* Bookmark, initial impelemtation. Need to test
* Clean
* Working fully, woop woop
* I think working version now, testing
* Fin!
* rm cast, could keep None
* Fix typing issue
* rm typehint
* Add test
* Add tests and make more rigid
* Update push-important-models.yml
* dummy commit
* Update modeling_bark.py
* test
* test
* test
* another test
* another test
* test
* final test
* final test
* test
* another test
* test
* test
* another test
* test llama
* revert everything
* remove echo
* Add test for parse_json_file
* Change Path to PathLike
* Fix `Import block is un-sorted or un-formatted`
* revert parse_json_file
* Fix ruff format
* Add parse_json_file test
* v1
* v1
* more changes
* more models
* add more markers
* swtich to A10
* use cache
* Update .github/workflows/push-important-models.yml
* Update .github/workflows/push-important-models.yml
* Update modeling_llama.py
* test
* test
* another test
* test
* test
* attempt to fix
* fix
* try automatic tagging
* fix
* alternative approach for collecting
* fix
* fix
* fix
* test
* fix
* fix
* test
* revert some changes
* fix
* fix
* fix
* final push
* fix
* revert
* test new slack message
* oops
* Update send-slack.yml
* test
* test re-usable workflow in steps
* Update action.yml
* test
* another test
* test
* another test
* test
* another test
* another test (hopefully last one)
* attempt to fix
* allez
* removing comma
* test
* another test
* attempt
* test
* test
* test push
* test
* test
* another test
* test
* make it better
* fix commas
* valid json
* test
* another test
* test
* final push
* test
* final push
* more customizable messages
* test
* push
* oops
* another test
* another test
* missing indentation
* more tweaks
* more tweaks
* another test
* another test
* tests
* final push
* use global variables instead
* Update .github/workflows/push-important-models.yml
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* commit to test all models
* issue with arrays
* another test
* attempt to fix failing tests
* Update .github/workflows/push-important-models.yml
* add ssh
* Update .github/workflows/push-important-models.yml
* test
* test
* add install curl
* attempt to fix
* final fix
* test
* test
* test
* fix test
* another test
* add inherit secrets
* push
* revert unneeded changes
* revert
* add env variables
* add pip freeze
* revert change in gemma
* Update .github/workflows/push-important-models.yml
* fix mistral and mixtral
* add pdb
* fix mixtral tesst
* fix
* fix mistral ?
* add fix gemma
* fix mistral
* fix
* test
* anoter test
* fix
* fix
* fix mistral tests
* fix them again
* final fixes for mistral
* fix padding right
* fix whipser fa2
* fix
* fix
* fix gemma
* test
* fix llama
* fix
* fix
* fix llama gemma
* add class attribute
* fix CI
* clarify whisper
* compute_capability
* rename names in some comments
* Add # fmt: skip
* make style
* Update tests/models/mistral/test_modeling_mistral.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* update
* update
* change branch
* correct workflow
* modify file
* test
* works
* final test
* another fix
* install sudo
* final fix
* add `-y`
* set to `main`
* Update .github/actions/post-slack/action.yml
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* change title
* fixup
* add upload report
* fix
* revert to main
* add empty lines + add comment
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove auto class
* Update ImagePointDescriptionOutput
* Update model outputs
* Rename output class
* Revert "Remove auto class"
This reverts commit ed4a8f549d79cdb0cdf7aa74205a185c41471519.
* Address comments
* Update integration_utils.py
Add the case where a tensor with one element is log with Mlflow
* Update src/transformers/integrations/integration_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update integration_utils.py add a whitespace
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fork.
* RecurrentGemma initial commit.
* Updating __init__.py.
* Minor modification to how we initialize the cache.
Changing how the config specifies the architecture.
* Reformat code to 4 spaces.
Fixed a few typos.
* Fixed the forward pass.
Still unclear on the cache?
* Fixed the RecurrentGemmaForCausalLM
* Minor comment that we might not need attention_mask and output_attention arguments.
* Now cache should work as well.
* Adding a temporary example to check whether the model generation works.
* Adding the tests and updating imports.
* Adding the example file missing in the previous commit.
* First working example.
* Removing .gitignore and reverting parts of __init__.
* Re-add .gitignore.
* Addressing comments for configuration.
* Move mask creation to `_prepare_inputs_for_generation`.
* First try at integration tests:
1. AttributeError: 'GriffinCausalLMOutput' object has no attribute 'attentions'.
2. `cache_position` not passed
* Transfoering between machines.
* Running normal tests.
* Minor fix.
* More fixes.
* Addressing more comments.
* Minor fixes.
* first stab at cleanup
* more refactoring
* fix copies and else
* renaming and get init to work
* fix causal mask creation
* update
* nit
* fix a hell lot of things
* updates
* update conversion script
* make all keys importable
* nits
* add auto mappings
* properly convert ffw_up and down
* add scaling
* fix generations
* for recurrent dtype
* update
* fix going beyong window
* fixup
* add missing files
* current updates to remove last einops
* finish modeling refactor
* TADA
* fix compile
* fix most failing testt ? ?
* update tests
* refactor and update
* update
* nits, fixup and update tests
* more fixup
* nits
* fix imports
* test format
* fixups
* nits
* tuple typing
* fix code quality
* add model card
* fix doc
* skip most generation tests
* nits
* style
* doc fixes
* fix pr and check_copies?
* last nit
* oupsy
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <hi@lysand.re>
* update
* Update src/transformers/models/recurrent_gemma/convert_recurrent_gemma_to_hf.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* update based on review
* doc nit
* fix quality
* quality
* fix slow test model path
* update default dype
* ignore attributes that can be safely ignored in check config attributes
* 0lallalala come on
* save nit
* style
* remove to dict update
* make sure we can also run in float16
* style
---------
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: Aleksandar Botev <botev@google.com>
Co-authored-by: Leonard Berrada <lberrada@users.noreply.github.com>
Co-authored-by: anushanf <anushanf@google.com>
Co-authored-by: botev <botevmg@gmail.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix learning rate display issue in galore optimizer
* fix kwarg in accelerate when using versions < 0.28.0
* this was supposed to be in the other PR whoops
* revert back to torch 2.1.1
* run test
* switch to torch 2.2.1
* udapte dockerfile
* fix awq tests
* fix test
* run quanto tests
* update tests
* split quantization tests
* fix
* fix again
* final fix
* fix report artifact
* build docker again
* Revert "build docker again"
This reverts commit 399a5f9d9308da071d79034f238c719de0f3532e.
* debug
* revert
* style
* new notification system
* testing notfication
* rebuild docker
* fix_prev_ci_results
* typo
* remove warning
* fix typo
* fix artifact name
* debug
* issue fixed
* debug again
* fix
* fix time
* test notif with faling test
* typo
* issues again
* final fix ?
* run all quantization tests again
* remove name to clear space
* revert modfiication done on workflow
* fix
* build docker
* build only quant docker
* fix quantization ci
* fix
* fix report
* better quantization_matrix
* add print
* revert to the basic one
* See if we can get tests to pass with the fixed weights
* See if we can get tests to pass with the fixed weights
* Replace the revisions now that we don't need them anymore
* init: add StableLm 2 support
* add integration test for parallel residual and qk layernorm
* update(modeling): match qk norm naming for consistency with phi/persimmon
* fix(tests): run fwd/bwd on random init test model to jitter norm weights off identity
* `use_parallel_residual`: add copy pointer to `GPTNeoXLayer.forward`
* refactor: rename head states var in `StableLmLayerNormPerHead`
* tests: update test model and add generate check
* ImportError: Trainer with PyTorch requires accelerate>=0.20.1 Fix
Adding the evaluate and accelerate installs at the beginning of the cell to fix the issue
* ImportError Fix: Trainer with PyTorch requires accelerate>=0.20.1
* Import Error Fix
* Update installation.md
* Update quicktour.md
* rollback other lang changes
* Update _config.py
* updates for other languages
* fixing error
* Tutorial Update
* Update tokenization_utils_base.py
* Just use an optimizer string to pass the doctest?
