00
9863f7d228 [Benchmark tools] Deprecate all (#15848)
* [Benchmark tools] Deprecate all

* up
2022-03-01 11:26:20 +01:00
df5a4094a6 Add Data2Vec (#15507)
* Add data2vec model cloned from roberta

* Add checkpoint conversion script

* Fix copies

* Update docs

* Add checkpoint conversion script

* Remove fairseq data2vec_text script and fix format

* Add comment on where to get data2vec_text.py

* Remove mock implementation cheat.py and fix style

* Fix copies

* Remove TF and Flax classes from init

* Add back copy from fairseq data2vec_text.py and fix style

* Update model name in docs/source/index.mdx to be CamelCase

* Revert model name in table to lower-case to get check_table test to pass

* Update src/transformers/models/data2vec/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/model_doc/data2vec.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/model_doc/data2vec.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update documentation

* Copy-paste Data2VecConfig from BertConfig

* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency

* Update config special tokens to match RoBERTa

* Split multiple assertions and add individual error messages

* Rename Data2VecModel to Data2VecForTextModel

* Add Data2Vec to _toctree.yml

* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings

* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).

* finish audio model

* finish audio file

* Update names and fix style, quality and repo consistency

* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.

* add inputs to logits to data2vec'

* correct autio models

* correct config auto

* correct tok auto

* Update utils/tests_fetcher.py

* delete unnecessary files

* delete unnecessary files

* further renaming

* make all tests pass

* finish

* remove useless test file

* Update tests/test_modeling_common.py

* Update utils/check_repo.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec_text.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Fix copies

* Update docs

* Remove fairseq data2vec_text script and fix format

* Add comment on where to get data2vec_text.py

* Remove mock implementation cheat.py and fix style

* Fix copies

* Remove TF and Flax classes from init

* Add back copy from fairseq data2vec_text.py and fix style

* Update model name in docs/source/index.mdx to be CamelCase

* Revert model name in table to lower-case to get check_table test to pass

* Update documentation

* Update src/transformers/models/data2vec/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Copy-paste Data2VecConfig from BertConfig

* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency

* Update config special tokens to match RoBERTa

* Split multiple assertions and add individual error messages

* Rename Data2VecModel to Data2VecForTextModel

* Add Data2Vec to _toctree.yml

* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings

* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).

* finish audio model

* finish audio file

* add inputs to logits to data2vec'

* Update names and fix style, quality and repo consistency

* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.

* correct autio models

* correct config auto

* correct tok auto

* delete unnecessary files

* delete unnecessary files

* Update utils/tests_fetcher.py

* further renaming

* make all tests pass

* finish

* remove useless test file

* Update tests/test_modeling_common.py

* Update utils/check_repo.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec_text.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Move data2vec tests to new structure

* Fix test imports for text tests

* Remove fairseq files

* Change paper link to arxiv

* Modify Data2Vec documentation to reflect that the encoder is not shared across the audio and text models in the current implementation.

* Update text model checkpoint to be facebook/data2vec-text-base

* Add 'Copy from' statements and update paper links and docs

* fix copy from statements

* improve copied from

* correct more copied from statements

* finish copied from stuff

* make style

* add model to README

* add to master

Co-authored-by: Eduardo Gonzalez Ponferrada <eduardo@ferrumhealth.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-01 11:09:20 +01:00
ddbb485c41 [TF-PT-Tests] Fix PyTorch - TF tests for different GPU devices (#15846) 2022-02-28 15:46:46 -05:00
97f9b8a27b Fixing the timestamps with chunking. (#15843)
* Fixing the timestamps with chunking.

* The changes modified (and fixed) the striding tests.

* Adding a tokenizer test.

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Defense -> comment.

* Update src/transformers/models/wav2vec2/tokenization_wav2vec2.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-28 21:00:21 +01:00
410e26c7ad Fix (deprecated) ONNX exporter to account for new tf2onnx API (#15856)
* Fix (deprecated) ONNX exporter to account for new tf2onnx API
2022-02-28 20:17:44 +01:00
e3342edc4e Flax Speech-Encoder-Decoder Model (#15613)
* rebase

* Delete shift tokens func

* downsample decoder input seq len for init

* correct attention mask

* add tests

* pt flax cross test

* make fixup

* init file for import

* change pt-flax cross test threshold

* pt-flax test logits only

* move tests

* make repo-consistency

* consistent indentation

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-28 12:22:36 +01:00
935a76d90d [UniSpeechSat] correct unispeech sat (#15847) 2022-02-28 11:23:13 +01:00
84eaa6acf5 Add TFConvNextModel (#15750)
* feat: initial implementation of convnext in tensorflow.

* fix: sample code for the classification model.

* chore: added checked for  from the classification model.

* chore: set bias initializer in the classification head.

* chore: updated license terms.

* chore: removed ununsed imports

* feat: enabled  argument during using drop_path.

* chore: replaced tf.identity with layers.Activation(linear).

* chore: edited default checkpoint.

* fix: minor bugs in the initializations.

* partial-fix: tf model errors for loading pretrained pt weights.

* partial-fix: call method updated

* partial-fix: cross loading of weights (4x3 variables to be matched)

* chore: removed unneeded comment.

* removed playground.py

* rebasing

* rebasing and removing playground.py.

* fix: renaming TFConvNextStage conv and layer norm layers

* chore: added initializers and other minor additions.

* chore: added initializers and other minor additions.

* add: tests for convnext.

* fix: integration tester class.

* fix: issues mentioned in pr feedback (round 1).

* fix: how output_hidden_states arg is propoagated inside the network.

* feat: handling of  arg for pure cnn models.

* chore: added a note on equal contribution in model docs.

* rebasing

* rebasing and removing playground.py.

* feat: encapsulation for the convnext trunk.

* Fix variable naming; Test-related corrections; Run make fixup

* chore: added Joao as a contributor to convnext.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* chore: corrected copyright year and added comment on NHWC.

* chore: fixed the black version and ran formatting.

* chore: ran make style.

* chore: removed from_pt argument from test, ran make style.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* fix: tests in the convnext subclass, ran make style.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* chore: moved convnext test to the correct location

* fix: locations for the test file of convnext.

* fix: convnext tests.

* chore: applied  sgugger's suggestion for dealing w/ output_attentions.

* chore: added comments.

* chore: applied updated quality enviornment style.

* chore: applied formatting with quality enviornment.

* chore: revert to the previous tests/test_modeling_common.py.

* chore: revert to the original test_modeling_common.py

* chore: revert to previous states for test_modeling_tf_common.py and modeling_tf_utils.py

* fix: tests for convnext.

* chore: removed output_attentions argument from convnext config.

* chore: revert to the earlier tf utils.

* fix: output shapes of the hidden states

* chore: removed unnecessary comment

* chore: reverting to the right test_modeling_tf_common.py.

* Styling nits

Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-02-25 18:19:16 +01:00
0b5bf6abef Framework split model report (#15825) 2022-02-25 12:00:00 -05:00
0118c4f6a8 Re-enable doctests for the quicktour (#15828)
* Re-enable doctests for the quicktour

* Re-enable doctests for task_summary (#15830)

* Remove &
2022-02-25 17:46:38 +01:00
fd5b05eb81 Add ONNX Runtime quantization for text classification notebook (#15817) 2022-02-25 11:29:35 -05:00
bf1fe32824 [examples/summarization and translation] fix readme (#15833) 2022-02-25 17:28:16 +01:00
8635407bc7 Fix tf.concatenate + test past_key_values for TF models (#15774)
* fix wrong method name tf.concatenate

* add tests related to causal LM / decoder

* make style and quality

* clean-up

* Fix TFBertModel's extended_attention_mask when past_key_values is provided

* Fix tests

* fix copies

* More tf.int8 -> tf.int32 in TF test template

* clean-up

* Update TF test template

* revert the previous commit + update the TF test template

* Fix TF template extended_attention_mask when past_key_values is provided

* Fix some styles manually

* clean-up

* Fix ValueError: too many values to unpack in the test

* Fix more: too many values to unpack in the test

* Add a comment for extended_attention_mask when there is past_key_values

* Fix TFElectra extended_attention_mask when past_key_values is provided

* Add tests to other TF models

* Fix for TF Electra test: add prepare_config_and_inputs_for_decoder

* Fix not passing training arg to lm_head in TFRobertaForCausalLM

* Fix tests (with past) for TF Roberta

* add testing for pask_key_values for TFElectra model

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-25 17:11:46 +01:00
4818bf7aed HFTracer.trace should use/return self.graph to be compatible with torch.fx.Tracer (#15824) 2022-02-25 15:54:45 +01:00
ad0d7d1745 Adding the option to return_timestamps on pure CTC ASR models. (#15792)
* Adding the option to return_timestamps on pure CTC ASR models.

* Remove `math.prod` which was introduced in Python 3.8

* int are not floats.

* Reworking the PR to support "char" vs "word" output.

* Fixup!

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Quality.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-25 14:06:45 +01:00
7566734d6f Add model specific output classes to PoolFormer model docs (#15746)
* Added model specific output classes to poolformer docs

* Fixed Segformer typo in Poolformer docs
2022-02-25 13:43:56 +01:00
7963578fc5 Fix dummy_inputs() to dummy_inputs in symbolic_trace doc (#15776) 2022-02-25 11:32:23 +01:00
074645e32a Fix semantic segmentation pipeline test (#15826) 2022-02-25 09:21:29 +01:00
b7e292aebd Fix the push run (#15807) 2022-02-24 19:30:17 +01:00
cbf4391177 [TFXLNet] Correct tf xlnet generate (#15822)
* [TFXLNet] Correct tf xlnet

* adapt test comment
2022-02-24 19:23:34 +01:00
2f0f9038e2 [Barthez Tokenizer] Fix saving (#15815) 2022-02-24 19:09:09 +01:00
ca57b45071 [Unispeech] Fix slow tests (#15818)
* remove soundfile old way of loading audio

* Adapt slow test
2022-02-24 19:08:54 +01:00
35ecf99cc4 Revert changes in logit size for semantic segmentation models (#15722)
* Revert changes in logit size for semantic segmentation models

* Address review comments
2022-02-24 15:52:52 +01:00
d1fcc90abf Fix from_pretrained with default base_model_prefix (#15814) 2022-02-24 11:43:51 +01:00
7f921bcf47 Fix add-new-model-like when old model checkpoint is not found (#15805)
* Fix add-new-model-like command when old checkpoint can't be recovered

* Style
2022-02-24 08:58:18 +01:00
bb7949b35a Fix model templates (#15806)
* Fix model templates

* Update paths
2022-02-23 18:27:29 -05:00
309e87e25e Docker images should only run on a daily basis 2022-02-23 18:01:44 -05:00
c475f3ce2d Scheduled tests should only run on a daily basis 2022-02-23 17:52:22 -05:00
6336017c15 Fix build_documentation CI (#15803) 2022-02-23 21:53:51 +01:00
a0e3480699 [Test refactor 5/5] Build docker images (#15729) 2022-02-23 15:48:19 -05:00
4c737f0e40 [Test refactor 4/5] Improve the scheduled tests (#15728) 2022-02-23 15:48:05 -05:00
d3ae2bd3cf [Test refactor 3/5] Notification service improvement (#15727)
* Per-folder tests reorganization

* Review comments

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2022-02-23 15:46:59 -05:00
0400b2263d [Test refactor 2/5] Tests fetcher (#15726)
* Tests fetcher

* Review comments

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Review comments
2022-02-23 15:46:37 -05:00
29c10a41d0 [Test refactor 1/5] Per-folder tests reorganization (#15725)
* Per-folder tests reorganization

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2022-02-23 15:46:28 -05:00
fecb08c2b8 🧼 NLP task guides (#15731)
* clean commit of changes to NLP tasks

* 🖍 apply feedback

* 📝 move tf data collator in multiple choice

Co-authored-by: Steven <stevhliu@gmail.com>
2022-02-23 13:58:33 -06:00
86636f52a9 Fix indent in doc-builder CI (#15798) 2022-02-23 20:01:33 +01:00
a1efc82362 HTML dev docs (#15678)
Co-authored-by: Pierric Cistac <Pierrci@users.noreply.github.com>
2022-02-23 19:43:22 +01:00
lsb
3f76bf54ff Align documentation with code defaults (#15468)
In the code, `do_normalize` defaults to True
2022-02-23 18:39:41 +01:00
32f5de10a0 [doc] custom_models: mention security features of the Hub (#15768)
* custom_models: tiny doc addition

* mention security feature earlier in the section

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2022-02-23 11:40:06 -05:00
9e71d46455 Enable image-segmentation on AutoModelForSemanticSegmentation (#15647)
* Enabling Beit SegFormer to `image-segmentation`.

* Fixing the score.

* Fix import ?

* Missing in type hint.

* Multiple test fixes:

- Add `raw_image` support. It should be the default IMHO since in Python
  world it doesn't make any sense to base64 encode the image (Sorry
  @mishig, didn't catch that in my review). I really think we should
  consider breaking BC here.
- Add support for Segformer tiny test (needed
  `SegformerModelTester.get_config` to enable TinyConfig
  @NielsRogge)
- Add the check that `batch_size` works correctly on that pipeline.
  Uncovered that it doesn't for Detr, which IMO is OK since images
  after `feature_extractor` don't have the same size. Comment should
  explain.

* Type hint as a string.

* Make fixup + update black.

* torch+vision protections.

* Don't use torchvision, use F.interpolate instead (no new dep).

* Last fixes for Segformer.

* Update test to reflect new image (which was broken)

* Update tests.

* Major BC modification:

- Removed the string compressed PNG string, that's a job for users
`transformers` stays in python land.
- Removed the `score` for semantic segmentation. It has hardly a meaning
  on its own in this context.
- Don't include the grayscale with logits for now (which could enable
  users to get a sense of confidence). Might be done later.
- Don't include the surface of the mask (could be used for sorting by
  users, to filter out small masks). It's already calculable, and
  it's easier to add later, than to add now and break later if we need.

* `make fixup`.

* Small changes.

* Rebase + doc fixup.
2022-02-23 17:20:26 +01:00
1b23979736 [ViLT] Fix checkpoint url in config (#15790)
* [ViLT] Fix checkpoint url in config

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-02-23 14:51:40 +01:00
de737866f2 [CLIP] fix grad ckpt (#15789) 2022-02-23 14:30:05 +01:00
a3e607d19e Supporting Merges.txt files than contain an endline. (#15782)
(`hf-internal-testing/tiny-clip` for instance)
2022-02-23 11:51:48 +01:00
24588c6731 [M2M100, XGLM] fix create_position_ids_from_inputs_embeds (#15751) 2022-02-23 10:46:42 +01:00
f9582c205a Adding ZeroShotImageClassificationPipeline (#12119)
* [Proposal] Adding ZeroShotImageClassificationPipeline

- Based on CLIP

* WIP, Resurection in progress.

* Resurrection... achieved.

* Reword handling different `padding_value` for `feature_extractor` and
`tokenizer`.

* Thanks doc-builder !

* Adding docs + global namespace `ZeroShotImageClassificationPipeline`.

* Fixing templates.

* Make the test pass and be robust to floating error.

* Adressing suraj's comments on docs mostly.

* Tf support start.

* TF support.

* Update src/transformers/pipelines/zero_shot_image_classification.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-02-23 09:41:42 +01:00
05a12a090d Fix HfArgumentParser when passing a generator (#15758)
* Fix `HfArgumentParser` when passing a generator

* Add missing import

* Always convert `dataclass_types` into a list
2022-02-23 00:16:38 +01:00
db57bb2b71 Cleanup transformers-cli (#15767) 2022-02-22 15:58:05 -05:00
3db2e8f92b Fix typo on examples/pytorch/question-answering (#15644)
cna -> can
2022-02-22 13:51:07 -05:00
2cdb6dbee5 fixed pipeline code (#15607)
Co-authored-by: Boumadane Abdelmoumene <moumene.boumadane@gmail.com>
2022-02-22 13:46:21 -05:00
c44d3675c2 Time stamps for CTC models (#15687)
* [Wav2Vec2 Time Stamps]

* Add first version

* add word time stamps

* Fix

* save intermediate space

* improve

* [Finish CTC Tokenizer]

* remove @

* remove @

* push

* continue with phonemes

* up

* finish PR

* up

* add example

* rename

* finish

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* correct split

* finalize

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-22 19:26:44 +01:00
32295b15a1 Gelu10 (#15676)
* Add GeLU10 (clipped version of GeLU) to transformers to improve quantization performances.

* Add unittests.

* Import tensorflow after `is_tf_available` check.

* Fix tensorflow wrong function `tf.tensor` to `tf.constant`

* style.

* use `tf.math.max`

* Fix tf tests.

* style.

* style style style style style style

* style style style style style style

* Address @sgugger comments.

* Fix wrong operator for raising ValueError for ClippedGELUActivation.
2022-02-22 18:21:16 +01:00
2c3fcc647a TF train_step docstring (#15755)
* TF train_step docstring
2022-02-22 11:18:35 +00:00
38bed912e3 added link to our writing-doc document (#15756) 2022-02-22 09:57:28 +01:00
0187c6f0ad revert temporary addition to test next version of CLIPTokenizerFast (#15717) 2022-02-21 18:30:11 +01:00
3956b133b6 TF text classification examples (#15704)
* Working example with to_tf_dataset

* updated text_classification

* more comments
2022-02-21 17:17:59 +00:00
142b69f24b Add layer_idx to CrossAttention of GPT2 model (#15730)
* Add layer_idx to CrossAttention

* Add layer_idx to crossattention of ImageGPT model
2022-02-21 17:31:39 +01:00
86119c1154 add VisionTextDualEncoder and CLIP fine-tuning script (#15701)
* begin script

* update script

* fix features and data args

* main

* add requirements

* add column name args

* fix captions

* don't jit transforms

* fix caption

* fix labels, handle attention mask

* convert pixel values to numpy

* labels => input_ids

* transform images on the fly

* use AutoModel class, create the hybird model outside of the script

* fix version message

* add readme

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* adderss review comments

* add more comments

* allow freezing vision and text models

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-21 16:10:59 +01:00
5444687f0f Fix minor comment typos (#15740) 2022-02-21 12:41:27 +01:00
a63bd3675f Remove input and target reset after preprocessing (#15741)
Remove input and target reset after preprocessing
2022-02-21 11:10:15 +01:00
2c2a31ffbc Add missing PLBart entry in README (#15721)
* Add missing PLBart entry in index

* Fix README

* Fix README

* Fix style

* Change to master model doc
2022-02-18 21:11:42 +01:00
60ba48205e fix bug in PT speech-encoder-decoder (#15699)
* fix bug in PT speech-encoder-decoder

* add pt test for `inputs is not None`

* fix test

* new pt test

* Update tests/test_modeling_speech_encoder_decoder.py

* make fixup

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-18 18:20:24 +01:00
3de12906c8 fix: hfdeepspeed config argument (#15711)
`HfDeepSpeedConfig` accepts a dictionary or path to `.json` file containing DS configurations, not `TrainingArguments`.
2022-02-18 12:00:02 -05:00
83f45cd656 Fix auto (#15706) 2022-02-18 08:50:23 -05:00
d5083c333f style_doc handles decorators in examples (#15719) 2022-02-18 14:49:53 +01:00
ae1f835028 Add PLBart (#13269)
* Init PLBART

* Add missing configuration file

* Add conversion script and configurationf ile

* Fix style

* Update modeling and conversion scripts

* Fix scale embedding in config

* Add comment

* Fix conversion script

* Add classification option to conversion script

* Fix vocab size in config doc

* Add tokenizer files from MBart50

* Allow no lang code in regular tokenizer

* Add PLBart Tokenizer Converters

* Remove mask from multi tokenizer

* Remove mask from multi tokenizer

* Change from MBart-50 to MBart tokenizer

* Fix names and modify src/tgt behavior

* Fix imports for tokenizer

* Remove <mask> from multi tokenizer

* Fix style

* Change tokenizer_class to processor_class

* Add attribute map to config class

* Update modeling file to modified MBart code

* Update configuration file to MBart style configuration

* Fix tokenizer

* Separate tokenizers

* Fix error in tokenization auto

* Copy MBart tests

* Replace with MBart tokenization tests

* Fix style

* Fix language code in multi tokenizer

* Fix configuration docs

* Add entry for plbart_multi in transformers init

* Add dummy objects and fix imports

* Fix modeling tests

* Add TODO in config

* Fix copyright year

* Fix modeling docs and test

* Fix some tokenization tests and style

* Add changes from review

* Fix copies

* Fix docs

* Fix docs

* Fix style

* Fix year

* Add changes from review

* Remove extra changes

* Fix base tokenizer and doc

* Fix style

* Fix modeling and slow tokenizer tests

* Remove Multi-tokenizer Converter and Tests

* Delete QA model and Multi Tokenizer dummy objects

* Fix repo consistency and code quality issues

* Fix example documentation

* Fix style

* Remove PLBartTokenizer from type checking in init

* Fix consistency issue

* Add changes from review

* Fix style

* Remove PLBartTokenizerFast

* Remove FastTokenizer converter

* Fix AutoTokenzier mapping

* Add plbart to toctree and fix consistency issues

* Add language codes tokenizer test

* Fix styling and doc issues

* Add fixes for failing tests

* Fix copies

* Fix failing modeling test

* Change assert to assertTrue in modeling tests
2022-02-18 14:17:09 +01:00
2f2fefd6af Fix LongformerModel hidden states (#15537)
* add undo padding

* fix

* fix tuple issue

* make style and quality

* move unpad logic to LongformerEncoder + unpad attentions + update tests

* move unpad logic to TFLongformerEncoder

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-18 13:56:53 +01:00
68dec6bffd Fix DETR model deprecation warnings for int div (#15702) 2022-02-18 15:14:44 +03:00
f8ff3fad87 TF: add initializer_std with a small value in TFFunnelModelTester (#15684) 2022-02-18 11:20:07 +00:00
416dff736c Fix SiluActivation (#15718) 2022-02-18 11:57:39 +01:00
e93763d420 fix CLIP fast tokenizer and change some properties of the slow version (#15067)
Very big changes concerning the tokenizer fast of CLIP which did not correspond to the tokenizer slow of CLIP

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-18 10:21:30 +01:00
240cc6cbdc Adding a model, more doc for pushing to the hub (#15690)
* doc for adding a model to the hub

* run make style

* resolved conversation

* removed a line

* removed )

* Update docs/source/add_new_model.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/add_new_model.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make style

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-18 09:11:18 +01:00
57882177be Add SimMIM (#15586)
* Add first draft

* Make model importable

* Make SwinForMaskedImageModeling importable

* Fix imports

* Add missing inits

* Add support for Swin

* Fix bug

* Fix bug

* Fix another bug

* Fix Swin MIM implementation

* Fix default encoder stride

* Fix Swin

* Add print statements for debugging

* Add image_size data argument

* Fix Swin

* Fix image_size

* Add print statements for debugging

* Fix print statement

* Remove print statements

* Improve reshaping of bool_masked_pos

* Add support for DeiT, fix tests

* Improve docstrings

* Apply new black version

* Improve script

* Fix bug

* Improve README

* Apply suggestions from code review

* Remove DS_Store and add to gitignore

* Apply suggestions from code review + fix BEiT Flax

* Revert BEiT changes

* Improve README

* Fix code quality

* Improve README

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-02-17 19:44:55 +01:00
426b96230a Fix shapes in model docstrings (#15696) 2022-02-17 08:42:14 -05:00
92a537d938 Minor fix on README.md (#15688)
* fix README

* fix more arxiv links

* make fix-copies

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-17 08:38:32 -05:00
f84e0dbd2a Add PoolFormer (#15531)
* Added all files, PoolFormerFeatureExtractor still failing tests

* Fixed PoolFormerFeatureExtractor not being able to import

* Completed Poolformer doc

* Applied Suggested fixes

* Fixed errors in modeling_auto.py

* Fix feature extractor, convert docs to Markdown, styling of code

* Remove PoolFormer from check_repo and fix integration test

* Remove Poolformer from check_repo

* Fixed configuration_poolformer.py docs and removed inference.py from poolformer

* Ran with black v22

* Added PoolFormer to _toctree.yml

* Updated poolformer doc

* Applied suggested fixes and added on README.md

* Did make fixup and make fix-copies, tests should pass now

* Changed PoolFormer weights conversion script name and fixed README

* Applied fixes in test_modeling_poolformer.py and modeling_poolformer.py

* Added PoolFormerFeatureExtractor to AutoFeatureExtractor API

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-02-17 13:16:37 +01:00
0e91f885c3 Add image classification notebook (#15667)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-02-17 13:14:01 +01:00
f65fe3663a Implementation of activations as pytorch modules (#15616)
* Implement activations as pytorch modules

* Apply fixup

* Add missing tests for activations

* Update docstring

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-16 14:37:52 -05:00
66828a19b1 Fix Funnel configuration doc (#15686)
* fix doc

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-16 11:50:36 -05:00
3a4376d008 [Wav2Vec2ProcessorWithLM] Fix auto processor with lm (#15683) 2022-02-16 17:33:33 +01:00
cdc51ffd27 Add register method to AutoProcessor (#15669)
* Add push_to_hub method to processors

* Fix test

* The other one too!

* Add register method to AutoProcessor

* Update src/transformers/models/auto/processing_auto.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-02-16 09:13:33 -05:00
bc3379e12c 🔥 Remove build_doc_test github action (#15680) 2022-02-16 14:06:26 +01:00
d4692ad161 Fix dec_attn_mask in TFTransfoXLMainLayer (#15665)
* fix attn

* clean-up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-16 11:53:26 +00:00
b87c044c79 Usage examples for logger (#15657)
* logger

* Update docs/source/main_classes/logging.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update docs/source/main_classes/logging.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-02-16 10:15:13 +01:00
2d02f7b29b Add push_to_hub method to processors (#15668)
* Add push_to_hub method to processors

* Fix test

* The other one too!
2022-02-15 21:14:04 -05:00
bee361c6f1 [t5/t0/mt5 models] faster/leaner custom layer norm (#14656)
* [t5] faster/leaner custom layer norm

* wip

* apex.normalization.FusedRMSNorm

* cleanup

* cleanup

* add doc

* add catch all

* Trigger CI

* expand
2022-02-15 16:49:57 -08:00
e3d1a8dabc Add a missing space in a deprecation message (#15651) 2022-02-15 19:12:30 -05:00
1ddf3c2b74 Fix vit test (#15671) 2022-02-15 18:55:38 -05:00
943e2aa036 Fix model equivalence tests (#15670)
* Fix model equivalence tests

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-15 18:55:22 -05:00
1690319217 Fix TFSequenceSummary's activation (#15643)
* fix TFSequenceSummary

* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-15 19:15:42 +00:00
faf4ff5974 [pipeline doc] fix api (#15660)
* [pipeline doc] fix api

* remove duplicate
2022-02-15 10:13:08 -08:00
2e12b907ae TF generate refactor - Greedy Search (#15562)
* TF generate start refactor

* Add tf tests for sample generate

* re-organize

* boom boom

* Apply suggestions from code review

* re-add

* add all code

* make random greedy pass

* make encoder-decoder random work

* further improvements

* delete bogus file

* make gpt2 and t5 tests work

* finish logits tests

* correct logits processors

* correct past / encoder_outputs drama

* refactor some methods

* another fix

* refactor shape_list

* fix more shape list

* import shape
_list

* finish docs

* fix imports

* make style

* correct tf utils

* Fix TFRag as well

* Apply Lysandre's and Sylvais suggestions

* Update tests/test_generation_tf_logits_process.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update src/transformers/tf_utils.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* remove cpu according to gante

* correct logit processor

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-02-15 17:54:43 +01:00
a3dbbc3467 Add decoder_kwargs to send to LM on asr pipeline. (#15646)
Co-authored-by: Giuseppe Attanasio <giuseppeattanasio6@gmail.com>

Co-authored-by: Giuseppe Attanasio <giuseppeattanasio6@gmail.com>
2022-02-15 17:53:24 +01:00
cdf19c501d Re-export KeyDataset. (#15645)
* Re-export `KeyDataset`.

* Update the docs locations.
2022-02-15 17:49:38 +01:00
28e6155d8a add a network debug script and document it (#15652)
* add a network debug script and document it

* doc
2022-02-15 08:48:00 -08:00
5d8be090e0 Fix quality 2022-02-15 11:32:26 -05:00
f45ac11fb3 Add section about doc testing (#15659)
* Add doctesting section

* Improve

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-15 16:56:31 +01:00
80f1a59168 updated with latest PL and Ray (#15653) 2022-02-15 16:53:05 +01:00
7bc4a01cb5 Update bad_words_ids usage (#15641)
* Improve the parameter `bad_word_ids' usage

* Update the bad_words_ids strategy
2022-02-15 16:44:34 +01:00
67047b86ce add scores to Wav2Vec2WithLMOutput (#15413)
* add scores to Wav2Vec2WithLMOutput

* style fixup
2022-02-15 16:40:50 +01:00
45f56580a7 Allow custom code for Processors (#15649)
* Allow custom code for Processors

* Add more test

* Test all auto_map configs are properly set
2022-02-15 09:44:35 -05:00
86a7845c0c Fix typo in speech2text2 doc (#15617)
Forward looks for inputs, not input_ids
2022-02-15 13:54:34 +01:00
9eb7e9ba1d Fix ASR pipelines from local directories with wav2vec models that have language models attached (#15590)
* Fix loading pipelines with wav2vec models with lm when in local paths

* Adding tests

* Fix test

* Adding tests

* Flake8 fixes

* Removing conflict files :(

* Adding task type to test

* Remove unnecessary test and imports
2022-02-15 13:45:08 +01:00
e1cbc073bf Require tokenizers>=0.11.1 (#15266)
`tokenizers` version that supports the feature to choose the direction of truncation
2022-02-15 11:46:12 +01:00
fra
05a8580964 Revert "logger doc"
This reverts commit 41168a49ce61685ac5c9c38cd5b88fd883c0d811.
2022-02-15 10:46:45 +01:00
fra
41168a49ce logger doc 2022-02-15 10:03:28 +01:00
041fdc4a7e [SpeechEncoderDecoder] Make sure no EOS is generated in test (#15655) 2022-02-15 09:13:55 +01:00
e314c19a3f fix bug for the log of RNG states are not properly loaded exception. (#15638)
Co-authored-by: muz <muzhi1991@limuzhideMBP-2.lan>
2022-02-14 20:30:55 -05:00
2e11a04337 Register feature extractor (#15634)
* Rework AutoFeatureExtractor.from_pretrained internal

* Custom feature extractor

* Add more tests

* Add support for custom feature extractor code

* Clean up

* Add register API to AutoFeatureExtractor
2022-02-14 13:35:16 -05:00
0f71c29053 Remove redundant error logging in from_pretrained() method (#15631)
* Remove error logging in from_pretrained() method
2022-02-14 18:03:07 +01:00
b090b79022 Make Swin work with VisionEncoderDecoderModel (#15527)
* Add attribute_map

* Add mention in docs

* Set hidden_size attribute correctly

* Add note about Transformer-based models only

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-02-14 17:33:35 +01:00
ec15da2445 Report only the failed imports in requires_backends (#15636) 2022-02-14 10:35:20 -05:00
2b8599b2df Fix a bug that ignores max_seq_len in preprocess (#15238) 2022-02-14 13:18:40 +01:00
f52746d004 [Fix doc example] FlaxVisionEncoderDecoder (#15626)
* Fix wrong checkpoint name: vit

* Fix missing import

* Fix more missing import

* make style

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-02-14 12:48:23 +01:00
52d2e6f6e9 Add push to hub to feature extractor (#15632)
* Add push to hub to feature extractor

* Quality

* Clean up
2022-02-11 17:14:01 -05:00
4f403ea899 Fix grammar in tokenizer_summary (#15614)
"to make ensure" is redundant.
2022-02-11 16:51:30 -05:00
7a32e4722f Custom feature extractor (#15630)
* Rework AutoFeatureExtractor.from_pretrained internal

* Custom feature extractor

* Add more tests

* Add support for custom feature extractor code

* Clean up
2022-02-11 16:43:54 -05:00
fcb0f74397 [research_projects] deal with security alerts (#15594)
* [research_projects] deal with security alerts

* add a note of the original PL ver and warning
2022-02-11 14:31:09 -05:00
f15c99fabf [deepspeed docs] misc additions (#15585)
* [deepspeed docs] round_robin_gradients

* training and/or eval/predict loss is

* Update docs/source/main_classes/deepspeed.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-11 10:54:04 -08:00
2dce350b33 Fix _configuration_file argument getting passed to model (#15629) 2022-02-11 13:46:08 -05:00
85aee09e9a 🖍 remove broken link (#15615) 2022-02-11 12:33:55 -06:00
2f40c728c9 TF MT5 embeddings resize (#15567)
* Fix TF MT5 vocab resize

* more assertive testing
2022-02-11 17:35:10 +00:00
8c03df1010 Rebase (#15606) 2022-02-11 12:02:02 -05:00
3fae83d23a TF: Add informative warning for inexistent CPU backprop ops (#15612)
* Add informative warning
2022-02-11 16:16:26 +00:00
7e4844fc2a Enable ONNX export when PyTorch and TensorFlow installed in the same environment (#15625) 2022-02-11 16:25:06 +01:00
6cf06d198c Mark "code in the Hub" API as experimental (#15624) 2022-02-11 09:55:31 -05:00
45c7b5b1c7 [Generate] Small refactor (#15611) 2022-02-10 18:29:27 +01:00
c0864d98ba Correct JSON format (#15600) 2022-02-10 09:02:03 -08:00
2e8b85f72e Add local and TensorFlow ONNX export examples to docs (#15604)
* Add local and TensorFlow ONNX export examples to docs

* Use PyTorch - TensorFlow split
2022-02-10 16:31:00 +01:00
3a2ed96714 Fix Seq2SeqTrainer (#15603)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-02-10 16:26:14 +01:00
724e51c6e6 Compute loss independent from decoder for TF EncDec models (as #14139) (#15175)
* Compute loss independent from decoder (as 14139)

* fix expected seq_len + style

* Apply the same change to TFVisionEncoderDecoderModel

* fix style

* Add case with labels in equivalence test

* uncomment

* Add case with labels in equivalence test

* add decoder_token_labels

* use hf_compute_loss

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add copied from

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-02-10 15:47:02 +01:00
3d5dea9bf0 Add example batch size to all commands (#15596) 2022-02-10 08:52:07 -05:00
cb7ed6e083 Add Tensorflow handling of ONNX conversion (#13831)
* Add TensorFlow support for ONNX export

* Change documentation to mention conversion with Tensorflow

* Refactor export into export_pytorch and export_tensorflow

* Check model's type instead of framework installation to choose between TF and Pytorch

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Alberto Bégué <alberto.begue@della.ai>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-02-10 11:18:41 +01:00
e923917cd9 Reformat tokenization_fnet 2022-02-09 22:23:32 -05:00
644ec05233 Make slow tests slow 2022-02-09 19:10:22 -05:00
c722753afd Expand tutorial for custom models (#15587)
* Expand tutorial for custom models

* Style

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-02-09 17:44:28 -05:00
a86ee2261e Add link (#15588)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-02-09 23:33:39 +01:00
dee17d5676 [trainer docs] document how to select specific gpus (#15551)
* [trainer docs] document how to select specific gpus

* expand

* add urls

* add accelerate launcher
2022-02-09 10:12:29 -08:00
258480864d update serving_output for some TF models (#15568)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-09 18:32:51 +01:00
315e67404d Fix tests hub failure (#15580)
* Expose hub test problem

* Fix tests
2022-02-09 12:27:59 -05:00
b1ba03e082 Fix quality 2022-02-09 12:06:59 -05:00
eed3186b79 Trigger doc build 2022-02-09 11:57:59 -05:00
2b5603f6ac Constrained Beam Search [without disjunctive decoding] (#15416)
* added classes to get started with constrained beam search

* in progress, think i can directly force tokens now but not yet with the round robin

* think now i have total control, now need to code the bank selection

* technically works as desired, need to optimize and fix design choices leading to undersirable outputs

* complete PR #1 without disjunctive decoding

* removed incorrect tests

* Delete k.txt

* Delete test.py

* Delete test.sh

* revert changes to test scripts

* genutils

* full implementation with testing, no disjunctive yet

* shifted docs

* passing all tests realistically ran locally

* removing accidentally included print statements

* fixed source of error in initial PR test

* fixing the get_device() vs device trap

* fixed documentation docstrings about constrained_beam_search

* fixed tests having failing for Speech2TextModel's floating point inputs

* fix cuda long tensor

* added examples and testing for them and founx & fixed a bug in beam_search and constrained_beam_search

* deleted accidentally added test halting code with assert False

* code reformat

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

* fixing based on comments on PR

* took out the testing code that should but work fails without the beam search moditification ; style changes

* fixing comments issues

* docstrings for ConstraintListState

* typo in PhrsalConstraint docstring

* docstrings improvements

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-09 16:59:26 +01:00
0113aae5b7 Add implementation of typical sampling (#15504)
* typical decoding

* changing arg name

* add test config params

* forgotten arg rename

* fix edge case where scores are same

* test for typical logits warper

* code quality fixes
2022-02-09 16:48:41 +01:00
f588cf4050 [Flax tests/FlaxBert] make from_pretrained test faster (#15561) 2022-02-09 16:48:08 +01:00
7029240927 Upgrade click version (#15579) 2022-02-09 10:28:43 -05:00
9e00566b9b Add Wav2Vec2 Adapter Weights to Flax (#15566)
* Add Wav2Vec2 Adapter Weights to Flax

* Suggested changes
2022-02-09 10:24:40 -05:00
1f60bc46f3 Make sure custom configs work with Transformers (#15569)
* Make sure custom configs work with Transformers

* Apply code review suggestions
2022-02-09 10:04:44 -05:00
7732d0fe7a Upgrade black to version ~=22.0 (#15565)
* Upgrade black to version ~=22.0

* Check copies

* Fix code
2022-02-09 09:28:57 -05:00
d923f76203 add model scaling section (#15119)
* add model scaling section

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* integrate reviewer feedback

* initialize GPU properly

* add note about BnB optimizer

* move doc from `scaling.mdx` to `performance.mdx`

* integrate reviewer feedback

* revert section levels

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-09 15:27:30 +01:00
b5c6fdecf0 PoC for a ProcessorMixin class (#15549)
* PoC for a ProcessorMixin class

* Documentation

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Roll out to other processors

* Add base feature extractor class in init

* Use args and kwargs

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-09 09:24:49 -05:00
ba3f9a71a1 logger.warn --> logger.warning (#15572)
* change logger.warn to logger.warning

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-09 08:20:05 -05:00
a6885db912 [Flax tests] fix test_model_outputs_equivalence (#15571)
* fix test_model_outputs_equivalence

* fix tuple outputs for blenderbot
2022-02-09 12:26:48 +01:00
fcb4f11c92 📝 Add codecarbon callback to docs (#15563) 2022-02-08 14:10:53 -05:00
077c00c0b2 feat(flax): allow encoder_outputs in generate (#15554)
* feat(flax): allow encoder_outputs in generate

* doc(flax): encoder_outputs in generate

* fix: style

* fix: style
2022-02-08 17:53:22 +01:00
8406fa6dd5 Add TFSpeech2Text (#15113)
* Add wrapper classes

* convert inner layers to tf

* Add TF Encoder and Decoder layers

* TFSpeech2Text models

* Loadable model

* TF model with same outputs as PT model

* test skeleton

* correct tests and run the fixup

* correct attention expansion

* TFSpeech2Text pask_key_values with TF format
2022-02-08 16:27:23 +00:00
6a5472a8e1 Force use_cache to be False in PyTorch (#15385)
* use_cache = False for PT models if labels is passed

* Fix for BigBirdPegasusForConditionalGeneration

* add warning if users specify use_cache=True

* Use logger.warning instead of warnings.warn

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-08 16:20:53 +01:00
0acd84f7cb [GPTJ] fix docs (#15558) 2022-02-08 15:54:19 +01:00
87d08afb16 electra is added to onnx supported model (#15084)
* electra is added to onnx supported model

* add google/electra-base-generator for test onnx module

Co-authored-by: Lewis Tunstall <lewis.c.tunstall@gmail.com>
2022-02-08 15:47:49 +01:00
0fe17f375a FX tracing improvement (#14321)
* Change the way tracing happens, enabling dynamic axes out of the box

* Update the tests and modeling xlnet

* Add the non recoding of leaf modules to avoid recording more values for the methods to record than what will be seen at tracing time (which would otherwise desynchronize the recorded values and the values that need to be given to the proxies during tracing, causing errors).

* Comments and making tracing work for gpt-j and xlnet

* Refactore things related to num_choices (and batch_size, sequence_length)

* Update fx to work on PyTorch 1.10

* Postpone autowrap_function feature usage for later

* Add copyrights

* Remove unnecessary file

* Fix issue with add_new_model_like

* Apply suggestions
2022-02-07 22:25:33 +01:00
552f8d3091 Create a custom model guide (#15489)
* 📝 add config section

* 📝 finish first draft

* 📝 add feature extractor and processor

* 🖍 apply feedback from review

* 📝 minor edits

* last review
2022-02-07 12:34:56 -06:00
ad1d3c4d4b Make TF Wav2Vec2 outputs the same as PT's version (#15530)
* fix outputs

* fix for CTC

* fix doc

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-07 18:09:57 +01:00
131e258411 Fix TF T5/LED missing cross attn in retrun values (#15511)
* add cross attn to outputs

* add cross attn to outputs for TFLED

* add undo padding

* remove unused import

* fix style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-07 17:41:48 +01:00
6775b211b6 Remove Longformers from ONNX-supported models (#15273) 2022-02-07 17:32:13 +01:00
7a1412e12b Wav2Vec2 models must either throw or deal with add_apater (#15409)
* Wav2Vec2 models must either throw or deal with add_apater

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add pre-add_adapter backwards compatibility

* Add pre-add_adapter backwards compatibility

* Fix issue in tests/test_modeling_wav2vec2.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-07 17:03:12 +01:00
a459f7f97d Add ASR CTC streaming example (#15309)
* Single-epoch run

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Infinite dataset

* Trainer fix + distributed benchmark

* Benchmark fix

* unused import

* interleaved splits

* interleaved splits

* has_length util

* Move to research projects

* Leftover Sized checks

* Bump min version

* Unused import

* Revert trainer changes

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-07 18:35:37 +03:00
75b13f82e9 [Trainer] Deeper length checks for IterableDatasetShard (#15539)
* Unused import

* Make `has_length()` torch-independent to use in callbacks

* Update src/transformers/trainer_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-07 18:34:56 +03:00
84eec9e6ba Add ConvNeXT (#15277)
* First draft

* Add conversion script

* Improve conversion script

* Improve docs and implement tests

* Define model output class

* Fix tests

* Fix more tests

* Add model to README

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply more suggestions from code review

* Apply suggestions from code review

* Rename dims to hidden_sizes

* Fix equivalence test

* Rename gamma to gamma_parameter

* Clean up conversion script

* Add ConvNextFeatureExtractor

* Add corresponding tests

* Implement feature extractor correctly

* Make implementation cleaner

* Add ConvNextStem class

* Improve design

* Update design to also include encoder

* Fix gamma parameter

* Use sample docstrings

* Finish conversion, add center cropping

* Replace nielsr by facebook, make feature extractor tests smaller

* Fix integration test

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-07 16:11:37 +01:00
c47d259241 [torch_int_div] Correct true division in generation (#15498)
* [torch_int_div] Correct true division in generation

* up

* up
2022-02-07 16:04:18 +01:00
5f1918a4a8 [ASR pipeline] correct asr pipeline for seq2seq models (#15541) 2022-02-07 15:35:44 +01:00
e02bdce791 Revert "Handle PyTorch to Flax conversion of 1D convolutions (#15519)" (#15540)
This reverts commit 854a0d526c7a3b958a790e92272ac798ca3831f5.
2022-02-07 12:33:49 +01:00
8ce1330631 [deepspeed docs] DeepSpeed ZeRO Inference (#15486)
* [deepspeed docs] DeepSpeed ZeRO Inference

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* tweak

* deal with black

* extra cleanup, better comments

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-04 13:51:02 -08:00
ac6aa10f23 Standardize semantic segmentation models outputs (#15469)
* Standardize instance segmentation models outputs

* Rename output

* Update src/transformers/modeling_outputs.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add legacy argument to the config and model forward

* Update src/transformers/models/beit/modeling_beit.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Copy fix in Segformer

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-02-04 14:52:07 -05:00
31be2f45a9 [deepspeed docs] Megatron-Deepspeed info (#15488) 2022-02-04 11:15:13 -08:00
bbe9c6981b Fix TFRemBertEncoder all_hidden_states (#15510)
* fix

* fix test

* remove expected_num_hidden_layers

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-04 16:32:14 +00:00
854a0d526c Handle PyTorch to Flax conversion of 1D convolutions (#15519) 2022-02-04 17:08:03 +01:00
486260c68e use kwargs (#15509)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-04 15:25:37 +00:00
525dbbf84a Remove loss from some flax models docs & examples (#15492)
* Remove return_loss from Flax models

* fix more

* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-03 21:39:46 +01:00
21dcaec5d5 [deepspeed docs] memory requirements (#15506) 2022-02-03 10:55:14 -08:00
f1a4c4ead5 [WIP] Add preprocess_logits_for_metrics Trainer param (#15473)
* Add preprocess_logits_for_metrics Trainer param

* Compute accuracy in LM examples

* Improve comments
2022-02-03 12:07:20 -05:00
4f5faaf044 [deepspeed] fix a bug in a test (#15493)
* [deepspeed] fix a bug in a test

* consistency
2022-02-03 08:55:45 -08:00
90166121ee Add general vision docstrings (#15501)
* Add general docstrings

* Remove legacy docstrings

* Add BEiT

* Add DEiT

* Add SegFormer

* Fix beit output class

* Fix missing return_dict
2022-02-03 17:47:22 +01:00
e2b6e73fa2 [Flax tests] Disable scheduled GPU tests (#15503) 2022-02-03 17:12:14 +01:00
f5d98da29e fix load_weight_prefix (#15101)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-03 15:11:53 +00:00
71dccd0774 fix (#15494)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-03 12:57:28 +01:00
5ec368d79e Correct eos_token_id settings in generate (#15403)
* Correct eos_token_id set in generate

* Set eos_token_id in test

* Correct eos_token_id set in generate

* Set eos_token_id in test
2022-02-03 00:24:40 +01:00
39b5d1a63a fix set truncation attribute in __init__ of PreTrainedTokenizerBase (#15456)
* change truncation_side in init of `PreTrainedTokenizerBase`

Co-authored-by: LSinev <LSinev@users.noreply.github.com>

* add test

* Revert "replace assert with exception for `padding_side` arg in `PreTrainedTokenizerBase` `__init__`"

This reverts commit 7a98b87962d2635c7e4d4f00db3948b694624843.

* fix kwargs

* Revert "fix kwargs"

This reverts commit 67b0a5270e8cf1dbf70e6b0232e94c0452b6946f.

* Update tests/test_tokenization_common.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* delete truncation_side variable

* reorganize test

* format

* complete doc

* Revert "Revert "replace assert with exception for `padding_side` arg in `PreTrainedTokenizerBase` `__init__`""

This reverts commit d5a10a7e2680539e5d9e98ae5d896c893d224b80.

* fix typo

* fix typos to render documentation

* Revert "Revert "Revert "replace assert with exception for `padding_side` arg in `PreTrainedTokenizerBase` `__init__`"""

This reverts commit 16cf58811943a08f43409a7c83eaa330686591d0.

* format

Co-authored-by: LSinev <LSinev@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2022-02-02 23:18:09 +01:00
45cac3fade Fix labels stored in model config for token classification examples (#15482)
* Playing

* Properly set labels in model config for token classification example

* Port to run_ner_no_trainer

* Quality
2022-02-02 14:23:43 -05:00
c74f3d4c48 Add W&B backend for hyperparameter sweep (#14582)
# Add support for W&B hyperparameter sweep
This PR:
* allows using wandb for running hyperparameter search.
* The runs are visualized on W&B sweeps dashboard
* This supports runnning sweeps on parallel devices, all reporting to the same central dashboard.

### Usage
**To run new a hyperparameter search:**
```
trainer.hyperparameter_search(
    backend="wandb", 
    project="transformers_sweep", # name of the project
    n_trials=5,
    metric="eval/loss", # metric to be optimized, default 'eval/loss'. A warning is raised if the passed metric is not found
)
```
This outputs a sweep id. Eg. `my_project/sweep_id`

**To run sweeps on parallel devices:**
Just pass sweep id which you want to run parallel
```
trainer.hyperparameter_search(
    backend="wandb", 
    sweep_id = "my_project/sweep_id"
)
```
2022-02-02 14:06:14 -05:00
13297ac71c Fic docstring of ASR pipeline (#15481) 2022-02-02 12:12:22 -05:00
dd360d58d9 fix error posted in issue #15448 (#15480)
* fix error posted in issue #15448

Signed-off-by: bugface <alexgre@ufl.edu>

* clean up - remove commented line

Signed-off-by: bugface <alexgre@ufl.edu>
2022-02-02 10:45:51 -05:00
44b21f117b Save code of registered custom models (#15379)
* Allow dynamic modules to use relative imports

* Work for configs

* Fix last merge conflict

* Save code of registered custom objects

* Map strings to strings

* Fix test

* Add tokenizer

* Rework tests

* Tests

* Ignore fixtures py files for tests

* Tokenizer test + fix collection

* With full path

* Rework integration

* Fix typo

* Remove changes in conftest

* Test for tokenizers

* Add documentation

* Update docs/source/custom_models.mdx

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Add file structure and file content

* Add more doc

* Style

* Update docs/source/custom_models.mdx

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Address review comments

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-02-02 10:44:37 -05:00
623d8cb475 Adding support for microphone streaming within pipeline. (#15046)
* Adding support for `microphone` streaming within pipeline.

- Uses `ffmpeg` to get microphone data.
- Makes sure alignment is made to `size_of_sample`.
- Works by sending `{"raw": ..data.., "stride": (n, left, right),
"partial": bool}`
directly to the pipeline enabling to stream partial results and still
get inference.
- Let's `partial` information flow through the pipeline to enable caller
  to get it back and choose to display text or not.

- The striding reconstitution is bound to have errors since CTC does not
keep previous state. Currently most of the errors are we don't know if
there's a space or not between two chunks.
Since we have some left striding info, we could use that during decoding
to choose what to do with those spaces and even extra letters maybe (if
the stride is long enough, it's bound to cover at least a few symbols)

Fixing tests.

Protecting with `require_torch`.

`raw_ctc` support for nicer demo.

Post rebase fixes.

Revamp to split raw_mic_data from it's live chunking.

- Requires a refactor to make everything a bit cleaner.

Automatic resampling.

Small fix.

Small fix.

* Post rebase fix (need to let super handle more logic, reorder args.)

* Update docstrings

* Docstring format.

* Remove print.

* Prevent flow of `input_values`.

* Fixing `stride` too.

* Fixing the PR by removing `raw_ctc`.

* Better docstrings.

* Fixing init.

* Update src/transformers/pipelines/audio_utils.py

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update tests/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Quality.

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
2022-02-02 15:12:12 +01:00
d718c0c3a8 [Wav2Vec2ProcessorWithLM] add alpha & beta to batch decode & decode (#15465) 2022-02-02 12:59:40 +01:00
1d94d57546 Add option to resize like torchvision's Resize (#15419)
* Add torchvision's resize

* Rename torch_resize to default_to_square

* Apply suggestions from code review

* Add support for default_to_square and tuple of length 1
2022-02-02 09:44:22 +01:00
b9418a1d97 Update tutorial docs (#15165)
* first draft of pipeline, autoclass, preprocess tutorials

* apply review feedback

* 🖍 apply feedback from patrick/niels

* 📝add output image to preprocessed image

* 🖍 apply feedback from patrick
2022-02-01 18:31:35 -06:00
c157c7e3fd Update fine-tune docs (#15259)
* add fine-tune tutorial

* make edits, fix style

* 📝 make edits

* 🖍 fix code format links to external libraries

* 🔄revert code formatting

* 🖍 use DefaultDataCollator instead of DataCollatorWithPadding
2022-02-01 18:28:12 -06:00
d0b5ed110a Harder check for IndexErrors in QA scripts (#15438)
* Harder check for IndexErrors in QA scripts

* Make test stronger
2022-02-01 15:49:13 -05:00
8e5d4e4906 Trainer.push_to_hub always tries to push to the Hub (#15463) 2022-02-01 15:49:04 -05:00
37800f1365 [BartTokenizer] remove inheritance on RobertaTokenizer (#15461)
* refactor bart tokenizers

* doc

* replace assert with ValueError
2022-02-01 20:59:24 +01:00
f427e75049 use mean instead of elementwise_mean in XLMPredLayer (#15436)
* use mean instead of elementwise_mean

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-01 19:08:17 +01:00
7b8bdd8601 fix the tokenizer_config.json file for the slow tokenizer when a fast version is available (#15319)
* add new test

* update test

* remove `tokenizer_file` from `additional_files_names` in `tokenization_utils_base.py`

* add `tokenizer_file` for the fast only tokenizer

* change global variables layoutxml

* remove `"tokenizer_file"` from DPR tokenizer's Global variables

* remove `tokenizer_file` from herbert slow tokenizer init

* `"tokenizer_file"` from LED tokenizer's Global variables

* remove `tokenizer_file` from mbart slow tokenizer init

* remove `tokenizer_file` from slow tokenizer template

* adapt to versioning

* adapt the `test_tokenizer_mismatch_warning` test

* clean test

* clarify `VOCAB_FILES_NAMES` in tokenization_utils_fast.py

* Revert "remove `tokenizer_file` from mbart slow tokenizer init"

This reverts commit 0dbb723fa9c7599d4640fe30b3647a74eb4a64e1.

* Revert "`"tokenizer_file"` from LED tokenizer's Global variables"

This reverts commit 5a3f879bdd651233f3d74a3d1146c34cde82b0c2.

* Revert "remove `tokenizer_file` from herbert slow tokenizer init"

This reverts commit f5e10007b7b0ec5345e015b9de7ffec72c5407fd.

* Revert "remove `"tokenizer_file"` from DPR tokenizer's Global variables"

This reverts commit da0895330bedfafc81ae3073470a9348c669f032.

* set `tokenizer_file` in super `__init__` of mbart
2022-02-01 16:48:25 +01:00
6d585fe0f0 replace assert with exception for padding_side arg in PreTrainedTokenizerBase __init__ (#15454)
* replace assert with exception for `padding_side` arg in `PreTrainedTokenizerBase` `__init__`

* add test

* fix kwargs

* reformat test

* format

* format

* fix typo to render the documentation
2022-02-01 16:13:58 +01:00
d2749cf72e Update README.md (#15462)
fix typo
2022-02-01 10:04:30 -05:00
1c9648c457 [M2M100, XGLM] fix positional emb resize (#15444) 2022-02-01 14:32:55 +01:00
2ca6268394 fix from_vision_text_pretrained doc example (#15453)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-01 12:20:22 +01:00
dc05dd539f Fix TF Causal LM models' returned logits (#15256)
* Fix TF Causal LM models' returned logits

* Fix expected shape in the tests

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-01 11:04:07 +00:00
af5c3329d7 remove "inputs" in tf common test script (no longer required) (#15262)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-01 10:09:49 +00:00
d12ae81664 [generate] fix synced_gpus default (#15446) 2022-01-31 13:58:27 -08:00
d4f201b860 skip test for XGLM (#15445) 2022-01-31 16:53:16 -05:00
0c17e766cb Error when group_by_length is used with an IterableDataset (#15437) 2022-01-31 15:33:16 -05:00
125a2882b4 Update modeling_wav2vec2.py (#15423)
* Update modeling_wav2vec2.py

With very tiny sound files (less than 0.1 seconds) the num_masked_span can be too long. The issue is described in issue #15366 and discussed with @patrickvonplaten.

* correct errors with mask time indices

* remove bogus file

* make fix-copies

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-31 21:22:11 +01:00
d984b10335 Add 'with torch.no_grad()' to BEiT integration test forward passes (#14961)
* Add 'with torch.no_grad()' to BEiT integration test forward pass

* Fix inconsistent use of tabs and spaces in indentation
2022-01-31 15:12:10 -05:00
09f9d07271 Misfiring tf warnings (#15442)
* Fix spurious warning in TF TokenClassification models

* Fixing one last spurious warning

* Removing outdated warning altogether
2022-01-31 19:17:59 +00:00
6915174e68 [RobertaTokenizer] remove inheritance on GPT2Tokenizer (#15429)
* refactor roberta tokenizer

* refactor fast tokenizer

* remove old comment
2022-01-31 19:50:25 +01:00
a5ecbf7348 correct positionla emb size (#15441) 2022-01-31 19:47:49 +01:00
5a70987301 Fix TFLEDModel (#15356)
* fix tf led

* fix

* fix

* Add test_pt_tf_model_equivalence_extra for TFLED

* add a (temporary) test

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-31 19:35:54 +01:00
87918d3221 [examples/Flax] add a section about GPUs (#15198)
* add a section about GPUs

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-31 19:20:53 +01:00
b8810847d0 [Trainer] suppress warning for length-related columns (#15421)
* [Trainer] suppress warning for length-related columns

* improve message

* Update src/transformers/trainer.py
2022-01-31 18:51:29 +01:00
3385ca2582 Change REALM checkpoint to new ones (#15439)
* Change REALM checkpoint to new ones

* Last checkpoint missing
2022-01-31 12:50:20 -05:00
7e56ba2864 Fix spurious warning in TF TokenClassification models (#15435) 2022-01-31 17:09:16 +00:00
554d333ece Fix loss calculation in TFXXXForTokenClassification models (#15294)
* Fix loss calculation in TFFunnelForTokenClassification

* revert the change in TFFunnelForTokenClassification

* fix FunnelForTokenClassification loss

* fix other TokenClassification loss

* fix more

* fix more

* add num_labels to ElectraForTokenClassification

* revert the change to research projects

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-31 11:43:08 -05:00
44c7857b87 [deepspeed doc] fix import, extra notes (#15400)
* [deepspeed doc] fix import, extra notes

* typo
2022-01-31 08:28:10 -08:00
47df0f2234 Add header (#15434) 2022-01-31 11:15:54 -05:00
7fc6f41d91 Add doc for add-new-model-like command (#15433) 2022-01-31 11:10:45 -05:00
282ae123e2 add t5 ner finetuning (#15432) 2022-01-31 17:03:06 +01:00
d4b3e56d64 [Hotfix] Fix Swin model outputs (#15414)
* Fix Swin model outputs

* Rename pooler
2022-01-31 16:32:14 +01:00
38dfb40ae3 import torch.utils.checkpoint (#15427) 2022-01-31 15:51:50 +01:00
f624249d8b [Robust Speech Challenge] Add missing LR parameter (#15428) 2022-01-31 15:50:56 +01:00
3254080d45 Update README.md (#15430)
fix typo
2022-01-31 09:48:20 -05:00
aa19f478ac Add (M)Luke model training for Token Classification in the examples (#14880)
* Add Luke training

* Fix true label tags

* Fix true label tags

* Fix true label tags

* Update the data collator for Luke

* Some training refactor for Luke

* Improve data collator for Luke

* Fix import

* Fix datasets concatenation

* Add the --max_entity_length argument for Luke models

* Remove unused code

* Fix style issues

* Fix style issues

* Move the Luke training into a separate folder

* Fix style

* Fix naming

* Fix filtering

* Fix filtering

* Fix filter

* Update some preprocessing

* Move luke to research_projects

* Checkstyle

* Address comments

* Fix style
2022-01-31 07:58:18 -05:00
0094eba363 Fix additional DataTrainingArguments documentation (#15408)
(This is an editorial change only)
2022-01-31 07:45:11 -05:00
ee5de66349 Add SegformerFeatureExtractor to Auto API (#15410) 2022-01-31 11:38:08 +01:00
0f69b924fb [XGLMTokenizer] fix init and add in AutoTokenizer (#15406) 2022-01-30 15:35:53 +01:00
f380bf2b61 Fix the inconsistency of loss calculation between PT/TF XLNetLMHeadModel (#15298)
* Fix the inconsistency of loss calculation between PT/TF XLNetLMHeadModel

* overwrite test_loss_computation

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-29 15:08:35 +00:00
e09473a817 Add support for XLM-R XL and XXL models by modeling_xlm_roberta_xl.py (#13727)
* add xlm roberta xl

* add convert xlm xl fairseq checkpoint to pytorch

* fix init and documents for xlm-roberta-xl

* fix indention

* add test for XLM-R xl,xxl

* fix model hub name

* fix some stuff

* up

* correct init

* fix more

* fix as suggestions

* add torch_device

* fix default values of doc strings

* fix leftovers

* merge to master

* up

* correct hub names

* fix docs

* fix model

* up

* finalize

* last fix

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add copied from

* make style

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-29 13:42:37 +01:00
16d4acbfdb Get started docs (#15098)
* clean commit of changes

* apply review feedback, make edits

* fix backticks, minor formatting

* 🖍 make fixup and minor edits

* 🖍 fix # in header

* 📝 update code sample without from_pt

* 📝 final review
2022-01-28 19:01:37 -06:00
cabd6d26a2 Update model share tutorial (#15288)
* add model sharing tutorial

* 🖍 apply feedback from review

* 📝 make edits

* 🖍 fix formatting

* 📝 convert from pt checkpoint to flax

* 📝 final review
2022-01-28 18:49:26 -06:00
c98a6ac211 Use argument for preprocessing workers in run_summairzation (#15394) 2022-01-28 18:34:10 -05:00
db07956740 Fix missing eps arg for LayerNorm in ElectraGeneratorPredictions (#15332)
* fix missing eps

* Same fix for ConvBertGeneratorPredictions

* Same fix for AlbertMLMHead

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-28 18:32:26 -05:00
297602c7f4 [deepspeed] saving checkpoint fallback when fp16 weights aren't saved (#14948)
* [deepspeed] saving checkpoint fallback when fp16 weights aren't saved

* Bump required deepspeed version to match usage when saving checkpoints

* update version

Co-authored-by: Mihai Balint <balint.mihai@gmail.com>
2022-01-28 11:05:47 -08:00
d25e25ee2b Add XGLM models (#14876)
* add xglm

* update vocab size

* fix model name

* style and tokenizer

* typo

* no mask token

* fix pos embed compute

* fix args

* fix tokenizer

* fix positions

* fix tokenization

* style and dic fixes

* fix imports

* add fast tokenizer

* update names

* add pt tests

* fix tokenizer

* fix typo

* fix tokenizer import

* fix fast tokenizer

* fix tokenizer

* fix converter

* add tokenizer test

* update checkpoint names

* fix tokenizer tests

* fix slow tests

* add copied from comments

* rst -> mdx

* flax model

* update flax tests

* quality

* style

* doc

* update index and readme

* fix copies

* fix doc

* update toctrr

* fix indent

* minor fixes

* fix config doc

* don't save embed_pos weights

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* address Sylvains commnets, few doc fixes

* fix check_repo

* align order of arguments

* fix copies

* fix labels

* remove unnecessary mapping

* fix saving tokenizer

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-28 18:55:23 +01:00
b6b79faa7e Make links explicit (#15395)
* Make links explicit

* Removing reference to compute_metrics() since it's kind of PyTorch-specific
2022-01-28 17:31:22 +00:00
6df29ba5e6 fix wrong tokenizer checkpoint name in flax marian (#15391)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-28 16:53:25 +01:00
507601a5cf Prepare deprecated ONNX exporter for torch v1.11 (#15388)
* Prepare deprecated ONNX exporter for PyTorch v1.11

* Add deprecation warning
2022-01-28 16:32:47 +01:00
4996922b6d [docs] fix wrong file name in pr_check (#15380) 2022-01-28 07:52:01 -05:00
8f5d62fdb1 Fix bad_words_ids not working with sentencepiece-based tokenizers (#15343)
* Fix `bad_word_ids` not working with sentencepiece-based tokenizers

* make style

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-28 12:39:55 +01:00
06107541d3 Fixing support batch_size and num_return_Sequences in text-generation pipeline (#15318)
* Fixing support `batch_size` and `num_return_Sequences` in
`text-generation` pipeline

And `text2text-generation` too.

The bug was caused by the batch_size containing both the incoming batch
**and** the generated `num_sequences`.

The fix simply consists into splitting both of these again into
different dimensions.

* TF support.

* Odd backward compatibility script in the way.
2022-01-28 12:15:30 +01:00
c4d1fd77fa Set syncfree AdamW as the default optimizer for xla:gpu device in amp mode (#15361)
* Use syncfree AdamW for xla:gpu device by default

* Make syncfree AdamW optional
2022-01-27 20:05:31 -05:00
2e4559fa37 Add init to BORT (#15378)
* Add init to BORT

* BORT should be in init
2022-01-27 15:16:54 -05:00
f5db6ce76a Fix code format for Accelerate doc (#15335)
* 🖍 fix code syntax to external libraries and replace image

* 🔄revert code formatting, replace image with code block

* 🖍 apply feedback
2022-01-27 13:49:04 -06:00
0b07230409 Allow relative imports in dynamic code (#15352)
* Allow dynamic modules to use relative imports

* Add tests

* Add one last test

* Changes
2022-01-27 14:47:59 -05:00
628b59e51d Bump numpy from 1.19.2 to 1.21.0 in /examples/research_projects/lxmert (#15369)
Bumps [numpy](https://github.com/numpy/numpy) from 1.19.2 to 1.21.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst.txt)
- [Commits](https://github.com/numpy/numpy/compare/v1.19.2...v1.21.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-01-27 14:46:15 -05:00
ca0848b2ff Bump notebook in /examples/research_projects/visual_bert (#15368)
Bumps [notebook](http://jupyter.org) from 6.1.5 to 6.4.1.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-01-27 14:45:58 -05:00
7d45a2e81c Bump numpy in /examples/research_projects/visual_bert (#15367)
Bumps [numpy](https://github.com/numpy/numpy) from 1.19.2 to 1.21.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst.txt)
- [Commits](https://github.com/numpy/numpy/compare/v1.19.2...v1.21.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-01-27 14:45:18 -05:00
a81fd35524 Fix tests_fetcher (#15376) 2022-01-27 14:17:48 -05:00
eab338104d Docs for version v4.16.0 2022-01-27 13:11:51 -05:00
f87db5e412 Release: v4.16.0 2022-01-27 13:06:33 -05:00
c43749289d Example script for PushToHubCallback (#15375)
* Example script for PushToHubCallback

* Expanding description slightly
2022-01-27 16:16:24 +00:00
8f6454bfac Add proper documentation for Keras callbacks (#15374)
* Add proper documentation for Keras callbacks

* Add dummies
2022-01-27 10:51:38 -05:00
2de90beeeb Super-small fix stops us confusing Keras console logging by modifying its logs (#15373) 2022-01-27 15:43:43 +00:00
fa6dce250f Implement fixes for TrainingArguments doc (#15370)
Co-authored-by: osanseviero <osanseviero@gmail.com>

Co-authored-by: osanseviero <osanseviero@gmail.com>
2022-01-27 10:25:43 -05:00
ade7371a41 improve saving strategy of sentencepiece tokenizer (#15328)
* add new test

* add a feature to same the sentencepiece tokenizer model when the init file was deleted

* update marian

* update m2m_100

* fix marian

* update speech to text

* override test for layoutxlm

* fix saving bartpho

* remove harcoded values bartpho

* special token string version

* finish bartpho

* override layoutxml test

* add mbart

* move special tokens list

* format

* Revert "format"

This reverts commit 37a40df37903a932c2f951cbd33acb684246bae7.

* simplify list of string of special tokens

* Re-write `self.fairseq_tokens_to_ids ` initialization logic with special tokens

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
2022-01-27 16:24:51 +01:00
196cce6e9b Add a device argument to the eval script (#15371)
* Device argument for the eval script

* Default to none

* isort
2022-01-27 15:58:55 +01:00
6beae766ee Fix KerasMetricCallback prediction with generate() and inference of column names (#15351)
* Fix prediction with generate() and the inference of column names
Should now have very few differences with the PyTorch implementation

* Minor edit to parent class

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Explaining the dict conversion

* Putting main_input_name back

* Fixes to main_input_name

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-27 14:13:23 +00:00
da5ef25db9 Push to hub save (#15327)
* Adapt doc and push at every save

* style
2022-01-27 09:00:54 -05:00
9f831bdeaf [DocTests Speech] Add doc tests for all speech models (#15031)
* fix_torch_device_generate_test

* remove @

* doc tests

* up

* up

* fix doctests

* adapt files

* finish refactor

* up

* save intermediate

* add more logic

* new change

* improve

* next try

* next try

* next try

* next try

* fix final spaces

* fix final spaces

* improve

* renaming

* correct more bugs

* finish wavlm

* add comment

* run on test runner

* finish all speech models

* adapt

* finish
2022-01-27 14:29:31 +01:00
4df69506a8 Fix YosoConfig doc (#15353) 2022-01-26 21:06:27 +01:00
fc8fc400e3 [docs] post-PR merge fix (#15355)
* [docs] post-PR merge fix

* Update docs/source/main_classes/deepspeed.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-26 11:23:32 -08:00
99a2771189 Add YOSO (#15091)
* Add cookiecutter files

* Add cuda kernels and cpp files

* Update modeling_yoso.py

* Add .h files

* Update configuration_yoso.py

* Updates

* Remove tokenizer

* Code quality

* Update modeling_yoso.py

* Update modeling_yoso.py

* Fix failing test

* Update modeling_yoso.py

* Fix code quality

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review and fix integration tests

* Update src/transformers/models/yoso/modeling_yoso.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Apply suggestions from code review

* Fix copied from statement

* Fix docstring

* Fix code quality

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions and fix mask

* Apply suggestions from code review

* Fix code quality

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix docstrings

* Fix code quality

* Remove trailing whitespace

* Update yoso.mdx

* Move kernel loading to YosoEncoder

* make style

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/yoso/modeling_yoso.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add short summary to docs

* Update docs/source/model_doc/yoso.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update yoso.mdx

* Update docs/source/model_doc/yoso.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Remove CausalLM model and add copied from

* Remove autoregressive code

* Remove unused imports

* add copied from for embeddings

* Fix code quality

* Update docs/source/model_doc/yoso.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestion from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-26 19:18:29 +01:00
6292532fd1 Update doc writing guide (#15350) 2022-01-26 12:54:11 -05:00
19732cc07a Fix 'eval_split_name' described as defaulting to 'train' (#15348)
The default is correct (`test`) but the description is not.
2022-01-26 10:19:38 -05:00
5d8b98608c Fix deepspeed docs (#15346) 2022-01-26 07:24:33 -05:00
96161ac408 make table into valid Markdown table syntax (#15337) 2022-01-26 07:10:00 -05:00
24e2fa1590 Fix encoder-decoder models when labels is passed (#15172)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-26 10:14:46 +01:00
e79a0faeae Added missing code in exemplary notebook - custom datasets fine-tuning (#15300)
* Added missing code in exemplary notebook - custom datasets fine-tuning

Added missing code in tokenize_and_align_labels function in the exemplary notebook on custom datasets - token classification.
The missing code concerns adding labels for all but first token in a single word.
The added code was taken directly from huggingface official example - this [colab notebook](https://github.com/huggingface/notebooks/blob/master/transformers_doc/custom_datasets.ipynb).

* Changes requested in the review - keep the code as simple as possible
2022-01-25 17:26:17 -05:00
0501beb846 Add 🤗 Accelerate tutorial (#15263)
* add accelerate tutorial

* 🖍 apply feedback from review

* 📝 make edits
2022-01-25 13:46:11 -06:00
637e81752a [Tests] Fix test (#15324)
* Fix Swin device

* Remove print statement
2022-01-25 15:48:25 +01:00
e695470794 Avoid using get_list_of_files (#15287)
* Avoid using get_list_of_files in config

* Wip, change tokenizer file getter

* Remove call in tokenizer files

* Remove last call to get_list_model_files

* Better tests

* Unit tests for new function

* Document bad API
2022-01-25 09:41:21 -05:00
e65bfc0971 Try without bad instruction 2022-01-24 15:55:29 -05:00
81156d20cd Add model like (#14992)
* Add new model like command

* Bad doc-styler

* black and doc-styler, stop fighting!

* black and doc-styler, stop fighting!

* At last

* Clean up

* Typo

* Bad doc-styler

* Bad doc-styler

* All good maybe?

* Use constants

* Add doc and type hints

* More cleaning

* Add doc

* Fix Copied from

* Doc template

* Use typing.Pattern instead

* Framework-specific files

* Fixes

* Select frameworks clean model init

* Deal with frameworks in main init

* fixes

* Last fix

* Prompt user for info

* Delete exemple config

* Last fixes

* Add test config

* Fix bug with model_type included in each other

* Fixes

* More fixes

* More fixes

* Adapt config

* Remove print statements

* Will fix tokenization later, leave it broken for now

* Add test

* Quality

* Try this way

* Debug

* Maybe by setting the path?

* Let's try another way

* It should go better when actually passing the arg...

* Remove debug statements and style

* Fix config

* Add tests

* Test require the three backends

* intermediate commit

* Revamp pattern replacements and start work on feature extractors

* Adapt model info

* Finalize code for processors

* Fix in main init additions

* Finish questionnaire for processing classes

* Fix file name

* Fix for real

* Fix patterns

* Style

* Remove needless warnings

* Copied from should work now.

* Include Copied form in blocks

* Add test

* More fixes and tests

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Address review comment

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-01-24 15:25:10 -05:00
457dd4392b [Examples] Correct run ner label2id for fine-tuned models (#15017)
* up

* up

* make style

* apply sylvains suggestions

* apply changes to accelerate as well

* more changes

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-24 21:18:04 +01:00
8d6acc6c29 [Beam Search] Correct returned beam scores (#14654)
* better

* save intermediate

* finish code

* up

* docs

* Apply suggestions from code review

* up

* add compute transition  beam scores function to model and make sure scores are correct with eos

* apply nicos comments

* Apply suggestions from code review

* another fix
2022-01-24 21:13:21 +01:00
e239fc3b0b Replace NystromformerTokenizer with AutoTokenizer (#15312) 2022-01-24 16:33:43 +01:00
dcaa5100c9 [LayoutLMV2 Tests] Make sure input is on GPU (#15314)
* [LayoutLMV2 Tests] Make sure input is on GPU

* correct empty line
2022-01-24 15:54:47 +01:00
c15bb3fe19 [Fix doc example] fix missing import jnp (#15291)
* fix missing import jnp

* Fix missing jax and k=1

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-24 14:54:23 +01:00
eac4aecc3d Remove old debug code leftover. (#15306) 2022-01-24 07:27:45 -05:00
2390b2cf65 Fix a typo in tag addition (#15286)
* Fix a typo in tag addition

* Put it back again
2022-01-24 07:21:42 -05:00
c972433a85 Update CONTRIBUTING.md (#15290)
Fix typo in doc
2022-01-24 07:21:31 -05:00
4bf97415a4 Update eval.py (#15310) 2022-01-24 11:46:38 +01:00
b7cb126ccc [PyTorch-nightly-test] Fix Wav2Vec2 LM & Phoneme tests (#15272)
* [PyTorch-nightly-test] Fix Wav2Vec2 LM & Phoneme tests

* Update .github/workflows/self-nightly-scheduled.yml

* change lines

* Apply suggestions from code review
2022-01-24 10:53:53 +01:00
6ac77534bf Refine errors for pretrained objects (#15261)
* Refine errors for pretrained objects

* PoC to avoid using get_list_of_files

* Adapt tests to use new errors

* Quality + Fix PoC

* Revert "PoC to avoid using get_list_of_files"

This reverts commit cb93b7cae8504ef837c2a7663cb7955e714f323e.

* Revert "Quality + Fix PoC"

This reverts commit 3ba6d0d4ca546708b31d355baa9e68ba9736508f.

* Fix doc

* Revert PoC

* Add feature extractors

* More tests and PT model

* Adapt error message

* Feature extractor tests

* TF model

* Flax model and test

* Merge flax auto tests

* Add tokenization

* Fix test
2022-01-21 15:00:09 -05:00
80af1048cf [Wav2Vec2ProcessorWithLM] improve multi processing (#15247)
* [Wav2Vec2ProcessorWithLM] improve multi processing

* close pool
2022-01-21 18:30:10 +01:00
4cff3fae11 Second failing test 2022-01-21 12:19:28 -05:00
f6253147df Skip failing test 2022-01-21 12:03:21 -05:00
7799b6128f [Fix doc example] TFLayoutLMForTokenClassification: missing import tf (#15268)
* fix import

* remove import torch

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-21 11:18:11 -05:00
11afb709ec [Robust Speech Challenge] Add timeline (#15274) 2022-01-21 17:12:09 +01:00
3c3cf17a49 fix link (#15278) 2022-01-21 09:52:13 -05:00
95a75a715f Specify providers explicitly in ORT session initialization (#15235)
* Specify providers explicitly in ORT session initialization

Co-authored-by: Ubuntu <wy@linux-v100.aidmrjtolptuzevavgwhrapqcd.jx.internal.cloudapp.net>
2022-01-21 15:49:29 +01:00
833635e259 Move BART + ONNX example to research_projects (#15271)
* Move BART + ONNX example to research_projects

* Add author information
2022-01-21 14:47:34 +01:00
183ce067e0 Fix (#15276)
* Fix

* make style

* Remove trailing commas

* make style
2022-01-21 08:46:15 -05:00
b4ce313e6c Prepare ONNX export for torch v1.11 (#15270)
* Prepare ONNX export for torch v1.11
2022-01-21 14:28:19 +01:00
126bddd1ba Add module_spec to new model 2022-01-21 08:12:44 -05:00
c962c2adbf Adds missing module_specs for usages of _LazyModule (#15230)
* Add missing __spec__ for transformers.models.auto

* Moves the __spec__-test to the UnitTest class

* Adds module_spec to all instances of _LazyModule

* Refactors an old test from pytest to unittest
2022-01-21 07:30:12 -05:00
6c7b68d414 [ViTMAE] Add image pretraining script (#15242)
* Add script

* Improve script

* Fix data collator

* Update README

* Add label_names argument

* Apply suggestions from code review

* Add config parameters

* Update script

* Fix bug

* Improve README

* Improve README and add test

* Fix import

* Add image_column_name
2022-01-21 12:11:08 +01:00
d43e308e7f Add Swin Transformer (#15085)
* Add all files

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Updates

* Apply suggestions from review

* Fix failing tests

* Update __init__.py

* Update configuration_swin.py

* Update auto_factory.py

* Fix pytests

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Fix tests and default checkpoint

* Fix Recursion error

* Code quality

* Remove copied from

* Update modeling_swin.py

* Code quality

* Update modeling_swin.py

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

* Fix feature extractor

* Fix code quality

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

* Update configuration_swin.py

* Update default checkpoint

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/model_doc/swin.mdx

Co-authored-by: Mishig Davaadorj <mishig.davaadorj@coloradocollege.edu>

* Update conversion script

* Reformat conversion script

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Mishig Davaadorj <mishig.davaadorj@coloradocollege.edu>
2022-01-21 12:10:41 +01:00
515ed3ad2a Fix doc examples (#15257) 2022-01-20 21:51:51 +01:00
ad7390636d Tentative workflow improvement (#15255) 2022-01-20 13:51:19 -05:00
57820456bd Fix crash when logs are empty because Keras has wiped them out of spite (#15258) 2022-01-20 18:40:48 +00:00
1fc0fa4617 Make sure to raise NotImplementedError with correct method name (#15253) 2022-01-20 10:37:35 -05:00
f00f22a3e2 Fixes tf_default_data_collator sometimes guessing the wrong dtype for labels (#15234)
* Fixes tf_default_data_collator sometimes guessing the wrong dtype for labels

* Add test for numpy scalar inputs
2022-01-20 14:26:51 +00:00
4a6a35bc65 [Fix doc example] missing import (#15240)
* fix import

* fix style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-20 08:47:24 -05:00
08b41b413a Update pipelines.mdx (#15243)
fix few spelling mistakes
2022-01-20 08:46:48 -05:00
85ea462c08 Update README.md (#15246)
Clarify OVH instruction
2022-01-20 13:40:26 +03:00
e57468b8a8 Update README.md (#15239)
Add an OVHcloud tutorial URL for the Robust Speech Challenge
2022-01-20 11:46:50 +03:00
baf1ebe9f0 Fix usage of additional kwargs in from_encoder_decoder_pretrained in encoder-decoder models (#15056)
* [EncoderDecoder] Add test for usage of extra kwargs

* [EncoderDecoder] Fix usage of extra kwargs in from pretrained

* [EncoderDecoder] apply suggested changes (passing **kwargs_encoder)

* [EncoderDecoder] create new test function and make sure it passes

Co-authored-by: jonas <jsnfly@gmx.de>
2022-01-19 23:00:33 +01:00
3fefee9910 Make chuking smartly (long files) work on asr ctc_with_lm. (#15219)
* [WIP] Make chuking smartly (long files) work on asr ctc_with_lm.

* Slow test with functionality.

* Fixing regular test.

* fix for batch size 1

* Handling batch outside `rescale_Stride`.

- Renamed to `rescale_stride`.

* Disable equality in the test.

* Remove print.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-19 21:04:26 +01:00
80f7296091 Update Trainer code example (#15070)
* Update code example

* Fix code quality

* Add comment
2022-01-19 20:15:12 +01:00
ac227093e4 Add ViLT (#14895)
* First commit

* Add conversion script

* Make conversion script work for base model

* More improvements

* Update conversion script, works for vqa

* Add indexing argument to meshgrid

* Make conversion script work for ViltForPreTraining

* Add ViltForPreTraining to docs

* Fix device issue

* Add processor

* Add MinMaxResize to feature extractor

* Implement call method of ViltProcessor

* Fix tests

* Add integration test

* Add loss calculation for VQA

* Improve tests

* Improve some more tests

* Debug tests

* Small improvements

* Add support for attention_mask

* Remove mask_it

* Add pixel_mask

* Add tests for ViltFeatureExtractor

* Improve tests

* Add ViltForNaturalLanguageVisualReasoning

* Add ViltForNaturalLanguageVisualReasoning to conversion script

* Minor fixes

* Add support for image_embeds, update docstrings to markdown

* Update docs to markdown

* Improve conversion script

* Rename ViltForPreTraining to ViltForMaskedLM

* Improve conversion script

* Convert docstrings to markdown

* Fix code example of retrieval model

* Properly convert masked language model

* Add integration test for nlvr

* Fix code quality

* Apply suggestions from code review

* Add copied from statements

* Fix pretrained_config_archive_map

* Fix docs

* Add model to README

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply more suggestions from code review

* Make code more readable

* Add ViltForNaturalLanguageVisualReasoning to the tests

* Rename ViltForVisualQuestionAnswering to ViltForQuestionAnswering

* Replace pixel_values_2 by single tensor

* Add hidden_states and attentions

* Fix one more test

* Fix all tests

* Update year

* Fix rebase issues

* Fix another rebase issue

* Remove ViltForPreTraining from auto mapping

* Rename ViltForImageRetrievalTextRetrieval to ViltForImageAndTextRetrieval

* Make it possible to use BertTokenizerFast in the processor

* Use BertTokenizerFast by default

* Rename ViltForNaturalLanguageVisualReasoning, define custom model output

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-19 19:51:59 +01:00
691878ee2f Update README.md (#15233) 2022-01-19 18:03:17 +01:00
f4b7420dfe Fix checkpoint for ViT Config 2022-01-19 11:22:54 -05:00
6a3c883c8b Fix PR number (#15231)
* Fix PR number

* Fix PR number
2022-01-19 11:00:16 -05:00
f778edb739 Fix typo in BERT tokenization file (#15228)
* Fix typo

* Fix copies
2022-01-19 10:16:19 -05:00
2a5a384970 fix speech event readme (#15227) 2022-01-19 15:30:03 +01:00
842298f84f [ViTMAE] Various fixes (#15221)
* Add MAE to AutoFeatureExtractor

* Add link to notebook

* Fix relative paths
2022-01-19 15:27:57 +01:00
6d92c429c7 Update README.md (#15226) 2022-01-19 15:23:00 +01:00
19c217b4b7 Update README.md 2022-01-19 15:21:03 +01:00
5439cda7f0 Update README.md 2022-01-19 15:19:57 +01:00
841d979190 Add FastTokenizer to REALM (#15211)
* Remove BertTokenizer abstraction

* Add FastTokenizer to REALM

* Fix config archive map

* Fix copies

* Update realm.mdx

* Apply suggestions from code review
2022-01-19 15:19:36 +01:00
021b52e7a8 fix name 'TFFunnelTokenizer' is not defined (#15225)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-19 09:06:00 -05:00
653379c094 Build dev documentation (#15210)
* Wrap up

* Remove secret

* Fix path

* Typo

Revert image switch

* Specific token for comments

* Cleaner comments

* Correct PR number

* Explicit master install

* Force uninstall
2022-01-19 08:47:34 -05:00
2708bfa127 Rename compute_loss in TF models (#15207)
* Rename compute_loss to hf_compute_loss to avoid conflicts with the new Keras method

* make style

* Adding deprecation warning to `compute_loss`

* Fix sneaky reference to compute_loss

* Replace logger.warning with warnings.warn

* Clarifying warning and deprecation timeline
2022-01-19 13:29:07 +00:00
d1f5ca1afd [FLAX] glue training example refactor (#13815)
* refactor run_flax_glue.py

* updated readme

* rm unused import and args typo fix

* refactor

* make consistent arg name across task

* has_tensorboard check

* argparse -> argument dataclasses

* refactor according to review

* fix
2022-01-19 12:04:51 +01:00
db3503949d Finish conversion of REALM doc to MDX 2022-01-18 18:00:30 -05:00
fe78fe98ca Enable tqdm toggling (#15167)
* feature: enable tqdm toggle

* test: add tqdm unit test

* style: run linter

* Update tests/test_tqdm_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* refactor: use tiny model, run linter

* docs: add tqdm to logging

* docs: add tqdm reference to `http_get`

* style: run linter

* Update docs/source/main_classes/logging.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* fix: use `AutoConfig` for framework agnostic testing

* chore: mv tqdm test to `test_logging.py`

* feature: implement enable/disable functions

* docs: mv docstring to comment

* chore: mv tqdm functions to `logging.py`

* docs: update docs to reference `enable/disable` funcs

* test: update test to use `enable/disable` func

* chore: update function reference in comment

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-01-18 17:52:35 -05:00
2c335037bd Trigger doc build 2022-01-18 17:46:29 -05:00
e118e085ea [Robust Speech Event] Add guides (#15155)
* up

* improve readme

* up

* up

* more info

* up

* up

* Apply suggestions from code review

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* add more stuff for eval

* update

* up

* Update README.md

* Update examples/research_projects/xls_r/README.md

Co-authored-by: Omar Sanseviero <osanseviero@users.noreply.github.com>

* apply omar's suggestions

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: Omar Sanseviero <osanseviero@users.noreply.github.com>
2022-01-18 18:44:48 +01:00
1a354d53c4 Revert previous change - that was meant to be in a branch! 2022-01-18 17:34:26 +00:00
2085f20901 Fix a sneaky reference to compute_loss in the tests 2022-01-18 17:33:38 +00:00
979ca24e39 [Fix doc example] Wrong checkpoint name (#15079)
* fix doc example - MarianForCausalLM example

* try to keep copies

* fix copies

* fix more similar doc examples

* fix more

* fix style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-18 10:43:21 -05:00
7b3d4df47a fix: #14486 do not use BertPooler in DPR (#15068)
* fix: #14486 do not use BertPooler in DPR

* fix tf dpr as well

* finish

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-18 16:36:12 +01:00
74bec9865c Add MAE (#15120)
* First draft

* More improvements

* More improvements

* More improvements

* Fix embeddings

* Add conversion script

* Finish conversion script

* More improvements

* Fix forward pass

* Remove print statements

* Add weights initialization

* Add initialization of decoder weights

* Add support for other models in the conversion script

* Fix patch_size for huge model

* Fix most of the tests

* Fix integration test

* Fix docs

* Fix archive_list

* Apply suggestions from code review

* Improve documentation

* Apply more suggestions

* Skip some tests due to non-deterministic behaviour

* Fix test_initialization

* Remove unneccessary initialization of nn.Embedding

* Improve docs

* Fix dummies

* Remove ViTMAEFeatureExtractor from docs

* Add model to README and table of contents

* Delete inference file
2022-01-18 16:21:32 +01:00
2ae3be5442 [MBartTokenizer] remove dep on xlm-roberta tokenizer (#15201) 2022-01-18 16:02:56 +01:00
84c60a7b50 Ignore empty subfolders when identifying submodules (#15204)
* Ignore empty subfolders when identifying submodules

* Update utils/check_inits.py
2022-01-18 09:48:46 -05:00
6f0a9b41ef Remove dependency to quiet Dependabot (#15205) 2022-01-18 09:44:35 -05:00
497346d07e [ASR pipeline] correct with lm pipeline (#15200)
* [ASR pipeline] correct with lm pipeline

* improve error
2022-01-18 15:36:22 +01:00
1144d336b6 Copies and docstring styling (#15202)
* Style docstrings when making/checking copies

* Polish
2022-01-18 09:16:55 -05:00
531336bbfd Fix deprecation warnings for int div (#15180)
* Fix deprecation warnings for int div

Co-authored-by: mgoldey <matthew.goldey@gmail.com>

* Fix import

* ensure that tensor output is python scalar

* make backward compatible

* make code more readable

* adapt test functions

Co-authored-by: mgoldey <matthew.goldey@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-18 07:28:53 -05:00
f6d3fee855 Error when code examples are improperly closed (#15186) 2022-01-18 07:27:34 -05:00
22454ae492 Add REALM (#13292)
* REALM initial commit

* Retriever OK (Update new_gelu).

* Encoder prediction score OK

* Encoder pretrained model OK

* Update retriever comments

* Update docs, tests, and imports

* Prune unused models

* Make embedder as a module `RealmEmbedder`

* Add RealmRetrieverOutput

* Update tokenization

* Pass all tests in test_modeling_realm.py

* Prune RealmModel

* Update docs

* Add training test.

* Remove completed TODO

* Style & Quality

* Prune `RealmModel`

* Fixup

* Changes:
1. Remove RealmTokenizerFast
2. Update docstrings
3. Add a method to RealmTokenizer to handle candidates tokenization.

* Fix up

* Style

* Add tokenization tests

* Update `from_pretrained` tests

* Apply suggestions

* Style & Quality

* Copy BERT model

* Fix comment to avoid docstring copying

* Make RealmBertModel private

* Fix bug

* Style

* Basic QA

* Save

* Complete reader logits

* Add searcher

* Complete searcher & reader

* Move block records init to constructor

* Fix training bug

* Add some outputs to RealmReader

* Add finetuned checkpoint variable names parsing

* Fix bug

* Update REALM config

* Add RealmForOpenQA

* Update convert_tfrecord logits

* Fix bugs

* Complete imports

* Update docs

* Update naming

* Add brute-force searcher

* Pass realm model tests

* Style

* Exclude RealmReader from common tests

* Fix

* Fix

* convert docs

* up

* up

* more make style

* up

* upload

* up

* Fix

* Update src/transformers/__init__.py

* adapt testing

* change modeling code

* fix test

* up

* up

* up

* correct more

* make retriever work

* update

* make style

* finish main structure

* Resolve merge conflict

* Make everything work

* Style

* Fixup

* Fixup

* Update training test

* fix retriever

* remove hardcoded path

* Fix

* Fix modeling test

* Update model links

* Initial retrieval test

* Fix modeling test

* Complete retrieval tests

* Fix

* style

* Fix tests

* Fix docstring example

* Minor fix of retrieval test

* Update license headers and docs

* Apply suggestions from code review

* Style

* Apply suggestions from code review

* Add an example to RealmEmbedder

* Fix

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-18 07:24:13 -05:00
b25067d807 [Fix doc example] TFRagModel (#15187)
* fix doc example - NameError: name 'PATH' is not defined

* fix name 'TFRagModel' is not defined

* correct TFRagRagSequenceForGeneration

* fix name 'tf' is not defined

* fix style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-18 07:16:30 -05:00
dea563c943 is_ctc needs to be updated to `self.type == "ctc". (#15194)
* `is_ctc` needs to be updated to `self.type == "ctc".

* Adding fast test for this functionality.
2022-01-18 12:20:10 +01:00
32090c729f [Fix doc example] UniSpeechSatForPreTraining (#15152)
* fix doc example - cannot import name 'UniSpeechSatFeatureEncoder'

* fix ckpt name

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-18 00:34:05 +01:00
6f8e644f09 Mark bad tokenizers version (#15188) 2022-01-17 15:20:58 -05:00
edd3fce2f7 [doc] new MoE paper (#15184)
add new paper
2022-01-17 09:10:51 -08:00
9a2dabae70 Fix dtype issue in TF BART (#15178) 2022-01-17 14:02:55 +00:00
0167edc854 Added forward pass of test_inference_image_classification_head with torch.no_grad() (#14777) 2022-01-17 07:22:41 -05:00
7a787c68c6 [Speech models] Disable non-existing chunking in tests (#15163) 2022-01-16 17:15:19 +01:00
669e3c50c9 [doc] performance: Efficient Software Prebuilds (#15147)
* Efficient Software Prebuilds

* improve
2022-01-14 18:25:20 -08:00
ebc4edfe7a update from keras2onnx to tf2onnx (#15162) 2022-01-14 17:35:39 +00:00
1b730c3d11 Better dummies (#15148)
* Better dummies

* See if this fixes the issue

* Fix quality

* Style

* Add doc for DummyObject
2022-01-14 10:59:41 -05:00
b212ff9f49 Fixing flaky test (hopefully). (#15154)
* Fixing flaky test (hopefully).

* tf compliant.
2022-01-14 16:47:03 +01:00
7d9a33fb5c TF Bert inference - support np.ndarray optional arguments (#15074)
* TF Bert inference - support np.ndarray optional arguments

* apply np input tests to all TF architectures
2022-01-14 15:19:04 +00:00
4663c609b9 Add "open in hf spaces" gradio button issue #73 (#15106)
* update XLMProphetNet link

* update DPR link

* change prophetnet link

* change link MBART

* change link GPT

* update gpt2 link

* ctrl update link

* update Transformer-XL link

* Update Reformer link

* update xlnet link

* bert update link

* udpate albert link

* roberta update link

* update distilbert link

* update convbert link

* update XLM link

* xlm roberta update link

* update Flaubert link

* update electra link

* update funnel transformer and longformer

* bart update link

* pegasus update link

* udpate marianmt link

* t5 update link

* mt5 update link
2022-01-14 10:12:30 -05:00
735d2bb69b Update test_configuration_common.py (#15160) 2022-01-14 08:54:01 -05:00
51d7ebf260 fix BertTokenizerFast tokenize_chinese_chars arg (#15158)
* add new test

* fix in init

* more relevant test
2022-01-14 14:22:03 +01:00
4aa16fce6c fix doc example - object has no attribute 'lm_logits' (#15143)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-14 13:42:13 +01:00
7cbf8429d9 Make sure all submodules are properly registered (#15144)
* Make sure all submodules are properly registered

* Try to fix tests

* Fix tests
2022-01-14 07:37:51 -05:00
c4f7eb124b add TF glu activation function (#15146) 2022-01-14 10:42:08 +00:00
5f3c57fc84 Check the repo consistency in model templates test (#15141)
* Check the repo consistency in model templates test

* Fix doc template

* Fix docstrings

* Fix last docstring
2022-01-14 04:52:38 -05:00
96881729ce Remove assert on optional arg 2022-01-13 17:34:41 -05:00
1eb40338ac [deepspeed tests] fix summarization (#15149) 2022-01-13 13:48:51 -08:00
6e058e84fd Enable AMP for xla:gpu device in trainer class (#15022)
* Multiple fixes of trainer class with XLA GPU

* Make fp16 valid for xla:gpu

* Add mark_step in should_log to reduce compilation overhead
2022-01-13 15:21:00 -05:00
3fc221d077 Update model_sharing.mdx (#15142)
Fix typo
2022-01-13 12:26:02 -05:00
7b83feb50a Deprecates AdamW and adds --optim (#14744)
* Add AdamW deprecation warning

* Add --optim to Trainer

* Update src/transformers/optimization.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/optimization.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/optimization.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/optimization.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

* fix style

* fix

* Regroup adamws together

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Change --adafactor to --optim adafactor

* Use Enum for optimizer values

* fixup! Change --adafactor to --optim adafactor

* fixup! Change --adafactor to --optim adafactor

* fixup! Change --adafactor to --optim adafactor

* fixup! Use Enum for optimizer values

* Improved documentation for --adafactor

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Add mention of no_deprecation_warning

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Rename OptimizerOptions to OptimizerNames

* Use choices for --optim

* Move optimizer selection code to a function and add a unit test

* Change optimizer names

* Rename method

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Rename method

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Remove TODO comment

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Rename variable

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Rename variable

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Rename function

* Rename variable

* Parameterize the tests for supported optimizers

* Refactor

* Attempt to make tests pass on CircleCI

* Add a test with apex

* rework to add apex to parameterized; add actual train test

* fix import when torch is not available

* fix optim_test_params when torch is not available

* fix optim_test_params when torch is not available

* re-org

* small re-org

* fix test_fused_adam_no_apex

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove .value from OptimizerNames

* Rename optimizer strings s|--adam_|--adamw_|

* Also rename Enum options

* small fix

* Fix instantiation of OptimizerNames. Remove redundant test

* Use ExplicitEnum instead of Enum

* Add unit test with string optimizer

* Change optimizer default to string value

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2022-01-13 08:14:51 -08:00
762416ffa8 [examples/flax/language-modeling] set loglevel (#15129) 2022-01-13 15:17:28 +01:00
74837171ab fix doc example - AssertionError: has to be configured as a decoder. (#15124)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-13 06:45:30 -05:00
6950ccec1b doc-builder -> doc-build (#15134)
* Updated script

* Commit everything

* Ready for review!

* Update .github/workflows/build_documentation.yml

Co-authored-by: Julien Chaumond <julien@huggingface.co>

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2022-01-13 06:02:24 -05:00
9a94bb8e21 mBART support for run_summarization.py (#15125)
* Update run_summarization.py

* Fixed languages and added missing code

* fixed obj, docs, removed source_lang and target_lang

* make style, run_summarization.py reformatted
2022-01-12 16:39:33 -05:00
97f3beed36 Add with torch.no_grad() to DistilBERT integration test forward pass (#14979)
* refactor: wrap forward pass around no_grad context

* Update tests/test_modeling_distilbert.py

* fix: rm `no_grad` from non-integration tests

* chore: rm whitespace change
2022-01-12 10:42:39 -05:00
021f2ea987 Add ONNX configuration classes to docs (#15121)
* Add ONNX classes to main package

* Remove permalinks from ONNX guide

* Fix ToC entry

* Revert "Add ONNX classes to main package"

This reverts commit eb794a5b00d66b0b4eab234987301676d8357630.

* Add ONNX classes to main doc

* Fix syntax highlighting in doc

* Fix text

* Add FeaturesManager to doc

* Use paths to reference ONNX classes

* Add FeaturesManager to init

* Add missing ONNX paths
2022-01-12 16:33:32 +01:00
c425d60bb9 Fix link to deepspeed config 2022-01-12 09:32:53 -05:00
6820904454 Fix #14357 (#15001)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-12 14:29:09 +00:00
aa0135f2e0 fix: switch from slow to generic tokenizer class (#15122) 2022-01-12 09:12:43 -05:00
27b819b0e3 use block_size instead of max_seq_length in tf run_clm example (#15036)
* use block_size instead of max_seq_length

* fixup

* remove pad_to_block_size

Co-authored-by: Russell Klopfer <russell@kloper.us>
2022-01-12 08:57:00 -05:00
68cc4ccde2 Pipeline ASR with LM. (#15071)
* Pipeline ASR with LM.

* Revamped into `self.decoder`.

* Fixing.

* 2nd fix.

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Fixing.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-12 09:28:19 +01:00
1a00863e95 Fix typo in doc template 2022-01-11 15:22:15 -05:00
44eaa2b303 Update TF test_step to match train_step (#15111)
* Update TF test_step to match train_step

* Update compile() warning to be clearer about what to pass
2022-01-11 19:05:39 +00:00
57b980a613 Fix saving FlaubertTokenizer configs (#14991)
All specific tokenizer config properties must be passed to its base
class (XLMTokenizer) in order to be saved. This was not the case for
do_lowercase config. Thus it was not saved by save_pretrained() method
and saving and reloading the tokenizer changed its behaviour.