---------
Co-authored-by: Matt <rocketknight1@gmail.com>
* add _torch_extract_fbank_features_batch function in feature_extractor_whisper
* reformat feature_extraction_whisper.py file
* handle batching in single function
* add gpu test & doc
* add batch test & device in each __call__
* add device arg in doc string
---------
Co-authored-by: vaibhav.aggarwal <vaibhav.aggarwal@sprinklr.com>
* separate jobs
* separate jobs
* use channel name directly instead of ID
* use channel name directly instead of ID
* use channel name directly instead of ID
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Update quantizer_bnb_4bit.py
There is an mistake in ValueError on line 86 of quantizer_bnb_4bit.py. In the error string there should be "....you need to set `llm_int8_enable_fp32_cpu_offload=True`...." instead of "load_in_8bit_fp32_cpu_offload=True". I think you updated the BitsAndBytesConfig() arguments, but forgot to change the ValueError in quantizer_bnb_4bit.py.
* Update quantizer_bnb_4bit.py
Changed ValueError string "...you need to set load_in_8bit_fp32_cpu_offload=True..." to "....you need to set llm_int8_enable_fp32_cpu_offload=True...."
* if output is tuple like facebook/hf-seamless-m4t-medium, waveform is the first element
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* add test and fix batch issue
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* add dict output support for seamless_m4t
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* Defaulted IdeficsProcessor padding to 'longest', removed manual padding
* make fixup
* Defaulted processor call to padding=False
* Add padding to processor call in IdeficsModelIntegrationTest as well
* Defaulted IdeficsProcessor padding to 'longest', removed manual padding
* make fixup
* Defaulted processor call to padding=False
* Add padding to processor call in IdeficsModelIntegrationTest as well
* redefaulted padding=longest again
* fixup/doc
* implement convert_mamba_ssm_checkpoint_to_pytorch
* Add test test_model_from_mamba_ssm_conversion
* moved convert_ssm_config_to_hf_config to inside mamba_ssm_available check
* fix skipif clause
* moved skips to inside test since skipif decorator isn't working for some reason
* Added validation
* removed test
* fixup
* only compare logits
* remove weight rename
* Update src/transformers/models/mamba/convert_mamba_ssm_checkpoint_to_pytorch.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* nits
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fix generate_with_fallback **kwargs
* Change pop to get
* Delete keys from kwargs to prevent overriding generation_config
* Revert to passing kwargs by reference, but make a (shallow) copy
* dict -> copy.copy
* Add test_whisper_longform_multi_batch_beam
To address the issue of NaN logit outputs for certain combinations
of the `image_size`, `patch_size` and `depths` configuration
parameters, an assertion was made to ensure that the resulting
`window_size` field in the model's Self Attention class is greater
than 1, preventing divisions by zero in the normalization of
`relative_coords_table`.
Fix: #28675
* Hard error when ignoring tensors. (#27484)
* [WIP] Hard error when ignoring tensors.
* Better selection/error when saving a checkpoint.
- Find all names we should normally drop (those are in the transformers
config)
- Find all disjoint tensors (for those we can safely trigger a copy to
get rid of the sharing before saving)
- Clone those disjoint tensors getting rid of the issue
- Find all identical names (those should be declared in the config
but we try to find them all anyway.)
- For all identical names:
- If they are in the config, just ignore them everything is fine
- If they are not, warn about them.
- For all remainder tensors which are shared yet neither identical NOR
disjoint. raise a hard error.
* Adding a failing test on `main` that passes here.
* We don't need to keep the subfolder logic in this test.
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add small tests.
* Dead variable.
* Fixup.
* Fixing tied_Weights_keys on generic models.
* Fixup + T5 encoder/decoder tying (with different layers)
* Code quality.
* Dynamic member.
* trigger
* Fixing encoder name for other types of encoder/decoder combos.
* Fix scoping.
* Update .github/workflows/self-scheduled.yml
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Fixing the tied_weights after the call.
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Fix skip_special_tokens process for Wav2Vec2CTCTokenizer._decode
* Fix skip_special_tokens for Wav2Vec2CTCTokenizer._decode
* Exclude pad_token filtering since it is used as CTC-blank token
* Add small test for skip_special_tokens
* Update decoding test for added new token
* add FA2 to o.g Musicgen
* make style
* add FA2 support to Musicgen Melody
* add generation FA2 tests to o.g Musicgen
* make style and fix copies
* add Musicgen to FA2 docs + deprecate list
* add sdpa supports to Musicgen's
* make style and fix copies
* refactor attention implementation arguments
* add Copied from to sdpa tests
* add copied form in sdpa tests melody
* add copied for FA2 generation tests
* add FA2 inference copied from
* make style
* fix issue with logit processor in beam search in Flax
* adding FlaxNoRepeatNGramLogitsProcessor class + unit test
* style correction and code verification
* add FlaxNoRepeatNGramLogitsProcessor to the test_processor_list and test_processor_list_jitted tests
* fix an issue where ngrams are banned only if they appear ==1 time + update description of get_previous_ngrams
* replace non-jit compatible masking of ngrams that are not yet generated with jittable version
* Revert "fix issue with logit processor in beam search in Flax"
This reverts commit 09b70d7e4dc32d0cc4db61af09a835a9cd238b50.
* add FlaxNoRepeatNGramLogitsProcessor to _get_logits_processor
* change the method of casting to boolean of banned tokens indices
* fix code style
* remove some useless operations + significantly faster computation of update indices using jax.lax.fori_loop
* remove useless loop iterations
* set some variables that were calculated and used multiple times
* fix format
* Fix sinusoidal_embeddings in FlaubertModel
* Fix for Informer
* Fix for XLM
* Move sinusoidal emb for XLM
* Move sinusoidal emb for Flaubert
* Small cleanup
* Add comments on tests code copied from
* Add with Distilbert->
* fix bug and add tests
* nit
* otherway to get the cur len instead of attention mask
* more places where this might have been broken
* nit
* oups
* inputs_embeds vs input_embeds
* test generated outptus
* style
* nit
* fix
* skip failing biogpt
* add functions to get number of params which require grad, get optimizer group for parameters and get learning rates of param groups to trainer.py
* add tests and raise ValueError when optimizer is None
* add second layer to test and freeze its weigths
* check if torch is available before running tests
* use decorator to check if torch is available
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix test indentation
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
* Automatic safetensors conversion when lacking these files (#29390)
* Automatic safetensors conversion when lacking these files
* Remove debug
* Thread name
* Typo
* Ensure that raises do not affect the main thread
* Catch all errors
* Check for requires_grad when initing weights
* Add unit test
* Move sinusoidal positional encoding generation after post_init()
* Add modules to skip init list
* Move create_sinusoidal_embeddings to _init_weights
* add support for qwen2 MoE models
* update docs
* add support for qwen2 MoE models
* update docs
* update model name & test
* update readme
* update class names & readme & model_doc of Qwen2MoE.
* update architecture name
* fix qwen2_moe tests
* use Qwen2Tokenizer instead of Qwen2MoeTokenizer
* update modeling_qwen2_moe.py
* fix model architecture
* fix qwen2_moe tests
* use Qwen2Tokenizer instead of Qwen2MoeTokenizer
* update modeling_qwen2_moe.py
* fix model architecture
* fix style
* fix test when there are sparse and non sparse layers
* fixup
* Update README.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fixup
* fixup
* add archive back
* add support for qwen2 MoE models
* update docs
* update model name & test
* update readme
* update class names & readme & model_doc of Qwen2MoE.