This commit fixes it.
2022-01-11 19:19:33 +01:00
16f0b7d72c Update ONNX docs (#14904)
* Remove docs for deprecated ONNX export

* Tidy up the CLI help messages

* Revamp ONNX docs

* Update auto-config table

* Use DistilBERT as example for consistency

* Wrap up first pass at ONNX docs

* Fix table check

* Add tweaks and introduction

* Add cross-ref

* Fix missing import

* Fix style

* Add permalinks to ONNX configs

* Clarify role of OrderedDict

* Update docs/source/serialization.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add doctest syntax to code blocks

* Remove permalinks

* Revert "Remove permalinks"

This reverts commit 099701daf0db27823457867938efdb2d4f22a7c1.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-11 18:06:05 +01:00
704d1feca1 Doc styler tip (#15105)
* Add new lines before/after tips

* Check end of lines
2022-01-11 11:45:39 -05:00
68d925195e Merge branch 'master' into master 2022-01-11 11:11:29 -05:00
7480ded658 Fix failing test (#15104) 2022-01-11 15:57:34 +01:00
28e091430e Add Nystromformer (#14659)
* Initial commit

* Config and modelling changes

Added Nystromformer-specific attributes to config and removed all decoder functionality from modelling.

* Modelling and test changes

Added Nystrom approximation and removed decoder tests.

* Code quality fixes

* Modeling changes and conversion script

Initial commits to conversion script, modeling changes.

* Minor modeling changes and conversion script

* Modeling changes

* Correct modeling, add tests and documentation

* Code refactor

* Remove tokenizers

* Code refactor

* Update __init__.py

* Fix bugs

* Update src/transformers/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/nystromformer/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/model_doc/nystromformer.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/nystromformer/configuration_nystromformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/nystromformer/configuration_nystromformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/nystromformer/configuration_nystromformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/nystromformer/configuration_nystromformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/nystromformer/convert_nystromformer_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/nystromformer/configuration_nystromformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update modeling and test_modeling

* Code refactor

* .rst to .mdx

* doc changes

* Doc changes

* Update modeling_nystromformer.py

* Doc changes

* Fix copies

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update configuration_nystromformer.py

* Fix copies

* Update tests/test_modeling_nystromformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update test_modeling_nystromformer.py

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Fix code style

* Update modeling_nystromformer.py

* Update modeling_nystromformer.py

* Fix code style

* Reformat modeling file

* Update modeling_nystromformer.py

* Modify NystromformerForMultipleChoice

* Fix code quality

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Code style changes and torch.no_grad()

* make style

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-11 14:25:49 +01:00
444ea95a80 Print out durations of all scheduled tests (#15102) 2022-01-11 08:15:59 -05:00
285131bfb4 change metric_key_prefix in seq2seq_trainer.py (#15099)
It solves the problem that metric_key_prefix is different from trainer.
2022-01-11 07:44:29 -05:00
c4fa908fa9 Adds IBERT to models exportable with ONNX (#14868)
* Add IBertOnnxConfig and tests

* add all the supported features for IBERT and remove outputs in IbertOnnxConfig

* use OnnxConfig

* fix codestyle

* remove serialization.rst

* codestyle
2022-01-11 12:17:08 +01:00
efb35a4107 [Wav2Vec2ProcessorWithLM] improve decoder downlaod (#15040) 2022-01-11 05:59:38 -05:00
6ea6266625 Fix cookiecutter (#15100) 2022-01-11 05:57:26 -05:00
68810aa26c fix doc example - TypeError: forward() got an unexpected keyword argument 'input_ids' (#15092)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-11 04:04:23 -05:00
ca76618d6b Take gradient accumulation into account when defining samplers (#15095)
* Take gradient accumulation into account when defining samplers

* style
2022-01-11 03:16:39 -05:00
9dc8fb2fc7 Add test to check reported training loss (#15096)
* Add test

* Add tests for the reported train loss
2022-01-11 03:14:11 -05:00
5cd7086fdb XLM-ProphetNet Spaces badge 2022-01-11 00:11:31 -05:00
4e3208662e DPR Spaces badge 2022-01-10 13:50:40 -05:00
ac2c06d492 ProphetNet spaces badge 2022-01-10 13:43:34 -05:00
bf0201e184 MBART spaces badge 2022-01-10 13:37:17 -05:00
b67fd797be Add TFVisionEncoderDecoderModel (#14148)
* Start the work on TFVisionEncoderDecoderModel

* Expose TFVisionEncoderDecoderModel

* fix import

* Add modeling_tf_vision_encoder_decoder to _ignore_modules in get_model_modules()

* reorder

* Apply the fix for checkpoint loading as in #14016

* remove attention_mask + fix VISION_DUMMY_INPUTS

* A minimal change to make TF generate() work for vision models as encoder in encoder-decoder setting

* fix wrong condition: shape_list(input_ids) == 2

* add tests

* use personal TFViTModel checkpoint (for now)

* Add equivalence tests + projection layer

* style

* make sure projection layer can run

* Add examples

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Clean comments (need to work on TODOs for PyTorch models)

* Remove TF -> PT in check_pt_tf_equivalence for TFVisionEncoderDecoderModel

* fixes

* Revert changes in PT code.

* Update tests/test_modeling_tf_vision_encoder_decoder.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add test_inference_coco_en for TF test

* fix quality

* fix name

* build doc

* add main_input_name

* Fix ckpt name in test

* fix diff between master and this PR

* fix doc

* fix style and quality

* fix missing doc

* fix labels handling

* Delete auto.rst

* Add the changes done in #14016

* fix prefix

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-10 13:30:14 -05:00
c9504b2f50 MT5 Spaces badge 2022-01-10 12:57:08 -05:00
daec528ca9 T5 Spaces badge 2022-01-10 12:51:39 -05:00
0554e4d5c5 MarianMT Spaces badge 2022-01-10 12:47:12 -05:00
7ec6aad23d Pegasus Spaces badge 2022-01-10 12:39:22 -05:00
03f8b9c9e0 BART Spaces badge 2022-01-10 12:33:59 -05:00
37bc0b4e53 [performance doc] Power and Cooling (#14935)
* [performance doc] Power and Cooling

* more docs

* Update docs/source/performance.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* reword

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-10 09:21:04 -08:00
20f169b523 Longformer Spaces badge 2022-01-10 12:14:18 -05:00
3e9fdcf019 [DOC] fix doc examples for bart-like models (#15093)
* fix doc examples

* remove double colons
2022-01-10 18:13:28 +01:00
4fbc924d0a Funnel Transformer spaces badge 2022-01-10 12:06:05 -05:00
61d18ae035 Happy New Year! (#15094) 2022-01-10 12:05:57 -05:00
222c09a635 ELECTRA Spaces badge 2022-01-10 11:53:23 -05:00
31838d3e11 [doc] normalize HF Transformers string (#15023) 2022-01-10 08:44:33 -08:00
84f360e862 FlauBERT spaces badge 2022-01-10 11:41:10 -05:00
9f33116898 XLM-Roberta Spaces badge 2022-01-10 10:54:18 -05:00
20fa9eb035 XLM Spaces badge 2022-01-10 10:48:06 -05:00
16b6df6fca ConvBERT spaces badge 2022-01-10 10:33:03 -05:00
f21bc4215a Use tqdm.auto in Pipeline docs (#14920)
It's better for e.g. notebook.
2022-01-10 10:28:34 -05:00
f012c00ada Model summary horizontal banners (#15058) 2022-01-10 10:06:14 -05:00
af9cb94974 Fix style 2022-01-10 09:40:20 -05:00
533624c5a9 fix doc example - AttributeError: type object 'RagModel' has no attribute 'from_question_encoder_generator_pretrained' (#15076)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-10 09:28:39 -05:00
b2c477fc6d support the trocr small models (#14893)
* support the trocr small models

* resolve conflict

* Update docs/source/model_doc/trocr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/model_doc/trocr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/model_doc/trocr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/trocr/processing_trocr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/trocr/processing_trocr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/trocr/processing_trocr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/trocr/processing_trocr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix unexpected indent in processing_trocr.py

* Update src/transformers/models/trocr/processing_trocr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* update the docstring of processing_trocr

* remove extra space

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-01-10 09:28:03 -05:00
42d57549b8 Change assignee for tokenizers (#15088) 2022-01-10 09:22:48 -05:00
a54961c5f7 Make OpenAIGPTTokenizer work with SpaCy 2.x and 3.x (#15019)
* Make OpenAIGPTTokenizer work with SpaCy 3.x

SpaCy 3.x introduced an API change to creating the tokenizer that
breaks OpenAIGPTTokenizer. The old API for creating the tokenizer in
SpaCy 2.x no longer works under SpaCy 3.x, but the new API for creating
the tokenizer in SpaCy 3.x DOES work under SpaCy 2.x. Switching to the
new API should allow OpenAIGPTTokenizer to work under both SpaCy 2.x and
SpaCy 3.x versions.

* Add is_spacy_available and is_ftfy_available methods to file utils

* Add spacy and ftfy unittest decorator to testing utils

* Add tests for OpenAIGPTTokenizer that require spacy and ftfy

* Modify CircleCI config to run tests that require spacy and ftfy

* Remove unneeded unittest decorators are reuse test code

* Run make fixup
2022-01-10 07:53:20 -05:00
9fbf7c87c3 Update check_repo.py (#15014)
added new line
2022-01-10 06:55:43 -05:00
0a03a86813 fix model table cell text alignment (#14999)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-10 06:44:11 -05:00
d72343d2b8 [Wav2Vec2 Speech Event] Add speech event v2 (#15083)
* up

* up

* up

* up

* up

* up

* improve

* up

* up

* Update src/transformers/trainer.py

* up

* up

* up
2022-01-10 10:46:21 +01:00
768e6c1449 Fix convert for newer megatron-lm bert model (#14082)
* Fix convert for newer megatron-lm models

* Save megatron-bert config in a proper way

* Fix code style
2022-01-08 11:33:55 -08:00
623b4f7c63 [VisionTextDualEncoder] Add token_type_ids param (#15073)
* fix doc example - TypeError: get_text_features() got an unexpected keyword argument 'token_type_ids'

* add token_type_ids param

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-07 20:02:49 +01:00
5be1242ac0 Merge branch 'huggingface:master' into master 2022-01-07 11:48:22 -05:00
484e7a441f Distilbert spaces badge 2022-01-07 11:47:56 -05:00
ac224bb079 [Fix doc examples] Add missing from_pretrained (#15044)
* fix doc example - ValueError: Parameter config should be an instance of class `PretrainedConfig`

* Update src/transformers/models/segformer/modeling_segformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-01-07 16:55:59 +01:00
f18c6fa94c Resubmit changes after rebase to master (#14982) 2022-01-07 08:34:12 +01:00
1d71227295 Roberta spaces badge 2022-01-06 18:50:19 -05:00
e36a83d3a3 Merge branch 'huggingface:master' into master 2022-01-06 18:44:59 -05:00
cac877425c ALBERT spaces badge 2022-01-06 13:01:23 -05:00
794441c379 BERT spaces badge 2022-01-06 12:22:09 -05:00
f872f18dca XLNet spaces badge 2022-01-06 12:09:50 -05:00
8d187e7feb Reformer Spaces badge 2022-01-06 11:59:21 -05:00
cc406da4de [VisionTextDualEncoder] Fix doc example
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-06 17:59:06 +01:00
59fb636948 Transformer-XL badge 2022-01-06 11:47:41 -05:00
25b8b8a6f2 Merge branch 'huggingface:master' into master 2022-01-06 11:42:14 -05:00
b67f345d00 Update run_speech_recognition_seq2seq.py (#14967) 2022-01-06 19:26:45 +03:00
f71fb5c36e Add 'with torch.no_grad()' to BertGeneration integration test forward passes (#14963) 2022-01-06 10:39:13 -05:00
d2183a46fb Remove old asserts. (#15012) 2022-01-06 09:45:41 -05:00
83c552d390 Add detectron2 to Github actions (#15053) 2022-01-06 08:53:58 -05:00
5ab87cd4da wrapped forward passes in torch.no_grad() (#15037) 2022-01-06 08:48:49 -05:00
5a06118b39 Enabling TF on image-classification pipeline. (#15030) 2022-01-06 14:16:00 +01:00
9f89fa02ed Add Flax image captioning example (#14864)
* add image captioning example

* update README

* fix style & quality

* simplify

* apply review suggestions

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply review suggestions

* add comments about using np instead jax array

* remove unused lines

* add model creation script

* only support from_pretrained

* fix style

* fix

* not use cache_dir when creating model

* fix tokenizer creation

* update README

* fix quality

* apply suggestion

* simplify some blocks

* Update examples/flax/image-captioning/README.md


* Update examples/flax/image-captioning/run_image_captioning_flax.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* apply suggestion

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-01-06 14:00:54 +01:00
2e9af29494 [CLIP] Fix TF test (#15042) 2022-01-05 16:58:42 +01:00
443fdaf29f [SpeechEncoderDecoder] Fix from pretrained (#15043) 2022-01-05 16:54:39 +01:00
ae929dcbbd [CLIP] Fix PT test (#15041) 2022-01-05 14:21:04 +01:00
65cb94ff77 Adding QoL for batch_size arg (like others enabled everywhere). (#15027)
* Adding QoL for `batch_size` arg (like others enabled everywhere).

* Typo.
2022-01-05 12:16:23 +01:00
e34dd055e9 Fix doc example: mask_time_indices (numpy) has no attribute 'to' (#15033)
* fix doc example - AttributeError: 'numpy.ndarray' object has no attribute 'to'

* fix more

* Apply suggestions from code review

* Update src/transformers/models/unispeech/modeling_unispeech.py

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-05 11:34:08 +01:00
927f654427 [megatron convert] PYTHONPATH requirements (#14956)
* [megatron convert] PYTHONPATH requirements

* more info
2022-01-05 04:09:52 -05:00
2380136722 add spaces badges 2022-01-04 16:13:57 -05:00
857ab55c01 [doc] Update parallelism.mdx (#15018)
* Update parallelism.mdx

* Update parallelism.mdx
2022-01-04 09:58:27 -08:00
19d37c2dd3 Hotfix chunk_length_s instead of _ms. (#15029)
* Hotfix `chunk_length_s` instead of `_ms`.

* Adding fix of `pad_token` which should be last/previous token for CTC

proper decoding

* Fixing ChunkPipeline unwrapping.

* Adding a PackIterator specific test.
2022-01-04 14:07:44 +01:00
21aecc0971 Add Flax RoFormer (#15005)
* Add FlaxRoFormer

* Clean code + make quality

* Fix output pooling for FlaxRoFormerForMultipleChoiceModule

* Apply suggestions from code review

* add flax model to repos

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-04 13:23:10 +01:00
9e1775dd23 Fix a little typo (#15002) 2022-01-04 12:59:47 +01:00
774ed4a027 Fix Code block (#14983) 2022-01-04 12:59:20 +01:00
f2ab21833f Update parallelism.mdx (#15013)
* Update parallelism.mdx

* Update parallelism.mdx

* Update parallelism.mdx

* Update parallelism.mdx

* Update parallelism.mdx

* Update parallelism.mdx

* Update parallelism.mdx

* Update parallelism.mdx
2022-01-03 11:49:27 -08:00
dbac8899fe [Tests] Correct Wav2Vec2 & WavLM tests (#15015)
* up

* up

* up
2022-01-03 20:19:04 +01:00
0b4c3a1a53 fix missing import (#15016)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-03 19:11:47 +01:00
38f95d1846 Large audio chunking for the existing ASR pipeline (#14896)
* Naive ASR chunking

* Fixing batching for ASR.

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2022-01-03 16:54:17 +01:00
d33dc7966a Improve truncation_side (#14947)
* Enabling `truncation_side` for Slow and Fast tokenizer.

Co-Authored-by: Niels Rogge <48327001+NielsRogge@users.noreply.github.com>

* Disable failing tests.

* Layout xlm.

* assert -> assertEqual.

Co-authored-by: Niels Rogge <48327001+NielsRogge@users.noreply.github.com>
2022-01-03 16:18:39 +01:00
8c2618e6aa Fixing t2t pipelines lists outputs. (#15008)
Backward compatibility broken in
https://github.com/huggingface/transformers/pull/14988
2022-01-03 14:49:58 +01:00
8f6373c61c Map model_type and doc pages names (#14944)
* Map model_type and doc pages names

* Add script

* Fix typo

* Quality

* Manual check for Auto

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2022-01-03 05:08:55 -05:00
e68c3756fe Allow training to resume even if RNG states are not properly loaded (#14994)
* Allow training to resume even if RNG states are not properly loaded

* Proper f-string
2021-12-30 17:03:20 -05:00
08cb5718ec Enabling tokenizers upgrade. (#14941)
* Enabling `tokenizers` upgrade.

* Moved ugly comment.

* Tokenizers==0.11.1 needs an update to keep borrow checker

happy in highly contiguous calls.

* Support both 0.11.1 and 0.11.0
2021-12-30 17:30:58 +01:00
f8a989cfb2 Adding num_return_sequences support for text2text generation. (#14988)
* Adding `num_return_sequences` support for text2text generation.

Co-Authored-By: Enze <pu.miao@foxmail.com>

* Update tests/test_pipelines_text2text_generation.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_pipelines_text2text_generation.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Enze <pu.miao@foxmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-30 16:17:15 +01:00
c043ce6cfd [Generate] correct encoder_outputs are passed without attention_mask (#14980)
* [Generate] correct encoder_outputs are passed without attention_mask

* Apply suggestions from code review

* up
2021-12-30 10:16:03 +01:00
a1392883ce [AutoProcessor] Correct AutoProcessor and automatically add processor… (#14881)
* [AutoProcessor] Correct AutoProcessor and automatically add processor class

* up

* up

* up

* up

* up

* up

* up

* up

* continue tomorrow

* up

* up

* up

* make processor class private

* fix loop
2021-12-30 09:56:43 +01:00
d7d60df0ec Fixing a pathological case for slow tokenizers (#14981)
* Fixing a pathological case for slow tokenizers

* Update src/transformers/tokenization_utils.py
2021-12-30 09:10:34 +01:00
d1ba56d8d8 remove absl workaround as it's no longer needed (#14909)
the absl workaround hasn't been needed since 2019-04 https://github.com/abseil/abseil-py/issues/99 so it should be safe to remove it.
2021-12-29 17:18:03 -05:00
04cddaf402 refactor: replace assert with ValueError (#14970) 2021-12-29 10:09:54 -05:00
600496fa50 [Wav2Vec2] Rename model's feature extractor to feature encoder (#14959)
* rename classes

* clean up more namings

* remove bogus file

* Apply suggestions from code review

* Apply suggestions from code review

* replace more names

* more regex replace

* make style

* correct

* correct more

* make style

* finish

* correct more in wav2vec2

* make style

* improve freeze_extractor

* add aliases

* add tf aliases
2021-12-28 20:33:23 +01:00
1bfa347707 [Tests] Speed up tokenizer tests (#14964)
* speed up canine and mluke

* speed up mbart and mbart50 toks

* upload files
2021-12-28 17:02:50 +01:00
f80775df2b Update README.md (#14965) 2021-12-28 13:41:27 +01:00
1e847b40c0 [WavLM] give model for precision (#14958) 2021-12-28 11:07:05 +01:00
1c121916f3 Add Speech Seq2Seq Training script (#14792)
* start

* add gradient checkpointing and feature extractor freezing

* Apply suggestions from code review

* up

* up

* up

* correct

* up

* more changes

* up

* up

* up

* remove rst
2021-12-28 10:20:51 +01:00
10fd4fa1a6 [doc] :class: hunt (#14955)
* [doc] :class: hunt

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix the fix + style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-27 17:17:38 -08:00
2c5597f6c7 Style 2021-12-27 19:18:08 -05:00
b5e2b183af Doc styler examples (#14953)
* Fix bad examples

* Add black formatting to style_doc

* Use first nonempty line

* Put it at the right place

* Don't add spaces to empty lines

* Better templates

* Deal with triple quotes in docstrings

* Result of style_doc

* Enable mdx treatment and fix code examples in MDXs

* Result of doc styler on doc source files

* Last fixes

* Break copy from
2021-12-27 19:07:46 -05:00
e13f72fbff [doc] :obj: hunt (#14954)
* redo sans examples

* style
2021-12-27 15:49:48 -08:00
133c5e40c4 [doc] consistent True/False/None default format (#14951)
* [doc] consistent True/False/None default format

* Update src/transformers/models/xlnet/modeling_xlnet.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-27 14:31:40 -08:00
b2f500256e Convert last rst file (#14952) 2021-12-27 17:09:37 -05:00
87e6e4fe5c Doc styler v2 (#14950)
* New doc styler

* Fix issue with args at the start

* Code sample fixes

* Style code examples in MDX

* Fix more patterns

* Typo

* Typo

* More patterns

* Do without black for now

* Get more info in error

* Docstring style

* Re-enable check

* Quality

* Fix add_end_docstring decorator

* Fix docstring
2021-12-27 16:31:21 -05:00
c1138273d4 Fix duplicate call to save_checkpoint when using deepspeed (#14946)
* Fix duplicate call to save_checkpoint when using deepspeed / stage3_gather_fp16_weights_on_model_save

* Revert "Fix duplicate call to save_checkpoint when using deepspeed / stage3_gather_fp16_weights_on_model_save"

This reverts commit 6a3dec0397723a8417351dc38fdebf14ab17756c.

* Delete correct duplicate invocation of deepspeed save_checkpoint
2021-12-27 11:25:26 -08:00
03885a3f50 fix to issue #14833 in data_collator - consider no labels (#14930) 2021-12-27 11:48:48 -05:00
501307b58b Add ElectraForCausalLM -> Enable Electra encoder-decoder model (#14729)
* Add ElectraForCausalLM and cover some basic tests & need to fix a few tests

* Fix bugs

* make style

* make fix-copies

* Update doc

* Change docstring to markdown format

* Remove redundant update_keys_to_ignore
2021-12-27 12:37:52 +01:00
b058490ceb ChunkPipeline (batch_size enabled on zero-cls and qa pipelines. (#14225)
* Pipeline chunks.

* Batching for Chunking pipelines ?

* Batching for `question-answering` and `zero-shot-cls`.

* Fixing for FNet.

* Making ASR a chunk pipeline.

* Chunking ASR API.

* doc style.

* Fixing ASR test.

* Fixing QA eror (p_mask, padding is 1, not 0).

* Enable both vad and simple chunking.

* Max length for vad.

* remove inference mode, crashing on s2t.

* Revert ChunkPipeline for ASRpipeline.

Too many knobs for simple integration within the pipeline, better stick
to external convenience functions instead, more control to be had,
simpler pipeline and also easier to replace with other things later.

* Drop necessity for PT for these.

* Enabling generators.

* Add mic + cleanup.

* Typo.

* Typo2.

* Remove ASR work, it does not belong in this PR anymore.

* Update src/transformers/pipelines/pt_utils.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/pipelines/zero_shot_classification.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Adding many comments.

* Doc quality.

* `hidden_states` handling.

* Adding doc.

* Bad rebase.

* Autofixing docs.

* Fixing CRITICAL bug in the new Zerocls pipeline.

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-12-27 11:26:20 +01:00
705ca7f21b Fix Perceiver docs (#14917) 2021-12-24 11:28:47 +01:00
116829900a [WavLM] fix wavlm docs (#14910) 2021-12-23 23:17:20 +01:00
415810664b [doc] install - add jax (#14912)
As `jax` cuda requires special instructions to be installed correctly add a link to jax installation instructions. 

Note: Flax install page only covers cpu jax installation info.
2021-12-23 13:12:59 -08:00
676643c6d6 Better logic for getting tokenizer config in AutoTokenizer (#14906)
* Better logic for getting tokenizer config in AutoTokenizer

* Remove needless import

* Remove debug statement

* Address review comments
2021-12-23 14:18:07 -05:00
f566c6e3b7 Fix failing GPU trainer tests (#14903)
* Fix failing GPU trainer tests

* Remove print statements
2021-12-23 13:59:33 -05:00
fe4197ab11 [Generate] Remove attention_mask and integrate model_main_input_name (#14856)
* up

* save

* correct

* up

* correct more

* up

* up

* up

* up

* up

* correct

* fix tf

* fix

* remove tokenizer
2021-12-23 19:43:37 +01:00
86b40073e9 [doc] post-porting (#14890)
found a few oddities:

1. https://huggingface.co/docs/transformers/main_classes/logging#transformers.utils.logging.enable_explicit_format
has a :: - this PR fixes it

2.  this looks borked too:
https://huggingface.co/docs/transformers/main_classes/logging#transformers.utils.logging.set_verbosity
 has a <

but I'm not sure where this one is coming from
2021-12-23 10:19:34 -08:00
ee55ea692b Update diarization and WavLM tolerances (#14902) 2021-12-23 19:53:56 +03:00
ef47d4f848 [AutoTokenizer] Fix incorrect from pretrained (#14900) 2021-12-23 17:22:33 +01:00
8f2cc1c3ab Add TFCLIPModel (#13967)
* Start the work for TFCLIPModel

* Convert to TF code (TODO: loss + doc)

* Clean up

* Fix pooled_output for TFCLIPTextTransformer - using tf.gather_nd

* assert -> raise error

* Expose TFCLIPModel

* Deal with dummy_inputs

* Add tests

* Fix all tests. TODO: manual check weight loading + add more comments

* Fix pt tf equivalence test

* fixes

* update TFCLIPVisionEmbeddings's Conv2D

* Fix loss + overwrite test_pt_tf_model_equivalence from common

* Add a comment about the change about MainLayer in test_keras_save_load

* Set return_loss=True in TFCLIPModelTester + make tests pass

* overwrite test_pt_tf_model_equivalence from tf common

* fix base_model_prefix

* Fix examples

* remove unused

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply review suggestions

* change self.pre_layrnorm to self.pre_layernorm

* apply more review suggestions

* return attention probs before dropout (to align with PT)

* fix weight init

* fix

* build doc

* fix missing doc

* fix for test

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-23 11:19:44 -05:00
2d30443cd3 Set run_name in MLflowCallback (#14894)
* Set run_name in MLflowCallback

* Update the docs for `run_name` argument
2021-12-23 10:53:33 -05:00
1d651868d6 add custom stopping criteria to human eval script (#14897) 2021-12-23 14:59:11 +01:00
6b655cc63f Add ONNX support for MarianMT models (#14586)
* First commit to add MarianMT to ONNX

* Now MarianModel.forward() automatically generates decoder_input_ids, like BartModel.forward()

* Adjusted MarianOnnxConfig.inputs and outputs to work with seq2seq-lm feature

* Style fix

* Added support for other features for already supported models

* Partial support for causal and seq2seq models

* Partial support for causal and seq2seq models

* Add default task for MarianMT ONNX

* Remove automatic creation of decoder_input_ids

* Extend inputs and outputs for MarianMT ONNX config

* Add MarianMT to ONNX unit tests

* Refactor

* OnnxSeq2SeqConfigWithPast to support seq2seq models

* Parameterized the onnx tests

* Restored run_mlm.py

* Restored run_mlm.py

* [WIP] BART update

* BART and MBART

* Add past_key_values and fix dummy decoder inputs

Using a sequence length of 1 in generate_dummy_outputs() produces large discrepancies, presumably due to some hidden optimisations.

* Refactor MarianOnnxConfig to remove custom past_key_values logic

* Fix quality

* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"

This reverts commit 0f4e39c5599523c110cd713f60a3bfa145dad807.

* is_torch_available test to avoid failing imports

* sorting parameterize parameters to solve ERROR gw0 gw1

* tests fix

* tests fix

* GPT2 with past fix

* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially

* Removed onnx file

* Refactor Marian export to account for base changes

* Fix copies

* Implemented suggestions

* Extend support for causal LM

* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"

This reverts commit 0f4e39c5599523c110cd713f60a3bfa145dad807.

* is_torch_available test to avoid failing imports

* sorting parameterize parameters to solve ERROR gw0 gw1

* tests fix

* tests fix

* GPT2 with past fix

* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially

* Removed onnx file

* Implemented suggestions

* Fixed __init__ to resolve conflict with master

* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"

This reverts commit 0f4e39c5599523c110cd713f60a3bfa145dad807.

* is_torch_available test to avoid failing imports

* sorting parameterize parameters to solve ERROR gw0 gw1

* tests fix

* tests fix

* GPT2 with past fix

* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially

* Removed onnx file

* Implemented suggestions

* Fixed __init__ to resolve conflict with master

* Remove commented import

* Remove ONNX model

* Remove redundant class method

* Tidy up imports

* Fix quality

* Refactor dummy input function

* Add copied from statements to Marian config functions

* Remove false copied from comments

* Fix copy from comment

Co-authored-by: Massimiliano Bruni <massimiliano.bruni@hcl.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
2021-12-23 13:35:56 +01:00
6a7b9da2ae Add 'with torch.no_grad()' to integration test forward pass (#14808) 2021-12-23 04:23:39 -05:00
d8c09c6541 Fix AttributeError from PreTrainedTokenizerFast.decoder (#14691) 2021-12-23 04:19:25 -05:00
4210579522 Fix doc examples: ... takes no keyword arguments (#14701)
* Fix doc examples: ... takes no keyword arguments

* fix copies

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-12-23 04:07:21 -05:00
355dc0ce67 Fix installation instructions for BART ONNX example (#14885) 2021-12-23 04:05:32 -05:00
207594be81 Convert rst files (#14888)
* Convert all tutorials and guides

* Convert all remaining rst to mdx

* Track and fix bad links
2021-12-22 16:14:35 -05:00
b0c7d2ec58 Keras metric callback (#14867)
* Working on splitting out labels

* First working version

* Fixed concatenation of outputs and labels

* val_dataset -> eval_dataset

* Only pass input arrays in tokenizer.model_input_names

* Only pass input arrays in tokenizer.model_input_names

* Only remove unexpected keys when predict_with_generate is True

* Adding proper docstring

* Adding example to docstring

* Add a proper ROUGE metric example

* Add a proper ROUGE metric example

* Add version checking

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove requirement for tokenizer with predict_with_generate

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-22 20:35:39 +00:00
fa39ff9fc4 Docs for v4.16.0dev0 2021-12-22 20:39:44 +01:00
05fa1a7ac1 Release: v4.15.0 2021-12-22 18:43:15 +01:00
87a033d9fa Properly indent return block (#14887) 2021-12-22 12:28:45 -05:00
13504dcbea Onnx enable tasks for supported models (part 2) (#14700)
* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"

This reverts commit 0f4e39c5599523c110cd713f60a3bfa145dad807.

* is_torch_available test to avoid failing imports

* sorting parameterize parameters to solve ERROR gw0 gw1

* tests fix

* tests fix

* GPT2 with past fix

* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially

* Removed onnx file

* Implemented suggestions

* Fixed __init__ to resolve conflict with master

* Remove commented import
2021-12-22 14:43:11 +01:00
1045a36c1f Fix pytorch image classification example (#14883)
* Update example

* Remove skip in tests
2021-12-22 14:42:19 +01:00
7df4b90c76 Fix Perceiver docs (#14879) 2021-12-22 14:18:03 +01:00
e37bc579fc Fix typo in error message 2021-12-22 08:19:36 -05:00
17efc806b4 IterableDatasetShard should use per device batch size instead of real batch size (#14714) 2021-12-22 07:52:07 -05:00
2a56edb321 Updated deberta attention (#14625)
* Removed unused p2p attention handling

* Updated DeBERTa configuration

* Updated TF DeBERTa attention

* Rolled back accidental comment deletion

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-12-22 07:36:08 -05:00
824fd44fc3 Feature/fix slow test in mluke (#14749)
* make MLukeTokenizerTest fast

* make LukeTokenizerTest fast

* add entry to _toctree.yaml
2021-12-22 06:35:59 -05:00
c94c1b8967 update the arguments add_prefix_space and trim_offsets in backend_tokenizer.post_processor of RobertaTokenizerFast (#14752)
* add tests

* change post-processor, pre-tokenizer and decoder (can't update decoder)

* update test (remove decoder which doesn't depend on trim and add_prefix)

* just update the post_processor

* fix change

* `trim_offsets` has no influence on `pre_tokenizer`

* remove a test that need some input from the `tokenizers` lib maintainers

* format

* add new test offsets roberta

* polish comments
2021-12-22 10:51:55 +01:00
ec3567fe20 Convert model files from rst to mdx (#14865)
* First pass

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-22 03:27:30 -05:00
d0422de563 Fix doc mistakes (#14874)
* Remove double returns

* Last fixes

* Quality

* Last fix for Lxmert
2021-12-21 18:54:41 -05:00
e846a56ca4 Fix FlaxMarianMTModel return block. (#14873)
* Fixes in marian doc

* Another time

* Add return block in FlaxMarianMTModel
2021-12-21 17:57:37 -05:00
a6b7b47a39 Fixes in marian doc (#14872)
* Fixes in marian doc

* Another time
2021-12-21 17:17:02 -05:00
eec9c8bbd7 Fix FLAX_MULTIPLE_CHOICE_SAMPLE typo (#14871) 2021-12-21 16:54:10 -05:00
e51c7b5872 Skip failing test 2021-12-21 15:15:17 -05:00
27b3031de2 Mass conversion of documentation from rst to Markdown (#14866)
* Convert docstrings of all configurations and tokenizers

* Processors and fixes

* Last modeling files and fixes to models

* Pipeline modules

* Utils files

* Data submodule

* All the other files

* Style

* Missing examples

* Style again

* Fix copies

* Say bye bye to rst docstrings forever
2021-12-21 15:06:33 -05:00
185876392c [doc porting] several docs (#14858)
* [doc porting] 2 docs

* [doc porting] 2 docs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/main_classes/deepspeed.mdx

* cleanup

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-21 09:55:25 -08:00
033c3ed95a [examples/summarization] deal with None in data records (#14816)
* [examples/summarization] deal with None in data records

* rewrite to use a simpler (slower) variant
2021-12-21 09:17:28 -08:00
c075fb7855 Replace commit sha by commit url for update jobs (#14852)
* Replace commit sha by commit url for update jobs

* Typo

* Update .github/workflows/build_documentation.yml

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Apply review comments

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2021-12-21 11:17:11 -05:00
5722d05831 Add custom stopping_criteria and logits_processor to generate (#14779)
* add custom `stopping_criteria` and `logits_processor` to `generate`

* add tests for custom `stopping_criteria` and `logits_processor`

* fix typo in RAG

* address reviewer comments

* improve custom logits processor/stopping criteria error message

* fix types in merge function signature

* change default for custom list from `None` to empty list

* fix rag generate

* add string split suggestion

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-12-21 16:47:41 +01:00
Zed
0062058399 Fix the value error typo of AdamW's betas' valid values checking (#14780)
* Fix the value error typo of AdamW's betas value check

* error fixed
2021-12-21 09:44:09 -05:00
7ae6f07004 [ASR example] Improve example + add more examples (#14848)
* up

* load up

* up
2021-12-21 13:12:22 +01:00
97ec17f73b Only create the model card on process 0 (#14857) 2021-12-21 06:34:47 -05:00
b513ec8bbd [Bart] better error message (#14854) 2021-12-21 11:57:42 +01:00
7af80f6618 Convert docstrings of modeling files (#14850)
* Convert file_utils docstrings to Markdown

* Test on BERT

* Return block indent

* Temporarily disable doc styler

* Remove from quality checks as well

* Remove doc styler mess

* Remove check from circleCI

* Fix typo

* Convert file_utils docstrings to Markdown

* Test on BERT

* Return block indent

* Temporarily disable doc styler

* Remove from quality checks as well

* Remove doc styler mess

* Remove check from circleCI

* Fix typo

* Let's go on all other model files

* Add templates too

* Styling and quality
2021-12-21 05:37:32 -05:00
2a33734606 Make the onnx submodule init lazy (#14855)
* Use lazy init for onnx submodule

* Remove debug statements
2021-12-21 03:11:25 -05:00
b6ec956976 [logging] implement warning_advice / TRANSFORMERS_NO_ADVISORY_WARNINGS (#14669)
* [logging] implement warning_advice / TRANSFORMERS_NO_ADVISORY_WARNINGS

* reword
2021-12-20 20:48:38 -08:00
c1125dc2ba [doc] typo (#14849)
fix small typo
2021-12-20 12:20:21 -05:00
33f36c869f Add a main_input_name attribute to all models (#14803)
* Add a main_input_name attribute to all models

* Fix tests

* Wtf Vs Code?

* Update src/transformers/models/imagegpt/modeling_imagegpt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Style

* Fix copies

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-12-20 11:19:08 -05:00
0940e9b242 Add 'with torch.no_grad()' to integration test forward pass (#14820) 2021-12-20 09:28:17 -05:00
b37cf7dee4 Add 'with torch.no_grad()' to integration test forward pass (#14821) 2021-12-20 09:25:34 -05:00
952a77b05d [Perceiver] Skip multi-gpu tests for now (#14813)
* [Perceiver] Skip multi-gpu tests for now

* Update tests/test_modeling_perceiver.py

* up

* up
2021-12-20 15:22:50 +01:00
8a818c26cb Fix dead link to benchmarks.ipynb (#14842)
Notebook has been updated here https://github.com/huggingface/notebooks/tree/master/examples/benchmark.ipynb
2021-12-20 09:08:05 -05:00
1b0ca7d270 Update CONTRIBUTING.md (#14835)
fix cmd typo
2021-12-20 08:42:03 -05:00
1531b31978 Add an argument to set bucket_cap_mb for PyTorch DDP (#14756)
* [trainer] Set bucket_cap_mb for DDP from arguments

* Put find_unused_parameters into kwargs
2021-12-20 08:41:40 -05:00
3883e3a75e Add SD and SV heads for WavLM (#14847)
* Add converted heads

* Add dummies
2021-12-20 16:40:56 +03:00
cd583bdaa5 [WavLM] Fix slow tests (#14845) 2021-12-20 12:06:42 +01:00
281e1fba75 up (#14829) 2021-12-20 11:47:32 +01:00
091693b494 [Seq2SeqTrainer] Remove model input name hack (#14802)
* [Seq2SeqTrainer] Remove model input name hack

* Update src/transformers/trainer_seq2seq.py

* make style

* finish
2021-12-20 10:53:48 +01:00
84ea427f46 [ImageGPT] Deprecate pixel_values input name to input_ids (#14801)
* [ImageGPT] Deprecate pixel_values input name to input_ids

* up

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* correct

* finish

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2021-12-17 20:05:22 +01:00
c4a96cecbc Wav2Vec2 meets phonemes (#14353)
* up

* add tokenizer

* improve more

* finish tokenizer

* finish

* adapt speech recognition script

* adapt convert

* more fixes

* more fixes

* update phonemizer wav2vec2

* better naming

* fix more tests

* more fixes swedish

* correct tests

* finish

* improve script

* remove file

* up

* lets get those 100 model architectures until the end of the month

* make fix-copies

* correct more

* correct script

* more fixes

* more fixes

* add to docs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* replace assert

* fix copies

* fix docs

* new try docs

* boom boom

* update

* add phonemizer to audio tests

* make fix-copies

* up

* upload models

* some changes

* Update tests/test_tokenization_wav2vec2_phoneme.py

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* more fixes

* remove @

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
2021-12-17 19:56:44 +01:00
77d6c826d8 Convert rst to mdx bert (#14806)
* BERT to mdx
mdx :)
c

* Update docs/source/model_doc/bert.mdx

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Remove all
Co-authored-by: sgugger <sylvain.gugger@gmail.com>

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2021-12-17 11:13:34 -05:00
0b4ea79a0c Trigger doc building 2021-12-17 11:14:18 -05:00
ff066119ca Implement head_mask for Flax BERT and other models copied from BERT (#14620)
* Implement head_mask for Flax BERT and other models copied from BERT

* Remove `from jax._src.nn.functions import sigmoid`

Remove `from jax._src.nn.functions import sigmoid` unintentionally added by IDE

* Remove no more valid copy statement

* Apply patil-suraj's suggestions from code review

* Apply suggestions from the code review

* Update Flax template

* Fix a typo

* Also update template for CausalLM modules
2021-12-17 17:06:59 +01:00
95119ad7b0 [Generate] Correct input_ids detection (#14815)
* [Generate] Correct input_ids detection

* correct
2021-12-17 16:08:54 +01:00
bdbe3df869 [WavLM] Layerdrop is not allowed for first layer (#14811)
* [WavLM] Layerdrop is not allowed for first layer

* Apply suggestions from code review
2021-12-17 13:30:18 +01:00
cbf036f7ae Add test (#14810) 2021-12-17 04:33:27 -05:00
c4a0fb5199 [WavLM] Correct position bias computation (#14805) 2021-12-16 22:42:57 +01:00
d194d639ab Remove datasets requirement (#14795) 2021-12-16 14:34:14 -05:00
bef1e3e4a0 Add WavLM (#14354)
* first commit

* fix some stuff

* fix more readme

* Apply suggestions from code review

* update

* correct

* up

* attn layer works

* push code

* make modedls work

* Small change

* more refactor

* finish

* up

* fix convertsion

* fix position bias

* Fix style

* fix conversion

* make fix-copies

* add

* clean

* fix docs

* fix

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply final changes

* make fix-copies

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-16 18:57:05 +01:00
b18d8534ea [Generate] Make generate multi-modal (#14784)
* finish refactor

* refactor

* add tests

* add more tests

* up

* finish tests

* finish

* up

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* improve docstring

* fix docs

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-16 18:03:55 +01:00
48463ebb33 Add Speaker Diarization and Verification heads (#14723)
* Models

* Squashed commit of the following:

commit 72278e1e931a16d0879acc77f65762f3364833d0
Author: anton-l <aglozhkov@gmail.com>
Date:   Fri Dec 10 21:45:08 2021 +0300

* Add unispeech heads

* Add sd/sv automodels

* Docs cleanup

* Fix docstrings

* rename xvector classes

* examples

* Tests cleanup

* Style

* Better checkpoints for tests

* leftover docs

* apply review suggestions

* Style + init tests

* Update unispeech-sat tdnn downsampling
2021-12-16 19:22:14 +03:00
2e07180cba Train step fix (#14796)
* Fix for TF train step when no "labels" key in input

* make style
2021-12-16 16:08:13 +00:00
465a8b8d10 Update CONTRIBUTING.md (#14800)
fix pip installation cmd
2021-12-16 10:40:56 -05:00
8ae24e19b2 Update CONTRIBUTING.md (#14799)
typo
2021-12-16 10:24:26 -05:00
12e1b4c6df Fix the build documentation job (#14788)
* Fix the build documentation job

* Fix install

* Address review comment
2021-12-16 09:35:20 -05:00
5061a9fd55 Post sphinx-clean up and contributing guide updates (#14790)
* Clean up sphinx

* Update contributing guide

* Update docs README

* No example title

* Fix copies

* Update CONTRIBUTING.md

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-12-16 09:29:26 -05:00
8010fda9bf Removes images to put them in a dataset (#14781)
* First try

* Update instructions
2021-12-16 04:42:02 -05:00
459677aebe PoC for conserving old links (#14754)
* PoC for conserving old links

* Do the same for other links

* remap the redirects section

* add instructions on how to move sections

* improve

Co-authored-by: Stas Bekman <stas@stason.org>
2021-12-15 11:40:47 -08:00
c40ecfd740 Move import (#14787) 2021-12-15 13:34:42 -05:00
7c9c41f43c Docs for v4.14.0 2021-12-15 18:29:53 +01:00
960d8cb41d Release: v4.14.0 2021-12-15 18:20:35 +01:00
aece7badc1 Improve Perceiver docs (#14786)
* Fix docs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Code quality

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2021-12-15 12:02:05 -05:00
50bc57cef8 Update Perceiver code examples (#14783)
* Fix code examples

* Fix code example
2021-12-15 11:06:38 -05:00
48d4827697 TF model cards (#14720)
* Initial commit for Keras model cards

* Revert accidental change

* make style

* make style

* make style

* Fix PR comments

* Move repo creation to __init__

* Fixes to README.md creation

* Partial progress for proper card creation on `push_to_hub`

* Proper card creation from `push_to_hub` plus fixes for malformed model cards

* Fixes for model card creation outside the callback

* Adding a model card creation test

* Putting the model card creation test in the right file.
Good job, Matt.

* make style

* Fix model card test temp dir usage

* Fix model card creation when no optimizer present

* Fixes for when training history not present

* Fix accidental edit to test_modeling_common
2021-12-15 14:57:52 +00:00
72c6e8b8bf Update t5.rst (#14776) 2021-12-15 14:59:11 +01:00
a94105f95f Fix preprocess_function in run_summarization_flax.py (#14769)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-15 11:36:28 +01:00
7e61d56a45 Fix the doc_build_test job (#14774)
* Fake new model

* Fix doc-building test job

* Is this the problem?

* Another try

* Typo

* Clean up

* Can we do without -e ?

* Clean setup
2021-12-15 03:40:17 -05:00
fdf3ce2827 [doc] performance: groups of operations by compute-intensity (#14757) 2021-12-14 19:01:23 -08:00
851a78978a Fix broken links to distillation on index page of documentation (#14722)
* Fix broken links to distillation on index page of documentation

* Fix broken link for distillation in main README

* Run make fixup
2021-12-14 21:55:33 -05:00
e7ed7ffdcb Adding support for multiple mask tokens. (#14716)
* Adding support for multiple mask tokens.

- Original implem: https://github.com/huggingface/transformers/pull/10222

Co-authored-by: njafer <naveen.jafer@oracle.com>

* In order to accomodate optionally multimodal models like Perceiver

we add information to the tasks to specify tasks where we know for sure
if we need the tokenizer/feature_extractor or not.

* Adding info in the documentation about multi masks.

+ marked as experimental.

* Add a copy() to prevent overriding the same tensor over and over.

* Fixup.

* Adding small test for multi mask with real values..

Co-authored-by: njafer <naveen.jafer@oracle.com>
2021-12-14 16:46:16 +01:00
2a606f9974 Make data shuffling in run_clm_flax.py respect global seed (#13410)
* use jax and jnp instead of numpy in data_loader

* return batches as np.ndarray
2021-12-14 11:04:43 +01:00
546a91abe9 Fixing tests for Perceiver (#14739)
* Adding some slow test to check for perceiver at least from a high level.

* Re-enabling fast tests for Perceiver ImageClassification.

* Perceiver might try to run without Tokenizer (Fast doesn't exist) and
with FeatureExtractor some text only pipelines.

* Oops.

* Adding a comment for `update_config_with_model_class`.

* Remove `model_architecture` to get `tiny_config`.

* Finalize rebase.

* Smarter way to handle undefined FastTokenizer.

* Remove old code.

* Addressing some nits.

* Don't instantiate `None`.
2021-12-14 09:43:07 +01:00
322d416916 Update Table of Contents (#14755) 2021-12-13 17:15:19 -05:00
7533d30acd Convert Trainer doc page to MarkDown (#14753)
* Convert Trainer doc page to MarkDown

* Fix repo consistency

* Fix the doc build test job
2021-12-13 13:09:50 -05:00
e926ea2bdd Improve perceiver (#14750)
* First draft

* Improve docstring + clean up tests

* Remove unused code

* Add check in case one doesn't provide a preprocessor
2021-12-13 18:46:49 +01:00
971e36667a Change how to load config of XLNetLMHeadModel (#14746) 2021-12-13 12:34:26 -05:00
15a9d01519 Avoid using tf.tile in embeddings for TF models (#14735)
* avoid tf.tile in embeddings

* remove more tf.tile in embeddings

* clean

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-13 17:30:46 +00:00
6ac0fac85a Mention no images added to repository (#14738)
* Mention no images added to repository

* Update CONTRIBUTING.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2021-12-13 12:21:26 -05:00
e4666bff06 Fix name 2021-12-13 12:01:37 -05:00
64e92ed224 Update transformers metadata (#14724)
* Wip on metadata update

* Most of the script

* Add a job to auto-update the transformers metadata

* Style
2021-12-13 11:46:03 -05:00
c3cd88a9ba Small fixes for the doc (#14751) 2021-12-13 11:17:01 -05:00
12d9b95723 Fix: change tooslow to slow (#14734)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-13 16:12:58 +00:00
ca0b82bbd7 Fix doc examples: cannot import name (#14698)
* Fix doc examples: cannot import name

* remove copy because of some necessary minor changes (maybe add copy to the individual methods instead)

* Keep copy with some modifications

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-13 10:36:50 -05:00
fc74c84537 Swap TF and PT code inside two blocks (#14742) 2021-12-13 10:31:11 -05:00
8362d07d63 [CI/pt-nightly] switch to cuda-11.3 (#14726) 2021-12-13 09:53:48 -05:00
6e05bb1c96 Fix the perceiver docs (#14748) 2021-12-13 09:29:47 -05:00
c17e7cde32 Add ability to get a list of supported pipeline tasks (#14732) 2021-12-13 08:31:50 -05:00
3d66146afc Fixing tests for Perceiver (#14745)
- Do not run image-classification pipeline (_CHECKPOINT_FOR_DOC uses the checkpoint for
langage, which cannot load a FeatureExtractor so current logic fails).
- Add a safeguard to not run tests when `tokenizer_class` or
`feature_extractor_class` **are** defined, but cannot be loaded
This happens for Perceiver for the "FastTokenizer" (which doesn't exist
so None) and FeatureExtractor (which does exist but cannot be loaded
because the checkpoint doesn't define one which is reasonable for the
said checkpoint)
- Added `get_vocab` function to `PerceiverTokenizer` since it is used by
`fill-mask` pipeline when the argument `targets` is used to narrow a
subset of possible values.

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2021-12-13 08:13:39 -05:00
4c99e553c1 Improve documentation of some models (#14695)
* Migrate docs to mdx

* Update TAPAS docs

* Remove lines

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply some more suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add pt/tf switch to code examples

* More improvements

* Improve docstrings

* More improvements

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-13 13:24:36 +01:00
32eb29fef9 Fix doc examples: modify config before super().__init__ (#14697)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-13 12:50:02 +01:00
48bf7e47a0 Code parrot minor fixes/niceties (#14666)
* Add some nicety flags for better controlling evaluation.

* Fix dependency issue with outdated requirement

* Add additional flag to example to ensure eval is done

* Wrap code into main function for accelerate launcher to find

* Fix valid batch size flag in readme

* Add note to install git-lfs when initializing/training the model

* Update examples/research_projects/codeparrot/scripts/arguments.py

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Revert "Wrap code into main function for accelerate launcher to find"

This reverts commit ff11df1c810d4df198d04b827538eb4572147ba3.

* Fix formatting issue

* Move git-lfs instructions to installation section

* Add a quick check before code generation for code evaluation

* Fix styling issue

* Update examples/research_projects/codeparrot/scripts/human_eval.py

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Make iterable dataset use passed in tokenizer rather than globally defined one

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: ncoop57 <nac33@students.uwf.edu>
2021-12-13 09:30:50 +01:00
91f3dfbfdd [Adafactor] Fix adafactor (#14713)
* correct changes

* add comment
2021-12-12 13:31:46 +01:00
86dd23bb8b Update bug-report.md (#14715) 2021-12-12 13:30:44 +01:00
6a025487a6 [Flax examples] remove dependancy on pytorch training args (#14636)
* use custom training arguments

* update tests
2021-12-12 09:19:12 +05:30
027074f4d0 [doc] document MoE model approach and current solutions (#14725)
* document MoE model approach

* additional info from Samyam

* fix
2021-12-10 18:24:38 -08:00
7cb1fdd4d1 Fixing tests for perceiver (texts) (#14719)
* Fixing tests for perceiver (texts)

* For MaskedLM
2021-12-10 19:38:59 -05:00
39fbb068be Empty commit to retrigger build doc 2021-12-10 17:55:16 -05:00
5eca742f6c Fix special character in MDX (#14721) 2021-12-10 16:02:48 -05:00
63c284c2d4 Prevent style_doc from tempering the config file 2021-12-10 15:31:43 -05:00
f46668282b Fix path for notebooks 2021-12-10 15:03:17 -05:00
3b2d1652e4 Fix typo in branch name 2021-12-10 14:38:21 -05:00
1b75d7238c Automatically build doc notebooks (#14718)
* Test workflow

* Build doc

* Make a clean build

* Add doc config

* Restore other workflows

* Final job

* Print something in else statements

* Pull before making changes
2021-12-10 14:20:56 -05:00
ae82ee6a48 Fix doc examples: unexpected keyword argument (#14689)
* Fix doc examples: unexpected keyword argument

* Don't delete token_type_ids from inputs

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-10 11:44:08 -05:00
5b00400198 Adding Perceiver to AutoTokenizer. (#14711) 2021-12-10 15:29:18 +01:00
59d684fa92 Fix examples: 'CausalLMOutputWithCrossAttentions' object has no attribute 'last_hidden_state' (#14678)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-10 14:55:54 +01:00
8395f14de6 Fix doc examples: KeyError (#14699)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-10 13:26:37 +05:30
bab1556456 Put back open in colab markers (#14684) 2021-12-09 12:00:06 -05:00
3bc7d70e9c Fix : wrong link in the documentation (ConvBERT vs DistilBERT) (#14705) 2021-12-09 11:35:22 -05:00
4701a1a182 Patch release script 2021-12-09 17:21:08 +01:00
ab31b3e41b Docs for v4.14.0dev0 2021-12-09 17:09:23 +01:00
4da3a696e4 Release: v4.13.0 2021-12-09 16:55:21 +01:00
60be4bf8ac Fix typo in toctree (#14704) 2021-12-09 09:25:31 -05:00
da7aabf2ca add str hub token to repository when provided else fallback to default (#14682)
* add str hub token to repository when provided else fallback to default True

* make style
2021-12-09 08:42:23 -05:00
7375758bee Fix tests (#14703) 2021-12-09 08:32:35 -05:00
68e53e6fcd Add a job to test doc building (for realsies this time) (#14662) 2021-12-09 07:01:03 -05:00
e9800122a6 Add kenlm dep to missing tests 2021-12-08 19:59:44 -05:00
ee6674d450 Fix doc examples: name '...' is not defined (#14687)
* Fix doc examples: name '...' is not defined

* remove >>> and ... in some docstrings in visual_bert

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-08 16:39:35 -05:00
e6219320b9 Make MLuke tokenizer tests slow (#14690) 2021-12-08 15:59:57 -05:00
13186d7152 Move pyctcdecode (#14686)
* Move pyctcdecode dep

* Fix doc and last objects

* Quality

* Style

* Ignore this black
2021-12-08 15:41:58 -05:00
d104dd46d9 [trainer] support UserDict inputs (torch-nightly) (#14688) 2021-12-08 12:21:43 -08:00
1228661285 [bf16 support] tweaks (#14580)
* [bf16 support] tweaks

* corrections

Co-authored-by: Manuel R. Ciosici <manuelrciosici@gmail.com>
2021-12-08 11:33:24 -08:00
16870d114b Fix wrong checkpoint paths in doc examples (#14685)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-08 14:25:48 -05:00
01b8cd5932 Revert open-in-colab and add perceiver (#14683) 2021-12-08 13:52:31 -05:00
f6b87c5f30 Fixes in init (#14681)
* Fixes in init

* Style
2021-12-08 13:42:22 -05:00
fe06f8dcac Improvements to Comet Integration (#14680)
* change args to address overwriting issue

* remove project name from args

* remove passing args as kwargs to experiment object

* remove passing args as kwargs to offline experiment

* fix offline directory assignment in experiment kwargs

* log checkpoint folder on training end

* log entire output_dir as asset folder

* log asset folder  recursively

* end experiment at the end of training

* clean up

* clean up

* Default to always log training assets to Comet when using CometCallback

* change logging training assets to be true when running callback setup

* fix so that experiment always ends when training ends

* styling and quality fixes

* update docstring for COMET_LOG_ASSETS environment variable

* run styling and quality checks

* clean up to docstring

* remove merge markers

* change asset logging to false to avoid hitting max assets per experiment limit

* update training asset description

* fix styling
2021-12-08 13:39:10 -05:00
4ea19de80c fix: verify jsonlines file in run_translation (#14660) (#14661)
* fix: verify jsonl in run_translation (#14660)

* fix(run_translation.py): json/jsonl validation

Both json and jsonl are to be accepted as valid jsonlines file extension

* fix(run_translation.py): make black happy

* Ran make style
2021-12-08 13:25:30 -05:00
cf36f4d7a8 Convert tutorials (#14665)
* Convert a few docs

* And another

* Last tutorials

* New syntax for colab links

* Convert a few docs

* And another

* Last tutorials

* New syntax for colab links
2021-12-08 13:19:46 -05:00
0f4e39c559 Revert "Added support for other features for already supported models (#14358)" (#14679)
This reverts commit 0c70f145d1ba79773f7fa532a5f05486e260200a.
2021-12-08 13:04:40 -05:00
0c70f145d1 Added support for other features for already supported models (#14358)
* Added support for other features for already supported models

* Partial support for causal and seq2seq models

* Partial support for causal and seq2seq models

* OnnxSeq2SeqConfigWithPast to support seq2seq models

* Parameterized the onnx tests

* Restored run_mlm.py

* Restored run_mlm.py

* [WIP] BART update

* BART and MBART

* Added comments

* Another sequence length of the past_key_values
2021-12-08 18:39:56 +01:00
ee4fa2e465 [AutoProcessor] Add Wav2Vec2WithLM & small fix (#14675)
* [AutoProcessor] Add Wav2Vec2WithLM & small fix

* revert line removal

* Update src/transformers/__init__.py

* add test

* up

* up

* small fix
2021-12-08 15:51:28 +01:00
2294071a0c Fix doc builder (#14676) 2021-12-08 09:14:36 -05:00
fab3b518ef fix deprecated tf method (#14671)
tf.matrix_band_part -> tf.linalg.band_part
2021-12-08 13:43:21 +00:00
65b20b739b Add Perceiver IO (#14487)
* First draft

* Style and remove mlm

* Make forward pass work

* More improvements

* More improvements

* Fix bug

* More improvements

* More improvements

* Add PerceiverTokenizer first draft

* Improve conversion script

* More improvements

* Make conversion script work for the encoder

* Make conversion script work with local pickle files

* Style & quality, fix-copies

* Add dummy input to conversion script

* Add absolute position embeddings to TextPreProcessor

* Make forward pass of encoder work

* More improvements

* Move text preprocessor to separate script

* More improvements

* More improvements

* Add post processor

* Make MLM model work

* Style

* Add PerceiverForMaskedLM

* Add PerceiverImagePreprocessor

* Make style

* Make PerceiverForImageClassification work

* More improvements

* More improvements

* Use tokenizer in conversion script

* Use PerceiverForMaskedLM in conversion script

* Define custom PerceiverModelOutput

* Improve PerceiverAttention to make it work for both MLM and image classification

* More improvements

* More improvements

* More improvements to the conversion script

* Make conversion script work for both MLM and image classification

* Add PerceiverFeatureExtractor

* More improvements

* Style and quality

* Add center cropping

* Fix bug

* Small fix

* Add print statement

* Fix bug in image preprocessor

* Fix bug with conversion script

* Make output position embeddings an nn.Parameter layer instead of nn.Embedding

* Comment out print statements

* Add position encoding classes

* More improvements

* Use position_encoding_kwargs

* Add PerceiverForImageClassificationFourier

* Make style & quality

* Add PerceiverForImageClassificationConvProcessing

* Style & quality

* Add flow model

* Move processors to modeling file

* Make position encodings modular

* Make basic decoder use modular position encodings

* Add PerceiverForOpticalFlow to conversion script

* Add AudioPreprocessor

* Make it possible for the basic decoder to use Fourier position embeddings

* Add PerceiverForMultimodalAutoencoding

* Improve model for optical flow

* Improve _build_network_inputs method

* Add print statement

* Fix device issue

* Fix device of Fourier embeddings

* Add print statements for debugging

* Add another print statement

* Add another print statement

* Add another print statement

* Add another print statement

* Improve PerceiverAudioPreprocessor

* Improve conversion script for multimodal modal

* More improvements

* More improvements

* Improve multimodal model

* Make forward pass multimodal model work

* More improvements

* Improve tests

* Fix some more tests

* Add output dataclasses

* Make more tests pass

* Add print statements for debuggin

* Add tests for image classification

* Add PerceiverClassifierOutput

* More improvements

* Make more tests pass for the optical flow model

* Make style & quality

* Small improvements

* Don't support training for optical flow model for now

* Fix _prepare_for_class for tests

* Make more tests pass, add some docs

* Add multimodal model to tests

* Minor fixes

* Fix tests

* Improve conversion script

* Make fixup

* Remove pos_dim argument

* Fix device issue

* Potential fix for OOM

* Revert previous commit

* Fix test_initialization

* Add print statements for debugging

* Fix print statement

* Add print statement

* Add print statement

* Add print statement

* Add print statement

* Add print statement

* Add print statement

* Remove need for output_shape

* Comment out output_shape

* Remove unnecessary code

* Improve docs

* Fix make fixup

* Remove PerceiverTextProcessor from init

* Improve docs

* Small improvement

* Apply first batch of suggestions from code review

* Apply more suggestions from code review

* Update docstrings

* Define dicts beforehand for readability

* Rename task to architecture in conversion script, include PerceiverModel in tests

* Add print statements for debugging

* Fix tests on GPU

* Remove preprocessors, postprocessors and decoders from main init

* Add integration test

* Fix docs

* Replace einops by torch

* Update for new docs frontend

* Rename PerceiverForImageClassification

* Improve docs

* Improve docs

* Improve docs of PerceiverModel

* Fix some more tests

* Improve center_crop

* Add PerceiverForSequenceClassification

* Small improvements

* Fix tests

* Add integration test for optical flow model

* Clean up

* Add tests for tokenizer

* Fix tokenizer by adding special tokens properly

* Fix CI
2021-12-08 14:20:34 +01:00
961732c276 [Wav2Vec2] PyCTCDecode Integration to support language model boosted decoding (#14339)
* up

* up

* up

* make it cleaner

* correct

* make styhahalal

* add more tests

* finish

* small fix

* make style

* up

* tryout to solve cicrle ci

* up

* fix more tests

* fix more tests

* apply sylvains suggestions

* fix import

* correct docs

* add pyctcdecode only to speech tests

* fix more tests

* add tf, flax and pt tests

* add pt

* fix last tests

* fix more tests

* Apply suggestions from code review

* change lines

* Apply suggestions from code review

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* correct tests

* correct tests

* add doc string

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
2021-12-08 12:07:54 +01:00
2e12d90b9e Fixing Dataset for TQA + token-classification. (#14658)
* Fixing Dataset for TQA + token-classification.

* Fixing the tests.

* Making sure `offset_mappings` is a valid argument.
2021-12-08 09:54:24 +01:00
fae0b9faef [trainer] conditional ctx managers into one wrapper (#14663)
* [trainer] conditional ctx managers into one wrapper

* workaround for contextlib.nullcontext for py<3.7

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* one more autocast

* style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-07 13:04:18 -08:00
39f1dff5a0 Fix a Bug, trainer_seq2seq.py, in the else branch at Line 172, generation_inputs should be a dict (#14546)
* fix bug, trainer_seq2seq.py, Line 172, generation_inputs must be a dict before feeding into self.model.generation()

* fix bug, trainer_seq2seq.py, Line 172, generation_inputs must be a dict before feeding into self.model.generation()
2021-12-07 12:09:18 -05:00
2171695cc2 quick fix SummarizationPipeline error messages (#14618)
* quick fix SummarizationPipeline error messages

Fix error messages to avoid spam errors, and errors of type:
`Your max_length is set to 50, but you input_length is only 46. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=50)`

* correcto SummarizationPipeline error messages fixes
2021-12-07 16:44:28 +01:00
b66c5ab20c [deepspeed] fix --load_best_model_at_end (#14652)
* [deepspeed] fix load_best_model_at_end

* try with pull_request_target

* revert: try with pull_request_target

* style

* add test

* cleanup
2021-12-06 21:57:47 -08:00
30646a0a3c Add mLUKE (#14640)
* implement MLukeTokenizer and LukeForMaskedLM

* update tests

* update docs

* add LukeForMaskedLM to check_repo.py

* update README

* fix test and specify the entity pad id in tokenization_(m)luke

* fix EntityPredictionHeadTransform
2021-12-07 00:25:28 -05:00
4cdb67caba Use cross_attention_hidden_size in Encoder-Decoder models (#14378)
* add cross_attention_hidden_size to text-2-text encoder-decoder models (PT/Flax)

* for TFEncoderDecoderModel

* add equivalence test for TFEncoderDecoderModel

* fix

* fix failed equivalence tests

* remove unused import

* add detailed comment

* Fix check_equivalence_tf_to_pt by using encoder/decoder

* cleaning

* Use cross_attention_hidden_size in speech-to-text

* clean fast init logging msg in encoder decoder models

* increase tol from 1e-5 to 1e-3 for tf test

* style

* style

* make sure projection layer can run

* remove type conversion + add check

* fix conflict (config.output_hidden_size)

* Remove TF -> PT in check_pt_tf_equivalence for TFEncoderDecoderModel

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-07 00:27:32 +01:00
381b05a3f5 Remove nonworking workflow for now 2021-12-06 17:25:28 -05:00
75ae287aec fix flax examples tests (#14646)
* make tensorboard optional

* update test_fetcher for flax examples

* make the tests slow
2021-12-07 00:34:27 +05:30
03fda7b743 Add a job to test the documentation build (#14645)
* Add a job to the documentation build

* Add caching

* Test cache
2021-12-06 13:55:59 -05:00
e513c16e82 Fix syntax for class references (#14644) 2021-12-06 13:31:27 -05:00
e9688875bf Auto processor fix (#14623)
* Add AutoProcessor class
Init and tests
Add doc
Fix init
Update src/transformers/models/auto/processing_auto.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Reverts to tokenizer or feature extractor when available
Adapt test

* Revert "Adapt test"

This reverts commit bbdde5fab02465f24b54b227390073082cb32093.

* Revert "Reverts to tokenizer or feature extractor when available"

This reverts commit 77659ff5d21b6cc0baf6f443017e35e056a525bb.

* Don't revert everything Lysandre!

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
2021-12-06 12:49:50 -05:00
cbe6026536 fix flax example tests (#14643) 2021-12-06 23:14:37 +05:30
df085d8ea8 doc: mismatch between pooler/d_output (#14641)
The model outputs a pooler_output whereas the doctype examples were using a pooled_output.
2021-12-06 11:51:53 -05:00
0f3f045ebd Add GPTJForQuestionAnswering (#14503)
* Add GPTJForQuestionAnswering

* Reformat for GPTJForQuestionAnswering

* Fix isort error

* make style for GPTJForQA

* Add _keys_to_ignore_on_load_missing

* Change the sequence of qa and classification

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-12-06 11:44:10 -05:00
1ccc033c56 Update the example of exporting Bart + BeamSearch to ONNX module to resolve comments. (#14310)
* Update code to resolve comments left in previous PR.

* Add README.md file for this example.

* Update examples/onnx/pytorch/translation/README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update examples/onnx/pytorch/translation/README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update examples/onnx/pytorch/translation/README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update README.md file to resolve comments.

* Add a section name.

* Update examples/onnx/pytorch/translation/README.md

Co-authored-by: Gary Miguel <garymm@garymm.org>

* Add more comments for _convert_past_list_to_tuple().

* Change the default file name to a consistent one.

* Fix a format issue.

* Update examples/onnx/pytorch/translation/README.md

Co-authored-by: Gary Miguel <garymm@garymm.org>

* Update examples/onnx/pytorch/translation/run_onnx_exporter.py

Co-authored-by: Gary Miguel <garymm@garymm.org>

* Update examples/onnx/pytorch/translation/README.md

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Change the folder to summarization and address some other coments.

* Update the torch version.

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Gary Miguel <garymm@garymm.org>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2021-12-06 14:01:51 +01:00
6cdc3a7844 [urls to hub] Replace outdated model tags with their now-canonical pipeline types (#14617)
* Replace outdated model tags with their now-canonical pipeline types

* spam the CI till it's green
2021-12-06 04:35:01 -05:00
c824d7ed48 add flax example tests in CI workflow (#14637) 2021-12-06 14:50:43 +05:30
bc8a9f415b fix typo (#14635) 2021-12-06 10:52:43 +05:30
c5bd732ac6 Add Flax example tests (#14599)
* add test for glue

* add tests for clm

* fix clm test

* add summrization tests

* more tests

* fix few tests

* add test for t5 mlm

* fix t5 mlm test

* fix tests for multi device

* cleanup

* ci job

* fix metric file name

* make t5 more robust
2021-12-06 10:48:58 +05:30
803a8cd18f updated readme with proper arguments (#14624) 2021-12-05 22:12:51 -05:00
3977b58437 fix a typo (#14626) 2021-12-05 11:31:23 +05:30
73ec4340ec Make DefaultDataCollator importable from root (#14588)
* Make DefaultDataCollator importable from root

* Add documentation for DefaultDataCollator and add return_tensors argument to all class docstrings

* make style

* Add DefaultDataCollator to data_collator.rst

* Add DefaultDataCollator to data_collator.rst
2021-12-03 15:15:09 -05:00
71b1bf7ea8 [trainer] add tf32-mode control (#14606)
* [trainer] add --tf32 support

* it's pt>=.17

* it's pt>=.17

* flip the default to True

* add experimental note

* simplify logic

* style

* switch to 3-state logic

* doc

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* re-style code

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-03 10:08:58 -08:00
aada989ad5 Fix doc builder (#14616)
* Fix doc builder

* Fix doc builder

* Fix doc builder
2021-12-03 12:09:25 -05:00
ec47baeba2 2022 is the year of multi-modality (#14610)
* 2022 is the year of multi-modality

* Small fix

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Apply suggestions from code review

* Apply to documentation index

* Apply suggestions from code review

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update README.md

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2021-12-03 11:35:44 -05:00
e62091d5a7 [CI] move env print to util, add pt, nccl versions (#14607)
* move env print to util, add pt, nccl versions

* style

* version

* align
2021-12-03 08:18:36 -05:00
66ea739168 Improve tokenizer tests (#13594)
* Use new method to acquire tokenizers

* Resolve TODOs.

* Style

* Fix

* Enable do_lower_case in test_tokenize_special_tokens

* Apply suggestion from code review

* Fix mask token handling

* Revert "Fix mask token handling"

This reverts commit daaa3f5291b1f71e5bc3604ca281c000000c4648.

* Fix FNet mask token tokenization

* Complete everything

* Apply suggestions from code review
2021-12-03 08:39:10 +01:00
Nik
6645eb61fa fix #14524 (IndexError when mask prob is too low) (#14525)
* fix #14524 (IndexError when mask prob is too low)

* fix formatting

* correct documentation, add option for setting min_num_masks

* change the semantic meaning of `mask_prob` in _compute_mask_indices

With this commit the meaing of `mask_prob` actually adhered to the probability for each
vector to be the start of a masked span of length.

* fix check_copies test

* fix documentation to semantic meaning of `upper bound of overall masking percentage`, revert changes to _compute_mask_indices

* fix typo
2021-12-02 17:05:31 +03:00
96cc02b51b change tf.math.divide with int(/) to remove dim_per_head from the TF graph (#14600)
Co-authored-by: yis <yis@graphcore.ai>
2021-12-02 13:13:42 +00:00
43f953cc2e Add CodeParrot 🦜 codebase (#14536)
* add readme skeleton

* update readme

* add initialization script

* add deduplication script

* add codeparrot training script

* add code generation evaluation

* add validation loss script

* add requirements

* update readme

* tweak readme

* make style

* add highlights to readme

* add CLIs to scripts

* add tokenizer training script

* add docstring to constant length dataset

* fix defaults in arguments

* update readme with cli

* move image to hub

* tweaks of readme

* fix cli commands

* add author

* explain env variables

* fix formatting

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Apply suggestions from code review

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* replace generic with gpt2 tokenizer

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2021-12-02 10:41:35 +01:00
e4c67d60ec Python 3.6 -> Python 3.7 for TF runs (#14598) 2021-12-02 04:09:17 -05:00
50d909be28 [Flax] Add FlaxBlenderbotSmall (#14576)
* [WIP] Add FlaxBlenderbotSmall

* Revert some unintentionally changed files

Revert some unintentionally files changed by improperly filled cookiecutter instructions.

* Fix repo consistency

* Fix Flax-PT equivalence

* Apply suggestions from code review

* Update index.mdx

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-12-02 14:21:48 +05:30
77d87e732e Adds a git pull instruction to the documentation builder (#14597)
* Adds a git pull instruction

* master -> main
2021-12-02 03:32:38 -05:00
275402bf2b Update doc img links (#14593)
* Update doc img links

* Rename toctree.yml -> _toctree.yml (#14594)

* Update doc img links

* Update performance.md img link
2021-12-02 09:01:35 +01:00
4f68de625c Rename toctree.yml -> _toctree.yml (#14594) 2021-12-02 08:58:39 +01:00
fbe278c76c [doc] bf16/tf32 guide (#14579)
* [doc] bf16/tf32 guide

* expand

* expand

* Update docs/source/performance.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-01 14:18:58 -08:00
934e2799da Fix mask token handling (#14364)
* Fix mask token handling

* Revert "Fix mask token handling"

This reverts commit daaa3f5291b1f71e5bc3604ca281c000000c4648.

* Fix FNet mask token tokenization
2021-12-01 20:16:52 +01:00
4df7d05a87 Doc new front (#14590)
* Convert PretrainedConfig doc to Markdown

* Use syntax

* Add necessary doc files (#14496)

* Doc fixes (#14499)

* Fixes for the new front

* Convert DETR file for table

* Title is needed

* Simplify a bit

* Even simpler

* Remove imports

* Fix typo in toctree (#14516)

* Fix checkpoints badge

* Update versions.yml format (#14517)

* Doc new front github actions (#14512)

* Doc new front github actions

* Fix docstring

* Fix feature extraction utils import (#14515)

* Address Julien's comments

* Push to doc-builder

* Ready for merge

* Remove old build and deploy

* Doc misc fixes (#14583)

* Rm versions.yml from doc

* Fix converting.rst

* Rm pretrained_models from toctree

* Fix index links (#14567)

* Fix links in README

* Localized READMEs

* Fix copy script

* Fix find doc script

* Update README_ko.md

Co-authored-by: Julien Chaumond <julien@huggingface.co>

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Adapt build command to new CLI tools (#14578)

* Fix typo

* Fix doc interlinks (#14589)

* Convert PretrainedConfig doc to Markdown

* Use syntax

* Rm pattern <[a-z]+(.html).*>

* Rm huggingface.co/transformers/master

* Rm .html

* Rm .html from index.mdx

* Rm .html from model_summary.rst

* Update index.mdx rm html

* Update remove .html

* Fix inner doc links

* Fix interlink in preprocssing.rst

* Update pr_checks

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Convert PretrainedConfig doc to Markdown

* Use syntax

* Add necessary doc files (#14496)

* Doc fixes (#14499)

* Fixes for the new front

* Convert DETR file for table

* Title is needed

* Simplify a bit

* Even simpler

* Remove imports

* Fix checkpoints badge

* Fix typo in toctree (#14516)

* Update versions.yml format (#14517)

* Doc new front github actions (#14512)

* Doc new front github actions

* Fix docstring

* Fix feature extraction utils import (#14515)

* Address Julien's comments

* Push to doc-builder

* Ready for merge

* Remove old build and deploy

* Doc misc fixes (#14583)

* Rm versions.yml from doc

* Fix converting.rst

* Rm pretrained_models from toctree

* Fix index links (#14567)

* Fix links in README

* Localized READMEs

* Fix copy script

* Fix find doc script

* Update README_ko.md

Co-authored-by: Julien Chaumond <julien@huggingface.co>

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Adapt build command to new CLI tools (#14578)

* Fix typo

* Fix doc interlinks (#14589)

* Convert PretrainedConfig doc to Markdown

* Use syntax

* Rm pattern <[a-z]+(.html).*>

* Rm huggingface.co/transformers/master

* Rm .html

* Rm .html from index.mdx

* Rm .html from model_summary.rst

* Update index.mdx rm html

* Update remove .html

* Fix inner doc links

* Fix interlink in preprocssing.rst

* Update pr_checks

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Styling

Co-authored-by: Mishig Davaadorj <mishig.davaadorj@coloradocollege.edu>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Julien Chaumond <julien@huggingface.co>
2021-12-01 14:13:02 -05:00
14cc50d081 fix autocast for older pytorch 2021-12-01 09:32:52 -08:00
4c0dd199c8 FlaxGPTJ (#14396)
* add flax gptj

* no bias in attention dense

* no wpe

* fix rotary embeddings

* fix rotary embeds

* fix rotray embeds

* quality

* doc and quality

* fix equivalence tests
2021-12-01 10:57:39 +05:30
70996a5420 WIP: Support for Training with BF16 (#13207)
* started bf16 integration

* minor changes

* code now runs

* style

* lay foundation for bf16 testing

* lay foundation for bf16 testing

* start the tests

* better bf16 check

* style

* 2 separate checkers - one for bf16 support, another for bf16+autocast

* Update src/transformers/training_args.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* a couple of comment resolutions

* more comment resolutions

* resolved a small bug

* just some print statemtns

* added todo marking

* added a todo

* adjust for API change s/fast_dtype/dtype/

* fix style

* merge 2 bf16 util functions

* bf16 now does scaling too

* Add support for bfloat16

* Revert T5 layernorm to float32

This is based on the comment at https://github.com/huggingface/transformers/pull/14448/files#r752660929 and the PyTorch PR https://github.com/pytorch/pytorch/pull/66920 .

* Add comment about conversion to float32 before returning the numpy data

* Add comment about AMP-bfloat16 incompatibility

* Fix formatting

* typo

* reformer / bf16

* cleanup

* require at least pt-1.10

* fix

* will deal with deepspeed separately

* cleanup

* revert

* cleanup

* fp16_full_eval and bf16_full_eval are separate modes

* proper deprecation

* cleanup

* test and fixes

* spelling

* cleanup

* add a note that this API is experimental

Co-authored-by: jamie <jamie@cortx.com>
Co-authored-by: Stas Bekman <stas@stason.org>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: suriya <suriya@cortx.com>
Co-authored-by: Manuel R. Ciosici <manuelrciosici@gmail.com>
2021-11-30 18:00:47 -08:00
fc1d97f29d VisionTextDualEncoder (#13511)
* init vision_text_dual_encoder

* fix merge

* remove extra heads

* fix tests

* remove VISION_TEXT_DUAL_ENCODER_PRETRAINED_CONFIG_ARCHIVE_MAP

* remove archive map

* fix imports

* fix more imports

* fix init

* delete tokenizers

* fix imports

* clean

* support clip's vision model

* handle None config

* begin tests

* more test and few fixes

* warn about newly init weights

* more tests

* add loss to model

* remove extra classes from doc

* add processor

* doc and small fixes

* add start docstr

* update flax model

* flax tests

* more flax tests

* doc

* quality

* doc and quality

* fix doc

* doc

* remove comments

* update warning

* quality

* fix docs

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* replace asserts, fix imports

* update imports

* fix import

* address some review comments

* fix check

* reduce tolerance

* fix test

* add flax integration test

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address Sylvain's comments

* fix style

* add pt_flax_equivalence test in PT tests

* add pt integration test

* update test

* use pre-trained checkpoint in examples

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-30 22:21:48 +05:30
6ed9882ddb use functional interface for softmax in attention (#14198)
* use functional interface instead of instantiating module and immediately calling it

* fix torch.nn.functional to nn.functional. Thank you Stas!
2021-11-30 11:47:33 -05:00
4176bc161c Add documentation for multi-label classification (#14168)
* "update example docstring multilabel example

* update example docstring multilabel example
2021-11-30 11:34:41 -05:00
faacd74729 [Flax] Add FlaxBlenderbot (#13633)
* Init Flax implementation for Blenderbot

* Add a majority of stuff except for tests

* make style quality

* Add tests and fix some bugs

* Add tests

* Clean source code and fix some bugs

* Fix copies and docs

* Fix jax device condition for tests

* Fix layer norm in the encoder

* Fix a few typos in the test file

* make fix-copies

* make fix-copies

* fix layer norm

* Fix Flax params dtype (#13090)

* Fix PR reference (#13098)

* make fix-copies

* Update tests/test_modeling_flax_blenderbot.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-11-30 17:36:54 +05:30
254fef67cf Fix backend regex (#14566) 2021-11-30 05:32:20 -05:00
c468a87a69 Tapas tf (#13393)
* TF Tapas first commit

* updated docs

* updated logger message

* updated pytorch weight conversion
script to support scalar array

* added use_cache to tapas model config to
work properly with tf input_processing

* 1. rm embeddings_sum
2. added # Copied
3. + TFTapasMLMHead
4. and lot other small fixes

* updated docs

* + test for tapas

* updated testing_utils to check
is_tensorflow_probability_available

* converted model logits post processing using
numpy to work with both PT and TF models

* + TFAutoModelForTableQuestionAnswering

* added TF support

* added test for
TFAutoModelForTableQuestionAnswering

* added test for
TFAutoModelForTableQuestionAnswering pipeline

* updated auto model docs

* fixed typo in import

* added tensorflow_probability to run tests

* updated MLM head

* updated tapas.rst with TF  model docs

* fixed optimizer import in docs

* updated convert to np
data from pt model is not
`transformers.tokenization_utils_base.BatchEncoding`
after pipeline upgrade

* updated pipeline:
1. with torch.no_gard removed, pipeline forward handles
2. token_type_ids converted to numpy

* updated docs.

* removed `use_cache` from config

* removed floats_tensor

* updated code comment

* updated Copyright Year and
logits_aggregation Optional

* updated docs and comments

* updated docstring

* fixed model weight loading

* make fixup

* fix indentation

* added tf slow pipeline test

* pip upgrade

* upgrade python to 3.7

* removed from_pt from tests

* revert commit f18cfa9
2021-11-30 11:07:55 +01:00
6fc38adff2 Add model checkpointing to push_to_hub and PushToHubCallback (#14492)
* Add checkpointing to push_to_hub and PushToHubCallback

* Add checkpoint loading

* Add missing default value

* Correct method name

* make style

* Moving everything to the right location

* make style

* Revert changes to file_utils.py

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Adding docstrings and comments to clarify code

* make style

* Fix organization positional arg

* Fix load_repo_checkpoint to no longer accidentally create empty repos

* make style

* Remove unnecessary 'organization' argument in load_repo_checkpoint

* Avoid private `_create_or_get_repo` method

* make style

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-29 17:36:19 +00:00
8332327dca Fix sentinel token IDs in data collator for Flax T5 pretraining script (#14477) 2021-11-29 17:30:17 +01:00
2bd950ca47 [Flax] token-classification model steps enumerate start from 1 (#14547)
* step start from 1

* Updated cur_step calcualtion
2021-11-29 21:55:59 +05:30
cea17acd8c [Generate] Fix generate with inputs_embeds on GPU (#14564) 2021-11-29 16:10:19 +01:00
25156eb296 Rename ImageGPT (#14526)
* Rename

* Add MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING
2021-11-29 10:19:11 +01:00
4ee0b755bd LayoutLMv2FeatureExtractor now supports non-English languages when applying Tesseract OCR. (#14514)
* Added the lang argument to apply_tesseract in feature_extraction_layoutlmv2.py, which is used in pytesseract.image_to_data.

* Added ocr_lang argument to LayoutLMv2FeatureExtractor.__init__, which is used when calling apply_tesseract

* Updated the documentation of the LayoutLMv2FeatureExtractor

* Specified in the documentation of the LayoutLMv2FeatureExtractor that the ocr_lang argument should be a language code.

* Update src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Split comment into two lines to adhere to the max line size limit.

* Update src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2021-11-29 04:15:08 -05:00
ebbe8cc3fe Tokenizers docs: Specify which class contains __call__ method (#14379)
* Update tokenizer.rst

* Apply `make fixup`
2021-11-28 18:55:38 -05:00
69511cdcae unfreeze initial cache in gpt models (#14535) 2021-11-26 18:21:47 +05:30
2318bf77eb Fixes (#14534) 2021-11-26 04:35:08 -05:00
c15f4f203f Quicktour updates (#14533) 2021-11-26 04:09:31 -05:00
1bbd6fcdeb added save_directories for _psave_pretrained_pt and _tf, changed model to tf_model and pt_model, enable the notebook to run cleanly from top to bottom without error (#14529)
* added save_directories for _psave_pretrained_pt and _tf, changed model to tf_model and pt_model, enable the notebook to run cleanly from top to bottom without error

* Update quicktour.rst

* added >>>

* dependencies

* added space
2021-11-26 03:46:07 -05:00
04683c0659 Fix a slow test. (#14527) 2021-11-25 12:59:33 -05:00
d1fd64e7aa clear ~/.cache/torch_extensions between builds (#14520) 2021-11-25 03:15:35 -05:00
3772af49ce [Tests] Improve vision tests (#14458)
* Improve tests

* Install vision for tf tests
2021-11-24 15:22:20 +01:00
f2e90bcb8f Fix feature extraction utils import (#14515) 2021-11-24 09:03:21 -05:00
6c4d688ffa add cache_dir for tokenizer verification loading (#14508)
When loading a pretrained tokenizer, a verification is done to ensure
that the actual tokenizer class matches the class it was called from.
If the tokenizer is absent, its config file is loaded from the repo.

However, the cache_dir for downloading is not provided, which leads to
ignoring of the user-specified cache_dir, storing files in several
places and and may result in incorrect warnings when the default
cache_dir is unreachsble.

This commit fixes that.
2021-11-24 06:22:03 -05:00
956a483173 [deepspeed] zero inference (#14253)
* [deepspeed] zero inference

* only z3 makes sense for inference

* fix and style

* docs

* rework

* fix test

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* responding to suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-23 14:09:15 -08:00
69e16abf98 Switch from using sum for flattening lists of lists in group_texts (#14472)
* remove sum for list flattening

* change to chain(*)

* make chain object a list

* delete empty lines

per sgugger's suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Nicholas Broad <nicholas@nmbroad.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-22 16:17:26 -05:00
0b7d053c13 fixes some key names for in LayoutLMv2 / LayoutXLM tokenizers (#14493)
in case of left padding_side there was a copy/paste error
assigning the bbox data to the labels
2021-11-22 16:00:43 -05:00
204d251310 Auto processor (#14465)
* Add AutoProcessor class

* Init and tests

* Add doc

* Fix init

* Update src/transformers/models/auto/processing_auto.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Reverts to tokenizer or feature extractor when available

* Adapt test

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-11-22 12:17:38 -05:00
11f65d4158 [test] add test for --config_overrides (#14466)
* add test for --config_overrides

* remove unneeded parts of the test
2021-11-22 11:33:43 -05:00
e0e2da1194 Improve a add-new-pipeline docs a bit (#14485) 2021-11-22 10:35:49 -05:00
a4553e6c64 Moving pipeline tests from Narsil to hf-internal-testing. (#14463)
* Moving everything to `hf-internal-testing`.

* Fixing test values.

* Moving to other repo.

* Last touch?
2021-11-22 04:40:45 -05:00
1a92bc5788 Fix dummy objects for quantization (#14478)
* Fix dummy objects for quantization

* Add more models
2021-11-21 17:39:20 -05:00
c9d2cf855a add Tuple as possible type hint for EvalPredictions label_ids (#14473)
* Update trainer_utils.py

* add Tuple type hints to all label_ids outputs

affects EvalLoopOutput and PredicctionOutput
2021-11-21 10:31:09 -05:00
a59e7c1ed4 Add QDQBert model and quantization examples of SQUAD task (#14066)
* clean up branch for add-qdqbert-model

* README update for QAT example; update docstrings in modeling_qdqbert.py

* Update qdqbert.rst

* Update README.md

* Update README.md

* calibration data using traning set; QAT example runs in fp32

* re-use BERTtokenizer for qdqbert

* Update docs/source/model_doc/qdqbert.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/model_doc/qdqbert.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/model_doc/qdqbert.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove qdqbert tokenizer

* Update qdqbert.rst

* update evaluate-hf-trt-qa.py

* update configuration_qdqbert.py

* update modeling_qdqbert.py: add copied statement; replace assert with ValueError

* update copied from statement

* add is_quantization_available; run make fix-copies

* unittest add require_quantization

* add backend dependency to qdqbert model

* update README; update evaluate script; make style

* lint

* docs qdqbert update

* circleci build_doc add pytorch-quantization for qdqbert

* update README

* update example readme with instructions to upgrade TensorRT to 8.2

* Update src/transformers/models/qdqbert/configuration_qdqbert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/qdqbert/configuration_qdqbert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/qdqbert/configuration_qdqbert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/qdqbert/configuration_qdqbert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* change quantization to pytorch_quantization for backend requirement

* feed_forward_chunking not supported in QDQBert

* make style

* update model docstrings and comments in testing scripts

* rename example to quantization-qdqbert; rename example scripts from qat to quant

* Update src/transformers/models/qdqbert/modeling_qdqbert.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* rm experimental functions in quant_trainer

* qa cleanup

* make fix-copies for docs index.rst

* fix doctree; use post_init() for qdqbert

* fix early device assignment for qdqbert

* fix CI:Model templates runner

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-11-19 13:33:39 -05:00
81fe8afaac Adding support for hidden_states and attentions in unbatching (#14420)
support.
2021-11-19 15:37:52 +01:00
f25a9332e8 [Generation] Allow inputs_embeds as an input (#14443)
* up

* finalize

* finalize

* finish

* Update src/transformers/generation_utils.py

* apply feedback
2021-11-19 15:35:06 +01:00
0490b98877 [ImageGPT] Small fixes (#14460)
* Add integration test

* Fix typo
2021-11-19 15:15:02 +01:00
331c3d2aa0 Add GitPython to quality tools (#14459)
* Update setup.py

* Update setup.py

* Update setup.py

* Remove GitPython install
2021-11-19 08:43:48 -05:00
efea0f868b [Speech Recognition] More examples
Add more XLS-R training runs to the official examples
2021-11-18 23:42:02 +01:00
72a6bf33c0 [Bert, et al] fix early device assignment (#14447)
* fix early device assignment

* more models
2021-11-18 11:47:49 -08:00
83ef8bcac2 Fix finite IterableDataset test on multiple GPUs (#14445) 2021-11-18 10:25:06 -05:00
da36c557f7 Add ImageGPT (#14240)
* First draft

* More improvements

* Improve conversion script

* Fix init weights for layer norm

* Fix correct model for conversion script

* Don't tie input and output embeddings

* Add print statements for debugging

* Add print statements for debugging

* Fix vocab size of model

* Improve documentation, remove fast tokenizer

* Add ImageGPTForImageClassification, improve docs

* Fix docs issue

* Set verbosity level back to info

* Improve tests

* Fix tests and add figure

* Delete tokenizer file

* Remove ImageGPTTokenizer from init files

* Remove ImageGPTLayer from init files

* Remove ImageGPT tokenizer from docs

* First draft of ImageGPTFeatureExtractor

* Fix typo

* Fix bug

* More improvements

* Apply suggestions from code review, add tests for feature extractor

* Fix layernorm

* Update save_pretrained method

* Fix issue

* Make all tests of ImageGPTFeatureExtractor pass

* Update code examples

* Rename model inputs to pixel_values

* Improve code examples

* Update init_weights to post_init

* Fix post_init
2021-11-18 16:24:34 +01:00
d83b0e0c07 Add a post init method to all models (#14431)
* Add a post init method to all models

* Fix tests

* Fix last tests

* Fix templates

* Add comment

* Forgot to save
2021-11-18 08:38:09 -05:00
08816de16a Fix code example (#14441) 2021-11-18 11:26:54 +01:00
01f8e639d3 Recover Deleted XNLI Instructions (#14437) 2021-11-17 20:16:47 -05:00
N
1991da07f7 [WIP] Ensure TF model configs can be converted to proper JSON (#14415)
* test: make sure model configs are jsonifiable

* fix: return python dict instead of config object

* fix: accept pretrained config and use correct class

* Re-enabling slow tests and applying them to core models only

* Re-enabling slow tests and applying them to core models only

* Add new test file to fetcher

* Remove tooslow tests from test_modeling_tf_common.py

* make style

* Style fixes

* Style fixes

* Style fixes

* Style fixes

* Adding core tests to GPT2 and BART

* Removing unused imports

Co-authored-by: niklas.fruehauf <niklas.fruehauf@sovanta.com>
Co-authored-by: matt <rocketknight1@gmail.com>
2021-11-17 20:24:39 +00:00
754202de4f [Bart] Fix docs (#14434) 2021-11-17 19:02:33 +01:00
7544efc92e [Gradient checkpoining] Update Wav2Vec scripts (#14036)
Co-authored-by: Stas Bekman <stas@stason.org>
2021-11-17 18:37:21 +01:00
c6c075544d Docs for version v4.12.5 2021-11-17 11:39:12 -05:00
a2864a50e7 Improve semantic segmentation models (#14355)
* Improve tests

* Improve documentation

* Add ignore_index attribute

* Add semantic_ignore_index to BEiT model

* Add segmentation maps argument to BEiTFeatureExtractor

* Simplify SegformerFeatureExtractor and corresponding tests

* Improve tests

* Apply suggestions from code review

* Minor docs improvements

* Streamline segmentation map tests of SegFormer and BEiT

* Improve reduce_labels docs and test

* Fix code quality

* Fix code quality again
2021-11-17 15:29:58 +01:00
700a748fe6 [Wav2Vec2] Add New Wav2Vec2 Translation (#14392)
* add new wav2vec2 translation

* correct

* up

* add tests

* correct end copy

* correct more

* up

* correct unispeech sat

* finish

* finalize

* finish

* up
2021-11-17 14:38:56 +01:00
b567510cff Debug doc (#14424)
* Create branch for tests

* Pin first upgrade

* Really pin

* Polish fix
2021-11-16 18:58:07 -05:00
888fb21159 Docs for v4.12.4 2021-11-16 17:40:58 -05:00
a33168aa78 Avoid looping when data exhausted (#14413)
* stop training when a finite IterableDataset is exhausted

when using an iterable dataset num_epochs is set to
sys.maxsize to make sure all data is consumed
likewise we want to set max_steps high enough
but still stop when all data is consumed

(cherry picked from commit 6f0e1d6363153da9051e93acffe1cbab3a3f3b12)

* fix typo flase -> false

* add test for stopping training on exhausted finite iterable dataset

* remove redundant gradient_accumulation_steps

* run make style

reformat training_args docstring
2021-11-16 16:50:04 -05:00
3e8d17e66d Add forward method to dummy models (#14419)
* Add forward method to dummy models

* Fix quality
2021-11-16 09:24:40 -05:00
040fd47162 Fix gradient_checkpointing backward compatibility (#14408)
* Fix gradient_checkpointing backward compatibility

* Remove needless line

* make sure mask prob is big enough and length small enough

* Fix tests

Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
2021-11-16 08:58:42 -05:00
1cc453d33c Allow per-version configurations (#14344)
* Allow per-version configurations

* Update tests/test_configuration_common.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_configuration_common.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-15 16:38:02 -05:00
76d0d41e51 [Wav2Vec2] Make sure that gradient checkpointing is only run if needed (#14407)
* [Wav2Vec2] Make sure that gradient checkpointing is only run if needed

* make fix-copies
2021-11-15 21:03:10 +01:00
9fd937ead1 Replace BertLayerNorm with LayerNorm (#14385)
Running Movement pruning experiments with the newest HuggingFace would crash due to non-existing BertLayerNorm.
2021-11-15 13:25:10 -05:00
a67d47b40c Fix weight loading issue (#14016)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-11-15 17:48:40 +01:00
74e6111ba7 Fix test and docs (#14399) 2021-11-15 17:35:33 +01:00
4ce74edf51 [Speech2Text2] Enable tokenizers (#14390)
* [Speech2Text2] Enable tokenizers

* minor fix

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-15 16:34:11 +01:00
267867e851 Quick fix to TF summarization example (#14401) 2021-11-15 13:45:51 +00:00
29dfb2dbb1 [doc] performance and parallelism updates (#14391)
* [doc] performance and parallelism doc update

* improve

* improve
2021-11-14 17:19:15 -08:00
790cdc2e55 Raise exceptions instead of using asserts in modeling_openai #12789 (#14386)
* Raise exceptions instead of using asserts for control flow in modeling_openai #12789

* reformatted file
2021-11-13 21:34:34 -05:00
2e60276b38 [M2M100Tokenizer] fix _build_translation_inputs (#14382)
* add return_tensors paramter

* fix test

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-13 20:57:12 +05:30
3165930402 support wmt21 tokenizer in m2m100 tokenizer (#14376) 2021-11-13 14:21:58 +05:30
280a811ecb Use AlbertConverter for FNet instead of using FNet's own converter (#14365)
* Add normalizer to FNetConverter

* Style

* Directly use AlbertConverter
2021-11-12 19:46:40 +01:00
55f49c5f4b [Wav2Vec2 Example] Improve fine-tuning script (#14373)
* improve some stuff

* finish

* correct last
2021-11-12 16:35:57 +01:00
21546e59a6 fix docs (#14377) 2021-11-12 15:56:41 +05:30
ed5d15518b Adding support for raw python generator in addition to Dataset for pipelines (#14352)
* Adding support for raw python `generator` in addition to `Dataset`

The main goal is to ease the create of streaming data to the pipe.

`Dataset` is more involved and pytorch specific.

This PR, provides a way to use a python iterator too.
This enabled #14250 but can be proposed as a standalone PR.

```python
from transformers import pipeline

def read_data(filename):
    with open(filename, 'r') as f:
        for line in f:
            yield f

pipe = pipeline("text-classification")
for classified in pipe(read_data("large_file.txt")):
    print("Success ! ", classified)
```

The main caveat of this, is the interaction with `DataLoader` with
`num_workers>1`. When you have multiple workers, each receive a copy
of the generator (like `IterableDataset`). That means the naive Iterator
will fail since all workers iterate on all items of the generator.

There are ways to do clever "skipping", but it could be bad still
because all workers still do have to pass through all items of the
generator (they just ignore items they don't handle), depending on
the case it might be bad.

Using `num_workers=1` is the simplest fix and if the cost of loading
your data is small enough should be good enough. In the above example
trying to do smart tricks to skip some lines is unlikely to be a net
positive for instance.

If there are better ways to do "jumps" on some data, then using
`Dataset` is more advised (since then differents workers can just jump
themselves).

* Adding iterator support for `tf` too.
2021-11-12 09:20:40 +01:00
77262ef750 fix --gradient_checkpointing (#13964) 2021-11-11 17:50:21 +01:00
3d607df8f4 fix loading flax bf16 weights in pt (#14369)
* fix loading flax bf16 weights in pt

* fix clip test

* fix t5 test

* add logging statement

* Update src/transformers/modeling_flax_pytorch_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* switch back to native any

* fix check for bf16 weights

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-11-11 21:20:49 +05:30
7f20bf0d43 Fixing requirements for TF LM models and use correct model mappings (#14372)
* Fixing requirements for TF LM models and use correct model mappings

* make style
2021-11-11 15:34:00 +00:00
4c35c8d89c Experimenting with adding proper get_config() and from_config() methods (#14361)
* Experimenting with adding proper get_config() and from_config() methods

* Adding a test for get/from config

* Fix test for get/from config
2021-11-11 14:21:50 +00:00
b1dbdf22ef pass params to encode (#14370) 2021-11-11 17:16:24 +05:30
e92190c0f8 Fix Flax params dtype (#13098)
* fix inits

* fix embed dtype

* fix embed dtype

* add test to check default dtype

* quality

* add type conversion methods for flax models

* more robust casting

* cast sinusoidal positions

* update pegasus

* update albert

* update test

* make sure dtype is passed to every module

* style

* fix electra dense

* fix t5

* quality

* add more tests

* better name

* use the dtype for lm head computation

* fix albert

* style

* fix albert embed dtype

* more tests

* fix vision enc-dec

* cleanup

* fix embed dtype pegasus

* fix default param test

* doc

* update template

* fix final_logits_bias dtype

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix doc

* fix doc

* add detailed docstring for dtype parameter

* remove un-necessary import

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-11-11 14:45:20 +05:30
1c76a51615 solve the port conflict (#14362) 2021-11-10 19:11:45 -08:00
9e37c5cdf8 Fix list index out of range when padding nested empty lists (#13876)
* Fix index out of range when padding

* Apply suggestions from code review

* Style
2021-11-10 21:34:52 +01:00
bec02ff209 enhance rewrite state_dict missing _metadata (#14348) 2021-11-10 07:25:41 -05:00
2b0d9389f8 Add notebook INC quantization for text classification tasks (#14293)
* Add notebook applying Intel Neural Compressor quantization for text classification tasks

* Add Optimum notebooks section
2021-11-10 12:49:43 +01:00
ea163d0948 Fix fast tokenization problems (#13930)
* Fix albert mask token tokenization.

* Ensure special tokans sanitized.

* Style

* Fix

* Apply suggestions from code review
2021-11-10 11:16:45 +01:00
5c153079e2 Adding some quality of life for pipeline function. (#14322)
* Adding some quality of life for `pipeline` function.