* update architecture name
* fix qwen2_moe tests
* use Qwen2Tokenizer instead of Qwen2MoeTokenizer
* update modeling_qwen2_moe.py
* fix model architecture
* fixup
* fix qwen2_moe tests
* use Qwen2Tokenizer instead of Qwen2MoeTokenizer
* fix style
* fix test when there are sparse and non sparse layers
* fixup
* add archive back
* fix integration test
* fixup
---------
Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* replace the 'decord' with 'av' in VideoClassificationPipeline
* fix the check of backend in VideoClassificationPipeline
* adjust the order of imports
* format 'video_classification.py'
* format 'video_classification.py' with ruff
---------
Co-authored-by: wanqiancheng <13541261013@163.com>
* add warnings if training args differ from checkpoint args stored in trainer_state.json
* run formatting and styling
* add a test
* format and styling
---------
Co-authored-by: Jonathan Flynn <jonl.flynn@guardian.co.uk>
* model_summary.md - Add link to Harvard's Annotated Transformer.
* model_summary.md - slight wording change + capitalize name of the paper
* model_summary.md - moves the Annotated Transformer link in a praenthesis next to the link to the original paper (great idea, stevhliu!)
* model_summary.md - moves the Annotated Transformer link in a praenthesis next to the link to the original paper (commit pt. 2, accidentally removed "has" in pt. 1)
Fixes
```
File "/nix/store/rv8xdwghdad9jv2w86b8g08kan9l6ksm-python3.11-transformers-4.38.2/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py", line 987, in <module>
class AutoConfig:
File "/nix/store/rv8xdwghdad9jv2w86b8g08kan9l6ksm-python3.11-transformers-4.38.2/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py", line 1011, in AutoConfig
@replace_list_option_in_docstrings()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/nix/store/rv8xdwghdad9jv2w86b8g08kan9l6ksm-python3.11-transformers-4.38.2/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py", line 966, in docstring_decorator
lines = docstrings.split("\n")
^^^^^^^^^^^^^^^^
AttributeError: 'NoneType' object has no attribute 'split'
```
* Calculating box_bias at the start once, then reusing it at inference
* Updating the compute_box_bias function for backwards compatibility
* Caching compute_box_bias function
* Bux fix
* Update owlv2 accordingly to ensure repo consistency
* Co-authored by: nvbinh15 <binh.pdc01@gmail.com>
* Fixup changes
* Made copied code consistent
* Co-authored by: nvbinh15 <binh.pdc01@gmail.com>
---------
Co-authored-by: Nguyen Van Binh <>
Co-authored-by: Nguyen Van Binh <binh.pdc01@gmail.com>
* attempt to fix
* the actual fix that works with compilation!
* this?
* temporary update
* nit?
* dispatcg to memory efficient?
* update both models that have static cache support
* fix copies fix compile
* make sure fix
* fix cohere and gemma
* fix beams?
* nit
* slipped through the cracks
* nit
* nits
* update
* fix-copies
* skip failing tests
* nits
* Initial commit (still lots of unfinished bits)
* (Still untested) add safetensors sharding to save_pretrained
* Fix savetensors saving, update default shard size to match PT
* Add proper loading of TF-format safetensors
* Revert default size in case that changes things
* Fix incorrect index name
* Update loading priority
* Update tests
* Make the tests a little more stringent
* Expand tests
* Add sharded cross-test
* Fix argument name
* One more test fix
* Adding mlx to the list of allowed formats
* Remove irrelevant block for safetensors
* Refactor warning logging into a separate function
* Remove unused skip_logger_warnings arg
* Update src/transformers/modeling_tf_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Move function def
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update docstring for RMSNorm
* Update cache_params object to correct MambaCache type
* Update docstrings and type info
* Pass through use_cache
* ruff
* Reformat with 119 char limit per line (thanks Arthur)
* Pass through use_cache specifically to the backbone rather than all keyword arguments
* Update src/transformers/models/mamba/modeling_mamba.py
* Update src/transformers/models/mamba/modeling_mamba.py
* Update src/transformers/models/mamba/modeling_mamba.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/mamba/modeling_mamba.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update tab
* Update src/transformers/models/mamba/modeling_mamba.py
* Update src/transformers/models/mamba/modeling_mamba.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Added SuperPoint docs
* Added tests
* Removed commented part
* Commit to create and fix add_superpoint branch with a new branch
* Fixed dummy_pt_objects
* Committed missing files
* Fixed README.md
* Apply suggestions from code review
Fixed small changes
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Moved ImagePointDescriptionOutput from modeling_outputs.py to modeling_superpoint.py
* Removed AutoModelForKeypointDetection and related stuff
* Fixed inconsistencies in image_processing_superpoint.py
* Moved infer_on_model logic simply in test_inference
* Fixed bugs, added labels to forward method with checks whether it is properly a None value, also added tests about this logic in test_modeling_superpoint.py
* Added tests to SuperPointImageProcessor to ensure that images are properly converted to grayscale
* Removed remaining mentions of MODEL_FOR_KEYPOINT_DETECTION_MAPPING
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fixed from (w, h) to (h, w) as input for tests
* Removed unnecessary condition
* Moved last_hidden_state to be the first returned
* Moved last_hidden_state to be the first returned (bis)
* Moved last_hidden_state to be the first returned (ter)
* Switched image_width and image_height in tests to match recent changes
* Added config as first SuperPointConvBlock init argument
* Reordered README's after merge
* Added missing first config argument to SuperPointConvBlock instantiations
* Removed formatting error
* Added SuperPoint to README's de, pt-br, ru, te and vi
* Checked out README_fr.md
* Fixed README_fr.md
* Test fix README_fr.md
* Test fix README_fr.md
* Last make fix-copies !
* Updated checkpoint path
* Removed unused SuperPoint doc
* Added missing image
* Update src/transformers/models/superpoint/modeling_superpoint.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Removed unnecessary import
* Update src/transformers/models/superpoint/modeling_superpoint.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Added SuperPoint to _toctree.yml
---------
Co-authored-by: steven <steven.bucaillle@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Steven Bucaille <steven.bucaille@buawei.com>
* use user_defined_symbols
* fixup
* nit
* add a very robust test
* make sure all models are tested with the `pretrained_tokenizer_to_test`
* should we make sure we test all of them?
* merge
* remove the id
* fix test
* update
* ousies
* oups
* fixup
* fix copies check
* remove `pretrained_tokenizer_to_test`
* add galore v1
* add import
* add tests and doc
* fix doctest
* forward contrib credits from discussions
* forward contrib credits from discussions
* Apply suggestions from code review
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
* fix failing tests'
* switch to `optim_target_modules` and clarify docs
* more clarification
* enhance lookup logic
* update a test to add peak memory
* add regex, all-linear and single string support
* add layer-wise optimization through DummyOptimizers and LRSchedulers
* forward contrib credits from discussions and original idea
* add a section about DDP not supported in layerwise
* Update src/transformers/trainer.py
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
* fix self
* check only if layer_wise
* Update src/transformers/training_args.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* oops
* make use of intervals
* clarify comment
* add matching tests
* GaLoRe -> GaLore
* move to `get_scheduler`
* add note on docs
* add a warning
* adapt a bit the docs
* update docstring
* support original API
* Update docs/source/en/trainer.md
* slightly refactor
* Update docs/source/en/trainer.md
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
* Update src/transformers/training_args.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix args parsing and add tests
* remove warning for regex
* fix type hint
* add note about extra args
* make `is_regex` return optional
---------
Co-authored-by: Maxime <maximegmd @users.noreply.github.com>
Co-authored-by: Wing Lian <winglian @users.noreply.github.com>
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: hiyouga <hiyouga@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
* Cohere Model Release (#1)
Cohere Model Release
* Remove unnecessary files and code (#2)
Some cleanup
* Delete cohere-model directory (#3)
* Make Fix (#5)
* Pr fixes (#6)
* fixes for pr
* pr fixes for the format
* pr fixes for the format
* src/transformers/models/auto/tokenization_auto.py
* Tokenizer test (#8)
* tokenizer test
* format fix
* Adding Docs and other minor changes (#7)
* Add modeling tests (#9)
* Smol Fix (#11)
* tokenization tests are fixed
* format fixes
* fix pr doc tests
* fix pr doc tests
* fix pr doc tests
* fix pr style check
* small changes in cohere.md
* FIX: Address final comments for transformers integration (#13)
* fix modeling final nits and add proper test file
* for now leave empty tests
* add integration test
* push new test
* fix modeling cohere (#14)
* Update chat templates to use the new API (#15)
---------
Co-authored-by: ahmetustun <ahmetustun89@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Allow apply_chat_template to pass kwargs to the template
* Fix priority for template_kwargs
* Fix docstring
* style fix
* Add the option for the model to have a dict of templates
* Error message cleanup
* Add test for chat template dicts
* Simplify the chat template dict test and apply it to all tokenizers in self.get_tokenizers()
* Save chat template dicts as lists with fixed key names
* Add test for serialization/reloading
* Add require_jinja just to be safe, even though I don't think we use it
* Added pytests for pvt-v2, all passed
* Added pvt_v2 to docs/source/end/model_doc
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Reverted batch eval changes for PR
* Expanded type support for Pvt-v2 config
* Fixed config docstring. Added channels property
* Fixed model names in tests
* Fixed config backbone compat. Added additional type support for image size in config
* Fixed config backbone compat
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* Set key and value layers to use separate linear modules. Fixed pruning function
* Set AvgPool to 7
* Fixed issue in init
* PvT-v2 now works in AutoModel
* Successful conversion of pretrained weights for PVT-v2
* Successful conversion of pretrained weights for PVT-v2 models
* Added pytests for pvt-v2, all passed
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* Set key and value layers to use separate linear modules. Fixed pruning function
* Set AvgPool to 7
* Fixed issue in init
* PvT-v2 now works in AutoModel
* Successful conversion of pretrained weights for PVT-v2
* Successful conversion of pretrained weights for PVT-v2 models
* Added pytests for pvt-v2, all passed
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* Reverted batch eval changes for PR
* Updated index.md
* Expanded type support for Pvt-v2 config
* Fixed config docstring. Added channels property
* Fixed model names in tests
* Fixed config backbone compat
* Ran fix-copies
* Fixed PvtV2Backbone tests
* Added TFRegNet to OBJECTS_TO_IGNORE in check_docstrings.py
* Fixed backbone stuff and fixed tests: all passing
* Ran make fixup
* Made modifications for code checks
* Remove ONNX config from configuration_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Use explicit image size dict in test_modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Make image_size optional in test_modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove _ntuple use in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove reference to fp16_enabled
* Model modules now take config as first argument even when not used
* Replaced abbreviations for "SR" and "AP" with explicit "spatialreduction" and "averagepooling"
* All LayerNorm now instantiates with config.layer_norm_eps
* Added docstring for depth-wise conv layer
* PvtV2Config now only takes Union[int, Tuple[int, int]] for image size
* Refactored PVTv2 in prep for gradient checkpointing
* Gradient checkpointing ready to test
* Removed override of _set_gradient_checkpointing
* Cleaned out old code
* Applied code fixup
* Applied code fixup
* Began debug of pvt_v2 tests
* Leave handling of num_labels to base pretrained config class
* Deactivated gradient checkpointing tests until it is fixed
* Removed PvtV2ImageProcessor which duped PvtImageProcessor
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* Set key and value layers to use separate linear modules. Fixed pruning function
* Set AvgPool to 7
* Fixed issue in init
* PvT-v2 now works in AutoModel
* Successful conversion of pretrained weights for PVT-v2
* Successful conversion of pretrained weights for PVT-v2 models
* Added pytests for pvt-v2, all passed
* Added pvt_v2 to docs/source/end/model_doc
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Reverted batch eval changes for PR
* Expanded type support for Pvt-v2 config
* Fixed config docstring. Added channels property
* Fixed model names in tests
* Fixed config backbone compat. Added additional type support for image size in config
* Fixed config backbone compat
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* Set key and value layers to use separate linear modules. Fixed pruning function
* Set AvgPool to 7
* Fixed issue in init
* PvT-v2 now works in AutoModel
* Successful conversion of pretrained weights for PVT-v2
* Successful conversion of pretrained weights for PVT-v2 models
* Added pytests for pvt-v2, all passed
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* Set key and value layers to use separate linear modules. Fixed pruning function
* Set AvgPool to 7
* Fixed issue in init
* PvT-v2 now works in AutoModel
* Successful conversion of pretrained weights for PVT-v2
* Successful conversion of pretrained weights for PVT-v2 models
* Added pytests for pvt-v2, all passed
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* Reverted batch eval changes for PR
* Expanded type support for Pvt-v2 config
* Fixed config docstring. Added channels property
* Fixed model names in tests
* Fixed config backbone compat
* Ran fix-copies
* Fixed PvtV2Backbone tests
* Added TFRegNet to OBJECTS_TO_IGNORE in check_docstrings.py
* Fixed backbone stuff and fixed tests: all passing
* Ran make fixup
* Made modifications for code checks
* Remove ONNX config from configuration_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Use explicit image size dict in test_modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Make image_size optional in test_modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove _ntuple use in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove reference to fp16_enabled
* Model modules now take config as first argument even when not used
* Replaced abbreviations for "SR" and "AP" with explicit "spatialreduction" and "averagepooling"
* All LayerNorm now instantiates with config.layer_norm_eps
* Added docstring for depth-wise conv layer
* PvtV2Config now only takes Union[int, Tuple[int, int]] for image size
* Refactored PVTv2 in prep for gradient checkpointing
* Gradient checkpointing ready to test
* Removed override of _set_gradient_checkpointing
* Cleaned out old code
* Applied code fixup
* Applied code fixup
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Ran fix-copies and fixup. All checks passed
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Reverted batch eval changes for PR
* Fixed config docstring. Added channels property
* Fixed config backbone compat
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Ran fix-copies and fixup. All checks passed
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Fixed config backbone compat
* Ran fix-copies
* Began debug of pvt_v2 tests
* Leave handling of num_labels to base pretrained config class
* Deactivated gradient checkpointing tests until it is fixed
* Removed PvtV2ImageProcessor which duped PvtImageProcessor
* Fixed issue from rebase
* Fixed issue from rebase
* Set tests for gradient checkpointing to skip those using reentrant since it isn't supported
* Fixed issue from rebase
* Fixed issue from rebase
* Changed model name in docs
* Removed duplicate PvtV2Backbone
* Work around type switching issue in tests
* Fix model name in config comments
* Update docs/source/en/model_doc/pvt_v2.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Changed name of variable from 'attn_reduce' to 'sr_type'
* Changed name of variable from 'attn_reduce' to 'sr_type'
* Changed from using 'sr_type' to 'linear_attention' for clarity
* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
Removed old code
* Changed from using 'sr_type' to 'linear_attention' for clarity
* Fixed Class names to be more descriptive
* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
Removed outdated code
* Moved paper abstract to single line in pvt_v2.md
* Added usage tips to pvt_v2.md
* Simplified module inits by passing layer_idx
* Fixed typing for hidden_act in PvtV2Config
* Removed unusued import
* Add pvt_v2 to docs/source/en/_toctree.yml
* Updated documentation in docs/source/en/model_doc/pvt_v2.md to be more comprehensive.
* Updated documentation in docs/source/en/model_doc/pvt_v2.md to be more comprehensive.
* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
Move function parameters to single line
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
Update year of copyright to 2024
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
Make code more explicit
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Updated sr_ratio to be more explicit spatial_reduction_ratio
* Removed excess type hints in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Move params to single line in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Removed needless comment in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update copyright date in pvt_v2.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Moved params to single line in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Updated copyright date in configuration_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Cleaned comments in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Renamed spatial_reduction Conv2D operation
* Revert "Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
"
This reverts commit c4a04416dde8f3475ab405d1feb368600e0f8538.