* Update docs/source/main_classes/pipelines.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Improve the tests.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-10 10:18:35 +01:00
321eb56222 BatchFeature: Convert List[np.ndarray] to np.ndarray before converting to pytorch tensors (#14306)
* update

* style fix

* retrigger checks

* check first element

* fix syntax error

* Update src/transformers/feature_extraction_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove import

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-09 22:23:08 -05:00
46d0cdae40 Support for TF >= 2.7 (#14345) 2021-11-09 18:49:29 -05:00
e81d8d7fa9 [Bert2Bert] allow bert2bert + relative embeddings (#14324)
* [Bert2Bert] allow bert2bert + relative embeddings

* up

* Update README_ko.md

* up

* up
2021-11-09 14:26:58 -05:00
e4d8f517b9 Rewrite guides for fine-tuning with Datasets (#13923)
* rewrite guides for fine-tuning with datasets

* simple qa code example

* use anonymous rST links

* style
2021-11-09 14:12:50 -05:00
85a4bda4f4 bump flax version (#14343) 2021-11-09 22:15:22 +05:30
babd0b9a5e remove test_model_various_embeddings (#14341)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-11-09 11:30:17 -05:00
4f24058c58 Update Seq2Seq QA example script to use SQuAD metric. (#14335)
* Update postporcessing accordingly to use SQuAD metric.

* Update assets accordingly based on SQuAD metrics.

* Fix function naming error.
2021-11-09 08:04:23 -05:00
be4a6c64dc Add TFViTModel (#13778)
* Start the work for TFViTModel

* Convert to TF code - need to check in the follow up commits

* Clean up model code

* Expose TFViTModel

* make style

* make quality

* Add test

* make style & quality

* Fix some imports

* fix wrong usage - *kwargs => ** kwargs

* Fix Conv2D weight loading (PT->TF) issue

* Add tests for images with different sizes + fix model

* Fix some common tests for TFViTModel

* Use inputs instead of input_ids in test_compile_tf_model

* Add a comment about transpose and Conv2D in convert_tf_weight_name_to_pt_weight_name

* Avoid transpose in TFViT call

* Fix Conv2D issue in load_tf2_weights_in_pytorch_model

* Use tf.keras.layers.Conv2D instead of tf.nn.conv2d

* Using simpler heuristic to detect Conv2D layer

* Change convert_tf_weight_name_to_pt_weight_name to return TransposeType

* Check tf_weight_shape is not None before using it

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix missing comma

* fix input dtype

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-09 07:54:37 -05:00
6326aa4bf0 Correct order of overflowing tokens for LayoutLmV2 tokenizer (#13495)
* correct order of overflowing tokens for LayoutLmV2 tokenizer

* test to check order of overflowing_tokens for a seq of input_ids

* fix up quality

* added suggested changes

* check that tests the bbox sequence

* pair_input test added

* pass quality test

* check bbox sequence added

* unittest method

* comments added

* add overflowing bbox test

* improved "seq_1"

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* improve code quality

Co-authored-by: SaulLu <lucilesaul.com@gmail.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2021-11-09 07:49:53 -05:00
95b3ec3bc9 Add FlaxVisionEncoderDecoderModel (#13359)
* Start the work on FlaxVisionEncoderDecoderModel

* Add FlaxVisionEncoderDecoderModel

* Add VisionEncoderDecoderConfig

* Make FlaxVisionEncoderDecoderModel visible to transformers

* Add test

* Fix wrong getattr usage

* Fix tests

* Add FlaxAutoModelForVision2Seq

* Expose FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING

* clean-up

* add integration test

* update expected logits

* update expected scores

* Add ViT2GPT2ModelIntegrationTest + some cleaning

* Add projection layer + PT/Flax equivalence tests

* Fix import

* minor changes

* make test slow again

* Apply suggestions

* Add modeling_flax_vision_encoder_decoder to _ignore_modules in get_model_modules()

* fix copies

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* split long strings in multiple lines

* decoder_input_ids can't be None

* Add back test_configuration_tie

* Remove attention_mask parameter

* fix test - encoder_last_hidden_state should be encoder_outputs.last_hidden_state instead of the projected vector

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Remove more encoder_attention_mask

* remove encoder_attention_mask when calling self.decode (in FlaxVisionEncoderDecoderModule)

* Fix style + pass 1s instead of None as encoder_attention_mask

* fix init_weights

* pass None for encoder_attention_mask

* pass 1s instead of None as encoder_attention_mask

* Fix doc style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-11-09 15:14:28 +05:30
a503012275 Small change to Wav2Vec2 model to support Tensor-Parallelism with DeepSpeed (#14298)
* minor modification to the wav2vec2 modeling file to support tensor-parallelism with DeepSpeed on this HuggingFace model

* refine the comments

* synch changes

* fix comments

* refine comments

* fix format
2021-11-08 21:00:05 -05:00
d0e96c6de6 [deepspeed] Enable multiple test runs on single box, defer to DS_TEST_PORT if set (#14331)
* defer to DS_TEST_PORT if set

* style

Co-authored-by: Stas Bekman <stas@stason.org>
2021-11-08 12:40:29 -08:00
dfb00bf644 Expand dynamic supported objects to configs and tokenizers (#14296)
* Dynamic configs

* Add config test

* Better tests

* Add tokenizer and test

* Add to from_config

* With save
2021-11-08 15:28:25 -05:00
de635af3f1 Changed relative imports to absolute to allow convert_graph_to_onnx.py to run as a script. (#14325)
* Changed relative imports to absolute to allow convert_graph_to_onnx.py to be run as a script

* isorted code
2021-11-08 10:56:44 -05:00
a3ded170e2 Fixing mutable default argument in pipeline. (#14316)
* Fixing mutable default argument.

* XX.

* Revert "XX."

This reverts commit 61d4bb333f6d39a7fbe31d161b8bd14787ceec2e.
2021-11-08 16:22:28 +01:00
9b78b070ef Fixing tests on master. (#14317)
* Fixing tests on master.

* Better fix.

* Lxmert doesn't have feature extractor but is bimodal.
2021-11-08 08:28:26 -05:00
df1f94eb4a [TFWav2Vec2Model] Fix input shapes in TFWav2Vec2WeightNormConv1D (#14319)
* Add paddings to input shapes

* Add padding comment
2021-11-08 15:58:28 +03:00
e30078b544 [Tests] Update audio classification tests to support torch 1.10 (#14318) 2021-11-08 14:15:56 +03:00
b48faae364 [Marian Conversion] Fix eos_token_id conversion in conversion script (#14320) 2021-11-08 11:42:34 +01:00
c016dbdbda Fix execution PATH for PPLM Example (#14287) 2021-11-06 10:33:47 -04:00
34307bb358 Fix tests (#14289) 2021-11-06 10:08:58 -04:00
24b30d4d2f Handle long answer needs to be updated. (#14279)
`start_` and `end_` tensors now contain a batch_size at this point.
2021-11-06 10:04:30 -04:00
843c326ee1 Update dpr.rst (#14300) 2021-11-06 09:41:02 -04:00
08a5f57567 Add new LFS prune API (#14294) 2021-11-05 18:58:51 -04:00
4be78c22c9 [Hubert Docs] Make sure example uses a fine-tuned model (#14291) 2021-11-05 14:09:57 +01:00
a14d62b0b1 Pin TF until tests are fixed (#14283)
* Pin TF until tests are fixed

* Also pin TF CPU
2021-11-04 21:15:42 -04:00
b90a48f654 Removing Keras version pinning (#14280)
* Removing Keras version pinning

* make fixup
2021-11-04 17:58:28 +00:00
fd8136fa75 improve rewrite state_dict missing _metadata (#14276) 2021-11-04 10:13:23 -04:00
d29baf69bb Fixing mishandling of ignore_labels. (#14274)
Fixes #14272
2021-11-04 09:47:52 -04:00
68427c9beb Fixing slow pipeline tests (#14260)
* Fiixng slow pipeline tests

* Remove the image-segmentaiton override.

* Fixing clamping only in training.

* Wav2vec2.

* Remove last mention of `no_grad`.

* Fixing copies.

* Rename.
2021-11-04 09:49:55 +01:00
1a674ce679 Add more instructions to the release guide (#14263)
* Add more instructions to the release guide

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Address review comment

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-11-03 17:45:41 -04:00
f0d6e952c0 Quality explain (#14264)
* Start PR doc

* Cleanup the quality checks and document them

* Add reference in the contributing guide

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Rename file as per review suggestion

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2021-11-03 17:43:19 -04:00
a1c15ea855 Pin Keras cause they messed their release (#14262)
* Pin Keras cause they messed their release

* Put != instead of <

* Try this way

* Back to the beginning but more agressive
2021-11-03 15:03:09 -04:00
1149243184 Fixing typo in error message. (#14226) 2021-11-03 19:28:57 +01:00
2c8957feea Fix of issue #13327: Wrong weight initialization for TF t5 model (#14241)
* Fix of issue #13327: Wrong weight initialization for TF t5 model

* run black formatter

* fix typo

* remove my name tag from comments

Co-authored-by: Shirron <dan.shirron@intel.com>
2021-11-03 16:20:48 +00:00
dec759e7e8 Adding support for truncation parameter on feature-extraction pipeline. (#14193)
* Adding support for `truncation` parameter on `feature-extraction`
pipeline.

Fixes #14183

* Fixing tests on ibert, longformer, and roberta.

* Rebase fix.
2021-11-03 15:48:00 +01:00
27b1516d32 minimal fixes to run DataCollatorForWholeWordMask with return_tensors="np" and return_tensors="tf" (#13891)
* minimal fixes to run DataCollatorForWholeWordMask with return_tensors="np" and return_tensors="tf"

* more consinstent implementation for numpy_mask_tokens
2021-11-03 10:36:41 -04:00
671569ddf7 Put load_image function in image_utils.py & fix image rotation issue (#14062)
* Fix img load rotation

* Add `load_image` to `image_utils.py`

* Implement LoadImageTester

* Use hf-internal-testing dataset

* Add img utils comments

* Refactor LoadImageTester

* Import load_image under is_vision_available
2021-11-03 14:53:05 +01:00
89766b3d44 up (#14258) 2021-11-03 11:31:40 +01:00
bd21ed4099 Add cross attentions to TFGPT2Model (#14038)
* Add cross attentions to TFGPT2Model

* change to is_pt_tf_cross_test

* A minor correction to a comment

* Remove n_ctx when creating self.crossattention

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-11-03 09:54:34 +01:00
5f789a687a Add LayoutXLMProcessor (and LayoutXLMTokenizer, LayoutXLMTokenizerFast) (#14115)
* Add LayoutXLMTokenizer and LayoutXLMTokenizerFast

* Fix styling issues

* Fix more styling issues

* Fix more styling issues

* Fix docstring

* Fix unit tests

* Fix docs

* Fix unit tests

* Fix typos and styling issues

* Fix styling issues

* Fix docstring

* Make all tests of test_tokenization_layoutxlm pass

* Add LayoutXLMProcessor

* Make fixup

* Make all LayoutXLMProcessor tests pass

* Minor fixes

* Leave LayoutLMv2Processor tests unchanged

* Fix code quality

* Move LayoutXLM tokenizers and processor to separate folder

* Fix code quality

* Apply suggestions from code review

* Replace assertions by value errors

* Remove methods from fast tokenizer

Co-authored-by: King Yiu Suen <kingyiusuen@gmail.com>
2021-11-03 08:59:44 +01:00
558f8543ba Update Transformers to huggingface_hub >= 0.1.0 (#14251)
* Update Transformers to huggingface_hub >= 0.1.0

* Forgot to save...

* Style

* Fix test
2021-11-02 18:58:42 -04:00
519a677e87 Added Beit model output class (#14133)
* add Beit model ouput class

* inherting from BaseModelOuputWithPooling

* updated docs if use_mean_pooling is False

* added beit specific outputs in model docs

* changed the import path

* Fix docs

Co-authored-by: Niels Rogge <niels.rogge1@gmail.com>
2021-11-02 18:29:14 +01:00
bbaa3effbd Fixes Beit training for PyTorch 1.10+ (#14249) 2021-11-02 13:07:20 -04:00
ad3e560bc7 Add PushToHubCallback in main init (#14246) 2021-11-02 12:15:15 -04:00
ce01122a3b [Tests] Fix DistilHubert path (#14245)
* Add audio-classification benchmarking results

* fix distilhubert path
2021-11-02 17:53:50 +03:00
4a394cf53f Fix test_configuration_tie in FlaxEncoderDecoderModelTest (#14076)
* check test_configuration_tie

* Fix test_configuration_tie

* make test slow again

* Remove property and use model.module.bind

* revert to slow test

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-11-02 15:32:41 +05:30
a767276fdd Fix generation docstring (#14216)
* Fix generation docstring

* Style
2021-11-02 09:22:45 +01:00
e20faa6f03 Add BeitForSemanticSegmentation (#14096)
* Add first draft

* Make forward pass work

* Improve conversion script

* Add notebook that checks if it works

* Add BeitForSemanticSegmentation to the tests

* More improvements

* Make BeitForSemanticSegmentation consistent with Segformer

* Small bug fix

* Add BeitForSemanticSegmentation to docs

* Make sure model doesn't output hidden states when the user doesn't want to

* Make it possible to convert the large model

* Fix issue

* Fix conversion script for large model

* Add auxiliary_head option to semantic segmentation model

* Apply suggestions from @sgugger's review

* Apply suggestions from code review

* Fix failing test

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2021-11-01 19:55:45 +01:00
8b32578119 improving efficiency of mlflow metric logging (#14232)
Signed-off-by: Walter Martin <wamartin@microsoft.com>
2021-11-01 13:46:11 -04:00
ce91bf9a34 [GPTJ] enable common tests and few fixes (#14190)
* enable common tests, small fixes

* don't tie word embeds

* don't ignore lm_head
2021-11-01 22:38:52 +05:30
70d5711848 Fix a writing issue in the comments of trainer.py (#14202) 2021-11-01 09:24:03 -04:00
33fb98338e Raising exceptions instead of using assertions for few models (#14219)
* raising exceptions instead of using assertions for few models

* fixed formatting issues

* fixing copy inconsistencies
2021-11-01 08:53:13 -04:00
999540dfe0 Tensor location is already handled (#14224)
in `base.py` not in subclasses.
2021-11-01 08:42:27 -04:00
323f28dce2 Fixing image-segmentation tests. (#14223) 2021-11-01 08:25:34 -04:00
7396095af7 Update README of QA examples (#14172) 2021-11-01 12:52:22 +01:00
9450bfcc6c Add more missing models to models/__init__.py (#14177)
* Add missing models to models/__init__.py

* Fix issues previously undetected

* Add UniSpeechSatForPreTraining to all_model_classes

* fix unispeech sat

* fix

* Add check_model_list() to check_repo.py

* Remove _ignore_models = ["bort"]

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
2021-11-01 10:52:36 +00:00
9fc1951711 Docs for v4.12.2 2021-10-29 14:51:05 -04:00
513fa30a63 Docs for v4.12.1 2021-10-29 13:49:50 -04:00
63d91f449c Torch 1.10 (#14169)
* Torch 1.10

* torch scatter for 1.10

* style

* Skip tests
ok
2021-10-29 13:43:43 -04:00
e823d8198a Add a condition for checking labels (#14211) 2021-10-29 13:12:10 -04:00
b338596346 Fixing image segmentation with inference mode. (#14204)
* Fixing image segmentation for inference mode.

* Update src/transformers/pipelines/base.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-10-29 11:24:09 -04:00
c28bc80bbb Generalize problem_type to all sequence classification models (#14180)
* Generalize problem_type to all classification models

* Missing import

* Deberta BC and fix tests

* Fix template

* Missing imports

* Revert change to reformer test

* Fix style
2021-10-29 10:32:56 -04:00
4ab6a4a086 Fix pipeline tests env and fetch (#14209)
* Fix pipeline tests env and fetch

* Fix quality
2021-10-29 09:35:05 -04:00
dc540dd316 Adding handle_long_generation paramters for text-generation pipeline. (#14118)
* Adding `handle_long_generation` paramters for `text-generation` pipeline.

* More error handling

* Fixing tests by dropping tf support on this functionality, it needs

`max_new_tokens` to make it possible to understand user's intent.
Otherwise, `max_length` == `tokenizer.model_max_length` <
input_ids.shape[0].

* Fixing doc ?

* Doc ?

* Remove link from doc.

* Catched an issue on roberta.

* Damn doc.

* Non BC proposal ?

* Cleaning the fix ?

* Finally using only a test override.

* Don't need to modify this.

* Bad print.
2021-10-29 15:29:28 +02:00
d37f1fb8ba Add BlenderbotTokenizerFast (#13720)
* Add the support for the fast (rust) implementation of BlenbderbotTokenizer

* Fix a converter and a typo in a doc

* Apply the patil-suraj's suggestion

* (Nitpick) Fast tokenization -> Fast Tokenization in doc

* Apply the SaulLu's suggestion

* Apply Narsil's suggestion to fix test pipelines

* Add encoder_no_repeat_ngram_size according to the Narsil's suggestion

* Revert the last (unnecessary) commit

* Override pipeline config for Blenderbot to allow for larger pos. emb.

* make fix-copies
2021-10-29 09:19:01 -04:00
5b45422b58 Remove n_ctx from configs (#14165)
* Remove n_ctx from configs

* Fix GPTJ and OpenAIGPT, both are acceptable breaking changes as there are no configs such that it breaks

* Remove unecessary n_positions from TFOpenAIGPT
2021-10-29 11:50:25 +02:00
be236361f1 Adding batch_size support for (almost) all pipelines (#13724)
* Tentative enabling of `batch_size` for pipelines.

* Add systematic test for pipeline batching.

* Enabling batch_size on almost all pipelines

- Not `zero-shot` (it's already passing stuff as batched so trickier)
- Not `QA` (preprocess uses squad features, we need to switch to real
tensors at this boundary.

* Adding `min_length_for_response` for conversational.

* Making CTC, speech mappings avaiable regardless of framework.

* Attempt at fixing automatic tests (ffmpeg not enabled for fast tests)

* Removing ffmpeg dependency in tests.

* Small fixes.

* Slight cleanup.

* Adding docs

and adressing comments.

* Quality.

* Update docs/source/main_classes/pipelines.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/question_answering.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/zero_shot_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Improving docs.

* Update docs/source/main_classes/pipelines.rst

Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com>

* N -> oberved_batch_size

softmax trick.

* Follow `padding_side`.

* Supporting image pipeline batching (and padding).

* Rename `unbatch` -> `loader_batch`.

* unbatch_size forgot.

* Custom padding for offset mappings.

* Attempt to remove librosa.

* Adding require_audio.

* torchaudio.

* Back to using datasets librosa.

* Adding help to set a pad_token on the tokenizer.

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Quality.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com>
2021-10-29 11:34:18 +02:00
4469010c1b Replace assertions with RuntimeError exceptions (#14186) 2021-10-28 17:17:43 -04:00
ba71f1b57f Update README.md 2021-10-28 19:43:05 +02:00
b8fad022a0 v4.13.0.dev0 2021-10-28 12:56:46 -04:00
4367 changed files with 1201442 additions and 180249 deletions

View File

@ -1,6 +1,6 @@
# Troubleshooting # Troubleshooting
This is a document explaining how to deal with various issues on Circle-CI. The entries may include actually solutions or pointers to Issues that cover those. This is a document explaining how to deal with various issues on Circle-CI. The entries may include actual solutions or pointers to Issues that cover those.
## Circle CI ## Circle CI

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,678 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import copy
import os
import random
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
import yaml
COMMON_ENV_VARIABLES = {
"OMP_NUM_THREADS": 1,
"TRANSFORMERS_IS_CI": True,
"PYTEST_TIMEOUT": 120,
"RUN_PIPELINE_TESTS": False,
"RUN_PT_TF_CROSS_TESTS": False,
"RUN_PT_FLAX_CROSS_TESTS": False,
}
# Disable the use of {"s": None} as the output is way too long, causing the navigation on CircleCI impractical
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile", "v": None}
DEFAULT_DOCKER_IMAGE = [{"image": "cimg/python:3.8.12"}]
class EmptyJob:
job_name = "empty"
def to_dict(self):
return {
"working_directory": "~/transformers",
"docker": copy.deepcopy(DEFAULT_DOCKER_IMAGE),
"steps":["checkout"],
}
@dataclass
class CircleCIJob:
name: str
additional_env: Dict[str, Any] = None
cache_name: str = None
cache_version: str = "0.8.2"
docker_image: List[Dict[str, str]] = None
install_steps: List[str] = None
marker: Optional[str] = None
parallelism: Optional[int] = 1
pytest_num_workers: int = 12
pytest_options: Dict[str, Any] = None
resource_class: Optional[str] = "2xlarge"
tests_to_run: Optional[List[str]] = None
working_directory: str = "~/transformers"
# This should be only used for doctest job!
command_timeout: Optional[int] = None
def __post_init__(self):
# Deal with defaults for mutable attributes.
if self.additional_env is None:
self.additional_env = {}
if self.cache_name is None:
self.cache_name = self.name
if self.docker_image is None:
# Let's avoid changing the default list and make a copy.
self.docker_image = copy.deepcopy(DEFAULT_DOCKER_IMAGE)
if self.install_steps is None:
self.install_steps = []
if self.pytest_options is None:
self.pytest_options = {}
if isinstance(self.tests_to_run, str):
self.tests_to_run = [self.tests_to_run]
if self.parallelism is None:
self.parallelism = 1
def to_dict(self):
env = COMMON_ENV_VARIABLES.copy()
env.update(self.additional_env)
cache_branch_prefix = os.environ.get("CIRCLE_BRANCH", "pull")
if cache_branch_prefix != "main":
cache_branch_prefix = "pull"
job = {
"working_directory": self.working_directory,
"docker": self.docker_image,
"environment": env,
}
if self.resource_class is not None:
job["resource_class"] = self.resource_class
if self.parallelism is not None:
job["parallelism"] = self.parallelism
steps = [
"checkout",
{"attach_workspace": {"at": "~/transformers/test_preparation"}},
{
"restore_cache": {
"keys": [
# check the fully-matched cache first
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-" + '{{ checksum "setup.py" }}',
# try the partially-matched cache from `main`
f"v{self.cache_version}-{self.cache_name}-main-pip-",
# try the general partially-matched cache
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-",
]
}
},
{
"restore_cache": {
"keys": [
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-" + '{{ checksum "setup.py" }}',
f"v{self.cache_version}-{self.cache_name}-main-site-packages-",
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-",
]
}
},
]
steps.extend([{"run": l} for l in self.install_steps])
steps.extend([{"run": 'pip install "fsspec>=2023.5.0,<2023.10.0"'}])
steps.extend([{"run": "pip install pytest-subtests"}])
steps.append({"run": {"name": "Show installed libraries and their versions", "command": "pip freeze | tee installed.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/installed.txt"}})
all_options = {**COMMON_PYTEST_OPTIONS, **self.pytest_options}
pytest_flags = [f"--{key}={value}" if (value is not None or key in ["doctest-modules"]) else f"-{key}" for key, value in all_options.items()]
pytest_flags.append(
f"--make-reports={self.name}" if "examples" in self.name else f"--make-reports=tests_{self.name}"
)
steps.append({"run": {"name": "Create `test-results` directory", "command": "mkdir test-results"}})
test_command = ""
if self.command_timeout:
test_command = f"timeout {self.command_timeout} "
test_command += f"python -m pytest --junitxml=test-results/junit.xml -n {self.pytest_num_workers} " + " ".join(pytest_flags)
if self.parallelism == 1:
if self.tests_to_run is None:
test_command += " << pipeline.parameters.tests_to_run >>"
else:
test_command += " " + " ".join(self.tests_to_run)
else:
# We need explicit list instead of `pipeline.parameters.tests_to_run` (only available at job runtime)
tests = self.tests_to_run
if tests is None:
folder = os.environ["test_preparation_dir"]
test_file = os.path.join(folder, "filtered_test_list.txt")
if os.path.exists(test_file):
with open(test_file) as f:
tests = f.read().split(" ")
# expand the test list
if tests == ["tests"]:
tests = [os.path.join("tests", x) for x in os.listdir("tests")]
expanded_tests = []
for test in tests:
if test.endswith(".py"):
expanded_tests.append(test)
elif test == "tests/models":
expanded_tests.extend([os.path.join(test, x) for x in os.listdir(test)])
elif test == "tests/pipelines":
expanded_tests.extend([os.path.join(test, x) for x in os.listdir(test)])
else:
expanded_tests.append(test)
# Avoid long tests always being collected together
random.shuffle(expanded_tests)
tests = " ".join(expanded_tests)
# Each executor to run ~10 tests
n_executors = max(len(tests) // 10, 1)
# Avoid empty test list on some executor(s) or launching too many executors
if n_executors > self.parallelism:
n_executors = self.parallelism
job["parallelism"] = n_executors
# Need to be newline separated for the command `circleci tests split` below
command = f'echo {tests} | tr " " "\\n" >> tests.txt'
steps.append({"run": {"name": "Get tests", "command": command}})
command = 'TESTS=$(circleci tests split tests.txt) && echo $TESTS > splitted_tests.txt'
steps.append({"run": {"name": "Split tests", "command": command}})
steps.append({"store_artifacts": {"path": "~/transformers/tests.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/splitted_tests.txt"}})
test_command = ""
if self.timeout:
test_command = f"timeout {self.timeout} "
test_command += f"python -m pytest -n {self.pytest_num_workers} " + " ".join(pytest_flags)
test_command += " $(cat splitted_tests.txt)"
if self.marker is not None:
test_command += f" -m {self.marker}"
if self.name == "pr_documentation_tests":
# can't use ` | tee tee tests_output.txt` as usual
test_command += " > tests_output.txt"
# Save the return code, so we can check if it is timeout in the next step.
test_command += '; touch "$?".txt'
# Never fail the test step for the doctest job. We will check the results in the next step, and fail that
# step instead if the actual test failures are found. This is to avoid the timeout being reported as test
# failure.
test_command = f"({test_command}) || true"
else:
test_command = f"({test_command} | tee tests_output.txt) || true"
steps.append({"run": {"name": "Run tests", "command": test_command}})
# Deal with errors
check_test_command = f'if [ -s reports/{self.job_name}/errors.txt ]; '
check_test_command += 'then echo "Some tests errored out!"; echo ""; '
check_test_command += f'cat reports/{self.job_name}/errors.txt; '
check_test_command += 'echo ""; echo ""; '
py_command = f'import os; fp = open("reports/{self.job_name}/summary_short.txt"); failed = os.linesep.join([x for x in fp.read().split(os.linesep) if x.startswith("ERROR ")]); fp.close(); fp = open("summary_short.txt", "w"); fp.write(failed); fp.close()'
check_test_command += f"$(python3 -c '{py_command}'); "
check_test_command += 'cat summary_short.txt; echo ""; exit -1; '
# Deeal with failed tests
check_test_command += f'elif [ -s reports/{self.job_name}/failures_short.txt ]; '
check_test_command += 'then echo "Some tests failed!"; echo ""; '
check_test_command += f'cat reports/{self.job_name}/failures_short.txt; '
check_test_command += 'echo ""; echo ""; '
py_command = f'import os; fp = open("reports/{self.job_name}/summary_short.txt"); failed = os.linesep.join([x for x in fp.read().split(os.linesep) if x.startswith("FAILED ")]); fp.close(); fp = open("summary_short.txt", "w"); fp.write(failed); fp.close()'
check_test_command += f"$(python3 -c '{py_command}'); "
check_test_command += 'cat summary_short.txt; echo ""; exit -1; '
check_test_command += f'elif [ -s reports/{self.job_name}/stats.txt ]; then echo "All tests pass!"; '
# return code `124` means the previous (pytest run) step is timeout
if self.name == "pr_documentation_tests":
check_test_command += 'elif [ -f 124.txt ]; then echo "doctest timeout!"; '
check_test_command += 'else echo "other fatal error"; echo ""; exit -1; fi;'
steps.append({"run": {"name": "Check test results", "command": check_test_command}})
steps.append({"store_test_results": {"path": "test-results"}})
steps.append({"store_artifacts": {"path": "~/transformers/tests_output.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/reports"}})
# save cache at the end: so pytest step runs before cache saving and we can see results earlier
steps.append(
{
"save_cache": {
"key": f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-" + '{{ checksum "setup.py" }}',
"paths": ["~/.cache/pip"],
}
}
)
steps.append(
{
"save_cache": {
"key": f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-" + '{{ checksum "setup.py" }}',
"paths": ["~/.pyenv/versions/"],
}
}
)
job["steps"] = steps
return job
@property
def job_name(self):
return self.name if "examples" in self.name else f"tests_{self.name}"
# JOBS
torch_and_tf_job = CircleCIJob(
"torch_and_tf",
additional_env={"RUN_PT_TF_CROSS_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng git-lfs cmake",
"git lfs install",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
"pip install -U --upgrade-strategy eager -e git+https://github.com/huggingface/accelerate@main#egg=accelerate",
# TODO: remove this one after fixing the dependency issue(s) above
"pip install -U --upgrade-strategy eager torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu",
],
marker="is_pt_tf_cross_test",
pytest_options={"rA": None, "durations": 0},
)
torch_and_flax_job = CircleCIJob(
"torch_and_flax",
additional_env={"RUN_PT_FLAX_CROSS_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install -U --upgrade-strategy eager --upgrade pip",
"pip install -U --upgrade-strategy eager .[sklearn,flax,torch,testing,sentencepiece,torch-speech,vision]",
"pip install -U --upgrade-strategy eager -e git+https://github.com/huggingface/accelerate@main#egg=accelerate",
],
marker="is_pt_flax_cross_test",
pytest_options={"rA": None, "durations": 0},
)
torch_job = CircleCIJob(
"torch",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]",
"pip install -U --upgrade-strategy eager -e git+https://github.com/huggingface/accelerate@main#egg=accelerate",
],
parallelism=1,
pytest_num_workers=12,
)
tf_job = CircleCIJob(
"tf",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
],
parallelism=1,
)
flax_job = CircleCIJob(
"flax",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[flax,testing,sentencepiece,flax-speech,vision]",
],
parallelism=1,
)
pipelines_torch_job = CircleCIJob(
"pipelines_torch",
additional_env={"RUN_PIPELINE_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video]",
],
marker="is_pipeline_test",
pytest_num_workers=12,
)
pipelines_tf_job = CircleCIJob(
"pipelines_tf",
additional_env={"RUN_PIPELINE_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,testing,sentencepiece,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
],
marker="is_pipeline_test",
)
custom_tokenizers_job = CircleCIJob(
"custom_tokenizers",
additional_env={"RUN_CUSTOM_TOKENIZERS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
{
"name": "install jumanpp",
"command":
"wget https://github.com/ku-nlp/jumanpp/releases/download/v2.0.0-rc3/jumanpp-2.0.0-rc3.tar.xz\n"
"tar xvf jumanpp-2.0.0-rc3.tar.xz\n"
"mkdir jumanpp-2.0.0-rc3/bld\n"
"cd jumanpp-2.0.0-rc3/bld\n"
"sudo cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local\n"
"sudo make install\n",
},
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]",
"python -m unidic download",
],
parallelism=None,
resource_class=None,
tests_to_run=[
"./tests/models/bert_japanese/test_tokenization_bert_japanese.py",
"./tests/models/openai/test_tokenization_openai.py",
"./tests/models/clip/test_tokenization_clip.py",
],
)
examples_torch_job = CircleCIJob(
"examples_torch",
additional_env={"OMP_NUM_THREADS": 8},
cache_name="torch_examples",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,sentencepiece,testing,torch-speech]",
"pip install -U --upgrade-strategy eager -r examples/pytorch/_tests_requirements.txt",
"pip install -U --upgrade-strategy eager -e git+https://github.com/huggingface/accelerate@main#egg=accelerate",
],
pytest_num_workers=1,
)
examples_tensorflow_job = CircleCIJob(
"examples_tensorflow",
cache_name="tensorflow_examples",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tensorflow,sentencepiece,testing]",
"pip install -U --upgrade-strategy eager -r examples/tensorflow/_tests_requirements.txt",
],
)
examples_flax_job = CircleCIJob(
"examples_flax",
cache_name="flax_examples",
install_steps=[
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[flax,testing,sentencepiece]",
"pip install -U --upgrade-strategy eager -r examples/flax/_tests_requirements.txt",
],
)
hub_job = CircleCIJob(
"hub",
additional_env={"HUGGINGFACE_CO_STAGING": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install git-lfs",
'git config --global user.email "ci@dummy.com"',
'git config --global user.name "ci"',
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,sentencepiece,testing,vision]",
],
marker="is_staging_test",
pytest_num_workers=1,
)
onnx_job = CircleCIJob(
"onnx",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
],
pytest_options={"k onnx": None},
pytest_num_workers=1,
)
exotic_models_job = CircleCIJob(
"exotic_models",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,testing,vision]",
"pip install -U --upgrade-strategy eager torchvision",
"pip install -U --upgrade-strategy eager scipy",
"pip install -U --upgrade-strategy eager 'git+https://github.com/facebookresearch/detectron2.git'",
"sudo apt install tesseract-ocr",
"pip install -U --upgrade-strategy eager pytesseract",
"pip install --upgrade-strategy eager sentencepiece",
"pip install -U --upgrade-strategy eager natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels",
"pip install -U --upgrade-strategy eager python-Levenshtein",
"pip install -U --upgrade-strategy eager opencv-python",
"pip install -U --upgrade-strategy eager nltk",
"pip uninstall -y torch torchvision torchaudio && pip install -U --upgrade-strategy eager 'torch<2.2.0' 'torchvision<0.17' 'torchaudio<2.2.0'"
],
tests_to_run=[
"tests/models/*layoutlmv*",
"tests/models/*nat",
"tests/models/deta",
"tests/models/udop",
"tests/models/nougat",
],
pytest_num_workers=1,
pytest_options={"durations": 100},
)
repo_utils_job = CircleCIJob(
"repo_utils",
install_steps=[
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[quality,testing,torch]",
],
parallelism=None,
pytest_num_workers=1,
resource_class="large",
tests_to_run="tests/repo_utils",
)
# We also include a `dummy.py` file in the files to be doc-tested to prevent edge case failure. Otherwise, the pytest
# hangs forever during test collection while showing `collecting 0 items / 21 errors`. (To see this, we have to remove
# the bash output redirection.)
py_command = 'from utils.tests_fetcher import get_doctest_files; to_test = get_doctest_files() + ["dummy.py"]; to_test = " ".join(to_test); print(to_test)'
py_command = f"$(python3 -c '{py_command}')"
command = f'echo "{py_command}" > pr_documentation_tests_temp.txt'
doc_test_job = CircleCIJob(
"pr_documentation_tests",
additional_env={"TRANSFORMERS_VERBOSITY": "error", "DATASETS_VERBOSITY": "error", "SKIP_CUDA_DOCTEST": "1"},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time ffmpeg",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager -e .[dev]",
"pip install -U --upgrade-strategy eager -e git+https://github.com/huggingface/accelerate@main#egg=accelerate",
"pip install --upgrade --upgrade-strategy eager 'pytest<8.0.0' pytest-sugar",
"pip install -U --upgrade-strategy eager natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels",
"pip install -U --upgrade-strategy eager g2p-en",
# TODO: remove this one after fixing the dependency issue(s) above
"pip install -U --upgrade-strategy eager torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu",
"find -name __pycache__ -delete",
"find . -name \*.pyc -delete",
# Add an empty file to keep the test step running correctly even no file is selected to be tested.
"touch dummy.py",
{
"name": "Get files to test",
"command": command,
},
{
"name": "Show information in `Get files to test`",
"command":
"cat pr_documentation_tests_temp.txt"
},
{
"name": "Get the last line in `pr_documentation_tests.txt`",
"command":
"tail -n1 pr_documentation_tests_temp.txt | tee pr_documentation_tests.txt"
},
],
tests_to_run="$(cat pr_documentation_tests.txt)", # noqa
pytest_options={"-doctest-modules": None, "doctest-glob": "*.md", "dist": "loadfile", "rvsA": None},
command_timeout=1200, # test cannot run longer than 1200 seconds
pytest_num_workers=1,
)
REGULAR_TESTS = [
torch_and_tf_job,
torch_and_flax_job,
torch_job,
tf_job,
flax_job,
custom_tokenizers_job,
hub_job,
onnx_job,
exotic_models_job,
]
EXAMPLES_TESTS = [
examples_torch_job,
examples_tensorflow_job,
examples_flax_job,
]
PIPELINE_TESTS = [
pipelines_torch_job,
pipelines_tf_job,
]
REPO_UTIL_TESTS = [repo_utils_job]
DOC_TESTS = [doc_test_job]
def create_circleci_config(folder=None):
if folder is None:
folder = os.getcwd()
# Used in CircleCIJob.to_dict() to expand the test list (for using parallelism)
os.environ["test_preparation_dir"] = folder
jobs = []
all_test_file = os.path.join(folder, "test_list.txt")
if os.path.exists(all_test_file):
with open(all_test_file) as f:
all_test_list = f.read()
else:
all_test_list = []
if len(all_test_list) > 0:
jobs.extend(PIPELINE_TESTS)
test_file = os.path.join(folder, "filtered_test_list.txt")
if os.path.exists(test_file):
with open(test_file) as f:
test_list = f.read()
else:
test_list = []
if len(test_list) > 0:
jobs.extend(REGULAR_TESTS)
extended_tests_to_run = set(test_list.split())
# Extend the test files for cross test jobs
for job in jobs:
if job.job_name in ["tests_torch_and_tf", "tests_torch_and_flax"]:
for test_path in copy.copy(extended_tests_to_run):
dir_path, fn = os.path.split(test_path)
if fn.startswith("test_modeling_tf_"):
fn = fn.replace("test_modeling_tf_", "test_modeling_")
elif fn.startswith("test_modeling_flax_"):
fn = fn.replace("test_modeling_flax_", "test_modeling_")
else:
if job.job_name == "test_torch_and_tf":
fn = fn.replace("test_modeling_", "test_modeling_tf_")
elif job.job_name == "test_torch_and_flax":
fn = fn.replace("test_modeling_", "test_modeling_flax_")
new_test_file = str(os.path.join(dir_path, fn))
if os.path.isfile(new_test_file):
if new_test_file not in extended_tests_to_run:
extended_tests_to_run.add(new_test_file)
extended_tests_to_run = sorted(extended_tests_to_run)
for job in jobs:
if job.job_name in ["tests_torch_and_tf", "tests_torch_and_flax"]:
job.tests_to_run = extended_tests_to_run
fn = "filtered_test_list_cross_tests.txt"
f_path = os.path.join(folder, fn)
with open(f_path, "w") as fp:
fp.write(" ".join(extended_tests_to_run))
example_file = os.path.join(folder, "examples_test_list.txt")
if os.path.exists(example_file) and os.path.getsize(example_file) > 0:
with open(example_file, "r", encoding="utf-8") as f:
example_tests = f.read()
for job in EXAMPLES_TESTS:
framework = job.name.replace("examples_", "").replace("torch", "pytorch")
if example_tests == "all":
job.tests_to_run = [f"examples/{framework}"]
else:
job.tests_to_run = [f for f in example_tests.split(" ") if f.startswith(f"examples/{framework}")]
if len(job.tests_to_run) > 0:
jobs.append(job)
doctest_file = os.path.join(folder, "doctest_list.txt")
if os.path.exists(doctest_file):
with open(doctest_file) as f:
doctest_list = f.read()
else:
doctest_list = []
if len(doctest_list) > 0:
jobs.extend(DOC_TESTS)
repo_util_file = os.path.join(folder, "test_repo_utils.txt")
if os.path.exists(repo_util_file) and os.path.getsize(repo_util_file) > 0:
jobs.extend(REPO_UTIL_TESTS)
if len(jobs) == 0:
jobs = [EmptyJob()]
config = {"version": "2.1"}
config["parameters"] = {
# Only used to accept the parameters from the trigger
"nightly": {"type": "boolean", "default": False},
"tests_to_run": {"type": "string", "default": test_list},
}
config["jobs"] = {j.job_name: j.to_dict() for j in jobs}
config["workflows"] = {"version": 2, "run_tests": {"jobs": [j.job_name for j in jobs]}}
with open(os.path.join(folder, "generated_config.yml"), "w") as f:
f.write(yaml.dump(config, indent=2, width=1000000, sort_keys=False))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--fetcher_folder", type=str, default=None, help="Only test that all tests and modules are accounted for."
)
args = parser.parse_args()
create_circleci_config(args.fetcher_folder)

View File

@ -1,79 +0,0 @@
cd docs
function deploy_doc(){
echo "Creating doc at commit $1 and pushing to folder $2"
git checkout $1
pip install -U ..
if [ ! -z "$2" ]
then
if [ "$2" == "master" ]; then
echo "Pushing master"
make clean && make html && scp -r -oStrictHostKeyChecking=no _build/html/* $doc:$dir/$2/
cp -r _build/html/_static .
elif ssh -oStrictHostKeyChecking=no $doc "[ -d $dir/$2 ]"; then
echo "Directory" $2 "already exists"
scp -r -oStrictHostKeyChecking=no _static/* $doc:$dir/$2/_static/
else
echo "Pushing version" $2
make clean && make html
rm -rf _build/html/_static
cp -r _static _build/html
scp -r -oStrictHostKeyChecking=no _build/html $doc:$dir/$2
fi
else
echo "Pushing stable"
make clean && make html
rm -rf _build/html/_static
cp -r _static _build/html
scp -r -oStrictHostKeyChecking=no _build/html/* $doc:$dir
fi
}
# You can find the commit for each tag on https://github.com/huggingface/transformers/tags
deploy_doc "master" master
deploy_doc "b33a385" v1.0.0
deploy_doc "fe02e45" v1.1.0
deploy_doc "89fd345" v1.2.0
deploy_doc "fc9faa8" v2.0.0
deploy_doc "3ddce1d" v2.1.1
deploy_doc "3616209" v2.2.0
deploy_doc "d0f8b9a" v2.3.0
deploy_doc "6664ea9" v2.4.0
deploy_doc "fb560dc" v2.5.0
deploy_doc "b90745c" v2.5.1
deploy_doc "fbc5bf1" v2.6.0
deploy_doc "6f5a12a" v2.7.0
deploy_doc "11c3257" v2.8.0
deploy_doc "e7cfc1a" v2.9.0
deploy_doc "7cb203f" v2.9.1
deploy_doc "10d7239" v2.10.0
deploy_doc "b42586e" v2.11.0
deploy_doc "7fb8bdf" v3.0.2
deploy_doc "4b3ee9c" v3.1.0
deploy_doc "3ebb1b3" v3.2.0
deploy_doc "0613f05" v3.3.1
deploy_doc "eb0e0ce" v3.4.0
deploy_doc "818878d" v3.5.1
deploy_doc "c781171" v4.0.1
deploy_doc "bfa4ccf" v4.1.1
deploy_doc "7d9a9d0" v4.2.2
deploy_doc "bae0c79" v4.3.3
deploy_doc "c988db5" v4.4.0
deploy_doc "c5d6a28" v4.4.1
deploy_doc "6bc89ed" v4.4.2
deploy_doc "4906a29" v4.5.0
deploy_doc "4bae96e" v4.5.1
deploy_doc "25dee4a" v4.6.0
deploy_doc "7a6c9fa" v4.7.0
deploy_doc "9252a51" v4.8.0
deploy_doc "1366172" v4.8.1
deploy_doc "96d1cfb" v4.8.2
deploy_doc "72aee83" v4.9.0
deploy_doc "bff1c71" v4.9.1
deploy_doc "41981a2" v4.9.2
deploy_doc "39cb6f5" v4.10.0
deploy_doc "28e2787" v4.10.1
deploy_doc "dc193c9" v4.11.0
deploy_doc "54f9d62" v4.11.1
deploy_doc "7655f11" v4.11.2
deploy_doc "65659a2" # v4.11.3 Latest stable release

3
.gitattributes vendored
View File

@ -1,3 +1,4 @@
*.py eol=lf *.py eol=lf
*.rst eol=lf *.rst eol=lf
*.md eol=lf *.md eol=lf
*.mdx eol=lf

View File

@ -1,22 +0,0 @@
---
name: "\U0001F5A5 New benchmark"
about: Benchmark a part of this library and share your results
title: "[Benchmark]"
labels: ''
assignees: ''
---
# 🖥 Benchmarking `transformers`
## Benchmark
Which part of `transformers` did you benchmark?
## Set-up
What did you run your benchmarks on? Please include details, such as: CPU, GPU? If using multiple GPUs, which parallelization did you use?
## Results
Put your results here!

View File

@ -1,20 +0,0 @@
---
name: "\U0001F31F New model addition"
about: Submit a proposal/request to implement a new Transformer-based model
title: ''
labels: New model
assignees: ''
---
# 🌟 New model addition
## Model description
<!-- Important information -->
## Open source status
* [ ] the model implementation is available: (give details)
* [ ] the model weights are available: (give details)
* [ ] who are the authors: (mention them, if possible by @gh-username)

View File

@ -1,105 +0,0 @@
---
name: "\U0001F41B Bug Report"
about: Submit a bug report to help us improve transformers
title: ''
labels: ''
assignees: ''
---
## Environment info
<!-- You can run the command `transformers-cli env` and copy-and-paste its output below.
Don't forget to fill out the missing fields in that output! -->
- `transformers` version:
- Platform:
- Python version:
- PyTorch version (GPU?):
- Tensorflow version (GPU?):
- Using GPU in script?:
- Using distributed or parallel set-up in script?:
### Who can help
<!-- Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
Please tag fewer than 3 people.
Models:
- ALBERT, BERT, XLM, DeBERTa, DeBERTa-v2, ELECTRA, MobileBert, SqueezeBert: @LysandreJik
- encoder-decoder models (For example, BlenderBot, BART, Marian, Pegasus, T5, ByT5): @patrickvonplaten, @patil-suraj
- Longformer, Reformer, TransfoXL, XLNet, FNet: @patrickvonplaten
- FSMT: @stas00
- Funnel: @sgugger
- GPT-2, GPT: @patrickvonplaten, @LysandreJik
- RAG, DPR: @patrickvonplaten, @lhoestq
- TensorFlow: @Rocketknight1
- JAX/Flax: @patil-suraj @patrickvonplaten
- TAPAS, LayoutLM, LayoutLMv2, LUKE, ViT, BEiT, DEiT, DETR, CANINE: @NielsRogge
- GPT-Neo, GPT-J, CLIP: @patil-suraj
- Wav2Vec2, HuBERT, SpeechEncoderDecoder: @patrickvonplaten, @anton-l
If the model isn't in the list, ping @LysandreJik who will redirect you to the correct contributor.
Library:
- Benchmarks: @patrickvonplaten
- Deepspeed: @stas00
- Ray/raytune: @richardliaw, @amogkam
- Text generation: @patrickvonplaten
- Tokenizers: @LysandreJik
- Trainer: @sgugger
- Pipelines: @Narsil
- Speech: @patrickvonplaten, @anton-l
- Vision: @NielsRogge, @sgugger
Documentation: @sgugger
Model hub:
- for issues with a model, report at https://discuss.huggingface.co/ and tag the model's creator.
HF projects:
- datasets: [different repo](https://github.com/huggingface/datasets)
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
Examples:
- maintained examples (not research project or legacy): @sgugger, @patil-suraj
For research projetcs, please ping the contributor directly. For example, on the following projects:
- research_projects/bert-loses-patience: @JetRunner
- research_projects/distillation: @VictorSanh
-->
## Information
Model I am using (Bert, XLNet ...):
The problem arises when using:
* [ ] the official example scripts: (give details below)
* [ ] my own modified scripts: (give details below)
The tasks I am working on is:
* [ ] an official GLUE/SQUaD task: (give the name)
* [ ] my own task or dataset: (give details below)
## To reproduce
Steps to reproduce the behavior:
1.
2.
3.
<!-- If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.-->
## Expected behavior
<!-- A clear and concise description of what you would expect to happen. -->

116
.github/ISSUE_TEMPLATE/bug-report.yml vendored Normal file
View File

@ -0,0 +1,116 @@
name: "\U0001F41B Bug Report"
description: Submit a bug report to help us improve transformers
body:
- type: textarea
id: system-info
attributes:
label: System Info
description: Please share your system info with us. You can run the command `transformers-cli env` and copy-paste its output below.
placeholder: transformers version, platform, python version, ...
validations:
required: true
- type: textarea
id: who-can-help
attributes:
label: Who can help?
description: |
Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
All issues are read by one of the core maintainers, so if you don't know who to tag, just leave this blank and
a core maintainer will ping the right person.
Please tag fewer than 3 people.
Models:
- text models: @ArthurZucker and @younesbelkada
- vision models: @amyeroberts
- speech models: @sanchit-gandhi
- graph models: @clefourrier
Library:
- flax: @sanchit-gandhi
- generate: @gante
- pipelines: @Narsil
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @muellerzr and @pacman100
Integrations:
- deepspeed: HF Trainer/Accelerate: @pacman100
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc and @younesbelkada
Documentation: @stevhliu
Model hub:
- for issues with a model, report at https://discuss.huggingface.co/ and tag the model's creator.
HF projects:
- accelerate: [different repo](https://github.com/huggingface/accelerate)
- datasets: [different repo](https://github.com/huggingface/datasets)
- diffusers: [different repo](https://github.com/huggingface/diffusers)
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
Maintained examples (not research project or legacy):
- Flax: @sanchit-gandhi
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
- TensorFlow: @Rocketknight1
Research projects are not maintained and should be taken as is.
placeholder: "@Username ..."
- type: checkboxes
id: information-scripts-examples
attributes:
label: Information
description: 'The problem arises when using:'
options:
- label: "The official example scripts"
- label: "My own modified scripts"
- type: checkboxes
id: information-tasks
attributes:
label: Tasks
description: "The tasks I am working on are:"
options:
- label: "An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...)"
- label: "My own task or dataset (give details below)"
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
Steps to reproduce the behavior:
1.
2.
3.
- type: textarea
id: expected-behavior
validations:
required: true
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."

12
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@ -0,0 +1,12 @@
blank_issues_enabled: true
version: 2.1
contact_links:
- name: Model checkpoints on the Hugging Face Hub
url: https://huggingface.co/models
about: Open a Pull request / Discussion related to a specific model checkpoint directly on the Hugging Face Hub
- name: Website Related
url: https://github.com/huggingface/hub-docs/issues
about: Feature requests and bug reports related to the website
- name: Forum
url: https://discuss.huggingface.co/
about: General usage questions and community discussions

View File

@ -1,25 +0,0 @@
---
name: "\U0001F680 Feature request"
about: Submit a proposal/request for a new transformers feature
title: ''
labels: ''
assignees: ''
---
# 🚀 Feature request
<!-- A clear and concise description of the feature proposal.
Please provide a link to the paper and code in case they exist. -->
## Motivation
<!-- Please outline the motivation for the proposal. Is your feature request
related to a problem? e.g., I'm always frustrated when [...]. If this is related
to another GitHub issue, please link here too. -->
## Your contribution
<!-- Is there any way that you could help, e.g. by submitting a PR?
Make sure to read the CONTRIBUTING.MD readme:
https://github.com/huggingface/transformers/blob/master/CONTRIBUTING.md -->

View File

@ -0,0 +1,31 @@
name: "\U0001F680 Feature request"
description: Submit a proposal/request for a new transformers feature
labels: [ "feature" ]
body:
- type: textarea
id: feature-request
validations:
required: true
attributes:
label: Feature request
description: |
A clear and concise description of the feature proposal. Please provide a link to the paper and code in case they exist.
- type: textarea
id: motivation
validations:
required: true
attributes:
label: Motivation
description: |
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
- type: textarea
id: contribution
validations:
required: true
attributes:
label: Your contribution
description: |
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md)

46
.github/ISSUE_TEMPLATE/i18n.md vendored Normal file
View File

@ -0,0 +1,46 @@
---
name: 🌐 Translating a new language?
about: Start a new translation effort in your language
title: '[i18n-<languageCode>] Translating docs to <languageName>'
labels: WIP
assignees: ''
---
<!--
Note: Please search to see if an issue already exists for the language you are trying to translate.
-->
Hi!
Let's bring the documentation to all the <languageName>-speaking community 🌐 (currently 0 out of 267 complete)
Who would want to translate? Please follow the 🤗 [TRANSLATING guide](https://github.com/huggingface/transformers/blob/main/docs/TRANSLATING.md). Here is a list of the files ready for translation. Let us know in this issue if you'd like to translate any, and we'll add your name to the list.
Some notes:
* Please translate using an informal tone (imagine you are talking with a friend about transformers 🤗).
* Please translate in a gender-neutral way.
* Add your translations to the folder called `<languageCode>` inside the [source folder](https://github.com/huggingface/transformers/tree/main/docs/source).
* Register your translation in `<languageCode>/_toctree.yml`; please follow the order of the [English version](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml).
* Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @stevhliu and @MKhalusova for review.
* 🙋 If you'd like others to help you with the translation, you can also post in the 🤗 [forums](https://discuss.huggingface.co/).
## Get Started section
- [ ] [index.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/index.md) https://github.com/huggingface/transformers/pull/20180
- [ ] [quicktour.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/quicktour.md) (waiting for initial PR to go through)
- [ ] [installation.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/installation.md).
## Tutorial section
- [ ] [pipeline_tutorial.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/pipeline_tutorial.md)
- [ ] [autoclass_tutorial.md](https://github.com/huggingface/transformers/blob/master/docs/source/autoclass_tutorial.md)
- [ ] [preprocessing.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/preprocessing.md)
- [ ] [training.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/training.md)
- [ ] [accelerate.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/accelerate.md)
- [ ] [model_sharing.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/model_sharing.md)
- [ ] [multilingual.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/multilingual.md)
<!--
Keep on adding more as you go 🔥
-->

View File

@ -1,58 +0,0 @@
---
name: "\U0001F4DA Migration from pytorch-pretrained-bert or pytorch-transformers"
about: Report a problem when migrating from pytorch-pretrained-bert or pytorch-transformers
to transformers
title: ''
labels: Migration
assignees: ''
---
# 📚 Migration
## Information
<!-- Important information -->
Model I am using (Bert, XLNet ...):
Language I am using the model on (English, Chinese ...):
The problem arises when using:
* [ ] the official example scripts: (give details below)
* [ ] my own modified scripts: (give details below)
The tasks I am working on is:
* [ ] an official GLUE/SQUaD task: (give the name)
* [ ] my own task or dataset: (give details below)
## Details
<!-- A clear and concise description of the migration issue.
If you have code snippets, please provide it here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
-->
## Environment info
<!-- You can run the command `python transformers-cli env` and copy-and-paste its output below.
Don't forget to fill out the missing fields in that output! -->
- `transformers` version:
- Platform:
- Python version:
- PyTorch version (GPU?):
- Tensorflow version (GPU?):
- Using GPU in script?:
- Using distributed or parallel set-up in script?:
<!-- IMPORTANT: which version of the former library do you use? -->
* `pytorch-transformers` or `pytorch-pretrained-bert` version (or branch):
## Checklist
- [ ] I have read the migration guide in the readme.
([pytorch-transformers](https://github.com/huggingface/transformers#migrating-from-pytorch-transformers-to-transformers);
[pytorch-pretrained-bert](https://github.com/huggingface/transformers#migrating-from-pytorch-pretrained-bert-to-transformers))
- [ ] I checked if a related official extension example runs on my machine.

72
.github/ISSUE_TEMPLATE/migration.yml vendored Normal file
View File

@ -0,0 +1,72 @@
name: "\U0001F4DA Migration from pytorch-pretrained-bert or pytorch-transformers"
description: Report a problem when migrating from pytorch-pretrained-bert or pytorch-transformers to transformers
labels: [ "migration" ]
body:
- type: textarea
id: system-info
attributes:
label: System Info
description: Please share your system info with us. You can run the command `transformers-cli env` and copy-paste its output below.
render: shell
placeholder: transformers version, platform, python version, ...
validations:
required: true
- type: checkboxes
id: information-scripts-examples
attributes:
label: Information
description: 'The problem arises when using:'
options:
- label: "The official example scripts"
- label: "My own modified scripts"
- type: checkboxes
id: information-tasks
attributes:
label: Tasks
description: "The tasks I am working on are:"
options:
- label: "An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...)"
- label: "My own task or dataset (give details below)"
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
Steps to reproduce the behavior:
1.
2.
3.
- type: textarea
id: expected-behavior
validations:
required: true
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."
render: shell
- type: checkboxes
id: checklist
attributes:
label: Checklist
options:
- label: "I have read the migration guide in the readme.
([pytorch-transformers](https://github.com/huggingface/transformers#migrating-from-pytorch-transformers-to-transformers);
[pytorch-pretrained-bert](https://github.com/huggingface/transformers#migrating-from-pytorch-pretrained-bert-to-transformers))"
required: true
- label: "I checked if a related official extension example runs on my machine."
required: true

View File

@ -0,0 +1,31 @@
name: "\U0001F31F New model addition"
description: Submit a proposal/request to implement a new model
labels: [ "New model" ]
body:
- type: textarea
id: description-request
validations:
required: true
attributes:
label: Model description
description: |
Put any and all important information relative to the model
- type: checkboxes
id: information-tasks
attributes:
label: Open source status
description: |
Please note that if the model implementation isn't available or if the weights aren't open-source, we are less likely to implement it in `transformers`.
options:
- label: "The model implementation is available"
- label: "The model weights are available"
- type: textarea
id: additional-info
attributes:
label: Provide useful links for the implementation
description: |
Please provide information regarding the implementation, the weights, and the authors.
Please mention the authors by @gh-username if you're aware of their usernames.

View File

@ -1,26 +0,0 @@
---
name: "❓ Questions & Help"
about: Post your general questions on the Hugging Face forum: https://discuss.huggingface.co/
title: ''
labels: ''
assignees: ''
---
# ❓ Questions & Help
<!-- The GitHub issue tracker is primarly intended for bugs, feature requests,
new models, benchmarks, and migration questions. For all other questions,
we direct you to the Hugging Face forum: https://discuss.huggingface.co/ .
-->
## Details
<!-- Description of your issue -->
<!-- You should first ask your question on the forum, and only if
you didn't get an answer after a few days ask it here on GitHub. -->
**A link to original question on the forum**:
<!-- Your issue will be closed if you don't fill this part. -->

View File

@ -17,13 +17,13 @@ Fixes # (issue)
## Before submitting ## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/master/CONTRIBUTING.md#start-contributing-pull-requests), - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request),
Pull Request section? Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case. to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the - [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/master/docs), and [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/master/docs#writing-source-documentation). [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? - [ ] Did you write any new necessary tests?
@ -39,36 +39,40 @@ members/contributors who may be interested in your PR.
Models: Models:
- albert, bert, xlm: @LysandreJik - text models: @ArthurZucker and @younesbelkada
- blenderbot, bart, marian, pegasus, encoderdecoder, t5: @patrickvonplaten, @patil-suraj - vision models: @amyeroberts
- longformer, reformer, transfoxl, xlnet: @patrickvonplaten - speech models: @sanchit-gandhi
- fsmt: @stas00 - graph models: @clefourrier
- funnel: @sgugger
- gpt2: @patrickvonplaten, @LysandreJik
- rag: @patrickvonplaten, @lhoestq
- tensorflow: @LysandreJik
Library: Library:
- benchmarks: @patrickvonplaten - flax: @sanchit-gandhi
- deepspeed: @stas00 - generate: @gante
- ray/raytune: @richardliaw, @amogkam - pipelines: @Narsil
- text generation: @patrickvonplaten - tensorflow: @gante and @Rocketknight1
- tokenizers: @n1t0, @LysandreJik - tokenizers: @ArthurZucker
- trainer: @sgugger - trainer: @muellerzr and @pacman100
- pipelines: @LysandreJik
Documentation: @sgugger Integrations:
- deepspeed: HF Trainer/Accelerate: @pacman100
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc and @younesbelkada
Documentation: @stevhliu and @MKhalusova
HF projects: HF projects:
- accelerate: [different repo](https://github.com/huggingface/accelerate)
- datasets: [different repo](https://github.com/huggingface/datasets) - datasets: [different repo](https://github.com/huggingface/datasets)
- diffusers: [different repo](https://github.com/huggingface/diffusers)
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers) - rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
Examples: Maintained examples (not research project or legacy):
- maintained examples (not research project or legacy): @sgugger, @patil-suraj - Flax: @sanchit-gandhi
- research_projects/bert-loses-patience: @JetRunner - PyTorch: See Models above and tag the person corresponding to the modality of the example.
- research_projects/distillation: @VictorSanh - TensorFlow: @Rocketknight1
--> -->

79
.github/actions/post-slack/action.yml vendored Normal file
View File

@ -0,0 +1,79 @@
name: Send message to slack
description: 'Send results to slack'
author: 'Hugging Face'
inputs:
slack_channel:
required: true
type: string
title:
required: true
type: string
status:
required: true
type: string
slack_token:
required: true
type: string
runs:
using: "composite"
steps:
- name: Create content to post
id: create-message
run: |
if [ "${{ inputs.status }}" == "success" ]; then
echo STATUS_MESSAGE='🟢 Tests are passing!' >> $GITHUB_ENV
else
echo STATUS_MESSAGE='🔴 Tests failed! Please check the GitHub action link below' >> $GITHUB_ENV
fi
shell: bash
- name: Post Canceled results Slack channel
id: post-slack
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
with:
# Slack channel id, channel name, or user id to post message.
# See also: https://api.slack.com/methods/chat.postMessage#channels
channel-id: ${{ inputs.slack_channel }}
# For posting a rich message using Block Kit
payload: |
{
"text": "${{ inputs.title }}",
"blocks": [
{
"type": "header",
"text": {
"type": "plain_text",
"text": "${{ inputs.title }}"
}
},
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "${{ env.STATUS_MESSAGE }}"
}
},
{
"type": "section",
"text": {"type": "mrkdwn", "text": "*Click the button for more details about the commit*"},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Commit results"},
"url": "${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
}
},
{
"type": "section",
"text": {"type": "mrkdwn", "text": "*Click here for more details about the action ran*"},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results"},
"url": "${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}"
}
}
]
}
env:
SLACK_BOT_TOKEN: ${{ inputs.slack_token }}

View File

@ -16,7 +16,6 @@ requirements:
- pip - pip
- numpy >=1.17 - numpy >=1.17
- dataclasses - dataclasses
- importlib_metadata
- huggingface_hub - huggingface_hub
- packaging - packaging
- filelock - filelock
@ -25,13 +24,14 @@ requirements:
- sacremoses - sacremoses
- regex !=2019.12.17 - regex !=2019.12.17
- protobuf - protobuf
- tokenizers >=0.10.1,<0.11.0 - tokenizers >=0.11.1,!=0.11.3,<0.13
- pyyaml >=5.1 - pyyaml >=5.1
- safetensors
- fsspec
run: run:
- python - python
- numpy >=1.17 - numpy >=1.17
- dataclasses - dataclasses
- importlib_metadata
- huggingface_hub - huggingface_hub
- packaging - packaging
- filelock - filelock
@ -40,8 +40,10 @@ requirements:
- sacremoses - sacremoses
- regex !=2019.12.17 - regex !=2019.12.17
- protobuf - protobuf
- tokenizers >=0.10.1,<0.11.0 - tokenizers >=0.11.1,!=0.11.3,<0.13
- pyyaml >=5.1 - pyyaml >=5.1
- safetensors
- fsspec
test: test:
imports: imports:

View File

@ -1,6 +1,6 @@
# Troubleshooting # Troubleshooting
This is a document explaining how to deal with various issues on github-actions self-hosted CI. The entries may include actually solutions or pointers to Issues that cover those. This is a document explaining how to deal with various issues on github-actions self-hosted CI. The entries may include actual solutions or pointers to Issues that cover those.
## GitHub Actions (self-hosted CI) ## GitHub Actions (self-hosted CI)

80
.github/workflows/add-model-like.yml vendored Normal file
View File

@ -0,0 +1,80 @@
name: Add model like runner
on:
push:
branches:
- none # put main here when this is fixed
#pull_request:
# paths:
# - "src/**"
# - "tests/**"
# - ".github/**"
# types: [opened, synchronize, reopened]
jobs:
run_tests_templates_like:
name: "Add new model like template tests"
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v4
- name: Install dependencies
run: |
sudo apt -y update && sudo apt install -y libsndfile1-dev
- name: Load cached virtual environment
uses: actions/cache@v2
id: cache
with:
path: ~/venv/
key: v4-tests_model_like-${{ hashFiles('setup.py') }}
- name: Create virtual environment on cache miss
if: steps.cache.outputs.cache-hit != 'true'
run: |
python -m venv ~/venv && . ~/venv/bin/activate
pip install --upgrade pip!=21.3
pip install -e .[dev]
- name: Check transformers location
# make `transformers` available as package (required since we use `-e` flag) and check it's indeed from the repo.
run: |
. ~/venv/bin/activate
python setup.py develop
transformers_install=$(pip list -e | grep transformers)
transformers_install_array=($transformers_install)
transformers_loc=${transformers_install_array[-1]}
transformers_repo_loc=$(pwd .)
if [ "$transformers_loc" != "$transformers_repo_loc" ]; then
echo "transformers is from $transformers_loc but it shoud be from $transformers_repo_loc/src."
echo "A fix is required. Stop testing."
exit 1
fi
- name: Create model files
run: |
. ~/venv/bin/activate
transformers-cli add-new-model-like --config_file tests/fixtures/add_distilbert_like_config.json --path_to_repo .
make style
make fix-copies
- name: Run all PyTorch modeling test
run: |
. ~/venv/bin/activate
python -m pytest -n 2 --dist=loadfile -s --make-reports=tests_new_models tests/bert_new/test_modeling_bert_new.py
- name: Run style changes
run: |
. ~/venv/bin/activate
make style && make quality && make repo-consistency
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_new_models/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: run_all_tests_new_models_test_reports
path: reports/tests_new_models

View File

@ -0,0 +1,333 @@
name: Build docker images (scheduled)
on:
push:
branches:
- build_ci_docker_image*
repository_dispatch:
workflow_call:
inputs:
image_postfix:
required: true
type: string
schedule:
- cron: "17 0 * * *"
concurrency:
group: docker-images-builds
cancel-in-progress: false
jobs:
latest-docker:
name: "Latest PyTorch + TensorFlow [dev]"
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-all-latest-gpu-push-ci
latest-torch-deepspeed-docker:
name: "Latest PyTorch + DeepSpeed"
runs-on: [intel-cpu, 8-cpu, ci]
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu${{ inputs.image_postfix }}
# Can't build 2 images in a single job `latest-torch-deepspeed-docker` (for `nvcr.io/nvidia`)
latest-torch-deepspeed-docker-for-push-ci-daily-build:
name: "Latest PyTorch + DeepSpeed (Push CI - Daily Build)"
runs-on: [intel-cpu, 8-cpu, ci]
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
doc-builder:
name: "Doc builder"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-doc-builder
push: true
tags: huggingface/transformers-doc-builder
latest-pytorch:
name: "Latest PyTorch [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: [intel-cpu, 8-cpu, ci]
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-gpu
latest-pytorch-amd:
name: "Latest PyTorch (AMD) [dev]"
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-amd-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-amd-gpu-push-ci
latest-tensorflow:
name: "Latest TensorFlow [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-tensorflow-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-tensorflow-gpu
latest-pytorch-deepspeed-amd:
name: "PyTorch + DeepSpeed (AMD) [dev]"
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu-push-ci
latest-quantization-torch-docker:
name: "Latest Pytorch + Quantization [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-quantization-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-quantization-latest-gpu${{ inputs.image_postfix }}

View File

@ -0,0 +1,85 @@
name: Build docker images (Nightly CI)
on:
workflow_call:
push:
branches:
- build_nightly_ci_docker_image*
concurrency:
group: docker-images-builds
cancel-in-progress: false
jobs:
latest-with-torch-nightly-docker:
name: "Nightly PyTorch + Stable TensorFlow"
runs-on: ubuntu-22.04
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
PYTORCH=pre
push: true
tags: huggingface/transformers-all-latest-torch-nightly-gpu
nightly-torch-deepspeed-docker:
name: "Nightly PyTorch + DeepSpeed"
runs-on: ubuntu-22.04
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-pytorch-deepspeed-nightly-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-nightly-gpu

View File

@ -0,0 +1,99 @@
name: Build docker images (Past CI)
on:
push:
branches:
- build_past_ci_docker_image*
concurrency:
group: docker-images-builds
cancel-in-progress: false
jobs:
past-pytorch-docker:
name: "Past PyTorch Docker"
strategy:
fail-fast: false
matrix:
version: ["1.13", "1.12", "1.11"]
runs-on: ubuntu-22.04
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v4
-
id: get-base-image
name: Get Base Image
env:
framework_version: ${{ matrix.version }}
run: |
echo "base_image=$(python3 -c 'import os; from utils.past_ci_versions import past_versions_testing; base_image = past_versions_testing["pytorch"][os.environ["framework_version"]]["base_image"]; print(base_image)')" >> $GITHUB_OUTPUT
-
name: Print Base Image
run: |
echo ${{ steps.get-base-image.outputs.base_image }}
-
name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-past-gpu
build-args: |
REF=main
BASE_DOCKER_IMAGE=${{ steps.get-base-image.outputs.base_image }}
FRAMEWORK=pytorch
VERSION=${{ matrix.version }}
push: true
tags: huggingface/transformers-pytorch-past-${{ matrix.version }}-gpu
past-tensorflow-docker:
name: "Past TensorFlow Docker"
strategy:
fail-fast: false
matrix:
version: ["2.11", "2.10", "2.9", "2.8", "2.7", "2.6", "2.5"]
runs-on: ubuntu-22.04
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v4
-
id: get-base-image
name: Get Base Image
env:
framework_version: ${{ matrix.version }}
run: |
echo "base_image=$(python3 -c 'import os; from utils.past_ci_versions import past_versions_testing; base_image = past_versions_testing["tensorflow"][os.environ["framework_version"]]["base_image"]; print(base_image)')" >> $GITHUB_OUTPUT
-
name: Print Base Image
run: |
echo ${{ steps.get-base-image.outputs.base_image }}
-
name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-past-gpu
build-args: |
REF=main
BASE_DOCKER_IMAGE=${{ steps.get-base-image.outputs.base_image }}
FRAMEWORK=tensorflow
VERSION=${{ matrix.version }}
push: true
tags: huggingface/transformers-tensorflow-past-${{ matrix.version }}-gpu

View File

@ -0,0 +1,22 @@
name: Build documentation
on:
push:
branches:
- main
- doc-builder*
- v*-release
- use_templates
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
with:
commit_sha: ${{ github.sha }}
package: transformers
notebook_folder: transformers_doc
languages: de en es fr hi it ko pt tr zh ja te
custom_container: huggingface/transformers-doc-builder
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@ -0,0 +1,18 @@
name: Build PR Documentation
on:
pull_request:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
with:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: transformers
languages: de en es fr hi it ko pt tr zh ja te
custom_container: huggingface/transformers-doc-builder

82
.github/workflows/check_tiny_models.yml vendored Normal file
View File

@ -0,0 +1,82 @@
name: Check Tiny Models
on:
push:
branches:
- check_tiny_models*
repository_dispatch:
schedule:
- cron: "0 2 * * *"
env:
TOKEN: ${{ secrets.TRANSFORMERS_HUB_BOT_HF_TOKEN }}
jobs:
check_tiny_models:
name: Check tiny models
runs-on: ubuntu-22.04
steps:
- name: Checkout transformers
uses: actions/checkout@v4
with:
fetch-depth: 2
- uses: actions/checkout@v4
- name: Set up Python 3.8
uses: actions/setup-python@v4
with:
# Semantic version range syntax or exact version of a Python version
python-version: '3.8'
# Optional - x64 or x86 architecture, defaults to x64
architecture: 'x64'
- name: Install
run: |
sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng cmake
pip install --upgrade pip
python -m pip install -U .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video,tf-cpu]
pip install tensorflow_probability
python -m pip install -U 'natten<0.15.0'
- name: Create all tiny models (locally)
run: |
python utils/create_dummy_models.py tiny_local_models --all --num_workers 2
- name: Local tiny model reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: tiny_local_model_creation_reports
path: tiny_local_models/reports
# GitHub-hosted runners have 2-core CPUs
- name: Run pipeline tests against all new (local) tiny models
run: |
OMP_NUM_THREADS=1 TRANSFORMERS_TINY_MODEL_PATH=tiny_local_models python -m pytest --max-worker-restart=0 -n 2 --dist=loadfile -s -rA --make-reports=tests_pipelines tests/models -m is_pipeline_test -k "test_pipeline_" | tee tests_output.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: tiny_local_model_creation_reports
path: reports/tests_pipelines
- name: Create + Upload tiny models for new model architecture(s)
run: |
python utils/update_tiny_models.py --num_workers 2
- name: Full report
run: cat tiny_models/reports/tiny_model_creation_report.json
- name: Failure report
run: cat tiny_models/reports/simple_failed_report.txt
- name: Summary report
run: cat tiny_models/reports/tiny_model_summary.json
- name: New tiny model creation reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: tiny_model_creation_reports
path: tiny_models/reports

81
.github/workflows/doctest_job.yml vendored Normal file
View File

@ -0,0 +1,81 @@
name: Doctest job
on:
workflow_call:
inputs:
job_splits:
required: true
type: string
split_keys:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
RUN_SLOW: yes
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
jobs:
run_doctests:
name: " "
strategy:
fail-fast: false
matrix:
split_keys: ${{ fromJson(inputs.split_keys) }}
runs-on: [single-gpu, nvidia-gpu, t4, ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .[flax]
- name: GPU visibility
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
run: pip freeze
- name: Get doctest files
working-directory: /transformers
run: |
echo "${{ toJson(fromJson(inputs.job_splits)[matrix.split_keys]) }}" > doc_tests.txt
cat doc_tests.txt
- name: Set `split_keys`
shell: bash
run: |
echo "${{ matrix.split_keys }}"
split_keys=${{ matrix.split_keys }}
split_keys=${split_keys//'/'/'_'}
echo "split_keys"
echo "split_keys=$split_keys" >> $GITHUB_ENV
- name: Run doctests
working-directory: /transformers
run: |
cat doc_tests.txt
python3 -m pytest -v --make-reports doc_tests_gpu_${{ env.split_keys }} --doctest-modules $(cat doc_tests.txt) -sv --doctest-continue-on-failure --doctest-glob="*.md"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/doc_tests_gpu_${{ env.split_keys }}/failures_short.txt
- name: "Test suite reports artifacts: doc_tests_gpu_test_reports_${{ env.split_keys }}"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: doc_tests_gpu_test_reports_${{ env.split_keys }}
path: /transformers/reports/doc_tests_gpu_${{ env.split_keys }}

View File

@ -3,40 +3,85 @@ name: Doctests
on: on:
push: push:
branches: branches:
- doctest* - run_doctest*
repository_dispatch: repository_dispatch:
schedule: schedule:
- cron: "0 0 * * *" - cron: "17 2 * * *"
env: env:
HF_HOME: /mnt/cache NUM_SLICES: 3
TRANSFORMERS_IS_CI: yes
RUN_SLOW: yes
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
PYTEST_TIMEOUT: 600
jobs: jobs:
run_doctests: setup:
runs-on: [self-hosted, docker-gpu, single-gpu] name: Setup
runs-on: [single-gpu, nvidia-gpu, t4, ci]
container: container:
image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
job_splits: ${{ steps.set-matrix.outputs.job_splits }}
split_keys: ${{ steps.set-matrix.outputs.split_keys }}
steps: steps:
- name: Launcher docker - name: Update clone
uses: actions/checkout@v2 working-directory: /transformers
- name: NVIDIA-SMI
run: | run: |
nvidia-smi git fetch && git checkout ${{ github.sha }}
- name: Install dependencies - name: Reinstall transformers in edit mode (remove the one installed during docker image build)
run: | working-directory: /transformers
apt -y update && apt install -y libsndfile1-dev run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
pip install --upgrade pip
pip install .[dev]
- name: Run doctests - name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Check values for matrix
working-directory: /transformers
run: | run: |
pytest --doctest-modules $(cat utils/documentation_tests.txt) -sv --doctest-continue-on-failure python3 utils/split_doctest_jobs.py
python3 utils/split_doctest_jobs.py --only_return_keys --num_splits ${{ env.NUM_SLICES }}
- id: set-matrix
working-directory: /transformers
name: Set values for matrix
run: |
echo "job_splits=$(python3 utils/split_doctest_jobs.py)" >> $GITHUB_OUTPUT
echo "split_keys=$(python3 utils/split_doctest_jobs.py --only_return_keys --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
call_doctest_job:
name: "Call doctest jobs"
needs: setup
strategy:
fail-fast: false
matrix:
split_keys: ${{ fromJson(needs.setup.outputs.split_keys) }}
uses: ./.github/workflows/doctest_job.yml
with:
job_splits: ${{ needs.setup.outputs.job_splits }}
split_keys: ${{ toJson(matrix.split_keys) }}
secrets: inherit
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [call_doctest_job]
steps:
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
# Use `CI_SLACK_CHANNEL_DUMMY_TESTS` when doing experimentation
SLACK_REPORT_CHANNEL: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_DOCS }}
run: |
pip install slack_sdk
python utils/notification_service_doc_tests.py
- name: "Upload results"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: doc_test_results
path: doc_test_results

View File

@ -1,46 +0,0 @@
name: Torch hub integration
on:
push:
branches:
- "*"
jobs:
torch_hub_integration:
runs-on: ubuntu-latest
env:
# TODO quickfix but may need more investigation
ACTIONS_ALLOW_UNSECURE_COMMANDS: True
steps:
# no checkout necessary here.
- name: Extract branch name
run: echo "::set-env name=BRANCH::${GITHUB_REF#refs/heads/}"
- name: Check branch name
run: echo $BRANCH
- name: Set up Python
uses: actions/setup-python@v1
with:
python-version: 3.7
- name: Loading cache
uses: actions/cache@v2
id: cache
with:
path: ~/.cache/pip
key: v0-torch_hub-${{ hashFiles('setup.py') }}
- name: Install dependencies
run: |
pip install --upgrade pip
# install torch-hub specific dependencies
pip install -e git+https://github.com/huggingface/transformers.git#egg=transformers[torchhub]
# no longer needed
pip uninstall -y transformers
#- name: Torch hub list
# run: |
# python -c "import torch; print(torch.hub.list('huggingface/transformers:$BRANCH'))"
#- name: Torch hub help
# run: |
# python -c "import torch; print(torch.hub.help('huggingface/transformers:$BRANCH', 'modelForSequenceClassification'))"

View File

@ -1,46 +1,51 @@
name: Model templates runner name: Model templates runner
on: on:
push: repository_dispatch:
branches: schedule:
- master - cron: "0 2 * * *"
pull_request:
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
types: [assigned, opened, synchronize, reopened]
jobs: jobs:
run_tests_templates: run_tests_templates:
runs-on: ubuntu-latest runs-on: ubuntu-22.04
steps: steps:
- name: Checkout repository - name: Checkout repository
uses: actions/checkout@v1 uses: actions/checkout@v4
- name: Install Python
uses: actions/setup-python@v1
with:
python-version: 3.6
- name: Loading cache.
uses: actions/cache@v2
id: cache
with:
path: ~/.cache/pip
key: v1.2-tests_templates
restore-keys: |
v1.2-tests_templates-${{ hashFiles('setup.py') }}
v1.2-tests_templates
- name: Install dependencies - name: Install dependencies
run: | run: |
pip install --upgrade pip!=21.3
sudo apt -y update && sudo apt install -y libsndfile1-dev sudo apt -y update && sudo apt install -y libsndfile1-dev
pip install .[dev]
- name: Load cached virtual environment
uses: actions/cache@v2
id: cache
with:
path: ~/venv/
key: v4-tests_templates-${{ hashFiles('setup.py') }}
- name: Create virtual environment on cache miss
if: steps.cache.outputs.cache-hit != 'true'
run: |
python -m venv ~/venv && . ~/venv/bin/activate
pip install --upgrade pip!=21.3
pip install -e .[dev]
- name: Check transformers location
# make `transformers` available as package (required since we use `-e` flag) and check it's indeed from the repo.
run: |
. ~/venv/bin/activate
python setup.py develop
transformer_loc=$(pip show transformers | grep "Location: " | cut -c11-)
transformer_repo_loc=$(pwd .)
if [ "$transformer_loc" != "$transformer_repo_loc/src" ]; then
echo "transformers is from $transformer_loc but it shoud be from $transformer_repo_loc/src."
echo "A fix is required. Stop testing."
exit 1
fi
- name: Create model files - name: Create model files
run: | run: |
. ~/venv/bin/activate
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/encoder-bert-tokenizer.json --path=templates/adding_a_new_model transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/encoder-bert-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/pt-encoder-bert-tokenizer.json --path=templates/adding_a_new_model transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/pt-encoder-bert-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/standalone.json --path=templates/adding_a_new_model transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/standalone.json --path=templates/adding_a_new_model
@ -56,20 +61,21 @@ jobs:
- name: Run all non-slow tests - name: Run all non-slow tests
run: | run: |
. ~/venv/bin/activate
python -m pytest -n 2 --dist=loadfile -s --make-reports=tests_templates tests/*template* python -m pytest -n 2 --dist=loadfile -s --make-reports=tests_templates tests/*template*
- name: Run style changes - name: Run style changes
run: | run: |
git fetch origin master:master . ~/venv/bin/activate
make style && make quality make style && make quality && make repo-consistency
- name: Failure short reports - name: Failure short reports
if: ${{ always() }} if: ${{ always() }}
run: cat reports/tests_templates_failures_short.txt run: cat reports/tests_templates/failures_short.txt
- name: Test suite reports artifacts - name: Test suite reports artifacts
if: ${{ always() }} if: ${{ always() }}
uses: actions/upload-artifact@v2 uses: actions/upload-artifact@v4
with: with:
name: run_all_tests_templates_test_reports name: run_all_tests_templates_test_reports
path: reports path: reports/tests_templates

102
.github/workflows/model_jobs.yml vendored Normal file
View File

@ -0,0 +1,102 @@
name: model jobs
on:
workflow_call:
inputs:
folder_slices:
required: true
type: string
machine_type:
required: true
type: string
slice_id:
required: true
type: number
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
jobs:
model_job:
name: " "
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
runs-on: ['${{ inputs.machine_type }}', nvidia-gpu, t4, daily-ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Echo input and matrix info
shell: bash
run: |
echo "${{ inputs.folder_slices }}"
echo "${{ matrix.folders }}"
echo "${{ toJson(fromJson(inputs.folder_slices)[inputs.slice_id]) }}"
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Run test
shell: bash
run: |
mkdir -p /transformers/reports/${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }}
echo "hello" > /transformers/reports/${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }}/hello.txt
echo "${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }}"
- name: "Test suite reports artifacts: ${{ inputs.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ inputs.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }}

View File

@ -0,0 +1,137 @@
name: Slow tests on important models (on Push - A10)
on:
push:
branches: [ main ]
env:
IS_GITHUB_CI: "1"
OUTPUT_SLACK_CHANNEL_ID: "C06L2SGMEEA"
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes # For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
get_modified_models:
name: "Get all modified files"
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Check out code
uses: actions/checkout@v4
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@3f54ebb830831fc121d3263c1857cfbdc310cdb9 #v42
with:
files: src/transformers/models/**
- name: Run step if only the files listed above change
if: steps.changed-files.outputs.any_changed == 'true'
id: set-matrix
env:
ALL_CHANGED_FILES: ${{ steps.changed-files.outputs.all_changed_files }}
run: |
model_arrays=()
for file in $ALL_CHANGED_FILES; do
model_path="${file#*models/}"
model_path="models/${model_path%%/*}"
if grep -qFx "$model_path" utils/important_models.txt; then
# Append the file to the matrix string
model_arrays+=("$model_path")
fi
done
matrix_string=$(printf '"%s", ' "${model_arrays[@]}" | sed 's/, $//')
echo "matrix=[$matrix_string]" >> $GITHUB_OUTPUT
test_modified_files:
needs: get_modified_models
name: Slow & FA2 tests
runs-on: ubuntu-latest
runs-on: [single-gpu, nvidia-gpu, a10, ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
if: ${{ needs.get_modified_models.outputs.matrix != '[]' && needs.get_modified_models.outputs.matrix != '' && fromJson(needs.get_modified_models.outputs.matrix)[0] != null }}
strategy:
fail-fast: false
matrix:
model-name: ${{ fromJson(needs.get_modified_models.outputs.matrix) }}
steps:
- name: Check out code
uses: actions/checkout@v4
- name: Install locally transformers & other libs
run: |
apt install sudo
sudo -H pip install --upgrade pip
sudo -H pip uninstall -y transformers
sudo -H pip install -U -e ".[testing]"
MAX_JOBS=4 pip install flash-attn --no-build-isolation
pip install bitsandbytes
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Show installed libraries and their versions
run: pip freeze
- name: Run FA2 tests
id: run_fa2_tests
run:
pytest -m "flash_attn_test" --make-reports=${{ matrix.model-name }}_fa2_tests/ tests/${{ matrix.model-name }}/test_modeling_*
- name: "Test suite reports artifacts: ${{ matrix.model-name }}_fa2_tests"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.model-name }}_fa2_tests
path: /transformers/reports/${{ matrix.model-name }}_fa2_tests
- name: Post to Slack
if: always()
uses: ./.github/actions/post-slack
with:
slack_channel: ${{ env.OUTPUT_SLACK_CHANNEL_ID }}
title: 🤗 Results of the FA2 tests - ${{ matrix.model-name }}
status: ${{ steps.run_fa2_tests.conclusion}}
slack_token: ${{ secrets.CI_SLACK_BOT_TOKEN }}
- name: Run integration tests
id: run_integration_tests
if: always()
run:
pytest -k "IntegrationTest" --make-reports=tests_integration_${{ matrix.model-name }} tests/${{ matrix.model-name }}/test_modeling_*
- name: "Test suite reports artifacts: tests_integration_${{ matrix.model-name }}"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: tests_integration_${{ matrix.model-name }}
path: /transformers/reports/tests_integration_${{ matrix.model-name }}
- name: Post to Slack
if: always()
uses: ./.github/actions/post-slack
with:
slack_channel: ${{ env.OUTPUT_SLACK_CHANNEL_ID }}
title: 🤗 Results of the Integration tests - ${{ matrix.model-name }}
status: ${{ steps.run_integration_tests.conclusion}}
slack_token: ${{ secrets.CI_SLACK_BOT_TOKEN }}
- name: Tailscale # In order to be able to SSH when a test fails
if: ${{ failure() || runner.debug == '1'}}
uses: huggingface/tailscale-action@ssh-improvments
with:
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
waitForSSH: true

View File

@ -12,7 +12,7 @@ env:
jobs: jobs:
build_and_package: build_and_package:
runs-on: ubuntu-latest runs-on: ubuntu-22.04
defaults: defaults:
run: run:
shell: bash -l {0} shell: bash -l {0}

View File

@ -0,0 +1,134 @@
name: Self-hosted runner (nightly-past-ci-caller)
on:
schedule:
# 2:17 am on each Sunday and Thursday
- cron: "17 2 * * 0,4"
push:
branches:
- run_nightly_ci*
- run_past_ci*
jobs:
build_nightly_ci_images:
name: Build Nightly CI Docker Images
if: (github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_nightly_ci'))
uses: ./.github/workflows/build-nightly-ci-docker-images.yml
secrets: inherit
run_nightly_ci:
name: Nightly CI
needs: [build_nightly_ci_images]
uses: ./.github/workflows/self-nightly-scheduled.yml
secrets: inherit
run_past_ci_pytorch_1-13:
name: PyTorch 1.13
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_nightly_ci]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.13"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_pytorch_1-12:
name: PyTorch 1.12
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_past_ci_pytorch_1-13]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.12"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_pytorch_1-11:
name: PyTorch 1.11
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_past_ci_pytorch_1-12]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.11"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-11:
name: TensorFlow 2.11
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_pytorch_1-11]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.11"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-10:
name: TensorFlow 2.10
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-11]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.10"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-9:
name: TensorFlow 2.9
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-10]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.9"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-8:
name: TensorFlow 2.8
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-9]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.8"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-7:
name: TensorFlow 2.7
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-8]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.7"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-6:
name: TensorFlow 2.6
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-7]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.6"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-5:
name: TensorFlow 2.5
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-6]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.5"
sha: ${{ github.sha }}
secrets: inherit

View File

@ -1,257 +1,290 @@
name: Self-hosted runner; Nightly (scheduled) name: Self-hosted runner (nightly-ci)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on: on:
push: repository_dispatch:
branches: workflow_call:
- nightly_ci*
repository_dispatch:
schedule:
- cron: "0 0 */3 * *"
env: env:
HF_HOME: /mnt/cache HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes TRANSFORMERS_IS_CI: yes
RUN_SLOW: yes OMP_NUM_THREADS: 8
OMP_NUM_THREADS: 16 MKL_NUM_THREADS: 8
MKL_NUM_THREADS: 16 RUN_SLOW: yes
PYTEST_TIMEOUT: 600 HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }} SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
jobs: jobs:
run_all_tests_torch_gpu: setup:
runs-on: [self-hosted, docker-gpu, single-gpu] name: Setup
container: strategy:
image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime matrix:
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ machine_type: [single-gpu, multi-gpu]
steps: runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
- name: Launcher docker container:
uses: actions/checkout@v2 image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: NVIDIA-SMI - name: Cleanup
run: | working-directory: /transformers
nvidia-smi run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Install dependencies - name: Show installed libraries and their versions
run: | working-directory: /transformers
apt -y update && apt install -y libsndfile1-dev git run: pip freeze
pip install --upgrade pip
pip install .[integrations,sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu111/torch_nightly.html -U
- name: Are GPUs recognized by our DL frameworks - id: set-matrix
run: | name: Identify models to test
python -c "import torch; print('Cuda available:', torch.cuda.is_available())" working-directory: /transformers/tests
python -c "import torch; print('Cuda version:', torch.version.cuda)" run: |
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())" echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())"
- name: Run all tests on GPU - name: NVIDIA-SMI
run: | run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_gpu tests nvidia-smi
- name: Failure short reports run_tests_single_gpu:
if: ${{ always() }} name: Model tests
run: cat reports/tests_torch_gpu_failures_short.txt strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Run examples tests on GPU - name: Update clone
if: ${{ always() }} working-directory: /transformers
env: run: git fetch && git checkout ${{ github.sha }}
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
RUN_SLOW: yes
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
run: |
pip install -r examples/pytorch/_tests_requirements.txt
python -m pytest -n 1 -v --dist=loadfile --make-reports=examples_torch_gpu examples
- name: Failure short reports - name: Reinstall transformers in edit mode (remove the one installed during docker image build)
if: ${{ always() }} working-directory: /transformers
run: cat reports/examples_torch_gpu_failures_short.txt run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Run all pipeline tests on GPU - name: NVIDIA-SMI
if: ${{ always() }} run: |
env: nvidia-smi
RUN_PIPELINE_TESTS: yes
run: |
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_torch_pipeline_gpu tests
- name: Failure short reports - name: Environment
if: ${{ always() }} working-directory: /transformers
run: cat reports/tests_torch_pipeline_gpu_failures_short.txt run: |
python3 utils/print_env.py
- name: Test suite reports artifacts - name: Show installed libraries and their versions
if: ${{ always() }} working-directory: /transformers
uses: actions/upload-artifact@v2 run: pip freeze
with:
name: run_all_tests_torch_gpu_test_reports
path: reports
run_all_tests_torch_multi_gpu: - name: Run all tests on GPU
runs-on: [self-hosted, docker-gpu, multi-gpu] working-directory: /transformers
container: run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI - name: Failure short reports
continue-on-error: true if: ${{ failure() }}
run: | continue-on-error: true
nvidia-smi run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Install dependencies - name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly"
run: | if: ${{ always() }}
apt -y update && apt install -y libsndfile1-dev git uses: actions/upload-artifact@v4
pip install --upgrade pip with:
pip install .[integrations,sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm] name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu111/torch_nightly.html -U path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
- name: Are GPUs recognized by our DL frameworks run_tests_multi_gpu:
run: | name: Model tests
python -c "import torch; print('Cuda available:', torch.cuda.is_available())" strategy:
python -c "import torch; print('Cuda version:', torch.version.cuda)" fail-fast: false
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())" matrix:
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())" folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Run all tests on GPU - name: Update clone
env: working-directory: /transformers
MKL_SERVICE_FORCE_INTEL: 1 run: git fetch && git checkout ${{ github.sha }}
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_multi_gpu tests
- name: Failure short reports - name: Reinstall transformers in edit mode (remove the one installed during docker image build)
if: ${{ always() }} working-directory: /transformers
run: cat reports/tests_torch_multi_gpu_failures_short.txt run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Run all pipeline tests on GPU - name: NVIDIA-SMI
if: ${{ always() }} run: |
env: nvidia-smi
RUN_PIPELINE_TESTS: yes
run: |
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_torch_pipeline_multi_gpu tests
- name: Failure short reports - name: Environment
if: ${{ always() }} working-directory: /transformers
run: cat reports/tests_torch_pipeline_multi_gpu_failures_short.txt run: |
python3 utils/print_env.py
- name: Test suite reports artifacts - name: Show installed libraries and their versions
if: ${{ always() }} working-directory: /transformers
uses: actions/upload-artifact@v2 run: pip freeze
with:
name: run_all_tests_torch_multi_gpu_test_reports
path: reports
run_all_tests_torch_cuda_extensions_gpu: - name: Run all tests on GPU
runs-on: [self-hosted, docker-gpu, single-gpu] working-directory: /transformers
container: run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
image: nvcr.io/nvidia/pytorch:21.03-py3
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI - name: Failure short reports
run: | if: ${{ failure() }}
nvidia-smi continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Install dependencies - name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly"
run: | if: ${{ always() }}
apt -y update && apt install -y libaio-dev uses: actions/upload-artifact@v4
pip install --upgrade pip with:
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu111/torch_nightly.html -U name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly
pip install .[testing,deepspeed] path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
pip install git+https://github.com/microsoft/DeepSpeed
- name: Are GPUs recognized by our DL frameworks run_all_tests_torch_cuda_extensions_gpu:
run: | name: Torch CUDA extension tests
python -c "import torch; print('Cuda available:', torch.cuda.is_available())" strategy:
python -c "import torch; print('Cuda version:', torch.version.cuda)" fail-fast: false
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())" matrix:
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())" machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
needs: setup
container:
image: huggingface/transformers-pytorch-deepspeed-nightly-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Run all tests on GPU - name: Reinstall transformers in edit mode (remove the one installed during docker image build)
run: | working-directory: /workspace/transformers
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Failure short reports - name: Remove cached torch extensions
if: ${{ always() }} run: rm -rf /github/home/.cache/torch_extensions/
run: cat reports/tests_torch_cuda_extensions_gpu_failures_short.txt
- name: Test suite reports artifacts # To avoid unknown test failures
if: ${{ always() }} - name: Pre build DeepSpeed *again*
uses: actions/upload-artifact@v2 working-directory: /workspace
with: run: |
name: run_tests_torch_cuda_extensions_gpu_test_reports python3 -m pip uninstall -y deepspeed
path: reports rm -rf DeepSpeed
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
run_all_tests_torch_cuda_extensions_multi_gpu: - name: NVIDIA-SMI
runs-on: [self-hosted, docker-gpu, multi-gpu] run: |
container: nvidia-smi
image: nvcr.io/nvidia/pytorch:21.03-py3
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI - name: Environment
continue-on-error: true working-directory: /workspace/transformers
run: | run: |
nvidia-smi python utils/print_env.py
- name: Install dependencies - name: Show installed libraries and their versions
run: | working-directory: /workspace/transformers
apt -y update && apt install -y libaio-dev run: pip freeze
pip install --upgrade pip
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu111/torch_nightly.html -U
pip install .[testing,deepspeed,fairscale]
pip install git+https://github.com/microsoft/DeepSpeed
- name: Are GPUs recognized by our DL frameworks - name: Run all tests on GPU
run: | working-directory: /workspace/transformers
python -c "import torch; print('Cuda available:', torch.cuda.is_available())" run: |
python -c "import torch; print('Cuda version:', torch.version.cuda)" python -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())"
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())"
- name: Run all tests on GPU - name: Failure short reports
run: | if: ${{ failure() }}
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_cuda_extensions_multi_gpu tests/deepspeed tests/extended continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_cuda_extensions_multi_gpu_failures_short.txt
- name: Test suite reports artifacts - name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_nightly"
if: ${{ always() }} if: ${{ always() }}
uses: actions/upload-artifact@v2 uses: actions/upload-artifact@v4
with: with:
name: run_tests_torch_cuda_extensions_multi_gpu_test_reports name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_nightly
path: reports path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
send_results: send_results:
name: Send results to webhook name: Send results to webhook
runs-on: ubuntu-latest runs-on: ubuntu-22.04
if: always() if: always()
needs: [ needs: [
run_all_tests_torch_gpu, setup,
run_all_tests_torch_multi_gpu, run_tests_single_gpu,
run_all_tests_torch_cuda_extensions_gpu, run_tests_multi_gpu,
run_all_tests_torch_cuda_extensions_multi_gpu run_all_tests_torch_cuda_extensions_gpu
] ]
steps: steps:
- uses: actions/checkout@v2 - name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/download-artifact@v2 - uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Nightly CI
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_ID_PAST_FUTURE: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
run: | # delete-artifact
pip install slack_sdk - uses: geekyeggo/delete-artifact@v2
python utils/notification_service.py scheduled nightly-torch with:
name: |
single-*
multi-*

357
.github/workflows/self-past.yml vendored Normal file
View File

@ -0,0 +1,357 @@
name: Self-hosted runner (past-ci)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
workflow_call:
inputs:
framework:
required: true
type: string
version:
required: true
type: string
# Use this to control the commit to test against
sha:
default: 'main'
required: false
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
jobs:
setup:
name: Setup
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- id: set-matrix
working-directory: /transformers
name: Identify models to test
run: |
cd tests
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
run_tests_single_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Update some packages
working-directory: /transformers
run: python3 -m pip install -U datasets
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install
if: inputs.framework == 'pytorch'
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Save job name
if: ${{ always() }}
shell: bash
run: |
matrix_folders=${matrix_folders/'models_'/'models/'}
job_name="Model tests ($matrix_folders, ${{ matrix.machine_type }})"
echo "$job_name"
echo "$job_name" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/job_name.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Update some packages
working-directory: /transformers
run: python3 -m pip install -U datasets
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install
if: inputs.framework == 'pytorch'
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Save job name
if: ${{ always() }}
shell: bash
run: |
matrix_folders=${matrix_folders/'models_'/'models/'}
job_name="Model tests ($matrix_folders, ${{ matrix.machine_type }})"
echo "$job_name"
echo "$job_name" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/job_name.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_all_tests_torch_cuda_extensions_gpu:
name: Torch CUDA extension tests
if: inputs.framework == 'pytorch'
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
needs: setup
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Update some packages
working-directory: /transformers
run: python3 -m pip install -U datasets
- name: Install
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /
run: |
python3 -m pip uninstall -y deepspeed
rm -rf DeepSpeed
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_all_tests_torch_cuda_extensions_gpu
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
# Create a directory to store test failure tables in the next step
- name: Create directory
run: mkdir test_failure_tables
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Past CI - ${{ inputs.framework }}-${{ inputs.version }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: test_failure_tables_${{ inputs.framework }}-${{ inputs.version }}
path: test_failure_tables
# delete-artifact
- uses: geekyeggo/delete-artifact@v2
with:
name: |
single-*
multi-*

View File

@ -0,0 +1,25 @@
name: Self-hosted runner (AMD mi210 CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi210
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi210
secrets: inherit

View File

@ -0,0 +1,25 @@
name: Self-hosted runner (AMD mi250 CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi250
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi250
secrets: inherit

329
.github/workflows/self-push-amd.yml vendored Normal file
View File

@ -0,0 +1,329 @@
name: Self-hosted runner AMD GPU (push)
on:
workflow_call:
inputs:
gpu_flavor:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 60
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-22.04
steps:
- name: Checkout transformers
uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners amd-mi210-single-gpu-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
setup_gpu:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Fetch the tests to run
working-directory: /transformers
# TODO: add `git-python` in the docker images
run: |
pip install --upgrade git-python
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v4
with:
name: test_fetched
path: /transformers/test_preparation.txt
- id: set-matrix
name: Organize tests into models
working-directory: /transformers
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
# The `test_map` is used to get the actual identified test files under each key.
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
run: |
if [ -f test_map.json ]; then
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
else
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
fi
echo $keys
echo $test_map
echo "matrix=$keys" >> $GITHUB_OUTPUT
echo "test_map=$test_map" >> $GITHUB_OUTPUT
run_tests_amdgpu:
name: Model tests
needs: setup_gpu
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup_gpu.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup_gpu.outputs.matrix) }}
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [
check_runner_status,
check_runners,
setup_gpu,
run_tests_amdgpu,
# run_tests_torch_cuda_extensions_single_gpu,
# run_tests_torch_cuda_extensions_multi_gpu
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Setup status: ${{ needs.setup_gpu.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- uses: actions/checkout@v4
# To avoid failure when multiple commits are merged into `main` in a short period of time.
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
with:
fetch-depth: 20
- name: Update clone using environment variables
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_ID_AMD: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Push CI (AMD) - ${{ inputs.gpu_flavor }}
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
CI_SHA: ${{ env.CI_SHA }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup_gpu.result }}
# We pass `needs.setup_gpu.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup_gpu.outputs.matrix }}"

54
.github/workflows/self-push-caller.yml vendored Normal file
View File

@ -0,0 +1,54 @@
# Used to trigger self-push CI
name: Self-hosted runner (push-caller)
on:
push:
branches:
- main
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
check-for-setup:
runs-on: ubuntu-22.04
name: Check if setup was changed
outputs:
changed: ${{ steps.was_changed.outputs.changed }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: "2"
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@v41
- name: Was setup changed
id: was_changed
run: |
for file in ${{ steps.changed-files.outputs.all_changed_files }}; do
if [ `basename "${file}"` = "setup.py" ]; then
echo "changed=1" >> $GITHUB_OUTPUT
fi
done
build-docker-containers:
needs: check-for-setup
if: (github.event_name == 'push') && (needs.check-for-setup.outputs.changed == '1')
uses: ./.github/workflows/build-docker-images.yml
with:
image_postfix: "-push-ci"
secrets: inherit
run_push_ci:
name: Trigger Push CI
runs-on: ubuntu-22.04
if: ${{ always() }}
needs: build-docker-containers
steps:
- name: Trigger push CI via workflow_run
run: echo "Trigger push CI via workflow_run"

View File

@ -1,9 +1,12 @@
name: Self-hosted runner (push) name: Self-hosted runner (push)
on: on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push: push:
branches: branches:
- master
- ci_* - ci_*
- ci-* - ci-*
paths: paths:
@ -20,482 +23,546 @@ env:
OMP_NUM_THREADS: 8 OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8 MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 60 PYTEST_TIMEOUT: 60
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
jobs: jobs:
run_tests_torch_gpu: setup:
runs-on: [self-hosted, docker-gpu, single-gpu] name: Setup
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
container: container:
image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Fetch the tests to run
working-directory: /transformers
# TODO: add `git-python` in the docker images
run: |
pip install --upgrade git-python
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v4
with:
name: test_fetched
path: /transformers/test_preparation.txt
- id: set-matrix
name: Organize tests into models
working-directory: /transformers
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
# The `test_map` is used to get the actual identified test files under each key.
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
run: |
if [ -f test_map.json ]; then
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
else
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
fi
echo $keys
echo $test_map
echo "matrix=$keys" >> $GITHUB_OUTPUT
echo "test_map=$test_map" >> $GITHUB_OUTPUT
run_tests_single_gpu:
name: Model tests
needs: setup
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps: steps:
- name: Install dependencies # Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: | run: |
apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git CI_BRANCH_PUSH=${{ github.event.ref }}
apt install -y libsndfile1-dev CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
pip install --upgrade pip CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
pip install .[sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm] CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: Launcher docker - name: print environment variables
uses: actions/checkout@v2 run: |
with: echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
fetch-depth: 2 echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI - name: NVIDIA-SMI
run: | run: |
nvidia-smi nvidia-smi
- name: Are GPUs recognized by our DL frameworks - name: Environment
working-directory: /transformers
run: | run: |
python -c "import torch; print('Cuda available:', torch.cuda.is_available())" python3 utils/print_env.py
python -c "import torch; print('Cuda version:', torch.version.cuda)"
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())"
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())"
- name: Fetch the tests to run
run: |
python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests - name: Show installed libraries and their versions
uses: actions/upload-artifact@v2 working-directory: /transformers
with: run: pip freeze
name: test_fetched
path: test_preparation.txt
- name: Run all non-slow tests on GPU - name: Run all non-slow selected tests on GPU
working-directory: /transformers
run: | run: |
if [ -f test_list.txt ]; then python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
python -m pytest -n 2 --dist=loadfile -v --make-reports=tests_torch_gpu $(cat test_list.txt)
fi
- name: Failure short reports - name: Failure short reports
if: ${{ failure() }} if: ${{ failure() }}
run: cat reports/tests_torch_gpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_torch_gpu_test_reports
path: reports
run_tests_flax_gpu:
runs-on: [self-hosted, docker-gpu-test, single-gpu]
container:
image: tensorflow/tensorflow:2.4.1-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Install dependencies
run: |
apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git
pip install --upgrade "jax[cuda111]" -f https://storage.googleapis.com/jax-releases/jax_releases.html
pip install --upgrade pip
pip install .[sklearn,testing,sentencepiece,flax,flax-speech,vision]
- name: Launcher docker
uses: actions/checkout@v2
with:
fetch-depth: 2
- name: NVIDIA-SMI
continue-on-error: true continue-on-error: true
run: | run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
nvidia-smi
- name: Are GPUs recognized by our DL frameworks - name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
run: |
python -c "from jax.lib import xla_bridge; print('GPU available:', xla_bridge.get_backend().platform)"
python -c "import jax; print('Number of GPUs available:', len(jax.local_devices()))"
- name: Fetch the tests to run
run: |
python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v2
with:
name: test_fetched
path: test_preparation.txt
- name: Run all non-slow tests on GPU
run: |
if [ -f test_list.txt ]; then
python -m pytest -n 2 --dist=loadfile -v --make-reports=tests_flax_gpu $(cat test_list.txt)
fi
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_flax_gpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }} if: ${{ always() }}
uses: actions/upload-artifact@v2 uses: actions/upload-artifact@v4
with: with:
name: run_all_tests_flax_gpu_test_reports name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: reports path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
# run_tests_tf_gpu: run_tests_multi_gpu:
# runs-on: [self-hosted, docker-gpu, single-gpu] name: Model tests
# timeout-minutes: 120 needs: setup
# container: # `dummy` means there is no test to run
# image: tensorflow/tensorflow:2.4.1-gpu if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
# options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ strategy:
# steps: fail-fast: false
# - name: Install dependencies matrix:
# run: | folders: ${{ fromJson(needs.setup.outputs.matrix) }}
# apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git machine_type: [multi-gpu]
# pip install --upgrade pip runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
# pip install .[sklearn,testing,onnxruntime,sentencepiece,tf-speech]
#
# - name: Launcher docker
# uses: actions/checkout@v2
# with:
# fetch-depth: 2
#
# - name: NVIDIA-SMI
# run: |
# nvidia-smi
#
# - name: Are GPUs recognized by our DL frameworks
# run: |
# TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
# TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
#
# - name: Fetch the tests to run
# run: |
# python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
#
# - name: Report fetched tests
# uses: actions/upload-artifact@v2
# with:
# name: test_fetched
# path: test_preparation.txt
#
# - name: Run all non-slow tests on GPU
# env:
# TF_NUM_INTRAOP_THREADS: 8
# TF_NUM_INTEROP_THREADS: 1
# run: |
# if [ -f test_list.txt ]; then
# python -m pytest -n 1 --dist=loadfile --make-reports=tests_tf_gpu $(cat test_list.txt)
# fi
#
# - name: Failure short reports
# if: ${{ failure() }}
# run: cat reports/tests_tf_gpu_failures_short.txt
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v2
# with:
# name: run_all_tests_tf_gpu_test_reports
# path: reports
run_tests_torch_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
container: container:
image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps: steps:
- name: Install dependencies # Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: | run: |
apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git CI_BRANCH_PUSH=${{ github.event.ref }}
apt install -y libsndfile1-dev CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
pip install --upgrade pip CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
pip install .[sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm] CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
- name: Launcher docker echo $CI_BRANCH_PUSH
uses: actions/checkout@v2 echo $CI_BRANCH_WORKFLOW_RUN
with: echo $CI_SHA_PUSH
fetch-depth: 2 echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI - name: NVIDIA-SMI
continue-on-error: true
run: | run: |
nvidia-smi nvidia-smi
- name: Are GPUs recognized by our DL frameworks - name: Environment
working-directory: /transformers
run: | run: |
python -c "import torch; print('Cuda available:', torch.cuda.is_available())" python3 utils/print_env.py
python -c "import torch; print('Cuda version:', torch.version.cuda)"
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())"
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())"
- name: Fetch the tests to run - name: Show installed libraries and their versions
run: | working-directory: /transformers
python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt run: pip freeze
- name: Report fetched tests - name: Run all non-slow selected tests on GPU
uses: actions/upload-artifact@v2
with:
name: test_fetched
path: test_preparation.txt
- name: Run all non-slow tests on GPU
env: env:
MKL_SERVICE_FORCE_INTEL: 1 MKL_SERVICE_FORCE_INTEL: 1
working-directory: /transformers
run: | run: |
if [ -f test_list.txt ]; then python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
python -m pytest -n 2 --dist=loadfile -v --make-reports=tests_torch_multi_gpu $(cat test_list.txt)
fi
- name: Failure short reports - name: Failure short reports
if: ${{ failure() }} if: ${{ failure() }}
run: cat reports/tests_torch_multi_gpu_failures_short.txt continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts - name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }} if: ${{ always() }}
uses: actions/upload-artifact@v2 uses: actions/upload-artifact@v4
with: with:
name: run_all_tests_torch_multi_gpu_test_reports name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: reports path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
# run_tests_flax_multi_gpu: run_tests_torch_cuda_extensions_single_gpu:
# runs-on: [self-hosted, docker-gpu, multi-gpu] name: Torch CUDA extension tests
# container: needs: setup
# image: tensorflow/tensorflow:2.4.1-gpu if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
# options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ strategy:
# steps: fail-fast: false
# - name: Install dependencies matrix:
# run: | machine_type: [single-gpu]
# apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
# pip install --upgrade "jax[cuda111]" -f https://storage.googleapis.com/jax-releases/jax_releases.html
# pip install --upgrade pip
# pip install .[sklearn,testing,sentencepiece,flax,flax-speech,vision]
#
# - name: Launcher docker
# uses: actions/checkout@v2
# with:
# fetch-depth: 2
#
# - name: NVIDIA-SMI
# continue-on-error: true
# run: |
# nvidia-smi
#
# - name: Are GPUs recognized by our DL frameworks
# run: |
# python -c "from jax.lib import xla_bridge; print('GPU available:', xla_bridge.get_backend().platform)"
# python -c "import jax; print('Number of GPUs available:', len(jax.local_devices()))"
#
# - name: Fetch the tests to run
# run: |
# python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
#
# - name: Report fetched tests
# uses: actions/upload-artifact@v2
# with:
# name: test_fetched
# path: test_preparation.txt
#
# - name: Run all non-slow tests on GPU
# run: |
# if [ -f test_list.txt ]; then
# python -m pytest -n 2 --dist=loadfile -v --make-reports=tests_flax_multi_gpu $(cat test_list.txt)
# fi
#
# - name: Failure short reports
# if: ${{ failure() }}
# run: cat reports/tests_flax_multi_gpu_failures_short.txt
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v2
# with:
# name: run_all_tests_flax_multi_gpu_test_reports
# path: reports
# run_tests_tf_multi_gpu:
# runs-on: [self-hosted, docker-gpu, multi-gpu]
# timeout-minutes: 120
# container:
# image: tensorflow/tensorflow:2.4.1-gpu
# options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
# steps:
# - name: Install dependencies
# run: |
# apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git
# pip install --upgrade pip
# pip install .[sklearn,testing,onnxruntime,sentencepiece,tf-speech]
#
# - name: Launcher docker
# uses: actions/checkout@v2
# with:
# fetch-depth: 2
#
# - name: NVIDIA-SMI
# run: |
# nvidia-smi
#
# - name: Are GPUs recognized by our DL frameworks
# run: |
# TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
# TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
#
# - name: Fetch the tests to run
# run: |
# python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
#
# - name: Report fetched tests
# uses: actions/upload-artifact@v2
# with:
# name: test_fetched
# path: test_preparation.txt
#
# - name: Run all non-slow tests on GPU
# env:
# TF_NUM_INTRAOP_THREADS: 8
# TF_NUM_INTEROP_THREADS: 1
# run: |
# if [ -f test_list.txt ]; then
# python -m pytest -n 1 --dist=loadfile --make-reports=tests_tf_multi_gpu $(cat test_list.txt)
# fi
#
# - name: Failure short reports
# if: ${{ failure() }}
# run: cat reports/tests_tf_multi_gpu_failures_short.txt
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v2
# with:
# name: run_all_tests_tf_multi_gpu_test_reports
# path: reports
run_tests_torch_cuda_extensions_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu]
container: container:
image: nvcr.io/nvidia/pytorch:21.03-py3 image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps: steps:
- name: Launcher docker # Necessary to get the correct branch name and commit SHA for `workflow_run` event
uses: actions/checkout@v2 # We also take into account the `push` event (we might want to test some changes in a branch)
with: - name: Prepare custom environment variables
fetch-depth: 2 shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI - name: NVIDIA-SMI
run: | run: |
nvidia-smi nvidia-smi
- name: Install dependencies - name: Environment
working-directory: /workspace/transformers
run: | run: |
apt -y update && apt install -y libaio-dev python utils/print_env.py
pip install --upgrade pip
pip install .[testing,deepspeed]
- name: Are GPUs recognized by our DL frameworks - name: Show installed libraries and their versions
run: | working-directory: /workspace/transformers
python -c "import torch; print('Cuda available:', torch.cuda.is_available())" run: pip freeze
python -c "import torch; print('Cuda version:', torch.version.cuda)"
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())"
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())"
- name: Fetch the tests to run
run: |
python utils/tests_fetcher.py --diff_with_last_commit --filters tests/deepspeed tests/extended | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v2
with:
name: test_fetched
path: test_preparation.txt
- name: Run all tests on GPU - name: Run all non-slow selected tests on GPU
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: | run: |
if [ -f test_list.txt ]; then python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
python -m pytest -n 1 --dist=loadfile -v --make-reports=tests_torch_cuda_extensions_gpu $(cat test_list.txt)
fi
- name: Failure short reports - name: Failure short reports
if: ${{ failure() }} if: ${{ failure() }}
run: cat reports/tests_torch_cuda_extensions_gpu_failures_short.txt continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Test suite reports artifacts - name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }} if: ${{ always() }}
uses: actions/upload-artifact@v2 uses: actions/upload-artifact@v4
with: with:
name: run_tests_torch_cuda_extensions_gpu_test_reports name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: reports path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
run_tests_torch_cuda_extensions_multi_gpu: run_tests_torch_cuda_extensions_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu] name: Torch CUDA extension tests
needs: setup
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
strategy:
fail-fast: false
matrix:
machine_type: [multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
container: container:
image: nvcr.io/nvidia/pytorch:21.03-py3 image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps: steps:
- name: Launcher docker # Necessary to get the correct branch name and commit SHA for `workflow_run` event
uses: actions/checkout@v2 # We also take into account the `push` event (we might want to test some changes in a branch)
with: - name: Prepare custom environment variables
fetch-depth: 2 shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI - name: NVIDIA-SMI
continue-on-error: true
run: | run: |
nvidia-smi nvidia-smi
- name: Install dependencies - name: Environment
working-directory: /workspace/transformers
run: | run: |
apt -y update && apt install -y libaio-dev python utils/print_env.py
pip install --upgrade pip
pip install .[testing,deepspeed,fairscale]
- name: Are GPUs recognized by our DL frameworks - name: Show installed libraries and their versions
working-directory: /workspace/transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: | run: |
python -c "import torch; print('Cuda available:', torch.cuda.is_available())" python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
python -c "import torch; print('Cuda version:', torch.version.cuda)"
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())"
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())"
- name: Fetch the tests to run
run: |
python utils/tests_fetcher.py --diff_with_last_commit --filters tests/deepspeed tests/extended | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v2
with:
name: test_fetched
path: test_preparation.txt
- name: Run all tests on GPU
run: |
if [ -f test_list.txt ]; then
python -m pytest -n 1 --dist=loadfile -v --make-reports=tests_torch_cuda_extensions_multi_gpu $(cat test_list.txt)
fi
- name: Failure short reports - name: Failure short reports
if: ${{ failure() }} if: ${{ failure() }}
run: cat reports/tests_torch_cuda_extensions_multi_gpu_failures_short.txt continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Test suite reports artifacts - name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }} if: ${{ always() }}
uses: actions/upload-artifact@v2 uses: actions/upload-artifact@v4
with: with:
name: run_tests_torch_cuda_extensions_multi_gpu_test_reports name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: reports path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
send_results: send_results:
name: Send results to webhook name: Send results to webhook
runs-on: ubuntu-latest runs-on: ubuntu-22.04
if: always() if: always()
needs: [ needs: [
run_tests_torch_gpu, setup,
# run_tests_tf_gpu, run_tests_single_gpu,
run_tests_torch_multi_gpu, run_tests_multi_gpu,
# run_tests_tf_multi_gpu, run_tests_torch_cuda_extensions_single_gpu,
run_tests_torch_cuda_extensions_gpu,
run_tests_torch_cuda_extensions_multi_gpu run_tests_torch_cuda_extensions_multi_gpu
] ]
steps: steps:
- uses: actions/checkout@v2 - name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/download-artifact@v2 # Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- uses: actions/checkout@v4
# To avoid failure when multiple commits are merged into `main` in a short period of time.
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
with:
fetch-depth: 20
- name: Update clone using environment variables
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- uses: actions/download-artifact@v4
- name: Send message to Slack - name: Send message to Slack
env: env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }} CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }} CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: push
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
CI_SHA: ${{ env.CI_SHA }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: | run: |
pip install slack_sdk pip install slack_sdk
python utils/notification_service.py push pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"

View File

@ -0,0 +1,14 @@
name: Self-hosted runner (AMD scheduled CI caller)
on:
schedule:
- cron: "17 2 * * *"
jobs:
run_scheduled_amd_ci:
name: Trigger Scheduled AMD CI
runs-on: ubuntu-22.04
if: ${{ always() }}
steps:
- name: Trigger scheduled AMD CI via workflow_run
run: echo "Trigger scheduled AMD CI via workflow_run"

View File

@ -0,0 +1,19 @@
name: Self-hosted runner (AMD mi210 scheduled CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
run_amd_ci:
name: AMD mi210
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_scheduled_ci_caller')))
uses: ./.github/workflows/self-scheduled-amd.yml
with:
gpu_flavor: mi210
secrets: inherit

View File

@ -0,0 +1,19 @@
name: Self-hosted runner (AMD mi250 scheduled CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
run_amd_ci:
name: AMD mi250
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_scheduled_ci_caller')))
uses: ./.github/workflows/self-scheduled-amd.yml
with:
gpu_flavor: mi250
secrets: inherit

519
.github/workflows/self-scheduled-amd.yml vendored Normal file
View File

@ -0,0 +1,519 @@
name: Self-hosted runner (scheduled-amd)
# Note: For the AMD CI, we rely on a caller workflow and on the workflow_call event to trigger the
# CI in order to run it on both MI210 and MI250, without having to use matrix here which pushes
# us towards the limit of allowed jobs on GitHub Actions.
on:
workflow_call:
inputs:
gpu_flavor:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
# Important note: each job (run_tests_single_gpu, run_tests_multi_gpu, run_examples_gpu, run_pipelines_torch_gpu) requires all the previous jobs before running.
# This is done so that we avoid parallelizing the scheduled tests, to leave available
# runners for the push CI that is running on the same machine.
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-22.04
steps:
- name: Checkout transformers
uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners hf-amd-mi210-ci-1gpu-1,hf-amd-mi250-ci-1gpu-1 --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- id: set-matrix
name: Identify models to test
working-directory: /transformers/tests
run: |
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
run_tests_single_gpu:
name: Single GPU tests
strategy:
max-parallel: 1 # For now, not to parallelize. Can change later if it works well.
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Multi GPU tests
strategy:
max-parallel: 1
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_examples_gpu:
name: Examples tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run examples tests on GPU
working-directory: /transformers
run: |
pip install -r examples/pytorch/_tests_requirements.txt
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_examples_gpu examples/pytorch
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_examples_gpu/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_examples_gpu"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_examples_gpu
path: /transformers/reports/${{ matrix.machine_type }}_examples_gpu
run_pipelines_torch_gpu:
name: PyTorch pipelines tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_torch_pipeline_gpu tests/pipelines
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu
run_tests_torch_deepspeed_gpu:
name: Torch ROCm deepspeed tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
needs: setup
container:
image: huggingface/transformers-pytorch-deepspeed-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_deepspeed_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_deepspeed_gpu/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_deepspeed_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_deepspeed_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_deepspeed_gpu
run_extract_warnings:
name: Extract warnings in CI artifacts
runs-on: ubuntu-22.04
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_examples_gpu,
run_pipelines_torch_gpu,
run_tests_torch_deepspeed_gpu
]
steps:
- name: Checkout transformers
uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Install transformers
run: pip install transformers
- name: Show installed libraries and their versions
run: pip freeze
- name: Create output directory
run: mkdir warnings_in_ci
- uses: actions/download-artifact@v4
with:
path: warnings_in_ci
- name: Show artifacts
run: echo "$(python3 -c 'import os; d = os.listdir(); print(d)')"
working-directory: warnings_in_ci
- name: Extract warnings in CI artifacts
run: |
python3 utils/extract_warnings.py --workflow_run_id ${{ github.run_id }} --output_dir warnings_in_ci --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} --from_gh
echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d) ;print(d)')"
- name: Upload artifact
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: warnings_in_ci
path: warnings_in_ci/selected_warnings.json
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_examples_gpu,
run_pipelines_torch_gpu,
run_tests_torch_deepspeed_gpu,
run_extract_warnings
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID_DAILY_AMD: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_AMD }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_AMD }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Scheduled CI (AMD) - ${{ inputs.gpu_flavor }}
CI_SHA: ${{ github.sha }}
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
sudo apt-get install -y curl
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: test_failure_tables
path: test_failure_tables

View File

@ -0,0 +1,19 @@
name: Self-hosted runner (scheduled)
on:
repository_dispatch:
schedule:
- cron: "17 2 * * *"
push:
branches:
- check_fix_torch_pip
jobs:
torch-pipeline:
name: Torch pipeline CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-pipeline-torch"
secrets: inherit

View File

@ -1,482 +1,438 @@
name: Self-hosted runner (scheduled) name: Self-hosted runner (scheduled)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on: on:
push: workflow_call:
branches: inputs:
- multi_ci_* job:
repository_dispatch: required: true
schedule: type: string
- cron: "0 0 * * *" slack_report_channel:
required: true
type: string
env: env:
HF_HOME: /mnt/cache HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes RUN_SLOW: yes
OMP_NUM_THREADS: 16 # For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
MKL_NUM_THREADS: 16 # This token is created under the bot `hf-transformers-bot`.
PYTEST_TIMEOUT: 600 HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }} SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
NUM_SLICES: 2
jobs: jobs:
run_all_tests_torch_gpu: setup:
runs-on: [self-hosted, docker-gpu, single-gpu] if: contains(fromJSON('["run_tests_gpu", "run_tests_quantization_torch_gpu"]'), inputs.job)
name: Setup
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
container: container:
image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
folder_slices: ${{ steps.set-matrix.outputs.folder_slices }}
slice_ids: ${{ steps.set-matrix.outputs.slice_ids }}
quantization_matrix: ${{ steps.set-matrix-quantization.outputs.quantization_matrix }}
steps: steps:
- name: Launcher docker - name: Update clone
uses: actions/checkout@v2 working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- id: set-matrix
if: ${{ inputs.job == 'run_tests_gpu' }}
name: Identify models to test
working-directory: /transformers/tests
run: |
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
- id: set-matrix-quantization
if: ${{ inputs.job == 'run_tests_quantization_torch_gpu' }}
name: Identify quantization method to test
working-directory: /transformers/tests
run: |
echo "quantization_matrix=$(python3 -c 'import os; tests = os.getcwd(); quantization_tests = os.listdir(os.path.join(tests, "quantization")); d = sorted(list(filter(os.path.isdir, [f"quantization/{x}" for x in quantization_tests]))) ; print(d)')" >> $GITHUB_OUTPUT
- name: NVIDIA-SMI - name: NVIDIA-SMI
run: | run: |
nvidia-smi nvidia-smi
- name: Install dependencies run_tests_gpu:
run: | if: ${{ inputs.job == 'run_tests_gpu' }}
apt -y update && apt install -y libsndfile1-dev git name: " "
pip install --upgrade pip needs: setup
pip install .[integrations,sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm] strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
uses: ./.github/workflows/model_jobs.yml
with:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
machine_type: ${{ matrix.machine_type }}
slice_id: ${{ matrix.slice_id }}
secrets: inherit
- name: Are GPUs recognized by our DL frameworks run_pipelines_torch_gpu:
run: | if: ${{ inputs.job == 'run_pipelines_torch_gpu' }}
python -c "import torch; print('Cuda available:', torch.cuda.is_available())" name: PyTorch pipelines
python -c "import torch; print('Cuda version:', torch.version.cuda)" strategy:
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())" fail-fast: false
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())" matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
container:
image: huggingface/transformers-pytorch-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Run all tests on GPU - name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: | run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_gpu tests nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_torch_pipeline_gpu tests/pipelines
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu
run_pipelines_tf_gpu:
if: ${{ inputs.job == 'run_pipelines_tf_gpu' }}
name: TensorFlow pipelines
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
container:
image: huggingface/transformers-tensorflow-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_tf_pipeline_gpu tests/pipelines
- name: Failure short reports - name: Failure short reports
if: ${{ always() }} if: ${{ always() }}
run: cat reports/tests_torch_gpu_failures_short.txt run: |
cat /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_tf_pipeline_gpu"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_tf_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu
run_examples_gpu:
if: ${{ inputs.job == 'run_examples_gpu' }}
name: Examples directory
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run examples tests on GPU - name: Run examples tests on GPU
if: ${{ always() }} working-directory: /transformers
env:
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
RUN_SLOW: yes
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
run: | run: |
pip install -r examples/pytorch/_tests_requirements.txt pip install -r examples/pytorch/_tests_requirements.txt
python -m pytest -n 1 -v --dist=loadfile --make-reports=examples_torch_gpu examples python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_examples_gpu examples/pytorch
- name: Failure short reports - name: Failure short reports
if: ${{ always() }} if: ${{ failure() }}
run: cat reports/examples_torch_gpu_failures_short.txt
- name: Run all pipeline tests on GPU
if: ${{ always() }}
env:
RUN_PIPELINE_TESTS: yes
run: |
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_torch_pipeline_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_pipeline_gpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_torch_gpu_test_reports
path: reports
run_all_tests_flax_gpu:
runs-on: [self-hosted, docker-gpu-test, single-gpu]
container:
image: tensorflow/tensorflow:2.4.1-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI
continue-on-error: true continue-on-error: true
run: | run: cat /transformers/reports/${{ matrix.machine_type }}_examples_gpu/failures_short.txt
nvidia-smi
- name: Install dependencies - name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_examples_gpu"
run: |
pip install --upgrade pip
pip install --upgrade "jax[cuda111]" -f https://storage.googleapis.com/jax-releases/jax_releases.html
pip install .[flax,integrations,sklearn,testing,sentencepiece,flax-speech,vision]
- name: Are GPUs recognized by our DL frameworks
run: |
python -c "from jax.lib import xla_bridge; print('GPU available:', xla_bridge.get_backend().platform)"
python -c "import jax; print('Number of GPUs available:', len(jax.local_devices()))"
- name: Run all tests on GPU
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_flax_gpu tests
- name: Failure short reports
if: ${{ always() }} if: ${{ always() }}
run: cat reports/tests_flax_gpu_failures_short.txt uses: actions/upload-artifact@v4
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with: with:
name: run_all_tests_flax_gpu_test_reports name: ${{ matrix.machine_type }}_run_examples_gpu
path: reports path: /transformers/reports/${{ matrix.machine_type }}_examples_gpu
run_all_tests_tf_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu]
container:
image: tensorflow/tensorflow:2.4.1-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
apt -y update && apt install -y libsndfile1-dev git
pip install --upgrade pip
pip install .[sklearn,testing,onnx,sentencepiece,tf-speech]
- name: Are GPUs recognized by our DL frameworks
run: |
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
- name: Run all tests on GPU
env:
TF_NUM_INTEROP_THREADS: 1
TF_NUM_INTRAOP_THREADS: 16
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_tf_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_tf_gpu_failures_short.txt
- name: Run all pipeline tests on GPU
if: ${{ always() }}
env:
RUN_PIPELINE_TESTS: yes
TF_NUM_INTEROP_THREADS: 1
TF_NUM_INTRAOP_THREADS: 16
run: |
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_tf_pipeline_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_tf_pipeline_gpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_tf_gpu_test_reports
path: reports
run_all_examples_torch_xla_tpu:
runs-on: [self-hosted, docker-tpu-test, tpu-v3-8]
container:
image: gcr.io/tpu-pytorch/xla:nightly_3.8_tpuvm
options: --privileged -v "/lib/libtpu.so:/lib/libtpu.so" -v /mnt/cache/.cache/huggingface:/mnt/cache/ --shm-size 16G
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: Install dependencies
run: |
pip install --upgrade pip
pip install .[testing]
- name: Are TPUs recognized by our DL frameworks
env:
XRT_TPU_CONFIG: localservice;0;localhost:51011
run: |
python -c "import torch_xla.core.xla_model as xm; print(xm.xla_device())"
- name: Run example tests on TPU
env:
XRT_TPU_CONFIG: "localservice;0;localhost:51011"
MKL_SERVICE_FORCE_INTEL: "1" # See: https://github.com/pytorch/pytorch/issues/37377
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_xla_tpu examples/pytorch/test_xla_examples.py
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_xla_tpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_examples_torch_xla_tpu
path: reports
run_all_tests_torch_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
container:
image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI
continue-on-error: true
run: |
nvidia-smi
- name: Install dependencies
run: |
apt -y update && apt install -y libsndfile1-dev git
pip install --upgrade pip
pip install .[integrations,sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
- name: Are GPUs recognized by our DL frameworks
run: |
python -c "import torch; print('Cuda available:', torch.cuda.is_available())"
python -c "import torch; print('Cuda version:', torch.version.cuda)"
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())"
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())"
- name: Run all tests on GPU
env:
MKL_SERVICE_FORCE_INTEL: 1
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_multi_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_multi_gpu_failures_short.txt
- name: Run all pipeline tests on GPU
if: ${{ always() }}
env:
RUN_PIPELINE_TESTS: yes
run: |
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_torch_pipeline_multi_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_pipeline_multi_gpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_torch_multi_gpu_test_reports
path: reports
run_all_tests_tf_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
container:
image: tensorflow/tensorflow:2.4.1-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI
continue-on-error: true
run: |
nvidia-smi
- name: Install dependencies
run: |
apt -y update && apt install -y libsndfile1-dev git
pip install --upgrade pip
pip install .[sklearn,testing,onnx,sentencepiece,tf-speech]
- name: Are GPUs recognized by our DL frameworks
run: |
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
- name: Run all tests on GPU
env:
TF_NUM_INTEROP_THREADS: 1
TF_NUM_INTRAOP_THREADS: 16
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_tf_multi_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_tf_multi_gpu_failures_short.txt
- name: Run all pipeline tests on GPU
if: ${{ always() }}
env:
RUN_PIPELINE_TESTS: yes
TF_NUM_INTEROP_THREADS: 1
TF_NUM_INTRAOP_THREADS: 16
run: |
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_tf_pipeline_multi_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_tf_pipeline_multi_gpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_tf_multi_gpu_test_reports
path: reports
# run_all_tests_flax_multi_gpu:
# runs-on: [self-hosted, docker-gpu, multi-gpu]
# container:
# image: tensorflow/tensorflow:2.4.1-gpu
# options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
# steps:
# - name: Launcher docker
# uses: actions/checkout@v2
#
# - name: NVIDIA-SMI
# run: |
# nvidia-smi
#
# - name: Install dependencies
# run: |
# pip install --upgrade pip
# pip install --upgrade "jax[cuda111]" -f https://storage.googleapis.com/jax-releases/jax_releases.html
# pip install .[flax,integrations,sklearn,testing,sentencepiece,flax-speech,vision]
#
# - name: Are GPUs recognized by our DL frameworks
# run: |
# python -c "from jax.lib import xla_bridge; print('GPU available:', xla_bridge.get_backend().platform)"
# python -c "import jax; print('Number of GPUs available:', len(jax.local_devices()))"
#
# - name: Run all tests on GPU
# run: |
# python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_flax_gpu tests
#
# - name: Failure short reports
# if: ${{ always() }}
# run: cat reports/tests_flax_gpu_failures_short.txt
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v2
# with:
# name: run_all_tests_flax_gpu_test_reports
# path: reports
run_all_tests_torch_cuda_extensions_gpu: run_all_tests_torch_cuda_extensions_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu] if: ${{ inputs.job == 'run_all_tests_torch_cuda_extensions_gpu' }}
name: Torch CUDA extension tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
container: container:
image: nvcr.io/nvidia/pytorch:21.03-py3 image: huggingface/transformers-pytorch-deepspeed-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps: steps:
- name: Launcher docker - name: Update clone
uses: actions/checkout@v2 working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_DISABLE_NINJA=1 DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI - name: NVIDIA-SMI
run: | run: |
nvidia-smi nvidia-smi
- name: Install dependencies - name: Environment
working-directory: /workspace/transformers
run: | run: |
apt -y update && apt install -y libaio-dev python utils/print_env.py
pip install --upgrade pip
pip install .[testing,deepspeed]
- name: Are GPUs recognized by our DL frameworks - name: Show installed libraries and their versions
run: | working-directory: /workspace/transformers
python -c "import torch; print('Cuda available:', torch.cuda.is_available())" run: pip freeze
python -c "import torch; print('Cuda version:', torch.version.cuda)"
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())"
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())"
- name: Run all tests on GPU - name: Run all tests on GPU
working-directory: /workspace/transformers
run: | run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended python -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports - name: Failure short reports
if: ${{ always() }} if: ${{ failure() }}
run: cat reports/tests_torch_cuda_extensions_gpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_tests_torch_cuda_extensions_gpu_test_reports
path: reports
run_all_tests_torch_cuda_extensions_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
container:
image: nvcr.io/nvidia/pytorch:21.03-py3
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI
continue-on-error: true continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
run_tests_quantization_torch_gpu:
if: ${{ inputs.job == 'run_tests_quantization_torch_gpu' }}
name: " "
needs: setup
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.quantization_matrix) }}
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
container:
image: huggingface/transformers-quantization-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'quantization/'/'quantization_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: | run: |
nvidia-smi nvidia-smi
- name: Install dependencies - name: Environment
working-directory: /transformers
run: | run: |
apt -y update && apt install -y libaio-dev python3 utils/print_env.py
pip install --upgrade pip
pip install .[testing,deepspeed,fairscale]
- name: Are GPUs recognized by our DL frameworks - name: Show installed libraries and their versions
run: | working-directory: /transformers
python -c "import torch; print('Cuda available:', torch.cuda.is_available())" run: pip freeze
python -c "import torch; print('Cuda version:', torch.version.cuda)"
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())"
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())"
- name: Run all tests on GPU - name: Run quantization tests on GPU
working-directory: /transformers
run: | run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_cuda_extensions_multi_gpu tests/deepspeed tests/extended python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_quantization_torch_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports - name: Failure short reports
if: ${{ always() }} if: ${{ failure() }}
run: cat reports/tests_torch_cuda_extensions_multi_gpu_failures_short.txt continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_quantization_torch_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts - name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_quantization_torch_gpu_${{ env.matrix_folders }}"
if: ${{ always() }} if: ${{ always() }}
uses: actions/upload-artifact@v2 uses: actions/upload-artifact@v4
with: with:
name: run_tests_torch_cuda_extensions_multi_gpu_test_reports name: ${{ matrix.machine_type }}_run_tests_quantization_torch_gpu_${{ env.matrix_folders }}
path: reports path: /transformers/reports/${{ matrix.machine_type }}_tests_quantization_torch_gpu_${{ matrix.folders }}
run_extract_warnings:
# Let's only do this for the job `run_tests_gpu` to simplify the (already complex) logic.
if: ${{ always() && inputs.job == 'run_tests_gpu' }}
name: Extract warnings in CI artifacts
runs-on: ubuntu-22.04
needs: [setup, run_tests_gpu]
steps:
- name: Checkout transformers
uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Install transformers
run: pip install transformers
- name: Show installed libraries and their versions
run: pip freeze
- name: Create output directory
run: mkdir warnings_in_ci
- uses: actions/download-artifact@v4
with:
path: warnings_in_ci
- name: Show artifacts
run: echo "$(python3 -c 'import os; d = os.listdir(); print(d)')"
working-directory: warnings_in_ci
- name: Extract warnings in CI artifacts
run: |
python3 utils/extract_warnings.py --workflow_run_id ${{ github.run_id }} --output_dir warnings_in_ci --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} --from_gh
echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d) ;print(d)')"
- name: Upload artifact
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: warnings_in_ci
path: warnings_in_ci/selected_warnings.json
send_results: send_results:
name: Send results to webhook name: Slack Report
runs-on: ubuntu-latest
if: always()
needs: [ needs: [
run_all_tests_torch_gpu, setup,
run_all_tests_tf_gpu, run_tests_gpu,
run_all_tests_torch_multi_gpu, run_pipelines_torch_gpu,
run_all_tests_tf_multi_gpu, run_pipelines_tf_gpu,
run_all_tests_torch_cuda_extensions_gpu, run_examples_gpu,
run_all_tests_torch_cuda_extensions_multi_gpu run_all_tests_torch_cuda_extensions_gpu,
run_tests_quantization_torch_gpu,
run_extract_warnings
] ]
steps: if: ${{ always() }}
- uses: actions/checkout@v2 uses: ./.github/workflows/slack-report.yml
with:
- uses: actions/download-artifact@v2 job: ${{ inputs.job }}
# This would be `skipped` if `setup` is skipped.
- name: Send message to Slack setup_status: ${{ needs.setup.result }}
env: slack_report_channel: ${{ inputs.slack_report_channel }}
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }} # This would be an empty string if `setup` is skipped.
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }} folder_slices: ${{ needs.setup.outputs.folder_slices }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }} quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
secrets: inherit
run: |
pip install slack_sdk
python utils/notification_service.py scheduled

87
.github/workflows/slack-report.yml vendored Normal file
View File

@ -0,0 +1,87 @@
name: CI slack report
on:
workflow_call:
inputs:
job:
required: true
type: string
slack_report_channel:
required: true
type: string
setup_status:
required: true
type: string
folder_slices:
required: true
type: string
quantization_matrix:
required: true
type: string
jobs:
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Setup status: ${{ inputs.setup_status }}"
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack
if: ${{ inputs.job != 'run_tests_quantization_torch_gpu' }}
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: scheduled
CI_SHA: ${{ github.sha }}
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
CI_TEST_JOB: ${{ inputs.job }}
SETUP_STATUS: ${{ inputs.setup_status }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
# For a job that doesn't depend on (i.e. `needs`) `setup`, the value for `inputs.folder_slices` would be an
# empty string, and the called script still get one argument (which is the emtpy string).
run: |
sudo apt-get install -y curl
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ inputs.folder_slices }}"
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack for quantization workflow
if: ${{ inputs.job == 'run_tests_quantization_torch_gpu' }}
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
CI_EVENT: scheduled
CI_SHA: ${{ github.sha }}
SETUP_STATUS: ${{ inputs.setup_status }}
# We pass `needs.setup.outputs.quantization_matrix` as the argument. A processing in `notification_service_quantization.py` to change
# `quantization/bnb` to `quantization_bnb` is required, as the artifact names use `_` instead of `/`.
run: |
sudo apt-get install -y curl
pip install slack_sdk
pip show slack_sdk
python utils/notification_service_quantization.py "${{ inputs.quantization_matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
# Only the model testing job is concerned for this step
if: ${{ inputs.job == 'run_tests_gpu' }}
uses: actions/upload-artifact@v4
with:
name: prev_ci_results
path: prev_ci_results

View File

@ -2,26 +2,26 @@ name: Stale Bot
on: on:
schedule: schedule:
- cron: "0 15 * * *" - cron: "0 8 * * *"
jobs: jobs:
close_stale_issues: close_stale_issues:
name: Close Stale Issues name: Close Stale Issues
if: github.repository == 'huggingface/transformers' if: github.repository == 'huggingface/transformers'
runs-on: ubuntu-latest runs-on: ubuntu-22.04
env: env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
steps: steps:
- uses: actions/checkout@v2 - uses: actions/checkout@v4
- name: Setup Python - name: Setup Python
uses: actions/setup-python@v1 uses: actions/setup-python@v4
with: with:
python-version: 3.7 python-version: 3.8
- name: Install requirements - name: Install requirements
run: | run: |
pip install PyGithub pip install PyGithub
- name: Close stale issues - name: Close stale issues
run: | run: |
python scripts/stale.py python scripts/stale.py

27
.github/workflows/update_metdata.yml vendored Normal file
View File

@ -0,0 +1,27 @@
name: Update Transformers metadata
on:
push:
branches:
- main
- update_transformers_metadata*
jobs:
build_and_package:
runs-on: ubuntu-22.04
defaults:
run:
shell: bash -l {0}
steps:
- uses: actions/checkout@v4
- name: Setup environment
run: |
pip install --upgrade pip
pip install datasets pandas==2.0.3
pip install .[torch,tf,flax]
- name: Update metadata
run: |
python utils/update_metadata.py --token ${{ secrets.LYSANDRE_HF_TOKEN }} --commit_sha ${{ github.sha }}

View File

@ -0,0 +1,16 @@
name: Upload PR Documentation
on:
workflow_run:
workflows: ["Build PR Documentation"]
types:
- completed
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
with:
package_name: transformers
secrets:
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}

8
.gitignore vendored
View File

@ -160,4 +160,10 @@ tags
.pre-commit* .pre-commit*
# .lock # .lock
*.lock *.lock
# DS_Store (MacOS)
.DS_Store
# ruff
.ruff_cache

View File

@ -7,8 +7,8 @@ We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status, identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity nationality, personal appearance, race, caste, color, religion, or sexual
and orientation. identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming, We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community. diverse, inclusive, and healthy community.
@ -23,17 +23,17 @@ community include:
* Giving and gracefully accepting constructive feedback * Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes, * Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience and learning from the experience
* Focusing on what is best not just for us as individuals, but for the * Focusing on what is best not just for us as individuals, but for the overall
overall community community
Examples of unacceptable behavior include: Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or * The use of sexualized language or imagery, and sexual attention or advances of
advances of any kind any kind
* Trolling, insulting or derogatory comments, and personal or political attacks * Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment * Public or private harassment
* Publishing others' private information, such as a physical or email * Publishing others' private information, such as a physical or email address,
address, without their explicit permission without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a * Other conduct which could reasonably be considered inappropriate in a
professional setting professional setting
@ -83,15 +83,15 @@ behavior was inappropriate. A public apology may be requested.
### 2. Warning ### 2. Warning
**Community Impact**: A violation through a single incident or series **Community Impact**: A violation through a single incident or series of
of actions. actions.
**Consequence**: A warning with consequences for continued behavior. No **Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or like social media. Violating these terms may lead to a temporary or permanent
permanent ban. ban.
### 3. Temporary Ban ### 3. Temporary Ban
@ -107,23 +107,27 @@ Violating these terms may lead to a permanent ban.
### 4. Permanent Ban ### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community **Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals. individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within **Consequence**: A permanent ban from any sort of public interaction within the
the community. community.
## Attribution ## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage], This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.0, available at version 2.1, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html. [https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
Community Impact Guidelines were inspired by [Mozilla's code of conduct Community Impact Guidelines were inspired by
enforcement ladder](https://github.com/mozilla/diversity). [Mozilla's code of conduct enforcement ladder][Mozilla CoC].
[homepage]: https://www.contributor-covenant.org
For answers to common questions about this code of conduct, see the FAQ at For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at [https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
https://www.contributor-covenant.org/translations. [https://www.contributor-covenant.org/translations][translations].
[homepage]: https://www.contributor-covenant.org
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
[Mozilla CoC]: https://github.com/mozilla/diversity
[FAQ]: https://www.contributor-covenant.org/faq
[translations]: https://www.contributor-covenant.org/translations

View File

@ -14,303 +14,336 @@ See the License for the specific language governing permissions and
limitations under the License. limitations under the License.
--> -->
# How to contribute to transformers? # Contribute to 🤗 Transformers
Everyone is welcome to contribute, and we value everybody's contribution. Code Everyone is welcome to contribute, and we value everybody's contribution. Code
is thus not the only way to help the community. Answering questions, helping contributions are not the only way to help the community. Answering questions, helping
others, reaching out and improving the documentations are immensely valuable to others, and improving the documentation are also immensely valuable.
the community.
It also helps us if you spread the word: reference the library from blog posts It also helps us if you spread the word! Reference the library in blog posts
on the awesome projects it made possible, shout out on Twitter every time it has about the awesome projects it made possible, shout out on Twitter every time it has
helped you, or simply star the repo to say "thank you". helped you, or simply ⭐️ the repository to say thank you.
Whichever way you choose to contribute, please be mindful to respect our However you choose to contribute, please be mindful and respect our
[code of conduct](https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md). [code of conduct](https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md).
## You can contribute in so many ways! **This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/main/CONTRIBUTING.md).**
There are 4 ways you can contribute to transformers: ## Ways to contribute
* Fixing outstanding issues with the existing code;
* Implementing new models;
* Contributing to the examples or to the documentation;
* Submitting issues related to bugs or desired new features.
In particular there is a special [Good First There are several ways you can contribute to 🤗 Transformers:
* Fix outstanding issues with the existing code.
* Submit issues related to bugs or desired new features.
* Implement new models.
* Contribute to the examples or to the documentation.
If you don't know where to start, there is a special [Good First
Issue](https://github.com/huggingface/transformers/contribute) listing. It will give you a list of Issue](https://github.com/huggingface/transformers/contribute) listing. It will give you a list of
open Issues that are open to anybody to work on. Just comment in the issue that you'd like to work open issues that are beginner-friendly and help you start contributing to open-source. The best way to do that is to open a Pull Request and link it to the issue that you'd like to work on. We try to give priority to opened PRs as we can easily track the progress of the fix, and if the contributor does not have time anymore, someone else can take the PR over.
on it. In that same listing you will also find some Issues with `Good Second Issue` label. These are
typically slightly more complicated than the Issues with just `Good First Issue` label. But if you
feel you know what you're doing, go for it.
*All are equally valuable to the community.* For something slightly more challenging, you can also take a look at the [Good Second Issue](https://github.com/huggingface/transformers/labels/Good%20Second%20Issue) list. In general though, if you feel like you know what you're doing, go for it and we'll help you get there! 🚀
## Submitting a new issue or feature request > All contributions are equally valuable to the community. 🥰
Do your best to follow these guidelines when submitting an issue or a feature ## Fixing outstanding issues
If you notice an issue with the existing code and have a fix in mind, feel free to [start contributing](#create-a-pull-request) and open a Pull Request!
## Submitting a bug-related issue or feature request
Do your best to follow these guidelines when submitting a bug-related issue or a feature
request. It will make it easier for us to come back to you quickly and with good request. It will make it easier for us to come back to you quickly and with good
feedback. feedback.
### Did you find a bug? ### Did you find a bug?
The 🤗 Transformers library is robust and reliable thanks to the users who notify us of The 🤗 Transformers library is robust and reliable thanks to users who report the problems they encounter.
the problems they encounter. So thank you for reporting an issue.
First, we would really appreciate it if you could **make sure the bug was not Before you report an issue, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on Github under Issues). already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask in the [forum](https://discuss.huggingface.co/) first. This helps us respond quicker to fixing issues related to the library versus general questions.
Did not find it? :( So we can act quickly on it, please follow these steps: Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so we can quickly resolve it:
* Include your **OS type and version**, the versions of **Python**, **PyTorch** and * Your **OS type and version** and **Python**, **PyTorch** and
**Tensorflow** when applicable; **TensorFlow** versions when applicable.
* A short, self-contained, code snippet that allows us to reproduce the bug in * A short, self-contained, code snippet that allows us to reproduce the bug in
less than 30s; less than 30s.
* Provide the *full* traceback if an exception is raised. * The *full* traceback if an exception is raised.
* Attach any other additional information, like screenshots, you think may help.
To get the OS and software versions automatically, you can run the following command: To get the OS and software versions automatically, run the following command:
```bash ```bash
transformers-cli env transformers-cli env
``` ```
or from the root of the repository the following command: You can also run the same command from the root of the repository:
```bash ```bash
python src/transformers/commands/transformers_cli.py env python src/transformers/commands/transformers_cli.py env
``` ```
### Do you want a new feature?
### Do you want to implement a new model? If there is a new feature you'd like to see in 🤗 Transformers, please open an issue and describe:
Awesome! Please provide the following information: 1. What is the *motivation* behind this feature? Is it related to a problem or frustration with the library? Is it a feature related to something you need for a project? Is it something you worked on and think it could benefit the community?
* Short description of the model and link to the paper; Whatever it is, we'd love to hear about it!
* Link to the implementation if it is open-source;
2. Describe your requested feature in as much detail as possible. The more you can tell us about it, the better we'll be able to help you.
3. Provide a *code snippet* that demonstrates the features usage.
4. If the feature is related to a paper, please include a link.
If your issue is well written we're already 80% of the way there by the time you create it.
We have added [templates](https://github.com/huggingface/transformers/tree/main/templates) to help you get started with your issue.
## Do you want to implement a new model?
New models are constantly released and if you want to implement a new model, please provide the following information:
* A short description of the model and a link to the paper.
* Link to the implementation if it is open-sourced.
* Link to the model weights if they are available. * Link to the model weights if they are available.
If you are willing to contribute the model yourself, let us know so we can best If you are willing to contribute the model yourself, let us know so we can help you add it to 🤗 Transformers!
guide you.
We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them We have added a [detailed guide and templates](https://github.com/huggingface/transformers/tree/main/templates) to help you get started with adding a new model, and we also have a more technical guide for [how to add a model to 🤗 Transformers](https://huggingface.co/docs/transformers/add_new_model).
in the [`templates`](https://github.com/huggingface/transformers/tree/master/templates) folder.
### Do you want a new feature (that is not a model)? ## Do you want to add documentation?
A world-class feature request addresses the following points: We're always looking for improvements to the documentation that make it more clear and accurate. Please let us know how the documentation can be improved such as typos and any content that is missing, unclear or inaccurate. We'll be happy to make the changes or help you make a contribution if you're interested!
1. Motivation first: For more details about how to generate, build, and write the documentation, take a look at the documentation [README](https://github.com/huggingface/transformers/tree/main/docs).
* Is it related to a problem/frustration with the library? If so, please explain
why. Providing a code snippet that demonstrates the problem is best.
* Is it related to something you would need for a project? We'd love to hear
about it!
* Is it something you worked on and think could benefit the community?
Awesome! Tell us what problem it solved for you.
2. Write a *full paragraph* describing the feature;
3. Provide a **code snippet** that demonstrates its future use;
4. In case this is related to a paper, please attach a link;
5. Attach any additional information (drawings, screenshots, etc.) you think may help.
If your issue is well written we're already 80% of the way there by the time you ## Create a Pull Request
post it.
We have added **templates** to guide you in the process of adding a new example script for training or testing the Before writing any code, we strongly advise you to search through the existing PRs or
models in the library. You can find them in the [`templates`](https://github.com/huggingface/transformers/tree/master/templates) issues to make sure nobody is already working on the same thing. If you are
folder.
## Start contributing! (Pull Requests)
Before writing code, we strongly advise you to search through the existing PRs or
issues to make sure that nobody is already working on the same thing. If you are
unsure, it is always a good idea to open an issue to get some feedback. unsure, it is always a good idea to open an issue to get some feedback.
You will need basic `git` proficiency to be able to contribute to You will need basic `git` proficiency to contribute to
`transformers`. `git` is not the easiest tool to use but it has the greatest 🤗 Transformers. While `git` is not the easiest tool to use, it has the greatest
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro manual. Type `git --help` in a shell and enjoy! If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference. Git](https://git-scm.com/book/en/v2) is a very good reference.
Follow these steps to start contributing: You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main/setup.py#L426)** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
1. Fork the [repository](https://github.com/huggingface/transformers) by 1. Fork the [repository](https://github.com/huggingface/transformers) by
clicking on the 'Fork' button on the repository's page. This creates a copy of the code clicking on the **[Fork](https://github.com/huggingface/transformers/fork)** button on the repository's page. This creates a copy of the code
under your GitHub user account. under your GitHub user account.
2. Clone your fork to your local disk, and add the base repository as a remote: 2. Clone your fork to your local disk, and add the base repository as a remote:
```bash ```bash
$ git clone git@github.com:<your Github handle>/transformers.git git clone git@github.com:<your Github handle>/transformers.git
$ cd transformers cd transformers
$ git remote add upstream https://github.com/huggingface/transformers.git git remote add upstream https://github.com/huggingface/transformers.git
``` ```
3. Create a new branch to hold your development changes: 3. Create a new branch to hold your development changes:
```bash ```bash
$ git checkout -b a-descriptive-name-for-my-changes git checkout -b a-descriptive-name-for-my-changes
``` ```
**Do not** work on the `master` branch. 🚨 **Do not** work on the `main` branch!
4. Set up a development environment by running the following command in a virtual environment: 4. Set up a development environment by running the following command in a virtual environment:
```bash ```bash
$ pip install -e ".[dev]" pip install -e ".[dev]"
``` ```
(If transformers was already installed in the virtual environment, remove If 🤗 Transformers was already installed in the virtual environment, remove
it with `pip uninstall transformers` before reinstalling it in editable it with `pip uninstall transformers` before reinstalling it in editable
mode with the `-e` flag.) mode with the `-e` flag.
To run the full test suite, you might need the additional dependency on `datasets` which requires a separate source Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a
install: failure with this command. If that's the case make sure to install the Deep Learning framework you are working with
(PyTorch, TensorFlow and/or Flax) then do:
```bash ```bash
$ git clone https://github.com/huggingface/datasets pip install -e ".[quality]"
$ cd datasets
$ pip install -e .
``` ```
If you have already cloned that repo, you might need to `git pull` to get the most recent changes in the `datasets` which should be enough for most use cases.
library.
5. Develop the features on your branch. 5. Develop the features in your branch.
As you work on the features, you should make sure that the test suite As you work on your code, you should make sure the test suite
passes: passes. Run the tests impacted by your changes like this:
```bash ```bash
$ make test pytest tests/<TEST_TO_RUN>.py
``` ```
Note, that this command uses `-n auto` pytest flag, therefore, it will start as many parallel `pytest` processes as the number of your computer's CPU-cores, and if you have lots of those and a few GPUs and not a great amount of RAM, it's likely to overload your computer. Therefore, to run the test suite, you may want to consider using this command instead: For more information about tests, check out the
[Testing](https://huggingface.co/docs/transformers/testing) guide.
🤗 Transformers relies on `black` and `ruff` to format its source code
consistently. After you make changes, apply automatic style corrections and code verifications
that can't be automated in one go with:
```bash ```bash
$ python -m pytest -n 3 --dist=loadfile -s -v ./tests/ make fixup
```
Adjust the value of `-n` to fit the load your hardware can support.
`transformers` relies on `black` and `isort` to format its source code
consistently. After you make changes, format them with:
```bash
$ make style
```
`transformers` also uses `flake8` and a few custom scripts to check for coding mistakes. Quality
control runs in CI, however you can also run the same checks with:
```bash
$ make quality
```
You can do the automatic style corrections and code verifications that can't be automated in one go:
```bash
$ make fixup
``` ```
This target is also optimized to only work with files modified by the PR you're working on. This target is also optimized to only work with files modified by the PR you're working on.
If you're modifying documents under `docs/source`, make sure to validate that If you prefer to run the checks one after the other, the following command applies the
they can still be built. This check also runs in CI. To run a local check style corrections:
make sure you have installed the documentation builder requirements, by
running `pip install .[tf,torch,docs]` once from the root of this repository
and then run:
```bash ```bash
$ make docs make style
``` ```
Once you're happy with your changes, add changed files using `git add` and 🤗 Transformers also uses `ruff` and a few custom scripts to check for coding mistakes. Quality
make a commit with `git commit` to record your changes locally: controls are run by the CI, but you can run the same checks with:
```bash ```bash
$ git add modified_file.py make quality
$ git commit
``` ```
Please write [good commit Finally, we have a lot of scripts to make sure we don't forget to update
messages](https://chris.beams.io/posts/git-commit/). some files when adding a new model. You can run these scripts with:
It is a good idea to sync your copy of the code with the original
repository regularly. This way you can quickly account for changes:
```bash ```bash
$ git fetch upstream make repo-consistency
$ git rebase upstream/master
``` ```
Push the changes to your account using: To learn more about those checks and how to fix any issues with them, check out the
[Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide.
If you're modifying documents under the `docs/source` directory, make sure the documentation can still be built. This check will also run in the CI when you open a pull request. To run a local check
make sure you install the documentation builder:
```bash
pip install ".[docs]"
```
Run the following command from the root of the repository:
```bash ```bash
$ git push -u origin a-descriptive-name-for-my-changes doc-builder build transformers docs/source/en --build_dir ~/tmp/test-build
``` ```
6. Once you are satisfied (**and the checklist below is happy too**), go to the This will build the documentation in the `~/tmp/test-build` folder where you can inspect the generated
webpage of your fork on GitHub. Click on 'Pull request' to send your changes Markdown files with your favorite editor. You can also preview the docs on GitHub when you open a pull request.
to the project maintainers for review.
7. It's ok if maintainers ask you for changes. It happens to core contributors Once you're happy with your changes, add the changed files with `git add` and
too! So everyone can see the changes in the Pull request, work in your local record your changes locally with `git commit`:
```bash
git add modified_file.py
git commit
```
Please remember to write [good commit
messages](https://chris.beams.io/posts/git-commit/) to clearly communicate the changes you made!
To keep your copy of the code up to date with the original
repository, rebase your branch on `upstream/branch` *before* you open a pull request or if requested by a maintainer:
```bash
git fetch upstream
git rebase upstream/main
```
Push your changes to your branch:
```bash
git push -u origin a-descriptive-name-for-my-changes
```
If you've already opened a pull request, you'll need to force push with the `--force` flag. Otherwise, if the pull request hasn't been opened yet, you can just push your changes normally.
6. Now you can go to your fork of the repository on GitHub and click on **Pull Request** to open a pull request. Make sure you tick off all the boxes on our [checklist](#pull-request-checklist) below. When you're ready, you can send your changes to the project maintainers for review.
7. It's ok if maintainers request changes, it happens to our core contributors
too! So everyone can see the changes in the pull request, work in your local
branch and push the changes to your fork. They will automatically appear in branch and push the changes to your fork. They will automatically appear in
the pull request. the pull request.
### Pull request checklist
### Checklist ☐ The pull request title should summarize your contribution.<br>
☐ If your pull request addresses an issue, please mention the issue number in the pull
1. The title of your pull request should be a summary of its contribution; request description to make sure they are linked (and people viewing the issue know you
2. If your pull request addresses an issue, please mention the issue number in are working on it).<br>
the pull request description to make sure they are linked (and people ☐ To indicate a work in progress please prefix the title with `[WIP]`. These are
consulting the issue know you are working on it); useful to avoid duplicated work, and to differentiate it from PRs ready to be merged.<br>
3. To indicate a work in progress please prefix the title with `[WIP]`. These ☐ Make sure existing tests pass.<br>
are useful to avoid duplicated work, and to differentiate it from PRs ready ☐ If adding a new feature, also add tests for it.<br>
to be merged; - If you are adding a new model, make sure you use
4. Make sure existing tests pass; `ModelTester.all_model_classes = (MyModel, MyModelWithLMHead,...)` to trigger the common tests.
5. Add high-coverage tests. No quality testing = no merge.
- If you are adding a new model, make sure that you use
`ModelTester.all_model_classes = (MyModel, MyModelWithLMHead,...)`, which triggers the common tests.
- If you are adding new `@slow` tests, make sure they pass using - If you are adding new `@slow` tests, make sure they pass using
`RUN_SLOW=1 python -m pytest tests/test_my_new_model.py`. `RUN_SLOW=1 python -m pytest tests/models/my_new_model/test_my_new_model.py`.
- If you are adding a new tokenizer, write tests, and make sure - If you are adding a new tokenizer, write tests and make sure
`RUN_SLOW=1 python -m pytest tests/test_tokenization_{your_model_name}.py` passes. `RUN_SLOW=1 python -m pytest tests/models/{your_model_name}/test_tokenization_{your_model_name}.py` passes.
CircleCI does not run the slow tests, but github actions does every night! - CircleCI does not run the slow tests, but GitHub Actions does every night!<br>
6. All public methods must have informative docstrings that work nicely with sphinx. See `modeling_ctrl.py` for an
example. ☐ All public methods must have informative docstrings (see
[`modeling_bert.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py)
for an example).<br>
☐ Due to the rapidly growing repository, don't add any images, videos and other
non-text files that'll significantly weigh down the repository. Instead, use a Hub
repository such as [`hf-internal-testing`](https://huggingface.co/hf-internal-testing)
to host these files and reference them by URL. We recommend placing documentation
related images in the following repository:
[huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
You can open a PR on this dataset repository and ask a Hugging Face member to merge it.
For more information about the checks run on a pull request, take a look at our [Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide.
### Tests ### Tests
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
the [tests folder](https://github.com/huggingface/transformers/tree/master/tests) and examples tests in the the [tests](https://github.com/huggingface/transformers/tree/main/tests) folder and examples tests in the
[examples folder](https://github.com/huggingface/transformers/tree/master/examples). [examples](https://github.com/huggingface/transformers/tree/main/examples) folder.
We like `pytest` and `pytest-xdist` because it's faster. From the root of the We like `pytest` and `pytest-xdist` because it's faster. From the root of the
repository, here's how to run tests with `pytest` for the library: repository, specify a *path to a subfolder or a test file* to run the test:
```bash ```bash
$ python -m pytest -n auto --dist=loadfile -s -v ./tests/ python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model
``` ```
and for the examples: Similarly, for the `examples` directory, specify a *path to a subfolder or test file* to run the test. For example, the following command tests the text classification subfolder in the PyTorch `examples` directory:
```bash ```bash
$ pip install -r examples/xxx/requirements.txt # only needed the first time pip install -r examples/xxx/requirements.txt # only needed the first time
$ python -m pytest -n auto --dist=loadfile -s -v ./examples/ python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification
``` ```
In fact, that's how `make test` and `make test-examples` are implemented (sans the `pip install` line)!
You can specify a smaller set of tests in order to test only the feature In fact, this is actually how our `make test` and `make test-examples` commands are implemented (not including the `pip install`)!
You can also specify a smaller set of tests in order to test only the feature
you're working on. you're working on.
By default, slow tests are skipped. Set the `RUN_SLOW` environment variable to By default, slow tests are skipped but you can set the `RUN_SLOW` environment variable to
`yes` to run them. This will download many gigabytes of models make sure you `yes` to run them. This will download many gigabytes of models so make sure you
have enough disk space and a good Internet connection, or a lot of patience! have enough disk space, a good internet connection or a lot of patience!
<Tip warning={true}>
Remember to specify a *path to a subfolder or a test file* to run the test. Otherwise, you'll run all the tests in the `tests` or `examples` folder, which will take a very long time!
</Tip>
```bash ```bash
$ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model
$ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification
``` ```
Likewise, set the `RUN_CUSTOM_TOKENIZERS` environment variable to `yes` to run Like the slow tests, there are other environment variables available which not enabled by default during testing:
tests for custom tokenizers, which don't run by default either. - `RUN_CUSTOM_TOKENIZERS`: Enables tests for custom tokenizers.
- `RUN_PT_FLAX_CROSS_TESTS`: Enables tests for PyTorch + Flax integration.
- `RUN_PT_TF_CROSS_TESTS`: Enables tests for TensorFlow + PyTorch integration.
More environment variables and additional information can be found in the [testing_utils.py](src/transformers/testing_utils.py).
🤗 Transformers uses `pytest` as a test runner only. It doesn't use any 🤗 Transformers uses `pytest` as a test runner only. It doesn't use any
`pytest`-specific features in the test suite itself. `pytest`-specific features in the test suite itself.
@ -319,44 +352,43 @@ This means `unittest` is fully supported. Here's how to run tests with
`unittest`: `unittest`:
```bash ```bash
$ python -m unittest discover -s tests -t . -v python -m unittest discover -s tests -t . -v
$ python -m unittest discover -s examples -t examples -v python -m unittest discover -s examples -t examples -v
``` ```
### Style guide ### Style guide
For documentation strings, `transformers` follows the [google style](https://google.github.io/styleguide/pyguide.html). For documentation strings, 🤗 Transformers follows the [Google Python Style Guide](https://google.github.io/styleguide/pyguide.html).
Check our [documentation writing guide](https://github.com/huggingface/transformers/tree/master/docs#writing-documentation---specification) Check our [documentation writing guide](https://github.com/huggingface/transformers/tree/main/docs#writing-documentation---specification)
for more information. for more information.
#### This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md)
### Develop on Windows ### Develop on Windows
On windows, you need to configure git to transform Windows `CRLF` line endings to Linux `LF` line endings: On Windows (unless you're working in [Windows Subsystem for Linux](https://learn.microsoft.com/en-us/windows/wsl/) or WSL), you need to configure git to transform Windows `CRLF` line endings to Linux `LF` line endings:
`git config core.autocrlf input` ```bash
git config core.autocrlf input
```
One way one can run the make command on Window is to pass by MSYS2: One way to run the `make` command on Windows is with MSYS2:
1. [Download MSYS2](https://www.msys2.org/), we assume to have it installed in C:\msys64 1. [Download MSYS2](https://www.msys2.org/), and we assume it's installed in `C:\msys64`.
2. Open the command line C:\msys64\msys2.exe (it should be available from the start menu) 2. Open the command line `C:\msys64\msys2.exe` (it should be available from the **Start** menu).
3. Run in the shell: `pacman -Syu` and install make with `pacman -S make` 3. Run in the shell: `pacman -Syu` and install `make` with `pacman -S make`.
4. Add `C:\msys64\usr\bin` to your PATH environment variable. 4. Add `C:\msys64\usr\bin` to your PATH environment variable.
You can now use `make` from any terminal (Powershell, cmd.exe, etc) 🎉 You can now use `make` from any terminal (PowerShell, cmd.exe, etc.)! 🎉
### Syncing forked master with upstream (HuggingFace) master ### Sync a forked repository with upstream main (the Hugging Face repository)
To avoid pinging the upstream repository which adds reference notes to each upstream PR and sends unnessary notifications to the developers involved in these PRs, When updating the main branch of a forked repository, please follow these steps to avoid pinging the upstream repository which adds reference notes to each upstream PR, and sends unnecessary notifications to the developers involved in these PRs.
when syncing the master branch of a forked repository, please, follow these steps:
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead merge directly into the forked master. 1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead, merge directly into the forked main.
2. If a PR is absolutely necessary, use the following steps after checking out your branch: 2. If a PR is absolutely necessary, use the following steps after checking out your branch:
```
$ git checkout -b your-branch-for-syncing ```bash
$ git pull --squash --no-commit upstream master git checkout -b your-branch-for-syncing
$ git commit -m '<your message without GitHub references>' git pull --squash --no-commit upstream main
$ git push --set-upstream origin your-branch-for-syncing git commit -m '<your message without GitHub references>'
``` git push --set-upstream origin your-branch-for-syncing
```

View File

@ -18,7 +18,7 @@ limitations under the License.
This is an Open Source Project so please be mindful that like in any other project of this kind there is no obligation to answer all requests for help. This is an Open Source Project so please be mindful that like in any other project of this kind there is no obligation to answer all requests for help.
However, we want to encourage you to ask for help whenever you think it's needed! We are happy about every question we get because it allows us to better understand your needs, possible misunderstandings, and most importantly a way for you to help us make this library better. That being said, this document's main purpose is to provide guidelines at how you can formulate your requests to increase your chances to be understood and to get support. However, we want to encourage you to ask for help whenever you think it's needed! We are happy about every question we get because it allows us to better understand your needs, possible misunderstandings, and most importantly a way for you to help us make this library better. That being said, this document's main purpose is to provide guidelines at how you can formulate your requests to increase your chances to be understood and to get support.
There are two main venues to receive support: [the forums](https://discuss.huggingface.co/) and [the GitHub issues](https://github.com/huggingface/transformers/issues). There are two main venues to receive support: [the forums](https://discuss.huggingface.co/) and [the GitHub issues](https://github.com/huggingface/transformers/issues).
@ -71,8 +71,8 @@ You are not required to read the following guidelines before opening an issue. H
File "/transformers/src/transformers/__init__.py", line 34, in <module> File "/transformers/src/transformers/__init__.py", line 34, in <module>
from . import dependency_versions_check from . import dependency_versions_check
File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module> File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module>
from .file_utils import is_tokenizers_available from .utils import is_tokenizers_available
File "/transformers/src/transformers/file_utils.py", line 40, in <module> File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module>
from tqdm.auto import tqdm from tqdm.auto import tqdm
ModuleNotFoundError: No module named 'tqdm.auto' ModuleNotFoundError: No module named 'tqdm.auto'
``` ```
@ -124,8 +124,8 @@ You are not required to read the following guidelines before opening an issue. H
File "/transformers/src/transformers/__init__.py", line 34, in <module> File "/transformers/src/transformers/__init__.py", line 34, in <module>
from . import dependency_versions_check from . import dependency_versions_check
File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module> File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module>
from .file_utils import is_tokenizers_available from .utils import is_tokenizers_available
File "/transformers/src/transformers/file_utils.py", line 40, in <module> File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module>
from tqdm.auto import tqdm from tqdm.auto import tqdm
ModuleNotFoundError: No module named 'tqdm.auto' ModuleNotFoundError: No module named 'tqdm.auto'
``` ```
@ -152,13 +152,13 @@ You are not required to read the following guidelines before opening an issue. H
```bash ```bash
cd examples/seq2seq cd examples/seq2seq
python -m torch.distributed.launch --nproc_per_node=2 ./finetune_trainer.py \ torchrun --nproc_per_node=2 ./finetune_trainer.py \
--model_name_or_path sshleifer/distill-mbart-en-ro-12-4 --data_dir wmt_en_ro \ --model_name_or_path sshleifer/distill-mbart-en-ro-12-4 --data_dir wmt_en_ro \
--output_dir output_dir --overwrite_output_dir \ --output_dir output_dir --overwrite_output_dir \
--do_train --n_train 500 --num_train_epochs 1 \ --do_train --n_train 500 --num_train_epochs 1 \
--per_device_train_batch_size 1 --freeze_embeds \ --per_device_train_batch_size 1 --freeze_embeds \
--src_lang en_XX --tgt_lang ro_RO --task translation \ --src_lang en_XX --tgt_lang ro_RO --task translation \
--fp16 --sharded_ddp --fp16
``` ```
If you don't break it up, one has to scroll horizontally which often makes it quite difficult to quickly see what's happening. If you don't break it up, one has to scroll horizontally which often makes it quite difficult to quickly see what's happening.

View File

@ -1 +0,0 @@
include LICENSE

View File

@ -1,17 +1,18 @@
.PHONY: deps_table_update modified_only_fixup extra_quality_checks quality style fixup fix-copies test test-examples docs .PHONY: deps_table_update modified_only_fixup extra_style_checks quality style fixup fix-copies test test-examples
# make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!) # make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!)
export PYTHONPATH = src export PYTHONPATH = src
check_dirs := examples tests src utils check_dirs := examples tests src utils
exclude_folders := examples/research_projects
modified_only_fixup: modified_only_fixup:
$(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs))) $(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs)))
@if test -n "$(modified_py_files)"; then \ @if test -n "$(modified_py_files)"; then \
echo "Checking/fixing $(modified_py_files)"; \ echo "Checking/fixing $(modified_py_files)"; \
black $(modified_py_files); \ ruff check $(modified_py_files) --fix --exclude $(exclude_folders); \
isort $(modified_py_files); \ ruff format $(modified_py_files) --exclude $(exclude_folders);\
flake8 $(modified_py_files); \
else \ else \
echo "No library .py files were modified"; \ echo "No library .py files were modified"; \
fi fi
@ -31,40 +32,51 @@ deps_table_check_updated:
autogenerate_code: deps_table_update autogenerate_code: deps_table_update
# Check that source code meets quality standards # Check that the repo is in a good state
extra_quality_checks: repo-consistency:
python utils/check_copies.py python utils/check_copies.py
python utils/check_table.py python utils/check_table.py
python utils/check_dummies.py python utils/check_dummies.py
python utils/check_repo.py python utils/check_repo.py
python utils/check_inits.py python utils/check_inits.py
python utils/tests_fetcher.py --sanity_check python utils/check_config_docstrings.py
python utils/check_config_attributes.py
python utils/check_doctest_list.py
python utils/update_metadata.py --check-only
python utils/check_task_guides.py
python utils/check_docstrings.py
python utils/check_support_list.py
# this target runs checks on all files # this target runs checks on all files
quality: quality:
black --check $(check_dirs) @python -c "from transformers import *" || (echo '🚨 import failed, this means you introduced unprotected imports! 🚨'; exit 1)
isort --check-only $(check_dirs) ruff check $(check_dirs) setup.py conftest.py
ruff format --check $(check_dirs) setup.py conftest.py
python utils/custom_init_isort.py --check_only python utils/custom_init_isort.py --check_only
flake8 $(check_dirs) python utils/sort_auto_mappings.py --check_only
${MAKE} extra_quality_checks python utils/check_doc_toc.py
# Format source code automatically and check is there are any problems left that need manual fixing # Format source code automatically and check is there are any problems left that need manual fixing
extra_style_checks: extra_style_checks:
python utils/custom_init_isort.py python utils/custom_init_isort.py
python utils/style_doc.py src/transformers docs/source --max_len 119 python utils/sort_auto_mappings.py
python utils/check_doc_toc.py --fix_and_overwrite
# this target runs checks on all files and potentially modifies some of them # this target runs checks on all files and potentially modifies some of them
style: style:
black $(check_dirs) ruff check $(check_dirs) setup.py conftest.py --fix --exclude $(exclude_folders)
isort $(check_dirs) ruff format $(check_dirs) setup.py conftest.py --exclude $(exclude_folders)
${MAKE} autogenerate_code ${MAKE} autogenerate_code
${MAKE} extra_style_checks ${MAKE} extra_style_checks
# Super fast fix and check target that only works on relevant modified files since the branch was made # Super fast fix and check target that only works on relevant modified files since the branch was made
fixup: modified_only_fixup extra_style_checks autogenerate_code extra_quality_checks fixup: modified_only_fixup extra_style_checks autogenerate_code repo-consistency
# Make marked copies of snippets of codes conform to the original # Make marked copies of snippets of codes conform to the original
@ -72,6 +84,9 @@ fix-copies:
python utils/check_copies.py --fix_and_overwrite python utils/check_copies.py --fix_and_overwrite
python utils/check_table.py --fix_and_overwrite python utils/check_table.py --fix_and_overwrite
python utils/check_dummies.py --fix_and_overwrite python utils/check_dummies.py --fix_and_overwrite
python utils/check_doctest_list.py --fix_and_overwrite
python utils/check_task_guides.py --fix_and_overwrite
python utils/check_docstrings.py --fix_and_overwrite
# Run tests for the library # Run tests for the library
@ -89,11 +104,6 @@ test-sagemaker: # install sagemaker dependencies in advance with pip install .[s
TEST_SAGEMAKER=True python -m pytest -n auto -s -v ./tests/sagemaker TEST_SAGEMAKER=True python -m pytest -n auto -s -v ./tests/sagemaker
# Check that docs can build
docs:
cd docs && make html SPHINXOPTS="-W -j 4"
# Release stuff # Release stuff
pre-release: pre-release:
@ -107,3 +117,10 @@ post-release:
post-patch: post-patch:
python utils/release.py --post_release --patch python utils/release.py --post_release --patch
build-release:
rm -rf dist
rm -rf build
python setup.py bdist_wheel
python setup.py sdist
python utils/check_build.py

571
README.md
View File

@ -15,24 +15,29 @@ limitations under the License.
--> -->
<p align="center"> <p align="center">
<br> <picture>
<img src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/transformers_logo_name.png" width="400"/> <source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
<br> <source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
<p> <img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
</picture>
<br/>
<br/>
</p>
<p align="center"> <p align="center">
<a href="https://circleci.com/gh/huggingface/transformers"> <a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master"> <img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a> </a>
<a href="https://github.com/huggingface/transformers/blob/master/LICENSE"> <a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue"> <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a> </a>
<a href="https://huggingface.co/transformers/index.html"> <a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/transformers/index.html.svg?down_color=red&down_message=offline&up_message=online"> <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a> </a>
<a href="https://github.com/huggingface/transformers/releases"> <a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg"> <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a> </a>
<a href="https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md"> <a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg"> <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a> </a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a> <a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
@ -41,21 +46,38 @@ limitations under the License.
<h4 align="center"> <h4 align="center">
<p> <p>
<b>English</b> | <b>English</b> |
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hans.md">简体中文</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hant.md">繁體中文</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/master/README_ko.md">한국어</a> <a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<p> <a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
</p>
</h4> </h4>
<h3 align="center"> <h3 align="center">
<p>State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow</p> <p>State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow</p>
</h3> </h3>
<h3 align="center"> <h3 align="center">
<a href="https://hf.co/course"><img src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/course_banner.png"></a> <a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3> </h3>
🤗 Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation and more in over 100 languages. Its aim is to make cutting-edge NLP easier to use for everyone. 🤗 Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.
These models can be applied on:
* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, and text generation, in over 100 languages.
* 🖼️ Images, for tasks like image classification, object detection, and segmentation.
* 🗣️ Audio, for tasks like speech recognition and audio classification.
Transformer models can also perform tasks on **several modalities combined**, such as table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our [model hub](https://huggingface.co/models). At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments. 🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our [model hub](https://huggingface.co/models). At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
@ -66,25 +88,63 @@ limitations under the License.
You can test most of our models directly on their pages from the [model hub](https://huggingface.co/models). We also offer [private model hosting, versioning, & an inference API](https://huggingface.co/pricing) for public and private models. You can test most of our models directly on their pages from the [model hub](https://huggingface.co/models). We also offer [private model hosting, versioning, & an inference API](https://huggingface.co/pricing) for public and private models.
Here are a few examples: Here are a few examples:
- [Masked word completion with BERT](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Name Entity Recognition with Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Text generation with GPT-2](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [Natural Language Inference with RoBERTa](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Summarization with BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Question answering with DistilBERT](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Translation with T5](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team, is the official demo of this repos text generation capabilities. In Natural Language Processing:
- [Masked word completion with BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Named Entity Recognition with Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Text generation with Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
- [Natural Language Inference with RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Summarization with BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Question answering with DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Translation with T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
In Computer Vision:
- [Image classification with ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Object Detection with DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Semantic Segmentation with SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Panoptic Segmentation with Mask2Former](https://huggingface.co/facebook/mask2former-swin-large-coco-panoptic)
- [Depth Estimation with Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)
- [Video Classification with VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Universal Segmentation with OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
In Audio:
- [Automatic Speech Recognition with Whisper](https://huggingface.co/openai/whisper-large-v3)
- [Keyword Spotting with Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Audio Classification with Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
In Multimodal tasks:
- [Table Question Answering with TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Visual Question Answering with ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Image captioning with LLaVa](https://huggingface.co/llava-hf/llava-1.5-7b-hf)
- [Zero-shot Image Classification with SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384)
- [Document Question Answering with LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Zero-shot Video Classification with X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
- [Zero-shot Object Detection with OWLv2](https://huggingface.co/docs/transformers/en/model_doc/owlv2)
- [Zero-shot Image Segmentation with CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)
- [Automatic Mask Generation with SAM](https://huggingface.co/docs/transformers/model_doc/sam)
## 100 projects using Transformers
Transformers is more than a toolkit to use pretrained models: it's a community of projects built around it and the
Hugging Face Hub. We want Transformers to enable developers, researchers, students, professors, engineers, and anyone
else to build their dream projects.
In order to celebrate the 100,000 stars of transformers, we have decided to put the spotlight on the
community, and we have created the [awesome-transformers](./awesome-transformers.md) page which lists 100
incredible projects built in the vicinity of transformers.
If you own or use a project that you believe should be part of the list, please open a PR to add it!
## If you are looking for custom support from the Hugging Face team ## If you are looking for custom support from the Hugging Face team
<a target="_blank" href="https://huggingface.co/support"> <a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);"> <img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br> </a><br>
## Quick tour ## Quick tour
To immediately use a model on a given text, we provide the `pipeline` API. Pipelines group together a pretrained model with the preprocessing that was used during that model's training. Here is how to quickly use a pipeline to classify positive versus negative texts: To immediately use a model on a given input (text, image, audio, ...), we provide the `pipeline` API. Pipelines group together a pretrained model with the preprocessing that was used during that model's training. Here is how to quickly use a pipeline to classify positive versus negative texts:
```python ```python
>>> from transformers import pipeline >>> from transformers import pipeline
@ -95,54 +155,79 @@ To immediately use a model on a given text, we provide the `pipeline` API. Pipel
[{'label': 'POSITIVE', 'score': 0.9996980428695679}] [{'label': 'POSITIVE', 'score': 0.9996980428695679}]
``` ```
The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here the answer is "positive" with a confidence of 99.97%. The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here, the answer is "positive" with a confidence of 99.97%.
Many NLP tasks have a pre-trained `pipeline` ready to go. For example, we can easily extract question answers given context: Many tasks have a pre-trained `pipeline` ready to go, in NLP but also in computer vision and speech. For example, we can easily extract detected objects in an image:
``` python ``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline >>> from transformers import pipeline
# Allocate a pipeline for question-answering # Download an image with cute cats
>>> question_answerer = pipeline('question-answering') >>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> question_answerer({ >>> image_data = requests.get(url, stream=True).raw
... 'question': 'What is the name of the repository ?', >>> image = Image.open(image_data)
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
# Allocate a pipeline for object detection
>>> object_detector = pipeline('object-detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
``` ```
In addition to the answer, the pretrained model used here returned its confidence score, along with the start position and end position of the answer in the tokenized sentence. You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/transformers/task_summary.html). Here, we get a list of objects detected in the image, with a box surrounding the object and a confidence score. Here is the original image on the left, with the predictions displayed on the right:
To download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version: <h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/docs/transformers/task_summary).
In addition to `pipeline`, to download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
```python ```python
>>> from transformers import AutoTokenizer, AutoModel >>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased") >>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt") >>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
``` ```
And here is the equivalent code for TensorFlow: And here is the equivalent code for TensorFlow:
```python ```python
>>> from transformers import AutoTokenizer, TFAutoModel >>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased") >>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf") >>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
``` ```
The tokenizer is responsible for all the preprocessing the pretrained model expects, and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator. The tokenizer is responsible for all the preprocessing the pretrained model expects and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use normally. [This tutorial](https://huggingface.co/transformers/training.html) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset. The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use as usual. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
## Why should I use transformers? ## Why should I use transformers?
1. Easy-to-use state-of-the-art models: 1. Easy-to-use state-of-the-art models:
- High performance on NLU and NLG tasks. - High performance on natural language understanding & generation, computer vision, and audio tasks.
- Low barrier to entry for educators and practitioners. - Low barrier to entry for educators and practitioners.
- Few user-facing abstractions with just three classes to learn. - Few user-facing abstractions with just three classes to learn.
- A unified API for using all our pretrained models. - A unified API for using all our pretrained models.
@ -150,12 +235,12 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
1. Lower compute costs, smaller carbon footprint: 1. Lower compute costs, smaller carbon footprint:
- Researchers can share trained models instead of always retraining. - Researchers can share trained models instead of always retraining.
- Practitioners can reduce compute time and production costs. - Practitioners can reduce compute time and production costs.
- Dozens of architectures with over 2,000 pretrained models, some in more than 100 languages. - Dozens of architectures with over 400,000 pretrained models across all modalities.
1. Choose the right framework for every part of a model's lifetime: 1. Choose the right framework for every part of a model's lifetime:
- Train state-of-the-art models in 3 lines of code. - Train state-of-the-art models in 3 lines of code.
- Move a single model between TF2.0/PyTorch frameworks at will. - Move a single model between TF2.0/PyTorch/JAX frameworks at will.
- Seamlessly pick the right framework for training, evaluation and production. - Seamlessly pick the right framework for training, evaluation, and production.
1. Easily customize a model or an example to your needs: 1. Easily customize a model or an example to your needs:
- We provide examples for each architecture to reproduce the results published by its original authors. - We provide examples for each architecture to reproduce the results published by its original authors.
@ -165,21 +250,21 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
## Why shouldn't I use transformers? ## Why shouldn't I use transformers?
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files. - This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library. - The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library (possibly, [Accelerate](https://huggingface.co/docs/accelerate)).
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/master/examples) are just that: examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs. - While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/main/examples) are just that: examples. It is expected that they won't work out-of-the-box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
## Installation ## Installation
### With pip ### With pip
This repository is tested on Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ and TensorFlow 2.3+. This repository is tested on Python 3.8+, Flax 0.4.1+, PyTorch 1.11+, and TensorFlow 2.6+.
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
First, create a virtual environment with the version of Python you're going to use and activate it. First, create a virtual environment with the version of Python you're going to use and activate it.
Then, you will need to install at least one of Flax, PyTorch or TensorFlow. Then, you will need to install at least one of Flax, PyTorch, or TensorFlow.
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax installation page](https://github.com/google/flax#quick-install) regarding the specific install command for your platform. Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific installation command for your platform.
When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows: When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows:
@ -187,131 +272,311 @@ When one of those backends has been installed, 🤗 Transformers can be installe
pip install transformers pip install transformers
``` ```
If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must [install the library from source](https://huggingface.co/transformers/installation.html#installing-from-source). If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must [install the library from source](https://huggingface.co/docs/transformers/installation#installing-from-source).
### With conda ### With conda
Since Transformers version v4.0.0, we now have a conda channel: `huggingface`.
🤗 Transformers can be installed using conda as follows: 🤗 Transformers can be installed using conda as follows:
```shell script ```shell script
conda install -c huggingface transformers conda install conda-forge::transformers
``` ```
> **_NOTE:_** Installing `transformers` from the `huggingface` channel is deprecated.
Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda. Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.
> **_NOTE:_** On Windows, you may be prompted to activate Developer Mode in order to benefit from caching. If this is not an option for you, please let us know in [this issue](https://github.com/huggingface/huggingface_hub/issues/1062).
## Model architectures ## Model architectures
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co) where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations). **[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co/models), where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen) Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers currently provides the following architectures (see [here](https://huggingface.co/transformers/model_summary.html) for a high-level summary of each them): 🤗 Transformers currently provides the following architectures (see [here](https://huggingface.co/docs/transformers/model_summary) for a high-level summary of each them):
1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. 1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[BART](https://huggingface.co/transformers/model_doc/bart.html)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer. 1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[BARThez](https://huggingface.co/transformers/model_doc/barthez.html)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis. 1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[BARTpho](https://huggingface.co/transformers/model_doc/bartpho.html)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen. 1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[BEiT](https://huggingface.co/transformers/model_doc/beit.html)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei. 1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[BERT](https://huggingface.co/transformers/model_doc/bert.html)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. 1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BERTweet](https://huggingface.co/transformers/model_doc/bertweet.html)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen. 1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer.
1. **[BERT For Sequence Generation](https://huggingface.co/transformers/model_doc/bertgeneration.html)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. 1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BigBird-RoBERTa](https://huggingface.co/transformers/model_doc/bigbird.html)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. 1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/transformers/model_doc/bigbird_pegasus.html)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. 1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[Blenderbot](https://huggingface.co/transformers/model_doc/blenderbot.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. 1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
1. **[BlenderbotSmall](https://huggingface.co/transformers/model_doc/blenderbot_small.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. 1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BORT](https://huggingface.co/transformers/model_doc/bort.html)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry. 1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[ByT5](https://huggingface.co/transformers/model_doc/byt5.html)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel. 1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[CamemBERT](https://huggingface.co/transformers/model_doc/camembert.html)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. 1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[CANINE](https://huggingface.co/transformers/model_doc/canine.html)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting. 1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[CLIP](https://huggingface.co/transformers/model_doc/clip.html)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. 1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[ConvBERT](https://huggingface.co/transformers/model_doc/convbert.html)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan. 1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[CPM](https://huggingface.co/transformers/model_doc/cpm.html)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun. 1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[CTRL](https://huggingface.co/transformers/model_doc/ctrl.html)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher. 1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[DeBERTa](https://huggingface.co/transformers/model_doc/deberta.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. 1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[DeBERTa-v2](https://huggingface.co/transformers/model_doc/deberta_v2.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. 1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[DeiT](https://huggingface.co/transformers/model_doc/deit.html)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou. 1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[DETR](https://huggingface.co/transformers/model_doc/detr.html)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko. 1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[DialoGPT](https://huggingface.co/transformers/model_doc/dialogpt.html)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan. 1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT. 1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[DPR](https://huggingface.co/transformers/model_doc/dpr.html)** (from Facebook) released with the paper [Dense Passage Retrieval 1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon 1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[EncoderDecoder](https://huggingface.co/transformers/model_doc/encoderdecoder.html)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. 1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning. 1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[FlauBERT](https://huggingface.co/transformers/model_doc/flaubert.html)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab. 1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[FNet](https://huggingface.co/transformers/model_doc/fnet.html)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. 1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[Funnel Transformer](https://huggingface.co/transformers/model_doc/funnel.html)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. 1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[GPT](https://huggingface.co/transformers/model_doc/gpt.html)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. 1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[GPT-2](https://huggingface.co/transformers/model_doc/gpt2.html)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**. 1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (from Cohere) released with the paper [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[GPT-J](https://huggingface.co/transformers/model_doc/gptj.html)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki. 1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[GPT Neo](https://huggingface.co/transformers/model_doc/gpt_neo.html)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. 1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[Hubert](https://huggingface.co/transformers/model_doc/hubert.html)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed. 1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[I-BERT](https://huggingface.co/transformers/model_doc/ibert.html)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer. 1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[LayoutLM](https://huggingface.co/transformers/model_doc/layoutlm.html)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou. 1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[LayoutLMv2](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou. 1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[LayoutXLM](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei. 1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[LED](https://huggingface.co/transformers/model_doc/led.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. 1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Longformer](https://huggingface.co/transformers/model_doc/longformer.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. 1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[LUKE](https://huggingface.co/transformers/model_doc/luke.html)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto. 1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[LXMERT](https://huggingface.co/transformers/model_doc/lxmert.html)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. 1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[M2M100](https://huggingface.co/transformers/model_doc/m2m_100.html)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin. 1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[MarianMT](https://huggingface.co/transformers/model_doc/marian.html)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team. 1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[MBart](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer. 1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[MBart-50](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan. 1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Megatron-BERT](https://huggingface.co/transformers/model_doc/megatron_bert.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[Megatron-GPT2](https://huggingface.co/transformers/model_doc/megatron_gpt2.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[MPNet](https://huggingface.co/transformers/model_doc/mpnet.html)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. 1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[MT5](https://huggingface.co/transformers/model_doc/mt5.html)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. 1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[Pegasus](https://huggingface.co/transformers/model_doc/pegasus.html)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. 1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[PhoBERT](https://huggingface.co/transformers/model_doc/phobert.html)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. 1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[ProphetNet](https://huggingface.co/transformers/model_doc/prophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. 1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[Reformer](https://huggingface.co/transformers/model_doc/reformer.html)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. 1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[RemBERT](https://huggingface.co/transformers/model_doc/rembert.html)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder. 1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. 1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[RoFormer](https://huggingface.co/transformers/model_doc/roformer.html)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu. 1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[SegFormer](https://huggingface.co/transformers/model_doc/segformer.html)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo. 1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[SEW](https://huggingface.co/transformers/model_doc/sew.html)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. 1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[SEW-D](https://huggingface.co/transformers/model_doc/sew_d.html)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. 1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[SpeechToTextTransformer](https://huggingface.co/transformers/model_doc/speech_to_text.html)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino. 1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[SpeechToTextTransformer2](https://huggingface.co/transformers/model_doc/speech_to_text_2.html)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau. 1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[Splinter](https://huggingface.co/transformers/model_doc/splinter.html)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy. 1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[SqueezeBert](https://huggingface.co/transformers/model_doc/squeezebert.html)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer. 1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[T5](https://huggingface.co/transformers/model_doc/t5.html)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. 1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[T5v1.1](https://huggingface.co/transformers/model_doc/t5v1.1.html)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. 1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[TAPAS](https://huggingface.co/transformers/model_doc/tapas.html)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos. 1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (from ESPnet) released with the paper [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[Transformer-XL](https://huggingface.co/transformers/model_doc/transformerxl.html)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov. 1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[TrOCR](https://huggingface.co/transformers/model_doc/trocr.html)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei. 1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[UniSpeech](https://huggingface.co/transformers/model_doc/unispeech.html)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang. 1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[UniSpeechSat](https://huggingface.co/transformers/model_doc/unispeech_sat.html)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER 1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu. 1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Vision Transformer (ViT)](https://huggingface.co/transformers/model_doc/vit.html)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[VisualBERT](https://huggingface.co/transformers/model_doc/visual_bert.html)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. 1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Wav2Vec2](https://huggingface.co/transformers/model_doc/wav2vec2.html)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. 1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[XLM](https://huggingface.co/transformers/model_doc/xlm.html)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau. 1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[XLM-ProphetNet](https://huggingface.co/transformers/model_doc/xlmprophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. 1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[XLM-RoBERTa](https://huggingface.co/transformers/model_doc/xlmroberta.html)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. 1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[XLNet](https://huggingface.co/transformers/model_doc/xlnet.html)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. 1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[XLSR-Wav2Vec2](https://huggingface.co/transformers/model_doc/xlsr_wav2vec2.html)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli. 1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR. 1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (from Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) released with the paper [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (from Hugging Face) released with the blog [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (from Albert Gu and Tri Dao) released with the paper [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (from Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) released with the paper [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (from the Qwen team, Alibaba Group) released with the paper [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (from the Qwen team, Alibaba Group) released with [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (from Google) released with the paper [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (from Beijing Academy of Artificial Intelligence (BAAI)) released with the paper [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (from Google AI) released with the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (from Microsoft Research) released with the paper [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (from University of WisconsinMadison) released with the paper [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedback before starting your PR.
To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to [this table](https://huggingface.co/transformers/index.html#supported-frameworks). To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to [this table](https://huggingface.co/docs/transformers/index#supported-frameworks).
These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the [documentation](https://huggingface.co/transformers/examples.html). These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the [documentation](https://github.com/huggingface/transformers/tree/main/examples).
## Learn more ## Learn more
| Section | Description | | Section | Description |
|-|-| |-|-|
| [Documentation](https://huggingface.co/transformers/) | Full API documentation and tutorials | | [Documentation](https://huggingface.co/docs/transformers/) | Full API documentation and tutorials |
| [Task summary](https://huggingface.co/transformers/task_summary.html) | Tasks supported by 🤗 Transformers | | [Task summary](https://huggingface.co/docs/transformers/task_summary) | Tasks supported by 🤗 Transformers |
| [Preprocessing tutorial](https://huggingface.co/transformers/preprocessing.html) | Using the `Tokenizer` class to prepare data for the models | | [Preprocessing tutorial](https://huggingface.co/docs/transformers/preprocessing) | Using the `Tokenizer` class to prepare data for the models |
| [Training and fine-tuning](https://huggingface.co/transformers/training.html) | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the `Trainer` API | | [Training and fine-tuning](https://huggingface.co/docs/transformers/training) | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the `Trainer` API |
| [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/master/examples) | Example scripts for fine-tuning models on a wide range of tasks | | [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/main/examples) | Example scripts for fine-tuning models on a wide range of tasks |
| [Model sharing and uploading](https://huggingface.co/transformers/model_sharing.html) | Upload and share your fine-tuned models with the community | | [Model sharing and uploading](https://huggingface.co/docs/transformers/model_sharing) | Upload and share your fine-tuned models with the community |
| [Migration](https://huggingface.co/transformers/migration.html) | Migrate to 🤗 Transformers from `pytorch-transformers` or `pytorch-pretrained-bert` |
## Citation ## Citation

592
README_de.md Normal file
View File

@ -0,0 +1,592 @@
<!---
Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
</picture>
<br/>
<br/>
</p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
<b>Deutsch</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
</p>
</h4>
<h3 align="center">
<p>Maschinelles Lernen auf dem neuesten Stand der Technik für JAX, PyTorch und TensorFlow</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers bietet Tausende von vortrainierten Modellen, um Aufgaben in verschiedenen Modalitäten wie Text, Bild und Audio durchzuführen.
Diese Modelle können angewendet werden, auf:
* 📝 Text - für Aufgaben wie Textklassifizierung, Informationsextraktion, Question Answering, automatische Textzusammenfassung, maschinelle Übersetzung und Textgenerierung in über 100 Sprachen.
* 🖼️ Bilder - für Aufgaben wie Bildklassifizierung, Objekterkennung und Segmentierung.
* 🗣️ Audio - für Aufgaben wie Spracherkennung und Audioklassifizierung.
Transformer-Modelle können auch Aufgaben für **mehrere Modalitäten in Kombination** durchführen, z. B. tabellenbasiertes Question Answering, optische Zeichenerkennung, Informationsextraktion aus gescannten Dokumenten, Videoklassifizierung und visuelles Question Answering.
🤗 Transformers bietet APIs, um diese vortrainierten Modelle schnell herunterzuladen und für einen gegebenen Text zu verwenden, sie auf Ihren eigenen Datensätzen zu feintunen und dann mit der Community in unserem [Model Hub](https://huggingface.co/models) zu teilen. Gleichzeitig ist jedes Python-Modul, das eine Architektur definiert, komplett eigenständig und kann modifiziert werden, um schnelle Forschungsexperimente zu ermöglichen.
🤗 Transformers unterstützt die nahtlose Integration von drei der beliebtesten Deep-Learning-Bibliotheken: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) und [TensorFlow](https://www.tensorflow.org/). Trainieren Sie Ihr Modell in einem Framework und laden Sie es zur Inferenz unkompliziert mit einem anderen.
## Online-Demos
Sie können die meisten unserer Modelle direkt auf ihren Seiten im [Model Hub](https://huggingface.co/models) testen. Wir bieten auch [privates Modell-Hosting, Versionierung, & eine Inferenz-API](https://huggingface.co/pricing) für öffentliche und private Modelle an.
Hier sind einige Beispiele:
In der Computerlinguistik:
- [Maskierte Wortvervollständigung mit BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Eigennamenerkennung mit Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Textgenerierung mit GPT-2](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [Natural Language Inference mit RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Automatische Textzusammenfassung mit BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Question Answering mit DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Maschinelle Übersetzung mit T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
In der Computer Vision:
- [Bildklassifizierung mit ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Objekterkennung mit DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Semantische Segmentierung mit SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Panoptische Segmentierung mit MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
- [Depth Estimation mit DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
- [Videoklassifizierung mit VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Universelle Segmentierung mit OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
Im Audio-Bereich:
- [Automatische Spracherkennung mit Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Keyword Spotting mit Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Audioklassifizierung mit Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
In multimodalen Aufgaben:
- [Tabellenbasiertes Question Answering mit TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Visuelles Question Answering mit ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Zero-Shot-Bildklassifizierung mit CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
- [Dokumentenbasiertes Question Answering mit LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Zero-Shot-Videoklassifizierung mit X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
## 100 Projekte, die 🤗 Transformers verwenden
🤗 Transformers ist mehr als nur ein Toolkit zur Verwendung von vortrainierten Modellen: Es ist eine Gemeinschaft von Projekten, die darum herum und um den Hugging Face Hub aufgebaut sind. Wir möchten, dass 🤗 Transformers es Entwicklern, Forschern, Studenten, Professoren, Ingenieuren und jedem anderen ermöglicht, ihre Traumprojekte zu realisieren.
Um die 100.000 Sterne von 🤗 Transformers zu feiern, haben wir beschlossen, die Gemeinschaft in den Mittelpunkt zu stellen und die Seite [awesome-transformers](./awesome-transformers.md) erstellt, die 100 unglaubliche Projekte auflistet, die zusammen mit 🤗 Transformers realisiert wurden.
Wenn Sie ein Projekt besitzen oder nutzen, von dem Sie glauben, dass es Teil der Liste sein sollte, öffnen Sie bitte einen PR, um es hinzuzufügen!
## Wenn Sie individuelle Unterstützung vom Hugging Face-Team möchten
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Schnelleinstieg
Um sofort ein Modell mit einer bestimmten Eingabe (Text, Bild, Audio ...) zu verwenden, bieten wir die `pipeline`-API an. Pipelines kombinieren ein vortrainiertes Modell mit der jeweiligen Vorverarbeitung, die während dessen Trainings verwendet wurde. Hier sehen Sie, wie man schnell eine Pipeline verwenden kann, um positive und negative Texte zu klassifizieren:
```python
>>> from transformers import pipeline
# Zuweisung einer Pipeline für die Sentiment-Analyse
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
Die zweite Codezeile lädt und cacht das vortrainierte Modell, das von der Pipeline verwendet wird, während die dritte es an dem gegebenen Text evaluiert. Hier ist die Antwort "positiv" mit einer Konfidenz von 99,97 %.
Viele Aufgaben, sowohl in der Computerlinguistik als auch in der Computer Vision und Sprachverarbeitung, haben eine vortrainierte `pipeline`, die sofort einsatzbereit ist. Z. B. können wir leicht erkannte Objekte in einem Bild extrahieren:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Download eines Bildes mit süßen Katzen
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Zuweisung einer Pipeline für die Objekterkennung
>>> object_detector = pipeline('object-detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
Hier erhalten wir eine Liste von Objekten, die im Bild erkannt wurden, mit einer Markierung, die das Objekt eingrenzt, und einem zugehörigen Konfidenzwert. Folgend ist das Originalbild links und die Vorhersagen rechts dargestellt:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
Sie können mehr über die von der `pipeline`-API unterstützten Aufgaben in [diesem Tutorial](https://huggingface.co/docs/transformers/task_summary) erfahren.
Zusätzlich zur `pipeline` benötigt es nur drei Zeilen Code, um eines der vortrainierten Modelle für Ihre Aufgabe herunterzuladen und zu verwenden. Hier ist der Code für die PyTorch-Version:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
Und hier ist der entsprechende Code für TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
Der Tokenizer ist für die gesamte Vorverarbeitung, die das vortrainierte Modell benötigt, verantwortlich und kann direkt auf einem einzelnen String (wie in den obigen Beispielen) oder einer Liste ausgeführt werden. Er gibt ein Dictionary aus, das Sie im darauffolgenden Code verwenden oder einfach direkt Ihrem Modell übergeben können, indem Sie den ** Operator zum Entpacken von Argumenten einsetzen.
Das Modell selbst ist ein reguläres [PyTorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) oder ein [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (abhängig von Ihrem Backend), das Sie wie gewohnt verwenden können. [Dieses Tutorial](https://huggingface.co/docs/transformers/training) erklärt, wie man ein solches Modell in eine klassische PyTorch- oder TensorFlow-Trainingsschleife integrieren kann oder wie man unsere `Trainer`-API verwendet, um es schnell auf einem neuen Datensatz zu feintunen.
## Warum sollten Sie 🤗 Transformers verwenden?
1. Benutzerfreundliche Modelle auf dem neuesten Stand der Technik:
- Hohe Leistung bei Aufgaben zu Natural Language Understanding & Generation, Computer Vision und Audio.
- Niedrige Einstiegshürde für Bildungskräfte und Praktiker.
- Wenige benutzerseitige Abstraktionen mit nur drei zu lernenden Klassen.
- Eine einheitliche API für die Verwendung aller unserer vortrainierten Modelle.
1. Geringere Rechenkosten, kleinerer CO<sub>2</sub>-Fußabdruck:
- Forscher können trainierte Modelle teilen, anstatt sie immer wieder neu zu trainieren.
- Praktiker können die Rechenzeit und Produktionskosten reduzieren.
- Dutzende Architekturen mit über 400.000 vortrainierten Modellen über alle Modalitäten hinweg.
1. Wählen Sie das richtige Framework für jeden Lebensabschnitt eines Modells:
- Trainieren Sie Modelle auf neustem Stand der Technik in nur drei Codezeilen.
- Verwenden Sie ein einzelnes Modell nach Belieben mit TF2.0-/PyTorch-/JAX-Frameworks.
- Wählen Sie nahtlos das richtige Framework für Training, Evaluation und Produktiveinsatz.
1. Passen Sie ein Modell oder Beispiel leicht an Ihre Bedürfnisse an:
- Wir bieten Beispiele für jede Architektur an, um die von ihren ursprünglichen Autoren veröffentlichten Ergebnisse zu reproduzieren.
- Modellinterna sind so einheitlich wie möglich verfügbar gemacht.
- Modelldateien können unabhängig von der Bibliothek für schnelle Experimente verwendet werden.
## Warum sollten Sie 🤗 Transformers nicht verwenden?
- Diese Bibliothek ist kein modularer Werkzeugkasten mit Bausteinen für neuronale Netze. Der Code in den Modelldateien ist absichtlich nicht mit zusätzlichen Abstraktionen refaktorisiert, sodass Forscher schnell mit jedem der Modelle iterieren können, ohne sich in zusätzliche Abstraktionen/Dateien vertiefen zu müssen.
- Die Trainings-API ist nicht dafür gedacht, mit beliebigen Modellen zu funktionieren, sondern ist für die Verwendung mit den von der Bibliothek bereitgestellten Modellen optimiert. Für generische Trainingsschleifen von maschinellem Lernen sollten Sie eine andere Bibliothek verwenden (möglicherweise [Accelerate](https://huggingface.co/docs/accelerate)).
- Auch wenn wir bestrebt sind, so viele Anwendungsfälle wie möglich zu veranschaulichen, sind die Beispielskripte in unserem [`examples`](./examples) Ordner genau das: Beispiele. Es ist davon auszugehen, dass sie nicht sofort auf Ihr spezielles Problem anwendbar sind und einige Codezeilen geändert werden müssen, um sie für Ihre Bedürfnisse anzupassen.
## Installation
### Mit pip
Dieses Repository wurde mit Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ und TensorFlow 2.6+ getestet.
Sie sollten 🤗 Transformers in einer [virtuellen Umgebung](https://docs.python.org/3/library/venv.html) installieren. Wenn Sie mit virtuellen Python-Umgebungen nicht vertraut sind, schauen Sie sich den [Benutzerleitfaden](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) an.
Erstellen und aktivieren Sie zuerst eine virtuelle Umgebung mit der Python-Version, die Sie verwenden möchten.
Dann müssen Sie entweder Flax, PyTorch oder TensorFlow installieren. Bitte beziehe dich entsprechend auf die jeweiligen Installationsanleitungen für [TensorFlow](https://www.tensorflow.org/install/), [PyTorch](https://pytorch.org/get-started/locally/#start-locally), und/oder [Flax](https://github.com/google/flax#quick-install) und [Jax](https://github.com/google/jax#installation) für den spezifischen Installationsbefehl für Ihre Plattform.
Wenn eines dieser Backends installiert ist, kann 🤗 Transformers wie folgt mit pip installiert werden:
```bash
pip install transformers
```
Wenn Sie mit den Beispielen experimentieren möchten oder die neueste Version des Codes benötigen und nicht auf eine neue Veröffentlichung warten können, müssen Sie [die Bibliothek von der Quelle installieren](https://huggingface.co/docs/transformers/installation#installing-from-source).
### Mit conda
🤗 Transformers kann wie folgt mit conda installiert werden:
```shell script
conda install conda-forge::transformers
```
> **_HINWEIS:_** Die Installation von `transformers` aus dem `huggingface`-Kanal ist veraltet.
Folgen Sie den Installationsanleitungen von Flax, PyTorch oder TensorFlow, um zu sehen, wie sie mit conda installiert werden können.
> **_HINWEIS:_** Auf Windows werden Sie möglicherweise aufgefordert, den Entwicklermodus zu aktivieren, um von Caching zu profitieren. Wenn das für Sie keine Option ist, lassen Sie es uns bitte in [diesem Issue](https://github.com/huggingface/huggingface_hub/issues/1062) wissen.
## Modellarchitekturen
**[Alle Modell-Checkpoints](https://huggingface.co/models)**, die von 🤗 Transformers bereitgestellt werden, sind nahtlos aus dem huggingface.co [Model Hub](https://huggingface.co/models) integriert, wo sie direkt von [Benutzern](https://huggingface.co/users) und [Organisationen](https://huggingface.co/organizations) hochgeladen werden.
Aktuelle Anzahl der Checkpoints: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers bietet derzeit die folgenden Architekturen an (siehe [hier](https://huggingface.co/docs/transformers/model_summary) für eine jeweilige Übersicht):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (from Cohere) released with the paper [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (from ESPnet) released with the paper [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (from Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) released with the paper [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (from Hugging Face) released with the paper [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (from Albert Gu and Tri Dao) released with the paper [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (from Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) released with the paper [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (from the Qwen team, Alibaba Group) released with the paper [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (from the Qwen team, Alibaba Group) released with the paper [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (from Google) released with the paper [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (from Beijing Academy of Artificial Intelligence (BAAI) released with the paper [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (from Google AI) released with the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (from Microsoft Research) released with the paper [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (from University of WisconsinMadison) released with the paper [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Möchten Sie ein neues Modell beitragen? Wir haben einen **detaillierten Leitfaden und Vorlagen** hinzugefügt, um Sie beim Hinzufügen eines neuen Modells zu unterstützen. Sie können diese im [`templates`](./templates) Ordner des Repositorys finden. Lesen Sie unbedingt die [Beitragshinweise](./CONTRIBUTING.md) und kontaktieren Sie die Maintainer oder erstellen Sie ein Issue, um Feedback zu sammeln, bevor Sie mit der PR starten.
Um zu überprüfen, ob jedes Modell eine Implementierung in Flax, PyTorch oder TensorFlow hat oder über einen zugehörigen Tokenizer verfügt, der von der 🤗 Tokenizers-Bibliothek unterstützt wird, schauen Sie auf [diese Tabelle](https://huggingface.co/docs/transformers/index#supported-frameworks).
Diese Implementierungen wurden mit mehreren Datensätzen getestet (siehe Beispielskripte) und sollten den Leistungen der ursprünglichen Implementierungen entsprechen. Weitere Details zur Leistung finden Sie im Abschnitt der Beispiele in der [Dokumentation](https://github.com/huggingface/transformers/tree/main/examples).
## Mehr erfahren
| Abschnitt | Beschreibung |
|-|-|
| [Dokumentation](https://huggingface.co/docs/transformers/) | Vollständige API-Dokumentation und Tutorials |
| [Zusammenfassung der Aufgaben](https://huggingface.co/docs/transformers/task_summary) | Von 🤗 Transformers unterstützte Aufgaben |
| [Vorverarbeitungs-Tutorial](https://huggingface.co/docs/transformers/preprocessing) | Verwendung der `Tokenizer`-Klasse zur Vorverarbeitung der Daten für die Modelle |
| [Training und Feintuning](https://huggingface.co/docs/transformers/training) | Verwendung der von 🤗 Transformers bereitgestellten Modelle in einer PyTorch-/TensorFlow-Trainingsschleife und der `Trainer`-API |
| [Schnelleinstieg: Feintuning/Anwendungsskripte](https://github.com/huggingface/transformers/tree/main/examples) | Beispielskripte für das Feintuning von Modellen für eine breite Palette von Aufgaben |
| [Modellfreigabe und -upload](https://huggingface.co/docs/transformers/model_sharing) | Laden Sie Ihre feingetunten Modelle hoch und teilen Sie sie mit der Community |
## Zitation
Wir haben jetzt ein [Paper](https://www.aclweb.org/anthology/2020.emnlp-demos.6/), das Sie für die 🤗 Transformers-Bibliothek zitieren können:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