* Updated conversion script to reflect module name change
* Deprecated reshape_last_stage option in config
* Removed unused imports
* Code formatting
* Fixed outdated decorators on test_inference_fp16
* Added "Copied from" comments in test_modeling_pvt_v2.py
* Fixed import listing
* Updated model name
* Force empty commit for PR refresh
* Fixed linting issue
* Removed # Copied from comments
* Added PVTv2 to README_fr.md
* Ran make fix-copies
* Replace all FoamoftheSea hub references with OpenGVLab
* Fixed out_indices and out_features logic in configuration_pvt_v2.py
* Made ImageNet weight conversion verification optional in convert_pvt_v2_to_pytorch.py
* Ran code fixup
* Fixed order of parent classes in PvtV2Config to fix the to_dict method override
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Move normalization for numerical stability
* Apply suggestions from code review
Remove useless x=x line
* PR comment - normalize later to preserve var name meaning
* torchscript and trainer md es translation
* corrected md es files and even corrected spelling in en md
* made es corrections to trainer.md
* deleted entrenamiento... title on yml
* placed entrenamiento in right place
* translated es chat_templating.md w/ yml addition
* requested es changes to md and yml
* last es changes to md
* initial implementation of flash attention for gptj
* modify flash attention and overwrite test_flash_attn_2_generate_padding_right
* update flash attention support list
* remove the copy line in the `CodeGenBlock`
* address copy mechanism
* Update src/transformers/models/gptj/modeling_gptj.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add GPTJ attention classes
* add expected outputs in the gptj test
* Ensure repo consistency with 'make fix-copies'
---------
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add tests for batching support
* Update src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update tests/test_modeling_common.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update tests/test_modeling_common.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update tests/test_modeling_common.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* fixes and comments
* use cosine distance for conv models
* skip mra model testing
* Update tests/models/vilt/test_modeling_vilt.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* finzalize and make style
* check model type by input names
* Update tests/models/vilt/test_modeling_vilt.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fixed batch size for all testers
* Revert "fixed batch size for all testers"
This reverts commit 525f3a0a058f069fbda00352cf202b728d40df99.
* add batch_size for all testers
* dict from model output
* do not skip layoutlm
* bring back some code from git revert
* Update tests/test_modeling_common.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/test_modeling_common.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* clean-up
* where did minus go in tolerance
* make whisper happy
* deal with consequences of losing minus
* deal with consequences of losing minus
* maskformer needs its own test for happiness
* fix more models
* tag flaky CV models from Amy's approval
* make codestyle
---------
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update legacy Repository usage in `examples/pytorch/text-classification/run_glue_no_trainer.py`
Marked for deprecation here https://huggingface.co/docs/huggingface_hub/guides/upload#legacy-upload-files-with-git-lfs
* Fix import order
* Replace all example usage of deprecated Repository
* Fix remaining repo call and rename args variable
* Revert removing creation of gitignore files and don't change research examples
* add: initial script to train clm fim
* fix: if training model from scratch, new tokens will be added and embeddings resized
* fix: fixed attention_mask errors when generating FIM data
* fix: file formatted using black
* add: run_fim_no_trainer.py and fixed some comments in run_fim.py
* add: added fim examples to the README.md and ran code fixup
* fix: little bug in both fim training scripts
* fix: remove comment from notebook and added a note on fim related params
* fix: minor typo in README
* add: suggested minor changes to README and run_fim.py
* add: gradient_accumulation_steps and gradient_checkpointing args
* add: improved model embedding resizing
* add: pad_to_multiple_of and attn_implementation params
* add: requested minor changes
* add: deepspeed zero compatibility
* add: resize embeddings layer with zero3 support for fim model initialization
* fix stablelm dropout argument type error
* fix docs of _flash_attention_forward
* fix all docs of _flash_attention_forward
* fix docs of _flash_attention_forward in starcoder2
---------
Co-authored-by: oliang <oliang@tencent.com>
* Set `inputs` as kwarg in `TextClassificationPipeline`
This change has been done to align the `TextClassificationPipeline` with the rest of the pipelines, and to be able to e.g. `pipeline(**{"inputs": "text"})` which wouldn't be possible since the `*args` were being used instead.
* Add `noqa: C409` on `tuple([inputs],)`
Even though is discouraged by the linter, the cast `tuple(list(...),)` is required here, as otherwise the original list in `inputs` will be transformed into a `tuple` and the elements 1...N will be ignored by the `Pipeline`
* Run `ruff format`
* Simplify `tuple` conversion with `(inputs,)`
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* try to fix gemma mem use
* fix: handle attention mask dim==2 case
* remove logits=logits.float()
* clean up + add llama
* apply formatting
* readability edit: swap order of items being multiplied
* revert change unrelated to PR
* revert black autoformat
* switch to one .to
* Accept style edits
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* added the max_matching_ngram_size parameter into the GenerationConfig, for the PromptLookupCandidateGenerator
* switched back to keyword arguments
* added PromptLookupCandidateGenerator docstring for its parameters
* ruff reformat
* Update src/transformers/generation/configuration_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Fix TrainingArguments regression with torch <2.0.0 for dataloader_prefetch_factor
dataloader_prefetch_factor was added to TrainingArguments in #28498 with the default value None, but versions of torch<2.0.0 do not accept None and will raise an error if num_workers == 0 and prefetch_factor != 2
* Add is_torch_available() check
* Use is_torch_greater_or_equal_than_2_0
add back check for dataloader_prefetch_factor
* initial-commit
* start cleaning
* small nits
* small nits
* current updates
* add kernels
* small refactoring little step
* add comments
* styling
* nit
* nits
* Style
* Small changes
* Push dummy mambda simple slow
* nit
* Use original names
* Use original names and remove norm
* Updates for inference params
* Style nd updates
* nits
* Match logits
* Add a test
* Add expected generated text
* nits doc, imports and styling
* style
* oups
* dont install kernels, invite users to install the required kernels
* let use use the original packages
* styling
* nits
* fix some copieds
* update doc
* fix-copies
* styling done
* nits
* fix import check
* run but wrong cuda ress
* mamba CUDA works :)
* fix the fast path
* config naming nits
* conversion script is not required at this stage
* finish fixing the fast path: generation make sense now!
* nit
* Let's start working on the CIs
* style
* better style
* more nits
* test nit
* quick fix for now
* nits
* nit
* nit
* nit
* nits
* update test rest
* fixup
* update test
* nit
* some fixes
* nits
* update test values
* fix styling
* nit
* support peft
* integrations tests require torchg
* also add slow markers
* styling
* chose forward wisely
* nits
* update tests
* fix gradient checkpointing
* fixup
* nit
* fix doc
* check copies
* fix the docstring
* fix some more tests
* style
* fix beam search
* add init schene
* update
* nit
* fix
* fixup the doc
* fix the doc
* fixup
* tentative update but slow is no longer good
* nit
* should we always use float32?
* nits
* revert wrong changes
* res in float32
* cleanup
* skip fmt for now
* update generation values
* update test values running original model
* fixup
* update tests + rename inference_params to cache_params + make sure training does not use cache_params
* small nits
* more nits
* fix final CIs
* style
* nit doc
* I hope final doc nits
* nit
* 🫠
* final touch!
* fix torch import
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Apply suggestions from code review
* fix fix and fix
* fix base model prefix!
* nit
* Update src/transformers/models/mamba/__init__.py
* Update docs/source/en/model_doc/mamba.md
Co-authored-by: Lysandre Debut <hi@lysand.re>
* nit
---------
Co-authored-by: Lysandre Debut <hi@lysand.re>
* added exllama kernels support for awq models
* doc
* style
* Update src/transformers/modeling_utils.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* refactor
* moved exllama post init to after device dispatching
* bump autoawq version
* added exllama test
* style
* configurable exllama kernels
* copy exllama_config from gptq
* moved exllama version check to post init
* moved to quantization dockerfile
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* torchscript and trainer md es translation
* corrected md es files and even corrected spelling in en md
* made es corrections to trainer.md
* deleted entrenamiento... title on yml
* placed entrenamiento in right place
* First draft
* More improvements
* More improvements
* More fixes
* Fix copies
* More improvements
* More fixes
* More improvements
* Convert checkpoint
* More improvements, set up tests
* Fix more tests
* Add UdopModel
* More improvements
* Fix equivalence test
* More fixes
* Redesign model
* Extend conversion script
* Use real inputs for conversion script
* Add image processor
* Improve conversion script
* Add UdopTokenizer
* Add fast tokenizer
* Add converter
* Update README's
* Add processor
* Add fully fledged tokenizer
* Add fast tokenizer
* Use processor in conversion script
* Add tokenizer tests
* Fix one more test
* Fix more tests
* Fix tokenizer tests
* Enable fast tokenizer tests
* Fix more tests
* Fix additional_special_tokens of fast tokenizer
* Fix tokenizer tests
* Fix more tests
* Fix equivalence test
* Rename image to pixel_values
* Rename seg_data to bbox
* More renamings
* Remove vis_special_token
* More improvements
* Add docs
* Fix copied from
* Update slow tokenizer
* Update fast tokenizer design
* Make text input optional
* Add first draft of processor tests
* Fix more processor tests
* Fix decoder_start_token_id
* Fix test_initialization
* Add integration test
* More improvements
* Improve processor, add test
* Add more copied from
* Add more copied from
* Add more copied from
* Add more copied from
* Remove print statement
* Update README and auto mapping
* Delete files
* Delete another file
* Remove code
* Fix test
* Fix docs
* Remove asserts
* Add doc tests
* Include UDOP in exotic model tests
* Add expected tesseract decodings
* Add sentencepiece
* Use same design as T5
* Add UdopEncoderModel
* Add UdopEncoderModel to tests
* More fixes
* Fix fast tokenizer
* Fix one more test
* Remove parallelisable attribute
* Fix copies
* Remove legacy file
* Copy from T5Tokenizer
* Fix rebase
* More fixes, copy from T5
* More fixes
* Fix init
* Use ArthurZ/udop for tests
* Make all model tests pass
* Remove UdopForConditionalGeneration from auto mapping
* Fix more tests
* fixups
* more fixups
* fix the tokenizers
* remove un-necessary changes
* nits
* nits
* replace truncate_sequences_boxes with truncate_sequences for fix-copies
* nit current path
* add a test for input ids
* ids that we should get taken from c9f7a32f57440d90ff79890270d376a1cc0acb68
* nits converting
* nits
* apply ruff
* nits
* nits
* style
* fix slow order of addition
* fix udop fast range as well
* fixup
* nits
* Add docstrings
* Fix gradient checkpointing
* Update code examples
* Skip tests
* Update integration test
* Address comment
* Make fixup
* Remove extra ids from tokenizer
* Skip test
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update year
* Address comment
* Address more comments
* Address comments
* Add copied from
* Update CI
* Rename script
* Update model id
* Add AddedToken, skip tests
* Update CI
* Fix doc tests
* Do not use Tesseract for the doc tests
* Remove kwargs
* Add original inputs
* Update casting
* Fix doc test
* Update question
* Update question
* Use LayoutLMv3ImageProcessor
* Update organization
* Improve docs
* Update forward signature
* Make images optional
* Remove deprecated device argument
* Add comment, add add_prefix_space
* More improvements
* Remove kwargs
---------
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* 🐛 Fix oneformer instance post processing when using panoptic task type
* ✅ Add unit test for oneformer instance post processing panoptic bug
---------
Co-authored-by: Nick DeGroot <1966472+nickthegroot@users.noreply.github.com>
* Changed logic for setting the tracking URI.
The previous code was calling the `mlflow.set_tracking_uri` function
regardless of whether or not the environment variable
`MLFLOW_TRACKING_URI` is even set. This led to clashes with the original
MLflow implementation and therefore the logic was changed to only
calling the function when the environment variable is explicitly set.
* Check if tracking URI has already been set.
The previous code did not consider the possibility that the tracking URI
may already be set elsewhere and was therefore (erroneously) overriding
previously set tracking URIs using the environment variable.
* Removed redundant parentheses.
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fix docstring to reflect library convention properly.
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fix docstring to reflect library convention properly.
"Unset by default" is the correct expression rather than "Default to `None`."
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Set output_router_logits=False in prepare_inputs_for_generation for mixtral
* Add output_router_logits=False to prepare_inputs_for_generation for mixtral
* Fix style
* remove control flow
* update gptneox
* update ....
* nits
* Actually let's just break. Otherwise we are silently failing which imo is not optimal
* version BC
* fix tests
* fix eager causal
* nit
* add a test
* style
* nits
* nits
* more nits for the test
* update and fix
* make sure cuda graphs are not skipped
* read token is needed for meta llama
* update!
* fiixup
* compile test should be slow
* fix thet fix copies
* stle 🫠
* Add tasks_explained.md to es/
* Fix little typo in en/ version
* translate speach/audio section
* translate part of vision computer section | fix little typo in en/
* Fix little typo in en/
* Translate vision computer section | remove ** ** to * * in both files
* Translate NLP section | fix link to task/translation in en/
* Updete link in es/tasks_summary.md
* Fix task_summary title link
Cache `is_vision_available`
This check is used quite often during process in image models and can take up a serious amount of time compared to the other processing steps.
* stash commit
* stash commit
* It works!
* Remove unnecessary change
* We don't actually need the cache_dir!
* Update docstring
* Add test
* Add test with custom cache dir too
* Update model repo path
* fix compatibility
* working version
* cleanup
* sanity checks
* more sanity
* working version WITH refactor
* working without API change
* cleanup & tests pass
* more cleaning
* fix test
* fix tests
* Update src/transformers/generation/utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* smaller comment
* update comment
* update comment
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* draft processor arg capture
* add missing vivit model
* add new common test for image preprocess signature
* fix quality
* fix up
* add back missing validations
* quality
* move info level to warning for unused kwargs
* Revert "Add tie_weights() to LM heads and set bias in set_output_embeddings() (#28948)"
This reverts commit 725f4ad1ccad4e1aeb309688706b56713070334b.
* Revert "Patch to skip failing `test_save_load_low_cpu_mem_usage` tests (#29043)"
This reverts commit 4156f517ce0f00e0b7842410542aad5fe37e73cf.
* add add_dummy_prefix_space option to slow
* checking kwargs might be better. Should be there for all spm tokenizer IMO
* nits
* fix copies
* more copied
* nits
* add prefix space
* nit
* nits
* Update src/transformers/convert_slow_tokenizer.py
* fix inti
* revert wrong styling
* fix
* nits
* style
* updates
* make sure we use slow tokenizer for conversion instead of looking for the decoder
* support llama ast well
* update llama tokenizer fast
* nits
* nits nits nits
* update the doc
* update
* update to fix tests
* skip unrelated tailing test
* Update src/transformers/convert_slow_tokenizer.py
* add proper testing
* test decode as well
* more testing
* format
* fix llama test
* Apply suggestions from code review
* Fixed nll with label_smoothing to nll
* Resolved conflict by rebase
* Fixed nll with label_smoothing to nll
* Resolved conflict by rebase
* Added label_smoothing to config file
* Fixed nits
output_logits option behaves like output_scores, but returns the raw, unprocessed prediction logit scores,
ie. the values before they undergo logit processing and/or warping. The latter happens by default for the
regular output scores.
It's useful to have the unprocessed logit scores in certain circumstances. For example, unprocessed logit scores
are very useful with causallm models when one wants to determine the probability of a certain answer, e.g.
when asking a question with a yes/no answer. In that case getting the next-token probabilities of both "yes" and
"no" (and/or their relative ratio) is of interest for classification. The reason for getting these _before_ logit
processing and/or warping is b/c a) that can change the probabilities or b) reject the tokens of interest / reduce
the number of tokens to just 1.
For an example use-case see paper TabLLM: Few-shot Classification of Tabular Data with Large Language Models
by Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David Sontag.
https://arxiv.org/abs/2210.10723
In addition:
- added dedicated unit test: tests/generation/test_utils/test_return_unprocessed_logit_scores
which tests return of logics with output_logits=True in generation.
- set output_logits=True in all other generation unit tests, that also have output_scores=True.