570
README_es.md Normal file
View File

@ -0,0 +1,570 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
</p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<b>Español</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
</p>
</h4>
<h3 align="center">
<p>Lo último de Machine Learning para JAX, PyTorch y TensorFlow</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers aporta miles de modelos preentrenados para realizar tareas en diferentes modalidades como texto, visión, y audio.
Estos modelos pueden ser aplicados en:
* 📝 Texto, para tareas como clasificación de texto, extracción de información, responder preguntas, resumir, traducir, generación de texto, en más de 100 idiomas.
* 🖼️ Imágenes, para tareas como clasificación de imágenes, detección the objetos, y segmentación.
* 🗣️ Audio, para tareas como reconocimiento de voz y clasificación de audio.
Los modelos de Transformer también pueden realizar tareas en **muchas modalidades combinadas**, como responder preguntas, reconocimiento de carácteres ópticos,extracción de información de documentos escaneados, clasificación de video, y respuesta de preguntas visuales.
🤗 Transformers aporta APIs para descargar rápidamente y usar estos modelos preentrenados en un texto dado, afinarlos en tus propios sets de datos y compartirlos con la comunidad en nuestro [centro de modelos](https://huggingface.co/models). Al mismo tiempo, cada módulo de Python que define una arquitectura es completamente independiente y se puede modificar para permitir experimentos de investigación rápidos.
🤗 Transformers está respaldado por las tres bibliotecas de deep learning más populares — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) y [TensorFlow](https://www.tensorflow.org/) — con una perfecta integración entre ellos. Es sencillo entrenar sus modelos con uno antes de cargarlos para la inferencia con el otro.
## Demostraciones en línea
Puedes probar la mayoría de nuestros modelos directamente en sus páginas desde el [centro de modelos](https://huggingface.co/models). También ofrecemos [alojamiento de modelos privados, control de versiones y una API de inferencia](https://huggingface.co/pricing) para modelos públicos y privados.
Aquí hay algunos ejemplos:
En procesamiento del lenguaje natural:
- [Terminación de palabras enmascaradas con BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Reconocimiento del nombre de la entidad con Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Generación de texto con GPT-2](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [Inferencia del lenguaje natural con RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Resumen con BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Responder a preguntas con DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Traducción con T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
En visión de ordenador:
- [Clasificación de imágenes con ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Detección de objetos con DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Segmentación semántica con SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Segmentación panóptica con DETR](https://huggingface.co/facebook/detr-resnet-50-panoptic)
- [Segmentación Universal con OneFormer (Segmentación Semántica, de Instancia y Panóptica con un solo modelo)](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
En Audio:
- [Reconocimiento de voz automático con Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Detección de palabras clave con Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
En tareas multimodales:
- [Respuesta visual a preguntas con ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
**[Escribe con Transformer](https://transformer.huggingface.co)**, construido por el equipo de Hugging Face, es la demostración oficial de las capacidades de generación de texto de este repositorio.
## Si está buscando soporte personalizado del equipo de Hugging Face
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Tour rápido
Para usar inmediatamente un modelo en una entrada determinada (texto, imagen, audio, ...), proporcionamos la API de `pipeline`. Los pipelines agrupan un modelo previamente entrenado con el preprocesamiento que se usó durante el entrenamiento de ese modelo. Aquí se explica cómo usar rápidamente un pipeline para clasificar textos positivos frente a negativos:
```python
>>> from transformers import pipeline
# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
La segunda línea de código descarga y almacena en caché el modelo previamente entrenado que usa la canalización, mientras que la tercera lo evalúa en el texto dado. Aquí la respuesta es "positiva" con una confianza del 99,97%.
Muchas tareas tienen un `pipeline` preentrenado listo para funcionar, en NLP pero también en visión por ordenador y habla. Por ejemplo, podemos extraer fácilmente los objetos detectados en una imagen:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Download an image with cute cats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Allocate a pipeline for object detection
>>> object_detector = pipeline('object_detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
Aquí obtenemos una lista de objetos detectados en la imagen, con un cuadro que rodea el objeto y una puntuación de confianza. Aquí está la imagen original a la derecha, con las predicciones mostradas a la izquierda:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
Puedes obtener más información sobre las tareas admitidas por la API de `pipeline` en [este tutorial](https://huggingface.co/docs/transformers/task_summary).
Además de `pipeline`, para descargar y usar cualquiera de los modelos previamente entrenados en su tarea dada, todo lo que necesita son tres líneas de código. Aquí está la versión de PyTorch:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
Y aquí está el código equivalente para TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
El tokenizador es responsable de todo el preprocesamiento que espera el modelo preentrenado y se puede llamar directamente en una sola cadena (como en los ejemplos anteriores) o en una lista. Este dará como resultado un diccionario que puedes usar en el código descendente o simplemente pasarlo directamente a su modelo usando el operador de desempaquetado de argumento **.
El modelo en si es un [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) normal o un [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (dependiendo De tu backend) que puedes usar de forma habitual. [Este tutorial](https://huggingface.co/docs/transformers/training) explica cómo integrar un modelo de este tipo en un ciclo de entrenamiento PyTorch o TensorFlow clásico, o como usar nuestra API `Trainer` para ajustar rápidamente un nuevo conjunto de datos.
## ¿Por qué debo usar transformers?
1. Modelos de última generación fáciles de usar:
- Alto rendimiento en comprensión y generación de lenguaje natural, visión artificial y tareas de audio.
- Baja barrera de entrada para educadores y profesionales.
- Pocas abstracciones de cara al usuario con solo tres clases para aprender.
- Una API unificada para usar todos nuestros modelos preentrenados.
1. Menores costes de cómputo, menor huella de carbono:
- Los investigadores pueden compartir modelos entrenados en lugar de siempre volver a entrenar.
- Los profesionales pueden reducir el tiempo de cómputo y los costos de producción.
- Docenas de arquitecturas con más de 60 000 modelos preentrenados en todas las modalidades.
1. Elija el marco adecuado para cada parte de la vida útil de un modelo:
- Entrene modelos de última generación en 3 líneas de código.
- Mueva un solo modelo entre los marcos TF2.0/PyTorch/JAX a voluntad.
- Elija sin problemas el marco adecuado para la formación, la evaluación y la producción.
1. Personalice fácilmente un modelo o un ejemplo según sus necesidades:
- Proporcionamos ejemplos de cada arquitectura para reproducir los resultados publicados por sus autores originales..
- Los internos del modelo están expuestos lo más consistentemente posible..
- Los archivos modelo se pueden usar independientemente de la biblioteca para experimentos rápidos.
## ¿Por qué no debería usar transformers?
- Esta biblioteca no es una caja de herramientas modular de bloques de construcción para redes neuronales. El código en los archivos del modelo no se refactoriza con abstracciones adicionales a propósito, de modo que los investigadores puedan iterar rápidamente en cada uno de los modelos sin sumergirse en abstracciones/archivos adicionales.
- La API de entrenamiento no está diseñada para funcionar en ningún modelo, pero está optimizada para funcionar con los modelos proporcionados por la biblioteca. Para bucles genéricos de aprendizaje automático, debe usar otra biblioteca (posiblemente, [Accelerate](https://huggingface.co/docs/accelerate)).
- Si bien nos esforzamos por presentar tantos casos de uso como sea posible, los scripts en nuestra [carpeta de ejemplos](https://github.com/huggingface/transformers/tree/main/examples) son solo eso: ejemplos. Se espera que no funcionen de forma inmediata en su problema específico y que deba cambiar algunas líneas de código para adaptarlas a sus necesidades.
## Instalación
### Con pip
Este repositorio está probado en Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ y TensorFlow 2.6+.
Deberías instalar 🤗 Transformers en un [entorno virtual](https://docs.python.org/3/library/venv.html). Si no estas familiarizado con los entornos virtuales de Python, consulta la [guía de usuario](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Primero, crea un entorno virtual con la versión de Python que vas a usar y actívalo.
Luego, deberás instalar al menos uno entre Flax, PyTorch o TensorFlow.
Por favor, ve a la [página de instalación de TensorFlow](https://www.tensorflow.org/install/), [página de instalación de PyTorch](https://pytorch.org/get-started/locally/#start-locally) y/o las páginas de instalación de [Flax](https://github.com/google/flax#quick-install) y [Jax](https://github.com/google/jax#installation) con respecto al comando de instalación específico para tu plataforma.
Cuando se ha instalado uno de esos backends, los 🤗 Transformers se pueden instalar usando pip de la siguiente manera:
```bash
pip install transformers
```
Si deseas jugar con los ejemplos o necesitas la última versión del código y no puedes esperar a una nueva versión, tienes que [instalar la librería de la fuente](https://huggingface.co/docs/transformers/installation#installing-from-source).
### Con conda
🤗 Transformers se puede instalar usando conda de la siguiente manera:
```shell script
conda install conda-forge::transformers
```
> **_NOTA:_** Instalar `transformers` desde el canal `huggingface` está obsoleto.
Sigue las páginas de instalación de Flax, PyTorch o TensorFlow para ver cómo instalarlos con conda.
> **_NOTA:_** En Windows, es posible que se le pida que active el modo de desarrollador para beneficiarse del almacenamiento en caché. Si esta no es una opción para usted, háganoslo saber en [esta issue](https://github.com/huggingface/huggingface_hub/issues/1062).
## Arquitecturas modelo
**[Todos los puntos de control del modelo](https://huggingface.co/models)** aportados por 🤗 Transformers están perfectamente integrados desde huggingface.co [Centro de modelos](https://huggingface.co) donde son subidos directamente por los [usuarios](https://huggingface.co/users) y [organizaciones](https://huggingface.co/organizations).
Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers actualmente proporciona las siguientes arquitecturas (ver [aquí](https://huggingface.co/docs/transformers/model_summary) para un resumen de alto nivel de cada uno de ellas.):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (from Cohere) released with the paper [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (from ESPnet) released with the paper [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (from Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) released with the paper [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (from Hugging Face) released with the paper [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (from Albert Gu and Tri Dao) released with the paper [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Facebook) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released with the paper [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (from Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) released with the paper [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (from the Qwen team, Alibaba Group) released with the paper [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (from the Qwen team, Alibaba Group) released with the paper [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (from Google) released with the paper [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng) released with the paper [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (from Beijing Academy of Artificial Intelligence (BAAI) released with the paper [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (from Google AI) released with the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with a coming soon paper.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (from Microsoft Research) released with the paper [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (from University of WisconsinMadison) released with the paper [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. ¿Quieres aportar un nuevo modelo? Hemos agregado una **guía detallada y plantillas** para guiarte en el proceso de agregar un nuevo modelo. Puedes encontrarlos en la carpeta de [`templates`](./templates) del repositorio. Asegúrate de revisar las [pautas de contribución](./CONTRIBUTING.md) y comunícate con los mantenedores o abra un problema para recopilar comentarios antes de comenzar su PR.
Para comprobar si cada modelo tiene una implementación en Flax, PyTorch o TensorFlow, o tiene un tokenizador asociado respaldado por la librería 🤗 Tokenizers, ve a [esta tabla](https://huggingface.co/docs/transformers/index#supported-frameworks).
Estas implementaciones se han probado en varios conjuntos de datos (consulte los scripts de ejemplo) y deberían coincidir con el rendimiento de las implementaciones originales. Puede encontrar más detalles sobre el rendimiento en la sección Examples de la [documentación](https://github.com/huggingface/transformers/tree/main/examples).
## Aprender más
| Sección | Descripción |
|-|-|
| [Documentación](https://huggingface.co/docs/transformers/) | Toda la documentación de la API y tutoriales |
| [Resumen de tareas](https://huggingface.co/docs/transformers/task_summary) | Tareas soportadas 🤗 Transformers |
| [Tutorial de preprocesamiento](https://huggingface.co/docs/transformers/preprocessing) | Usando la clase `Tokenizer` para preparar datos para los modelos |
| [Entrenamiento y puesta a punto](https://huggingface.co/docs/transformers/training) | Usando los modelos aportados por 🤗 Transformers en un bucle de entreno de PyTorch/TensorFlow y la API de `Trainer` |
| [Recorrido rápido: secuencias de comandos de ajuste/uso](https://github.com/huggingface/transformers/tree/main/examples) | Scripts de ejemplo para ajustar modelos en una amplia gama de tareas |
| [Compartir y subir modelos](https://huggingface.co/docs/transformers/model_sharing) | Carga y comparte tus modelos perfeccionados con la comunidad |
| [Migración](https://huggingface.co/docs/transformers/migration) | Migra a 🤗 Transformers desde `pytorch-transformers` o `pytorch-pretrained-bert` |
## Citación
Ahora nosotros tenemos un [paper](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) que puedes citar para la librería de 🤗 Transformers:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

589
README_fr.md Normal file
View File

@ -0,0 +1,589 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
<img alt="Bibliothèque Hugging Face Transformers" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
</picture>
<br/>
<br/>
</p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Construction" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="Version GitHub" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Pacte des contributeurs" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
<b>Français</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
</p>
</h4>
<h3 align="center">
<p>Apprentissage automatique de pointe pour JAX, PyTorch et TensorFlow</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers fournit des milliers de modèles pré-entraînés pour effectuer des tâches sur différentes modalités telles que le texte, la vision et l'audio.
Ces modèles peuvent être appliqués à :
* 📝 Texte, pour des tâches telles que la classification de texte, l'extraction d'informations, la réponse aux questions, le résumé, la traduction et la génération de texte, dans plus de 100 langues.
* 🖼️ Images, pour des tâches telles que la classification d'images, la détection d'objets et la segmentation.
* 🗣️ Audio, pour des tâches telles que la reconnaissance vocale et la classification audio.
Les modèles de transformer peuvent également effectuer des tâches sur **plusieurs modalités combinées**, telles que la réponse aux questions sur des tableaux, la reconnaissance optique de caractères, l'extraction d'informations à partir de documents numérisés, la classification vidéo et la réponse aux questions visuelles.
🤗 Transformers fournit des API pour télécharger et utiliser rapidement ces modèles pré-entraînés sur un texte donné, les affiner sur vos propres ensembles de données, puis les partager avec la communauté sur notre [hub de modèles](https://huggingface.co/models). En même temps, chaque module Python définissant une architecture est complètement indépendant et peut être modifié pour permettre des expériences de recherche rapides.
🤗 Transformers est soutenu par les trois bibliothèques d'apprentissage profond les plus populaires — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) et [TensorFlow](https://www.tensorflow.org/) — avec une intégration transparente entre eux. Il est facile de former vos modèles avec l'un avant de les charger pour l'inférence avec l'autre.
## Démos en ligne
Vous pouvez tester la plupart de nos modèles directement sur leurs pages du [hub de modèles](https://huggingface.co/models). Nous proposons également [l'hébergement privé de modèles, le versionning et une API d'inférence](https://huggingface.co/pricing) pour des modèles publics et privés.
Voici quelques exemples :
En traitement du langage naturel :
- [Complétion de mots masqués avec BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Reconnaissance d'entités nommées avec Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Génération de texte avec GPT-2](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [Inférence de langage naturel avec RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Résumé avec BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Réponse aux questions avec DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Traduction avec T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
En vision par ordinateur :
- [Classification d'images avec ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Détection d'objets avec DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Segmentation sémantique avec SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Segmentation panoptique avec MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
- [Estimation de profondeur avec DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
- [Classification vidéo avec VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Segmentation universelle avec OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
En audio :
- [Reconnaissance automatique de la parole avec Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Spotting de mots-clés avec Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Classification audio avec Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
Dans les tâches multimodales :
- [Réponses aux questions sur table avec TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Réponses aux questions visuelles avec ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Classification d'images sans étiquette avec CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
- [Réponses aux questions sur les documents avec LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Classification vidéo sans étiquette avec X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
## 100 projets utilisant Transformers
Transformers est plus qu'une boîte à outils pour utiliser des modèles pré-entraînés : c'est une communauté de projets construits autour de lui et du Hub Hugging Face. Nous voulons que Transformers permette aux développeurs, chercheurs, étudiants, professeurs, ingénieurs et à quiconque d'imaginer et de réaliser leurs projets de rêve.
Afin de célébrer les 100 000 étoiles de transformers, nous avons décidé de mettre en avant la communauté et avons créé la page [awesome-transformers](./awesome-transformers.md) qui répertorie 100 projets incroyables construits autour de transformers.
Si vous possédez ou utilisez un projet que vous pensez devoir figurer dans la liste, veuillez ouvrir une pull request pour l'ajouter !
## Si vous recherchez un support personnalisé de la part de l'équipe Hugging Face
<a target="_blank" href="https://huggingface.co/support">
<img alt="Programme d'accélération des experts HuggingFace" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Tour rapide
Pour utiliser immédiatement un modèle sur une entrée donnée (texte, image, audio,...), nous fournissons l'API `pipeline`. Les pipelines regroupent un modèle pré-entraîné avec la préparation des données qui a été utilisée lors de l'entraînement de ce modèle. Voici comment utiliser rapidement un pipeline pour classer des textes en positif ou négatif :
```python
>>> from transformers import pipeline
# Allouer un pipeline pour l'analyse de sentiment
>>> classifieur = pipeline('sentiment-analysis')
>>> classifieur("Nous sommes très heureux d'introduire le pipeline dans le référentiel transformers.")
[{'label': 'POSITIF', 'score': 0.9996980428695679}]
```
La deuxième ligne de code télécharge et met en cache le modèle pré-entraîné utilisé par le pipeline, tandis que la troisième l'évalue sur le texte donné. Ici, la réponse est "positive" avec une confiance de 99,97%.
De nombreuses tâches ont une pipeline pré-entraîné prêt à l'emploi, en NLP, mais aussi en vision par ordinateur et en parole. Par exemple, nous pouvons facilement extraire les objets détectés dans une image :
```python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Télécharger une image avec de jolis chats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> donnees_image = requests.get(url, stream=True).raw
>>> image = Image.open(donnees_image)
# Allouer un pipeline pour la détection d'objets
>>> detecteur_objets = pipeline('object-detection')
>>> detecteur_objets(image)
[{'score': 0.9982201457023621,
'label': 'télécommande',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'télécommande',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'canapé',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'chat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'chat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
Ici, nous obtenons une liste d'objets détectés dans l'image, avec une boîte entourant l'objet et un score de confiance. Voici l'image originale à gauche, avec les prédictions affichées à droite :
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
Vous pouvez en savoir plus sur les tâches supportées par l'API pipeline dans [ce tutoriel](https://huggingface.co/docs/transformers/task_summary).
En plus de `pipeline`, pour télécharger et utiliser n'importe lequel des modèles pré-entraînés sur votre tâche donnée, il suffit de trois lignes de code. Voici la version PyTorch :
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
inputs = tokenizer("Bonjour le monde !", return_tensors="pt")
outputs = model(**inputs)
```
Et voici le code équivalent pour TensorFlow :
```python
from transformers import AutoTokenizer, TFAutoModel
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
inputs = tokenizer("Bonjour le monde !", return_tensors="tf")
outputs = model(**inputs)
```
Le tokenizer est responsable de toutes les étapes de prétraitement que le modèle préentraîné attend et peut être appelé directement sur une seule chaîne de caractères (comme dans les exemples ci-dessus) ou sur une liste. Il produira un dictionnaire que vous pouvez utiliser dans votre code ou simplement passer directement à votre modèle en utilisant l'opérateur de déballage **.
Le modèle lui-même est un module [`nn.Module` PyTorch](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) ou un modèle [`tf.keras.Model` TensorFlow](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (selon votre backend) que vous pouvez utiliser comme d'habitude. [Ce tutoriel](https://huggingface.co/docs/transformers/training) explique comment intégrer un tel modèle dans une boucle d'entraînement classique PyTorch ou TensorFlow, ou comment utiliser notre API `Trainer` pour affiner rapidement sur un nouvel ensemble de données.
## Pourquoi devrais-je utiliser transformers ?
1. Des modèles de pointe faciles à utiliser :
- Hautes performances en compréhension et génération de langage naturel, en vision par ordinateur et en tâches audio.
- Faible barrière à l'entrée pour les éducateurs et les praticiens.
- Peu d'abstractions visibles pour l'utilisateur avec seulement trois classes à apprendre.
- Une API unifiée pour utiliser tous nos modèles préentraînés.
1. Coûts informatiques réduits, empreinte carbone plus petite :
- Les chercheurs peuvent partager des modèles entraînés au lieu de toujours les réentraîner.
- Les praticiens peuvent réduire le temps de calcul et les coûts de production.
- Des dizaines d'architectures avec plus de 400 000 modèles préentraînés dans toutes les modalités.
1. Choisissez le bon framework pour chaque partie de la vie d'un modèle :
- Entraînez des modèles de pointe en 3 lignes de code.
- Trasnférer un seul modèle entre les frameworks TF2.0/PyTorch/JAX à volonté.
- Choisissez facilement le bon framework pour l'entraînement, l'évaluation et la production.
1. Personnalisez facilement un modèle ou un exemple selon vos besoins :
- Nous fournissons des exemples pour chaque architecture afin de reproduire les résultats publiés par ses auteurs originaux.
- Les détails internes du modèle sont exposés de manière aussi cohérente que possible.
- Les fichiers de modèle peuvent être utilisés indépendamment de la bibliothèque pour des expériences rapides.
## Pourquoi ne devrais-je pas utiliser transformers ?
- Cette bibliothèque n'est pas une boîte à outils modulaire de blocs de construction pour les réseaux neuronaux. Le code dans les fichiers de modèle n'est pas refactored avec des abstractions supplémentaires à dessein, afin que les chercheurs puissent itérer rapidement sur chacun des modèles sans plonger dans des abstractions/fichiers supplémentaires.
- L'API d'entraînement n'est pas destinée à fonctionner avec n'importe quel modèle, mais elle est optimisée pour fonctionner avec les modèles fournis par la bibliothèque. Pour des boucles génériques d'apprentissage automatique, vous devriez utiliser une autre bibliothèque (éventuellement, [Accelerate](https://huggingface.co/docs/accelerate)).
- Bien que nous nous efforcions de présenter autant de cas d'utilisation que possible, les scripts de notre [dossier d'exemples](https://github.com/huggingface/transformers/tree/main/examples) ne sont que cela : des exemples. Il est prévu qu'ils ne fonctionnent pas immédiatement sur votre problème spécifique et que vous devrez probablement modifier quelques lignes de code pour les adapter à vos besoins.
## Installation
### Avec pip
Ce référentiel est testé sur Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ et TensorFlow 2.6+.
Vous devriez installer 🤗 Transformers dans un [environnement virtuel](https://docs.python.org/3/library/venv.html). Si vous n'êtes pas familier avec les environnements virtuels Python, consultez le [guide utilisateur](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
D'abord, créez un environnement virtuel avec la version de Python que vous allez utiliser et activez-le.
Ensuite, vous devrez installer au moins l'un de Flax, PyTorch ou TensorFlow.
Veuillez vous référer à la page d'installation de [TensorFlow](https://www.tensorflow.org/install/), de [PyTorch](https://pytorch.org/get-started/locally/#start-locally) et/ou de [Flax](https://github.com/google/flax#quick-install) et [Jax](https://github.com/google/jax#installation) pour connaître la commande d'installation spécifique à votre plateforme.
Lorsqu'un de ces backends est installé, 🤗 Transformers peut être installé avec pip comme suit :
```bash
pip install transformers
```
Si vous souhaitez jouer avec les exemples ou avez besoin de la dernière version du code et ne pouvez pas attendre une nouvelle version, vous devez [installer la bibliothèque à partir de la source](https://huggingface.co/docs/transformers/installation#installing-from-source).
### Avec conda
🤗 Transformers peut être installé avec conda comme suit :
```shell
conda install conda-forge::transformers
```
> **_NOTE:_** L'installation de `transformers` depuis le canal `huggingface` est obsolète.
Suivez les pages d'installation de Flax, PyTorch ou TensorFlow pour voir comment les installer avec conda.
> **_NOTE:_** Sur Windows, on peut vous demander d'activer le mode développeur pour bénéficier de la mise en cache. Si ce n'est pas une option pour vous, veuillez nous le faire savoir dans [cette issue](https://github.com/huggingface/huggingface_hub/issues/1062).
## Architectures de modèles
**[Tous les points de contrôle](https://huggingface.co/models)** de modèle fournis par 🤗 Transformers sont intégrés de manière transparente depuis le [hub de modèles](https://huggingface.co/models) huggingface.co, où ils sont téléchargés directement par les [utilisateurs](https://huggingface.co/users) et les [organisations](https://huggingface.co/organizations).
Nombre actuel de points de contrôle : ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers fournit actuellement les architectures suivantes (consultez [ici](https://huggingface.co/docs/transformers/model_summary) pour un résumé global de chacune d'entre elles) :
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (de Google Research et du Toyota Technological Institute at Chicago) publié dans l'article [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), par Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (de Google Research) publié dans l'article [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) de Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (de BAAI) publié dans l'article [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) de Chen, Zhongzhi et Liu, Guang et Zhang, Bo-Wen et Ye, Fulong et Yang, Qinghong et Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (du MIT) publié dans l'article [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) de Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (de l'Université Tsinghua) publié dans l'article [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) de Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (de Suno) publié dans le référentiel [suno-ai/bark](https://github.com/suno-ai/bark) par l'équipe Suno AI.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (de Facebook) publié dans l'article [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) de Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov et Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (de l'École polytechnique) publié dans l'article [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) de Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (de VinAI Research) publié dans l'article [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) de Nguyen Luong Tran, Duong Minh Le et Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (de Microsoft) publié dans l'article [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) par Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (de Google) publié dans l'article [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) par Jacob Devlin, Ming-Wei Chang, Kenton Lee et Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (de Google) publié dans l'article [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) parSascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (de VinAI Research) publié dans l'article [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) par Dat Quoc Nguyen, Thanh Vu et Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (de Google Research) publié dans l'article [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) par Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (de Google Research) publié dans l'article [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) par Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (de Microsoft Research AI4Science) publié dans l'article [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) par Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon et Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (de Google AI) publié dans l'article [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) par Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (de Facebook) publié dans l'article [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) par Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (de Facebook) publié dans l'article [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) par Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (de Salesforce) publié dans l'article [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) par Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (de Salesforce) publié dans l'article [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) par Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (de l'atelier BigScience) publié par l'[atelier BigScience](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (d'Alexa) publié dans l'article [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) par Adrian de Wynter et Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (de l'Institut de technologie de Harbin/Microsoft Research Asia/Intel Labs) publié dans l'article [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) par Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (de NAVER CLOVA) publié dans l'article [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) par Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (de Google Research) publié dans l'article [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) par Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (d'Inria/Facebook/Sorbonne) publié dans l'article [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) par Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah et Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (de Google Research) publié dans l'article [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) par Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (d'OFA-Sys) publié dans l'article [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) par An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (de LAION-AI) publié dans l'article [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) par Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (d'OpenAI) publié dans l'article [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) par Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (de l'Université de Göttingen) publié dans l'article [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) par Timo Lüddecke et Alexander Ecker.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** publié dans l'article [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) par James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (de Salesforce) publié dans l'article [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) par Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (de MetaAI) publié dans l'article [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) par Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (de Cohere) publié dans l'article [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) parCohere.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (de Microsoft Research Asia) publié dans l'article [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) par Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (de YituTech) publié dans l'article [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) par Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (de Facebook AI) publié dans l'article [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) par Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (de Facebook AI) publié dans l'article [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) par Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (de l'Université de Tsinghua) publié dans l'article [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) par Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (d'OpenBMB) publié par l'[OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (de Salesforce) publié dans l'article [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) par Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong et Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (de Microsoft) publié dans l'article [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) par Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (de Facebook) publié dans l'article [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) par Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (de Microsoft) publié dans l'article [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) par Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (de Microsoft) publié dans l'article [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) par Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (de Berkeley/Facebook/Google) publié dans l'article [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) par Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (de SenseTime Research) publié dans l'article [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) par Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (de Facebook) publié dans l'article [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) par Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (de Google AI) publié dans l'article [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) par Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (de l'université d'Hong Kong et TikTok) publié dans l'article [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (de l'Université du Texas à Austin) publié dans l'article [NMS Strikes Back](https://arxiv.org/abs/2212.06137) par Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (de Facebook) publié dans l'article [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) par Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (de Microsoft Research) publié dans l'article [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) par Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (de SHI Labs) publié dans l'article [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) par Ali Hassani et Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (de Meta AI) publié dans l'article [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) par Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (de HuggingFace), publié dans l'article [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) par Victor Sanh, Lysandre Debut et Thomas Wolf. La même méthode a été appliquée pour compresser GPT2 en [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa en [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT en [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) et une version allemande de DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (de Microsoft Research) publié dans l'article [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) par Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (de NAVER), publié dans l'article [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) par Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (de Facebook) publié dans l'article [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) par Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen et Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (d'Intel Labs) publié dans l'article [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) par René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (de Snap Research) publié dans l'article [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) par Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (de Google Brain) publié dans l'article [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) par Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (de Google Research/Université Stanford) publié dans l'article [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) par Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (de Meta AI) publié dans l'article [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) par Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (de Google Research) publié dans l'article [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) par Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (de Baidu) publié dans l'article [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) par Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (de Baidu) publié dans l'article [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) par Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (de Meta AI) sont des modèles de langage de protéines de type transformateur. **ESM-1b** a été publié dans l'article [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) par Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma et Rob Fergus. **ESM-1v** a été publié dans l'article [Les modèles de langage permettent une prédiction hors champ des effets des mutations sur la fonction des protéines](https://doi.org/10.1101/2021.07.09.450648) par Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu et Alexander Rives. **ESM-2 et ESMFold** ont été publiés avec l'article [Les modèles de langage des séquences de protéines à l'échelle de l'évolution permettent une prédiction précise de la structure](https://doi.org/10.1101/2022.07.20.500902) par Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (de Technology Innovation Institute) par Almazrouei, Ebtesam et Alobeidli, Hamza et Alshamsi, Abdulaziz et Cappelli, Alessandro et Cojocaru, Ruxandra et Debbah, Merouane et Goffinet, Etienne et Heslow, Daniel et Launay, Julien et Malartic, Quentin et Noune, Badreddine et Pannier, Baptiste et Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (d'ESPnet) publié dans l'article [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) par Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang et Yuekai Zhang.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (de Google AI) publié dans le référentiel [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) par Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le et Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (de Google AI) publié dans le référentiel [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) par Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le et Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (du CNRS) publié dans l'article [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) par Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (de Facebook AI) publié dans l'article [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) par Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach et Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (de Google Research) publié dans l'article [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) par James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (de Microsoft Research) publié dans l'article [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) par Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (de l'Université Carnegie Mellon/Google Brain) publié dans l'article [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) par Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (de ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Publié dans l'article [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (de Google) publié dans l'article [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) parthe Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (de Microsoft Research) publié dans l'article [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) par Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (de la KAIST) publié dans l'article [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) par Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (d'OpenAI) publié dans l'article [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) par Alec Radford, Karthik Narasimhan, Tim Salimans et Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (d'EleutherAI) publié dans le référentiel [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) par Sid Black, Stella Biderman, Leo Gao, Phil Wang et Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (d'EleutherAI) publié dans l'article [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) par Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (de ABEJA) publié par Shinya Otani, Takayoshi Makabe, Anuj Arora et Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (d'OpenAI) a été publié dans l'article [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) par Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei et Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (d'EleutherAI) a été publié dans le dépôt [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) par Ben Wang et Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (d'AI-Sweden) a été publié dans l'article [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) par Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (de BigCode) a été publié dans l'article [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) par Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** a été publié dans le dépôt [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) par Toshiyuki Sakamoto (tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (de Microsoft) a été publié dans l'article [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) par Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (de Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) publié dans l'article [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) parShilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (de l'UCSD, NVIDIA) a été publié dans l'article [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) par Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (d'Allegro.pl, AGH University of Science and Technology) a été publié dans l'article [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) par Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (de Facebook) a été publié dans l'article [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) par Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (de Berkeley) a été publié dans l'article [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) par Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (de HuggingFace) a été publié dans l'article [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) par Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (de Hugging Face) publié dans l'article [IDEFICS2](https://huggingface.co/blog/idefics2) parLéo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (d'OpenAI) a été publié dans l'article [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) par Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (de l'Université de Beihang, UC Berkeley, Rutgers University, SEDD Company) a été publié dans l'article [Informer : Au-delà du Transformer efficace pour la prévision de séries temporel
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (de Salesforce) a été publié dans l'article [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) de Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (d'OpenAI) a été publié dans l'article [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) de Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (de Microsoft Research Asia) a été publié dans l'article [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) de Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (de Microsoft Research Asia) a été publié dans l'article [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) de Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (de Microsoft Research Asia) a été publié dans l'article [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) de Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (de Microsoft Research Asia) a été publié dans l'article [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) de Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (de Microsoft Research Asia) a été publié dans l'article [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) de Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (d'AllenAI) a été publié dans l'article [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) de Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (de Meta AI) a été publié dans l'article [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) de Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (de l'Université de technologie du Sud de la Chine) a été publié dans l'article [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) de Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (de l'équipe FAIR de Meta AI) a été publié dans l'article [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) de Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (de l'équipe FAIR de Meta AI) a été publié dans l'article [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) de Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (de Microsoft Research & University of Wisconsin-Madison) a été publié dans l'article [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) de Haotian Liu, Chunyuan Li, Yuheng Li et Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (de Microsoft Research & University of Wisconsin-Madison) publié dans l'article [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) parHaotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (d'AllenAI) a été publié dans l'article [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) de Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (de Google AI) a été publié dans l'article [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) de Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (de Studio Ousia) a été publié dans l'article [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) de Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (de l'UNC Chapel Hill) a été publié dans l'article [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) de Hao Tan et Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (de Facebook) a été publié dans l'article [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) de Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve et Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (de Facebook) a été publié dans l'article [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) de Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (de Google) a été publié dans l'article [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) de Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (de Albert Gu and Tri Dao) publié dans l'article [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) parAlbert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Des modèles de traduction automatique formés avec les données [OPUS](http://opus.nlpl.eu/) par Jörg Tiedemann. Le [cadre Marian](https://marian-nmt.github.io/) est en cours de développement par l'équipe Microsoft Translator.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (de Microsoft Research Asia) a été publié dans l'article [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) de Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (de FAIR et UIUC) a été publié dans l'article [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) de Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (de Meta et UIUC) a été publié dans l'article [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) de Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (de Google AI) a été publié dans l'article [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) de Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (de Facebook) a été publié dans l'article [Pré-entraînement de débruitage multilingue pour la traduction automatique neuronale
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (de Facebook) a été publié dans l'article [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) par Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (de Meta/USC/CMU/SJTU) a été publié dans l'article [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) par Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May et Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (de NVIDIA) a été publié dans l'article [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) par Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper et Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (de NVIDIA) a été publié dans l'article [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) par Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper et Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (d'Alibaba Research) a été publié dans l'article [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) par Peng Wang, Cheng Da et Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (de Mistral AI) par l'équipe [Mistral AI](https://mistral.ai) : Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (de Mistral AI) par l'équipe [Mistral AI](https://mistral.ai) : Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (de Studio Ousia) a été publié dans l'article [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) par Ryokan Ri, Ikuya Yamada et Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (de Facebook) a été publié dans l'article [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) par Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (de CMU/Google Brain) a été publié dans l'article [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) par Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang et Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (de Google Inc.) a été publié dans l'article [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) par Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (de Google Inc.) a été publié dans l'article [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) par Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (d'Apple) a été publié dans l'article [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) par Sachin Mehta et Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (d'Apple) a été publié dans l'article [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) par Sachin Mehta et Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (de Microsoft Research) a été publié dans l'article [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) par Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (de MosaiML) a été publié avec le référentiel [llm-foundry](https://github.com/mosaicml/llm-foundry/) par l'équipe MosaiML NLP.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (de l'Université du Wisconsin - Madison) a été publié dans l'article [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) par Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (de Google AI) a été publié dans l'article [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) par Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (de Meta) a été publié dans l'article [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) par Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi et Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (de Meta) publié dans l'article [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) parJade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (de RUC AI Box) a été publié dans l'article [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) par Tianyi Tang, Junyi Li, Wayne Xin Zhao et Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (de SHI Labs) a été publié dans l'article [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) par Ali Hassani, Steven Walton, Jiachen Li, Shen Li et Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (du laboratoire Noah's Ark de Huawei) a été publié dans l'article [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) par Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen et Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (de Meta) a été publié dans l'article [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) par l'équipe NLLB.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (de Meta) a été publié dans l'article [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) par l'équipe NLLB.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (de Meta AI) a été publié dans l'article [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) par Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (de l'Université du Wisconsin - Madison) a été publié dans l'article [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) par Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (de SHI Labs) a été publié dans l'article [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) par Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (de [s-JoL](https://huggingface.co/s-JoL)) publié sur GitHub (maintenant supprimé).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (de Meta AI) a été publié dans l'article [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) par Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (de Google AI) a été publié dans l'article [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) par Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf et Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (de Google AI) a été publié dans l'article [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) par Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (d'IBM Research) a été publié dans l'article [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) par Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (d'IBM) a été publié dans l'article [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) par Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (de Google) a été publié dans l'article [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) par Jingqing Zhang, Yao Zhao, Mohammad Saleh et Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (de Google) a été publié dans l'article [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) par Jason Phang, Yao Zhao et Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (de Deepmind) a été publié dans l'article [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) par Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals et João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (d'ADEPT) a été publié dans un [blog post](https://www.adept.ai/blog/persimmon-8b) par Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (de Microsoft) a été publié avec les articles - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) par Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee et Yuanzhi Li, [Textbooks Are All You Need II : Rapport technique phi-1.5](https://arxiv.org/abs/2309.05463) par Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar et Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (de VinAI Research) a été publié dans l'article [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) par Dat Quoc Nguyen et Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (de Google) a été publié dans l'article [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) par Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (de UCLA NLP) a été publié dans l'article [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) par Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (de Sea AI Labs) a été publié dans l'article [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) par Yu, Weihao et Luo, Mi et Zhou, Pan et Si, Chenyang et Zhou, Yichen et Wang, Xinchao et Feng, Jiashi et Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** a été publié dans l'article [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) par Jongho Choi et Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (de Microsoft Research) a été publié dans l'article [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) par Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang et Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (de l'Université de Nankin, l'Université de Hong Kong, etc.) a été publié dans l'article [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) par Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo et Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (de Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) publié dans l'article [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) parWenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (de NVIDIA) a été publié dans l'article [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) par Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev et Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (de l'équipe Qwen, Alibaba Group) a été publié avec le rapport technique [Qwen Technical Report](https://arxiv.org/abs/2309.16609) par Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou et Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (de l'équipe Qwen, Alibaba Group) a été publié avec le rapport technique [blog post](https://qwenlm.github.io/blog/qwen-moe/) par Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (de Facebook) a été publié dans l'article [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) par Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (de Google Research) a été publié dans l'article [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) par Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat et Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (de Google) publié dans l'article [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) parthe Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (de Google Research) a été publié dans l'article [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) par Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (de META Platforms) a été publié dans l'article [Designing Network Design Space](https://arxiv.org/abs/2003.13678) par Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (de Google Research) a été publié dans l'article [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) par Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (de Microsoft Research) a été publié dans l'article [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) par Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (de Facebook), publié dans l'article [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) par Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (de Facebook) a été publié dans l'article [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) par Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (de WeChatAI) a été publié dans l'article [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) par HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (de ZhuiyiTechnology), publié dans l'article [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) par Jianlin Su et Yu Lu et Shengfeng Pan et Bo Wen et Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (de Bo Peng), publié sur [this repo](https://github.com/BlinkDL/RWKV-LM) par Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (de Meta AI) a été publié dans l'article [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) par l'équipe de communication transparente.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (de Meta AI) a été publié dans l'article [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) par l'équipe de communication transparente.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (de NVIDIA) a été publié dans l'article [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) par Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (de Beijing Academy of Artificial Intelligence (BAAI) publié dans l'article [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) parXinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (de Meta AI) a été publié dans l'article [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) par Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (de ASAPP) a été publié dans l'article [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) par Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (de ASAPP) a été publié dans l'article [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) par Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (de Google AI) a été publié dans l'article [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) par Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (de Microsoft Research) a été publié dans l'article [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) par Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (de Facebook), publié dans l'article [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) par Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (de Facebook), publié dans l'article [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) par Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (de l'Université de Tel Aviv), publié dans l'article [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) par Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (de Berkeley) a été publié dans l'article [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) par Forrest N. Iandola, Albert E. Shaw, Ravi Krishna et Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (de MagicLeap) publié dans l'article [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) parDaniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (de MBZUAI) a été publié dans l'article [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) par Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (de Microsoft) a été publié dans l'article [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) par Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (de Microsoft) a été publié dans l'article [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) par Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (de l'Université de Würzburg) a été publié dans l'article [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) par Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (de Google) a été publié dans l'article [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) par William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (de Google AI) a été publié dans l'article [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) par Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li et Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (de Google AI) a été publié dans le dépôt [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) par Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li et Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (de Microsoft Research) a été publié dans l'article [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) par Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (de Google AI) a été publié dans l'article [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) par Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno et Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (de Microsoft Research) a été publié dans l'article [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) par Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen et Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (de HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (de Facebook) a été publié dans l'article [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) par Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (de l'Université de Californie à Berkeley) a été publié dans l'article [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) par Michael Janner, Qiyang Li, Sergey Levine.
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (de Google/CMU) a été publié dans l'article [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) par Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (de Microsoft), publié dans l'article [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) par Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (de l'UNC Chapel Hill) a été publié dans l'article [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) par Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (d'Intel) a été publié dans l'article [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) par Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (de Microsoft Research) publié dans l'article [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) parZineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (de Google Research) a été publié dans l'article [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) par Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler.
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (de Google Research) a été publié dans l'article [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) par Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (de Microsoft Research) a été publié dans l'article [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) par Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (de Microsoft Research) a été publié dans l'article [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) par Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (de Kakao Corporation) a été publié dans l'article [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) par Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim et Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (de l'Université de Pékin) a été publié dans l'article [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) par Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (de l'Université Tsinghua et de l'Université Nankai) publié dans l'article [Visual Attention Network](https://arxiv.org/abs/2202.09741) par Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (du groupe d'informatique multimédia, Université de Nankin) publié dans l'article [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) par Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (du NAVER AI Lab/Kakao Enterprise/Kakao Brain) publié dans l'article [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) par Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (de l'Université du WisconsinMadison) publié dans l'article [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) par Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (de Google AI) publié dans l'article [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) par Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (de UCLA NLP) publié dans l'article [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) par Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (de Google AI) publié dans l'article [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) par Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (de Meta AI) publié dans l'article [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) par Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (de Meta AI) publié dans l'article [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) par Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (de HUST-VL) publié dans l'article [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) par Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (de Meta AI) publié dans l'article [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) par Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (de Kakao Enterprise) publié dans l'article [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) par Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (de Google Research) publié dans l'article [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) par Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (de Facebook AI) publié dans l'article [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) par Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (de Meta AI) publié dans l'article [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) par l'équipe Seamless Communication.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (de Facebook AI) a été publié dans l'article [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) par Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (de Facebook AI) a été publié dans l'article [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) par Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (de Microsoft Research) a été publié dans l'article [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) par Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (d'OpenAI) a été publié dans l'article [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) par Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (de Microsoft Research) a été publié dans l'article [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) par Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (de Meta AI) a été publié dans l'article [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) par Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (de Facebook AI) a été publié dans l'article [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) par Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (de Facebook) a été publié dans l'article [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) par Guillaume Lample et Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (de Microsoft Research) a été publié dans l'article [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) par Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang et Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (de Facebook AI), publié dans l'article [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) par Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer et Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (de Facebook AI), publié dans l'article [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) par Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (de Meta AI) a été publié dans l'article [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) par Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (de Google/CMU) a été publié dans l'article [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) par Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (de Facebook AI) publié dans l'article [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) par Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (de Facebook AI) publié dans l'article [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) par Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (de l'Université Huazhong des sciences et technologies) publié dans l'article [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) par Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (de l'Université du Wisconsin - Madison) publié dans l'article [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) par Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Vous souhaitez contribuer avec un nouveau modèle ? Nous avons ajouté un **guide détaillé et des modèles types** pour vous guider dans le processus d'ajout d'un nouveau modèle. Vous pouvez les trouver dans le dossier [`templates`](./templates) du référentiel. Assurez-vous de consulter les [directives de contribution](./CONTRIBUTING.md) et de contacter les mainteneurs ou d'ouvrir un ticket pour recueillir des commentaires avant de commencer votre pull request.
Pour vérifier si chaque modèle a une implémentation en Flax, PyTorch ou TensorFlow, ou s'il a un tokenizer associé pris en charge par la bibliothèque 🤗 Tokenizers, consultez [ce tableau](https://huggingface.co/docs/transformers/index#supported-frameworks).
Ces implémentations ont été testées sur plusieurs ensembles de données (voir les scripts d'exemple) et devraient correspondre aux performances des implémentations originales. Vous pouvez trouver plus de détails sur les performances dans la section Exemples de la [documentation](https://github.com/huggingface/transformers/tree/main/examples).
## En savoir plus
| Section | Description |
|-|-|
| [Documentation](https://huggingface.co/docs/transformers/) | Documentation complète de l'API et tutoriels |
| [Résumé des tâches](https://huggingface.co/docs/transformers/task_summary) | Tâches prises en charge par les 🤗 Transformers |
| [Tutoriel de prétraitement](https://huggingface.co/docs/transformers/preprocessing) | Utilisation de la classe `Tokenizer` pour préparer les données pour les modèles |
| [Entraînement et ajustement fin](https://huggingface.co/docs/transformers/training) | Utilisation des modèles fournis par les 🤗 Transformers dans une boucle d'entraînement PyTorch/TensorFlow et de l'API `Trainer` |
| [Tour rapide : Scripts d'ajustement fin/d'utilisation](https://github.com/huggingface/transformers/tree/main/examples) | Scripts d'exemple pour ajuster finement les modèles sur une large gamme de tâches |
| [Partage et téléversement de modèles](https://huggingface.co/docs/transformers/model_sharing) | Téléchargez et partagez vos modèles ajustés avec la communauté |
## Citation
Nous disposons désormais d'un [article](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) que vous pouvez citer pour la bibliothèque 🤗 Transformers :
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

544
README_hd.md Normal file
View File

@ -0,0 +1,544 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<!---
A useful guide for English-Hindi translation of Hugging Face documentation
- Add space around English words and numbers when they appear between Hindi characters. E.g., कुल मिलाकर 100 से अधिक भाषाएँ; ट्रांसफॉर्मर लाइब्रेरी का उपयोग करता है।
- वर्गाकार उद्धरणों का प्रयोग करें, जैसे, "उद्धरण"
Dictionary
Hugging Face: गले लगाओ चेहरा
token: शब्द (और मूल अंग्रेजी को कोष्ठक में चिह्नित करें)
tokenize: टोकननाइज़ करें (और मूल अंग्रेज़ी को चिह्नित करने के लिए कोष्ठक का उपयोग करें)
tokenizer: Tokenizer (मूल अंग्रेजी में कोष्ठक के साथ)
transformer: transformer
pipeline: समनुक्रम
API: API (अनुवाद के बिना)
inference: विचार
Trainer: प्रशिक्षक। कक्षा के नाम के रूप में प्रस्तुत किए जाने पर अनुवादित नहीं किया गया।
pretrained/pretrain: पूर्व प्रशिक्षण
finetune: फ़ाइन ट्यूनिंग
community: समुदाय
example: जब विशिष्ट गोदाम example कैटलॉग करते समय "केस केस" के रूप में अनुवादित
Python data structures (e.g., list, set, dict): मूल अंग्रेजी को चिह्नित करने के लिए सूचियों, सेटों, शब्दकोशों में अनुवाद करें और कोष्ठक का उपयोग करें
NLP/Natural Language Processing: द्वारा NLP अनुवाद के बिना प्रकट होते हैं Natural Language Processing प्रस्तुत किए जाने पर प्राकृतिक भाषा संसाधन में अनुवाद करें
checkpoint: जाँच बिंदु
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
</p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<b>हिन्दी</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
</p>
</h4>
<h3 align="center">
<p>Jax, PyTorch और TensorFlow के लिए उन्नत मशीन लर्निंग</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers 100 से अधिक भाषाओं में पाठ वर्गीकरण, सूचना निष्कर्षण, प्रश्न उत्तर, सारांशीकरण, अनुवाद, पाठ निर्माण का समर्थन करने के लिए हजारों पूर्व-प्रशिक्षित मॉडल प्रदान करता है। इसका उद्देश्य सबसे उन्नत एनएलपी तकनीक को सभी के लिए सुलभ बनाना है।
🤗 Transformers त्वरित डाउनलोड और उपयोग के लिए एक एपीआई प्रदान करता है, जिससे आप किसी दिए गए पाठ पर एक पूर्व-प्रशिक्षित मॉडल ले सकते हैं, इसे अपने डेटासेट पर ठीक कर सकते हैं और इसे [मॉडल हब](https://huggingface.co/models) के माध्यम से समुदाय के साथ साझा कर सकते हैं। इसी समय, प्रत्येक परिभाषित पायथन मॉड्यूल पूरी तरह से स्वतंत्र है, जो संशोधन और तेजी से अनुसंधान प्रयोगों के लिए सुविधाजनक है।
🤗 Transformers तीन सबसे लोकप्रिय गहन शिक्षण पुस्तकालयों का समर्थन करता है: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — और इसके साथ निर्बाध रूप से एकीकृत होता है। आप अपने मॉडल को सीधे एक ढांचे के साथ प्रशिक्षित कर सकते हैं और दूसरे के साथ लोड और अनुमान लगा सकते हैं।
## ऑनलाइन डेमो
आप सबसे सीधे मॉडल पृष्ठ पर परीक्षण कर सकते हैं [model hub](https://huggingface.co/models) मॉडल पर। हम [निजी मॉडल होस्टिंग, मॉडल संस्करण, और अनुमान एपीआई](https://huggingface.co/pricing) भी प्रदान करते हैं।。
यहाँ कुछ उदाहरण हैं:
- [शब्द को भरने के लिए मास्क के रूप में BERT का प्रयोग करें](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [इलेक्ट्रा के साथ नामित इकाई पहचान](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [जीपीटी-2 के साथ टेक्स्ट जनरेशन](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [रॉबर्टा के साथ प्राकृतिक भाषा निष्कर्ष](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [बार्ट के साथ पाठ सारांश](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [डिस्टिलबर्ट के साथ प्रश्नोत्तर](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [अनुवाद के लिए T5 का प्रयोग करें](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Write With Transformer](https://transformer.huggingface.co)**,हगिंग फेस टीम द्वारा बनाया गया, यह एक आधिकारिक पाठ पीढ़ी है demo。
## यदि आप हगिंग फेस टीम से बीस्पोक समर्थन की तलाश कर रहे हैं
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## जल्दी शुरू करें
हम त्वरित उपयोग के लिए मॉडल प्रदान करते हैं `pipeline` (पाइपलाइन) एपीआई। पाइपलाइन पूर्व-प्रशिक्षित मॉडल और संबंधित पाठ प्रीप्रोसेसिंग को एकत्रित करती है। सकारात्मक और नकारात्मक भावना को निर्धारित करने के लिए पाइपलाइनों का उपयोग करने का एक त्वरित उदाहरण यहां दिया गया है:
```python
>>> from transformers import pipeline
# भावना विश्लेषण पाइपलाइन का उपयोग करना
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
कोड की दूसरी पंक्ति पाइपलाइन द्वारा उपयोग किए गए पूर्व-प्रशिक्षित मॉडल को डाउनलोड और कैश करती है, जबकि कोड की तीसरी पंक्ति दिए गए पाठ पर मूल्यांकन करती है। यहां उत्तर 99 आत्मविश्वास के स्तर के साथ "सकारात्मक" है।
कई एनएलपी कार्यों में आउट ऑफ़ द बॉक्स पाइपलाइनों का पूर्व-प्रशिक्षण होता है। उदाहरण के लिए, हम किसी दिए गए पाठ से किसी प्रश्न का उत्तर आसानी से निकाल सकते हैं:
``` python
>>> from transformers import pipeline
# प्रश्नोत्तर पाइपलाइन का उपयोग करना
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
```
उत्तर देने के अलावा, पूर्व-प्रशिक्षित मॉडल संगत आत्मविश्वास स्कोर भी देता है, जहां उत्तर टोकनयुक्त पाठ में शुरू और समाप्त होता है। आप [इस ट्यूटोरियल](https://huggingface.co/docs/transformers/task_summary) से पाइपलाइन एपीआई द्वारा समर्थित कार्यों के बारे में अधिक जान सकते हैं।
अपने कार्य पर किसी भी पूर्व-प्रशिक्षित मॉडल को डाउनलोड करना और उसका उपयोग करना भी कोड की तीन पंक्तियों की तरह सरल है। यहाँ PyTorch संस्करण के लिए एक उदाहरण दिया गया है:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
यहाँ समकक्ष है TensorFlow कोड:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
टोकननाइज़र सभी पूर्व-प्रशिक्षित मॉडलों के लिए प्रीप्रोसेसिंग प्रदान करता है और इसे सीधे एक स्ट्रिंग (जैसे ऊपर दिए गए उदाहरण) या किसी सूची पर बुलाया जा सकता है। यह एक डिक्शनरी (तानाशाही) को आउटपुट करता है जिसे आप डाउनस्ट्रीम कोड में उपयोग कर सकते हैं या `**` अनपैकिंग एक्सप्रेशन के माध्यम से सीधे मॉडल को पास कर सकते हैं।
मॉडल स्वयं एक नियमित [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) या [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (आपके बैकएंड के आधार पर), जो हो सकता है सामान्य तरीके से उपयोग किया जाता है। [यह ट्यूटोरियल](https://huggingface.co/transformers/training.html) बताता है कि इस तरह के मॉडल को क्लासिक PyTorch या TensorFlow प्रशिक्षण लूप में कैसे एकीकृत किया जाए, या हमारे `ट्रेनर` एपीआई का उपयोग कैसे करें ताकि इसे जल्दी से फ़ाइन ट्यून किया जा सके।एक नया डेटासेट पे।
## ट्रांसफार्मर का उपयोग क्यों करें?
1. उपयोग में आसानी के लिए उन्नत मॉडल:
- एनएलयू और एनएलजी पर बेहतर प्रदर्शन
- प्रवेश के लिए कम बाधाओं के साथ शिक्षण और अभ्यास के अनुकूल
- उपयोगकर्ता-सामना करने वाले सार तत्व, केवल तीन वर्गों को जानने की जरूरत है
- सभी मॉडलों के लिए एकीकृत एपीआई
1. कम कम्प्यूटेशनल ओवरहेड और कम कार्बन उत्सर्जन:
- शोधकर्ता हर बार नए सिरे से प्रशिक्षण देने के बजाय प्रशिक्षित मॉडल साझा कर सकते हैं
- इंजीनियर गणना समय और उत्पादन ओवरहेड को कम कर सकते हैं
- दर्जनों मॉडल आर्किटेक्चर, 2,000 से अधिक पूर्व-प्रशिक्षित मॉडल, 100 से अधिक भाषाओं का समर्थन
1.मॉडल जीवनचक्र के हर हिस्से को शामिल करता है:
- कोड की केवल 3 पंक्तियों में उन्नत मॉडलों को प्रशिक्षित करें
- मॉडल को मनमाने ढंग से विभिन्न डीप लर्निंग फ्रेमवर्क के बीच स्थानांतरित किया जा सकता है, जैसा आप चाहते हैं
- निर्बाध रूप से प्रशिक्षण, मूल्यांकन और उत्पादन के लिए सबसे उपयुक्त ढांचा चुनें
1. आसानी से अनन्य मॉडल को अनुकूलित करें और अपनी आवश्यकताओं के लिए मामलों का उपयोग करें:
- हम मूल पेपर परिणामों को पुन: पेश करने के लिए प्रत्येक मॉडल आर्किटेक्चर के लिए कई उपयोग के मामले प्रदान करते हैं
- मॉडल की आंतरिक संरचना पारदर्शी और सुसंगत रहती है
- मॉडल फ़ाइल को अलग से इस्तेमाल किया जा सकता है, जो संशोधन और त्वरित प्रयोग के लिए सुविधाजनक है
## मुझे ट्रांसफॉर्मर का उपयोग कब नहीं करना चाहिए?
- यह लाइब्रेरी मॉड्यूलर न्यूरल नेटवर्क टूलबॉक्स नहीं है। मॉडल फ़ाइल में कोड जानबूझकर अल्पविकसित है, बिना अतिरिक्त सार इनकैप्सुलेशन के, ताकि शोधकर्ता अमूर्तता और फ़ाइल जंपिंग में शामिल हुए जल्दी से पुनरावृति कर सकें।
- `ट्रेनर` एपीआई किसी भी मॉडल के साथ संगत नहीं है, यह केवल इस पुस्तकालय के मॉडल के लिए अनुकूलित है। यदि आप सामान्य मशीन लर्निंग के लिए उपयुक्त प्रशिक्षण लूप कार्यान्वयन की तलाश में हैं, तो कहीं और देखें।
- हमारे सर्वोत्तम प्रयासों के बावजूद, [उदाहरण निर्देशिका](https://github.com/huggingface/transformers/tree/main/examples) में स्क्रिप्ट केवल उपयोग के मामले हैं। आपकी विशिष्ट समस्या के लिए, वे जरूरी नहीं कि बॉक्स से बाहर काम करें, और आपको कोड की कुछ पंक्तियों को सूट करने की आवश्यकता हो सकती है।
## स्थापित करना
### पिप का उपयोग करना
इस रिपॉजिटरी का परीक्षण Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ और TensorFlow 2.6+ के तहत किया गया है।
आप [वर्चुअल एनवायरनमेंट](https://docs.python.org/3/library/venv.html) में 🤗 ट्रांसफॉर्मर इंस्टॉल कर सकते हैं। यदि आप अभी तक पायथन के वर्चुअल एनवायरनमेंट से परिचित नहीं हैं, तो कृपया इसे [उपयोगकर्ता निर्देश](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) पढ़ें।
सबसे पहले, पायथन के उस संस्करण के साथ एक आभासी वातावरण बनाएं जिसका आप उपयोग करने और उसे सक्रिय करने की योजना बना रहे हैं।
फिर, आपको Flax, PyTorch या TensorFlow में से किसी एक को स्थापित करने की आवश्यकता है। अपने प्लेटफ़ॉर्म पर इन फ़्रेमवर्क को स्थापित करने के लिए, [TensorFlow स्थापना पृष्ठ](https://www.tensorflow.org/install/), [PyTorch स्थापना पृष्ठ](https://pytorch.org/get-started/locally)
देखें start-locally या [Flax स्थापना पृष्ठ](https://github.com/google/flax#quick-install).
जब इनमें से कोई एक बैकएंड सफलतापूर्वक स्थापित हो जाता है, तो ट्रांसफॉर्मर निम्नानुसार स्थापित किए जा सकते हैं:
```bash
pip install transformers
```
यदि आप उपयोग के मामलों को आज़माना चाहते हैं या आधिकारिक रिलीज़ से पहले नवीनतम इन-डेवलपमेंट कोड का उपयोग करना चाहते हैं, तो आपको [सोर्स से इंस्टॉल करना होगा](https://huggingface.co/docs/transformers/installation#installing-from-) स्रोत।
### कोंडा का उपयोग करना
ट्रांसफॉर्मर कोंडा के माध्यम से निम्नानुसार स्थापित किया जा सकता है:
```shell script
conda install conda-forge::transformers
```
> **_नोट:_** `huggingface` चैनल से `transformers` इंस्टॉल करना पुराना पड़ चुका है।
कोंडा के माध्यम से Flax, PyTorch, या TensorFlow में से किसी एक को स्थापित करने के लिए, निर्देशों के लिए उनके संबंधित स्थापना पृष्ठ देखें।
## मॉडल आर्किटेक्चर
[उपयोगकर्ता](https://huggingface.co/users) और [organization](https://huggingface.co) द्वारा ट्रांसफॉर्मर समर्थित [**सभी मॉडल चौकियों**](https://huggingface.co/models/users) हगिंगफेस.को/ऑर्गनाइजेशन), सभी को बिना किसी बाधा के हगिंगफेस.को [मॉडल हब](https://huggingface.co) के साथ एकीकृत किया गया है।
चौकियों की वर्तमान संख्या: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 ट्रांसफॉर्मर वर्तमान में निम्नलिखित आर्किटेक्चर का समर्थन करते हैं (मॉडल के अवलोकन के लिए [यहां देखें](https://huggingface.co/docs/transformers/model_summary))
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (Google Research and the Toyota Technological Institute at Chicago) साथ थीसिस [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), झेंझोंग लैन, मिंगदा चेन, सेबेस्टियन गुडमैन, केविन गिम्पेल, पीयूष शर्मा, राडू सोरिकट
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research से) Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. द्वाराअनुसंधान पत्र [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) के साथ जारी किया गया
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (फेसबुक) साथ थीसिस [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) पर निर्भर माइक लुईस, यिनहान लियू, नमन गोयल, मार्जन ग़ज़विनिनेजाद, अब्देलरहमान मोहम्मद, ओमर लेवी, वेस स्टोयानोव और ल्यूक ज़ेटलमॉयर
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (से École polytechnique) साथ थीसिस [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) पर निर्भर Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis रिहाई।
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (VinAI Research से) साथ में पेपर [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701)गुयेन लुओंग ट्रान, डुओंग मिन्ह ले और डाट क्वोक गुयेन द्वारा पोस्ट किया गया।
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (Microsoft से) साथ में कागज [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) Hangbo Bao, Li Dong, Furu Wei द्वारा।
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (गूगल से) साथ वाला पेपर [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) जैकब डेवलिन, मिंग-वेई चांग, केंटन ली और क्रिस्टीना टौटानोवा द्वारा प्रकाशित किया गया था। .
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (गूगल से) साथ देने वाला पेपर [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) साशा रोठे, शशि नारायण, अलियाक्सि सेवेरिन द्वारा।
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (VinAI Research से) साथ में पेपर [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) डाट क्वोक गुयेन, थान वु और अन्ह तुआन गुयेन द्वारा प्रकाशित।
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (गूगल रिसर्च से) साथ वाला पेपर [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) मंज़िल ज़हीर, गुरु गुरुगणेश, अविनावा दुबे, जोशुआ आइंस्ली, क्रिस अल्बर्टी, सैंटियागो ओंटानोन, फिलिप फाम, अनिरुद्ध रावुला, किफ़ान वांग, ली यांग, अमर अहमद द्वारा।
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (गूगल रिसर्च से) साथ में पेपर [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) मंज़िल ज़हीर, गुरु गुरुगणेश, अविनावा दुबे, जोशुआ आइंस्ली, क्रिस अल्बर्टी, सैंटियागो ओंटानन, फिलिप फाम द्वारा , अनिरुद्ध रावुला, किफ़ान वांग, ली यांग, अमर अहमद द्वारा पोस्ट किया गया।
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (फेसबुक से) साथ में कागज [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) स्टीफन रोलर, एमिली दीनन, नमन गोयल, दा जू, मैरी विलियमसन, यिनहान लियू, जिंग जू, मायल ओट, कर्ट शस्टर, एरिक एम। स्मिथ, वाई-लैन बॉरो, जेसन वेस्टन द्वारा।
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (फेसबुक से) साथ में पेपर [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) स्टीफन रोलर, एमिली दीनन, नमन गोयल, दा जू, मैरी विलियमसन, यिनहान लियू, जिंग जू, मायल ओट, कर्ट शस्टर, एरिक एम स्मिथ, वाई-लैन बॉरो, जेसन वेस्टन द्वारा।
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce से) Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. द्वाराअनुसंधान पत्र [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) के साथ जारी किया गया
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (एलेक्सा से) कागज के साथ [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) एड्रियन डी विंटर और डैनियल जे पेरी द्वारा।
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (हरबिन इंस्टिट्यूट ऑफ़ टेक्नोलॉजी/माइक्रोसॉफ्ट रिसर्च एशिया/इंटेल लैब्स से) कागज के साथ [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (NAVER CLOVA से) Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park. द्वाराअनुसंधान पत्र [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) के साथ जारी किया गया
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google अनुसंधान से) साथ में कागज [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Linting Xue, Aditya Barua, Noah Constant, रामी अल-रफू, शरण नारंग, मिहिर काले, एडम रॉबर्ट्स, कॉलिन रैफेल द्वारा पोस्ट किया गया।
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (इनरिया/फेसबुक/सोरबोन से) साथ में कागज [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) लुई मार्टिन*, बेंजामिन मुलर*, पेड्रो जेवियर ऑर्टिज़ सुआरेज़*, योआन ड्यूपॉन्ट, लॉरेंट रोमरी, एरिक विलेमोन्टे डे ला क्लर्जरी, जैमे सेडाह और बेनोइट सगोट द्वारा।
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google रिसर्च से) साथ में दिया गया पेपर [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) जोनाथन एच क्लार्क, डैन गैरेट, यूलिया टर्क, जॉन विएटिंग द्वारा।
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI से) Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov. द्वाराअनुसंधान पत्र [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) के साथ जारी किया गया
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI से) साथ वाला पेपर [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) एलेक रैडफोर्ड, जोंग वूक किम, क्रिस हैलासी, आदित्य रमेश, गेब्रियल गोह, संध्या अग्रवाल, गिरीश शास्त्री, अमांडा एस्केल, पामेला मिश्किन, जैक क्लार्क, ग्रेचेन क्रुएगर, इल्या सुत्स्केवर द्वारा।
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (सेल्सफोर्स से) साथ में पेपर [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) एरिक निजकैंप, बो पैंग, हिरोआकी हयाशी, लिफू तू, हुआन वांग, यिंगबो झोउ, सिल्वियो सावरेस, कैमिंग जिओंग रिलीज।
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI से) Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve. द्वाराअनुसंधान पत्र [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) के साथ जारी किया गया
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (Cohere से) Cohere. द्वाराअनुसंधान पत्र [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) के साथ जारी किया गया
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (माइक्रोसॉफ्ट रिसर्च एशिया से) कागज के साथ [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) डेपू मेंग, ज़ियाओकांग चेन, ज़ेजिया फैन, गैंग ज़ेंग, होउकियांग ली, युहुई युआन, लेई सन, जिंगडोंग वांग द्वारा।
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech से) साथ में कागज [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) जिहांग जियांग, वीहाओ यू, डाकान झोउ, युनपेंग चेन, जियाशी फेंग, शुइचेंग यान द्वारा।
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI से) साथ वाला पेपर [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) ज़ुआंग लियू, हेंज़ी माओ, चाओ-युआन वू, क्रिस्टोफ़ फीचटेनहोफ़र, ट्रेवर डेरेल, सैनिंग ज़ी द्वारा।
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (सिंघुआ यूनिवर्सिटी से) साथ में पेपर [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) झेंग्यान झांग, जू हान, हाओ झोउ, पेई के, युक्सियन गु, डेमिंग ये, युजिया किन, युशेंग सु, हाओझे जी, जियान गुआन, फैंचाओ क्यूई, ज़ियाओझी वांग, यानान झेंग द्वारा , गुओयांग ज़ेंग, हुआनकी काओ, शेंगकी चेन, डाइक्सुआन ली, ज़ेनबो सन, ज़ियुआन लियू, मिनली हुआंग, वेंटाओ हान, जी तांग, जुआनज़ी ली, ज़ियाओयान झू, माओसोंग सन।
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (सेल्सफोर्स से) साथ में पेपर [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) नीतीश शिरीष केसकर*, ब्रायन मैककैन*, लव आर. वार्ष्णेय, कैमिंग जिओंग और रिचर्ड द्वारा सोचर द्वारा जारी किया गया।
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft से) साथ में दिया गया पेपर [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) हैपिंग वू, बिन जिओ, नोएल कोडेला, मेंगचेन लियू, जियांग दाई, लू युआन, लेई झांग द्वारा।
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (फेसबुक से) साथ में कागज [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) एलेक्सी बाएव्स्की, वेई-निंग सू, कियानटोंग जू, अरुण बाबू, जियाताओ गु, माइकल औली द्वारा पोस्ट किया गया।
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft से) साथ में दिया गया पेपर [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) पेंगचेंग हे, ज़ियाओडोंग लियू, जियानफेंग गाओ, वीज़ू चेन द्वारा।
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft से) साथ में दिया गया पेपर [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) पेंगचेंग हे, ज़ियाओडोंग लियू, जियानफेंग गाओ, वीज़ू चेन द्वारा पोस्ट किया गया।
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (बर्कले/फेसबुक/गूगल से) पेपर के साथ [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) लिली चेन, केविन लू, अरविंद राजेश्वरन, किमिन ली, आदित्य ग्रोवर, माइकल लास्किन, पीटर एबील, अरविंद श्रीनिवास, इगोर मोर्डच द्वारा पोस्ट किया गया।
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (सेंसटाइम रिसर्च से) साथ में पेपर [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, जिफेंग दाई द्वारा पोस्ट किया गया।
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (फेसबुक से) साथ में पेपर [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) ह्यूगो टौव्रोन, मैथ्यू कॉर्ड, मैथिज्स डूज़, फ़्रांसिस्को मस्सा, एलेक्ज़ेंडर सबलेरोल्स, हर्वे जेगौ द्वारा।
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI से) Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. द्वाराअनुसंधान पत्र [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) के साथ जारी किया गया
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (University of Hong Kong and TikTok से) Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao. द्वाराअनुसंधान पत्र [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) के साथ जारी किया गया
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (फेसबुक से) साथ में कागज [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) निकोलस कैरियन, फ़्रांसिस्को मस्सा, गेब्रियल सिनेव, निकोलस उसुनियर, अलेक्जेंडर किरिलोव, सर्गेई ज़ागोरुयको द्वारा।
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) यिज़े झांग, सिकी सन, मिशेल गैली, येन-चुन चेन, क्रिस ब्रोकेट, जियांग गाओ, जियानफेंग गाओ, जिंगजिंग लियू, बिल डोलन द्वारा।
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI से) Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski. द्वाराअनुसंधान पत्र [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) के साथ जारी किया गया
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (हगिंगफेस से), साथ में कागज [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) विक्टर सनह, लिसांड्रे डेब्यू और थॉमस वुल्फ द्वारा पोस्ट किया गया। यही तरीका GPT-2 को [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERta से [DistilRoBERta](https://github.com) पर कंप्रेस करने के लिए भी लागू किया जाता है। / हगिंगफेस/ट्रांसफॉर्मर्स/ट्री/मेन/उदाहरण/डिस्टिलेशन), बहुभाषी BERT से [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) और डिस्टिलबर्ट का जर्मन संस्करण।
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) जुनलॉन्ग ली, यिहेंग जू, टेंगचाओ लव, लेई कुई, चा झांग द्वारा फुरु वेई द्वारा पोस्ट किया गया।
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER से) साथ में कागज [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) गीवूक किम, टीकग्यू होंग, मूनबिन यिम, जियोंग्योन नाम, जिनयॉन्ग पार्क, जिनयॉन्ग यिम, वोनसेओक ह्वांग, सांगडू यूं, डोंगयून हान, सेउंग्युन पार्क द्वारा।
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (फेसबुक से) साथ में पेपर [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) व्लादिमीर करपुखिन, बरलास ओज़ुज़, सेवन मिन, पैट्रिक लुईस, लेडेल वू, सर्गेई एडुनोव, डैनकी चेन, और वेन-ताऊ यिह द्वारा।
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (इंटेल लैब्स से) साथ में कागज [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) रेने रैनफ्टल, एलेक्सी बोचकोवस्की, व्लादलेन कोल्टन द्वारा।
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google रिसर्च/स्टैनफोर्ड यूनिवर्सिटी से) साथ में दिया गया पेपर [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) केविन क्लार्क, मिन्ह-थांग लुओंग, क्वोक वी. ले, क्रिस्टोफर डी. मैनिंग द्वारा पोस्ट किया गया।
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI से) Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. द्वाराअनुसंधान पत्र [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) के साथ जारी किया गया
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google रिसर्च से) साथ में दिया गया पेपर [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) साशा रोठे, शशि नारायण, अलियाक्सि सेवेरिन द्वारा।
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)**(Baidu से) साथ देने वाला पेपर [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) यू सन, शुओहुआन वांग, युकुन ली, शिकुन फेंग, ज़ुई चेन, हान झांग, शिन तियान, डैनक्सियांग झू, हाओ तियान, हुआ वू द्वारा पोस्ट किया गया।
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu से) Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. द्वाराअनुसंधान पत्र [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) के साथ जारी किया गया
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (मेटा AI से) ट्रांसफॉर्मर प्रोटीन भाषा मॉडल हैं। **ESM-1b** पेपर के साथ जारी किया गया था [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) जेसन लियू, डेमी गुओ, मायल ओट, सी. लॉरेंस ज़िटनिक, जेरी मा और रॉब फर्गस। **ESM-1v** को पेपर के साथ जारी किया गया था [भाषा मॉडल प्रोटीन फ़ंक्शन पर उत्परिवर्तन के प्रभावों की शून्य-शॉट भविष्यवाणी को सक्षम करते हैं](https://doi.org/10.1101/2021.07.09.450648) जोशुआ मेयर, रोशन राव, रॉबर्ट वेरकुइल, जेसन लियू, टॉम सर्कु और अलेक्जेंडर राइव्स द्वारा। **ESM-2** को पेपर के साथ जारी किया गया था [भाषा मॉडल विकास के पैमाने पर प्रोटीन अनुक्रम सटीक संरचना भविष्यवाणी को सक्षम करते हैं](https://doi.org/10.1101/2022.07.20.500902) ज़ेमिंग लिन, हलील अकिन, रोशन राव, ब्रायन ही, झोंगकाई झू, वेंटिंग लू, ए द्वारा लान डॉस सैंटोस कोस्टा, मरियम फ़ज़ल-ज़रंडी, टॉम सर्कू, साल कैंडिडो, अलेक्जेंडर राइव्स।
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (ESPnet and Microsoft Research से) Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang. द्वाराअनुसंधान पत्र [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) के साथ जारी किया गया
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS से) साथ वाला पेपर [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, बेंजामिन लेकोउटेक्स, अलेक्जेंड्रे अल्लाउज़ेन, बेनोइट क्रैबे, लॉरेंट बेसेसियर, डिडिएर श्वाब द्वारा।
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) साथ वाला पेपर अमनप्रीत सिंह, रोंगहांग हू, वेदानुज गोस्वामी, गुइल्यूम कुएरॉन, वोज्शिएक गालुबा, मार्कस रोहरबैक, और डौवे कीला द्वारा।
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (गूगल रिसर्च से) साथ वाला पेपर [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) जेम्स ली-थॉर्प, जोशुआ आइंस्ली, इल्या एकस्टीन, सैंटियागो ओंटानन द्वारा।
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (Microsoft Research से) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. द्वाराअनुसंधान पत्र [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) के साथ जारी किया गया
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) जिहांग दाई, गुओकुन लाई, यिमिंग यांग, क्वोक वी. ले द्वारा रिहाई।
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (ADEPT से) रोहन बाविशी, एरिच एलसेन, कर्टिस हॉथोर्न, मैक्सवेल नी, ऑगस्टस ओडेना, अरुशी सोमानी, सागनाक तासिरलार [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (Google से) the Gemma Google team. द्वाराअनुसंधान पत्र [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) के साथ जारी किया गया
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST से) साथ वाला पेपर [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) डोयोन किम, वूंगह्युन गा, प्युंगवान आह, डोंगग्यू जू, सेहवान चुन, जुनमो किम द्वारा।
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI से) साथ में दिया गया पेपर [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) एलेक रैडफोर्ड, कार्तिक नरसिम्हन, टिम सालिमन्स और इल्या सुत्स्केवर द्वारा।
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (EleutherAI से) रिपॉजिटरी के साथ [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) रिलीज। सिड ब्लैक, स्टेला बिडरमैन, लियो गाओ, फिल वांग और कॉनर लेही द्वारा पोस्ट किया गया।
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI से) पेपर के साथ जारी किया गया [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) सिड ब्लैक, स्टेला बिडरमैन, एरिक हैलाहन, क्वेंटिन एंथोनी, लियो गाओ, लॉरेंस गोल्डिंग, होरेस हे, कॉनर लेही, काइल मैकडोनेल, जेसन फांग, माइकल पाइलर, यूएसवीएसएन साई प्रशांत द्वारा , शिवांशु पुरोहित, लारिया रेनॉल्ड्स, जोनाथन टो, बेन वांग, सैमुअल वेनबैक
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (अबेजा के जरिए) शिन्या ओटानी, ताकायोशी मकाबे, अनुज अरोड़ा, क्यो हटोरी द्वारा।
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (ओपनएआई से) साथ में पेपर [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) एलेक रैडफोर्ड, जेफरी वू, रेवन चाइल्ड, डेविड लुआन, डारियो एमोडी द्वारा और इल्या सुत्सकेवर ने पोस्ट किया।
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (EleutherAI से) साथ वाला पेपर [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) बेन वांग और अरन कोमात्सुजाकी द्वारा।
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode से) Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra. द्वाराअनुसंधान पत्र [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) के साथ जारी किया गया
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others से) Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang. द्वाराअनुसंधान पत्र [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) के साथ जारी किया गया
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA से) साथ में कागज [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) जियारुई जू, शालिनी डी मेलो, सिफ़ी लियू, वोनमिन बायन, थॉमस ब्रेउएल, जान कौट्ज़, ज़ियाओलोंग वांग द्वारा।
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (Allegro.pl, AGH University of Science and Technology से) Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik. द्वाराअनुसंधान पत्र [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) के साथ जारी किया गया
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (फेसबुक से) साथ में पेपर [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) वेई-निंग सू, बेंजामिन बोल्टे, याओ-हंग ह्यूबर्ट त्साई, कुशाल लखोटिया, रुस्लान सालाखुतदीनोव, अब्देलरहमान मोहम्मद द्वारा।
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (बर्कले से) साथ में कागज [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) सेहून किम, अमीर घोलमी, ज़ेवेई याओ, माइकल डब्ल्यू महोनी, कर्ट केटज़र द्वारा।
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (Hugging Face से) Léo Tronchon, Hugo Laurencon, Victor Sanh. द्वाराअनुसंधान पत्र [IDEFICS2](https://huggingface.co/blog/idefics2) के साथ जारी किया गया
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce से) Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi. द्वाराअनुसंधान पत्र [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) के साथ जारी किया गया
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (माइक्रोसॉफ्ट रिसर्च एशिया से) साथ देने वाला पेपर [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) युपन हुआंग, टेंगचाओ लव, लेई कुई, युटोंग लू, फुरु वेई द्वारा पोस्ट किया गया।
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (मेटा AI से) साथ वाला पेपर [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) बेन ग्राहम, अलाएल्डिन एल-नौबी, ह्यूगो टौवरन, पियरे स्टॉक, आर्मंड जौलिन, हर्वे जेगौ, मैथिज डूज़ द्वारा।
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (दक्षिण चीन प्रौद्योगिकी विश्वविद्यालय से) साथ में कागज [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) जियापेंग वांग, लियानवेन जिन, काई डिंग द्वारा पोस्ट किया गया।
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI से) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. द्वाराअनुसंधान पत्र [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) के साथ जारी किया गया
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI से) Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.. द्वाराअनुसंधान पत्र [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) के साथ जारी किया गया
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (Microsoft Research & University of Wisconsin-Madison से) Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee. द्वाराअनुसंधान पत्र [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) के साथ जारी किया गया
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (Microsoft Research & University of Wisconsin-Madison से) Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee. द्वाराअनुसंधान पत्र [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) के साथ जारी किया गया
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (मैंडी गुओ, जोशुआ आइंस्ली, डेविड यूथस, सैंटियागो ओंटानन, जियानमो नि, यूं-हुआन सुंग, यिनफेई यांग द्वारा पोस्ट किया गया।
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (स्टूडियो औसिया से) साथ में पेपर [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto द्वारा।
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC चैपल हिल से) साथ में पेपर [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) हाओ टैन और मोहित बंसल द्वारा।
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (फेसबुक से) साथ देने वाला पेपर [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) एंजेला फैन, श्रुति भोसले, होल्गर श्वेन्क, झी मा, अहमद अल-किश्की, सिद्धार्थ गोयल, मनदीप बैनेस, ओनूर सेलेबी, गुइल्लाम वेन्जेक, विश्रव चौधरी, नमन गोयल, टॉम बर्च, विटाली लिपचिंस्की, सर्गेई एडुनोव, एडौर्ड द्वारा ग्रेव, माइकल औली, आर्मंड जौलिन द्वारा पोस्ट किया गया।
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (Albert Gu and Tri Dao से) Albert Gu and Tri Dao. द्वाराअनुसंधान पत्र [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) के साथ जारी किया गया
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Jörg द्वारा [OPUS](http://opus.nlpl.eu/) डेटा से प्रशिक्षित मशीनी अनुवाद मॉडल पोस्ट किया गया टाइडेमैन द्वारा। [मैरियन फ्रेमवर्क](https://marian-nmt.github.io/) माइक्रोसॉफ्ट ट्रांसलेटर टीम द्वारा विकसित।
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (माइक्रोसॉफ्ट रिसर्च एशिया से) साथ में पेपर [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) जुनलॉन्ग ली, यिहेंग जू, लेई कुई, फुरु द्वारा वी द्वारा पोस्ट किया गया।
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC से) Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. द्वाराअनुसंधान पत्र [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) के साथ जारी किया गया
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (मेटा और UIUC से) पेपर के साथ जारी किया गया [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) बोवेन चेंग, अलेक्जेंडर जी. श्विंग, अलेक्जेंडर किरिलोव द्वारा >>>>>> रिबेस ठीक करें
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI से) Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. द्वाराअनुसंधान पत्र [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) के साथ जारी किया गया
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (फेसबुक से) साथ में पेपर [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) यिनहान लियू, जियाताओ गु, नमन गोयल, जियान ली, सर्गेई एडुनोव, मार्जन ग़ज़विनिनेजाद, माइक लुईस, ल्यूक ज़ेटलमॉयर द्वारा।
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (फेसबुक से) साथ में पेपर [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) युकिंग टैंग, चाउ ट्रान, जियान ली, पेंग-जेन चेन, नमन गोयल, विश्रव चौधरी, जियाताओ गु, एंजेला फैन द्वारा।
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook से) Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. द्वाराअनुसंधान पत्र [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) के साथ जारी किया गया
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA से) कागज के साथ [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) मोहम्मद शोएबी, मोस्टोफा पटवारी, राउल पुरी, पैट्रिक लेग्रेस्ले, जेरेड कैस्पर और ब्रायन कैटानज़ारो द्वारा।
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA से) साथ वाला पेपर [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) मोहम्मद शोएबी, मोस्टोफा पटवारी, राउल पुरी, पैट्रिक लेग्रेस्ले, जेरेड कैस्पर और ब्रायन कैटानज़ारो द्वारा पोस्ट किया गया।
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research से) Peng Wang, Cheng Da, and Cong Yao. द्वाराअनुसंधान पत्र [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) के साथ जारी किया गया
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (फ्रॉम Studio Ousia) साथ में पेपर [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) रयोकन री, इकुया यामाडा, और योशिमासा त्सुरोका द्वारा।
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook से) Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli. द्वाराअनुसंधान पत्र [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) के साथ जारी किया गया
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, और Denny Zhou द्वारा पोस्ट किया गया।
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple से) साथ में कागज [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) सचिन मेहता और मोहम्मद रस्तगरी द्वारा पोस्ट किया गया।
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple से) Sachin Mehta and Mohammad Rastegari. द्वाराअनुसंधान पत्र [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) के साथ जारी किया गया
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML से) the MosaicML NLP Team. द्वाराअनुसंधान पत्र [llm-foundry](https://github.com/mosaicml/llm-foundry/) के साथ जारी किया गया
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison से) Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh. द्वाराअनुसंधान पत्र [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) के साथ जारी किया गया
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI से) साथ वाला पेपर [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) लिंटिंग ज़ू, नोआ कॉन्सटेंट, एडम रॉबर्ट्स, मिहिर काले, रामी अल-रफू, आदित्य सिद्धांत, आदित्य बरुआ, कॉलिन रैफेल द्वारा पोस्ट किया गया।
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (हुआवेई नूह के आर्क लैब से) साथ में कागज़ [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) जुन्किउ वेई, ज़ियाओज़े रेन, ज़िआओगुआंग ली, वेनयोंग हुआंग, यी लियाओ, याशेंग वांग, जियाशू लिन, शिन जियांग, जिओ चेन और कुन लियू द्वारा।
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (फ्रॉम मेटा) साथ में पेपर [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) एनएलएलबी टीम द्वारा प्रकाशित।
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta से) the NLLB team. द्वाराअनुसंधान पत्र [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) के साथ जारी किया गया
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (Meta AI से) Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic. द्वाराअनुसंधान पत्र [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) के साथ जारी किया गया
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में कागज [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) युनयांग ज़िओंग, झानपेंग ज़ेंग, रुद्रसिस चक्रवर्ती, मिंगक्सिंग टैन, ग्लेन फंग, यिन ली, विकास सिंह द्वारा पोस्ट किया गया।
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs से) पेपर [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) जितेश जैन, जिआचेन ली, मांगटिक चिउ, अली हसनी, निकिता ओरलोव, हम्फ्री शि के द्वारा जारी किया गया है।
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI से) साथ में कागज [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) मैथियास मिंडरर, एलेक्सी ग्रिट्सेंको, ऑस्टिन स्टोन, मैक्सिम न्यूमैन, डिर्क वीसेनबोर्न, एलेक्सी डोसोवित्स्की, अरविंद महेंद्रन, अनुराग अर्नब, मुस्तफा देहघानी, ज़ुओरन शेन, जिओ वांग, ज़ियाओहुआ झाई, थॉमस किफ़, और नील हॉल्सबी द्वारा पोस्ट किया गया।
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI से) Matthias Minderer, Alexey Gritsenko, Neil Houlsby. द्वाराअनुसंधान पत्र [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) के साथ जारी किया गया
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** ( IBM Research से) Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. द्वाराअनुसंधान पत्र [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) के साथ जारी किया गया
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (IBM से) Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. द्वाराअनुसंधान पत्र [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) के साथ जारी किया गया
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google की ओर से) साथ में दिया गया पेपर [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) जेसन फांग, याओ झाओ, पीटर जे लियू द्वारा।
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (दीपमाइंड से) साथ में पेपर [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) एंड्रयू जेगल, सेबेस्टियन बोरग्यूड, जीन-बैप्टिस्ट अलायराक, कार्ल डोर्श, कैटलिन इओनेस्कु, डेविड द्वारा डिंग, स्कंद कोप्पुला, डैनियल ज़ोरान, एंड्रयू ब्रॉक, इवान शेलहैमर, ओलिवियर हेनाफ, मैथ्यू एम। बोट्विनिक, एंड्रयू ज़िसरमैन, ओरिओल विनियल्स, जोआओ कैरेरा द्वारा पोस्ट किया गया।
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (ADEPT से) Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani. द्वाराअनुसंधान पत्र [blog post](https://www.adept.ai/blog/persimmon-8b) के साथ जारी किया गया
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research से) कागज के साथ [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) डैट क्वोक गुयेन और अन्ह तुआन गुयेन द्वारा पोस्ट किया गया।
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google से) Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. द्वाराअनुसंधान पत्र [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) के साथ जारी किया गया
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP से) साथ वाला पेपर [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) वसी उद्दीन अहमद, सैकत चक्रवर्ती, बैशाखी रे, काई-वेई चांग द्वारा।
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) यू यान, वीज़ेन क्यूई, येयुन गोंग, दयाहेंग लियू, नान डुआन, जिउशेंग चेन, रुओफ़ेई झांग और मिंग झोउ द्वारा पोस्ट किया गया।
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. से) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. द्वाराअनुसंधान पत्र [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) के साथ जारी किया गया
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc. से) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. द्वाराअनुसंधान पत्र [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) के साथ जारी किया गया
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA से) साथ वाला पेपर [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) हाओ वू, पैट्रिक जुड, जिआओजी झांग, मिखाइल इसेव और पॉलियस माइकेविसियस द्वारा।
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (the Qwen team, Alibaba Group से) Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu. द्वाराअनुसंधान पत्र [Qwen Technical Report](https://arxiv.org/abs/2309.16609) के साथ जारी किया गया
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (the Qwen team, Alibaba Group से) Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou. द्वाराअनुसंधान पत्र [blog post](https://qwenlm.github.io/blog/qwen-moe/) के साथ जारी किया गया
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (फेसबुक से) साथ में कागज [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) पैट्रिक लुईस, एथन पेरेज़, अलेक्जेंड्रा पिक्टस, फैबियो पेट्रोनी, व्लादिमीर कारपुखिन, नमन गोयल, हेनरिक कुटलर, माइक लुईस, वेन-ताउ यिह, टिम रॉकटाशेल, सेबस्टियन रिडेल, डौवे कीला द्वारा।
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google अनुसंधान से) केल्विन गु, केंटन ली, ज़ोरा तुंग, पानुपोंग पसुपत और मिंग-वेई चांग द्वारा साथ में दिया गया पेपर [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909)।
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (Google से) the Griffin, RLHF and Gemma Teams. द्वाराअनुसंधान पत्र [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) के साथ जारी किया गया
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (META रिसर्च से) [Designing Network Design Space](https://arxiv.org/abs/2003.13678) पेपर के साथ जारी किया गया एब्स/2003.13678) इलिजा राडोसावोविक, राज प्रतीक कोसाराजू, रॉस गिर्शिक, कैमिंग ही, पिओटर डॉलर द्वारा।
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (गूगल रिसर्च से) साथ वाला पेपर [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) ह्युंग वोन चुंग, थिबॉल्ट फ़ेवरी, हेनरी त्साई, एम. जॉनसन, सेबेस्टियन रुडर द्वारा।
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (माइक्रोसॉफ्ट रिसर्च से) [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) कैमिंग हे, जियांग्यु झांग, शाओकिंग रेन, जियान सन द्वारा।
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (फेसबुक से), साथ में कागज [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) यिनहान लियू, मायल ओट, नमन गोयल, जिंगफेई डू, मंदार जोशी, डैनकी चेन, ओमर लेवी, माइक लुईस, ल्यूक ज़ेटलमॉयर, वेसेलिन स्टोयानोव द्वारा।
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (झुईई टेक्नोलॉजी से), साथ में पेपर [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) जियानलिन सु और यू लू और शेंगफेंग पैन और बो वेन और युनफेंग लियू द्वारा प्रकाशित।
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng से) Bo Peng. द्वाराअनुसंधान पत्र [this repo](https://github.com/BlinkDL/RWKV-LM) के साथ जारी किया गया
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (Beijing Academy of Artificial Intelligence (BAAI से) Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang. द्वाराअनुसंधान पत्र [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) के साथ जारी किया गया
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI से) Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. द्वाराअनुसंधान पत्र [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) के साथ जारी किया गया
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP से) साथ देने वाला पेपर [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) फेलिक्स वू, क्वांगयुन किम, जिंग पैन, क्यू हान, किलियन क्यू. वेनबर्गर, योव आर्टज़ी द्वारा।
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP से) साथ में पेपर [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) फेलिक्स वू, क्वांगयुन किम, जिंग पैन, क्यू हान, किलियन क्यू. वेनबर्गर, योआव आर्टज़ी द्वारा पोस्ट किया गया।
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (Google AI से) Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer. द्वाराअनुसंधान पत्र [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) के साथ जारी किया गया
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (फेसबुक से), साथ में पेपर [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) चांगहान वांग, यूं तांग, जुताई मा, ऐनी वू, दिमित्रो ओखोनको, जुआन पिनो द्वारा पोस्ट किया गया。
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (फेसबुक से) साथ में पेपर [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) चांगहान वांग, ऐनी वू, जुआन पिनो, एलेक्सी बेवस्की, माइकल औली, एलेक्सिस द्वारा Conneau द्वारा पोस्ट किया गया।
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (तेल अवीव यूनिवर्सिटी से) साथ में पेपर [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) ओरि राम, युवल कर्स्टन, जोनाथन बेरेंट, अमीर ग्लोबर्सन, ओमर लेवी द्वारा।
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (बर्कले से) कागज के साथ [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) फॉरेस्ट एन. इनडोला, अल्बर्ट ई. शॉ, रवि कृष्णा, और कर्ट डब्ल्यू. केटज़र द्वारा।
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI से) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. द्वाराअनुसंधान पत्र [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) के साथ जारी किया गया
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (माइक्रोसॉफ्ट से) साथ में कागज [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) ज़ी लियू, युटोंग लिन, यू काओ, हान हू, यिक्सुआन वेई, झेंग झांग, स्टीफन लिन, बैनिंग गुओ द्वारा।
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft से) साथ वाला पेपर [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) ज़ी लियू, हान हू, युटोंग लिन, ज़ुलिआंग याओ, ज़ेंडा ज़ी, यिक्सुआन वेई, जिया निंग, यू काओ, झेंग झांग, ली डोंग, फुरु वेई, बैनिंग गुओ द्वारा।
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (来自 Google AI)कॉलिन रैफेल और नोम शज़ीर और एडम रॉबर्ट्स और कैथरीन ली और शरण नारंग और माइकल मटेना द्वारा साथ में पेपर [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) और यांकी झोउ और वेई ली और पीटर जे लियू।
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (Google AI से) साथ वाला पेपर [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) कॉलिन रैफेल और नोम शज़ीर और एडम रॉबर्ट्स और कैथरीन ली और शरण नारंग द्वारा और माइकल मटेना और यांकी झोउ और वेई ली और पीटर जे लियू।
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) ब्रैंडन स्मॉक, रोहित पेसाला, रॉबिन अब्राहम द्वारा पोस्ट किया गया।
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI से) साथ में कागज [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) जोनाथन हर्ज़िग, पावेल क्रिज़िस्तोफ़ नोवाक, थॉमस मुलर, फ्रांसेस्को पिकिन्नो और जूलियन मार्टिन ईसेन्च्लोस द्वारा।
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) कियान लियू, बेई चेन, जियाकी गुओ, मोर्टेज़ा ज़ियादी, ज़ेकी लिन, वीज़ू चेन, जियान-गुआंग लू द्वारा पोस्ट किया गया।
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU की ओर से) कागज के साथ [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) क्वोकोक वी. ले, रुस्लैन सलाखुतदी
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (Microsoft Research से) Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal. द्वाराअनुसंधान पत्र [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) के साथ जारी किया गया
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research से) Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant. द्वाराअनुसंधान पत्र [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) के साथ जारी किया गया
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (माइक्रोसॉफ्ट रिसर्च से) साथ में दिया गया पेपर [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) चेंगई वांग, यू वू, याओ कियान, केनिची कुमातानी, शुजी लियू, फुरु वेई, माइकल ज़ेंग, ज़ुएदोंग हुआंग द्वारा।
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) सानयुआन चेन, यू वू, चेंग्यी वांग, झेंगयांग चेन, झूओ चेन, शुजी लियू, जियान वू, याओ कियान, फुरु वेई, जिन्यु ली, जियांगज़ान यू द्वारा पोस्ट किया गया।
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (सिंघुआ यूनिवर्सिटी और ननकाई यूनिवर्सिटी से) साथ में पेपर [Visual Attention Network](https://arxiv.org/abs/2202.09741) मेंग-हाओ गुओ, चेंग-ज़े लू, झेंग-निंग लियू, मिंग-मिंग चेंग, शि-मिन हू द्वारा।
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (मल्टीमीडिया कम्प्यूटिंग ग्रुप, नानजिंग यूनिवर्सिटी से) साथ में पेपर [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) ज़ान टोंग, यिबिंग सॉन्ग, जुए द्वारा वांग, लिमिन वांग द्वारा पोस्ट किया गया।
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain से) साथ में कागज [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) वोनजे किम, बोक्यूंग सोन, इल्डू किम द्वारा पोस्ट किया गया।
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (University of WisconsinMadison से) Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee. द्वाराअनुसंधान पत्र [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) के साथ जारी किया गया
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (गूगल एआई से) कागज के साथ [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) एलेक्सी डोसोवित्स्की, लुकास बेयर, अलेक्जेंडर कोलेसनिकोव, डिर्क वीसेनबोर्न, शियाओहुआ झाई, थॉमस अनटरथिनर, मुस्तफा देहघानी, मैथियास मिंडरर, जॉर्ज हेगोल्ड, सिल्वेन गेली, जैकब उस्ज़कोरेइट द्वारा हॉल्सबी द्वारा पोस्ट किया गया।
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP से) साथ वाला पेपर [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) लियुनियन हेरोल्ड ली, मार्क यात्स्कर, दा यिन, चो-जुई हसीह, काई-वेई चांग द्वारा।
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI से) Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He. द्वाराअनुसंधान पत्र [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) के साथ जारी किया गया
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (मेटा एआई से) साथ में कागज [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) कैमिंग हे, ज़िनेली चेन, सेनिंग ज़ी, यांगहो ली, पिओट्र डॉलर, रॉस गिर्शिक द्वारा।
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (HUST-VL से) Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang. द्वाराअनुसंधान पत्र [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) के साथ जारी किया गया
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (मेटा एआई से) साथ में कागज [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) महमूद असरान, मथिल्डे कैरन, ईशान मिश्रा, पियोट्र बोजानोवस्की, फ्लोरियन बोर्डेस, पास्कल विंसेंट, आर्मंड जौलिन, माइकल रब्बत, निकोलस बल्लास द्वारा।
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise से) Jaehyeon Kim, Jungil Kong, Juhee Son. द्वाराअनुसंधान पत्र [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) के साथ जारी किया गया
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (फेसबुक एआई से) साथ में पेपर [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) एलेक्सी बेवस्की, हेनरी झोउ, अब्देलरहमान मोहम्मद, माइकल औली द्वारा।
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI से) साथ वाला पेपर [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) चांगहान वांग, यूं तांग, जुताई मा, ऐनी वू, सरव्या पोपुरी, दिमित्रो ओखोनको, जुआन पिनो द्वारा पोस्ट किया गया।
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI से) साथ वाला पेपर [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) कियानटोंग जू, एलेक्सी बाएव्स्की, माइकल औली द्वारा।
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (माइक्रोसॉफ्ट रिसर्च से) पेपर के साथ जारी किया गया [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) सानयुआन चेन, चेंगयी वांग, झेंगयांग चेन, यू वू, शुजी लियू, ज़ुओ चेन, जिन्यु ली, नाओयुकी कांडा, ताकुया योशियोका, ज़िओंग जिओ, जियान वू, लॉन्ग झोउ, शुओ रेन, यानमिन कियान, याओ कियान, जियान वू, माइकल ज़ेंग, फुरु वेई।
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI से) साथ में कागज [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) एलेक रैडफोर्ड, जोंग वूक किम, ताओ जू, ग्रेग ब्रॉकमैन, क्रिस्टीन मैकलीवे, इल्या सुत्स्केवर द्वारा।
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) बोलिन नी, होउवेन पेंग, मिंगाओ चेन, सोंगयांग झांग, गाओफेंग मेंग, जियानलोंग फू, शिमिंग जियांग, हैबिन लिंग द्वारा।
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI से) Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. द्वाराअनुसंधान पत्र [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) के साथ जारी किया गया
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (फेसबुक से) साथ में पेपर [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) गिलाउम लैम्पल और एलेक्सिस कोनो द्वारा।
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (माइक्रोसॉफ्ट रिसर्च से) साथ में कागज [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) यू यान, वीज़ेन क्यूई, येयुन गोंग, दयाहेंग लियू, नान डुआन, जिउशेंग चेन, रुओफ़ेई झांग और मिंग झोउ द्वारा।
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (फेसबुक एआई से), साथ में पेपर [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) एलेक्सिस कोन्यू*, कार्तिकेय खंडेलवाल*, नमन गोयल, विश्रव चौधरी, गिलाउम वेनज़ेक, फ्रांसिस्को गुज़मैन द्वारा , एडौर्ड ग्रेव, मायल ओट, ल्यूक ज़ेटलमॉयर और वेसेलिन स्टोयानोव द्वारा।
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI से) साथ में कागज [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) नमन गोयल, जिंगफेई डू, मायल ओट, गिरि अनंतरामन, एलेक्सिस कोनो द्वारा पोस्ट किया गया।
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU से) साथ वाला पेपर [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) ज़ीलिन यांग*, ज़िहांग दाई*, यिमिंग यांग, जैम कार्बोनेल, रुस्लान सलाखुतदीनोव, क्वोक वी. ले द्वारा।
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI से) साथ वाला पेपर [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) अरुण बाबू, चांगहान वांग, एंड्रोस तजंद्रा, कुशाल लखोटिया, कियानटोंग जू, नमन गोयल, कृतिका सिंह, पैट्रिक वॉन प्लैटन, याथार्थ सराफ, जुआन पिनो, एलेक्सी बेवस्की, एलेक्सिस कोन्यू, माइकल औली द्वारा पोस्ट किया गया।
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (फेसबुक एआई से) साथ में पेपर [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) एलेक्सिस कोन्यू, एलेक्सी बेवस्की, रोनन कोलोबर्ट, अब्देलरहमान मोहम्मद, माइकल औली द्वारा।
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (हुआझोंग यूनिवर्सिटी ऑफ साइंस एंड टेक्नोलॉजी से) साथ में पेपर [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) युक्सिन फेंग, बेनचेंग लियाओ, जिंगगैंग वांग, जेमिन फेंग, जियांग क्यूई, रुई वू, जियानवेई नीयू, वेन्यू लियू द्वारा पोस्ट किया गया।
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में पेपर [यू ओनली सैंपल (लगभग) ज़ानपेंग ज़ेंग, युनयांग ज़िओंग द्वारा , सत्य एन. रवि, शैलेश आचार्य, ग्लेन फंग, विकास सिंह द्वारा पोस्ट किया गया।
1. एक नए मॉडल में योगदान देना चाहते हैं? नए मॉडल जोड़ने में आपका मार्गदर्शन करने के लिए हमारे पास एक **विस्तृत मार्गदर्शिका और टेम्प्लेट** है। आप उन्हें [`टेम्पलेट्स`](./templates) निर्देशिका में पा सकते हैं। पीआर शुरू करने से पहले [योगदान दिशानिर्देश](./CONTRIBUTING.md) देखना और अनुरक्षकों से संपर्क करना या प्रतिक्रिया प्राप्त करने के लिए एक नया मुद्दा खोलना याद रखें।
यह जांचने के लिए कि क्या किसी मॉडल में पहले से ही Flax, PyTorch या TensorFlow का कार्यान्वयन है, या यदि उसके पास Tokenizers लाइब्रेरी में संबंधित टोकन है, तो [यह तालिका](https://huggingface.co/docs/transformers/index#supported) देखें। -फ्रेमवर्क)।
इन कार्यान्वयनों का परीक्षण कई डेटासेट पर किया गया है (देखें केस स्क्रिप्ट का उपयोग करें) और वैनिला कार्यान्वयन के लिए तुलनात्मक रूप से प्रदर्शन करना चाहिए। आप उपयोग के मामले के दस्तावेज़ [इस अनुभाग](https://huggingface.co/docs/transformers/examples) में व्यवहार का विवरण पढ़ सकते हैं।
## अधिक समझें
|अध्याय | विवरण |
|-|-|
| [दस्तावेज़ीकरण](https://huggingface.co/transformers/) | पूरा एपीआई दस्तावेज़ीकरण और ट्यूटोरियल |
| [कार्य सारांश](https://huggingface.co/docs/transformers/task_summary) | ट्रांसफॉर्मर समर्थित कार्य |
| [प्रीप्रोसेसिंग ट्यूटोरियल](https://huggingface.co/docs/transformers/preprocessing) | मॉडल के लिए डेटा तैयार करने के लिए `टोकनाइज़र` का उपयोग करना |
| [प्रशिक्षण और फाइन-ट्यूनिंग](https://huggingface.co/docs/transformers/training) | PyTorch/TensorFlow के ट्रेनिंग लूप या `ट्रेनर` API में ट्रांसफॉर्मर द्वारा दिए गए मॉडल का उपयोग करें |
| [क्विक स्टार्ट: ट्वीकिंग एंड यूज़ केस स्क्रिप्ट्स](https://github.com/huggingface/transformers/tree/main/examples) | विभिन्न कार्यों के लिए केस स्क्रिप्ट का उपयोग करें |
| [मॉडल साझा करना और अपलोड करना](https://huggingface.co/docs/transformers/model_sharing) | समुदाय के साथ अपने फाइन टूनड मॉडल अपलोड और साझा करें |
| [माइग्रेशन](https://huggingface.co/docs/transformers/migration) | `पाइटोरच-ट्रांसफॉर्मर्स` या `पाइटोरच-प्रीट्रेनड-बर्ट` से ट्रांसफॉर्मर में माइग्रेट करना |
## उद्धरण
हमने आधिकारिक तौर पर इस लाइब्रेरी का [पेपर](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) प्रकाशित किया है, अगर आप ट्रान्सफ़ॉर्मर्स लाइब्रेरी का उपयोग करते हैं, तो कृपया उद्धृत करें:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