Implemented @gante's and @amyeroberts review feedback
Co-authored-by: kx79wq <max.baak@ing.com>
* change version
* nuke
* this doesn't make sense
* update some requirements.py
* revert + no main
* nits
* change cache number
* more pin
* revert
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
The link in evaluation was missing a hyphen between post and processing. I fixed this, for English only. Someone with the ability to do a global search/replace should fix the other languages (if indeed they have this issue)/
* Add task_summary to es/_toctree.yml
* Add task_summary.md to docs/es
* Change title of task_summary.md
* Translate firsts paragraphs
* Translate middle paragraphs
* Translte the rest of the doc
* Edit firts paragraph
* Add chat support to text generation pipeline
* Better handling of single elements
* Deprecate ConversationalPipeline
* stash commit
* Add missing add_special_tokens kwarg
* Update chat templating docs to refer to TextGenerationPipeline instead of ConversationalPipeline
* Add ✨TF✨ tests
* @require_tf
* Add type hint
* Add specific deprecation version
* Remove unnecessary do_sample
* Remove todo - the discrepancy has been resolved
* Update src/transformers/tokenization_utils_base.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/pipelines/text_generation.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* pass through trust_remote_code for dynamically loading unregistered tokenizers specified by config
add test
* change directories back to previous directory after test
* fix ruff check
* Add a note to that block for future in case we want to remove it later
---------
Co-authored-by: Matt <rocketknight1@gmail.com>
* enable graident checkpointing in DetaObjectDetection
* fix missing part in original DETA
* make style
* make fix-copies
* Revert "make fix-copies"
This reverts commit 4041c86c29248f1673e8173b677c20b5a4511358.
* remove fix-copies of DetaDecoder
* enable swin gradient checkpointing
* fix gradient checkpointing in donut_swin
* add tests for deta/swin/donut
* Revert "fix gradient checkpointing in donut_swin"
This reverts commit 1cf345e34d3cc0e09eb800d9895805b1dd9b474d.
* change supports_gradient_checkpointing pipeline to PreTrainedModel
* Revert "add tests for deta/swin/donut"
This reverts commit 6056ffbb1eddc3cb3a99e4ebb231ae3edf295f5b.
* Revert "Revert "fix gradient checkpointing in donut_swin""
This reverts commit 24e25d0a14891241de58a0d86f817d0b5d2a341f.
* Simple revert
* enable deformable detr gradient checkpointing
* add gradient in encoder
* add cuda_custom_kernel function in MSDA
* make style and fix input of DetaMSDA
* make fix-copies
* remove n_levels in input of DetaMSDA
* minor changes
* refactor custom_cuda_kernel like yoso format
0507e69d34/src/transformers/models/yoso/modeling_yoso.py (L53)
* wow I was scared!
* fix everything
* nits
* make it BC?
* add todo
* nits
* is_tracing should still be used to pass tracing tests
* nits
* some nits to make sure genration works with static cache uncompiled
* fix sdpa
* fix FA2 for both static and dynamic in a better way?
* style
* fix-copies
* fix fix copies
* fix sequential beam searcg
* style
* use `keys_to_ignore`
* nit
* correct dtype inference when init
* :( the fix for FA2 is still not optimal to investigate!
* styling
* nits
* nit
* this might work better
* add comment
* Update src/transformers/models/llama/modeling_llama.py
* "position_ids" -> "cache_position"
* style
* nit
* Remove changes that should no be propagatted just yet
* Apply suggestions from code review
* Styling
* make sure we raise an errir for static cache with FA2 enabled
* move to the bottom of the signature
* style
* Update src/transformers/models/llama/modeling_llama.py
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Update src/transformers/models/llama/modeling_llama.py
* nit in the name
---------
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Initial commit
* Add guards for the global mesh
* Address more comments
* Move the dataloader into integrations/tpu.py
* Fix linters
* Make karg more explicitly
* Remove the move device logic
* Fix the CI
* Fix linters
* Re-enable checkpointing
* Add tie_weights() to LM heads and set bias in set_output_embeddings()
The bias were not tied correctly in some LM heads, and this change should fix that.
* Moving test_save_and_load_low_cpu_mem_usage to ModelTesterMixin
* Adding _tie_weights() to MPNet and Vilt
* Skip test for low cpu mem usage for Deta/DeformableDetr since they cannot init on meta device
* Rename to test name to save_load to match the convention
* Update the processing so bbox coords are adjusted for padding
* Just pad masks
* Tidy up, add tests
* Better tests
* Fix yolos and mark as slow for pycocotols
* Fix yolos - return_tensors
* Clarify padding and normalization behaviour
* add sudachi_projection option
* Upgrade sudachipy>=0.6.8
* add a test case for sudachi_projection
* Compatible with older versions of SudachiPy
* make fixup
* make style
* error message for unidic download
* revert jumanpp test cases
* format options for sudachi_projection
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* format options for sudachi_split_mode and sudachi_dict_type
* comment
* add tests for full_tokenizer kwargs
* pass projection arg directly
* require_sudachi_projection
* make style
* revert upgrade sudachipy
* check is_sudachi_projection_available()
* revert dependency_version_table and bugfix
* style format
* simply raise ImportError
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* simply raise ImportError
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* refactor with addedtokens decoder
* style
* get rid of lang code to id
* style
* keep some things for BC
* update tests
* add the mask token at the end of the vocab
* nits
* nits
* fix final tests
* style
* nits
* Update src/transformers/models/nllb/tokenization_nllb_fast.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* nits
* style?
* Update src/transformers/convert_slow_tokenizer.py
* make it a tad bit more custom
* ruff please stop
Co-Authored by avidale
<dale.david@mail.ru>
* Update
Co-authored-by: avidale
<dale.david@mail.ru>
* Update
Co-authored-by: avidale <dale.david@mail.ru>
* oupts
* ouft
* nites
* test
* fix the remaining failing tests
* style
* fix failing test
* ficx other test
* temp dir + test the raw init
* update test
* style
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Convert torch_dtype as str to actual torch data type (i.e. "float16" to torch.float16)
* Check if passed torch_dtype is an attribute in torch
* Update src/transformers/pipelines/__init__.py
Check type via isinstance
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Translate README.md to German
* Add links to README_de.md
* Remove invisible characters in README
* Change to a formal tone and fix punctuation marks
* Changed max_position_embeddings default value from 2048 to 4096
* force push
* Fixed formatting issues. Fixed missing argument in write_model.
* Reverted to the default value 2048 in the Llama config. Added comments for the llama_version argument.
* Fixed issue with default value value of max_position_embeddings in docstring
* Updated help message for llama versions
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add missing entries to the language selector
* Add links to the Colab and AWS Studio notebooks for ONNX
* Use anchor links in CONTRIBUTING.md
* Fix broken hyperlinks due to spaces
* Fix links to OpenAI research articles
* Remove confusing footnote symbols from author names, as they are also considered invalid markup
* This is a test commit
* testing commit
* final commit with some changes
* Removed copy statement
* Fixed formatting issues
* Fixed error added past_key_values in the forward method
* Fixed a trailing whitespace. Damn the formatting rules are strict
* Added the copy statement
* add clearml tracker
* support multiple train runs
* remove bad code
* add UI entries for config/hparams overrides
* handle models in different tasks
* run ruff format
* tidy code based on code review
---------
Co-authored-by: Eugen Ajechiloae <eugenajechiloae@gmail.com>
* [WIP] Hard error when ignoring tensors.
* Better selection/error when saving a checkpoint.
- Find all names we should normally drop (those are in the transformers
config)
- Find all disjoint tensors (for those we can safely trigger a copy to
get rid of the sharing before saving)
- Clone those disjoint tensors getting rid of the issue
- Find all identical names (those should be declared in the config
but we try to find them all anyway.)
- For all identical names:
- If they are in the config, just ignore them everything is fine
- If they are not, warn about them.
- For all remainder tensors which are shared yet neither identical NOR
disjoint. raise a hard error.
* Adding a failing test on `main` that passes here.