604
README_ja.md Normal file
View File

@ -0,0 +1,604 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<!---
A useful guide for English-Traditional Japanese translation of Hugging Face documentation
- Use square quotes, e.g.,「引用」
Dictionary
API: API(翻訳しない)
add: 追加
checkpoint: チェックポイント
code: コード
community: コミュニティ
confidence: 信頼度
dataset: データセット
documentation: ドキュメント
example: 例
finetune: 微調整
Hugging Face: Hugging Face(翻訳しない)
implementation: 実装
inference: 推論
library: ライブラリ
module: モジュール
NLP/Natural Language Processing: NLPと表示される場合は翻訳されず、Natural Language Processingと表示される場合は翻訳される
online demos: オンラインデモ
pipeline: pipeline(翻訳しない)
pretrained/pretrain: 学習済み
Python data structures (e.g., list, set, dict): リスト、セット、ディクショナリと訳され、括弧内は原文英語
repository: repository(翻訳しない)
summary: 概要
token-: token-(翻訳しない)
Trainer: Trainer(翻訳しない)
transformer: transformer(翻訳しない)
tutorial: チュートリアル
user: ユーザ
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
</p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<b>日本語</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
</p>
</h4>
<h3 align="center">
<p>JAX、PyTorch、TensorFlowのための最先端機械学習</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗Transformersは、テキスト、視覚、音声などの異なるモダリティに対してタスクを実行するために、事前に学習させた数千のモデルを提供します。
これらのモデルは次のような場合に適用できます:
* 📝 テキストは、テキストの分類、情報抽出、質問応答、要約、翻訳、テキスト生成などのタスクのために、100以上の言語に対応しています。
* 🖼️ 画像分類、物体検出、セグメンテーションなどのタスクのための画像。
* 🗣️ 音声は、音声認識や音声分類などのタスクに使用します。
トランスフォーマーモデルは、テーブル質問応答、光学文字認識、スキャン文書からの情報抽出、ビデオ分類、視覚的質問応答など、**複数のモダリティを組み合わせた**タスクも実行可能です。
🤗Transformersは、与えられたテキストに対してそれらの事前学習されたモデルを素早くダウンロードして使用し、あなた自身のデータセットでそれらを微調整し、私たちの[model hub](https://huggingface.co/models)でコミュニティと共有するためのAPIを提供します。同時に、アーキテクチャを定義する各Pythonモジュールは完全にスタンドアロンであり、迅速な研究実験を可能にするために変更することができます。
🤗Transformersは[Jax](https://jax.readthedocs.io/en/latest/)、[PyTorch](https://pytorch.org/)、[TensorFlow](https://www.tensorflow.org/)という3大ディープラーニングライブラリーに支えられ、それぞれのライブラリをシームレスに統合しています。片方でモデルを学習してから、もう片方で推論用にロードするのは簡単なことです。
## オンラインデモ
[model hub](https://huggingface.co/models)から、ほとんどのモデルのページで直接テストすることができます。また、パブリックモデル、プライベートモデルに対して、[プライベートモデルのホスティング、バージョニング、推論API](https://huggingface.co/pricing)を提供しています。
以下はその一例です:
自然言語処理にて:
- [BERTによるマスクドワード補完](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Electraによる名前実体認識](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [GPT-2によるテキスト生成](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [RoBERTaによる自然言語推論](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [BARTによる要約](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [DistilBERTによる質問応答](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [T5による翻訳](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
コンピュータビジョンにて:
- [ViTによる画像分類](https://huggingface.co/google/vit-base-patch16-224)
- [DETRによる物体検出](https://huggingface.co/facebook/detr-resnet-50)
- [SegFormerによるセマンティックセグメンテーション](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [DETRによるパプティックセグメンテーション](https://huggingface.co/facebook/detr-resnet-50-panoptic)
オーディオにて:
- [Wav2Vec2による自動音声認識](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Wav2Vec2によるキーワード検索](https://huggingface.co/superb/wav2vec2-base-superb-ks)
マルチモーダルなタスクにて:
- [ViLTによる視覚的質問応答](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
Hugging Faceチームによって作られた **[トランスフォーマーを使った書き込み](https://transformer.huggingface.co)** は、このリポジトリのテキスト生成機能の公式デモである。
## Hugging Faceチームによるカスタム・サポートをご希望の場合
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## クイックツアー
与えられた入力(テキスト、画像、音声、...)に対してすぐにモデルを使うために、我々は`pipeline`というAPIを提供しております。pipelineは、学習済みのモデルと、そのモデルの学習時に使用された前処理をグループ化したものです。以下は、肯定的なテキストと否定的なテキストを分類するためにpipelineを使用する方法です:
```python
>>> from transformers import pipeline
# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
2行目のコードでは、pipelineで使用される事前学習済みモデルをダウンロードしてキャッシュし、3行目では与えられたテキストに対してそのモデルを評価します。ここでは、答えは99.97%の信頼度で「ポジティブ」です。
自然言語処理だけでなく、コンピュータビジョンや音声処理においても、多くのタスクにはあらかじめ訓練された`pipeline`が用意されている。例えば、画像から検出された物体を簡単に抽出することができる:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Download an image with cute cats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Allocate a pipeline for object detection
>>> object_detector = pipeline('object-detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
ここでは、画像から検出されたオブジェクトのリストが得られ、オブジェクトを囲むボックスと信頼度スコアが表示されます。左側が元画像、右側が予測結果を表示したものです:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
[このチュートリアル](https://huggingface.co/docs/transformers/task_summary)では、`pipeline`APIでサポートされているタスクについて詳しく説明しています。
`pipeline`に加えて、与えられたタスクに学習済みのモデルをダウンロードして使用するために必要なのは、3行のコードだけです。以下はPyTorchのバージョンです:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
そしてこちらはTensorFlowと同等のコードとなります:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
トークナイザは学習済みモデルが期待するすべての前処理を担当し、単一の文字列 (上記の例のように) またはリストに対して直接呼び出すことができます。これは下流のコードで使用できる辞書を出力します。また、単純に ** 引数展開演算子を使用してモデルに直接渡すこともできます。
モデル自体は通常の[Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) または [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (バックエンドによって異なる)で、通常通り使用することが可能です。[このチュートリアル](https://huggingface.co/docs/transformers/training)では、このようなモデルを従来のPyTorchやTensorFlowの学習ループに統合する方法や、私たちの`Trainer`APIを使って新しいデータセットで素早く微調整を行う方法について説明します。
## なぜtransformersを使う必要があるのでしょうか
1. 使いやすい最新モデル:
- 自然言語理解・生成、コンピュータビジョン、オーディオの各タスクで高いパフォーマンスを発揮します。
- 教育者、実務者にとっての低い参入障壁。
- 学習するクラスは3つだけで、ユーザが直面する抽象化はほとんどありません。
- 学習済みモデルを利用するための統一されたAPI。
1. 低い計算コスト、少ないカーボンフットプリント:
- 研究者は、常に再トレーニングを行うのではなく、トレーニングされたモデルを共有することができます。
- 実務家は、計算時間や生産コストを削減することができます。
- すべてのモダリティにおいて、60,000以上の事前学習済みモデルを持つ数多くのアーキテクチャを提供します。
1. モデルのライフタイムのあらゆる部分で適切なフレームワークを選択可能:
- 3行のコードで最先端のモデルをトレーニング。
- TF2.0/PyTorch/JAXフレームワーク間で1つのモデルを自在に移動させる。
- 学習、評価、生産に適したフレームワークをシームレスに選択できます。
1. モデルやサンプルをニーズに合わせて簡単にカスタマイズ可能:
- 原著者が発表した結果を再現するために、各アーキテクチャの例を提供しています。
- モデル内部は可能な限り一貫して公開されています。
- モデルファイルはライブラリとは独立して利用することができ、迅速な実験が可能です。
## なぜtransformersを使ってはいけないのでしょうか
- このライブラリは、ニューラルネットのためのビルディングブロックのモジュール式ツールボックスではありません。モデルファイルのコードは、研究者が追加の抽象化/ファイルに飛び込むことなく、各モデルを素早く反復できるように、意図的に追加の抽象化でリファクタリングされていません。
- 学習APIはどのようなモデルでも動作するわけではなく、ライブラリが提供するモデルで動作するように最適化されています。一般的な機械学習のループには、別のライブラリ(おそらく[Accelerate](https://huggingface.co/docs/accelerate))を使用する必要があります。
- 私たちはできるだけ多くの使用例を紹介するよう努力していますが、[examples フォルダ](https://github.com/huggingface/transformers/tree/main/examples) にあるスクリプトはあくまで例です。あなたの特定の問題に対してすぐに動作するわけではなく、あなたのニーズに合わせるために数行のコードを変更する必要があることが予想されます。
## インストール
### pipにて
このリポジトリは、Python 3.8+, Flax 0.4.1+, PyTorch 1.11+, TensorFlow 2.6+ でテストされています。
🤗Transformersは[仮想環境](https://docs.python.org/3/library/venv.html)にインストールする必要があります。Pythonの仮想環境に慣れていない場合は、[ユーザーガイド](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)を確認してください。
まず、使用するバージョンのPythonで仮想環境を作成し、アクティベートします。
その後、Flax, PyTorch, TensorFlowのうち少なくとも1つをインストールする必要があります。
[TensorFlowインストールページ](https://www.tensorflow.org/install/)、[PyTorchインストールページ](https://pytorch.org/get-started/locally/#start-locally)、[Flax](https://github.com/google/flax#quick-install)、[Jax](https://github.com/google/jax#installation)インストールページで、お使いのプラットフォーム別のインストールコマンドを参照してください。
これらのバックエンドのいずれかがインストールされている場合、🤗Transformersは以下のようにpipを使用してインストールすることができます:
```bash
pip install transformers
```
もしサンプルを試したい、またはコードの最先端が必要で、新しいリリースを待てない場合は、[ライブラリをソースからインストール](https://huggingface.co/docs/transformers/installation#installing-from-source)する必要があります。
### condaにて
🤗Transformersは以下のようにcondaを使って設置することができます:
```shell script
conda install conda-forge::transformers
```
> **_注意:_** `huggingface` チャンネルから `transformers` をインストールすることは非推奨です。
Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それぞれのインストールページに従ってください。
> **_注意:_** Windowsでは、キャッシュの恩恵を受けるために、デベロッパーモードを有効にするよう促されることがあります。このような場合は、[このissue](https://github.com/huggingface/huggingface_hub/issues/1062)でお知らせください。
## モデルアーキテクチャ
🤗Transformersが提供する **[全モデルチェックポイント](https://huggingface.co/models)** は、[ユーザー](https://huggingface.co/users)や[組織](https://huggingface.co/organizations)によって直接アップロードされるhuggingface.co [model hub](https://huggingface.co)からシームレスに統合されています。
現在のチェックポイント数: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗Transformersは現在、以下のアーキテクチャを提供していますそれぞれのハイレベルな要約は[こちら](https://huggingface.co/docs/transformers/model_summary)を参照してください):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (Google Research and the Toyota Technological Institute at Chicago から) Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut から公開された研究論文: [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942)
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research から) Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. から公開された研究論文 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918)
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (BAAI から) Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell から公開された研究論文: [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679)
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (MIT から) Yuan Gong, Yu-An Chung, James Glass から公開された研究論文: [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778)
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (Facebook から) Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer から公開された研究論文: [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461)
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (École polytechnique から) Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis から公開された研究論文: [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321)
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (VinAI Research から) Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen から公開された研究論文: [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701)
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (Microsoft から) Hangbo Bao, Li Dong, Furu Wei から公開された研究論文: [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254)
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (Google から) Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova から公開された研究論文: [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805)
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (Google から) Sascha Rothe, Shashi Narayan, Aliaksei Severyn から公開された研究論文: [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461)
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (VinAI Research から) Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen から公開された研究論文: [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/)
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (Google Research から) Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed から公開された研究論文: [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062)
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (Google Research から) Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed から公開された研究論文: [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062)
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (Microsoft Research AI4Science から) Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu から公開された研究論文: [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9)
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (Google AI から) Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil から公開された研究論文: [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370)Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (Facebook から) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston から公開された研究論文: [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637)
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (Facebook から) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston から公開された研究論文: [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637)
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (Salesforce から) Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi から公開された研究論文: [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086)
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce から) Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. から公開された研究論文 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597)
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (BigScience workshop から) [BigScience Workshop](https://bigscience.huggingface.co/) から公開されました.
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (Alexa から) Adrian de Wynter and Daniel J. Perry から公開された研究論文: [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499)
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (Harbin Institute of Technology/Microsoft Research Asia/Intel Labs から) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (NAVER CLOVA から) Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park. から公開された研究論文 [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539)
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google Research から) Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel から公開された研究論文: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626)
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (Inria/Facebook/Sorbonne から) Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot から公開された研究論文: [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894)
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google Research から) Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting から公開された研究論文: [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874)
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (OFA-Sys から) An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou から公開された研究論文: [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335)
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI から) Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov. から公開された研究論文 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687)
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI から) Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever から公開された研究論文: [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (University of Göttingen から) Timo Lüddecke and Alexander Ecker から公開された研究論文: [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003)
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (Salesforce から) Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong から公開された研究論文: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474)
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI から) Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve. から公開された研究論文 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (Cohere から) Cohere. から公開された研究論文 [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>)
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (Microsoft Research Asia から) Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang から公開された研究論文: [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152)
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech から) Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan から公開された研究論文: [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496)
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI から) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie から公開された研究論文: [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545)
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (Tsinghua University から) Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun から公開された研究論文: [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413)
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (OpenBMB から) [OpenBMB](https://www.openbmb.org/) から公開されました.
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (Salesforce から) Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher から公開された研究論文: [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858)
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft から) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang から公開された研究論文: [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808)
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (Facebook から) Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli から公開された研究論文: [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555)
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft から) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen から公開された研究論文: [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654)
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft から) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen から公開された研究論文: [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654)
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (Berkeley/Facebook/Google から) Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch から公開された研究論文: [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345)
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (SenseTime Research から) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai から公開された研究論文: [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159)
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (Facebook から) Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou から公開された研究論文: [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877)
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI から) Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. から公開された研究論文 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505)
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (University of Hong Kong and TikTok から) Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao. から公開された研究論文 [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891)
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (The University of Texas at Austin から) Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl. から公開された研究論文 [NMS Strikes Back](https://arxiv.org/abs/2212.06137)
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook から) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko から公開された研究論文: [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research から) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan から公開された研究論文: [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536)
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (SHI Labs から) Ali Hassani and Humphrey Shi から公開された研究論文: [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001)
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI から) Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski. から公開された研究論文 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (HuggingFace から), Victor Sanh, Lysandre Debut and Thomas Wolf. 同じ手法で GPT2, RoBERTa と Multilingual BERT の圧縮を行いました.圧縮されたモデルはそれぞれ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108)、[DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation)、[DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) と名付けられました. 公開された研究論文: [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108)
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (Microsoft Research から) Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei から公開された研究論文: [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378)
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER から), Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park から公開された研究論文: [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664)
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (Facebook から) Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih から公開された研究論文: [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906)
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (Intel Labs から) René Ranftl, Alexey Bochkovskiy, Vladlen Koltun から公開された研究論文: [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413)
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (Snap Research から) Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. から公開された研究論文 [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191)
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google Research/Stanford University から) Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning から公開された研究論文: [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555)
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI から) Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. から公開された研究論文 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438)
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google Research から) Sascha Rothe, Shashi Narayan, Aliaksei Severyn から公開された研究論文: [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461)
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (Baidu から) Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu から公開された研究論文: [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223)
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu から) Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. から公開された研究論文 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674)
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (Meta AI から) はトランスフォーマープロテイン言語モデルです. **ESM-1b** は Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus から公開された研究論文: [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118). **ESM-1v** は Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives から公開された研究論文: [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648). **ESM-2** と **ESMFold** は Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives から公開された研究論文: [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902)
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (ESPnet and Microsoft Research から) Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang. から公開された研究論文 [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956)
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (Google AI から) Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V から公開されたレポジトリー [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS から) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab から公開された研究論文: [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372)
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (Facebook AI から) Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela から公開された研究論文: [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482)
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (Google Research から) James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon から公開された研究論文: [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824)
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (Microsoft Research から) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. から公開された研究論文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926)
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (CMU/Google Brain から) Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le から公開された研究論文: [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236)
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (ADEPT から) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. から公開された研究論文 [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (Google から) the Gemma Google team. から公開された研究論文 [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/)
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (Microsoft Research から) Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. から公開された研究論文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100)
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST から) Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim から公開された研究論文: [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436)
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI から) Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever から公開された研究論文: [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/)
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (EleutherAI から) Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy から公開されたレポジトリー : [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo)
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI から) Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach から公開された研究論文: [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745)
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (ABEJA から) Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori からリリース.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (OpenAI から) Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever から公開された研究論文: [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/)
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (EleutherAI から) Ben Wang and Aran Komatsuzaki から公開されたレポジトリー [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/)
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (AI-Sweden から) Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren から公開された研究論文: [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf)
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode から) Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra. から公開された研究論文 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988)
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) 坂本俊之(tanreinama)からリリースされました.
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (Microsoft から) Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu から公開された研究論文: [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234).
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others から) Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang. から公開された研究論文 [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499)
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA から) Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang から公開された研究論文: [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094)
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (Allegro.pl, AGH University of Science and Technology から) Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik. から公開された研究論文 [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf)
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (Facebook から) Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed から公開された研究論文: [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447)
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (Berkeley から) Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer から公開された研究論文: [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321)
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (Hugging Face から) Léo Tronchon, Hugo Laurencon, Victor Sanh. から公開された研究論文 [IDEFICS2](https://huggingface.co/blog/idefics2)
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (OpenAI から) Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever から公開された研究論文: [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/)
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce から) Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi. から公開された研究論文 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500)
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (OpenAI から) Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever から公開された研究論文: [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf)
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (Microsoft Research Asia から) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou から公開された研究論文: [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318)
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (Microsoft Research Asia から) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou から公開された研究論文: [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740)
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (Microsoft Research Asia から) Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei から公開された研究論文: [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387)
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (Microsoft Research Asia から) Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei から公開された研究論文: [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836)
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (AllenAI から) Iz Beltagy, Matthew E. Peters, Arman Cohan から公開された研究論文: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150)
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (Meta AI から) Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze から公開された研究論文: [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136)
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (South China University of Technology から) Jiapeng Wang, Lianwen Jin, Kai Ding から公開された研究論文: [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669)
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI から) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. から公開された研究論文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI から) Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.. から公開された研究論文 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/)
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (Microsoft Research & University of Wisconsin-Madison から) Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee. から公開された研究論文 [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485)
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (Microsoft Research & University of Wisconsin-Madison から) Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee. から公開された研究論文 [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744)
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI から) Iz Beltagy, Matthew E. Peters, Arman Cohan から公開された研究論文: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150)
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI から) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang から公開された研究論文: [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916)
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia から) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto から公開された研究論文: [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057)
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC Chapel Hill から) Hao Tan and Mohit Bansal から公開された研究論文: [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490)
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (Facebook から) Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert から公開された研究論文: [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161)
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (Facebook から) Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin から公開された研究論文: [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125)
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (Albert Gu and Tri Dao から) Albert Gu and Tri Dao. から公開された研究論文 [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752)
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Jörg Tiedemann から. [OPUS](http://opus.nlpl.eu/) を使いながら学習された "Machine translation" (マシントランスレーション) モデル. [Marian Framework](https://marian-nmt.github.io/) はMicrosoft Translator Team が現在開発中です.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (Microsoft Research Asia から) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei から公開された研究論文: [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518)
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC から) Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. から公開された研究論文 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527)
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (Meta and UIUC から) Bowen Cheng, Alexander G. Schwing, Alexander Kirillov から公開された研究論文: [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278)
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI から) Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. から公開された研究論文 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662)
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook から) Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer から公開された研究論文: [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210)
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook から) Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan から公開された研究論文: [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401)
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook から) Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. から公開された研究論文 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655)
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA から) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro から公開された研究論文: [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053)
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA から) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro から公開された研究論文: [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053)
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research から) Peng Wang, Cheng Da, and Cong Yao. から公開された研究論文 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592)
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (Studio Ousia から) Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka から公開された研究論文: [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151)
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook から) Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli. から公開された研究論文 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516)
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (CMU/Google Brain から) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou から公開された研究論文: [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984)
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (Google Inc. から) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam から公開された研究論文: [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861)
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (Google Inc. から) Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen から公開された研究論文: [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple から) Sachin Mehta and Mohammad Rastegari から公開された研究論文: [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178)
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple から) Sachin Mehta and Mohammad Rastegari. から公開された研究論文 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680)
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (Microsoft Research から) Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu から公開された研究論文: [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297)
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML から) the MosaicML NLP Team. から公開された研究論文 [llm-foundry](https://github.com/mosaicml/llm-foundry/)
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison から) Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh. から公開された研究論文 [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284)
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI から) Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel から公開された研究論文: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934)
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (RUC AI Box から) Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen から公開された研究論文: [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131)
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (SHI Labs から) Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi から公開された研究論文: [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143)
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noahs Ark Lab から) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu から公開された研究論文: [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204)
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta から) the NLLB team から公開された研究論文: [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta から) the NLLB team. から公開された研究論文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (Meta AI から) Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic. から公開された研究論文 [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418)
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison から) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh から公開された研究論文: [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902)
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs から) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi から公開された研究論文: [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220)
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI から) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al から公開された研究論文: [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068)
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby から公開された研究論文: [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230)
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Neil Houlsby. から公開された研究論文 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683)
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** ( IBM Research から) Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. から公開された研究論文 [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf)
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (IBM から) Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. から公開された研究論文 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730)
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google から) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu から公開された研究論文: [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777)
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google から) Jason Phang, Yao Zhao, and Peter J. Liu から公開された研究論文: [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347)
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (Deepmind から) Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira から公開された研究論文: [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795)
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (ADEPT から) Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani. から公開された研究論文 [blog post](https://www.adept.ai/blog/persimmon-8b)
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research から) Dat Quoc Nguyen and Anh Tuan Nguyen から公開された研究論文: [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/)
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google から) Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. から公開された研究論文 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347)
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP から) Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang から公開された研究論文: [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333)
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (Sea AI Labs から) Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng から公開された研究論文: [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418)
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research から) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou から公開された研究論文: [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063)
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. から) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. から公開された研究論文 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf)
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc. から) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. から公開された研究論文 [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797)
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA から) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius から公開された研究論文: [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602)
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (the Qwen team, Alibaba Group から) Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu. から公開された研究論文 [Qwen Technical Report](https://arxiv.org/abs/2309.16609)
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (the Qwen team, Alibaba Group から) Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou. から公開された研究論文 [blog post](https://qwenlm.github.io/blog/qwen-moe/)
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (Facebook から) Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela から公開された研究論文: [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401)
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google Research から) Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang から公開された研究論文: [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909)
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (Google から) the Griffin, RLHF and Gemma Teams. から公開された研究論文 [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf)
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (Google Research から) Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya から公開された研究論文: [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451)
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (META Platforms から) Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár から公開された研究論文: [Designing Network Design Space](https://arxiv.org/abs/2003.13678)
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (Google Research から) Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder から公開された研究論文: [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821)
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (Microsoft Research から) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun から公開された研究論文: [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (Facebook から), Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov から公開された研究論文: [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692)
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (Facebook から) Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli から公開された研究論文: [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038)
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (WeChatAI から) HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou から公開された研究論文: [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf)
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (ZhuiyiTechnology から), Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu から公開された研究論文: [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864)
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng から) Bo Peng. から公開された研究論文 [this repo](https://github.com/BlinkDL/RWKV-LM)
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (NVIDIA から) Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo から公開された研究論文: [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203)
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (Beijing Academy of Artificial Intelligence (BAAI から) Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang. から公開された研究論文 [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284)
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI から) Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. から公開された研究論文 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf)
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP から) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi から公開された研究論文: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP から) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi から公開された研究論文: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (Google AI から) Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer. から公開された研究論文 [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343)
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (Microsoft Research から) Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei. から公開された研究論文 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205)
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (Facebook から), Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino から公開された研究論文: [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171)
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook から), Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau から公開された研究論文: [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678)
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University から), Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy から公開された研究論文: [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438)
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley から) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer から公開された研究論文: [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316)
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI から) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. から公開された研究論文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft から) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo から公開された研究論文: [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft から) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo から公開された研究論文: [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883)
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (University of Würzburg から) Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte から公開された研究論文: [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345)
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (Google から) William Fedus, Barret Zoph, Noam Shazeer から公開された研究論文: [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961)
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (Google AI から) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu から公開された研究論文: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683)
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (Google AI から) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu から公開されたレポジトリー [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511)
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (Microsoft Research から) Brandon Smock, Rohith Pesala, Robin Abraham から公開された研究論文: [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061)
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI から) Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos から公開された研究論文: [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349)
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (Microsoft Research から) Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou から公開された研究論文: [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653)
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (HuggingFace から).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (Facebook から) Gedas Bertasius, Heng Wang, Lorenzo Torresani から公開された研究論文: [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095)
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (the University of California at Berkeley から) Michael Janner, Qiyang Li, Sergey Levine から公開された研究論文: [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039)
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU から) Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov から公開された研究論文: [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860)
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (Microsoft から), Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei から公開された研究論文: [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282)
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill から), Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal から公開された研究論文: [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156)
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (Intel から), Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding から公開された研究論文: [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995)
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (Microsoft Research から) Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal. から公開された研究論文 [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623)
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (Google Research から) Yi Tay, Mostafa Dehghani, Vinh Q から公開された研究論文: [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research から) Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant. から公開された研究論文 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi)
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (Microsoft Research から) Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang から公開された研究論文: [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597)
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (Microsoft Research から) Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu から公開された研究論文: [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752)
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (Peking University から) Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun. から公開された研究論文 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221)
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (Tsinghua University and Nankai University から) Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu から公開された研究論文: [Visual Attention Network](https://arxiv.org/abs/2202.09741)
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (Multimedia Computing Group, Nanjing University から) Zhan Tong, Yibing Song, Jue Wang, Limin Wang から公開された研究論文: [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602)
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain から) Wonjae Kim, Bokyung Son, Ildoo Kim から公開された研究論文: [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334)
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (University of WisconsinMadison から) Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee. から公開された研究論文 [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784)
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP から) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang から公開された研究論文: [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557)
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI から) Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He. から公開された研究論文 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527)
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI から) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick から公開された研究論文: [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377)
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (HUST-VL から) Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang. から公開された研究論文 [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272)
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI から) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas から公開された研究論文: [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141)
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise から) Jaehyeon Kim, Jungil Kong, Juhee Son. から公開された研究論文 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103)
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (Facebook AI から) Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli から公開された研究論文: [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477)
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI から) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino から公開された研究論文: [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171)
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI から) Qiantong Xu, Alexei Baevski, Michael Auli から公開された研究論文: [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680)
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (Microsoft Research から) Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei から公開された研究論文: [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900)
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI から) Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever から公開された研究論文: [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf)
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (Microsoft Research から) Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling から公開された研究論文: [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816)
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI から) Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. から公開された研究論文 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255)
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li から公開された研究論文: [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668)
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (Facebook から) Guillaume Lample and Alexis Conneau から公開された研究論文: [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291)
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (Microsoft Research から) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou から公開された研究論文: [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063)
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (Facebook AI から), Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov から公開された研究論文: [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116)
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI から), Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau から公開された研究論文: [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572)
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (Meta AI から) Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa から公開された研究論文: [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472)
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU から) Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le から公開された研究論文: [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237)
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI から) Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli から公開された研究論文: [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296)
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (Facebook AI から) Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli から公開された研究論文: [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979)
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (Huazhong University of Science & Technology から) Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu から公開された研究論文: [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666)
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (the University of Wisconsin - Madison から) Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh から公開された研究論文: [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714)
1. 新しいモデルを投稿したいですか?新しいモデルを追加するためのガイドとして、**詳細なガイドとテンプレート**が追加されました。これらはリポジトリの[`templates`](./templates)フォルダにあります。PRを始める前に、必ず[コントリビューションガイド](./CONTRIBUTING.md)を確認し、メンテナに連絡するか、フィードバックを収集するためにissueを開いてください。
各モデルがFlax、PyTorch、TensorFlowで実装されているか、🤗Tokenizersライブラリに支えられた関連トークナイザを持っているかは、[この表](https://huggingface.co/docs/transformers/index#supported-frameworks)を参照してください。
これらの実装はいくつかのデータセットでテストされており(サンプルスクリプトを参照)、オリジナルの実装の性能と一致するはずである。性能の詳細は[documentation](https://github.com/huggingface/transformers/tree/main/examples)のExamplesセクションで見ることができます。
## さらに詳しく
| セクション | 概要 |
|-|-|
| [ドキュメント](https://huggingface.co/docs/transformers/) | 完全なAPIドキュメントとチュートリアル |
| [タスク概要](https://huggingface.co/docs/transformers/task_summary) | 🤗Transformersがサポートするタスク |
| [前処理チュートリアル](https://huggingface.co/docs/transformers/preprocessing) | モデル用のデータを準備するために`Tokenizer`クラスを使用 |
| [トレーニングと微調整](https://huggingface.co/docs/transformers/training) | PyTorch/TensorFlowの学習ループと`Trainer`APIで🤗Transformersが提供するモデルを使用 |
| [クイックツアー: 微調整/使用方法スクリプト](https://github.com/huggingface/transformers/tree/main/examples) | 様々なタスクでモデルの微調整を行うためのスクリプト例 |
| [モデルの共有とアップロード](https://huggingface.co/docs/transformers/model_sharing) | 微調整したモデルをアップロードしてコミュニティで共有する |
| [マイグレーション](https://huggingface.co/docs/transformers/migration) | `pytorch-transformers`または`pytorch-pretrained-bert`から🤗Transformers に移行する |
## 引用
🤗 トランスフォーマーライブラリに引用できる[論文](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)が出来ました:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

View File

@ -16,23 +16,23 @@ limitations under the License.
<p align="center"> <p align="center">
<br> <br>
<img src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/transformers_logo_name.png" width="400"/> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br> <br>
<p> </p>
<p align="center"> <p align="center">
<a href="https://circleci.com/gh/huggingface/transformers"> <a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master"> <img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a> </a>
<a href="https://github.com/huggingface/transformers/blob/master/LICENSE"> <a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue"> <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a> </a>
<a href="https://huggingface.co/transformers/index.html"> <a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/transformers/index.html.svg?down_color=red&down_message=offline&up_message=online"> <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a> </a>
<a href="https://github.com/huggingface/transformers/releases"> <a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg"> <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a> </a>
<a href="https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md"> <a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg"> <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a> </a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a> <a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
@ -41,10 +41,19 @@ limitations under the License.
<h4 align="center"> <h4 align="center">
<p> <p>
<a href="https://github.com/huggingface/transformers/">English</a> | <a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hans.md">简体中文</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hant.md">繁體中文</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<b>한국어</b> <b>한국어</b> |
<p> <a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
</p>
</h4> </h4>
<h3 align="center"> <h3 align="center">
@ -52,29 +61,29 @@ limitations under the License.
</h3> </h3>
<h3 align="center"> <h3 align="center">
<a href="https://hf.co/course"><img src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/course_banner.png"></a> <a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3> </h3>
🤗 Transformers는 분류, 정보 추출, 질문 답변, 요약, 번역, 문장 생성 등을 100개 이상의 언어로 수행할 수 있는 수천개의 사전학습된 모델을 제공합니다. 우리의 목표는 모두가 최첨단의 NLP 기술을 쉽게 사용하는 것입니다. 🤗 Transformers는 분류, 정보 추출, 질문 답변, 요약, 번역, 문장 생성 등을 100개 이상의 언어로 수행할 수 있는 수천개의 사전학습된 모델을 제공합니다. 우리의 목표는 모두가 최첨단의 NLP 기술을 쉽게 사용하는 것입니다.
🤗 Transformers는 이러한 사전학습 모델을 빠르게 다운로드해 특정 텍스트에 사용하고, 원하는 데이터로 fine-tuning해 커뮤니티나 우리의 [모델 허브](https://huggingface.co/models)에 공유할 수 있도록 API를 제공합니다. 또한, 모델 구조를 정의하는 각 파이썬 모듈은 완전히 독립적이여서 연구 실험을 위해 손쉽게 수정할 수 있습니다. 🤗 Transformers는 이러한 사전학습 모델을 빠르게 다운로드해 특정 텍스트에 사용하고, 원하는 데이터로 fine-tuning해 커뮤니티나 우리의 [모델 허브](https://huggingface.co/models)에 공유할 수 있도록 API를 제공합니다. 또한, 모델 구조를 정의하는 각 파이썬 모듈은 완전히 독립적이여서 연구 실험을 위해 손쉽게 수정할 수 있습니다.
🤗 Transformers는 가장 유명한 3개의 딥러닝 라이브러리를 지원합니다. 이들은 서로 완벽히 연동됩니다 — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/). 간단하게 이 라이브러리 중 하나로 모델을 학습하고, 또 다른 라이브러리로 추론을 위해 모델을 불러올 수 있습니다. 🤗 Transformers는 가장 유명한 3개의 딥러닝 라이브러리를 지원합니다. 이들은 서로 완벽히 연동됩니다 — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/). 간단하게 이 라이브러리 중 하나로 모델을 학습하고, 또 다른 라이브러리로 추론을 위해 모델을 불러올 수 있습니다.
## 온라인 데모 ## 온라인 데모
대부분의 모델을 [모델 허브](https://huggingface.co/models) 페이지에서 바로 테스트해볼 수 있습니다. 공개 및 비공개 모델을 위한 [비공개 모델 호스팅, 버전 관리, 추론 API](https://huggingface.co/pricing)도 제공합니다. 대부분의 모델을 [모델 허브](https://huggingface.co/models) 페이지에서 바로 테스트해볼 수 있습니다. 공개 및 비공개 모델을 위한 [비공개 모델 호스팅, 버전 관리, 추론 API](https://huggingface.co/pricing)도 제공합니다.
예시: 예시:
- [BERT로 마스킹된 단어 완성하기](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France) - [BERT로 마스킹된 단어 완성하기](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Electra를 이용한 개체명 인식](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city) - [Electra를 이용한 개체명 인식](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [GPT-2로 텍스트 생성하기](https://huggingface.co/gpt2?text=A+long+time+ago%2C+) - [GPT-2로 텍스트 생성하기](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [RoBERTa로 자연어 추론하기](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal) - [RoBERTa로 자연어 추론하기](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [BART를 이용한 요약](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct) - [BART를 이용한 요약](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [DistilBERT를 이용한 질문 답변](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species) - [DistilBERT를 이용한 질문 답변](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [T5로 번역하기](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) - [T5로 번역하기](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Transformer와 글쓰기](https://transformer.huggingface.co)** 는 이 저장소의 텍스트 생성 능력에 관한 Hugging Face 팀의 공식 데모입니다. **[Transformer와 글쓰기](https://transformer.huggingface.co)** 는 이 저장소의 텍스트 생성 능력에 관한 Hugging Face 팀의 공식 데모입니다.
## Hugging Face 팀의 커스텀 지원을 원한다면 ## Hugging Face 팀의 커스텀 지원을 원한다면
@ -112,14 +121,14 @@ limitations under the License.
``` ```
답변뿐만 아니라, 여기에 사용된 사전학습 모델은 확신도와 토크나이즈된 문장 속 답변의 시작점, 끝점까지 반환합니다. [이 튜토리얼](https://huggingface.co/transformers/task_summary.html)에서 `pipeline` API가 지원하는 다양한 과제를 확인할 수 있습니다. 답변뿐만 아니라, 여기에 사용된 사전학습 모델은 확신도와 토크나이즈된 문장 속 답변의 시작점, 끝점까지 반환합니다. [이 튜토리얼](https://huggingface.co/docs/transformers/task_summary)에서 `pipeline` API가 지원하는 다양한 과제를 확인할 수 있습니다.
코드 3줄로 원하는 과제에 맞게 사전학습 모델을 다운로드 받고 사용할 수 있습니다. 다음은 PyTorch 버전입니다: 코드 3줄로 원하는 과제에 맞게 사전학습 모델을 다운로드 받고 사용할 수 있습니다. 다음은 PyTorch 버전입니다:
```python ```python
>>> from transformers import AutoTokenizer, AutoModel >>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased") >>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt") >>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
@ -128,8 +137,8 @@ limitations under the License.
```python ```python
>>> from transformers import AutoTokenizer, TFAutoModel >>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased") >>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf") >>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
@ -166,13 +175,13 @@ limitations under the License.
- 이 라이브러리는 신경망 블록을 만들기 위한 모듈이 아닙니다. 연구자들이 여러 파일을 살펴보지 않고 바로 각 모델을 사용할 수 있도록, 모델 파일 코드의 추상화 수준을 적정하게 유지했습니다. - 이 라이브러리는 신경망 블록을 만들기 위한 모듈이 아닙니다. 연구자들이 여러 파일을 살펴보지 않고 바로 각 모델을 사용할 수 있도록, 모델 파일 코드의 추상화 수준을 적정하게 유지했습니다.
- 학습 API는 모든 모델에 적용할 수 있도록 만들어지진 않았지만, 라이브러리가 제공하는 모델들에 적용할 수 있도록 최적화되었습니다. 일반적인 머신 러닝을 위해선, 다른 라이브러리를 사용하세요. - 학습 API는 모든 모델에 적용할 수 있도록 만들어지진 않았지만, 라이브러리가 제공하는 모델들에 적용할 수 있도록 최적화되었습니다. 일반적인 머신 러닝을 위해선, 다른 라이브러리를 사용하세요.
- 가능한 많은 사용 예시를 보여드리고 싶어서, [예시 폴더](https://github.com/huggingface/transformers/tree/master/examples)의 스크립트를 준비했습니다. 이 스크립트들을 수정 없이 특정한 문제에 바로 적용하지 못할 수 있습니다. 필요에 맞게 일부 코드를 수정해야 할 수 있습니다. - 가능한 많은 사용 예시를 보여드리고 싶어서, [예시 폴더](https://github.com/huggingface/transformers/tree/main/examples)의 스크립트를 준비했습니다. 이 스크립트들을 수정 없이 특정한 문제에 바로 적용하지 못할 수 있습니다. 필요에 맞게 일부 코드를 수정해야 할 수 있습니다.
## 설치 ## 설치
### pip로 설치하기 ### pip로 설치하기
이 저장소는 Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+, TensorFlow 2.3+에서 테스트 되었습니다. 이 저장소는 Python 3.8+, Flax 0.4.1+, PyTorch 1.11+, TensorFlow 2.6+에서 테스트 되었습니다.
[가상 환경](https://docs.python.org/3/library/venv.html)에 🤗 Transformers를 설치하세요. Python 가상 환경에 익숙하지 않다면, [사용자 가이드](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)를 확인하세요. [가상 환경](https://docs.python.org/3/library/venv.html)에 🤗 Transformers를 설치하세요. Python 가상 환경에 익숙하지 않다면, [사용자 가이드](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)를 확인하세요.
@ -187,18 +196,18 @@ limitations under the License.
pip install transformers pip install transformers
``` ```
예시들을 체험해보고 싶거나, 최최최첨단 코드를 원하거나, 새로운 버전이 나올 때까지 기다릴 수 없다면 [라이브러리를 소스에서 바로 설치](https://huggingface.co/transformers/installation.html#installing-from-source)하셔야 합니다. 예시들을 체험해보고 싶거나, 최최최첨단 코드를 원하거나, 새로운 버전이 나올 때까지 기다릴 수 없다면 [라이브러리를 소스에서 바로 설치](https://huggingface.co/docs/transformers/installation#installing-from-source)하셔야 합니다.
### conda로 설치하기 ### conda로 설치하기
Transformers 버전 v4.0.0부터, conda 채널이 생겼습니다: `huggingface`.
🤗 Transformers는 다음과 같이 conda로 설치할 수 있습니다: 🤗 Transformers는 다음과 같이 conda로 설치할 수 있습니다:
```shell script ```shell script
conda install -c huggingface transformers conda install conda-forge::transformers
``` ```
> **_노트:_** `huggingface` 채널에서 `transformers`를 설치하는 것은 사용이 중단되었습니다.
Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 방법을 확인하세요. Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 방법을 확인하세요.
## 모델 구조 ## 모델 구조
@ -207,107 +216,289 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
현재 사용 가능한 모델 체크포인트의 개수: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen) 현재 사용 가능한 모델 체크포인트의 개수: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers는 다음 모델들을 제공합니다 (각 모델의 요약은 [여기](https://huggingface.co/transformers/model_summary.html)서 확인하세요): 🤗 Transformers는 다음 모델들을 제공합니다 (각 모델의 요약은 [여기](https://huggingface.co/docs/transformers/model_summary)서 확인하세요):
1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. 1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[BART](https://huggingface.co/transformers/model_doc/bart.html)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer. 1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research 에서 제공)은 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.의 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918)논문과 함께 발표했습니다.
1. **[BARThez](https://huggingface.co/transformers/model_doc/barthez.html)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis. 1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[BARTpho](https://huggingface.co/transformers/model_doc/bartpho.html)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen. 1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[BEiT](https://huggingface.co/transformers/model_doc/beit.html)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei. 1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[BERT](https://huggingface.co/transformers/model_doc/bert.html)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. 1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BERT For Sequence Generation](https://huggingface.co/transformers/model_doc/bertgeneration.html)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. 1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BERTweet](https://huggingface.co/transformers/model_doc/bertweet.html)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen. 1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BigBird-Pegasus](https://huggingface.co/transformers/model_doc/bigbird_pegasus.html)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. 1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BigBird-RoBERTa](https://huggingface.co/transformers/model_doc/bigbird.html)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. 1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[Blenderbot](https://huggingface.co/transformers/model_doc/blenderbot.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. 1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BlenderbotSmall](https://huggingface.co/transformers/model_doc/blenderbot_small.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. 1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BORT](https://huggingface.co/transformers/model_doc/bort.html)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry. 1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[ByT5](https://huggingface.co/transformers/model_doc/byt5.html)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel. 1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[CamemBERT](https://huggingface.co/transformers/model_doc/camembert.html)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. 1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[CANINE](https://huggingface.co/transformers/model_doc/canine.html)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting. 1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[CLIP](https://huggingface.co/transformers/model_doc/clip.html)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. 1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[ConvBERT](https://huggingface.co/transformers/model_doc/convbert.html)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan. 1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[CPM](https://huggingface.co/transformers/model_doc/cpm.html)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun. 1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[CTRL](https://huggingface.co/transformers/model_doc/ctrl.html)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher. 1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[DeBERTa](https://huggingface.co/transformers/model_doc/deberta.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. 1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce 에서 제공)은 Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.의 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597)논문과 함께 발표했습니다.
1. **[DeBERTa-v2](https://huggingface.co/transformers/model_doc/deberta_v2.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. 1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[DeiT](https://huggingface.co/transformers/model_doc/deit.html)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou. 1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (Alexa 에서) Adrian de Wynter and Daniel J. Perry 의 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 논문과 함께 발표했습니다.
1. **[DETR](https://huggingface.co/transformers/model_doc/detr.html)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko. 1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[DialoGPT](https://huggingface.co/transformers/model_doc/dialogpt.html)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan. 1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (NAVER CLOVA 에서 제공)은 Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.의 [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539)논문과 함께 발표했습니다.
1. **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT. 1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google Research 에서) Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 의 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 논문과 함께 발표했습니다.
1. **[DPR](https://huggingface.co/transformers/model_doc/dpr.html)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (Inria/Facebook/Sorbonne 에서) Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 의 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 논문과 함께 발표했습니다.
1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning. 1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google Research 에서) Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 의 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 논문과 함께 발표했습니다.
1. **[EncoderDecoder](https://huggingface.co/transformers/model_doc/encoderdecoder.html)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. 1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (OFA-Sys 에서) An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou 의 [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) 논문과 함께 발표했습니다.
1. **[FlauBERT](https://huggingface.co/transformers/model_doc/flaubert.html)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab. 1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI 에서 제공)은 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.의 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687)논문과 함께 발표했습니다.
1. **[FNet](https://huggingface.co/transformers/model_doc/fnet.html)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. 1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI 에서) Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 의 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 논문과 함께 발표했습니다.
1. **[Funnel Transformer](https://huggingface.co/transformers/model_doc/funnel.html)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. 1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (University of Göttingen 에서) Timo Lüddecke and Alexander Ecker 의 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 논문과 함께 발표했습니다.
1. **[GPT](https://huggingface.co/transformers/model_doc/gpt.html)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. 1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[GPT Neo](https://huggingface.co/transformers/model_doc/gpt_neo.html)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. 1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (Salesforce 에서) Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 의 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 논문과 함께 발표했습니다.
1. **[GPT-2](https://huggingface.co/transformers/model_doc/gpt2.html)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**. 1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI 에서 제공)은 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.의 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)논문과 함께 발표했습니다.
1. **[GPT-J](https://huggingface.co/transformers/model_doc/gptj.html)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki. 1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (Cohere 에서 제공)은 Cohere. 의 [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>)논문과 함께 발표했습니다.
1. **[Hubert](https://huggingface.co/transformers/model_doc/hubert.html)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed. 1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (Microsoft Research Asia 에서) Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 의 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 논문과 함께 발표했습니다.
1. **[I-BERT](https://huggingface.co/transformers/model_doc/ibert.html)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer. 1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech 에서) Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 의 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 논문과 함께 발표했습니다.
1. **[LayoutLM](https://huggingface.co/transformers/model_doc/layoutlm.html)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou. 1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI 에서) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 의 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 논문과 함께 발표했습니다.
1. **[LayoutLMv2](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou. 1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[LayoutXLM](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei. 1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (Tsinghua University 에서) Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 의 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 논문과 함께 발표했습니다.
1. **[LED](https://huggingface.co/transformers/model_doc/led.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. 1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[Longformer](https://huggingface.co/transformers/model_doc/longformer.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. 1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (Salesforce 에서) Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 의 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 논문과 함께 발표했습니다.
1. **[LUKE](https://huggingface.co/transformers/model_doc/luke.html)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto. 1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft 에서) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 의 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 논문과 함께 발표했습니다.
1. **[LXMERT](https://huggingface.co/transformers/model_doc/lxmert.html)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. 1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (Facebook 에서) Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 의 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 논문과 함께 발표했습니다.
1. **[M2M100](https://huggingface.co/transformers/model_doc/m2m_100.html)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin. 1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다.
1. **[MarianMT](https://huggingface.co/transformers/model_doc/marian.html)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team. 1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다.
1. **[MBart](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer. 1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (Berkeley/Facebook/Google 에서) Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 의 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 논문과 함께 발표했습니다.
1. **[MBart-50](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan. 1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (SenseTime Research 에서) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 의 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 논문과 함께 발표했습니다.
1. **[Megatron-BERT](https://huggingface.co/transformers/model_doc/megatron_bert.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (Facebook 에서) Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 의 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 논문과 함께 발표했습니다.
1. **[Megatron-GPT2](https://huggingface.co/transformers/model_doc/megatron_gpt2.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI 에서 제공)은 Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.의 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505)논문과 함께 발표했습니다.
1. **[MPNet](https://huggingface.co/transformers/model_doc/mpnet.html)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. 1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (University of Hong Kong and TikTok 에서 제공)은 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.의 [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891)논문과 함께 발표했습니다.
1. **[MT5](https://huggingface.co/transformers/model_doc/mt5.html)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. 1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (The University of Texas at Austin 에서 제공)은 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.의 [NMS Strikes Back](https://arxiv.org/abs/2212.06137)논문과 함께 발표했습니다.
1. **[Pegasus](https://huggingface.co/transformers/model_doc/pegasus.html)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. 1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook 에서) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 의 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 논문과 함께 발표했습니다.
1. **[PhoBERT](https://huggingface.co/transformers/model_doc/phobert.html)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. 1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research 에서) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 의 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 논문과 함께 발표했습니다.
1. **[ProphetNet](https://huggingface.co/transformers/model_doc/prophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. 1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (SHI Labs 에서) Ali Hassani and Humphrey Shi 의 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 논문과 함께 발표했습니다.
1. **[Reformer](https://huggingface.co/transformers/model_doc/reformer.html)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. 1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI 에서 제공)은 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.의 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)논문과 함께 발표했습니다.
1. **[RemBERT](https://huggingface.co/transformers/model_doc/rembert.html)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder. 1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (HuggingFace 에서) Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT 의 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 논문과 함께 발표했습니다.
1. **[RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. 1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (Microsoft Research 에서) Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 의 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 논문과 함께 발표했습니다.
1. **[RoFormer](https://huggingface.co/transformers/model_doc/roformer.html)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu. 1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER 에서) Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 의 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 논문과 함께 발표했습니다.
1. **[SegFormer](https://huggingface.co/transformers/model_doc/segformer.html)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo. 1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (Facebook 에서) Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 의 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 논문과 함께 발표했습니다.
1. **[SEW](https://huggingface.co/transformers/model_doc/sew.html)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. 1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (Intel Labs 에서) René Ranftl, Alexey Bochkovskiy, Vladlen Koltun 의 [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) 논문과 함께 발표했습니다.
1. **[SEW-D](https://huggingface.co/transformers/model_doc/sew_d.html)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. 1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[SpeechToTextTransformer](https://huggingface.co/transformers/model_doc/speech_to_text.html)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino. 1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[SpeechToTextTransformer2](https://huggingface.co/transformers/model_doc/speech_to_text_2.html)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau. 1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google Research/Stanford University 에서) Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 의 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 논문과 함께 발표했습니다.
1. **[Splinter](https://huggingface.co/transformers/model_doc/splinter.html)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy. 1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI 에서 제공)은 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.의 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438)논문과 함께 발표했습니다.
1. **[SqueezeBert](https://huggingface.co/transformers/model_doc/squeezebert.html)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer. 1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google Research 에서) Sascha Rothe, Shashi Narayan, Aliaksei Severyn 의 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 논문과 함께 발표했습니다.
1. **[T5](https://huggingface.co/transformers/model_doc/t5.html)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. 1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (Baidu 에서) Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 의 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) 논문과 함께 발표했습니다.
1. **[T5v1.1](https://huggingface.co/transformers/model_doc/t5v1.1.html)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. 1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu 에서 제공)은 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.의 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674)논문과 함께 발표했습니다.
1. **[TAPAS](https://huggingface.co/transformers/model_doc/tapas.html)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos. 1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Transformer-XL](https://huggingface.co/transformers/model_doc/transformerxl.html)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov. 1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[TrOCR](https://huggingface.co/transformers/model_doc/trocr.html)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei. 1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (ESPnet and Microsoft Research 에서 제공)은 Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.의 [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956)논문과 함께 발표했습니다.
1. **[UniSpeech](https://huggingface.co/transformers/model_doc/unispeech.html)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang. 1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[UniSpeechSat](https://huggingface.co/transformers/model_doc/unispeech_sat.html)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu. 1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[Vision Transformer (ViT)](https://huggingface.co/transformers/model_doc/vit.html)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[VisualBERT](https://huggingface.co/transformers/model_doc/visual_bert.html)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. 1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[Wav2Vec2](https://huggingface.co/transformers/model_doc/wav2vec2.html)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. 1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[XLM](https://huggingface.co/transformers/model_doc/xlm.html)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau. 1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[XLM-ProphetNet](https://huggingface.co/transformers/model_doc/xlmprophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. 1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[XLM-RoBERTa](https://huggingface.co/transformers/model_doc/xlmroberta.html)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. 1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. 논문과 함께 공개 [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[XLNet](https://huggingface.co/transformers/model_doc/xlnet.html)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. 1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (Google 에서 제공)은 the Gemma Google team.의 [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/)논문과 함께 발표했습니다.
1. **[XLSR-Wav2Vec2](https://huggingface.co/transformers/model_doc/xlsr_wav2vec2.html)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli. 1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. 새로운 모델을 올리고 싶나요? 우리가 **상세한 가이드와 템플릿** 으로 새로운 모델을 올리도록 도와드릴게요. 가이드와 템플릿은 이 저장소의 [`templates`](./templates) 폴더에서 확인하실 수 있습니다. [컨트리뷰션 가이드라인](./CONTRIBUTING.md)을 꼭 확인해주시고, PR을 올리기 전에 메인테이너에게 연락하거나 이슈를 오픈해 피드백을 받으시길 바랍니다. 1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI 에서) Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbac 의 [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) 논문과 함께 발표했습니다.
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (OpenAI 에서) Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever 의 [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) 논문과 함께 발표했습니다.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (AI-Sweden 에서) Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren. 의 [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) 논문과 함께 발표했습니다.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode 에서 제공)은 Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.의 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988)논문과 함께 발표했습니다.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu 의 [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) 논문과 함께 발표했습니다.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others 에서 제공)은 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.의 [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499)논문과 함께 발표했습니다.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA 에서) Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 의 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 논문과 함께 발표했습니다.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (Allegro.pl, AGH University of Science and Technology 에서 제공)은 Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.의 [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf)논문과 함께 발표했습니다.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (Facebook 에서) Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 의 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 논문과 함께 발표했습니다.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (Berkeley 에서) Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 의 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 논문과 함께 발표했습니다.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (Hugging Face 에서 제공)은 Léo Tronchon, Hugo Laurencon, Victor Sanh.의 [IDEFICS2](https://huggingface.co/blog/idefics2)논문과 함께 발표했습니다.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (OpenAI 에서) Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 의 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 논문과 함께 발표했습니다.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce 에서 제공)은 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.의 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500)논문과 함께 발표했습니다.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (OpenAI 에서) Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever 의 [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) 논문과 함께 발표했습니다.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (Microsoft Research Asia 에서) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 의 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 논문과 함께 발표했습니다.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (Microsoft Research Asia 에서) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 의 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 논문과 함께 발표했습니다.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (Microsoft Research Asia 에서) Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 의 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 논문과 함께 발표했습니다.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (Microsoft Research Asia 에서) Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 의 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 논문과 함께 발표했습니다.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (AllenAI 에서) Iz Beltagy, Matthew E. Peters, Arman Cohan 의 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 논문과 함께 발표했습니다.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (Meta AI 에서) Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 의 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 논문과 함께 발표했습니다.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (South China University of Technology 에서) Jiapeng Wang, Lianwen Jin, Kai Ding 의 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 논문과 함께 발표했습니다.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.의 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)논문과 함께 발표했습니다.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..의 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/)논문과 함께 발표했습니다.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (Microsoft Research & University of Wisconsin-Madison 에서 제공)은 Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.의 [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485)논문과 함께 발표했습니다.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (Microsoft Research & University of Wisconsin-Madison 에서 제공)은 Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.의 [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744)논문과 함께 발표했습니다.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI 에서) Iz Beltagy, Matthew E. Peters, Arman Cohan 의 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 논문과 함께 발표했습니다.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI 에서) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 의 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 논문과 함께 발표했습니다.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia 에서) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 의 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 논문과 함께 발표했습니다.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC Chapel Hill 에서) Hao Tan and Mohit Bansal 의 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 논문과 함께 발표했습니다.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (Facebook 에서) Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 의 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 논문과 함께 발표했습니다.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (Facebook 에서) Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin 의 [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) 논문과 함께 발표했습니다.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (Albert Gu and Tri Dao 에서 제공)은 Albert Gu and Tri Dao.의 [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752)논문과 함께 발표했습니다.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (Microsoft Research Asia 에서) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei 의 [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) 논문과 함께 발표했습니다.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC 에서 제공)은 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.의 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527)논문과 함께 발표했습니다.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (Meta and UIUC 에서) Bowen Cheng, Alexander G. Schwing, Alexander Kirillov 의 [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) 논문과 함께 발표했습니다.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI 에서 제공)은 Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.의 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662)논문과 함께 발표했습니다.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook 에서) Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 의 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 논문과 함께 발표했습니다.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook 에서) Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 의 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 논문과 함께 발표했습니다.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook 에서 제공)은 Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.의 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655)논문과 함께 발표했습니다.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA 에서) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 의 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 논문과 함께 발표했습니다.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA 에서) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 의 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 논문과 함께 발표했습니다.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research 에서 제공)은 Peng Wang, Cheng Da, and Cong Yao.의 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592)논문과 함께 발표했습니다.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (Studio Ousia 에서) Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 의 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 논문과 함께 발표했습니다.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook 에서 제공)은 Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.의 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516)논문과 함께 발표했습니다.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (CMU/Google Brain 에서) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 의 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 논문과 함께 발표했습니다.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (Google Inc. 에서) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 의 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 논문과 함께 발표했습니다.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (Google Inc. 에서) Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 의 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 논문과 함께 발표했습니다.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple 에서) Sachin Mehta and Mohammad Rastegari 의 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 논문과 함께 발표했습니다.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple 에서 제공)은 Sachin Mehta and Mohammad Rastegari.의 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680)논문과 함께 발표했습니다.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (Microsoft Research 에서) Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 의 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 논문과 함께 발표했습니다.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML 에서 제공)은 the MosaicML NLP Team.의 [llm-foundry](https://github.com/mosaicml/llm-foundry/)논문과 함께 발표했습니다.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison 에서 제공)은 Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.의 [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) 논문과 함께 발표했습니다.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI 에서) Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 의 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 논문과 함께 발표했습니다.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (RUC AI Box 에서) Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 의 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 논문과 함께 발표했습니다.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (SHI Labs 에서) Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 의 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 논문과 함께 발표했습니다.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noahs Ark Lab 에서) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 의 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 논문과 함께 발표했습니다.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta 에서) the NLLB team 의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 논문과 함께 발표했습니다.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta 에서 제공)은 the NLLB team.의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)논문과 함께 발표했습니다.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (Meta AI 에서 제공)은 Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.의 [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418)논문과 함께 발표했습니다.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison 에서) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 의 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 논문과 함께 발표했습니다.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs 에서) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 의 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 논문과 함께 발표했습니다.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI 에서) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 의 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 논문과 함께 발표했습니다.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI 에서) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 의 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 논문과 함께 발표했습니다.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI 에서 제공)은 Matthias Minderer, Alexey Gritsenko, Neil Houlsby.의 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683)논문과 함께 발표했습니다.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** ( IBM Research 에서 제공)은 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.의 [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf)논문과 함께 발표했습니다.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (IBM 에서 제공)은 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.의 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730)논문과 함께 발표했습니다.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google 에서) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 의 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 논문과 함께 발표했습니다.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google 에서) Jason Phang, Yao Zhao, Peter J. Liu 의 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 논문과 함께 발표했습니다.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (Deepmind 에서) Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 의 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 논문과 함께 발표했습니다.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (ADEPT 에서 제공)은 Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.의 [blog post](https://www.adept.ai/blog/persimmon-8b)논문과 함께 발표했습니다.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research 에서) Dat Quoc Nguyen and Anh Tuan Nguyen 의 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 논문과 함께 발표했습니다.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google 에서 제공)은 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.의 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347)논문과 함께 발표했습니다.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP 에서) Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 의 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 논문과 함께 발표했습니다.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (Sea AI Labs 에서) Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 의 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 논문과 함께 발표했습니다.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. 에서 제공)은 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.의 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf)논문과 함께 발표했습니다.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc. 에서 제공)은 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.의 [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797)논문과 함께 발표했습니다.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA 에서) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 의 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 논문과 함께 발표했습니다.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (the Qwen team, Alibaba Group 에서 제공)은 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.의 [Qwen Technical Report](https://arxiv.org/abs/2309.16609)논문과 함께 발표했습니다.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (the Qwen team, Alibaba Group 에서 제공)은 Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.의 [blog post](https://qwenlm.github.io/blog/qwen-moe/)논문과 함께 발표했습니다.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (Facebook 에서) Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 의 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 논문과 함께 발표했습니다.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google Research 에서) Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 의 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 논문과 함께 발표했습니다.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (Google 에서 제공)은 the Griffin, RLHF and Gemma Teams.의 [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf)논문과 함께 발표했습니다.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (Google Research 에서) Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 의 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 논문과 함께 발표했습니다.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (META Research 에서) Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár 의 [Designing Network Design Space](https://arxiv.org/abs/2003.13678) 논문과 함께 발표했습니다.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (Google Research 에서) Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 의 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) 논문과 함께 발표했습니다.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (Microsoft Research 에서) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun 의 [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) 논문과 함께 발표했습니다.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (Facebook 에서) Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 의 a [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 논문과 함께 발표했습니다.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (Facebook 에서) Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli 의 [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) 논문과 함께 발표했습니다.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (WeChatAI 에서) HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou 의 [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) 논문과 함께 발표했습니다.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (ZhuiyiTechnology 에서) Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 의 a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) 논문과 함께 발표했습니다.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng 에서 제공)은 Bo Peng.의 [this repo](https://github.com/BlinkDL/RWKV-LM)논문과 함께 발표했습니다.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (NVIDIA 에서) Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 의 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 논문과 함께 발표했습니다.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (Beijing Academy of Artificial Intelligence (BAAI 에서 제공)은 Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.의 [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284)논문과 함께 발표했습니다.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI 에서 제공)은 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.의 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf)논문과 함께 발표했습니다.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP 에서) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 의 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 논문과 함께 발표했습니다.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP 에서) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 의 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 논문과 함께 발표했습니다.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (Google AI 에서 제공)은 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.의 [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343)논문과 함께 발표했습니다.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (Microsoft Research 에서 제공)은 Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.의 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205)논문과 함께 발표했습니다.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (Facebook 에서) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 의 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 논문과 함께 발표했습니다.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook 에서) Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 의 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 논문과 함께 발표했습니다.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University 에서) Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 의 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 논문과 함께 발표했습니다.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley 에서) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 의 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 논문과 함께 발표했습니다.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI 에서 제공)은 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.의 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)논문과 함께 발표했습니다.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft 에서) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 의 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 논문과 함께 발표했습니다.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft 에서) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 의 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 논문과 함께 발표했습니다.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (University of Würzburg 에서) Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 의 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 논문과 함께 발표했습니다.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (Google 에서) William Fedus, Barret Zoph, Noam Shazeer. 의 [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) 논문과 함께 발표했습니다.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (Google AI 에서) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 의 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 논문과 함께 발표했습니다.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (Microsoft Research 에서) Brandon Smock, Rohith Pesala, Robin Abraham 의 [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) 논문과 함께 발표했습니다.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI 에서) Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 의 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 논문과 함께 발표했습니다.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (Microsoft Research 에서) Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 의 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 논문과 함께 발표했습니다.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (Facebook 에서) Gedas Bertasius, Heng Wang, Lorenzo Torresani 의 [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) 논문과 함께 발표했습니다.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (the University of California at Berkeley 에서) Michael Janner, Qiyang Li, Sergey Levin 의 [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) 논문과 함께 발표했습니다.
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU 에서) Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 의 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 논문과 함께 발표했습니다.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (Microsoft 에서) Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 의 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 논문과 함께 발표했습니다.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill 에서) Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal 의 [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) 논문과 함께 발표했습니다.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (Intel 에서) Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding 의 [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) 논문과 함께 발표했습니다.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (Microsoft Research 에서 제공)은 Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.의 [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623)논문과 함께 발표했습니다.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (Google Research 에서) Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzle 의 [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) 논문과 함께 발표했습니다.
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research 에서 제공)은 Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.의 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi)논문과 함께 발표했습니다.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (Microsoft Research 에서) Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 의 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 논문과 함께 발표했습니다.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (Microsoft Research 에서) Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 의 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 논문과 함께 발표했습니다.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (Peking University 에서 제공)은 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.의 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221)논문과 함께 발표했습니다.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (Tsinghua University and Nankai University 에서) Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu 의 [Visual Attention Network](https://arxiv.org/abs/2202.09741) 논문과 함께 발표했습니다.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (Multimedia Computing Group, Nanjing University 에서) Zhan Tong, Yibing Song, Jue Wang, Limin Wang 의 [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) 논문과 함께 발표했습니다.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain 에서) Wonjae Kim, Bokyung Son, Ildoo Kim 의 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 논문과 함께 발표했습니다.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (University of WisconsinMadison 에서 제공)은 Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.의 [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784)논문과 함께 발표했습니다.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP 에서) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 의 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 논문과 함께 발표했습니다.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI 에서 제공)은 Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.의 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527)논문과 함께 발표했습니다.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI 에서) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 의 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 논문과 함께 발표했습니다.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (HUST-VL 에서 제공)은 Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.의 [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272)논문과 함께 발표했습니다.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI 에서) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 의 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) 논문과 함께 발표했습니다.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise 에서 제공)은 Jaehyeon Kim, Jungil Kong, Juhee Son.의 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103)논문과 함께 발표했습니다.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (Facebook AI 에서) Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 의 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 논문과 함께 발표했습니다.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI 에서) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 의 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 논문과 함께 발표했습니다.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI 에서) Qiantong Xu, Alexei Baevski, Michael Auli 의 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 논문과 함께 발표했습니다.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (Microsoft Research 에서) Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei 의 [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) 논문과 함께 발표했습니다.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI 에서) Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever 의 [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) 논문과 함께 발표했습니다.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (Microsoft Research 에서) Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling 의 [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) 논문과 함께 발표했습니다.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI 에서 제공)은 Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.의 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255)논문과 함께 발표했습니다.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (Facebook AI 에서 제공) Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li 의 [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) 논문과 함께 발표했습니다.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (Facebook 에서) Guillaume Lample and Alexis Conneau 의 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 논문과 함께 발표했습니다.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (Facebook AI 에서) Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 의 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 논문과 함께 발표했습니다.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI 에서) Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau 의 [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) 논문과 함께 발표했습니다.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (Meta AI 에서) Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa 의 [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) 논문과 함께 발표했습니다.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU 에서) Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 의 [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 논문과 함께 발표했습니다.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI 에서) Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 의 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 논문과 함께 발표했습니다.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (Facebook AI 에서) Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 의 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 논문과 함께 발표했습니다.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (Huazhong University of Science & Technology 에서) Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 의 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 논문과 함께 발표했습니다.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (the University of Wisconsin - Madison 에서) Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 의 [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) 논문과 함께 발표했습니다.
1. 새로운 모델을 올리고 싶나요? 우리가 **상세한 가이드와 템플릿** 으로 새로운 모델을 올리도록 도와드릴게요. 가이드와 템플릿은 이 저장소의 [`templates`](./templates) 폴더에서 확인하실 수 있습니다. [컨트리뷰션 가이드라인](./CONTRIBUTING.md)을 꼭 확인해주시고, PR을 올리기 전에 메인테이너에게 연락하거나 이슈를 오픈해 피드백을 받으시길 바랍니다.
각 모델이 Flax, PyTorch, TensorFlow으로 구현되었는지 또는 🤗 Tokenizers 라이브러리가 지원하는 토크나이저를 사용하는지 확인하려면, [이 표](https://huggingface.co/transformers/index.html#supported-frameworks)를 확인하세요. 각 모델이 Flax, PyTorch, TensorFlow으로 구현되었는지 또는 🤗 Tokenizers 라이브러리가 지원하는 토크나이저를 사용하는지 확인하려면, [이 표](https://huggingface.co/docs/transformers/index#supported-frameworks)를 확인하세요.
이 구현은 여러 데이터로 검증되었고 (예시 스크립트를 참고하세요) 오리지널 구현의 성능과 같아야 합니다. [도큐먼트](https://huggingface.co/transformers/examples.html)의 Examples 섹션에서 성능에 대한 자세한 설명을 확인할 수 있습니다. 이 구현은 여러 데이터로 검증되었고 (예시 스크립트를 참고하세요) 오리지널 구현의 성능과 같아야 합니다. [도큐먼트](https://huggingface.co/docs/transformers/examples)의 Examples 섹션에서 성능에 대한 자세한 설명을 확인할 수 있습니다.
## 더 알아보기 ## 더 알아보기
| 섹션 | 설명 | | 섹션 | 설명 |
|-|-| |-|-|
| [도큐먼트](https://huggingface.co/transformers/) | 전체 API 도큐먼트와 튜토리얼 | | [도큐먼트](https://huggingface.co/transformers/) | 전체 API 도큐먼트와 튜토리얼 |
| [과제 요약](https://huggingface.co/transformers/task_summary.html) | 🤗 Transformers가 지원하는 과제들 | | [과제 요약](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers가 지원하는 과제들 |
| [전처리 튜토리얼](https://huggingface.co/transformers/preprocessing.html) | `Tokenizer` 클래스를 이용해 모델을 위한 데이터 준비하기 | | [전처리 튜토리얼](https://huggingface.co/docs/transformers/preprocessing) | `Tokenizer` 클래스를 이용해 모델을 위한 데이터 준비하기 |
| [학습과 fine-tuning](https://huggingface.co/transformers/training.html) | 🤗 Transformers가 제공하는 모델 PyTorch/TensorFlow 학습 과정과 `Trainer` API에서 사용하기 | | [학습과 fine-tuning](https://huggingface.co/docs/transformers/training) | 🤗 Transformers가 제공하는 모델 PyTorch/TensorFlow 학습 과정과 `Trainer` API에서 사용하기 |
| [퀵 투어: Fine-tuning/사용 스크립트](https://github.com/huggingface/transformers/tree/master/examples) | 다양한 과제에서 모델 fine-tuning하는 예시 스크립트 | | [퀵 투어: Fine-tuning/사용 스크립트](https://github.com/huggingface/transformers/tree/main/examples) | 다양한 과제에서 모델 fine-tuning하는 예시 스크립트 |
| [모델 공유 및 업로드](https://huggingface.co/transformers/model_sharing.html) | 커뮤니티에 fine-tune된 모델을 업로드 및 공유하기 | | [모델 공유 및 업로드](https://huggingface.co/docs/transformers/model_sharing) | 커뮤니티에 fine-tune된 모델을 업로드 및 공유하기 |
| [마이그레이션](https://huggingface.co/transformers/migration.html) | `pytorch-transformers`나 `pytorch-pretrained-bert`에서 🤗 Transformers로 이동하기| | [마이그레이션](https://huggingface.co/docs/transformers/migration) | `pytorch-transformers`나 `pytorch-pretrained-bert`에서 🤗 Transformers로 이동하기|
## 인용 ## 인용

602
README_pt-br.md Normal file
View File

@ -0,0 +1,602 @@
<!---
Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
</picture>
<br/>
<br/>
</p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<b>Рortuguês</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
</p>
</h4>
<h3 align="center">
<p>Aprendizado de máquina de última geração para JAX, PyTorch e TensorFlow</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
A biblioteca 🤗 Transformers oferece milhares de modelos pré-treinados para executar tarefas em diferentes modalidades, como texto, visão e áudio.
Esses modelos podem ser aplicados a:
* 📝 Texto, para tarefas como classificação de texto, extração de informações, resposta a perguntas, sumarização, tradução, geração de texto, em mais de 100 idiomas.
* 🖼️ Imagens, para tarefas como classificação de imagens, detecção de objetos e segmentação.
* 🗣️ Áudio, para tarefas como reconhecimento de fala e classificação de áudio.
Os modelos Transformer também podem executar tarefas em diversas modalidades combinadas, como responder a perguntas em tabelas, reconhecimento óptico de caracteres, extração de informações de documentos digitalizados, classificação de vídeo e resposta a perguntas visuais.
A biblioteca 🤗 Transformers oferece APIs para baixar e usar rapidamente esses modelos pré-treinados em um texto específico, ajustá-los em seus próprios conjuntos de dados e, em seguida, compartilhá-los com a comunidade em nosso [model hub](https://huggingface.co/models). Ao mesmo tempo, cada módulo Python que define uma arquitetura é totalmente independente e pode ser modificado para permitir experimentos de pesquisa rápidos.
A biblioteca 🤗 Transformers é respaldada pelas três bibliotecas de aprendizado profundo mais populares — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) e [TensorFlow](https://www.tensorflow.org/) — com uma integração perfeita entre elas. É simples treinar seus modelos com uma delas antes de carregá-los para inferência com a outra
## Demonstração Online
Você pode testar a maioria de nossos modelos diretamente em suas páginas a partir do [model hub](https://huggingface.co/models). Também oferecemos [hospedagem de modelos privados, versionamento e uma API de inferência](https://huggingface.co/pricing)
para modelos públicos e privados.
Aqui estão alguns exemplos:
Em Processamento de Linguagem Natural:
- [Completar palavra mascarada com BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Reconhecimento de Entidades Nomeadas com Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Geração de texto com GPT-2](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C)
- [Inferência de Linguagem Natural com RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Sumarização com BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Resposta a perguntas com DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Tradução com T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
Em Visão Computacional:
- [Classificação de Imagens com ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Detecção de Objetos com DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Segmentação Semântica com SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Segmentação Panóptica com MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
- [Estimativa de Profundidade com DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
- [Classificação de Vídeo com VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Segmentação Universal com OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
Em Áudio:
- [Reconhecimento Automático de Fala com Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Detecção de Palavras-Chave com Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Classificação de Áudio com Transformer de Espectrograma de Áudio](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
Em Tarefas Multimodais:
- [Respostas de Perguntas em Tabelas com TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Respostas de Perguntas Visuais com ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Classificação de Imagens sem Anotação com CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
- [Respostas de Perguntas em Documentos com LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Classificação de Vídeo sem Anotação com X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
## 100 Projetos Usando Transformers
Transformers é mais do que um conjunto de ferramentas para usar modelos pré-treinados: é uma comunidade de projetos construídos ao seu redor e o Hugging Face Hub. Queremos que o Transformers permita que desenvolvedores, pesquisadores, estudantes, professores, engenheiros e qualquer outra pessoa construa seus projetos dos sonhos.
Para celebrar as 100.000 estrelas do Transformers, decidimos destacar a comunidade e criamos a página [awesome-transformers](./awesome-transformers.md), que lista 100 projetos incríveis construídos nas proximidades dos Transformers.
Se você possui ou utiliza um projeto que acredita que deveria fazer parte da lista, abra um PR para adicioná-lo!
## Se você está procurando suporte personalizado da equipe Hugging Face
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Tour Rápido
Para usar imediatamente um modelo em uma entrada específica (texto, imagem, áudio, ...), oferecemos a API `pipeline`. Os pipelines agrupam um modelo pré-treinado com o pré-processamento que foi usado durante o treinamento desse modelo. Aqui está como usar rapidamente um pipeline para classificar textos como positivos ou negativos:
```python
from transformers import pipeline
# Carregue o pipeline de classificação de texto
>>> classifier = pipeline("sentiment-analysis")
# Classifique o texto como positivo ou negativo
>>> classifier("Estamos muito felizes em apresentar o pipeline no repositório dos transformers.")
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
A segunda linha de código baixa e armazena em cache o modelo pré-treinado usado pelo pipeline, enquanto a terceira linha o avalia no texto fornecido. Neste exemplo, a resposta é "positiva" com uma confiança de 99,97%.
Muitas tarefas têm um `pipeline` pré-treinado pronto para uso, não apenas em PNL, mas também em visão computacional e processamento de áudio. Por exemplo, podemos facilmente extrair objetos detectados em uma imagem:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Download an image with cute cats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Allocate a pipeline for object detection
>>> object_detector = pipeline('object-detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
Aqui obtemos uma lista de objetos detectados na imagem, com uma caixa envolvendo o objeto e uma pontuação de confiança. Aqui está a imagem original à esquerda, com as previsões exibidas à direita:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
Você pode aprender mais sobre as tarefas suportadas pela API `pipeline` em [este tutorial](https://huggingface.co/docs/transformers/task_summary).
Além do `pipeline`, para baixar e usar qualquer um dos modelos pré-treinados em sua tarefa específica, tudo o que é necessário são três linhas de código. Aqui está a versão em PyTorch:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
E aqui está o código equivalente para TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
O tokenizador é responsável por todo o pré-processamento que o modelo pré-treinado espera, e pode ser chamado diretamente em uma única string (como nos exemplos acima) ou em uma lista. Ele produzirá um dicionário que você pode usar no código subsequente ou simplesmente passar diretamente para o seu modelo usando o operador de descompactação de argumentos **.
O modelo em si é um [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) ou um [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)(dependendo do seu back-end) que você pode usar como de costume. [Este tutorial](https://huggingface.co/docs/transformers/training) explica como integrar esse modelo em um ciclo de treinamento clássico do PyTorch ou TensorFlow, ou como usar nossa API `Trainer` para ajuste fino rápido em um novo conjunto de dados.
## Por que devo usar transformers?
1. Modelos state-of-the-art fáceis de usar:
- Alto desempenho em compreensão e geração de linguagem natural, visão computacional e tarefas de áudio.
- Barreira de entrada baixa para educadores e profissionais.
- Poucas abstrações visíveis para o usuário, com apenas três classes para aprender.
- Uma API unificada para usar todos os nossos modelos pré-treinados.
1. Menores custos de computação, menor pegada de carbono:
- Pesquisadores podem compartilhar modelos treinados em vez de treinar sempre do zero.
- Profissionais podem reduzir o tempo de computação e os custos de produção.
- Dezenas de arquiteturas com mais de 60.000 modelos pré-treinados em todas as modalidades.
1. Escolha o framework certo para cada parte da vida de um modelo:
- Treine modelos state-of-the-art em 3 linhas de código.
- Mova um único modelo entre frameworks TF2.0/PyTorch/JAX à vontade.
- Escolha o framework certo de forma contínua para treinamento, avaliação e produção.
1. Personalize facilmente um modelo ou um exemplo para atender às suas necessidades:
- Fornecemos exemplos para cada arquitetura para reproduzir os resultados publicados pelos autores originais.
- Os detalhes internos do modelo são expostos de maneira consistente.
- Os arquivos do modelo podem ser usados de forma independente da biblioteca para experimentos rápidos.
## Por que não devo usar transformers?
- Esta biblioteca não é uma caixa de ferramentas modular para construir redes neurais. O código nos arquivos do modelo não é refatorado com abstrações adicionais de propósito, para que os pesquisadores possam iterar rapidamente em cada um dos modelos sem se aprofundar em abstrações/arquivos adicionais.
- A API de treinamento não é projetada para funcionar com qualquer modelo, mas é otimizada para funcionar com os modelos fornecidos pela biblioteca. Para loops de aprendizado de máquina genéricos, você deve usar outra biblioteca (possivelmente, [Accelerate](https://huggingface.co/docs/accelerate)).
- Embora nos esforcemos para apresentar o maior número possível de casos de uso, os scripts em nossa [pasta de exemplos](https://github.com/huggingface/transformers/tree/main/examples) são apenas isso: exemplos. É esperado que eles não funcionem prontos para uso em seu problema específico e que seja necessário modificar algumas linhas de código para adaptá-los às suas necessidades.
### Com pip
Este repositório é testado no Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ e TensorFlow 2.6+.
Você deve instalar o 🤗 Transformers em um [ambiente virtual](https://docs.python.org/3/library/venv.html). Se você não está familiarizado com ambientes virtuais em Python, confira o [guia do usuário](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Primeiro, crie um ambiente virtual com a versão do Python que você vai usar e ative-o.
Em seguida, você precisará instalar pelo menos um dos back-ends Flax, PyTorch ou TensorFlow.
Consulte a [página de instalação do TensorFlow](https://www.tensorflow.org/install/), a [página de instalação do PyTorch](https://pytorch.org/get-started/locally/#start-locally) e/ou [Flax](https://github.com/google/flax#quick-install) e [Jax](https://github.com/google/jax#installation) páginas de instalação para obter o comando de instalação específico para a sua plataforma.
Quando um desses back-ends estiver instalado, o 🤗 Transformers pode ser instalado usando pip da seguinte forma:
```bash
pip install transformers
```
Se você deseja experimentar com os exemplos ou precisa da versão mais recente do código e não pode esperar por um novo lançamento, você deve instalar a [biblioteca a partir do código-fonte](https://huggingface.co/docs/transformers/installation#installing-from-source).
### Com conda
O 🤗 Transformers pode ser instalado com conda da seguinte forma:
```bash
conda install conda-forge::transformers
```
> **_NOTA:_** Instalar `transformers` pelo canal `huggingface` está obsoleto.
Siga as páginas de instalação do Flax, PyTorch ou TensorFlow para ver como instalá-los com conda.
Siga as páginas de instalação do Flax, PyTorch ou TensorFlow para ver como instalá-los com o conda.
> **_NOTA:_** No Windows, você pode ser solicitado a ativar o Modo de Desenvolvedor para aproveitar o cache. Se isso não for uma opção para você, por favor nos avise [neste problema](https://github.com/huggingface/huggingface_hub/issues/1062).
## Arquiteturas de Modelos
**[Todos os pontos de verificação de modelo](https://huggingface.co/models)** fornecidos pelo 🤗 Transformers são integrados de forma transparente do [model hub](https://huggingface.co/models) do huggingface.co, onde são carregados diretamente por [usuários](https://huggingface.co/users) e [organizações](https://huggingface.co/organizations).
Número atual de pontos de verificação: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers atualmente fornece as seguintes arquiteturas (veja [aqui](https://huggingface.co/docs/transformers/model_summary) para um resumo de alto nível de cada uma delas):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (from Cohere) released with the paper [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (from ESPnet) released with the paper [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (from Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) released with the paper [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (from Hugging Face) released with the paper [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (from Albert Gu and Tri Dao) released with the paper [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the paper [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (from Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) released with the paper [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (from the Qwen team, Alibaba Group) released with the paper [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (from the Qwen team, Alibaba Group) released with the paper [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (from Google) released with the paper [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (from Beijing Academy of Artificial Intelligence (BAAI) released with the paper [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (from Google AI) released with the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (from Microsoft Research) released with the paper [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (from University of WisconsinMadison) released with the paper [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) rreleased with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Quer contribuir com um novo modelo? Adicionamos um **guia detalhado e modelos de exemplo** para orientar você no processo de adição de um novo modelo. Você pode encontrá-los na pasta [`templates`](./templates) do repositório. Certifique-se de verificar as [diretrizes de contribuição](./CONTRIBUTING.md) e entrar em contato com os mantenedores ou abrir uma issue para coletar feedback antes de iniciar sua PR.
Para verificar se cada modelo tem uma implementação em Flax, PyTorch ou TensorFlow, ou possui um tokenizador associado com a biblioteca 🤗 Tokenizers, consulte [esta tabela](https://huggingface.co/docs/transformers/index#supported-frameworks).
Essas implementações foram testadas em vários conjuntos de dados (veja os scripts de exemplo) e devem corresponder ao desempenho das implementações originais. Você pode encontrar mais detalhes sobre o desempenho na seção de Exemplos da [documentação](https://github.com/huggingface/transformers/tree/main/examples).
## Saiba mais
| Seção | Descrição |
|-|-|
| [Documentação](https://huggingface.co/docs/transformers/) | Documentação completa da API e tutoriais |
| [Resumo de Tarefas](https://huggingface.co/docs/transformers/task_summary) | Tarefas suportadas pelo 🤗 Transformers |
| [Tutorial de Pré-processamento](https://huggingface.co/docs/transformers/preprocessing) | Usando a classe `Tokenizer` para preparar dados para os modelos |
| [Treinamento e Ajuste Fino](https://huggingface.co/docs/transformers/training) | Usando os modelos fornecidos pelo 🤗 Transformers em um loop de treinamento PyTorch/TensorFlow e a API `Trainer` |
| [Tour Rápido: Scripts de Ajuste Fino/Utilização](https://github.com/huggingface/transformers/tree/main/examples) | Scripts de exemplo para ajuste fino de modelos em uma ampla gama de tarefas |
| [Compartilhamento e Envio de Modelos](https://huggingface.co/docs/transformers/model_sharing) | Envie e compartilhe seus modelos ajustados com a comunidade |
## Citação
Agora temos um [artigo](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) que você pode citar para a biblioteca 🤗 Transformers:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = out,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

592
README_ru.md Normal file
View File

@ -0,0 +1,592 @@
<!---
Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
</picture>
<br/>
<br/>
</p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<b>Русский</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
<p>
</h4>
<h3 align="center">
<p>Современное машинное обучение для JAX, PyTorch и TensorFlow</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers предоставляет тысячи предварительно обученных моделей для выполнения различных задач, таких как текст, зрение и аудио.
Эти модели могут быть применены к:
* 📝 Тексту для таких задач, как классификация текстов, извлечение информации, ответы на вопросы, обобщение, перевод, генерация текстов на более чем 100 языках.
* 🖼️ Изображениям для задач классификации изображений, обнаружения объектов и сегментации.
* 🗣️ Аудио для задач распознавания речи и классификации аудио.
Модели transformers также могут выполнять несколько задач, такие как ответы на табличные вопросы, распознавание оптических символов, извлечение информации из отсканированных документов, классификация видео и ответы на визуальные вопросы.
🤗 Transformers предоставляет API для быстрой загрузки и использования предварительно обученных моделей, их тонкой настройки на собственных датасетах и последующего взаимодействия ими с сообществом на нашем [сайте](https://huggingface.co/models). В то же время каждый python модуль, определяющий архитектуру, полностью автономен и может быть модифицирован для проведения быстрых исследовательских экспериментов.
🤗 Transformers опирается на три самые популярные библиотеки глубокого обучения - [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) и [TensorFlow](https://www.tensorflow.org/) - и легко интегрируется между ними. Это позволяет легко обучать модели с помощью одной из них, а затем загружать их для выводов с помощью другой.
## Онлайн демонстрация
Большинство наших моделей можно протестировать непосредственно на их страницах с [сайта](https://huggingface.co/models). Мы также предлагаем [привтаный хостинг моделей, контроль версий и API для выводов](https://huggingface.co/pricing) для публичных и частных моделей.
Вот несколько примеров:
В области NLP ( Обработка текстов на естественном языке ):
- [Маскированное заполнение слов с помощью BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Распознавание сущностей с помощью Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Генерация текста с помощью GPT-2](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [Выводы на естественном языке с помощью RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Обобщение с помощью BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Ответы на вопросы с помощью DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Перевод с помощью T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
В области компьютерного зрения:
- [Классификация изображений с помощью ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Обнаружение объектов с помощью DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Семантическая сегментация с помощью SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Сегментация паноптикума с помощью MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
- [Оценка глубины с помощью DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
- [Классификация видео с помощью VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Универсальная сегментация с помощью OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
В области звука:
- [Автоматическое распознавание речи с помощью Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Поиск ключевых слов с помощью Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Классификация аудиоданных с помощью траснформера аудиоспектрограмм](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
В мультимодальных задачах:
- [Ответы на вопросы по таблице с помощью TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Визуальные ответы на вопросы с помощью ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Zero-shot классификация изображений с помощью CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
- [Ответы на вопросы по документам с помощью LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Zero-shot классификация видео с помощью X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
## 100 проектов, использующих Transformers
Transformers - это не просто набор инструментов для использования предварительно обученных моделей: это сообщество проектов, созданное на его основе, и
Hugging Face Hub. Мы хотим, чтобы Transformers позволил разработчикам, исследователям, студентам, профессорам, инженерам и всем желающим
создавать проекты своей мечты.
Чтобы отпраздновать 100 тысяч звезд Transformers, мы решили сделать акцент на сообществе, и создали страницу [awesome-transformers](./awesome-transformers.md), на которой перечислены 100
невероятных проектов, созданных с помощью transformers.
Если вы являетесь владельцем или пользователем проекта, который, по вашему мнению, должен быть включен в этот список, пожалуйста, откройте PR для его добавления!
## Если вы хотите получить индивидуальную поддержку от команды Hugging Face
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Быстрый гайд
Для использования модели на заданном входе (текст, изображение, звук, ...) мы предоставляем API `pipeline`. Конвейеры объединяют предварительно обученную модель с препроцессингом, который использовался при ее обучении. Вот как можно быстро использовать конвейер для классификации положительных и отрицательных текстов:
```python
>>> from transformers import pipeline
# Выделение конвейера для анализа настроений
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('Мы очень рады представить конвейер в transformers.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
Вторая строка кода загружает и кэширует предварительно обученную модель, используемую конвейером, а третья оценивает ее на заданном тексте. Здесь ответ "POSITIVE" с уверенностью 99,97%.
Во многих задачах, как в НЛП, так и в компьютерном зрении и речи, уже есть готовый `pipeline`. Например, мы можем легко извлечь обнаруженные объекты на изображении:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Скачиваем изображение с милыми котиками
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Выделение конвейера для обнаружения объектов
>>> object_detector = pipeline('object-detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
Здесь мы получаем список объектов, обнаруженных на изображении, с рамкой вокруг объекта и оценкой достоверности. Слева - исходное изображение, справа прогнозы:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
Подробнее о задачах, поддерживаемых API `pipeline`, можно узнать в [этом учебном пособии](https://huggingface.co/docs/transformers/task_sum)
В дополнение к `pipeline`, для загрузки и использования любой из предварительно обученных моделей в заданной задаче достаточно трех строк кода. Вот версия для PyTorch:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Привет мир!", return_tensors="pt")
>>> outputs = model(**inputs)
```
А вот эквивалентный код для TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Привет мир!", return_tensors="tf")
>>> outputs = model(**inputs)
```
Токенизатор отвечает за всю предварительную обработку, которую ожидает предварительно обученная модель, и может быть вызван непосредственно с помощью одной строки (как в приведенных выше примерах) или на списке. В результате будет получен словарь, который можно использовать в последующем коде или просто напрямую передать в модель с помощью оператора распаковки аргументов **.
Сама модель представляет собой обычный [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) или [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (в зависимости от используемого бэкенда), который можно использовать как обычно. [В этом руководстве](https://huggingface.co/docs/transformers/training) рассказывается, как интегрировать такую модель в классический цикл обучения PyTorch или TensorFlow, или как использовать наш API `Trainer` для быстрой тонкой настройки на новом датасете.
## Почему необходимо использовать transformers?
1. Простые в использовании современные модели:
- Высокая производительность в задачах понимания и генерации естественного языка, компьютерного зрения и аудио.
- Низкий входной барьер для преподавателей и практиков.
- Небольшое количество абстракций для пользователя и всего три класса для изучения.
- Единый API для использования всех наших предварительно обученных моделей.
1. Более низкие вычислительные затраты, меньший "углеродный след":
- Исследователи могут обмениваться обученными моделями вместо того, чтобы постоянно их переобучать.
- Практики могут сократить время вычислений и производственные затраты.
- Десятки архитектур с более чем 60 000 предварительно обученных моделей для всех модальностей.
1. Выбор подходящего фреймворка для каждого этапа жизни модели:
- Обучение самых современных моделей за 3 строки кода.
- Перемещайте одну модель между фреймворками TF2.0/PyTorch/JAX по своему усмотрению.
- Беспрепятственный выбор подходящего фреймворка для обучения, оценки и производства.
1. Легко настроить модель или пример под свои нужды:
- Мы предоставляем примеры для каждой архитектуры, чтобы воспроизвести результаты, опубликованные их авторами.
- Внутренние компоненты модели раскрываются максимально последовательно.
- Файлы моделей можно использовать независимо от библиотеки для проведения быстрых экспериментов.
## Почему я не должен использовать transformers?
- Данная библиотека не является модульным набором строительных блоков для нейронных сетей. Код в файлах моделей специально не рефакторится дополнительными абстракциями, чтобы исследователи могли быстро итеративно работать с каждой из моделей, не погружаясь в дополнительные абстракции/файлы.
- API обучения не предназначен для работы с любой моделью, а оптимизирован для работы с моделями, предоставляемыми библиотекой. Для работы с общими циклами машинного обучения следует использовать другую библиотеку (возможно, [Accelerate](https://huggingface.co/docs/accelerate)).
- Несмотря на то, что мы стремимся представить как можно больше примеров использования, скрипты в нашей папке [примеров](https://github.com/huggingface/transformers/tree/main/examples) являются именно примерами. Предполагается, что они не будут работать "из коробки" для решения вашей конкретной задачи, и вам придется изменить несколько строк кода, чтобы адаптировать их под свои нужды.
## Установка
### С помощью pip
Данный репозиторий протестирован на Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ и TensorFlow 2.6+.
Устанавливать 🤗 Transformers следует в [виртуальной среде](https://docs.python.org/3/library/venv.html). Если вы не знакомы с виртуальными средами Python, ознакомьтесь с [руководством пользователя](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Сначала создайте виртуальную среду с той версией Python, которую вы собираетесь использовать, и активируйте ее.
Затем необходимо установить хотя бы один бекенд из Flax, PyTorch или TensorFlow.
Пожалуйста, обратитесь к страницам [TensorFlow установочная страница](https://www.tensorflow.org/install/), [PyTorch установочная страница](https://pytorch.org/get-started/locally/#start-locally) и/или [Flax](https://github.com/google/flax#quick-install) и [Jax](https://github.com/google/jax#installation), где описаны команды установки для вашей платформы.
После установки одного из этих бэкендов 🤗 Transformers может быть установлен с помощью pip следующим образом:
```bash
pip install transformers
```
Если вы хотите поиграть с примерами или вам нужен самый современный код и вы не можете ждать нового релиза, вы должны [установить библиотеку из исходного кода](https://huggingface.co/docs/transformers/installation#installing-from-source).
### С помощью conda
Установить Transformers с помощью conda можно следующим образом:
```bash
conda install conda-forge::transformers
```
> **_ЗАМЕТКА:_** Установка `transformers` через канал `huggingface` устарела.
О том, как установить Flax, PyTorch или TensorFlow с помощью conda, читайте на страницах, посвященных их установке.
> **_ЗАМЕТКА:_** В операционной системе Windows вам может быть предложено активировать режим разработчика, чтобы воспользоваться преимуществами кэширования. Если для вас это невозможно, сообщите нам об этом [здесь](https://github.com/huggingface/huggingface_hub/issues/1062).
## Модельные архитектуры
**[Все контрольные точки моделей](https://huggingface.co/models)**, предоставляемые 🤗 Transformers, беспрепятственно интегрируются с huggingface.co [model hub](https://huggingface.co/models), куда они загружаются непосредственно [пользователями](https://huggingface.co/users) и [организациями](https://huggingface.co/organizations).
Текущее количество контрольных точек: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 В настоящее время Transformers предоставляет следующие архитектуры (подробное описание каждой из них см. [здесь](https://huggingface.co/docs/transformers/model_summary)):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (from Cohere) released with the paper [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (from ESPnet) released with the paper [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (from Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) released with the paper [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (from Hugging Face) released with the paper [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (from Albert Gu and Tri Dao) released with the paper [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft Research) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (from Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) released with the paper [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (from the Qwen team, Alibaba Group) released with the paper [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (from the Qwen team, Alibaba Group) released with the paper [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (from Google) released with the paper [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (from Beijing Academy of Artificial Intelligence (BAAI) released with the paper [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (from Google AI) released with the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (from Microsoft Research) released with the paper [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (from University of WisconsinMadison) released with the paper [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) rreleased with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Хотите внести новую модель? Мы добавили **подробное руководство и шаблоны**, чтобы помочь вам в процессе добавления новой модели. Вы можете найти их в папке [`templates`](./templates) репозитория. Обязательно ознакомьтесь с [руководством по внесению изменений](./CONTRIBUTING.md) и свяжитесь с ответственным разработчиком или откройте задачу, чтобы собрать отзывы перед началом работы над вашим пулл-реквестом.
Чтобы проверить, есть ли у каждой модели реализация на Flax, PyTorch или TensorFlow, или связанный с ней токенизатор, поддерживаемый библиотекой 🤗 Tokenizers, обратитесь к [этой таблице](https://huggingface.co/docs/transformers/index#supported-frameworks).
Эти реализации были протестированы на нескольких наборах данных (см. примеры скриптов) и должны соответствовать производительности оригинальных реализаций. Более подробную информацию о производительности можно найти в разделе "Примеры" [документации](https://github.com/huggingface/transformers/tree/main/examples).
## Изучи больше
| Секция | Описание |
|-|-|
| [Документация](https://huggingface.co/docs/transformers/) | Полная документация по API и гайды |
| [Краткие описания задач](https://huggingface.co/docs/transformers/task_summary) | Задачи поддерживаются 🤗 Transformers |
| [Пособие по предварительной обработке](https://huggingface.co/docs/transformers/preprocessing) | Использование класса `Tokenizer` для подготовки данных для моделей |
| [Обучение и доработка](https://huggingface.co/docs/transformers/training) | Использование моделей, предоставляемых 🤗 Transformers, в цикле обучения PyTorch/TensorFlow и API `Trainer`. |
| [Быстрый тур: Тонкая настройка/скрипты использования](https://github.com/huggingface/transformers/tree/main/examples) | Примеры скриптов для тонкой настройки моделей на широком спектре задач |
| [Совместное использование и загрузка моделей](https://huggingface.co/docs/transformers/model_sharing) | Загружайте и делитесь с сообществом своими доработанными моделями |
## Цитирование
Теперь у нас есть [статья](https://www.aclweb.org/anthology/2020.emnlp-demos.6/), которую можно цитировать для библиотеки 🤗 Transformers:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

592
README_te.md Normal file
View File

@ -0,0 +1,592 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
</picture>
<br/>
<br/>
</p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<b>తెలుగు</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
</p>
</h4>
<h3 align="center">
<p>JAX, PyTorch మరియు TensorFlow కోసం అత్యాధునిక యంత్ర అభ్యాసం</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 ట్రాన్స్‌ఫార్మర్లు టెక్స్ట్, విజన్ మరియు ఆడియో వంటి విభిన్న పద్ధతులపై టాస్క్‌లను నిర్వహించడానికి వేలాది ముందుగా శిక్షణ పొందిన మోడల్‌లను అందిస్తాయి.
ఈ నమూనాలు వర్తించవచ్చు:
* 📝 టెక్స్ట్, 100కి పైగా భాషల్లో టెక్స్ట్ క్లాసిఫికేషన్, ఇన్ఫర్మేషన్ ఎక్స్‌ట్రాక్షన్, ప్రశ్నలకు సమాధానాలు, సారాంశం, అనువాదం, టెక్స్ట్ జనరేషన్ వంటి పనుల కోసం.
* 🖼️ ఇమేజ్‌లు, ఇమేజ్ వర్గీకరణ, ఆబ్జెక్ట్ డిటెక్షన్ మరియు సెగ్మెంటేషన్ వంటి పనుల కోసం.
* 🗣️ ఆడియో, స్పీచ్ రికగ్నిషన్ మరియు ఆడియో వర్గీకరణ వంటి పనుల కోసం.
ట్రాన్స్‌ఫార్మర్ మోడల్‌లు టేబుల్ క్వశ్చన్ ఆన్సర్ చేయడం, ఆప్టికల్ క్యారెక్టర్ రికగ్నిషన్, స్కాన్ చేసిన డాక్యుమెంట్‌ల నుండి ఇన్ఫర్మేషన్ ఎక్స్‌ట్రాక్షన్, వీడియో క్లాసిఫికేషన్ మరియు విజువల్ క్వశ్చన్ ఆన్సర్ చేయడం వంటి **అనేక పద్ధతులతో కలిపి** పనులను కూడా చేయగలవు.
🤗 ట్రాన్స్‌ఫార్మర్లు అందించిన టెక్స్ట్‌లో ప్రీట్రైన్డ్ మోడల్‌లను త్వరగా డౌన్‌లోడ్ చేయడానికి మరియు ఉపయోగించడానికి, వాటిని మీ స్వంత డేటాసెట్‌లలో ఫైన్-ట్యూన్ చేయడానికి మరియు వాటిని మా [మోడల్ హబ్](https://huggingface.co/models)లో సంఘంతో భాగస్వామ్యం చేయడానికి API లను అందిస్తుంది. అదే సమయంలో, ఆర్కిటెక్చర్‌ని నిర్వచించే ప్రతి పైథాన్ మాడ్యూల్ పూర్తిగా స్వతంత్రంగా ఉంటుంది మరియు త్వరిత పరిశోధన ప్రయోగాలను ప్రారంభించడానికి సవరించవచ్చు.
🤗 ట్రాన్స్‌ఫార్మర్‌లకు మూడు అత్యంత ప్రజాదరణ పొందిన డీప్ లెర్నింగ్ లైబ్రరీలు ఉన్నాయి — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) మరియు [TensorFlow](https://www.tensorflow.org/) — వాటి మధ్య అతుకులు లేని ఏకీకరణతో. మీ మోడల్‌లను ఒకదానితో మరొకదానితో అనుమితి కోసం లోడ్ చేసే ముందు వాటికి శిక్షణ ఇవ్వడం చాలా సులభం.
## ఆన్‌లైన్ డెమోలు
మీరు [మోడల్ హబ్](https://huggingface.co/models) నుండి మా మోడళ్లలో చాలా వరకు వాటి పేజీలలో నేరుగా పరీక్షించవచ్చు. మేము పబ్లిక్ మరియు ప్రైవేట్ మోడల్‌ల కోసం [ప్రైవేట్ మోడల్ హోస్టింగ్, సంస్కరణ & అనుమితి API](https://huggingface.co/pricing)ని కూడా అందిస్తాము.
ఇక్కడ కొన్ని ఉదాహరణలు ఉన్నాయి:
సహజ భాషా ప్రాసెసింగ్‌లో:
- [BERT తో మాస్క్‌డ్ వర్డ్ కంప్లీషన్](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Electra తో పేరు ఎంటిటీ గుర్తింపు](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [GPT-2 తో టెక్స్ట్ జనరేషన్](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [RoBERTa తో సహజ భాషా అనుమితి](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+Lost.+Nobody+lost+any+animal)
- [BART తో సారాంశం](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [DistilBERT తో ప్రశ్న సమాధానం](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [T5 తో అనువాదం](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
కంప్యూటర్ దృష్టిలో:
- [VIT తో చిత్ర వర్గీకరణ](https://huggingface.co/google/vit-base-patch16-224)
- [DETR తో ఆబ్జెక్ట్ డిటెక్షన్](https://huggingface.co/facebook/detr-resnet-50)
- [SegFormer తో సెమాంటిక్ సెగ్మెంటేషన్](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [MaskFormer తో పానోప్టిక్ సెగ్మెంటేషన్](https://huggingface.co/facebook/maskformer-swin-small-coco)
- [DPT తో లోతు అంచనా](https://huggingface.co/docs/transformers/model_doc/dpt)
- [VideoMAE తో వీడియో వర్గీకరణ](https://huggingface.co/docs/transformers/model_doc/videomae)
- [OneFormer తో యూనివర్సల్ సెగ్మెంటేషన్](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
ఆడియోలో:
- [Wav2Vec2 తో ఆటోమేటిక్ స్పీచ్ రికగ్నిషన్](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Wav2Vec2 తో కీవర్డ్ స్పాటింగ్](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [ఆడియో స్పెక్ట్రోగ్రామ్ ట్రాన్స్‌ఫార్మర్‌తో ఆడియో వర్గీకరణ](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
మల్టీమోడల్ టాస్క్‌లలో:
- [TAPAS తో టేబుల్ ప్రశ్న సమాధానాలు](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [ViLT తో దృశ్యమాన ప్రశ్నకు సమాధానం](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [CLIP తో జీరో-షాట్ ఇమేజ్ వర్గీకరణ](https://huggingface.co/openai/clip-vit-large-patch14)
- [LayoutLM తో డాక్యుమెంట్ ప్రశ్నకు సమాధానం](https://huggingface.co/impira/layoutlm-document-qa)
- [X-CLIP తో జీరో-షాట్ వీడియో వర్గీకరణ](https://huggingface.co/docs/transformers/model_doc/xclip)
## ట్రాన్స్‌ఫార్మర్‌లను ఉపయోగించి 100 ప్రాజెక్టులు
ట్రాన్స్‌ఫార్మర్లు ప్రీట్రైన్డ్ మోడల్‌లను ఉపయోగించడానికి టూల్‌కిట్ కంటే ఎక్కువ: ఇది దాని చుట్టూ నిర్మించిన ప్రాజెక్ట్‌ల సంఘం మరియు
హగ్గింగ్ ఫేస్ హబ్. డెవలపర్‌లు, పరిశోధకులు, విద్యార్థులు, ప్రొఫెసర్‌లు, ఇంజనీర్లు మరియు ఎవరినైనా అనుమతించేలా ట్రాన్స్‌ఫార్మర్‌లను మేము కోరుకుంటున్నాము
వారి కలల ప్రాజెక్టులను నిర్మించడానికి.
ట్రాన్స్‌ఫార్మర్‌ల 100,000 నక్షత్రాలను జరుపుకోవడానికి, మేము స్పాట్‌లైట్‌ని ఉంచాలని నిర్ణయించుకున్నాము
సంఘం, మరియు మేము 100 జాబితాలను కలిగి ఉన్న [awesome-transformers](./awesome-transformers.md) పేజీని సృష్టించాము.
ట్రాన్స్‌ఫార్మర్ల పరిసరాల్లో అద్భుతమైన ప్రాజెక్టులు నిర్మించబడ్డాయి.
జాబితాలో భాగమని మీరు విశ్వసించే ప్రాజెక్ట్‌ను మీరు కలిగి ఉంటే లేదా ఉపయోగిస్తుంటే, దయచేసి దానిని జోడించడానికి PRని తెరవండి!
## మీరు హగ్గింగ్ ఫేస్ టీమ్ నుండి అనుకూల మద్దతు కోసం చూస్తున్నట్లయితే
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## త్వరిత పర్యటన
ఇచ్చిన ఇన్‌పుట్ (టెక్స్ట్, ఇమేజ్, ఆడియో, ...)పై తక్షణమే మోడల్‌ను ఉపయోగించడానికి, మేము `pipeline` API ని అందిస్తాము. పైప్‌లైన్‌లు ఆ మోడల్ శిక్షణ సమయంలో ఉపయోగించిన ప్రీప్రాసెసింగ్‌తో కూడిన ప్రీట్రైన్డ్ మోడల్‌ను సమూహపరుస్తాయి. సానుకూల మరియు ప్రతికూల పాఠాలను వర్గీకరించడానికి పైప్‌లైన్‌ను త్వరగా ఎలా ఉపయోగించాలో ఇక్కడ ఉంది:
```python
>>> from transformers import pipeline
# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
రెండవ లైన్ కోడ్ డౌన్‌లోడ్ మరియు పైప్‌లైన్ ఉపయోగించే ప్రీట్రైన్డ్ మోడల్‌ను కాష్ చేస్తుంది, మూడవది ఇచ్చిన టెక్స్ట్‌పై మూల్యాంకనం చేస్తుంది. ఇక్కడ సమాధానం 99.97% విశ్వాసంతో "పాజిటివ్".
చాలా పనులు NLPలో కానీ కంప్యూటర్ విజన్ మరియు స్పీచ్‌లో కూడా ముందుగా శిక్షణ పొందిన `pipeline` సిద్ధంగా ఉన్నాయి. ఉదాహరణకు, మనం చిత్రంలో గుర్తించిన వస్తువులను సులభంగా సంగ్రహించవచ్చు:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Download an image with cute cats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Allocate a pipeline for object detection
>>> object_detector = pipeline('object-detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
ఇక్కడ మనం ఆబ్జెక్ట్ చుట్టూ ఉన్న బాక్స్ మరియు కాన్ఫిడెన్స్ స్కోర్‌తో చిత్రంలో గుర్తించబడిన వస్తువుల జాబితాను పొందుతాము. ఇక్కడ ఎడమవైపున ఉన్న అసలు చిత్రం, కుడివైపున అంచనాలు ప్రదర్శించబడతాయి:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
మీరు [ఈ ట్యుటోరియల్](https://huggingface.co/docs/transformers/task_summary)లో `pipeline` API ద్వారా సపోర్ట్ చేసే టాస్క్‌ల గురించి మరింత తెలుసుకోవచ్చు.
`pipeline`తో పాటు, మీరు ఇచ్చిన టాస్క్‌లో ఏదైనా ప్రీట్రైన్డ్ మోడల్‌లను డౌన్‌లోడ్ చేయడానికి మరియు ఉపయోగించడానికి, దీనికి మూడు లైన్ల కోడ్ సరిపోతుంది. ఇక్కడ PyTorch వెర్షన్ ఉంది:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
మరియు TensorFlow కి సమానమైన కోడ్ ఇక్కడ ఉంది:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
ప్రిట్రైన్డ్ మోడల్ ఆశించే అన్ని ప్రీప్రాసెసింగ్‌లకు టోకెనైజర్ బాధ్యత వహిస్తుంది మరియు నేరుగా ఒకే స్ట్రింగ్ (పై ఉదాహరణలలో వలె) లేదా జాబితాపై కాల్ చేయవచ్చు. ఇది మీరు డౌన్‌స్ట్రీమ్ కోడ్‌లో ఉపయోగించగల నిఘంటువుని అవుట్‌పుట్ చేస్తుంది లేదా ** ఆర్గ్యుమెంట్ అన్‌ప్యాకింగ్ ఆపరేటర్‌ని ఉపయోగించి నేరుగా మీ మోడల్‌కి పంపుతుంది.
మోడల్ కూడా సాధారణ [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) లేదా [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (మీ బ్యాకెండ్‌ని బట్టి) మీరు మామూలుగా ఉపయోగించవచ్చు. [ఈ ట్యుటోరియల్](https://huggingface.co/docs/transformers/training) అటువంటి మోడల్‌ని క్లాసిక్ PyTorch లేదా TensorFlow ట్రైనింగ్ లూప్‌లో ఎలా ఇంటిగ్రేట్ చేయాలో లేదా మా `Trainer` API ని ఎలా ఉపయోగించాలో వివరిస్తుంది కొత్త డేటాసెట్.
## నేను ట్రాన్స్‌ఫార్మర్‌లను ఎందుకు ఉపయోగించాలి?
1. ఉపయోగించడానికి సులభమైన స్టేట్ ఆఫ్ ది ఆర్ట్ మోడల్‌లు:
- సహజ భాషా అవగాహన & ఉత్పత్తి, కంప్యూటర్ దృష్టి మరియు ఆడియో పనులపై అధిక పనితీరు.
- విద్యావేత్తలు మరియు అభ్యాసకుల ప్రవేశానికి తక్కువ అవరోధం.
- తెలుసుకోవడానికి కేవలం మూడు తరగతులతో కొన్ని వినియోగదారు-ముఖ సంగ్రహణలు.
- మా అన్ని ప్రీట్రైన్డ్ మోడల్‌లను ఉపయోగించడం కోసం ఏకీకృత API.
2. తక్కువ గణన ఖర్చులు, చిన్న కార్బన్ పాదముద్ర:
- పరిశోధకులు ఎల్లప్పుడూ మళ్లీ శిక్షణ పొందే బదులు శిక్షణ పొందిన నమూనాలను పంచుకోవచ్చు.
- అభ్యాసకులు గణన సమయాన్ని మరియు ఉత్పత్తి ఖర్చులను తగ్గించగలరు.
- అన్ని పద్ధతుల్లో 60,000 కంటే ఎక్కువ ప్రీట్రైన్డ్ మోడల్‌లతో డజన్ల కొద్దీ ఆర్కిటెక్చర్‌లు.
3. మోడల్ జీవితకాలంలో ప్రతి భాగానికి సరైన ఫ్రేమ్‌వర్క్‌ను ఎంచుకోండి:
- 3 లైన్ల కోడ్‌లో స్టేట్ ఆఫ్ ది ఆర్ట్ మోడల్‌లకు శిక్షణ ఇవ్వండి.
- TF2.0/PyTorch/JAX ఫ్రేమ్‌వర్క్‌ల మధ్య ఒకే మోడల్‌ను ఇష్టానుసారంగా తరలించండి.
- శిక్షణ, మూల్యాంకనం మరియు ఉత్పత్తి కోసం సరైన ఫ్రేమ్‌వర్క్‌ను సజావుగా ఎంచుకోండి.
4. మీ అవసరాలకు అనుగుణంగా మోడల్ లేదా ఉదాహరణను సులభంగా అనుకూలీకరించండి:
- ప్రతి ఆర్కిటెక్చర్ దాని అసలు రచయితలు ప్రచురించిన ఫలితాలను పునరుత్పత్తి చేయడానికి మేము ఉదాహరణలను అందిస్తాము.
- మోడల్ ఇంటర్నల్‌లు వీలైనంత స్థిరంగా బహిర్గతమవుతాయి.
- శీఘ్ర ప్రయోగాల కోసం లైబ్రరీ నుండి స్వతంత్రంగా మోడల్ ఫైల్‌లను ఉపయోగించవచ్చు.
## నేను ట్రాన్స్‌ఫార్మర్‌లను ఎందుకు ఉపయోగించకూడదు?
- ఈ లైబ్రరీ న్యూరల్ నెట్‌ల కోసం బిల్డింగ్ బ్లాక్‌ల మాడ్యులర్ టూల్‌బాక్స్ కాదు. మోడల్ ఫైల్‌లలోని కోడ్ ఉద్దేశపూర్వకంగా అదనపు సంగ్రహణలతో రీఫ్యాక్టరింగ్ చేయబడదు, తద్వారా పరిశోధకులు అదనపు సంగ్రహణలు/ఫైళ్లలోకి ప్రవేశించకుండా ప్రతి మోడల్‌పై త్వరగా మళ్లించగలరు.
- శిక్షణ API ఏ మోడల్‌లో పని చేయడానికి ఉద్దేశించబడలేదు కానీ లైబ్రరీ అందించిన మోడల్‌లతో పని చేయడానికి ఆప్టిమైజ్ చేయబడింది. సాధారణ మెషిన్ లెర్నింగ్ లూప్‌ల కోసం, మీరు మరొక లైబ్రరీని ఉపయోగించాలి (బహుశా, [Accelerate](https://huggingface.co/docs/accelerate)).
- మేము వీలైనన్ని ఎక్కువ వినియోగ సందర్భాలను ప్రదర్శించడానికి ప్రయత్నిస్తున్నప్పుడు, మా [ఉదాహరణల ఫోల్డర్](https://github.com/huggingface/transformers/tree/main/examples)లోని స్క్రిప్ట్‌లు కేవలం: ఉదాహరణలు. మీ నిర్దిష్ట సమస్యపై అవి పని చేయవు మరియు వాటిని మీ అవసరాలకు అనుగుణంగా మార్చుకోవడానికి మీరు కొన్ని కోడ్ లైన్‌లను మార్చవలసి ఉంటుంది.
## సంస్థాపన
### పిప్ తో
ఈ రిపోజిటరీ పైథాన్ 3.8+, ఫ్లాక్స్ 0.4.1+, PyTorch 1.11+ మరియు TensorFlow 2.6+లో పరీక్షించబడింది.
మీరు [వర్చువల్ వాతావరణం](https://docs.python.org/3/library/venv.html)లో 🤗 ట్రాన్స్‌ఫార్మర్‌లను ఇన్‌స్టాల్ చేయాలి. మీకు పైథాన్ వర్చువల్ పరిసరాల గురించి తెలియకుంటే, [యూజర్ గైడ్](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) చూడండి.
ముందుగా, మీరు ఉపయోగించబోతున్న పైథాన్ వెర్షన్‌తో వర్చువల్ వాతావరణాన్ని సృష్టించండి మరియు దానిని సక్రియం చేయండి.
అప్పుడు, మీరు ఫ్లాక్స్, పైటార్చ్ లేదా టెన్సర్‌ఫ్లోలో కనీసం ఒకదానిని ఇన్‌స్టాల్ చేయాలి.
దయచేసి [TensorFlow ఇన్‌స్టాలేషన్ పేజీ](https://www.tensorflow.org/install/), [PyTorch ఇన్‌స్టాలేషన్ పేజీ](https://pytorch.org/get-started/locally/#start-locally) మరియు/ని చూడండి లేదా మీ ప్లాట్‌ఫారమ్ కోసం నిర్దిష్ట ఇన్‌స్టాలేషన్ కమాండ్‌కు సంబంధించి [Flax](https://github.com/google/flax#quick-install) మరియు [Jax](https://github.com/google/jax#installation) ఇన్‌స్టాలేషన్ పేజీలు .
ఆ బ్యాకెండ్‌లలో ఒకటి ఇన్‌స్టాల్ చేయబడినప్పుడు, 🤗 ట్రాన్స్‌ఫార్మర్‌లను ఈ క్రింది విధంగా పిప్‌ని ఉపయోగించి ఇన్‌స్టాల్ చేయవచ్చు:
```bash
pip install transformers
```
మీరు ఉదాహరణలతో ప్లే చేయాలనుకుంటే లేదా కోడ్ యొక్క బ్లీడింగ్ ఎడ్జ్ అవసరం మరియు కొత్త విడుదల కోసం వేచి ఉండలేకపోతే, మీరు తప్పనిసరిగా [మూలం నుండి లైబ్రరీని ఇన్‌స్టాల్ చేయాలి](https://huggingface.co/docs/transformers/installation#installing-from-source).
### కొండా తో
🤗 కింది విధంగా కొండా ఉపయోగించి ట్రాన్స్‌ఫార్మర్‌లను ఇన్‌స్టాల్ చేయవచ్చు:
```shell script
conda install conda-forge::transformers
```
> **_గమనిక:_** `huggingface` ఛానెల్ నుండి `transformers` ఇన్‌స్టాల్ చేయడం పురాతనంగా ఉంది.
Flax, PyTorch లేదా TensorFlow యొక్క ఇన్‌స్టాలేషన్ పేజీలను కొండాతో ఎలా ఇన్‌స్టాల్ చేయాలో చూడటానికి వాటిని అనుసరించండి.
> **_గమనిక:_** Windowsలో, కాషింగ్ నుండి ప్రయోజనం పొందేందుకు మీరు డెవలపర్ మోడ్‌ని సక్రియం చేయమని ప్రాంప్ట్ చేయబడవచ్చు. ఇది మీకు ఎంపిక కాకపోతే, దయచేసి [ఈ సంచిక](https://github.com/huggingface/huggingface_hub/issues/1062)లో మాకు తెలియజేయండి.
## మోడల్ ఆర్కిటెక్చర్లు
**[అన్ని మోడల్ చెక్‌పాయింట్‌లు](https://huggingface.co/models)** 🤗 అందించిన ట్రాన్స్‌ఫార్మర్లు huggingface.co [model hub](https://huggingface.co/models) నుండి సజావుగా ఏకీకృతం చేయబడ్డాయి [users](https://huggingface.co/users) మరియు [organizations](https://huggingface.co/organizations) ద్వారా నేరుగా అప్‌లోడ్ చేయబడతాయి.
ప్రస్తుత తనిఖీ కేంద్రాల సంఖ్య: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 ట్రాన్స్‌ఫార్మర్లు ప్రస్తుతం కింది ఆర్కిటెక్చర్‌లను అందజేస్తున్నాయి (వాటిలో ప్రతి ఒక్కటి ఉన్నత స్థాయి సారాంశం కోసం [ఇక్కడ](https://huggingface.co/docs/transformers/model_summary) చూడండి):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (from Cohere) released with the paper [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (from ESPnet) released with the paper [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (from Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) released with the paper [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (from Hugging Face) released with the paper [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (from Albert Gu and Tri Dao) released with the paper [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the paper [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (from Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) released with the paper [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (from the Qwen team, Alibaba Group) released with the paper [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (from the Qwen team, Alibaba Group) released with the paper [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (from Google) released with the paper [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (from Beijing Academy of Artificial Intelligence (BAAI) released with the paper [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (from Google AI) released with the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (from Microsoft Research) released with the paper [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (from University of WisconsinMadison) released with the paper [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. కొత్త మోడల్‌ను అందించాలనుకుంటున్నారా? కొత్త మోడల్‌ను జోడించే ప్రక్రియలో మీకు మార్గనిర్దేశం చేసేందుకు మేము **వివరణాత్మక గైడ్ మరియు టెంప్లేట్‌లను** జోడించాము. మీరు వాటిని రిపోజిటరీ యొక్క [`టెంప్లేట్లు`](./టెంప్లేట్లు) ఫోల్డర్‌లో కనుగొనవచ్చు. మీ PRని ప్రారంభించడానికి ముందు [సహకార మార్గదర్శకాలు](./CONTRIBUTING.md)ని తనిఖీ చేసి, నిర్వహణదారులను సంప్రదించండి లేదా అభిప్రాయాన్ని సేకరించడానికి సమస్యను తెరవండి.
ప్రతి మోడల్ ఫ్లాక్స్, పైటార్చ్ లేదా టెన్సర్‌ఫ్లోలో అమలు చేయబడిందా లేదా 🤗 Tokenizers లైబ్రరీ ద్వారా అనుబంధించబడిన టోకెనైజర్‌ని కలిగి ఉందో లేదో తనిఖీ చేయడానికి, [ఈ పట్టిక](https://huggingface.co/docs/transformers/index#supported-frameworks).
ఈ అమలులు అనేక డేటాసెట్‌లలో పరీక్షించబడ్డాయి (ఉదాహరణ స్క్రిప్ట్‌లను చూడండి) మరియు అసలైన అమలుల పనితీరుతో సరిపోలాలి. మీరు [డాక్యుమెంటేషన్](https://github.com/huggingface/transformers/tree/main/examples) యొక్క ఉదాహరణల విభాగంలో పనితీరుపై మరిన్ని వివరాలను కనుగొనవచ్చు.
## ఇంకా నేర్చుకో
| విభాగం | వివరణ |
|-|-|
| [డాక్యుమెంటేషన్](https://huggingface.co/docs/transformers/) | పూర్తి API డాక్యుమెంటేషన్ మరియు ట్యుటోరియల్స్ |
| [టాస్క్ సారాంశం](https://huggingface.co/docs/transformers/task_summary) | 🤗 ట్రాన్స్‌ఫార్మర్‌ల ద్వారా సపోర్ట్ చేయబడిన విధులు |
| [ప్రీప్రాసెసింగ్ ట్యుటోరియల్](https://huggingface.co/docs/transformers/preprocessing) | మోడల్‌ల కోసం డేటాను సిద్ధం చేయడానికి `Tokenizer` క్లాస్‌ని ఉపయోగించడం |
| [ట్రైనింగ్ మరియు ఫైన్-ట్యూనింగ్](https://huggingface.co/docs/transformers/training) | PyTorch/TensorFlow ట్రైనింగ్ లూప్ మరియు `Trainer` APIలో 🤗 ట్రాన్స్‌ఫార్మర్లు అందించిన మోడల్‌లను ఉపయోగించడం |
| [త్వరిత పర్యటన: ఫైన్-ట్యూనింగ్/యూసేజ్ స్క్రిప్ట్‌లు](https://github.com/huggingface/transformers/tree/main/examples) | విస్తృత శ్రేణి టాస్క్‌లపై ఫైన్-ట్యూనింగ్ మోడల్స్ కోసం ఉదాహరణ స్క్రిప్ట్‌లు |
| [మోడల్ భాగస్వామ్యం మరియు అప్‌లోడ్ చేయడం](https://huggingface.co/docs/transformers/model_sharing) | కమ్యూనిటీతో మీ ఫైన్-ట్యూన్డ్ మోడల్‌లను అప్‌లోడ్ చేయండి మరియు భాగస్వామ్యం చేయండి |
## అనులేఖనం
🤗 ట్రాన్స్‌ఫార్మర్స్ లైబ్రరీ కోసం మీరు ఉదహరించగల [పేపర్](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) ఇప్పుడు మా వద్ద ఉంది:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

592
README_vi.md Normal file
View File

@ -0,0 +1,592 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
</picture>
<br/>
<br/>
</p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
<b>Tiếng việt</b> |
</p>
</h4>
<h3 align="center">
<p>Công nghệ Học máy tiên tiến cho JAX, PyTorch và TensorFlow</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers cung cấp hàng ngàn mô hình được huấn luyện trước để thực hiện các nhiệm vụ trên các modalities khác nhau như văn bản, hình ảnh và âm thanh.
Các mô hình này có thể được áp dụng vào:
* 📝 Văn bản, cho các nhiệm vụ như phân loại văn bản, trích xuất thông tin, trả lời câu hỏi, tóm tắt, dịch thuật và sinh văn bản, trong hơn 100 ngôn ngữ.
* 🖼️ Hình ảnh, cho các nhiệm vụ như phân loại hình ảnh, nhận diện đối tượng và phân đoạn.
* 🗣️ Âm thanh, cho các nhiệm vụ như nhận dạng giọng nói và phân loại âm thanh.
Các mô hình Transformer cũng có thể thực hiện các nhiệm vụ trên **nhiều modalities kết hợp**, như trả lời câu hỏi về bảng, nhận dạng ký tự quang học, trích xuất thông tin từ tài liệu quét, phân loại video và trả lời câu hỏi hình ảnh.
🤗 Transformers cung cấp các API để tải xuống và sử dụng nhanh chóng các mô hình được huấn luyện trước đó trên văn bản cụ thể, điều chỉnh chúng trên tập dữ liệu của riêng bạn và sau đó chia sẻ chúng với cộng đồng trên [model hub](https://huggingface.co/models) của chúng tôi. Đồng thời, mỗi module python xác định một kiến trúc là hoàn toàn độc lập và có thể được sửa đổi để cho phép thực hiện nhanh các thí nghiệm nghiên cứu.
🤗 Transformers được hỗ trợ bởi ba thư viện học sâu phổ biến nhất — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) và [TensorFlow](https://www.tensorflow.org/) — với tích hợp mượt mà giữa chúng. Việc huấn luyện mô hình của bạn với một thư viện trước khi tải chúng để sử dụng trong suy luận với thư viện khác là rất dễ dàng.
## Các demo trực tuyến
Bạn có thể kiểm tra hầu hết các mô hình của chúng tôi trực tiếp trên trang của chúng từ [model hub](https://huggingface.co/models). Chúng tôi cũng cung cấp [dịch vụ lưu trữ mô hình riêng tư, phiên bản và API suy luận](https://huggingface.co/pricing) cho các mô hình công khai và riêng tư.
Dưới đây là một số ví dụ:
Trong Xử lý Ngôn ngữ Tự nhiên:
- [Hoàn thành từ vụng về từ với BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Nhận dạng thực thể đặt tên với Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Tạo văn bản tự nhiên với Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
- [Suy luận Ngôn ngữ Tự nhiên với RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Tóm tắt văn bản với BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Trả lời câu hỏi với DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Dịch văn bản với T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
Trong Thị giác Máy tính:
- [Phân loại hình ảnh với ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Phát hiện đối tượng với DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Phân đoạn ngữ nghĩa với SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Phân đoạn toàn diện với Mask2Former](https://huggingface.co/facebook/mask2former-swin-large-coco-panoptic)
- [Ước lượng độ sâu với Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)
- [Phân loại video với VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Phân đoạn toàn cầu với OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
Trong âm thanh:
- [Nhận dạng giọng nói tự động với Whisper](https://huggingface.co/openai/whisper-large-v3)
- [Phát hiện từ khóa với Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Phân loại âm thanh với Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
Trong các nhiệm vụ đa phương thức:
- [Trả lời câu hỏi về bảng với TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Trả lời câu hỏi hình ảnh với ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Mô tả hình ảnh với LLaVa](https://huggingface.co/llava-hf/llava-1.5-7b-hf)
- [Phân loại hình ảnh không cần nhãn với SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384)
- [Trả lời câu hỏi văn bản tài liệu với LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Phân loại video không cần nhãn với X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
- [Phát hiện đối tượng không cần nhãn với OWLv2](https://huggingface.co/docs/transformers/en/model_doc/owlv2)
- [Phân đoạn hình ảnh không cần nhãn với CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)
- [Tạo mặt nạ tự động với SAM](https://huggingface.co/docs/transformers/model_doc/sam)
## 100 dự án sử dụng Transformers
Transformers không chỉ là một bộ công cụ để sử dụng các mô hình được huấn luyện trước: đó là một cộng đồng các dự án xây dựng xung quanh nó và Hugging Face Hub. Chúng tôi muốn Transformers giúp các nhà phát triển, nhà nghiên cứu, sinh viên, giáo sư, kỹ sư và bất kỳ ai khác xây dựng những dự án mơ ước của họ.
Để kỷ niệm 100.000 sao của transformers, chúng tôi đã quyết định tập trung vào cộng đồng và tạo ra trang [awesome-transformers](./awesome-transformers.md) liệt kê 100 dự án tuyệt vời được xây dựng xung quanh transformers.
Nếu bạn sở hữu hoặc sử dụng một dự án mà bạn tin rằng nên được thêm vào danh sách, vui lòng mở một PR để thêm nó!
## Nếu bạn đang tìm kiếm hỗ trợ tùy chỉnh từ đội ngũ Hugging Face
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Hành trình nhanh
Để ngay lập tức sử dụng một mô hình trên một đầu vào cụ thể (văn bản, hình ảnh, âm thanh, ...), chúng tôi cung cấp API `pipeline`. Pipelines nhóm một mô hình được huấn luyện trước với quá trình tiền xử lý đã được sử dụng trong quá trình huấn luyện của mô hình đó. Dưới đây là cách sử dụng nhanh một pipeline để phân loại văn bản tích cực so với tiêu cực:
```python
>>> from transformers import pipeline
# Cấp phát một pipeline cho phân tích cảm xúc
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
Dòng code thứ hai tải xuống và lưu trữ bộ mô hình được huấn luyện được sử dụng bởi pipeline, trong khi dòng thứ ba đánh giá nó trên văn bản đã cho. Ở đây, câu trả lời là "tích cực" với độ tin cậy là 99,97%.
Nhiều nhiệm vụ có sẵn một `pipeline` được huấn luyện trước, trong NLP nhưng cũng trong thị giác máy tính và giọng nói. Ví dụ, chúng ta có thể dễ dàng trích xuất các đối tượng được phát hiện trong một hình ảnh:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Tải xuống một hình ảnh với những con mèo dễ thương
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Cấp phát một pipeline cho phát hiện đối tượng
>>> object_detector = pipeline('object-detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
Ở đây, chúng ta nhận được một danh sách các đối tượng được phát hiện trong hình ảnh, với một hộp bao quanh đối tượng và một điểm đánh giá độ tin cậy. Đây là hình ảnh gốc ở bên trái, với các dự đoán hiển thị ở bên phải:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
Bạn có thể tìm hiểu thêm về các nhiệm vụ được hỗ trợ bởi API `pipeline` trong [hướng dẫn này](https://huggingface.co/docs/transformers/task_summary).
Ngoài `pipeline`, để tải xuống và sử dụng bất kỳ mô hình được huấn luyện trước nào cho nhiệm vụ cụ thể của bạn, chỉ cần ba dòng code. Đây là phiên bản PyTorch:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
Và đây là mã tương đương cho TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
Tokenizer là thành phần chịu trách nhiệm cho việc tiền xử lý mà mô hình được huấn luyện trước mong đợi và có thể được gọi trực tiếp trên một chuỗi đơn (như trong các ví dụ trên) hoặc một danh sách. Nó sẽ xuất ra một từ điển mà bạn có thể sử dụng trong mã phụ thuộc hoặc đơn giản là truyền trực tiếp cho mô hình của bạn bằng cách sử dụng toán tử ** để giải nén đối số.
Chính mô hình là một [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) thông thường hoặc một [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (tùy thuộc vào backend của bạn) mà bạn có thể sử dụng như bình thường. [Hướng dẫn này](https://huggingface.co/docs/transformers/training) giải thích cách tích hợp một mô hình như vậy vào một vòng lặp huấn luyện cổ điển PyTorch hoặc TensorFlow, hoặc cách sử dụng API `Trainer` của chúng tôi để tinh chỉnh nhanh chóng trên một bộ dữ liệu mới.
## Tại sao tôi nên sử dụng transformers?
1. Các mô hình tiên tiến dễ sử dụng:
- Hiệu suất cao trong việc hiểu và tạo ra ngôn ngữ tự nhiên, thị giác máy tính và âm thanh.
- Ngưỡng vào thấp cho giảng viên và người thực hành.
- Ít trừu tượng dành cho người dùng với chỉ ba lớp học.
- Một API thống nhất để sử dụng tất cả các mô hình được huấn luyện trước của chúng tôi.
2. Giảm chi phí tính toán, làm giảm lượng khí thải carbon:
- Các nhà nghiên cứu có thể chia sẻ các mô hình đã được huấn luyện thay vì luôn luôn huấn luyện lại.
- Người thực hành có thể giảm thời gian tính toán và chi phí sản xuất.
- Hàng chục kiến trúc với hơn 400.000 mô hình được huấn luyện trước trên tất cả các phương pháp.
3. Lựa chọn framework phù hợp cho mọi giai đoạn của mô hình:
- Huấn luyện các mô hình tiên tiến chỉ trong 3 dòng code.
- Di chuyển một mô hình duy nhất giữa các framework TF2.0/PyTorch/JAX theo ý muốn.
- Dễ dàng chọn framework phù hợp cho huấn luyện, đánh giá và sản xuất.
4. Dễ dàng tùy chỉnh một mô hình hoặc một ví dụ theo nhu cầu của bạn:
- Chúng tôi cung cấp các ví dụ cho mỗi kiến trúc để tái tạo kết quả được công bố bởi các tác giả gốc.
- Các thành phần nội tại của mô hình được tiết lộ một cách nhất quán nhất có thể.
- Các tệp mô hình có thể được sử dụng độc lập với thư viện để thực hiện các thử nghiệm nhanh chóng.
## Tại sao tôi không nên sử dụng transformers?
- Thư viện này không phải là một bộ công cụ modul cho các khối xây dựng mạng neural. Mã trong các tệp mô hình không được tái cấu trúc với các trừu tượng bổ sung một cách cố ý, để các nhà nghiên cứu có thể lặp nhanh trên từng mô hình mà không cần đào sâu vào các trừu tượng/tệp bổ sung.
- API huấn luyện không được thiết kế để hoạt động trên bất kỳ mô hình nào, mà được tối ưu hóa để hoạt động với các mô hình được cung cấp bởi thư viện. Đối với vòng lặp học máy chung, bạn nên sử dụng một thư viện khác (có thể là [Accelerate](https://huggingface.co/docs/accelerate)).
- Mặc dù chúng tôi cố gắng trình bày càng nhiều trường hợp sử dụng càng tốt, nhưng các tập lệnh trong thư mục [examples](https://github.com/huggingface/transformers/tree/main/examples) chỉ là ví dụ. Dự kiến rằng chúng sẽ không hoạt động ngay tức khắc trên vấn đề cụ thể của bạn và bạn sẽ phải thay đổi một số dòng mã để thích nghi với nhu cầu của bạn.
## Cài đặt
### Sử dụng pip
Thư viện này được kiểm tra trên Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ và TensorFlow 2.6+.
Bạn nên cài đặt 🤗 Transformers trong một [môi trường ảo Python](https://docs.python.org/3/library/venv.html). Nếu bạn chưa quen với môi trường ảo Python, hãy xem [hướng dẫn sử dụng](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Trước tiên, tạo một môi trường ảo với phiên bản Python bạn sẽ sử dụng và kích hoạt nó.
Sau đó, bạn sẽ cần cài đặt ít nhất một trong số các framework Flax, PyTorch hoặc TensorFlow.
Vui lòng tham khảo [trang cài đặt TensorFlow](https://www.tensorflow.org/install/), [trang cài đặt PyTorch](https://pytorch.org/get-started/locally/#start-locally) và/hoặc [Flax](https://github.com/google/flax#quick-install) và [Jax](https://github.com/google/jax#installation) để biết lệnh cài đặt cụ thể cho nền tảng của bạn.
Khi đã cài đặt một trong các backend đó, 🤗 Transformers có thể được cài đặt bằng pip như sau:
```bash
pip install transformers
```
Nếu bạn muốn thực hiện các ví dụ hoặc cần phiên bản mới nhất của mã và không thể chờ đợi cho một phiên bản mới, bạn phải [cài đặt thư viện từ nguồn](https://huggingface.co/docs/transformers/installation#installing-from-source).
### Với conda
🤗 Transformers có thể được cài đặt bằng conda như sau:
```shell script
conda install conda-forge::transformers
```
> **_GHI CHÚ:_** Cài đặt `transformers` từ kênh `huggingface` đã bị lỗi thời.
Hãy làm theo trang cài đặt của Flax, PyTorch hoặc TensorFlow để xem cách cài đặt chúng bằng conda.
> **_GHI CHÚ:_** Trên Windows, bạn có thể được yêu cầu kích hoạt Chế độ phát triển để tận dụng việc lưu cache. Nếu điều này không phải là một lựa chọn cho bạn, hãy cho chúng tôi biết trong [vấn đề này](https://github.com/huggingface/huggingface_hub/issues/1062).
## Kiến trúc mô hình
**[Tất cả các điểm kiểm tra mô hình](https://huggingface.co/models)** được cung cấp bởi 🤗 Transformers được tích hợp một cách mượt mà từ trung tâm mô hình huggingface.co [model hub](https://huggingface.co/models), nơi chúng được tải lên trực tiếp bởi [người dùng](https://huggingface.co/users) và [tổ chức](https://huggingface.co/organizations).
Số lượng điểm kiểm tra hiện tại: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers hiện đang cung cấp các kiến trúc sau đây (xem [ở đây](https://huggingface.co/docs/transformers/model_summary) để có một tóm tắt tổng quan về mỗi kiến trúc):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (từ Google Research và Toyota Technological Institute tại Chicago) được phát hành với bài báo [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), của Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (từ Google Research) được phát hành với bài báo [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) của Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (từ BAAI) được phát hành với bài báo [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) của Chen, Zhongzhi và Liu, Guang và Zhang, Bo-Wen và Ye, Fulong và Yang, Qinghong và Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (từ MIT) được phát hành với bài báo [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) của Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (từ Đại học Tsinghua) được phát hành với bài báo [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) của Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (từ Suno) được phát hành trong kho lưu trữ [suno-ai/bark](https://github.com/suno-ai/bark) bởi đội ngũ Suno AI.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (từ Facebook) được phát hành với bài báo [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) của Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov và Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (từ École polytechnique) được phát hành với bài báo [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) của Moussa Kamal Eddine, Antoine J.-P. Tixier và Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (từ VinAI Research) được phát hành với bài báo [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) của Nguyen Luong Tran, Duong Minh Le và Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (từ Microsoft) được phát hành với bài báo [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) của Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (từ Google) được phát hành với bài báo [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) của Jacob Devlin, Ming-Wei Chang, Kenton Lee và Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (từ Google) được phát hành với bài báo [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) của Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (từ VinAI Research) được phát hành với bài báo [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) của Dat Quoc Nguyen, Thanh Vu và Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (từ Google Research) được phát hành với bài báo [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) của Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang và Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (từ Google Research) được phát hành với bài báo [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) của Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang và Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (từ Microsoft Research AI4Science) được phát hành với bài báo [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (từ Google AI) được phát hành với bài báo [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) của Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (từ Facebook) được phát hành với bài báo [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) của Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (từ Facebook) được phát hành với bài báo [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) của Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (từ Salesforce) được phát hành với bài báo [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) của Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (từ Salesforce) được phát hành với bài báo [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (từ BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (từ Alexa) được phát hành với bài báo [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (từ Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) được phát hành với bài báo [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (từ NAVER CLOVA) được phát hành với bài báo [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (từ Google Research) được phát hành với bài báo [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (từ Inria/Facebook/Sorbonne) được phát hành với bài báo [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (từ Google Research) được phát hành với bài báo [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (từ OFA-Sys) được phát hành với bài báo [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (từ LAION-AI) được phát hành với bài báo [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (từ OpenAI) được phát hành với bài báo [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (từ University of Göttingen) được phát hành với bài báo [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** được phát hành với bài báo [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (từ Salesforce) được phát hành với bài báo [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (từ MetaAI) được phát hành với bài báo [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (từ Cohere) được phát hành với bài báo [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (từ Microsoft Research Asia) được phát hành với bài báo [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (từ YituTech) được phát hành với bài báo [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (từ Facebook AI) được phát hành với bài báo [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (từ Facebook AI) được phát hành với bài báo [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (từ Tsinghua University) được phát hành với bài báo [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (từ OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (từ Salesforce) được phát hành với bài báo [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (từ Microsoft) được phát hành với bài báo [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (từ Facebook) được phát hành với bài báo [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (từ Microsoft) được phát hành với bài báo [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (từ Microsoft) được phát hành với bài báo [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (từ Berkeley/Facebook/Google) được phát hành với bài báo [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (từ SenseTime Research) được phát hành với bài báo [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (từ Facebook) được phát hành với bài báo [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (từ Google AI) được phát hành với bài báo [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (từ University of Hong Kong and TikTok) được phát hành với bài báo [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (từ The University of Texas at Austin) được phát hành với bài báo [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (từ Facebook) được phát hành với bài báo [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (từ Microsoft Research) được phát hành với bài báo [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (từ SHI Labs) được phát hành với bài báo [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (từ Meta AI) được phát hành với bài báo [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (từ HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (từ Microsoft Research) được phát hành với bài báo [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (từ NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (từ Facebook) được phát hành với bài báo [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (từ Intel Labs) được phát hành với bài báo [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (từ Snap Research) được phát hành với bài báo [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (từ Google Brain) được phát hành với bài báo [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (từ Google Research/Stanford University) được phát hành với bài báo [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (từ Meta AI) được phát hành với bài báo [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (từ Google Research) được phát hành với bài báo [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (từ Baidu) được phát hành với bài báo [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (từ Baidu) được phát hành với bài báo [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (từ Meta AI) are transformer protein language models. **ESM-1b** was được phát hành với bài báo [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was được phát hành với bài báo [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were được phát hành với bài báo [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (từ Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (từ ESPnet) được phát hành với bài báo [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (từ Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (từ Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (từ CNRS) được phát hành với bài báo [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (từ Facebook AI) được phát hành với bài báo [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (từ Google Research) được phát hành với bài báo [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (từ Microsoft Research) được phát hành với bài báo [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (từ CMU/Google Brain) được phát hành với bài báo [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (từ ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. được phát hành với bài báo [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (từ Google) được phát hành với bài báo [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (từ Microsoft Research) được phát hành với bài báo [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (từ KAIST) được phát hành với bài báo [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (từ OpenAI) được phát hành với bài báo [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (từ EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (từ EleutherAI) được phát hành với bài báo [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (từ ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (từ OpenAI) được phát hành với bài báo [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (từ EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (từ AI-Sweden) được phát hành với bài báo [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (từ BigCode) được phát hành với bài báo [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (từ Microsoft) được phát hành với bài báo [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (từ Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) được phát hành với bài báo [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (từ UCSD, NVIDIA) được phát hành với bài báo [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (từ Allegro.pl, AGH University of Science and Technology) được phát hành với bài báo [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (từ Facebook) được phát hành với bài báo [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (từ Berkeley) được phát hành với bài báo [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (từ HuggingFace) được phát hành với bài báo [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (từ Hugging Face) được phát hành với bài báo [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (từ OpenAI) được phát hành với bài báo [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (từ Beihang University, UC Berkeley, Rutgers University, SEDD Company) được phát hành với bài báo [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (từ Salesforce) được phát hành với bài báo [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (từ OpenAI) được phát hành với bài báo [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (từ Microsoft Research Asia) được phát hành với bài báo [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (từ Microsoft Research Asia) được phát hành với bài báo [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (từ Microsoft Research Asia) được phát hành với bài báo [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (từ Microsoft Research Asia) được phát hành với bài báo [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (từ Microsoft Research Asia) được phát hành với bài báo [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (từ AllenAI) được phát hành với bài báo [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (từ Meta AI) được phát hành với bài báo [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (từ South China University of Technology) được phát hành với bài báo [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (từ The FAIR team of Meta AI) được phát hành với bài báo [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (từ The FAIR team of Meta AI) được phát hành với bài báo [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (từ Microsoft Research & University of Wisconsin-Madison) được phát hành với bài báo [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (từ Microsoft Research & University of Wisconsin-Madison) được phát hành với bài báo [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (từ AllenAI) được phát hành với bài báo [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (từ Google AI) được phát hành với bài báo [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (từ Studio Ousia) được phát hành với bài báo [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (từ UNC Chapel Hill) được phát hành với bài báo [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (từ Facebook) được phát hành với bài báo [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (từ Facebook) được phát hành với bài báo [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (từ Google) được phát hành với bài báo [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (từ Albert Gu and Tri Dao) được phát hành với bài báo [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (từ Microsoft Research Asia) được phát hành với bài báo [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (từ FAIR and UIUC) được phát hành với bài báo [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (từ Meta and UIUC) được phát hành với bài báo [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (từ Google AI) được phát hành với bài báo [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (từ Facebook) được phát hành với bài báo [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (từ Facebook) được phát hành với bài báo [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (từ Meta/USC/CMU/SJTU) được phát hành với bài báo [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (từ NVIDIA) được phát hành với bài báo [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (từ NVIDIA) được phát hành với bài báo [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (từ Alibaba Research) được phát hành với bài báo [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (từ Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (từ Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (từ Studio Ousia) được phát hành với bài báo [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (từ Facebook) được phát hành với bài báo [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (từ CMU/Google Brain) được phát hành với bài báo [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (từ Google Inc.) được phát hành với bài báo [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (từ Google Inc.) được phát hành với bài báo [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (từ Apple) được phát hành với bài báo [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (từ Apple) được phát hành với bài báo [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (từ Microsoft Research) được phát hành với bài báo [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (từ MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (từ the University of Wisconsin - Madison) được phát hành với bài báo [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (từ Google AI) được phát hành với bài báo [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (từ Meta) được phát hành với bài báo [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (từ Meta) được phát hành với bài báo [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (từ RUC AI Box) được phát hành với bài báo [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (từ SHI Labs) được phát hành với bài báo [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (từ Huawei Noahs Ark Lab) được phát hành với bài báo [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (từ Meta) được phát hành với bài báo [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (từ Meta) được phát hành với bài báo [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (từ Meta AI) được phát hành với bài báo [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (từ the University of Wisconsin - Madison) được phát hành với bài báo [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (từ SHI Labs) được phát hành với bài báo [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (từ [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (từ Meta AI) được phát hành với bài báo [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (từ Google AI) được phát hành với bài báo [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (từ Google AI) được phát hành với bài báo [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (từ IBM Research) được phát hành với bài báo [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (từ IBM) được phát hành với bài báo [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (từ Google) được phát hành với bài báo [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (từ Google) được phát hành với bài báo [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (từ Deepmind) được phát hành với bài báo [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (từ ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (từ Microsoft) được phát hành với bài báos - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (từ VinAI Research) được phát hành với bài báo [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (từ Google) được phát hành với bài báo [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (từ UCLA NLP) được phát hành với bài báo [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (từ Sea AI Labs) được phát hành với bài báo [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** được phát hành với bài báo [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (từ Microsoft Research) được phát hành với bài báo [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (từ Nanjing University, The University of Hong Kong etc.) được phát hành với bài báo [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (từ Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) được phát hành với bài báo [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (từ NVIDIA) được phát hành với bài báo [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (từ the Qwen team, Alibaba Group) được phát hành với bài báo [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (từ the Qwen team, Alibaba Group) được phát hành với bài báo [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (từ Facebook) được phát hành với bài báo [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (từ Google Research) được phát hành với bài báo [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (từ Google) được phát hành với bài báo [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (từ Google Research) được phát hành với bài báo [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (từ META Platforms) được phát hành với bài báo [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (từ Google Research) được phát hành với bài báo [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (từ Microsoft Research) được phát hành với bài báo [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (từ Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (từ Facebook) được phát hành với bài báo [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (từ WeChatAI) được phát hành với bài báo [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (từ ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (từ Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (từ Meta AI) được phát hành với bài báo [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (từ Meta AI) được phát hành với bài báo [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (từ NVIDIA) được phát hành với bài báo [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (từ Beijing Academy of Artificial Intelligence (BAAI) được phát hành với bài báo [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (từ Meta AI) được phát hành với bài báo [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (từ ASAPP) được phát hành với bài báo [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (từ ASAPP) được phát hành với bài báo [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (từ Google AI) được phát hành với bài báo [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (từ Microsoft Research) được phát hành với bài báo [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (từ Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (từ Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (từ Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (từ Berkeley) được phát hành với bài báo [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (từ Stability AI) được phát hành với bài báo [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (từ BigCode team) được phát hành với bài báo [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (từ MagicLeap) được phát hành với bài báo [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (từ MBZUAI) được phát hành với bài báo [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (từ Microsoft) được phát hành với bài báo [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (từ Microsoft) được phát hành với bài báo [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (từ University of Würzburg) được phát hành với bài báo [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (từ Google) được phát hành với bài báo [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (từ Google AI) được phát hành với bài báo [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (từ Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (từ Microsoft Research) được phát hành với bài báo [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (từ Google AI) được phát hành với bài báo [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (từ Microsoft Research) được phát hành với bài báo [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (từ HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (từ Facebook) được phát hành với bài báo [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (từ the University of California at Berkeley) được phát hành với bài báo [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (từ Google/CMU) được phát hành với bài báo [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (từ Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (từ UNC Chapel Hill) được phát hành với bài báo [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (từ Intel) được phát hành với bài báo [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (từ Microsoft Research) được phát hành với bài báo [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (từ Google Research) được phát hành với bài báo [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (từ Google Research) được phát hành với bài báo [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (từ Microsoft Research) được phát hành với bài báo [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (từ Microsoft Research) được phát hành với bài báo [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (từ Kakao Corporation) được phát hành với bài báo [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (từ Peking University) được phát hành với bài báo [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (từ Tsinghua University and Nankai University) được phát hành với bài báo [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (từ Multimedia Computing Group, Nanjing University) được phát hành với bài báo [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (từ NAVER AI Lab/Kakao Enterprise/Kakao Brain) được phát hành với bài báo [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (từ University of WisconsinMadison) được phát hành với bài báo [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (từ Google AI) được phát hành với bài báo [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (từ UCLA NLP) được phát hành với bài báo [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (từ Google AI) được phát hành với bài báo [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (từ Meta AI) được phát hành với bài báo [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (từ Meta AI) được phát hành với bài báo [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (từ HUST-VL) được phát hành với bài báo [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (từ Meta AI) được phát hành với bài báo [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (từ Kakao Enterprise) được phát hành với bài báo [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (từ Google Research) được phát hành với bài báo [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (từ Facebook AI) được phát hành với bài báo [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (từ Meta AI) được phát hành với bài báo [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (từ Facebook AI) được phát hành với bài báo [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (từ Facebook AI) được phát hành với bài báo [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (từ Microsoft Research) được phát hành với bài báo [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (từ OpenAI) được phát hành với bài báo [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (từ Microsoft Research) được phát hành với bài báo [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (từ Meta AI) được phát hành với bài báo [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (từ Facebook AI) được phát hành với bài báo [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (từ Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (từ Microsoft Research) được phát hành với bài báo [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (từ Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (từ Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (từ Meta AI) được phát hành với bài báo [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (từ Google/CMU) được phát hành với bài báo [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (từ Facebook AI) được phát hành với bài báo [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (từ Facebook AI) được phát hành với bài báo [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (từ Huazhong University of Science & Technology) được phát hành với bài báo [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (từ the University of Wisconsin - Madison) được phát hành với bài báo [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Muốn đóng góp một mô hình mới? Chúng tôi đã thêm một **hướng dẫn chi tiết và mẫu** để hướng dẫn bạn trong quá trình thêm một mô hình mới. Bạn có thể tìm thấy chúng trong thư mục [`templates`](./templates) của kho lưu trữ. Hãy chắc chắn kiểm tra [hướng dẫn đóng góp](./CONTRIBUTING.md) và liên hệ với người duy trì hoặc mở một vấn đề để thu thập phản hồi trước khi bắt đầu PR của bạn.
Để kiểm tra xem mỗi mô hình có một phiên bản thực hiện trong Flax, PyTorch hoặc TensorFlow, hoặc có một tokenizer liên quan được hỗ trợ bởi thư viện 🤗 Tokenizers, vui lòng tham khảo [bảng này](https://huggingface.co/docs/transformers/index#supported-frameworks).
Những phiên bản này đã được kiểm tra trên một số tập dữ liệu (xem các tập lệnh ví dụ) và nên tương đương với hiệu suất của các phiên bản gốc. Bạn có thể tìm thấy thêm thông tin về hiệu suất trong phần Ví dụ của [tài liệu](https://github.com/huggingface/transformers/tree/main/examples).
## Tìm hiểu thêm
| Phần | Mô tả |
|-|-|
| [Tài liệu](https://huggingface.co/docs/transformers/) | Toàn bộ tài liệu API và hướng dẫn |
| [Tóm tắt nhiệm vụ](https://huggingface.co/docs/transformers/task_summary) | Các nhiệm vụ được hỗ trợ bởi 🤗 Transformers |
| [Hướng dẫn tiền xử lý](https://huggingface.co/docs/transformers/preprocessing) | Sử dụng lớp `Tokenizer` để chuẩn bị dữ liệu cho các mô hình |
| [Huấn luyện và điều chỉnh](https://huggingface.co/docs/transformers/training) | Sử dụng các mô hình được cung cấp bởi 🤗 Transformers trong vòng lặp huấn luyện PyTorch/TensorFlow và API `Trainer` |
| [Hướng dẫn nhanh: Điều chỉnh/sử dụng các kịch bản](https://github.com/huggingface/transformers/tree/main/examples) | Các kịch bản ví dụ để điều chỉnh mô hình trên nhiều nhiệm vụ khác nhau |
| [Chia sẻ và tải lên mô hình](https://huggingface.co/docs/transformers/model_sharing) | Tải lên và chia sẻ các mô hình đã điều chỉnh của bạn với cộng đồng |
## Trích dẫn
Bây giờ chúng ta có một [bài báo](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) mà bạn có thể trích dẫn cho thư viện 🤗 Transformers:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

View File

@ -26,7 +26,7 @@ token: 词符(并用括号标注原英文)
tokenize: 词符化(并用括号标注原英文) tokenize: 词符化(并用括号标注原英文)
tokenizer: 词符化器(并用括号标注原英文) tokenizer: 词符化器(并用括号标注原英文)
transformer: transformer不翻译 transformer: transformer不翻译
pipeline: 流水线 pipeline: 流水线
API: API (不翻译) API: API (不翻译)
inference: 推理 inference: 推理
Trainer: 训练器。当作为类名出现时不翻译。 Trainer: 训练器。当作为类名出现时不翻译。
@ -41,23 +41,23 @@ checkpoint: 检查点
<p align="center"> <p align="center">
<br> <br>
<img src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/transformers_logo_name.png" width="400"/> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br> <br>
<p> </p>
<p align="center"> <p align="center">
<a href="https://circleci.com/gh/huggingface/transformers"> <a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master"> <img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a> </a>
<a href="https://github.com/huggingface/transformers/blob/master/LICENSE"> <a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue"> <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a> </a>
<a href="https://huggingface.co/transformers/index.html"> <a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/transformers/index.html.svg?down_color=red&down_message=offline&up_message=online"> <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a> </a>
<a href="https://github.com/huggingface/transformers/releases"> <a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg"> <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a> </a>
<a href="https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md"> <a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg"> <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a> </a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a> <a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
@ -67,9 +67,18 @@ checkpoint: 检查点
<p> <p>
<a href="https://github.com/huggingface/transformers/">English</a> | <a href="https://github.com/huggingface/transformers/">English</a> |
<b>简体中文</b> | <b>简体中文</b> |
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hant.md">繁體中文</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/master/README_ko.md">한국어</a> <a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<p> <a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
</p>
</h4> </h4>
<h3 align="center"> <h3 align="center">
@ -77,27 +86,27 @@ checkpoint: 检查点
</h3> </h3>
<h3 align="center"> <h3 align="center">
<a href="https://hf.co/course"><img src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/course_banner.png"></a> <a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3> </h3>
🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨让最先进的 NLP 技术人人易用。 🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨让最先进的 NLP 技术人人易用。
🤗 Transformers 提供了便于快速下载和使用的API让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 [model hub](https://huggingface.co/models) 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。 🤗 Transformers 提供了便于快速下载和使用的API让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 [model hub](https://huggingface.co/models) 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。
🤗 Transformers 支持三个最热门的深度学习库: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。 🤗 Transformers 支持三个最热门的深度学习库: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) 以及 [TensorFlow](https://www.tensorflow.org/) — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。
## 在线演示 ## 在线演示
你可以直接在模型页面上测试大多数 [model hub](https://huggingface.co/models) 上的模型。 我们也提供了 [私有模型托管、模型版本管理以及推理API](https://huggingface.co/pricing)。 你可以直接在模型页面上测试大多数 [model hub](https://huggingface.co/models) 上的模型。 我们也提供了 [私有模型托管、模型版本管理以及推理API](https://huggingface.co/pricing)。
这里是一些例子: 这里是一些例子:
- [用 BERT 做掩码填词](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France) - [用 BERT 做掩码填词](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [用 Electra 做命名实体识别](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city) - [用 Electra 做命名实体识别](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [用 GPT-2 做文本生成](https://huggingface.co/gpt2?text=A+long+time+ago%2C+) - [用 GPT-2 做文本生成](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [用 RoBERTa 做自然语言推理](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal) - [用 RoBERTa 做自然语言推理](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [用 BART 做文本摘要](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct) - [用 BART 做文本摘要](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [用 DistilBERT 做问答](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species) - [用 DistilBERT 做问答](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [用 T5 做翻译](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) - [用 T5 做翻译](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Write With Transformer](https://transformer.huggingface.co)**,由抱抱脸团队打造,是一个文本生成的官方 demo。 **[Write With Transformer](https://transformer.huggingface.co)**,由抱抱脸团队打造,是一个文本生成的官方 demo。
@ -137,14 +146,14 @@ checkpoint: 检查点
``` ```
除了给出答案,预训练模型还给出了对应的置信度分数、答案在词符化 (tokenized) 后的文本中开始和结束的位置。你可以从[这个教程](https://huggingface.co/transformers/task_summary.html)了解更多流水线API支持的任务。 除了给出答案,预训练模型还给出了对应的置信度分数、答案在词符化 (tokenized) 后的文本中开始和结束的位置。你可以从[这个教程](https://huggingface.co/docs/transformers/task_summary)了解更多流水线API支持的任务。
要在你的任务上下载和使用任意预训练模型也很简单,只需三行代码。这里是 PyTorch 版的示例: 要在你的任务上下载和使用任意预训练模型也很简单,只需三行代码。这里是 PyTorch 版的示例:
```python ```python
>>> from transformers import AutoTokenizer, AutoModel >>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased") >>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt") >>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
@ -153,8 +162,8 @@ checkpoint: 检查点
```python ```python
>>> from transformers import AutoTokenizer, TFAutoModel >>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased") >>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf") >>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
@ -173,7 +182,7 @@ checkpoint: 检查点
- 对所有模型统一的API - 对所有模型统一的API
1. 更低计算开销,更少的碳排放: 1. 更低计算开销,更少的碳排放:
- 研究人员可以分享亿训练的模型而非次从头开始训练 - 研究人员可以分享训练的模型而非次从头开始训练
- 工程师可以减少计算用时和生产环境开销 - 工程师可以减少计算用时和生产环境开销
- 数十种模型架构、两千多个预训练模型、100多种语言支持 - 数十种模型架构、两千多个预训练模型、100多种语言支持
@ -191,13 +200,13 @@ checkpoint: 检查点
- 本库并不是模块化的神经网络工具箱。模型文件中的代码特意呈若璞玉,未经额外抽象封装,以便研究人员快速迭代魔改而不致溺于抽象和文件跳转之中。 - 本库并不是模块化的神经网络工具箱。模型文件中的代码特意呈若璞玉,未经额外抽象封装,以便研究人员快速迭代魔改而不致溺于抽象和文件跳转之中。
- `Trainer` API 并非兼容任何模型,只为本库之模型优化。若是在寻找适用于通用机器学习的训练循环实现,请另觅他库。 - `Trainer` API 并非兼容任何模型,只为本库之模型优化。若是在寻找适用于通用机器学习的训练循环实现,请另觅他库。
- 尽管我们已尽力而为,[examples 目录](https://github.com/huggingface/transformers/tree/master/examples)中的脚本也仅为用例而已。对于你的特定问题,它们并不一定开箱即用,可能需要改几行代码以适之。 - 尽管我们已尽力而为,[examples 目录](https://github.com/huggingface/transformers/tree/main/examples)中的脚本也仅为用例而已。对于你的特定问题,它们并不一定开箱即用,可能需要改几行代码以适之。
## 安装 ## 安装
### 使用 pip ### 使用 pip
这个仓库已在 Python 3.6+、Flax 0.3.2+、PyTorch 1.3.1+ 和 TensorFlow 2.3+ 下经过测试。 这个仓库已在 Python 3.8+、Flax 0.4.1+、PyTorch 1.11+ 和 TensorFlow 2.6+ 下经过测试。
你可以在[虚拟环境](https://docs.python.org/3/library/venv.html)中安装 🤗 Transformers。如果你还不熟悉 Python 的虚拟环境,请阅此[用户说明](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。 你可以在[虚拟环境](https://docs.python.org/3/library/venv.html)中安装 🤗 Transformers。如果你还不熟悉 Python 的虚拟环境,请阅此[用户说明](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。
@ -211,130 +220,310 @@ checkpoint: 检查点
pip install transformers pip install transformers
``` ```
如果你想要试试用例或者想在正式发布前使用最新的开发中代码,你得[从源代码安装](https://huggingface.co/transformers/installation.html#installing-from-source)。 如果你想要试试用例或者想在正式发布前使用最新的开发中代码,你得[从源代码安装](https://huggingface.co/docs/transformers/installation#installing-from-source)。
### 使用 conda ### 使用 conda
自 Transformers 4.0.0 版始,我们有了一个 conda 频道: `huggingface`。
🤗 Transformers 可以通过 conda 依此安装: 🤗 Transformers 可以通过 conda 依此安装:
```shell script ```shell script
conda install -c huggingface transformers conda install conda-forge::transformers
``` ```
> **_笔记:_** 从 `huggingface` 渠道安装 `transformers` 已被废弃。
要通过 conda 安装 Flax、PyTorch 或 TensorFlow 其中之一,请参阅它们各自安装页的说明。 要通过 conda 安装 Flax、PyTorch 或 TensorFlow 其中之一,请参阅它们各自安装页的说明。
## 模型架构 ## 模型架构
**🤗 Transformers 支持的[所有的模型检查点](https://huggingface.co/models)** 由[用户](https://huggingface.co/users)和[组织](https://huggingface.co/organizations)上传,均与 huggingface.co [model hub](https://huggingface.co) 无缝整合。 🤗 Transformers 支持的[**所有的模型检查点**](https://huggingface.co/models)由[用户](https://huggingface.co/users)和[组织](https://huggingface.co/organizations)上传,均与 huggingface.co [model hub](https://huggingface.co) 无缝整合。
目前的检查点数量: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen) 目前的检查点数量: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers 目前支持如下的架构(模型概述请阅[这里](https://huggingface.co/transformers/model_summary.html) 🤗 Transformers 目前支持如下的架构(模型概述请阅[这里](https://huggingface.co/docs/transformers/model_summary)
1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。 1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (来自 Google Research and the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。
1. **[BART](https://huggingface.co/transformers/model_doc/bart.html)** (来自 Facebook) 伴随论文 [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) 由 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer 发布。 1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (来自 Google Research) 伴随论文 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) 由 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig 发布。
1. **[BARThez](https://huggingface.co/transformers/model_doc/barthez.html)** (来自 École polytechnique) 伴随论文 [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) 由 Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis 发布。 1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (来自 BAAI) 伴随论文 [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) 由 Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell 发布。
1. **[BARTpho](https://huggingface.co/transformers/model_doc/bartpho.html)** (来自 VinAI Research) 伴随论文 [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) 由 Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen 发布。 1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (来自 MIT) 伴随论文 [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) 由 Yuan Gong, Yu-An Chung, James Glass 发布。
1. **[BEiT](https://huggingface.co/transformers/model_doc/beit.html)** (来自 Microsoft) 伴随论文 [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) 由 Hangbo Bao, Li Dong, Furu Wei 发布。 1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[BERT](https://huggingface.co/transformers/model_doc/bert.html)** (来自 Google) 伴随论文 [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) 由 Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova 发布。 1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BERT For Sequence Generation](https://huggingface.co/transformers/model_doc/bertgeneration.html)** (来自 Google) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。 1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (来自 Facebook) 伴随论文 [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) 由 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer 发布。
1. **[BERTweet](https://huggingface.co/transformers/model_doc/bertweet.html)** (来自 VinAI Research) 伴随论文 [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) 由 Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen 发布。 1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (来自 École polytechnique) 伴随论文 [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) 由 Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis 发布。
1. **[BigBird-Pegasus](https://huggingface.co/transformers/model_doc/bigbird_pegasus.html)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。 1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (来自 VinAI Research) 伴随论文 [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) 由 Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen 发布。
1. **[BigBird-RoBERTa](https://huggingface.co/transformers/model_doc/bigbird.html)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。 1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (来自 Microsoft) 伴随论文 [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) 由 Hangbo Bao, Li Dong, Furu Wei 发布。
1. **[Blenderbot](https://huggingface.co/transformers/model_doc/blenderbot.html)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。 1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (来自 Google) 伴随论文 [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) 由 Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova 发布。
1. **[BlenderbotSmall](https://huggingface.co/transformers/model_doc/blenderbot_small.html)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。 1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (来自 Google) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。
1. **[BORT](https://huggingface.co/transformers/model_doc/bort.html)** (来自 Alexa) 伴随论文 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 由 Adrian de Wynter and Daniel J. Perry 发布。 1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (来自 VinAI Research) 伴随论文 [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) 由 Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen 发布。
1. **[ByT5](https://huggingface.co/transformers/model_doc/byt5.html)** (来自 Google Research) 伴随论文 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 由 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 发布。 1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。
1. **[CamemBERT](https://huggingface.co/transformers/model_doc/camembert.html)** (来自 Inria/Facebook/Sorbonne) 伴随论文 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 由 Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 发布。 1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。
1. **[CANINE](https://huggingface.co/transformers/model_doc/canine.html)** (来自 Google Research) 伴随论文 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 由 Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 发布。 1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (来自 Microsoft Research AI4Science) 伴随论文 [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) 由 Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu 发布。
1. **[CLIP](https://huggingface.co/transformers/model_doc/clip.html)** (来自 OpenAI) 伴随论文 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 由 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 发布。 1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (来自 Google AI) 伴随论文 [Big Transfer (BiT) 由 Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby 发布。
1. **[ConvBERT](https://huggingface.co/transformers/model_doc/convbert.html)** (来自 YituTech) 伴随论文 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 由 Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 发布。 1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
1. **[CPM](https://huggingface.co/transformers/model_doc/cpm.html)** (来自 Tsinghua University) 伴随论文 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 由 Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 发布。 1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
1. **[CTRL](https://huggingface.co/transformers/model_doc/ctrl.html)** (来自 Salesforce) 伴随论文 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 由 Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 发布。 1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (来自 Salesforce) 伴随论文 [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) 由 Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi 发布。
1. **[DeBERTa](https://huggingface.co/transformers/model_doc/deberta.html)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。 1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (来自 Salesforce) 伴随论文 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) 由 Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi 发布。
1. **[DeBERTa-v2](https://huggingface.co/transformers/model_doc/deberta_v2.html)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。 1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[DeiT](https://huggingface.co/transformers/model_doc/deit.html)** (来自 Facebook) 伴随论文 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 由 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 发布。 1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (来自 Alexa) 伴随论文 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 由 Adrian de Wynter and Daniel J. Perry 发布。
1. **[DETR](https://huggingface.co/transformers/model_doc/detr.html)** (来自 Facebook) 伴随论文 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 由 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 发布。 1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[DialoGPT](https://huggingface.co/transformers/model_doc/dialogpt.html)** (来自 Microsoft Research) 伴随论文 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 由 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 发布。 1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (来自 NAVER CLOVA) 伴随论文 [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) 由 Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park 发布。
1. **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace), 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 同样的方法也应用于压缩 GPT-2 到 [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa 到 [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT 到 [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) 和德语版 DistilBERT 1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (来自 Google Research) 伴随论文 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 由 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 发布
1. **[DPR](https://huggingface.co/transformers/model_doc/dpr.html)** (来自 Facebook) 伴随论文 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 由 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 发布。 1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (来自 Inria/Facebook/Sorbonne) 伴随论文 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 由 Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 发布。
1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。 1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (来自 Google Research) 伴随论文 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 由 Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 发布。
1. **[EncoderDecoder](https://huggingface.co/transformers/model_doc/encoderdecoder.html)** (来自 Google Research) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。 1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (来自 OFA-Sys) 伴随论文 [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) 由 An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou 发布。
1. **[FlauBERT](https://huggingface.co/transformers/model_doc/flaubert.html)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。 1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (来自 LAION-AI) 伴随论文 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) 由 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov 发布。
1. **[FNet](https://huggingface.co/transformers/model_doc/fnet.html)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。 1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (来自 OpenAI) 伴随论文 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 由 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 发布。
1. **[Funnel Transformer](https://huggingface.co/transformers/model_doc/funnel.html)** (来自 CMU/Google Brain) 伴随论文 [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) 由 Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le 发布。 1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (来自 University of Göttingen) 伴随论文 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 由 Timo Lüddecke and Alexander Ecker 发布。
1. **[GPT](https://huggingface.co/transformers/model_doc/gpt.html)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。 1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[GPT Neo](https://huggingface.co/transformers/model_doc/gpt_neo.html)** (来自 EleutherAI) 随仓库 [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) 发布。作者为 Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy 发布。 1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (来自 Salesforce) 伴随论文 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 由 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 发布。
1. **[GPT-2](https://huggingface.co/transformers/model_doc/gpt2.html)** (来自 OpenAI) 伴随论文 [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) 由 Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** 发布。 1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (来自 MetaAI) 伴随论文 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) 由 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve 发布。
1. **[GPT-J](https://huggingface.co/transformers/model_doc/gptj.html)** (来自 EleutherAI) 伴随论文 [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) 由 Ben Wang and Aran Komatsuzaki 发布。 1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (来自 Cohere) 伴随论文 [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) 由 Cohere 发布。
1. **[Hubert](https://huggingface.co/transformers/model_doc/hubert.html)** (来自 Facebook) 伴随论文 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 由 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 发布。 1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (来自 Microsoft Research Asia) 伴随论文 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 由 Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 发布。
1. **[I-BERT](https://huggingface.co/transformers/model_doc/ibert.html)** (来自 Berkeley) 伴随论文 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 由 Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 发布。 1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (来自 YituTech) 伴随论文 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 由 Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 发布。
1. **[LayoutLM](https://huggingface.co/transformers/model_doc/layoutlm.html)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 由 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 发布。 1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (来自 Facebook AI) 伴随论文 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 由 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 发布。
1. **[LayoutLMv2](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 由 Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 发布。 1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[LayoutXLM](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (来自 Microsoft Research Asia) 伴随论文 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 由 Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 发布。 1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (来自 Tsinghua University) 伴随论文 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 由 Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 发布。
1. **[LED](https://huggingface.co/transformers/model_doc/led.html)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。 1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[Longformer](https://huggingface.co/transformers/model_doc/longformer.html)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。 1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (来自 Salesforce) 伴随论文 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 由 Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 发布。
1. **[LUKE](https://huggingface.co/transformers/model_doc/luke.html)** (来自 Studio Ousia) 伴随论文 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 由 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 发布。 1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (来自 Microsoft) 伴随论文 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 由 Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 发布。
1. **[LXMERT](https://huggingface.co/transformers/model_doc/lxmert.html)** (来自 UNC Chapel Hill) 伴随论文 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 由 Hao Tan and Mohit Bansal 发布。 1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (来自 Facebook) 伴随论文 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 由 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 发布。
1. **[M2M100](https://huggingface.co/transformers/model_doc/m2m_100.html)** (来自 Facebook) 伴随论文 [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) 由 Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin 发布。 1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
1. **[MarianMT](https://huggingface.co/transformers/model_doc/marian.html)** 用 [OPUS](http://opus.nlpl.eu/) 数据训练的机器翻译模型由 Jörg Tiedemann 发布。[Marian Framework](https://marian-nmt.github.io/) 由微软翻译团队开发 1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布
1. **[MBart](https://huggingface.co/transformers/model_doc/mbart.html)** (来自 Facebook) 伴随论文 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 由 Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 发布。 1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (来自 Berkeley/Facebook/Google) 伴随论文 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 由 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 发布。
1. **[MBart-50](https://huggingface.co/transformers/model_doc/mbart.html)** (来自 Facebook) 伴随论文 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 由 Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 发布。 1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (来自 SenseTime Research) 伴随论文 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 由 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 发布。
1. **[Megatron-BERT](https://huggingface.co/transformers/model_doc/megatron_bert.html)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。 1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (来自 Facebook) 伴随论文 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 由 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 发布。
1. **[Megatron-GPT2](https://huggingface.co/transformers/model_doc/megatron_gpt2.html)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。 1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (来自 Google AI) 伴随论文 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) 由 Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun 发布。
1. **[MPNet](https://huggingface.co/transformers/model_doc/mpnet.html)** (来自 Microsoft Research) 伴随论文 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 由 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 发布。 1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (来自 University of Hong Kong and TikTok) 伴随论文 [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) 由 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao 发布。
1. **[MT5](https://huggingface.co/transformers/model_doc/mt5.html)** (来自 Google AI) 伴随论文 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 由 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 发布。 1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (来自 The University of Texas at Austin) 伴随论文 [NMS Strikes Back](https://arxiv.org/abs/2212.06137) 由 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl 发布。
1. **[Pegasus](https://huggingface.co/transformers/model_doc/pegasus.html)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。 1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (来自 Facebook) 伴随论文 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 由 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 发布。
1. **[PhoBERT](https://huggingface.co/transformers/model_doc/phobert.html)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。 1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (来自 Microsoft Research) 伴随论文 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 由 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 发布。
1. **[ProphetNet](https://huggingface.co/transformers/model_doc/prophetnet.html)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。 1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (来自 SHI Labs) 伴随论文 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 由 Ali Hassani and Humphrey Shi 发布。
1. **[Reformer](https://huggingface.co/transformers/model_doc/reformer.html)** (来自 Google Research) 伴随论文 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 由 Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 发布。 1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (来自 Meta AI) 伴随论文 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) 由 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski 发布。
1. **[RemBERT](https://huggingface.co/transformers/model_doc/rembert.html)** (来自 Google Research) 伴随论文 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) 由 Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 发布 1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (来自 HuggingFace), 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 同样的方法也应用于压缩 GPT-2 到 [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa 到 [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT 到 [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) 和德语版 DistilBERT
1. **[RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html)** (来自 Facebook), 伴随论文 [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 由 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 发布。 1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (来自 Microsoft Research) 伴随论文 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 由 Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 发布。
1. **[RoFormer](https://huggingface.co/transformers/model_doc/roformer.html)** (来自 ZhuiyiTechnology), 伴随论文 [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) 由 Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 发布。 1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (来自 NAVER) 伴随论文 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 由 Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 发布。
1. **[SegFormer](https://huggingface.co/transformers/model_doc/segformer.html)** (来自 NVIDIA) 伴随论文 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 由 Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 发布。 1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (来自 Facebook) 伴随论文 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 由 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 发布。
1. **[SEW](https://huggingface.co/transformers/model_doc/sew.html)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。 1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (来自 Intel Labs) 伴随论文 [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) 由 René Ranftl, Alexey Bochkovskiy, Vladlen Koltun 发布。
1. **[SEW-D](https://huggingface.co/transformers/model_doc/sew_d.html)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。 1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (来自 Snap Research) 伴随论文 [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) 由 Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren 发布。
1. **[SpeechEncoderDecoder](https://huggingface.co/transformers/model_doc/speechencoderdecoder.html)** 1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[SpeechToTextTransformer](https://huggingface.co/transformers/model_doc/speech_to_text.html)** (来自 Facebook), 伴随论文 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 发布。 1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。
1. **[SpeechToTextTransformer2](https://huggingface.co/transformers/model_doc/speech_to_text_2.html)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。 1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (来自 Meta AI) 伴随论文 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) 由 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi 发布。
1. **[Splinter](https://huggingface.co/transformers/model_doc/splinter.html)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。 1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (来自 Google Research) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。
1. **[SqueezeBert](https://huggingface.co/transformers/model_doc/squeezebert.html)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。 1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (来自 Baidu) 伴随论文 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 发布。
1. **[T5](https://huggingface.co/transformers/model_doc/t5.html)** (来自 Google AI) 伴随论文 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。 1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (来自 Baidu) 伴随论文 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) 由 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang 发布。
1. **[T5v1.1](https://huggingface.co/transformers/model_doc/t5v1.1.html)** (来自 Google AI) 伴随论文 [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。 1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[TAPAS](https://huggingface.co/transformers/model_doc/tapas.html)** (来自 Google AI) 伴随论文 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 由 Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 发布。 1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[Transformer-XL](https://huggingface.co/transformers/model_doc/transformerxl.html)** (来自 Google/CMU) 伴随论文 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 由 Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 发布。 1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (来自 ESPnet and Microsoft Research) 伴随论文 [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) 由 Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang 发布。
1. **[TrOCR](https://huggingface.co/transformers/model_doc/trocr.html)** (来自 Microsoft) 伴随论文 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 由 Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 发布。 1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[UniSpeech](https://huggingface.co/transformers/model_doc/unispeech.html)** (来自 Microsoft Research) 伴随论文 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 由 Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 发布。 1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[UniSpeechSat](https://huggingface.co/transformers/model_doc/unispeech_sat.html)** (来自 Microsoft Research) 伴随论文 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 由 Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 发布。 1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。
1. **[Vision Transformer (ViT)](https://huggingface.co/transformers/model_doc/vit.html)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。 1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (来自 Facebook AI) 伴随论文 [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) 由 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela 发布。
1. **[VisionEncoderDecoder](https://huggingface.co/transformers/model_doc/visionencoderdecoder.html)** 1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。
1. **[VisualBERT](https://huggingface.co/transformers/model_doc/visual_bert.html)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。 1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (来自 Microsoft Research) 伴随论文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) 由 Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao 发布。
1. **[Wav2Vec2](https://huggingface.co/transformers/model_doc/wav2vec2.html)** (来自 Facebook AI) 伴随论文 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 由 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 发布。 1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (来自 CMU/Google Brain) 伴随论文 [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) 由 Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le 发布。
1. **[XLM](https://huggingface.co/transformers/model_doc/xlm.html)** (来自 Facebook) 伴随论文 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 由 Guillaume Lample and Alexis Conneau 发布。 1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (来自 ADEPT) 伴随论文 [blog post](https://www.adept.ai/blog/fuyu-8b) 由 Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar 发布。
1. **[XLM-ProphetNet](https://huggingface.co/transformers/model_doc/xlmprophetnet.html)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。 1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (来自 Google) 伴随论文 [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) 由 the Gemma Google team 发布。
1. **[XLM-RoBERTa](https://huggingface.co/transformers/model_doc/xlmroberta.html)** (来自 Facebook AI), 伴随论文 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 由 Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 发布。 1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (来自 Microsoft Research) 伴随论文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) 由 Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang 发布。
1. **[XLNet](https://huggingface.co/transformers/model_doc/xlnet.html)** (来自 Google/CMU) 伴随论文 [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 由 Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 发布。 1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (来自 KAIST) 伴随论文 [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) 由 Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim 发布。
1. **[XLSR-Wav2Vec2](https://huggingface.co/transformers/model_doc/xlsr_wav2vec2.html)** (来自 Facebook AI) 伴随论文 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 由 Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 发布。 1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (来自 EleutherAI) 随仓库 [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) 发布。作者为 Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy 发布。
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (来自 ABEJA) 由 Shinya Otani, Takayoshi Makabe, Anuj Arora, Kyo Hattori。
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (来自 OpenAI) 伴随论文 [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) 由 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever 发布。
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (来自 EleutherAI) 伴随论文 [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) 由 Ben Wang and Aran Komatsuzaki 发布。
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (来自 BigCode) 伴随论文 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) 由 Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra 发布。
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by 坂本俊之(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (来自 Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) 伴随论文 [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) 由 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang 发布。
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (来自 UCSD, NVIDIA) 伴随论文 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 由 Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 发布。
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (来自 Allegro.pl, AGH University of Science and Technology) 伴随论文 [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) 由 Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik 发布。
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (来自 Facebook) 伴随论文 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 由 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 发布。
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (来自 Berkeley) 伴随论文 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 由 Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 发布。
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (来自 Hugging Face) 伴随论文 [IDEFICS2](https://huggingface.co/blog/idefics2) 由 Léo Tronchon, Hugo Laurencon, Victor Sanh 发布。
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (来自 OpenAI) 伴随论文 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 由 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 发布。
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (来自 Salesforce) 伴随论文 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) 由 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi 发布。
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 由 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 发布。
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 由 Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 发布。
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 由 Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 发布。
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 由 Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 发布。
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (来自 Meta AI) 伴随论文 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 由 Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 发布。
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (来自 South China University of Technology) 伴随论文 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 由 Jiapeng Wang, Lianwen Jin, Kai Ding 发布。
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (来自 The FAIR team of Meta AI) 伴随论文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) 由 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample 发布。
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (来自 The FAIR team of Meta AI) 伴随论文 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) 由 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom. 发布。
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (来自 Microsoft Research & University of Wisconsin-Madison) 伴随论文 [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) 由 Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee 发布。
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (来自 Microsoft Research & University of Wisconsin-Madison) 伴随论文 [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) 由 Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee 发布。
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (来自 Google AI) released 伴随论文 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 由 Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 发布。
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (来自 Studio Ousia) 伴随论文 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 由 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 发布。
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (来自 UNC Chapel Hill) 伴随论文 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 由 Hao Tan and Mohit Bansal 发布。
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (来自 Facebook) 伴随论文 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 由 Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 发布。
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (来自 Facebook) 伴随论文 [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) 由 Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin 发布。
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (来自 Albert Gu and Tri Dao) 伴随论文 [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) 由 Albert Gu and Tri Dao 发布。
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** 用 [OPUS](http://opus.nlpl.eu/) 数据训练的机器翻译模型由 Jörg Tiedemann 发布。[Marian Framework](https://marian-nmt.github.io/) 由微软翻译团队开发。
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (来自 Microsoft Research Asia) 伴随论文 [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) 由 Junlong Li, Yiheng Xu, Lei Cui, Furu Wei 发布。
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (来自 FAIR and UIUC) 伴随论文 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) 由 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar 发布。
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (来自 Google AI) 伴随论文 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) 由 Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos 发布。
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 由 Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 发布。
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 由 Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 发布。
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (来自 Facebook) 伴随论文 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) 由 Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer 发布。
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (来自 Alibaba Research) 伴随论文 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) 由 Peng Wang, Cheng Da, and Cong Yao 发布。
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (来自 Studio Ousia) 伴随论文 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 由 Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 发布。
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (来自 Facebook) 伴随论文 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) 由 Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli 发布。
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (来自 CMU/Google Brain) 伴随论文 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 由 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 发布。
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (来自 Google Inc.) 伴随论文 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 由 Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 发布。
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (来自 Google Inc.) 伴随论文 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 由 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 发布。
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (来自 Apple) 伴随论文 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 由 Sachin Mehta and Mohammad Rastegari 发布。
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (来自 Apple) 伴随论文 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) 由 Sachin Mehta and Mohammad Rastegari 发布。
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (来自 Microsoft Research) 伴随论文 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 由 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 发布。
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (来自 MosaiML) 伴随论文 [llm-foundry](https://github.com/mosaicml/llm-foundry/) 由 the MosaicML NLP Team 发布。
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (来自 the University of Wisconsin - Madison) 伴随论文 [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) 由 Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh 发布。
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (来自 Google AI) 伴随论文 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 由 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 发布。
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (来自 中国人民大学 AI Box) 伴随论文 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 由 Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 发布。
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (来自 SHI Labs) 伴随论文 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 由 Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 发布。
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (来自华为诺亚方舟实验室) 伴随论文 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 由 Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 发布。
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (来自 Meta AI) 伴随论文 [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) 由 Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic 发布。
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (来自 the University of Wisconsin - Madison) 伴随论文 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 由 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 发布。
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (来自 SHI Labs) 伴随论文 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 由 Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 发布。
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (来自 [s-JoL](https://huggingface.co/s-JoL)) 由 GitHub (现已删除).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (来自 Meta AI) 伴随论文 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 由 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 发布。
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (来自 Google AI) 伴随论文 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 由 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 发布。
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (来自 Google AI) 伴随论文 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) 由 Matthias Minderer, Alexey Gritsenko, Neil Houlsby 发布。
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (来自 IBM Research) 伴随论文 [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) 由 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam 发布。
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (来自 IBM) 伴随论文 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) 由 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam 发布。
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (来自 Google) 伴随论文 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 由 Jason Phang, Yao Zhao, Peter J. Liu 发布。
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (来自 Deepmind) 伴随论文 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 由 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 发布。
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (来自 ADEPT) 伴随论文 [blog post](https://www.adept.ai/blog/persimmon-8b) 由 Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani 发布。
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (来自 Google) 伴随论文 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) 由 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova 发布。
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (来自 UCLA NLP) 伴随论文 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 由 Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 发布。
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (来自 Sea AI Labs) 伴随论文 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 由 Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 发布。
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (来自 Nanjing University, The University of Hong Kong etc.) 伴随论文 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) 由 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao 发布。
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (来自 Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) 伴随论文 [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) 由 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao 发布。
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (来自 NVIDIA) 伴随论文 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 由 Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 发布。
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (来自 the Qwen team, Alibaba Group) 伴随论文 [Qwen Technical Report](https://arxiv.org/abs/2309.16609) 由 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu 发布。
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (来自 the Qwen team, Alibaba Group) 伴随论文 [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou 发布.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (来自 Facebook) 伴随论文 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 由 Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 发布。
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (来自 Google Research) 伴随论文 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 由 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 发布。
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (来自 Google) 伴随论文 [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) 由 the Griffin, RLHF and Gemma Teams 发布。
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (来自 Google Research) 伴随论文 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 由 Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 发布。
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (来自 Google Research) 伴随论文 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) 由 Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 发布。
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (来自 Facebook), 伴随论文 [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 由 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 发布。
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (来自 Facebook) 伴随论文 [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) 由 Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli 发布。
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (来自 WeChatAI), 伴随论文 [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) 由 HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou 发布。
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (来自 ZhuiyiTechnology), 伴随论文 [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) 由 Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 发布。
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (来自 Bo Peng) 伴随论文 [this repo](https://github.com/BlinkDL/RWKV-LM) 由 Bo Peng 发布。
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (来自 NVIDIA) 伴随论文 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 由 Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 发布。
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (来自 Beijing Academy of Artificial Intelligence (BAAI) 伴随论文 [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) 由 Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang 发布。
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (来自 Meta AI) 伴随论文 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) 由 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick 发布。
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (来自 Google AI) 伴随论文 [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) 由 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer 发布。
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (来自 Microsoft Research) 伴随论文 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) 由 Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei 发布。
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (来自 Facebook), 伴随论文 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 发布。
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (来自 MBZUAI) 伴随论文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) 由 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan 发布。
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (来自 Microsoft) 伴随论文 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 由 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 发布。
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (来自 University of Würzburg) 伴随论文 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 由 Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 发布。
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (来自 Google AI) 伴随论文 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (来自 Google AI) 伴随论文 [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (来自 Microsoft Research) 伴随论文 [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) 由 Brandon Smock, Rohith Pesala, Robin Abraham 发布。
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (来自 Google AI) 伴随论文 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 由 Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 发布。
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (来自 Microsoft Research) 伴随论文 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 由 Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 发布。
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (来自 Google/CMU) 伴随论文 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 由 Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 发布。
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (来自 Microsoft) 伴随论文 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 由 Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 发布。
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (来自 UNC Chapel Hill) 伴随论文 [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) 由 Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal 发布。
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (来自 Intel) 伴随论文 [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) 由 Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding 发布.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (来自 Microsoft Research) 伴随论文 [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) 由 Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal 发布。
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (来自 Google Research) 伴随论文 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) 由 Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant 发布。
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (来自 Microsoft Research) 伴随论文 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 由 Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 发布。
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (来自 Microsoft Research) 伴随论文 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 由 Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 发布。
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (来自 Peking University) 伴随论文 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) 由 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun 发布。
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (来自 Tsinghua University and Nankai University) 伴随论文 [Visual Attention Network](https://arxiv.org/abs/2202.09741) 由 Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu 发布。
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (来自 Multimedia Computing Group, Nanjing University) 伴随论文 [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) 由 Zhan Tong, Yibing Song, Jue Wang, Limin Wang 发布。
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (来自 NAVER AI Lab/Kakao Enterprise/Kakao Brain) 伴随论文 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 由 Wonjae Kim, Bokyung Son, Ildoo Kim 发布。
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (来自 University of WisconsinMadison) 伴随论文 [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) 由 Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee 发布。
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (来自 Meta AI) 伴随论文 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) 由 Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He 发布。
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (来自 HUST-VL) 伴随论文 [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) 由 Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang 发布。
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (来自 Meta AI) 伴随论文 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 发布.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (来自 Kakao Enterprise) 伴随论文 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) 由 Jaehyeon Kim, Jungil Kong, Juhee Son 发布。
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (来自 Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) 由 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (来自 Facebook AI) 伴随论文 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 由 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 发布。
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (来自 Facebook AI) 伴随论文 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 发布。
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (来自 Facebook AI) 伴随论文 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 由 Qiantong Xu, Alexei Baevski, Michael Auli 发布。
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (来自 OpenAI) 伴随论文 [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) 由 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever 发布。
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (来自 Microsoft Research) 伴随论文 [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) 由 Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling 发布。
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (来自 Meta AI) 伴随论文 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) 由 Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe 发布。
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (来自 Facebook) 伴随论文 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 由 Guillaume Lample and Alexis Conneau 发布。
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (来自 Facebook AI), 伴随论文 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 由 Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 发布。
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (来自 Facebook AI) 伴随论文 [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) 由 Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau 发布。
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (来自 Meta AI) 伴随论文 [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) 由 Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa 发布。
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (来自 Google/CMU) 伴随论文 [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 由 Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 发布。
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (来自 Facebook AI) 伴随论文 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 由 Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 发布。
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (来自 Facebook AI) 伴随论文 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 由 Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 发布。
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (来自 Huazhong University of Science & Technology) 伴随论文 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 由 Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 发布。
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (来自 the University of Wisconsin - Madison) 伴随论文 [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) 由 Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 发布。
1. 想要贡献新的模型?我们这里有一份**详细指引和模板**来引导你添加新的模型。你可以在 [`templates`](./templates) 目录中找到他们。记得查看 [贡献指南](./CONTRIBUTING.md) 并在开始写 PR 前联系维护人员或开一个新的 issue 来获得反馈。 1. 想要贡献新的模型?我们这里有一份**详细指引和模板**来引导你添加新的模型。你可以在 [`templates`](./templates) 目录中找到他们。记得查看 [贡献指南](./CONTRIBUTING.md) 并在开始写 PR 前联系维护人员或开一个新的 issue 来获得反馈。
要检查某个模型是否已有 Flax、PyTorch 或 TensorFlow 的实现,或其是否在 🤗 Tokenizers 库中有对应词符化器tokenizer敬请参阅[此表](https://huggingface.co/transformers/index.html#supported-frameworks)。 要检查某个模型是否已有 Flax、PyTorch 或 TensorFlow 的实现,或其是否在 🤗 Tokenizers 库中有对应词符化器tokenizer敬请参阅[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。
这些实现均已于多个数据集测试(请参看用例脚本)并应于原版实现表现相当。你可以在用例文档的[此节](https://huggingface.co/transformers/examples.html)中了解表现的细节。 这些实现均已于多个数据集测试(请参看用例脚本)并应于原版实现表现相当。你可以在用例文档的[此节](https://huggingface.co/docs/transformers/examples)中了解表现的细节。
## 了解更多 ## 了解更多
| 章节 | 描述 | | 章节 | 描述 |
|-|-| |-|-|
| [文档](https://huggingface.co/transformers/) | 完整的 API 文档和教程 | | [文档](https://huggingface.co/docs/transformers/) | 完整的 API 文档和教程 |
| [任务总结](https://huggingface.co/transformers/task_summary.html) | 🤗 Transformers 支持的任务 | | [任务总结](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支持的任务 |
| [预处理教程](https://huggingface.co/transformers/preprocessing.html) | 使用 `Tokenizer` 来为模型准备数据 | | [预处理教程](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 来为模型准备数据 |
| [训练和微调](https://huggingface.co/transformers/training.html) | 在 PyTorch/TensorFlow 的训练循环或 `Trainer` API 中使用 🤗 Transformers 提供的模型 | | [训练和微调](https://huggingface.co/docs/transformers/training) | 在 PyTorch/TensorFlow 的训练循环或 `Trainer` API 中使用 🤗 Transformers 提供的模型 |
| [快速上手:微调和用例脚本](https://github.com/huggingface/transformers/tree/master/examples) | 为各种任务提供的用例脚本 | | [快速上手:微调和用例脚本](https://github.com/huggingface/transformers/tree/main/examples) | 为各种任务提供的用例脚本 |
| [模型分享和上传](https://huggingface.co/transformers/model_sharing.html) | 和社区上传和分享你微调的模型 | | [模型分享和上传](https://huggingface.co/docs/transformers/model_sharing) | 和社区上传和分享你微调的模型 |
| [迁移](https://huggingface.co/transformers/migration.html) | 从 `pytorch-transformers` 或 `pytorch-pretrained-bert` 迁移到 🤗 Transformers | | [迁移](https://huggingface.co/docs/transformers/migration) | 从 `pytorch-transformers` 或 `pytorch-pretrained-bert` 迁移到 🤗 Transformers |
## 引用 ## 引用

View File

@ -39,7 +39,7 @@ library: 函式庫
module: 模組 module: 模組
NLP/Natural Language Processing: 以 NLP 出現時不翻譯,以 Natural Language Processing 出現時翻譯為自然語言處理 NLP/Natural Language Processing: 以 NLP 出現時不翻譯,以 Natural Language Processing 出現時翻譯為自然語言處理
online demos: 線上Demo online demos: 線上Demo
pipeline: pipeline不翻譯 pipeline: pipeline不翻譯
pretrained/pretrain: 預訓練 pretrained/pretrain: 預訓練
Python data structures (e.g., list, set, dict): 翻譯為串列,集合,字典,並用括號標註原英文 Python data structures (e.g., list, set, dict): 翻譯為串列,集合,字典,並用括號標註原英文
repository: repository不翻譯 repository: repository不翻譯
@ -53,23 +53,23 @@ user: 使用者
<p align="center"> <p align="center">
<br> <br>
<img src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/transformers_logo_name.png" width="400"/> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br> <br>
<p> </p>
<p align="center"> <p align="center">
<a href="https://circleci.com/gh/huggingface/transformers"> <a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master"> <img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a> </a>
<a href="https://github.com/huggingface/transformers/blob/master/LICENSE"> <a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue"> <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a> </a>
<a href="https://huggingface.co/transformers/index.html"> <a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/transformers/index.html.svg?down_color=red&down_message=offline&up_message=online"> <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a> </a>
<a href="https://github.com/huggingface/transformers/releases"> <a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg"> <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a> </a>
<a href="https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md"> <a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg"> <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a> </a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a> <a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
@ -78,10 +78,19 @@ user: 使用者
<h4 align="center"> <h4 align="center">
<p> <p>
<a href="https://github.com/huggingface/transformers/">English</a> | <a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hans.md">简体中文</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<b>繁體中文</b> | <b>繁體中文</b> |
<a href="https://github.com/huggingface/transformers/blob/master/README_ko.md">한국어</a> <a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<p> <a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
</p>
</h4> </h4>
<h3 align="center"> <h3 align="center">
@ -89,7 +98,7 @@ user: 使用者
</h3> </h3>
<h3 align="center"> <h3 align="center">
<a href="https://hf.co/course"><img src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/course_banner.png"></a> <a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3> </h3>
🤗 Transformers 提供了數以千計的預訓練模型,支援 100 多種語言的文本分類、資訊擷取、問答、摘要、翻譯、文本生成。它的宗旨是讓最先進的 NLP 技術人人易用。 🤗 Transformers 提供了數以千計的預訓練模型,支援 100 多種語言的文本分類、資訊擷取、問答、摘要、翻譯、文本生成。它的宗旨是讓最先進的 NLP 技術人人易用。
@ -103,13 +112,13 @@ user: 使用者
你可以直接在 [model hub](https://huggingface.co/models) 上測試大多數的模型。我們也提供了 [私有模型託管、模型版本管理以及推論API](https://huggingface.co/pricing)。 你可以直接在 [model hub](https://huggingface.co/models) 上測試大多數的模型。我們也提供了 [私有模型託管、模型版本管理以及推論API](https://huggingface.co/pricing)。
這裡是一些範例: 這裡是一些範例:
- [用 BERT 做遮蓋填詞](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France) - [用 BERT 做遮蓋填詞](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [用 Electra 做專有名詞辨識](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city) - [用 Electra 做專有名詞辨識](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [用 GPT-2 做文本生成](https://huggingface.co/gpt2?text=A+long+time+ago%2C+) - [用 GPT-2 做文本生成](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [用 RoBERTa 做自然語言推論](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal) - [用 RoBERTa 做自然語言推論](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [用 BART 做文本摘要](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct) - [用 BART 做文本摘要](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [用 DistilBERT 做問答](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species) - [用 DistilBERT 做問答](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [用 T5 做翻譯](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) - [用 T5 做翻譯](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Write With Transformer](https://transformer.huggingface.co)**,由 Hugging Face 團隊所打造,是一個文本生成的官方 demo。 **[Write With Transformer](https://transformer.huggingface.co)**,由 Hugging Face 團隊所打造,是一個文本生成的官方 demo。
@ -149,14 +158,14 @@ user: 使用者
``` ```
除了提供問題解答,預訓練模型還提供了對應的信賴度分數以及解答在 tokenized 後的文本中開始和結束的位置。你可以從[這個教學](https://huggingface.co/transformers/task_summary.html)了解更多 `pipeline` API支援的任務。 除了提供問題解答,預訓練模型還提供了對應的信賴度分數以及解答在 tokenized 後的文本中開始和結束的位置。你可以從[這個教學](https://huggingface.co/docs/transformers/task_summary)了解更多 `pipeline` API支援的任務。
要在你的任務中下載和使用任何預訓練模型很簡單,只需三行程式碼。這裡是 PyTorch 版的範例: 要在你的任務中下載和使用任何預訓練模型很簡單,只需三行程式碼。這裡是 PyTorch 版的範例:
```python ```python
>>> from transformers import AutoTokenizer, AutoModel >>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased") >>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt") >>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
@ -165,8 +174,8 @@ user: 使用者
```python ```python
>>> from transformers import AutoTokenizer, TFAutoModel >>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased") >>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf") >>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
@ -185,7 +194,7 @@ Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換
- 對所有模型使用的制式化API - 對所有模型使用的制式化API
1. 更低的運算成本,更少的碳排放: 1. 更低的運算成本,更少的碳排放:
- 研究人員可以分享訓練的模型而非從頭開始訓練 - 研究人員可以分享訓練的模型而非每次從頭開始訓練
- 工程師可以減少計算時間以及生產成本 - 工程師可以減少計算時間以及生產成本
- 數十種模型架構、兩千多個預訓練模型、100多種語言支援 - 數十種模型架構、兩千多個預訓練模型、100多種語言支援
@ -203,13 +212,13 @@ Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換
- 本函式庫並不是模組化的神經網絡工具箱。模型文件中的程式碼並未做額外的抽象封裝,以便研究人員快速地翻閱及修改程式碼,而不會深陷複雜的類別包裝之中。 - 本函式庫並不是模組化的神經網絡工具箱。模型文件中的程式碼並未做額外的抽象封裝,以便研究人員快速地翻閱及修改程式碼,而不會深陷複雜的類別包裝之中。
- `Trainer` API 並非相容任何模型,它只為本函式庫中的模型最佳化。對於一般的機器學習用途,請使用其他函式庫。 - `Trainer` API 並非相容任何模型,它只為本函式庫中的模型最佳化。對於一般的機器學習用途,請使用其他函式庫。
- 儘管我們已盡力而為,[examples 目錄](https://github.com/huggingface/transformers/tree/master/examples)中的腳本也僅為範例而已。對於特定問題,它們並不一定隨選即用,可能需要修改幾行程式碼以符合需求。 - 儘管我們已盡力而為,[examples 目錄](https://github.com/huggingface/transformers/tree/main/examples)中的腳本也僅為範例而已。對於特定問題,它們並不一定隨選即用,可能需要修改幾行程式碼以符合需求。
## 安裝 ## 安裝
### 使用 pip ### 使用 pip
這個 Repository 已在 Python 3.6+、Flax 0.3.2+、PyTorch 1.3.1+ 和 TensorFlow 2.3+ 下經過測試。 這個 Repository 已在 Python 3.8+、Flax 0.4.1+、PyTorch 1.11+ 和 TensorFlow 2.6+ 下經過測試。
你可以在[虛擬環境](https://docs.python.org/3/library/venv.html)中安裝 🤗 Transformers。如果你還不熟悉 Python 的虛擬環境,請閱此[使用者指引](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。 你可以在[虛擬環境](https://docs.python.org/3/library/venv.html)中安裝 🤗 Transformers。如果你還不熟悉 Python 的虛擬環境,請閱此[使用者指引](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。
@ -223,18 +232,18 @@ Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換
pip install transformers pip install transformers
``` ```
如果你想要試試範例或者想在正式發布前使用最新開發中的程式碼,你必須[從原始碼安裝](https://huggingface.co/transformers/installation.html#installing-from-source)。 如果你想要試試範例或者想在正式發布前使用最新開發中的程式碼,你必須[從原始碼安裝](https://huggingface.co/docs/transformers/installation#installing-from-source)。
### 使用 conda ### 使用 conda
自 Transformers 4.0.0 版始,我們有了一個 conda channel `huggingface`。
🤗 Transformers 可以藉由 conda 依此安裝: 🤗 Transformers 可以藉由 conda 依此安裝:
```shell script ```shell script
conda install -c huggingface transformers conda install conda-forge::transformers
``` ```
> **_筆記:_** 從 `huggingface` 頻道安裝 `transformers` 已被淘汰。
要藉由 conda 安裝 Flax、PyTorch 或 TensorFlow 其中之一,請參閱它們各自安裝頁面的說明。 要藉由 conda 安裝 Flax、PyTorch 或 TensorFlow 其中之一,請參閱它們各自安裝頁面的說明。
## 模型架構 ## 模型架構
@ -243,97 +252,277 @@ conda install -c huggingface transformers
目前的檢查點數量: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen) 目前的檢查點數量: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers 目前支援以下的架構(模型概覽請參閱[這裡](https://huggingface.co/transformers/model_summary.html) 🤗 Transformers 目前支援以下的架構(模型概覽請參閱[這裡](https://huggingface.co/docs/transformers/model_summary)
1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. 1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[BART](https://huggingface.co/transformers/model_doc/bart.html)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer. 1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[BARThez](https://huggingface.co/transformers/model_doc/barthez.html)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis. 1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[BARTpho](https://huggingface.co/transformers/model_doc/bartpho.html)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen. 1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[BEiT](https://huggingface.co/transformers/model_doc/beit.html)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei. 1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[BERT](https://huggingface.co/transformers/model_doc/bert.html)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. 1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BERT For Sequence Generation](https://huggingface.co/transformers/model_doc/bertgeneration.html)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. 1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BERTweet](https://huggingface.co/transformers/model_doc/bertweet.html)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen. 1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BigBird-Pegasus](https://huggingface.co/transformers/model_doc/bigbird_pegasus.html)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. 1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BigBird-RoBERTa](https://huggingface.co/transformers/model_doc/bigbird.html)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. 1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[Blenderbot](https://huggingface.co/transformers/model_doc/blenderbot.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. 1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BlenderbotSmall](https://huggingface.co/transformers/model_doc/blenderbot_small.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. 1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BORT](https://huggingface.co/transformers/model_doc/bort.html)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry. 1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[ByT5](https://huggingface.co/transformers/model_doc/byt5.html)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel. 1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[CamemBERT](https://huggingface.co/transformers/model_doc/camembert.html)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. 1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[CANINE](https://huggingface.co/transformers/model_doc/canine.html)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting. 1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[CLIP](https://huggingface.co/transformers/model_doc/clip.html)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. 1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[ConvBERT](https://huggingface.co/transformers/model_doc/convbert.html)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan. 1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[CPM](https://huggingface.co/transformers/model_doc/cpm.html)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun. 1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[CTRL](https://huggingface.co/transformers/model_doc/ctrl.html)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher. 1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[DeBERTa](https://huggingface.co/transformers/model_doc/deberta.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. 1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[DeBERTa-v2](https://huggingface.co/transformers/model_doc/deberta_v2.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. 1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[DeiT](https://huggingface.co/transformers/model_doc/deit.html)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou. 1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[DETR](https://huggingface.co/transformers/model_doc/detr.html)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko. 1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[DialoGPT](https://huggingface.co/transformers/model_doc/dialogpt.html)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan. 1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT. 1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[DPR](https://huggingface.co/transformers/model_doc/dpr.html)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning. 1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[EncoderDecoder](https://huggingface.co/transformers/model_doc/encoderdecoder.html)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. 1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[FlauBERT](https://huggingface.co/transformers/model_doc/flaubert.html)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab. 1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[FNet](https://huggingface.co/transformers/model_doc/fnet.html)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. 1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[Funnel Transformer](https://huggingface.co/transformers/model_doc/funnel.html)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. 1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[GPT](https://huggingface.co/transformers/model_doc/gpt.html)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. 1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[GPT Neo](https://huggingface.co/transformers/model_doc/gpt_neo.html)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. 1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[GPT-2](https://huggingface.co/transformers/model_doc/gpt2.html)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**. 1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[GPT-J](https://huggingface.co/transformers/model_doc/gptj.html)** (from EleutherAI) released with the paper [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki. 1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (from Cohere) released with the paper [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[Hubert](https://huggingface.co/transformers/model_doc/hubert.html)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed. 1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[I-BERT](https://huggingface.co/transformers/model_doc/ibert.html)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer. 1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[LayoutLM](https://huggingface.co/transformers/model_doc/layoutlm.html)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou. 1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[LayoutLMv2](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou. 1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[LayoutXLM](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei. 1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[LED](https://huggingface.co/transformers/model_doc/led.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. 1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[Longformer](https://huggingface.co/transformers/model_doc/longformer.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. 1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[LUKE](https://huggingface.co/transformers/model_doc/luke.html)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto. 1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[LXMERT](https://huggingface.co/transformers/model_doc/lxmert.html)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. 1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[M2M100](https://huggingface.co/transformers/model_doc/m2m_100.html)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin. 1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[MarianMT](https://huggingface.co/transformers/model_doc/marian.html)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team. 1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[MBart](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer. 1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[MBart-50](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan. 1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[Megatron-BERT](https://huggingface.co/transformers/model_doc/megatron_bert.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[Megatron-GPT2](https://huggingface.co/transformers/model_doc/megatron_gpt2.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[MPNet](https://huggingface.co/transformers/model_doc/mpnet.html)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. 1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[MT5](https://huggingface.co/transformers/model_doc/mt5.html)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. 1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[Pegasus](https://huggingface.co/transformers/model_doc/pegasus.html)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. 1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[PhoBERT](https://huggingface.co/transformers/model_doc/phobert.html)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. 1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[ProphetNet](https://huggingface.co/transformers/model_doc/prophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. 1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[Reformer](https://huggingface.co/transformers/model_doc/reformer.html)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. 1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[RemBERT](https://huggingface.co/transformers/model_doc/rembert.html)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder. 1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT.
1. **[RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. 1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[RoFormer](https://huggingface.co/transformers/model_doc/roformer.html)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu. 1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER) released with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[SegFormer](https://huggingface.co/transformers/model_doc/segformer.html)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo. 1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[SEW](https://huggingface.co/transformers/model_doc/sew.html)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. 1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[SEW-D](https://huggingface.co/transformers/model_doc/sew_d.html)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. 1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[SpeechEncoderDecoder](https://huggingface.co/transformers/model_doc/speechencoderdecoder.html)** 1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[SpeechToTextTransformer](https://huggingface.co/transformers/model_doc/speech_to_text.html)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino. 1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[SpeechToTextTransformer2](https://huggingface.co/transformers/model_doc/speech_to_text_2.html)** (from Facebook) released with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau. 1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[Splinter](https://huggingface.co/transformers/model_doc/splinter.html)** (from Tel Aviv University) released with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy. 1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[SqueezeBert](https://huggingface.co/transformers/model_doc/squeezebert.html)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer. 1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[T5](https://huggingface.co/transformers/model_doc/t5.html)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. 1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[T5v1.1](https://huggingface.co/transformers/model_doc/t5v1.1.html)** (from Google AI) released with the paper [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. 1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[TAPAS](https://huggingface.co/transformers/model_doc/tapas.html)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos. 1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[Transformer-XL](https://huggingface.co/transformers/model_doc/transformerxl.html)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov. 1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (from ESPnet and Microsoft Research) released with the paper [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[TrOCR](https://huggingface.co/transformers/model_doc/trocr.html)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei. 1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[UniSpeech](https://huggingface.co/transformers/model_doc/unispeech.html)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang. 1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[UniSpeechSat](https://huggingface.co/transformers/model_doc/unispeech_sat.html)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu. 1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[Vision Transformer (ViT)](https://huggingface.co/transformers/model_doc/vit.html)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[VisionEncoderDecoder](https://huggingface.co/transformers/model_doc/visionencoderdecoder.html)** 1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[VisualBERT](https://huggingface.co/transformers/model_doc/visual_bert.html)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. 1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Wav2Vec2](https://huggingface.co/transformers/model_doc/wav2vec2.html)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. 1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[XLM](https://huggingface.co/transformers/model_doc/xlm.html)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau. 1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[XLM-ProphetNet](https://huggingface.co/transformers/model_doc/xlmprophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. 1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[XLM-RoBERTa](https://huggingface.co/transformers/model_doc/xlmroberta.html)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. 1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[XLNet](https://huggingface.co/transformers/model_doc/xlnet.html)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. 1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[XLSR-Wav2Vec2](https://huggingface.co/transformers/model_doc/xlsr_wav2vec2.html)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli. 1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released with the paper [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by 坂本俊之(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (from Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) released with the paper [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (from Hugging Face) released with the paper [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (from Albert Gu and Tri Dao) released with the paper [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Facebook) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the paper [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released with the paper [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (from Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) released with the paper [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (from the Qwen team, Alibaba Group) released with the paper [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (from the Qwen team, Alibaba Group) released with the paper [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (from Google) released with the paper [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng) released with the paper [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (from Beijing Academy of Artificial Intelligence (BAAI) released with the paper [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (from Google AI) released with the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook) released with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University) released with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released with the paper [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (from Microsoft Research) released with the paper [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (from University of WisconsinMadison) released with the paper [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI) released with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. 想要貢獻新的模型?我們這裡有一份**詳細指引和模板**來引導你加入新的模型。你可以在 [`templates`](./templates) 目錄中找到它們。記得查看[貢獻指引](./CONTRIBUTING.md)並在開始寫 PR 前聯繫維護人員或開一個新的 issue 來獲得 feedbacks。 1. 想要貢獻新的模型?我們這裡有一份**詳細指引和模板**來引導你加入新的模型。你可以在 [`templates`](./templates) 目錄中找到它們。記得查看[貢獻指引](./CONTRIBUTING.md)並在開始寫 PR 前聯繫維護人員或開一個新的 issue 來獲得 feedbacks。
要檢查某個模型是否已有 Flax、PyTorch 或 TensorFlow 的實作,或其是否在🤗 Tokenizers 函式庫中有對應的 tokenizer敬請參閱[此表](https://huggingface.co/transformers/index.html#supported-frameworks)。 要檢查某個模型是否已有 Flax、PyTorch 或 TensorFlow 的實作,或其是否在🤗 Tokenizers 函式庫中有對應的 tokenizer敬請參閱[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。
這些實作均已於多個資料集測試(請參閱範例腳本)並應與原版實作表現相當。你可以在範例文件的[此節](https://huggingface.co/transformers/examples.html)中了解實作的細節。 這些實作均已於多個資料集測試(請參閱範例腳本)並應與原版實作表現相當。你可以在範例文件的[此節](https://huggingface.co/docs/transformers/examples)中了解實作的細節。
## 了解更多 ## 了解更多
@ -341,12 +530,12 @@ conda install -c huggingface transformers
| 章節 | 描述 | | 章節 | 描述 |
|-|-| |-|-|
| [文件](https://huggingface.co/transformers/) | 完整的 API 文件和教學 | | [文件](https://huggingface.co/transformers/) | 完整的 API 文件和教學 |
| [任務概覽](https://huggingface.co/transformers/task_summary.html) | 🤗 Transformers 支援的任務 | | [任務概覽](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支援的任務 |
| [預處理教學](https://huggingface.co/transformers/preprocessing.html) | 使用 `Tokenizer` 來為模型準備資料 | | [預處理教學](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 來為模型準備資料 |
| [訓練和微調](https://huggingface.co/transformers/training.html) | 使用 PyTorch/TensorFlow 的內建的訓練方式或於 `Trainer` API 中使用 🤗 Transformers 提供的模型 | | [訓練和微調](https://huggingface.co/docs/transformers/training) | 使用 PyTorch/TensorFlow 的內建的訓練方式或於 `Trainer` API 中使用 🤗 Transformers 提供的模型 |
| [快速上手:微調和範例腳本](https://github.com/huggingface/transformers/tree/master/examples) | 為各種任務提供的範例腳本 | | [快速上手:微調和範例腳本](https://github.com/huggingface/transformers/tree/main/examples) | 為各種任務提供的範例腳本 |
| [模型分享和上傳](https://huggingface.co/transformers/model_sharing.html) | 上傳並與社群分享你微調的模型 | | [模型分享和上傳](https://huggingface.co/docs/transformers/model_sharing) | 上傳並與社群分享你微調的模型 |
| [遷移](https://huggingface.co/transformers/migration.html) | 從 `pytorch-transformers` 或 `pytorch-pretrained-bert` 遷移到 🤗 Transformers | | [遷移](https://huggingface.co/docs/transformers/migration) | 從 `pytorch-transformers` 或 `pytorch-pretrained-bert` 遷移到 🤗 Transformers |
## 引用 ## 引用

40
SECURITY.md Normal file
View File

@ -0,0 +1,40 @@
# Security Policy
## Hugging Face Hub, remote artefacts, and remote code
Transformers is open-source software that is tightly coupled to the Hugging Face Hub. While you have the ability to use it
offline with pre-downloaded model weights, it provides a very simple way to download, use, and manage models locally.
When downloading artefacts that have been uploaded by others on any platform, you expose yourself to risks. Please
read below for the security recommendations in order to keep your runtime and local environment safe.
### Remote artefacts
Models uploaded on the Hugging Face Hub come in different formats. We heavily recommend uploading and downloading
models in the [`safetensors`](https://github.com/huggingface/safetensors) format (which is the default prioritized
by the transformers library), as developed specifically to prevent arbitrary code execution on your system.
To avoid loading models from unsafe formats(e.g. [pickle](https://docs.python.org/3/library/pickle.html), you should use the `use_safetenstors` parameter. If doing so, in the event that no .safetensors file is present, transformers will error when loading the model.
### Remote code
#### Modeling
Transformers supports many model architectures, but is also the bridge between your Python runtime and models that
are stored in model repositories on the Hugging Face Hub.
These models require the `trust_remote_code=True` parameter to be set when using them; please **always** verify
the content of the modeling files when using this argument. We recommend setting a revision in order to ensure you
protect yourself from updates on the repository.
#### Tools
Through the `Agent` framework, remote tools can be downloaded to be used by the Agent. You're to specify these tools
yourself, but please keep in mind that their code will be run on your machine if the Agent chooses to run them.
Please inspect the code of the tools before passing them to the Agent to protect your runtime and local setup.
## Reporting a Vulnerability
🤗 Please feel free to submit vulnerability reports to our private bug bounty program at https://hackerone.com/hugging_face. You'll need to request access to the program by emailing security@huggingface.co.
Note that you'll need to be invited to our program, so send us a quick email at security@huggingface.co if you've found a vulnerability.

609
awesome-transformers.md Normal file
View File

@ -0,0 +1,609 @@
# Awesome projects built with Transformers
This page lists awesome projects built on top of Transformers. Transformers is more than a toolkit to use pretrained
models: it's a community of projects built around it and the Hugging Face Hub. We want Transformers to enable
developers, researchers, students, professors, engineers, and anyone else to build their dream projects.
In this list, we showcase incredibly impactful and novel projects that have pushed the field forward. We celebrate
100 of these projects as we reach the milestone of 100k stars as a community; but we're very open to pull requests
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
to add it.
## [gpt4all](https://github.com/nomic-ai/gpt4all)
[gpt4all](https://github.com/nomic-ai/gpt4all) is an ecosystem of open-source chatbots trained on massive collections of clean assistant data including code, stories and dialogue. It offers open-source, large language models such as LLaMA and GPT-J trained in an assistant-style.
Keywords: Open-source, LLaMa, GPT-J, instruction, assistant
## [recommenders](https://github.com/microsoft/recommenders)
This repository contains examples and best practices for building recommendation systems, provided as Jupyter notebooks. It goes over several aspects required to build efficient recommendation systems: data preparation, modeling, evaluation, model selection & optimization, as well as operationalization
Keywords: Recommender systems, AzureML
## [IOPaint](https://github.com/Sanster/IOPaint)
Image inpainting tool powered by Stable Diffusion. Remove any unwanted object, defect, people from your pictures or erase and replace anything on your pictures.
Keywords: inpainting, SD, Stable Diffusion
## [flair](https://github.com/flairNLP/flair)
FLAIR is a powerful PyTorch NLP framework, convering several important tasks: NER, sentiment-analysis, part-of-speech tagging, text and document embeddings, among other things.
Keywords: NLP, text embedding, document embedding, biomedical, NER, PoS, sentiment-analysis
## [mindsdb](https://github.com/mindsdb/mindsdb)
MindsDB is a low-code ML platform, which automates and integrates several ML frameworks into the data stack as "AI Tables" to streamline the integration of AI into applications, making it accessible to developers of all skill levels.
Keywords: Database, low-code, AI table
## [langchain](https://github.com/hwchase17/langchain)
[langchain](https://github.com/hwchase17/langchain) is aimed at assisting in the development of apps merging both LLMs and other sources of knowledge. The library allows chaining calls to applications, creating a sequence across many tools.
Keywords: LLMs, Large Language Models, Agents, Chains
## [LlamaIndex](https://github.com/jerryjliu/llama_index)
[LlamaIndex](https://github.com/jerryjliu/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retreival mechanisms to perform different LLM tasks and obtain knowledge-augmented results.
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
## [ParlAI](https://github.com/facebookresearch/ParlAI)
[ParlAI](https://github.com/facebookresearch/ParlAI) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dialogue, to visual question answering. It provides more than 100 datasets under the same API, a large zoo of pretrained models, a set of agents, and has several integrations.
Keywords: Dialogue, Chatbots, VQA, Datasets, Agents
## [sentence-transformers](https://github.com/UKPLab/sentence-transformers)
This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various task. Text is embedding in vector space such that similar text is close and can efficiently be found using cosine similarity.
Keywords: Dense vector representations, Text embeddings, Sentence embeddings
## [ludwig](https://github.com/ludwig-ai/ludwig)
Ludwig is a declarative machine learning framework that makes it easy to define machine learning pipelines using a simple and flexible data-driven configuration system. Ludwig is targeted at a wide variety of AI tasks. It provides a data-driven configuration system, training, prediction, and evaluation scripts, as well as a programmatic API.
Keywords: Declarative, Data-driven, ML Framework
## [InvokeAI](https://github.com/invoke-ai/InvokeAI)
[InvokeAI](https://github.com/invoke-ai/InvokeAI) is an engine for Stable Diffusion models, aimed at professionals, artists, and enthusiasts. It leverages the latest AI-driven technologies through CLI as well as a WebUI.
Keywords: Stable-Diffusion, WebUI, CLI
## [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)
[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) is an easy-to-use and powerful NLP library particularly targeted at the Chinese languages. It has support for multiple pre-trained model zoos, and supports a wide-range of NLP tasks from research to industrial applications.
Keywords: NLP, Chinese, Research, Industry
## [stanza](https://github.com/stanfordnlp/stanza)
The Stanford NLP Group's official Python NLP library. It contains support for running various accurate natural language processing tools on 60+ languages and for accessing the Java Stanford CoreNLP software from Python.
Keywords: NLP, Multilingual, CoreNLP
## [DeepPavlov](https://github.com/deeppavlov/DeepPavlov)
[DeepPavlov](https://github.com/deeppavlov/DeepPavlov) is an open-source conversational AI library. It is designed for the development of production ready chat-bots and complex conversational systems, as well as research in the area of NLP and, particularly, of dialog systems.
Keywords: Conversational, Chatbot, Dialog
## [alpaca-lora](https://github.com/tloen/alpaca-lora)
Alpaca-lora contains code for reproducing the Stanford Alpaca results using low-rank adaptation (LoRA). The repository provides training (fine-tuning) as well as generation scripts.
Keywords: LoRA, Parameter-efficient fine-tuning
## [imagen-pytorch](https://github.com/lucidrains/imagen-pytorch)
An open-source Implementation of Imagen, Google's closed-source Text-to-Image Neural Network that beats DALL-E2. As of release, it is the new SOTA for text-to-image synthesis.
Keywords: Imagen, Text-to-image
## [adapters](https://github.com/adapter-hub/adapters)
[adapters](https://github.com/adapter-hub/adapters) is an extension of HuggingFace's Transformers library, integrating adapters into state-of-the-art language models by incorporating AdapterHub, a central repository for pre-trained adapter modules. It is a drop-in replacement for transformers, which is regularly updated to stay up-to-date with the developments of transformers.
Keywords: Adapters, LoRA, Parameter-efficient fine-tuning, Hub
## [NeMo](https://github.com/NVIDIA/NeMo)
NVIDIA [NeMo](https://github.com/NVIDIA/NeMo) is a conversational AI toolkit built for researchers working on automatic speech recognition (ASR), text-to-speech synthesis (TTS), large language models (LLMs), and natural language processing (NLP). The primary objective of [NeMo](https://github.com/NVIDIA/NeMo) is to help researchers from industry and academia to reuse prior work (code and pretrained models) and make it easier to create new https://developer.nvidia.com/conversational-ai#started.
Keywords: Conversational, ASR, TTS, LLMs, NLP
## [Runhouse](https://github.com/run-house/runhouse)
[Runhouse](https://github.com/run-house/runhouse) allows to send code and data to any of your compute or data infra, all in Python, and continue to interact with them normally from your existing code and environment. Runhouse developers mention:
> Think of it as an expansion pack to your Python interpreter that lets it take detours to remote machines or manipulate remote data.
Keywords: MLOps, Infrastructure, Data storage, Modeling
## [MONAI](https://github.com/Project-MONAI/MONAI)
[MONAI](https://github.com/Project-MONAI/MONAI) is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its ambitions are:
- developing a community of academic, industrial and clinical researchers collaborating on a common foundation;
- creating state-of-the-art, end-to-end training workflows for healthcare imaging;
- providing researchers with the optimized and standardized way to create and evaluate deep learning models.
Keywords: Healthcare imaging, Training, Evaluation
## [simpletransformers](https://github.com/ThilinaRajapakse/simpletransformers)
Simple Transformers lets you quickly train and evaluate Transformer models. Only 3 lines of code are needed to initialize, train, and evaluate a model. It supports a wide variety of NLP tasks.
Keywords: Framework, simplicity, NLP
## [JARVIS](https://github.com/microsoft/JARVIS)
[JARVIS](https://github.com/microsoft/JARVIS) is a system attempting to merge LLMs such as GPT-4 with the rest of the open-source ML community: leveraging up to 60 downstream models in order to perform tasks identified by the LLM.
Keywords: LLM, Agents, HF Hub
## [transformers.js](https://xenova.github.io/transformers.js/)
[transformers.js](https://xenova.github.io/transformers.js/) is a JavaScript library targeted at running models from transformers directly within the browser.
Keywords: Transformers, JavaScript, browser
## [bumblebee](https://github.com/elixir-nx/bumblebee)
Bumblebee provides pre-trained Neural Network models on top of Axon, a neural networks library for the Elixir language. It includes integration with 🤗 Models, allowing anyone to download and perform Machine Learning tasks with few lines of code.
Keywords: Elixir, Axon
## [argilla](https://github.com/argilla-io/argilla)
Argilla is an open-source platform providing advanced NLP labeling, monitoring, and workspaces. It is compatible with many open source ecosystems such as Hugging Face, Stanza, FLAIR, and others.
Keywords: NLP, Labeling, Monitoring, Workspaces
## [haystack](https://github.com/deepset-ai/haystack)
Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs. It offers production-ready tools to quickly build complex decision making, question answering, semantic search, text generation applications, and more.
Keywords: NLP, Framework, LLM
## [spaCy](https://github.com/explosion/spaCy)
[spaCy](https://github.com/explosion/spaCy) is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. It offers support for transformers models through its third party package, spacy-transformers.
Keywords: NLP, Framework
## [speechbrain](https://github.com/speechbrain/speechbrain)
SpeechBrain is an open-source and all-in-one conversational AI toolkit based on PyTorch.
The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognition, speech enhancement, speech separation, language identification, multi-microphone signal processing, and many others.
Keywords: Conversational, Speech
## [skorch](https://github.com/skorch-dev/skorch)
Skorch is a scikit-learn compatible neural network library that wraps PyTorch. It has support for models within transformers, and tokenizers from tokenizers.
Keywords: Scikit-Learn, PyTorch
## [bertviz](https://github.com/jessevig/bertviz)
BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models.
Keywords: Visualization, Transformers
## [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax)
[mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) is a haiku library using the xmap/pjit operators in JAX for model parallelism of transformers. This library is designed for scalability up to approximately 40B parameters on TPUv3s. It was the library used to train the GPT-J model.
Keywords: Haiku, Model parallelism, LLM, TPU
## [deepchem](https://github.com/deepchem/deepchem)
DeepChem aims to provide a high quality open-source toolchain that democratizes the use of deep-learning in drug discovery, materials science, quantum chemistry, and biology.
Keywords: Drug discovery, Materials Science, Quantum Chemistry, Biology
## [OpenNRE](https://github.com/thunlp/OpenNRE)
An Open-Source Package for Neural Relation Extraction (NRE). It is targeted at a wide range of users, from newcomers to relation extraction, to developers, researchers, or students.
Keywords: Neural Relation Extraction, Framework
## [pycorrector](https://github.com/shibing624/pycorrector)
PyCorrector is a Chinese Text Error Correction Tool. It uses a language model to detect errors, pinyin feature and shape feature to correct Chinese text errors. it can be used for Chinese Pinyin and stroke input method.
Keywords: Chinese, Error correction tool, Language model, Pinyin
## [nlpaug](https://github.com/makcedward/nlpaug)
This python library helps you with augmenting nlp for machine learning projects. It is a lightweight library featuring synthetic data generation for improving model performance, support for audio and text, and compatibility with several ecosystems (scikit-learn, pytorch, tensorflow).
Keywords: Data augmentation, Synthetic data generation, Audio, NLP
## [dream-textures](https://github.com/carson-katri/dream-textures)
[dream-textures](https://github.com/carson-katri/dream-textures) is a library targeted at bringing stable-diffusion support within Blender. It supports several use-cases, such as image generation, texture projection, inpainting/outpainting, ControlNet, and upscaling.
Keywords: Stable-Diffusion, Blender
## [seldon-core](https://github.com/SeldonIO/seldon-core)
Seldon core converts your ML models (Tensorflow, Pytorch, H2o, etc.) or language wrappers (Python, Java, etc.) into production REST/GRPC microservices.
Seldon handles scaling to thousands of production machine learning models and provides advanced machine learning capabilities out of the box including Advanced Metrics, Request Logging, Explainers, Outlier Detectors, A/B Tests, Canaries and more.
Keywords: Microservices, Modeling, Language wrappers
## [open_model_zoo](https://github.com/openvinotoolkit/open_model_zoo)
This repository includes optimized deep learning models and a set of demos to expedite development of high-performance deep learning inference applications. Use these free pre-trained models instead of training your own models to speed-up the development and production deployment process.
Keywords: Optimized models, Demos
## [ml-stable-diffusion](https://github.com/apple/ml-stable-diffusion)
ML-Stable-Diffusion is a repository by Apple bringing Stable Diffusion support to Core ML, on Apple Silicon devices. It supports stable diffusion checkpoints hosted on the Hugging Face Hub.
Keywords: Stable Diffusion, Apple Silicon, Core ML
## [stable-dreamfusion](https://github.com/ashawkey/stable-dreamfusion)
Stable-Dreamfusion is a pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model.
Keywords: Text-to-3D, Stable Diffusion
## [txtai](https://github.com/neuml/txtai)
[txtai](https://github.com/neuml/txtai) is an open-source platform for semantic search and workflows powered by language models. txtai builds embeddings databases, which are a union of vector indexes and relational databases enabling similarity search with SQL. Semantic workflows connect language models together into unified applications.
Keywords: Semantic search, LLM
## [djl](https://github.com/deepjavalibrary/djl)
Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning. DJL is designed to be easy to get started with and simple to use for developers. DJL provides a native Java development experience and functions like any other regular Java library. DJL offers [a Java binding](https://github.com/deepjavalibrary/djl/tree/master/extensions/tokenizers) for HuggingFace Tokenizers and easy conversion toolkit for HuggingFace model to deploy in Java.
Keywords: Java, Framework
## [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/)
This project provides a unified framework to test generative language models on a large number of different evaluation tasks. It has support for more than 200 tasks, and supports different ecosystems: HF Transformers, GPT-NeoX, DeepSpeed, as well as the OpenAI API.
Keywords: LLM, Evaluation, Few-shot
## [gpt-neox](https://github.com/EleutherAI/gpt-neox)
This repository records EleutherAI's library for training large-scale language models on GPUs. The framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. It is focused on training multi-billion-parameter models.
Keywords: Training, LLM, Megatron, DeepSpeed
## [muzic](https://github.com/microsoft/muzic)
Muzic is a research project on AI music that empowers music understanding and generation with deep learning and artificial intelligence. Muzic was created by researchers from Microsoft Research Asia.
Keywords: Music understanding, Music generation
## [dalle-flow](https://github.com/jina-ai/dalle-flow)
DALL·E Flow is an interactive workflow for generating high-definition images from a text prompt. Itt leverages DALL·E-Mega, GLID-3 XL, and Stable Diffusion to generate image candidates, and then calls CLIP-as-service to rank the candidates w.r.t. the prompt.
The preferred candidate is fed to GLID-3 XL for diffusion, which often enriches the texture and background. Finally, the candidate is upscaled to 1024x1024 via SwinIR.
Keywords: High-definition image generation, Stable Diffusion, DALL-E Mega, GLID-3 XL, CLIP, SwinIR
## [lightseq](https://github.com/bytedance/lightseq)
LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP and CV models such as BERT, GPT, Transformer, etc. It is therefore best useful for machine translation, text generation, image classification, and other sequence related tasks.
Keywords: Training, Inference, Sequence Processing, Sequence Generation
## [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)
The goal of this project is to create a learning based system that takes an image of a math formula and returns corresponding LaTeX code.
Keywords: OCR, LaTeX, Math formula
## [open_clip](https://github.com/mlfoundations/open_clip)
OpenCLIP is an open source implementation of OpenAI's CLIP.
The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift.
The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset.
Specifically, a ResNet-50 model trained with this codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet.
Keywords: CLIP, Open-source, Contrastive, Image-text
## [dalle-playground](https://github.com/saharmor/dalle-playground)
A playground to generate images from any text prompt using Stable Diffusion and Dall-E mini.
Keywords: WebUI, Stable Diffusion, Dall-E mini
## [FedML](https://github.com/FedML-AI/FedML)
[FedML](https://github.com/FedML-AI/FedML) is a federated learning and analytics library enabling secure and collaborative machine learning on decentralized data anywhere at any scale.
It supports large-scale cross-silo federated learning, and cross-device federated learning on smartphones/IoTs, and research simulation.
Keywords: Federated Learning, Analytics, Collaborative ML, Decentralized
## [gpt-code-clippy](https://github.com/CodedotAl/gpt-code-clippy)
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.
Keywords: LLM, Code
## [TextAttack](https://github.com/QData/TextAttack)
[TextAttack](https://github.com/QData/TextAttack) 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP.
Keywords: Adversarial attacks, Data augmentation, NLP
## [OpenPrompt](https://github.com/thunlp/OpenPrompt)
Prompt-learning is a paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modify the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. [OpenPrompt](https://github.com/thunlp/OpenPrompt) supports loading PLMs directly from https://github.com/huggingface/transformers.
## [text-generation-webui](https://github.com/oobabooga/text-generation-webui/)
[text-generation-webui](https://github.com/oobabooga/text-generation-webui/) is a Gradio Web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, Pythia, OPT, and GALACTICA.
Keywords: LLM, WebUI
## [libra](https://github.com/Palashio/libra)
An ergonomic machine learning [libra](https://github.com/Palashio/libra)ry for non-technical users. It focuses on ergonomics and on ensuring that training a model is as simple as it can be.
Keywords: Ergonomic, Non-technical
## [alibi](https://github.com/SeldonIO/alibi)
Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-quality implementations of black-box, white-box, local and global explanation methods for classification and regression models.
Keywords: Model inspection, Model interpretation, Black-box, White-box
## [tortoise-tts](https://github.com/neonbjb/tortoise-tts)
Tortoise is a text-to-speech program built with the following priorities: strong multi-voice capabilities, and highly realistic prosody and intonation.
Keywords: Text-to-speech
## [flower](https://github.com/adap/flower)
Flower (flwr) is a framework for building federated learning systems. The design of Flower is based on a few guiding principles: customizability, extendability, framework agnosticity, and ease-of-use.
Keywords: Federated learning systems, Customizable, Extendable, Framework-agnostic, Simplicity
## [fast-bert](https://github.com/utterworks/fast-bert)
Fast-Bert is a deep learning library that allows developers and data scientists to train and deploy BERT and XLNet based models for natural language processing tasks beginning with Text Classification. It is aimed at simplicity.
Keywords: Deployment, BERT, XLNet
## [towhee](https://github.com/towhee-io/towhee)
Towhee makes it easy to build neural data processing pipelines for AI applications. We provide hundreds of models, algorithms, and transformations that can be used as standard pipeline building blocks. Users can use Towhee's Pythonic API to build a prototype of their pipeline and automatically optimize it for production-ready environments.
Keywords: Data processing pipeline, Optimization
## [alibi-detect](https://github.com/SeldonIO/alibi-detect)
Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection.
Keywords: Adversarial, Outlier, Drift detection
## [FARM](https://github.com/deepset-ai/FARM)
[FARM](https://github.com/deepset-ai/FARM) makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built upon transformers and provides additional features to simplify the life of developers: Parallelized preprocessing, highly modular design, multi-task learning, experiment tracking, easy debugging and close integration with AWS SageMaker.
Keywords: Transfer Learning, Modular design, Multi-task learning, Experiment tracking
## [aitextgen](https://github.com/minimaxir/aitextgen)
A robust Python tool for text-based AI training and generation using OpenAI's GPT-2 and EleutherAI's GPT Neo/GPT-3 architecture.
[aitextgen](https://github.com/minimaxir/aitextgen) is a Python package that leverages PyTorch, Hugging Face Transformers and pytorch-lightning with specific optimizations for text generation using GPT-2, plus many added features.
Keywords: Training, Generation
## [diffgram](https://github.com/diffgram/diffgram)
Diffgram aims to integrate human supervision into platforms. We support your team programmatically changing the UI (Schema, layout, etc.) like in Streamlit. This means that you can collect and annotate timely data from users. In other words, we are the platform behind your platform, an integrated part of your application, to ship new & better AI products faster.
Keywords: Human supervision, Platform
## [ecco](https://github.com/jalammar/ecco)
Explain, analyze, and visualize NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0).
Keywords: Model explainability
## [s3prl](https://github.com/s3prl/s3prl)
[s3prl](https://github.com/s3prl/s3prl) stands for Self-Supervised Speech Pre-training and Representation Learning. Self-supervised speech pre-trained models are called upstream in this toolkit, and are utilized in various downstream tasks.
Keywords: Speech, Training
## [ru-dalle](https://github.com/ai-forever/ru-dalle)
RuDALL-E aims to be similar to DALL-E, targeted to Russian.
Keywords: DALL-E, Russian
## [DeepKE](https://github.com/zjunlp/DeepKE)
[DeepKE](https://github.com/zjunlp/DeepKE) is a knowledge extraction toolkit for knowledge graph construction supporting cnSchemalow-resource, document-level and multimodal scenarios for entity, relation and attribute extraction.
Keywords: Knowledge Extraction, Knowledge Graphs
## [Nebuly](https://github.com/nebuly-ai/nebuly)
Nebuly is the next-generation platform to monitor and optimize your AI costs in one place. The platform connects to all your AI cost sources (compute, API providers, AI software licenses, etc) and centralizes them in one place to give you full visibility on a model basis. The platform also provides optimization recommendations and a co-pilot model that can guide during the optimization process. The platform builds on top of the open-source tools allowing you to optimize the different steps of your AI stack to squeeze out the best possible cost performances.
Keywords: Optimization, Performance, Monitoring
## [imaginAIry](https://github.com/brycedrennan/imaginAIry)
Offers a CLI and a Python API to generate images with Stable Diffusion. It has support for many tools, like image structure control (controlnet), instruction-based image edits (InstructPix2Pix), prompt-based masking (clipseg), among others.
Keywords: Stable Diffusion, CLI, Python API
## [sparseml](https://github.com/neuralmagic/sparseml)
SparseML is an open-source model optimization toolkit that enables you to create inference-optimized sparse models using pruning, quantization, and distillation algorithms. Models optimized with SparseML can then be exported to the ONNX and deployed with DeepSparse for GPU-class performance on CPU hardware.
Keywords: Model optimization, Pruning, Quantization, Distillation
## [opacus](https://github.com/pytorch/opacus)
Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment.
Keywords: Differential privacy
## [LAVIS](https://github.com/salesforce/LAVIS)
[LAVIS](https://github.com/salesforce/LAVIS) is a Python deep learning library for LAnguage-and-VISion intelligence research and applications. This library aims to provide engineers and researchers with a one-stop solution to rapidly develop models for their specific multimodal scenarios, and benchmark them across standard and customized datasets. It features a unified interface design to access
Keywords: Multimodal, NLP, Vision
## [buzz](https://github.com/chidiwilliams/buzz)
Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper.
Keywords: Audio transcription, Translation
## [rust-bert](https://github.com/guillaume-be/rust-bert)
Rust-native state-of-the-art Natural Language Processing models and pipelines. Port of Hugging Face's Transformers library, using the tch-rs crate and pre-processing from rust-tokenizers. Supports multi-threaded tokenization and GPU inference. This repository exposes the model base architecture, task-specific heads and ready-to-use pipelines.
Keywords: Rust, BERT, Inference
## [EasyNLP](https://github.com/alibaba/EasyNLP)
[EasyNLP](https://github.com/alibaba/EasyNLP) is an easy-to-use NLP development and application toolkit in PyTorch, first released inside Alibaba in 2021. It is built with scalable distributed training strategies and supports a comprehensive suite of NLP algorithms for various NLP applications. [EasyNLP](https://github.com/alibaba/EasyNLP) integrates knowledge distillation and few-shot learning for landing large pre-trained models, together with various popular multi-modality pre-trained models. It provides a unified framework of model training, inference, and deployment for real-world applications.
Keywords: NLP, Knowledge distillation, Few-shot learning, Multi-modality, Training, Inference, Deployment
## [TurboTransformers](https://github.com/Tencent/TurboTransformers)
A fast and user-friendly runtime for transformer inference (Bert, Albert, GPT2, Decoders, etc) on CPU and GPU.
Keywords: Optimization, Performance
## [hivemind](https://github.com/learning-at-home/hivemind)
Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers.
Keywords: Decentralized training
## [docquery](https://github.com/impira/docquery)
DocQuery is a library and command-line tool that makes it easy to analyze semi-structured and unstructured documents (PDFs, scanned images, etc.) using large language models (LLMs). You simply point DocQuery at one or more documents and specify a question you want to ask. DocQuery is created by the team at Impira.
Keywords: Semi-structured documents, Unstructured documents, LLM, Document Question Answering
## [CodeGeeX](https://github.com/THUDM/CodeGeeX)
[CodeGeeX](https://github.com/THUDM/CodeGeeX) is a large-scale multilingual code generation model with 13 billion parameters, pre-trained on a large code corpus of more than 20 programming languages. It has several unique features:
- Multilingual code generation
- Crosslingual code translation
- Is a customizable programming assistant
Keywords: Code Generation Model
## [ktrain](https://github.com/amaiya/ktrain)
[ktrain](https://github.com/amaiya/ktrain) is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, [ktrain](https://github.com/amaiya/ktrain) is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners.
Keywords: Keras wrapper, Model building, Training, Deployment
## [FastDeploy](https://github.com/PaddlePaddle/FastDeploy)
[FastDeploy](https://github.com/PaddlePaddle/FastDeploy) is an Easy-to-use and High Performance AI model deployment toolkit for Cloud, Mobile and Edge with packageout-of-the-box and unified experience, endend-to-end optimization for over fire160+ Text, Vision, Speech and Cross-modal AI models. Including image classification, object detection, OCR, face detection, matting, pp-tracking, NLP, stable diffusion, TTS and other tasks to meet developers' industrial deployment needs for multi-scenario, multi-hardware and multi-platform.
Keywords: Model deployment, CLoud, Mobile, Edge
## [underthesea](https://github.com/undertheseanlp/underthesea)
[underthesea](https://github.com/undertheseanlp/underthesea) is a Vietnamese NLP toolkit. Underthesea is a suite of open source Python modules data sets and tutorials supporting research and development in Vietnamese Natural Language Processing. We provides extremely easy API to quickly apply pretrained NLP models to your Vietnamese text, such as word segmentation, part-of-speech tagging (PoS), named entity recognition (NER), text classification and dependency parsing.
Keywords: Vietnamese, NLP
## [hasktorch](https://github.com/hasktorch/hasktorch)
Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the core C++ libraries shared by PyTorch.
Keywords: Haskell, Neural Networks
## [donut](https://github.com/clovaai/donut)
Donut, or Document understanding transformer, is a new method of document understanding that utilizes an OCR-free end-to-end Transformer model.
Donut does not require off-the-shelf OCR engines/APIs, yet it shows state-of-the-art performances on various visual document understanding tasks, such as visual document classification or information extraction (a.k.a. document parsing).
Keywords: Document Understanding
## [transformers-interpret](https://github.com/cdpierse/transformers-interpret)
Transformers Interpret is a model explainability tool designed to work exclusively with the transformers package.
In line with the philosophy of the Transformers package Transformers Interpret allows any transformers model to be explained in just two lines. Explainers are available for both text and computer vision models. Visualizations are also available in notebooks and as savable png and html files
Keywords: Model interpretation, Visualization
## [mlrun](https://github.com/mlrun/mlrun)
MLRun is an open MLOps platform for quickly building and managing continuous ML applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. With MLRun, you can choose any IDE on your local machine or on the cloud. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements.
Keywords: MLOps
## [FederatedScope](https://github.com/alibaba/FederatedScope)
[FederatedScope](https://github.com/alibaba/FederatedScope) is a comprehensive federated learning platform that provides convenient usage and flexible customization for various federated learning tasks in both academia and industry. Based on an event-driven architecture, [FederatedScope](https://github.com/alibaba/FederatedScope) integrates rich collections of functionalities to satisfy the burgeoning demands from federated learning, and aims to build up an easy-to-use platform for promoting learning safely and effectively.
Keywords: Federated learning, Event-driven
## [pythainlp](https://github.com/PyThaiNLP/pythainlp)
PyThaiNLP is a Python package for text processing and linguistic analysis, similar to NLTK with focus on Thai language.
Keywords: Thai, NLP, NLTK
## [FlagAI](https://github.com/FlagAI-Open/FlagAI)
[FlagAI](https://github.com/FlagAI-Open/FlagAI) (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model. Our goal is to support training, fine-tuning, and deployment of large-scale models on various downstream tasks with multi-modality.
Keywords: Large models, Training, Fine-tuning, Deployment, Multi-modal
## [pyserini](https://github.com/castorini/pyserini)
[pyserini](https://github.com/castorini/pyserini) is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse representations is provided via integration with the group's Anserini IR toolkit. Retrieval using dense representations is provided via integration with Facebook's Faiss library.
Keywords: IR, Information Retrieval, Dense, Sparse
## [baal](https://github.com/baal-org/baal)
[baal](https://github.com/baal-org/baal) is an active learning library that supports both industrial applications and research usecases. [baal](https://github.com/baal-org/baal) currently supports Monte-Carlo Dropout, MCDropConnect, deep ensembles, and semi-supervised learning.
Keywords: Active Learning, Research, Labeling
## [cleanlab](https://github.com/cleanlab/cleanlab)
[cleanlab](https://github.com/cleanlab/cleanlab) is the standard data-centric AI package for data quality and machine learning with messy, real-world data and labels. For text, image, tabular, audio (among others) datasets, you can use cleanlab to automatically: detect data issues (outliers, label errors, near duplicates, etc), train robust ML models, infer consensus + annotator-quality for multi-annotator data, suggest data to (re)label next (active learning).
Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active Learning
## [BentoML](https://github.com/bentoml/BentoML)
[BentoML](https://github.com/bentoml) is the unified framework for for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage.
Keywords: BentoML, Framework, Deployment, AI Applications
## [LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory)
[LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) offers a user-friendly fine-tuning framework that incorporates PEFT. The repository includes training(fine-tuning) and inference examples for LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, and other LLMs. A ChatGLM version is also available in [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning).
Keywords: PEFT, fine-tuning, LLaMA-2, ChatGLM, Qwen

142
conftest.py Normal file
View File

@ -0,0 +1,142 @@
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
import pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
NOT_DEVICE_TESTS = {
"test_tokenization",
"test_processor",
"test_processing",
"test_beam_constraints",
"test_configuration_utils",
"test_data_collator",
"test_trainer_callback",
"test_trainer_utils",
"test_feature_extraction",
"test_image_processing",
"test_image_processor",
"test_image_transforms",
"test_optimization",
"test_retrieval",
"test_config",
"test_from_pretrained_no_checkpoint",
"test_keep_in_fp32_modules",
"test_gradient_checkpointing_backward_compatibility",
"test_gradient_checkpointing_enable_disable",
"test_save_load_fast_init_from_base",
"test_fast_init_context_manager",
"test_fast_init_tied_embeddings",
"test_save_load_fast_init_to_base",
"test_torch_save_load",
"test_initialization",
"test_forward_signature",
"test_model_common_attributes",
"test_model_main_input_name",
"test_correct_missing_keys",
"test_tie_model_weights",
"test_can_use_safetensors",
"test_load_save_without_tied_weights",
"test_tied_weights_keys",
"test_model_weights_reload_no_missing_tied_weights",
"test_pt_tf_model_equivalence",
"test_mismatched_shapes_have_properly_initialized_weights",
"test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist",
"test_model_is_small",
"test_tf_from_pt_safetensors",
"test_flax_from_pt_safetensors",
"ModelTest::test_pipeline_", # None of the pipeline tests from PipelineTesterMixin (of which XxxModelTest inherits from) are running on device
"ModelTester::test_pipeline_",
"/repo_utils/",
"/utils/",
"/tools/",
}
# allow having multiple repository checkouts and not needing to remember to rerun
# `pip install -e '.[dev]'` when switching between checkouts and running tests.
git_repo_path = abspath(join(dirname(__file__), "src"))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="ignore", category=FutureWarning)
def pytest_configure(config):
config.addinivalue_line(
"markers", "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested"
)
config.addinivalue_line(
"markers", "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested"
)
config.addinivalue_line("markers", "is_pipeline_test: mark test to run only when pipelines are tested")
config.addinivalue_line("markers", "is_staging_test: mark test to run only in the staging environment")
config.addinivalue_line("markers", "accelerate_tests: mark test that require accelerate")
config.addinivalue_line("markers", "tool_tests: mark the tool tests that are run on their specific schedule")
config.addinivalue_line("markers", "not_device_test: mark the tests always running on cpu")
def pytest_collection_modifyitems(items):
for item in items:
if any(test_name in item.nodeid for test_name in NOT_DEVICE_TESTS):
item.add_marker(pytest.mark.not_device_test)
def pytest_addoption(parser):
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(parser)
def pytest_terminal_summary(terminalreporter):
from transformers.testing_utils import pytest_terminal_summary_main
make_reports = terminalreporter.config.getoption("--make-reports")
if make_reports:
pytest_terminal_summary_main(terminalreporter, id=make_reports)
def pytest_sessionfinish(session, exitstatus):
# If no tests are collected, pytest exists with code 5, which makes the CI fail.
if exitstatus == 5:
session.exitstatus = 0
# Doctest custom flag to ignore output.
IGNORE_RESULT = doctest.register_optionflag("IGNORE_RESULT")
OutputChecker = doctest.OutputChecker
class CustomOutputChecker(OutputChecker):
def check_output(self, want, got, optionflags):
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self, want, got, optionflags)
doctest.OutputChecker = CustomOutputChecker
_pytest.doctest.DoctestModule = HfDoctestModule
doctest.DocTestParser = HfDocTestParser

View File

@ -0,0 +1,60 @@
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.2.1'
# (not always a valid torch version)
ARG INTEL_TORCH_EXT='2.2.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.13 protobuf==3.20.3 tensorflow_text tensorflow_probability && python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip uninstall -y flax jax
RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT -f https://developer.intel.com/ipex-whl-stable-cpu
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/peft@main#egg=peft
# For bettertransformer
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
# For video model testing
RUN python3 -m pip install --no-cache-dir decord av==9.2.0
# For `dinat` model
# The `XXX` part in `torchXXX` needs to match `PYTORCH` (to some extent)
RUN python3 -m pip install --no-cache-dir natten==0.15.1+torch220$CUDA -f https://shi-labs.com/natten/wheels
# For `nougat` tokenizer
RUN python3 -m pip install --no-cache-dir python-Levenshtein
# For `FastSpeech2ConformerTokenizer` tokenizer
RUN python3 -m pip install --no-cache-dir g2p-en
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -1,26 +0,0 @@
FROM ubuntu:18.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
jupyter \
tensorflow-cpu \
torch
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]

View File

@ -0,0 +1,18 @@
FROM python:3.10
LABEL maintainer="Hugging Face"
RUN apt update
RUN git clone https://github.com/huggingface/transformers
RUN python3 -m pip install --no-cache-dir --upgrade pip && python3 -m pip install --no-cache-dir git+https://github.com/huggingface/doc-builder ./transformers[dev]
RUN apt-get -y update && apt-get install -y libsndfile1-dev && apt install -y tesseract-ocr
# Torch needs to be installed before deepspeed
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed]
RUN python3 -m pip install --no-cache-dir torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# Test if the image could successfully build the doc. before publishing the image
RUN doc-builder build transformers transformers/docs/source/en --build_dir doc-build-dev --notebook_dir notebooks/transformers_doc --clean
RUN rm -rf doc-build-dev

View File

@ -0,0 +1,59 @@
ARG BASE_DOCKER_IMAGE
FROM $BASE_DOCKER_IMAGE
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
SHELL ["sh", "-lc"]
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs libaio-dev
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
ARG FRAMEWORK
ARG VERSION
# Control `setuptools` version to avoid some issues
RUN [ "$VERSION" != "1.10" ] && python3 -m pip install -U setuptools || python3 -m pip install -U "setuptools<=59.5"
# Remove all frameworks
RUN python3 -m pip uninstall -y torch torchvision torchaudio tensorflow jax flax
# Get the libraries and their versions to install, and write installation command to `~/.profile`.
RUN python3 ./transformers/utils/past_ci_versions.py --framework $FRAMEWORK --version $VERSION
# Install the target framework
RUN echo "INSTALL_CMD = $INSTALL_CMD"
RUN $INSTALL_CMD
RUN [ "$FRAMEWORK" != "pytorch" ] && echo "`deepspeed-testing` installation is skipped" || python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
# Remove `accelerate`: it requires `torch`, and this causes import issues for TF-only testing
# We will install `accelerate@main` in Past CI workflow file
RUN python3 -m pip uninstall -y accelerate
# Uninstall `torch-tensorrt` and `apex` shipped with the base image
RUN python3 -m pip uninstall -y torch-tensorrt apex
# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.)
# Issue: https://github.com/microsoft/DeepSpeed/issues/2010
# RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \
# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -0,0 +1,39 @@
FROM rocm/dev-ubuntu-20.04:5.6
# rocm/pytorch has no version with 2.1.0
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='2.1.0'
ARG TORCH_VISION='0.16.0'
ARG TORCH_AUDIO='2.1.0'
ARG ROCM='5.6'
RUN apt update && \
apt install -y --no-install-recommends git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-dev python3-pip ffmpeg && \
apt clean && \
rm -rf /var/lib/apt/lists/*
RUN python3 -m pip install --no-cache-dir --upgrade pip
RUN python3 -m pip install torch==$PYTORCH torchvision==$TORCH_VISION torchaudio==$TORCH_AUDIO --index-url https://download.pytorch.org/whl/rocm$ROCM
RUN python3 -m pip install --no-cache-dir --upgrade pip setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
ARG REF=main
WORKDIR /
# Invalidate docker cache from here if new commit is available.
ADD https://api.github.com/repos/huggingface/transformers/git/refs/heads/main version.json
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
RUN python3 -m pip uninstall -y tensorflow flax
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
# Remove nvml as it is not compatible with ROCm
RUN python3 -m pip uninstall py3nvml pynvml -y

View File

@ -1,25 +0,0 @@
FROM ubuntu:18.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
jupyter \
torch
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]

View File

@ -0,0 +1,48 @@
FROM rocm/dev-ubuntu-22.04:5.6
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='2.1.1'
ARG TORCH_VISION='0.16.1'
ARG TORCH_AUDIO='2.1.1'
ARG ROCM='5.6'
RUN apt update && \
apt install -y --no-install-recommends \
libaio-dev \
git \
# These are required to build deepspeed.
python3-dev \
python-is-python3 \
rocrand-dev \
rocthrust-dev \
hipsparse-dev \
hipblas-dev \
rocblas-dev && \
apt clean && \
rm -rf /var/lib/apt/lists/*
RUN python3 -m pip install --no-cache-dir --upgrade pip ninja "pydantic<2"
RUN python3 -m pip uninstall -y apex torch torchvision torchaudio
RUN python3 -m pip install torch==$PYTORCH torchvision==$TORCH_VISION torchaudio==$TORCH_AUDIO --index-url https://download.pytorch.org/whl/rocm$ROCM --no-cache-dir
# Pre-build DeepSpeed, so it's be ready for testing (to avoid timeout)
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache-dir -v --disable-pip-version-check 2>&1
ARG REF=main
WORKDIR /
# Invalidate docker cache from here if new commit is available.
ADD https://api.github.com/repos/huggingface/transformers/git/refs/heads/main version.json
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir ./transformers[accelerate,testing,sentencepiece,sklearn]
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
RUN python3 -c "from deepspeed.launcher.runner import main"
# Remove nvml as it is not compatible with ROCm
RUN python3 -m pip uninstall py3nvml pynvml -y

View File

@ -0,0 +1,53 @@
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-23-11.html#rel-23-11
FROM nvcr.io/nvidia/pytorch:23.04-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='2.2.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu121'
RUN apt -y update
RUN apt install -y libaio-dev
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
# Install latest release PyTorch
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip uninstall -y torch torchvision torchaudio && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# Uninstall `transformer-engine` shipped with the base image
RUN python3 -m pip uninstall -y transformer-engine
# Uninstall `torch-tensorrt` shipped with the base image
RUN python3 -m pip uninstall -y torch-tensorrt
# recompile apex
RUN python3 -m pip uninstall -y apex
# RUN git clone https://github.com/NVIDIA/apex
# `MAX_JOBS=1` disables parallel building to avoid cpu memory OOM when building image on GitHub Action (standard) runners
# TODO: check if there is alternative way to install latest apex
# RUN cd apex && MAX_JOBS=1 python3 -m pip install --global-option="--cpp_ext" --global-option="--cuda_ext" --no-cache -v --disable-pip-version-check .
# Pre-build **latest** DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
# This has to be run (again) inside the GPU VMs running the tests.
# The installation works here, but some tests fail, if we don't pre-build deepspeed again in the VMs running the tests.
# TODO: Find out why test fail.
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
# The base image ships with `pydantic==1.8.2` which is not working - i.e. the next command fails
RUN python3 -m pip install -U --no-cache-dir "pydantic<2"
RUN python3 -c "from deepspeed.launcher.runner import main"

View File

@ -0,0 +1,64 @@
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-23-11.html#rel-23-11
FROM nvcr.io/nvidia/pytorch:23.11-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu121'
RUN apt -y update
RUN apt install -y libaio-dev
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip uninstall -y torch torchvision torchaudio
# Install **nightly** release PyTorch (flag `--pre`)
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# Uninstall `transformer-engine` shipped with the base image
RUN python3 -m pip uninstall -y transformer-engine
# Uninstall `torch-tensorrt` and `apex` shipped with the base image
RUN python3 -m pip uninstall -y torch-tensorrt apex
# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.)
# Issue: https://github.com/microsoft/DeepSpeed/issues/2010
# RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \
# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
## For `torchdynamo` tests
## (see https://github.com/huggingface/transformers/pull/17765)
#RUN git clone https://github.com/pytorch/functorch
#RUN python3 -m pip install --no-cache-dir ./functorch[aot]
#RUN cd functorch && python3 setup.py develop
#
#RUN git clone https://github.com/pytorch/torchdynamo
#RUN python3 -m pip install -r ./torchdynamo/requirements.txt
#RUN cd torchdynamo && python3 setup.py develop
#
## install TensorRT
#RUN python3 -m pip install --no-cache-dir -U nvidia-pyindex
#RUN python3 -m pip install --no-cache-dir -U nvidia-tensorrt==8.2.4.2
#
## install torch_tensorrt (fx path)
#RUN git clone https://github.com/pytorch/TensorRT.git
#RUN cd TensorRT/py && python3 setup.py install --fx-only
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
# Disable for now as deepspeed is not installed above. To be enabled once the issue is fixed.
# RUN python3 -c "from deepspeed.launcher.runner import main"

View File

@ -1,30 +1,33 @@
FROM nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04 FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face" LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \ ARG DEBIAN_FRONTEND=noninteractive
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
RUN python3 -m pip install --no-cache-dir --upgrade pip && \ RUN apt update
python3 -m pip install --no-cache-dir \ RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
mkl \ RUN python3 -m pip install --no-cache-dir --upgrade pip
torch
RUN git clone https://github.com/NVIDIA/apex ARG REF=main
RUN cd apex && \ RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
python3 setup.py install && \
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
WORKDIR /workspace # If set to nothing, will install the latest version
COPY . transformers/ ARG PYTORCH='2.1.1'
RUN cd transformers/ && \ ARG TORCH_VISION=''
python3 -m pip install --no-cache-dir . ARG TORCH_AUDIO=''
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu121'
CMD ["/bin/bash"] RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN [ ${#TORCH_AUDIO} -gt 0 ] && VERSION='torchaudio=='TORCH_AUDIO'.*' || VERSION='torchaudio'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
RUN python3 -m pip uninstall -y tensorflow flax
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -1,7 +1,7 @@
FROM google/cloud-sdk:slim FROM google/cloud-sdk:slim
# Build args. # Build args.
ARG GITHUB_REF=refs/heads/master ARG GITHUB_REF=refs/heads/main
# TODO: This Dockerfile installs pytorch/xla 3.6 wheels. There are also 3.7 # TODO: This Dockerfile installs pytorch/xla 3.6 wheels. There are also 3.7
# wheels available; see below. # wheels available; see below.

View File

@ -0,0 +1,57 @@
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.2.1'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile
RUN echo torch=$VERSION
# `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build.
# Currently, let's just use their latest releases (when `torch` is installed with a release version)
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch]
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# needed in bnb and awq
RUN python3 -m pip install --no-cache-dir einops
# Add bitsandbytes for mixed int8 testing
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Add auto-gptq for gtpq quantization testing
RUN python3 -m pip install --no-cache-dir auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
# Add optimum for gptq quantization testing
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
# Add aqlm for quantization testing
RUN python3 -m pip install --no-cache-dir aqlm[gpu]==1.0.2
# Add autoawq for quantization testing
# >=v0.2.3 needed for compatibility with torch 2.2.1
RUN python3 -m pip install --no-cache-dir https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.3/autoawq-0.2.3+cu118-cp38-cp38-linux_x86_64.whl
# Add quanto for quantization testing
RUN python3 -m pip install --no-cache-dir quanto
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -1,25 +0,0 @@
FROM ubuntu:18.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
mkl \
tensorflow-cpu
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]

View File

@ -1,25 +1,25 @@
FROM nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04 FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face" LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \ ARG DEBIAN_FRONTEND=noninteractive
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
RUN python3 -m pip install --no-cache-dir --upgrade pip && \ RUN apt update
python3 -m pip install --no-cache-dir \ RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
mkl \ RUN python3 -m pip install --no-cache-dir --upgrade pip
tensorflow
WORKDIR /workspace ARG REF=main
COPY . transformers/ RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN cd transformers/ && \ RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-tensorflow,testing]
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"] # If set to nothing, will install the latest version
ARG TENSORFLOW='2.13'
RUN [ ${#TENSORFLOW} -gt 0 ] && VERSION='tensorflow=='$TENSORFLOW'.*' || VERSION='tensorflow'; python3 -m pip install --no-cache-dir -U $VERSION
RUN python3 -m pip uninstall -y torch flax
RUN python3 -m pip install -U "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir -U tensorflow_probability
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -1,19 +0,0 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line.
SPHINXOPTS =
SPHINXBUILD = sphinx-build
SOURCEDIR = source
BUILDDIR = _build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

View File

@ -16,114 +16,130 @@ limitations under the License.
# Generating the documentation # Generating the documentation
To generate the documentation, you first have to build it. Several packages are necessary to build the doc, To generate the documentation, you first have to build it. Several packages are necessary to build the doc,
you can install them with the following command, at the root of the code repository: you can install them with the following command, at the root of the code repository:
```bash ```bash
pip install -e ".[docs]" pip install -e ".[docs]"
``` ```
Then you need to install our special tool that builds the documentation:
```bash
pip install git+https://github.com/huggingface/doc-builder
```
--- ---
**NOTE** **NOTE**
You only need to generate the documentation to inspect it locally (if you're planning changes and want to You only need to generate the documentation to inspect it locally (if you're planning changes and want to
check how they look like before committing for instance). You don't have to commit the built documentation. check how they look before committing for instance). You don't have to commit the built documentation.
--- ---
## Packages installed
Here's an overview of all the packages installed. If you ran the previous command installing all packages from
`requirements.txt`, you do not need to run the following commands.
Building it requires the package `sphinx` that you can
install using:
```bash
pip install -U sphinx
```
You would also need the custom installed [theme](https://github.com/readthedocs/sphinx_rtd_theme) by
[Read The Docs](https://readthedocs.org/). You can install it using the following command:
```bash
pip install sphinx_rtd_theme
```
The third necessary package is the `recommonmark` package to accept Markdown as well as Restructured text:
```bash
pip install recommonmark
```
## Building the documentation ## Building the documentation
Once you have setup `sphinx`, you can build the documentation by running the following command in the `/docs` folder: Once you have setup the `doc-builder` and additional packages, you can generate the documentation by
typing the following command:
```bash ```bash
make html doc-builder build transformers docs/source/en/ --build_dir ~/tmp/test-build
``` ```
A folder called ``_build/html`` should have been created. You can now open the file ``_build/html/index.html`` in your You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate
browser. the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite
Markdown editor.
## Previewing the documentation
To preview the docs, first install the `watchdog` module with:
```bash
pip install watchdog
```
Then run the following command:
```bash
doc-builder preview {package_name} {path_to_docs}
```
For example:
```bash
doc-builder preview transformers docs/source/en/
```
The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.
--- ---
**NOTE** **NOTE**
If you are adding/removing elements from the toc-tree or from any structural item, it is recommended to clean the build The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again).
directory before rebuilding. Run the following command to clean and build:
```bash
make clean && make html
```
--- ---
It should build the static app that will be available under `/docs/_build/html` ## Adding a new element to the navigation bar
## Adding a new element to the tree (toc-tree) Accepted files are Markdown (.md).
Accepted files are reStructuredText (.rst) and Markdown (.md). Create a file with its extension and put it Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
in the source directory. You can then link it to the toc-tree by putting the filename without the extension. the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml) file.
## Preview the documentation in a pull request ## Renaming section headers and moving sections
Once you have made your pull request, you can check what the documentation will look like after it's merged by It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.
following these steps:
Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.
So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:
```
Sections that were moved:
[ <a href="#section-b">Section A</a><a id="section-a"></a> ]
```
and of course, if you moved it to another file, then:
```
Sections that were moved:
[ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ]
```
Use the relative style to link to the new file so that the versioned docs continue to work.
For an example of a rich moved section set please see the very end of [the Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md).
- Look at the checks at the bottom of the conversation page of your PR (you may need to click on "show all checks" to
expand them).
- Click on "details" next to the `ci/circleci: build_doc` check.
- In the new window, click on the "Artifacts" tab.
- Locate the file "docs/_build/html/index.html" (or any specific page you want to check) and click on it to get a
preview.
## Writing Documentation - Specification ## Writing Documentation - Specification
The `huggingface/transformers` documentation follows the The `huggingface/transformers` documentation follows the
[Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style. It is [Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style for docstrings,
mostly written in ReStructuredText although we can write them directly in Markdown.
([Sphinx simple documentation](https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html),
[Sourceforge complete documentation](https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html)).
### Adding a new tutorial ### Adding a new tutorial
Adding a new tutorial or section is done in two steps: Adding a new tutorial or section is done in two steps:
- Add a new file under `./source`. This file can either be ReStructuredText (.rst) or Markdown (.md). - Add a new file under `./source`. This file can either be ReStructuredText (.rst) or Markdown (.md).
- Link that file in `./source/index.rst` on the correct toc-tree. - Link that file in `./source/_toctree.yml` on the correct toc-tree.
Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so
depending on the intended targets (beginners, more advanced users or researchers) it should go in section two, three or depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or
four. four.
### Translating
When translating, refer to the guide at [./TRANSLATING.md](https://github.com/huggingface/transformers/blob/main/docs/TRANSLATING.md).
### Adding a new model ### Adding a new model
When adding a new model: When adding a new model:
- Create a file `xxx.rst` under `./source/model_doc` (don't hesitate to copy an existing file as template). - Create a file `xxx.md` or under `./source/model_doc` (don't hesitate to copy an existing file as template).
- Link that file in `./source/index.rst` on the `model_doc` toc-tree. - Link that file in `./source/_toctree.yml`.
- Write a short overview of the model: - Write a short overview of the model:
- Overview with paper & authors - Overview with paper & authors
- Paper abstract - Paper abstract
@ -131,70 +147,88 @@ When adding a new model:
- Add the classes that should be linked in the model. This generally includes the configuration, the tokenizer, and - Add the classes that should be linked in the model. This generally includes the configuration, the tokenizer, and
every model of that class (the base model, alongside models with additional heads), both in PyTorch and TensorFlow. every model of that class (the base model, alongside models with additional heads), both in PyTorch and TensorFlow.
The order is generally: The order is generally:
- Configuration, - Configuration
- Tokenizer - Tokenizer
- PyTorch base model - PyTorch base model
- PyTorch head models - PyTorch head models
- TensorFlow base model - TensorFlow base model
- TensorFlow head models - TensorFlow head models
- Flax base model
- Flax head models
These classes should be added using our Markdown syntax. Usually as follows:
These classes should be added using the RST syntax. Usually as follows:
``` ```
XXXConfig ## XXXConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XXXConfig [[autodoc]] XXXConfig
:members:
``` ```
This will include every public method of the configuration that is documented. If for some reason you wish for a method This will include every public method of the configuration that is documented. If for some reason you wish for a method
not to be displayed in the documentation, you can do so by specifying which methods should be in the docs: not to be displayed in the documentation, you can do so by specifying which methods should be in the docs:
``` ```
XXXTokenizer ## XXXTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XXXTokenizer [[autodoc]] XXXTokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask, - build_inputs_with_special_tokens
create_token_type_ids_from_sequences, save_vocabulary - get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
```
If you just want to add a method that is not documented (for instance magic methods like `__call__` are not documented
by default) you can put the list of methods to add in a list that contains `all`:
```
## XXXTokenizer
[[autodoc]] XXXTokenizer
- all
- __call__
``` ```
### Writing source documentation ### Writing source documentation
Values that should be put in `code` should either be surrounded by double backticks: \`\`like so\`\` or be written as Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names
an object using the :obj: syntax: :obj:\`like so\`. Note that argument names and objects like True, None or any strings and objects like True, None, or any strings should usually be put in `code`.
should usually be put in `code`.
When mentioning a class, it is recommended to use the :class: syntax as the mentioned class will be automatically When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool
linked by Sphinx: :class:\`~transformers.XXXClass\` adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or
function to be in the main package.
When mentioning a function, it is recommended to use the :func: syntax as the mentioned function will be automatically If you want to create a link to some internal class or function, you need to
linked by Sphinx: :func:\`~transformers.function\`. provide its path. For instance: \[\`utils.ModelOutput\`\]. This will be converted into a link with
`utils.ModelOutput` in the description. To get rid of the path and only keep the name of the object you are
linking to in the description, add a ~: \[\`~utils.ModelOutput\`\] will generate a link with `ModelOutput` in the description.
When mentioning a method, it is recommended to use the :meth: syntax as the mentioned method will be automatically The same works for methods so you can either use \[\`XXXClass.method\`\] or \[\`~XXXClass.method\`\].
linked by Sphinx: :meth:\`~transformers.XXXClass.method\`.
Links should be done as so (note the double underscore at the end): \`text for the link <./local-link-or-global-link#loc>\`__
#### Defining arguments in a method #### Defining arguments in a method
Arguments should be defined with the `Args:` prefix, followed by a line return and an indentation. Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`) prefix, followed by a line return and
The argument should be followed by its type, with its shape if it is a tensor, and a line return. an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its
Another indentation is necessary before writing the description of the argument. description:
```
Args:
n_layers (`int`): The number of layers of the model.
```
If the description is too long to fit in one line, another indentation is necessary before writing the description
after the argument.
Here's an example showcasing everything so far: Here's an example showcasing everything so far:
``` ```
Args: Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.AlbertTokenizer`. Indices can be obtained using [`AlbertTokenizer`]. See [`~PreTrainedTokenizer.encode`] and
See :meth:`~transformers.PreTrainedTokenizer.encode` and [`~PreTrainedTokenizer.__call__`] for details.
:meth:`~transformers.PreTrainedTokenizer.__call__` for details.
`What are input IDs? <../glossary.html#input-ids>`__ [What are input IDs?](../glossary#input-ids)
``` ```
For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the
@ -208,93 +242,156 @@ then its documentation should look like this:
``` ```
Args: Args:
x (:obj:`str`, `optional`): x (`str`, *optional*):
This argument controls ... This argument controls ...
a (:obj:`float`, `optional`, defaults to 1): a (`float`, *optional*, defaults to 1):
This argument is used to ... This argument is used to ...
``` ```
Note that we always omit the "defaults to :obj:\`None\`" when None is the default for any argument. Also note that even Note that we always omit the "defaults to \`None\`" when None is the default for any argument. Also note that even
if the first line describing your argument type and its default gets long, you can't break it on several lines. You can if the first line describing your argument type and its default gets long, you can't break it on several lines. You can
however write as many lines as you want in the indented description (see the example above with `input_ids`). however, write as many lines as you want in the indented description (see the example above with `input_ids`).
#### Writing a multi-line code block #### Writing a multi-line code block
Multi-line code blocks can be useful for displaying examples. They are done like so: Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown:
````
``` ```
Example:: # first line of code
# second line
# first line of code # etc
# second line
# etc
``` ```
````
The `Example` string at the beginning can be replaced by anything as long as there are two semicolons following it.
We follow the [doctest](https://docs.python.org/3/library/doctest.html) syntax for the examples to automatically test We follow the [doctest](https://docs.python.org/3/library/doctest.html) syntax for the examples to automatically test
the results stay consistent with the library. the results to stay consistent with the library.
#### Writing a return block #### Writing a return block
Arguments should be defined with the `Args:` prefix, followed by a line return and an indentation. The return block should be introduced with the `Returns:` prefix, followed by a line return and an indentation.
The first line should be the type of the return, followed by a line return. No need to indent further for the elements The first line should be the type of the return, followed by a line return. No need to indent further for the elements
building the return. building the return.
Here's an example for tuple return, comprising several objects: Here's an example of a single value return:
``` ```
Returns: Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: `List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
``` ```
Here's an example for a single value return: Here's an example of a tuple return, comprising several objects:
``` ```
Returns: Returns:
:obj:`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token. `tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --
Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
- **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
``` ```
#### Adding a new section #### Adding an image
In ReST section headers are designated as such with the help of a line of underlying characters, e.g.,: Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
to this dataset.
## Styling the docstring
We have an automatic script running with the `make style` comment that will make sure that:
- the docstrings fully take advantage of the line width
- all code examples are formatted using black, like the code of the Transformers library
This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's
recommended to commit your changes before running `make style`, so you can revert the changes done by that script
easily.
# Testing documentation examples
Good documentation often comes with an example of how a specific function or class should be used.
Each model class should contain at least one example showcasing
how to use this model class in inference. *E.g.* the class [Wav2Vec2ForCTC](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC)
includes an example of how to transcribe speech to text in the
[docstring of its forward function](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC.forward).
## Writing documentation examples
The syntax for Example docstrings can look as follows:
``` ```
Section 1 Example:
^^^^^^^^^^^^^^^^^^
Sub-section 1 ```python
~~~~~~~~~~~~~~~~~~ >>> from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
>>> from datasets import load_dataset
>>> import torch
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate
>>> processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
>>> model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
>>> # audio file is decoded on the fly
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_ids = torch.argmax(logits, dim=-1)
>>> # transcribe speech
>>> transcription = processor.batch_decode(predicted_ids)
>>> transcription[0]
'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'
```
``` ```
ReST allows the use of any characters to designate different section levels, as long as they are used consistently within the same document. For details see [sections doc](https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#sections). Because there is no standard different documents often end up using different characters for the same levels which makes it very difficult to know which character to use when creating a new section. The docstring should give a minimal, clear example of how the respective model
is to be used in inference and also include the expected (ideally sensible)
output.
Often, readers will try out the example before even going through the function
or class definitions. Therefore, it is of utmost importance that the example
works as expected.
Specifically, if when running `make docs` you get an error like: ## Docstring testing
```
docs/source/main_classes/trainer.rst:127:Title level inconsistent:
```
you picked an inconsistent character for some of the levels.
But how do you know which characters you must use for an already existing level or when adding a new level? To do so each example should be included in the doctests.
We use pytests' [doctest integration](https://docs.pytest.org/doctest.html) to verify that all of our examples run correctly.
For Transformers, the doctests are run on a daily basis via GitHub Actions as can be
seen [here](https://github.com/huggingface/transformers/actions/workflows/doctests.yml).
You can use this helper script: ### For Python files
```
perl -ne '/^(.)\1{100,}/ && do { $h{$1}=++$c if !$h{$1} }; END { %h = reverse %h ; print "$_ $h{$_}\n" for sort keys %h}' docs/source/main_classes/trainer.rst Run all the tests in the docstrings of a given file with the following command, here is how we test the modeling file of Wav2Vec2 for instance:
1 -
2 ~ ```bash
3 ^ pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py -sv --doctest-continue-on-failure
4 =
5 "
``` ```
This tells you which characters have already been assigned for each level. If you want to isolate a specific docstring, just add `::` after the file name then type the whole path of the function/class/method whose docstring you want to test. For instance, here is how to just test the forward method of `Wav2Vec2ForCTC`:
So using this particular example's output -- if your current section's header uses `=` as its underline character, you now know you're at level 4, and if you want to add a sub-section header you know you want `"` as it'd level 5. ```bash
pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py::transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward -sv --doctest-continue-on-failure
```
If you needed to add yet another sub-level, then pick a character that is not used already. That is you must pick a character that is not in the output of that script. ### For Markdown files
Here is the full list of characters that can be used in this context: `= - ` : ' " ~ ^ _ * + # < >` You can test locally a given file with this command (here testing the quicktour):
```bash
pytest --doctest-modules docs/source/quicktour.md -sv --doctest-continue-on-failure --doctest-glob="*.md"
```
### Writing doctests
Here are a few tips to help you debug the doctests and make them pass:
- The outputs of the code need to match the expected output **exactly**, so make sure you have the same outputs. In particular doctest will see a difference between single quotes and double quotes, or a missing parenthesis. The only exceptions to that rule are:
* whitespace: one give whitespace (space, tabulation, new line) is equivalent to any number of whitespace, so you can add new lines where there are spaces to make your output more readable.
* numerical values: you should never put more than 4 or 5 digits to expected results as different setups or library versions might get you slightly different results. `doctest` is configured to ignore any difference lower than the precision to which you wrote (so 1e-4 if you write 4 digits).
- Don't leave a block of code that is very long to execute. If you can't make it fast, you can either not use the doctest syntax on it (so that it's ignored), or if you want to use the doctest syntax to show the results, you can add a comment `# doctest: +SKIP` at the end of the lines of code too long to execute
- Each line of code that produces a result needs to have that result written below. You can ignore an output if you don't want to show it in your code example by adding a comment ` # doctest: +IGNORE_RESULT` at the end of the line of code producing it.

57
docs/TRANSLATING.md Normal file
View File

@ -0,0 +1,57 @@
### Translating the Transformers documentation into your language
As part of our mission to democratize machine learning, we'd love to make the Transformers library available in many more languages! Follow the steps below if you want to help translate the documentation into your language 🙏.
**🗞️ Open an issue**
To get started, navigate to the [Issues](https://github.com/huggingface/transformers/issues) page of this repo and check if anyone else has opened an issue for your language. If not, open a new issue by selecting the "Translation template" from the "New issue" button.
Once an issue exists, post a comment to indicate which chapters you'd like to work on, and we'll add your name to the list.
**🍴 Fork the repository**
First, you'll need to [fork the Transformers repo](https://docs.github.com/en/get-started/quickstart/fork-a-repo). You can do this by clicking on the **Fork** button on the top-right corner of this repo's page.
Once you've forked the repo, you'll want to get the files on your local machine for editing. You can do that by cloning the fork with Git as follows:
```bash
git clone https://github.com/YOUR-USERNAME/transformers.git
```
**📋 Copy-paste the English version with a new language code**
The documentation files are in one leading directory:
- [`docs/source`](https://github.com/huggingface/transformers/tree/main/docs/source): All the documentation materials are organized here by language.
You'll only need to copy the files in the [`docs/source/en`](https://github.com/huggingface/transformers/tree/main/docs/source/en) directory, so first navigate to your fork of the repo and run the following:
```bash
cd ~/path/to/transformers/docs
cp -r source/en source/LANG-ID
```
Here, `LANG-ID` should be one of the ISO 639-1 or ISO 639-2 language codes -- see [here](https://www.loc.gov/standards/iso639-2/php/code_list.php) for a handy table.
**✍️ Start translating**
The fun part comes - translating the text!
The first thing we recommend is translating the part of the `_toctree.yml` file that corresponds to your doc chapter. This file is used to render the table of contents on the website.
> 🙋 If the `_toctree.yml` file doesn't yet exist for your language, you can create one by copy-pasting from the English version and deleting the sections unrelated to your chapter. Just make sure it exists in the `docs/source/LANG-ID/` directory!
The fields you should add are `local` (with the name of the file containing the translation; e.g. `autoclass_tutorial`), and `title` (with the title of the doc in your language; e.g. `Load pretrained instances with an AutoClass`) -- as a reference, here is the `_toctree.yml` for [English](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml):
```yaml
- sections:
- local: pipeline_tutorial # Do not change this! Use the same name for your .md file
title: Pipelines for inference # Translate this!
...
title: Tutorials # Translate this!
```
Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter.
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @stevhliu and @MKhalusova.

14
docs/source/_config.py Normal file
View File

@ -0,0 +1,14 @@
# docstyle-ignore
INSTALL_CONTENT = """
# Transformers installation
! pip install transformers datasets evaluate accelerate
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
black_avoid_patterns = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}

View File

@ -1,16 +0,0 @@
.highlight .c1, .highlight .sd{
color: #999
}
.highlight .nn, .highlight .k, .highlight .s1, .highlight .nb, .highlight .bp, .highlight .kc {
color: #FB8D68;
}
.highlight .kn, .highlight .nv, .highlight .s2, .highlight .ow {
color: #6670FF;
}
.highlight .gp {
color: #FB8D68;
}

View File

@ -1,350 +0,0 @@
/* Our DOM objects */
/* Colab dropdown */
table.center-aligned-table td {
text-align: center;
}
table.center-aligned-table th {
text-align: center;
vertical-align: middle;
}
.colab-dropdown {
position: relative;
display: inline-block;
}
.colab-dropdown-content {
display: none;
position: absolute;
background-color: #f9f9f9;
min-width: 117px;
box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);
z-index: 1;
}
.colab-dropdown-content button {
color: #6670FF;
background-color: #f9f9f9;
font-size: 12px;
border: none;
min-width: 117px;
padding: 5px 5px;
text-decoration: none;
display: block;
}
.colab-dropdown-content button:hover {background-color: #eee;}
.colab-dropdown:hover .colab-dropdown-content {display: block;}
/* Version control */
.version-button {
background-color: #6670FF;
color: white;
border: none;
padding: 5px;
font-size: 15px;
cursor: pointer;
}
.version-button:hover, .version-button:focus {
background-color: #A6B0FF;
}
.version-dropdown {
display: none;
background-color: #6670FF;
min-width: 160px;
overflow: auto;
font-size: 15px;
}
.version-dropdown a {
color: white;
padding: 3px 4px;
text-decoration: none;
display: block;
}
.version-dropdown a:hover {
background-color: #A6B0FF;
}
.version-show {
display: block;
}
/* Framework selector */
.framework-selector {
display: flex;
flex-direction: row;
justify-content: flex-end;
margin-right: 30px;
}
.framework-selector > button {
background-color: white;
color: #6670FF;
border: 1px solid #6670FF;
padding: 5px;
}
.framework-selector > button.selected{
background-color: #6670FF;
color: white;
border: 1px solid #6670FF;
padding: 5px;
}
/* Copy button */
a.copybtn {
margin: 3px;
}
/* The literal code blocks */
.rst-content tt.literal, .rst-content tt.literal, .rst-content code.literal {
color: #6670FF;
}
/* To keep the logo centered */
.wy-side-scroll {
width: auto;
font-size: 20px;
}
/* The div that holds the Hugging Face logo */
.HuggingFaceDiv {
width: 100%
}
/* The research field on top of the toc tree */
.wy-side-nav-search{
padding-top: 0;
background-color: #6670FF;
}
/* The toc tree */
.wy-nav-side{
background-color: #6670FF;
}
/* The section headers in the toc tree */
.wy-menu-vertical p.caption{
background-color: #4d59ff;
line-height: 40px;
}
/* The selected items in the toc tree */
.wy-menu-vertical li.current{
background-color: #A6B0FF;
}
/* When a list item that does belong to the selected block from the toc tree is hovered */
.wy-menu-vertical li.current a:hover{
background-color: #B6C0FF;
}
/* When a list item that does NOT belong to the selected block from the toc tree is hovered. */
.wy-menu-vertical li a:hover{
background-color: #A7AFFB;
}
/* The text items on the toc tree */
.wy-menu-vertical a {
color: #FFFFDD;
font-family: Calibre-Light, sans-serif;
}
.wy-menu-vertical header, .wy-menu-vertical p.caption{
color: white;
font-family: Calibre-Light, sans-serif;
}
/* The color inside the selected toc tree block */
.wy-menu-vertical li.toctree-l2 a, .wy-menu-vertical li.toctree-l3 a, .wy-menu-vertical li.toctree-l4 a {
color: black;
}
/* Inside the depth-2 selected toc tree block */
.wy-menu-vertical li.toctree-l2.current>a {
background-color: #B6C0FF
}
.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a {
background-color: #C6D0FF
}
/* Inside the depth-3 selected toc tree block */
.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{
background-color: #D6E0FF
}
/* Inside code snippets */
.rst-content dl:not(.docutils) dt{
font-size: 15px;
}
/* Links */
a {
color: #6670FF;
}
/* Content bars */
.rst-content dl:not(.docutils) dt {
background-color: rgba(251, 141, 104, 0.1);
border-right: solid 2px #FB8D68;
border-left: solid 2px #FB8D68;
color: #FB8D68;
font-family: Calibre-Light, sans-serif;
border-top: none;
font-style: normal !important;
}
/* Expand button */
.wy-menu-vertical li.toctree-l2 span.toctree-expand,
.wy-menu-vertical li.on a span.toctree-expand, .wy-menu-vertical li.current>a span.toctree-expand,
.wy-menu-vertical li.toctree-l3 span.toctree-expand{
color: black;
}
/* Max window size */
.wy-nav-content{
max-width: 1200px;
}
/* Mobile header */
.wy-nav-top{
background-color: #6670FF;
}
/* Source spans */
.rst-content .viewcode-link, .rst-content .viewcode-back{
color: #6670FF;
font-size: 110%;
letter-spacing: 2px;
text-transform: uppercase;
}
/* It would be better for table to be visible without horizontal scrolling */
.wy-table-responsive table td, .wy-table-responsive table th{
white-space: normal;
}
.footer {
margin-top: 20px;
}
.footer__Social {
display: flex;
flex-direction: row;
}
.footer__CustomImage {
margin: 2px 5px 0 0;
}
/* class and method names in doc */
.rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) tt.descclassname, .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) code.descname, .rst-content dl:not(.docutils) tt.descclassname, .rst-content dl:not(.docutils) code.descclassname{
font-family: Calibre, sans-serif;
font-size: 20px !important;
}
/* class name in doc*/
.rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) code.descname{
margin-right: 10px;
font-family: Calibre-Medium, sans-serif;
}
/* Method and class parameters */
.sig-param{
line-height: 23px;
}
/* Class introduction "class" string at beginning */
.rst-content dl:not(.docutils) .property{
font-size: 18px;
color: black;
}
/* FONTS */
body{
font-family: Calibre, sans-serif;
font-size: 16px;
}
h1 {
font-family: Calibre-Thin, sans-serif;
font-size: 70px;
}
h2, .rst-content .toctree-wrapper p.caption, h3, h4, h5, h6, legend{
font-family: Calibre-Medium, sans-serif;
}
@font-face {
font-family: Calibre-Medium;
src: url(./Calibre-Medium.otf);
font-weight:400;
}
@font-face {
font-family: Calibre;
src: url(./Calibre-Regular.otf);
font-weight:400;
}
@font-face {
font-family: Calibre-Light;
src: url(./Calibre-Light.ttf);
font-weight:400;
}
@font-face {
font-family: Calibre-Thin;
src: url(./Calibre-Thin.otf);
font-weight:400;
}
/**
* Nav Links to other parts of huggingface.co
*/
div.menu {
position: absolute;
top: 0;
right: 0;
padding-top: 20px;
padding-right: 20px;
z-index: 1000;
}
div.menu a {
font-size: 14px;
letter-spacing: 0.3px;
text-transform: uppercase;
color: white;
-webkit-font-smoothing: antialiased;
background: linear-gradient(0deg, #6671ffb8, #9a66ffb8 50%);
padding: 10px 16px 6px 16px;
border-radius: 3px;
margin-left: 12px;
position: relative;
}
div.menu a:active {
top: 1px;
}
@media (min-width: 768px) and (max-width: 1750px) {
.wy-breadcrumbs {
margin-top: 32px;
}
}
@media (max-width: 768px) {
div.menu {
display: none;
}
}

File diff suppressed because one or more lines are too long

Some files were not shown because too many files have changed in this diff Show More