* We don't need to keep the subfolder logic in this test.
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Fix typos and grammar mistakes in docs and examples
* Fix typos in docstrings and comments
* Fix spelling of `tokenizer` in model tests
* Remove erroneous spaces in decorators
* Remove extra spaces in Markdown link texts
* Adding [T5/MT5/UMT5]ForTokenClassification
* Add auto mappings for T5ForTokenClassification and variants
* Adding ForTokenClassification to the list of models
* Adding attention_mask param to the T5ForTokenClassification test
* Remove outdated comment in test
* Adding EncoderOnly and Token Classification tests for MT5 and UMT5
* Fix typo in umt5 string
* Add tests for all the existing MT5 models
* Fix wrong comment in dependency_versions_table
* Reverting change to common test for _keys_to_ignore_on_load_missing
The test is correctly picking up redundant keys in _keys_to_ignore_on_load_missing.
* Removing _keys_to_ignore_on_missing from MT5 since the key is not used in the model
* Add fix-copies to MT5ModelTest
* Shim the Keras methods to support BatchEncoding
* Extract everything to a convert_batch_encoding function
* Convert BatchFeature too (thanks Amy)
* tf.keras -> keras
* fix: resolve deepspeed resume peft model issues
* chore: update something
* chore: update model instance pass into is peft model checks
* chore: remove hard code value to tests
* fix: format code
* up
* Fix more
* Correct more
* Fix more tests
* fix fast tests
* Fix more
* fix more
* push all files
* finish all
* make style
* Fix timestamp wrap
* make style
* make style
* up
* up
* up
* Fix lang detection behavior
* Fix lang detection behavior
* Add lang detection test
* Fix lang detection behavior
* make style
* Update src/transformers/models/whisper/generation_whisper.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* better error message
* make style tests
* add warning
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* test that tied output embeddings aren't initialized on load
* don't initialize the output embeddings if we're going to tie them to the input embeddings
* Pin torch to <2.2.0
* Pin torchvision and torchaudio as well
* Playing around with versions to see if this helps
* twiddle something to restart the CI
* twiddle it back
* Try changing the natten version
* make fixup
* Revert "Try changing the natten version"
This reverts commit de0d6592c35dc39ae8b5a616c27285db28262d06.
* make fixup
* fix fix fix
* fix fix fix
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Port core files + ESM (because ESM code is odd)
* Search-replace in modelling code
* Fix up transfo_xl as well
* Fix other core files + tests (still need to add correct import to tests)
* Fix cookiecutter
* make fixup, fix imports in some more core files
* Auto-add imports to tests
* Cleanup, add imports to sagemaker tests
* Use correct exception for importing tf_keras
* Fixes in modeling_tf_utils
* make fixup
* Correct version parsing code
* Ensure the pipeline tests correctly revert to float32 after each test
* Ensure the pipeline tests correctly revert to float32 after each test
* More tf.keras -> keras
* Add dtype cast
* Better imports of tf_keras
* Add a cast for tf.assign, just in case
* Fix callback imports
* Enable instantiating model with pretrained backbone weights
* Remove doc updates until changes made in modeling code
* Use load_backbone instead
* Add use_timm_backbone to the model configs
* Add missing imports and arguments
* Update docstrings
* Make sure test is properly configured
* Include recent DPT updates
* Update trainer.py
* Revert "Update trainer.py"
This reverts commit 0557e2cc9effa3a41304322032239a3874b948a7.
* Make trainer.py use adapter_only=True when using FSDP + PEFT
* Support load_best_model with adapter_only=True
* Ruff format
* Inspect function args for save_ load_ fsdp utility functions and only pass adapter_only=True if they support it
* Enabled gradient checkpointing in Deformable DETR
* Enabled gradient checkpointing in Deformable DETR encoder
* Removed # Copied from headers in modeling_deta.py to break dependence on Deformable DETR code
Initialize _tqdm_active with hf_hub_utils.are_progress_bars_disabled() to respect HF_HUB_DISABLE_PROGRESS_BARS
It seems like enable_progress_bar() and disable_progress_bar() sync up with huggingface_hub, but the initial value is always True. This changes will make sure the user's preference is respected implicity on initialization.
The documentation says "We refer to this Model parallelism as “Vertical” because of how models are typically visualized.", but then visualizes the model horizontally. This change visualizes the model indeed vertically.
fix typo:
from:
"model = TFAutoModelForQuestionAnswering("distilbert-base-uncased")"
to:
model = TFAutoModelForQuestionAnswering.from_pretrained("distilbert-base-uncased")
* Changed type hinting for all attention inputs to 'Optional[Tuple[torch.FloatTensor,...]] = None'
* Fixed the ruff formatting issue
* fixed type hinting for all hidden_states to 'Optional[Tuple[torch.FloatTensor, ...]] = None'
* Changed type hinting in these 12 scripts modeling_dpr.py,modeling_nat.py,idefics/vision.py,modeling_tf_dpr.py,modeling_luke.py,modeling_swin.py,modeling_tf_swin.py,modeling_blip.py,modeling_tf_blip.py,modeling_donut_swin.py,modeling_dinat.py,modeling_swinv2.py
* test fail update
* fixed type hinting for these 15 scripts modeling_xlnet.py,modeling_tf_xlnet.py,modeling_led.py,modeling_tf_led.py,modleing_rwkv.py,modeling_dpt.py,modeling_tf_cvt.py,modeling_clip.py,modeling_flax_clip.py,modeling_tf_clip.py,modeling_longformer.py,modeling_tf_longformer.py,modeling_siglip.py,modeling_clap.py,modeling_git.py
* Changed type hinting in these 12 scripts modeling_dpr.py,modeling_nat.py,idefics/vision.py,modeling_tf_dpr.py,modeling_luke.py,modeling_swin.py,modeling_tf_swin.py,modeling_blip.py,modeling_tf_blip.py,modeling_donut_swin.py,modeling_dinat.py,modeling_swinv2.py
* test fail update
* Removed the myvenv file
* Fixed type hinting for these 8 scripts modeling_tvlt.py,modeling_sam.py,modeling_tf_sam.py,modeling_tvp.py,modeling_rag.py,modeling_tf_rag.py,modeling_tf_xlm.py,modeling_xlm.py
* fix the function load_balancing_loss_func in Mixtral_Moe to include attention_mask
* format code using black and ruff
* skip computing mask if attention_mask=None
* add tests for load balancing loss Mixtral-Moe
* fix assert loss is different in mixtral_test
* fix pad_leng
* use assertNotAlmostEqual and print to debug
* remove print for debug
* minor updates
* reduce rtol and atol
* fix a hidden bug of GenerationConfig
* keep `sort_keys=True` to maintain visibility
* Update src/transformers/generation/configuration_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update configuration_utils.py
in case `obj` is a list, check the items in the list
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add dataloader prefetch factor in training args and trainer
* remove trailing spaces
* prevent dataloader_num_workers == 0 and dataloader_prefetch_factor != None
dataloader_prefetch_factor works only when data is loaded in a different process as the main one. This commit adds the necessary checks to avoid having prefetch_factor set when there is no such process.
* Remove whitespaces in empty line
* Update src/transformers/training_args.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/training_args.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/training_args.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/training_args.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Enable instantiating model with pretrained backbone weights
* Update tests so backbone checkpoint isn't passed in
* Remove doc updates until changes made in modeling code
* Clarify pretrained import
* Update configs - docs and validation check
* Update src/transformers/utils/backbone_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Clarify exception message
* Update config init in tests
* Add test for when use_timm_backbone=True
* Small test updates
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update convert_llava_weights_to_hf.py script
* Remove config update of adding padding to `vocab_size` and `text_config.vocab_size` which causes `ValueError` exception.
* Remove keys that ends with `inv_freq` from the state dict.
* Add examples and instructions for creating `model_state_dict.bin` that can be used by the script.
* Update convert_llava_weights_to_hf.py
* Update convert_vipllava_weights_to_hf.py
* [DETA] fix freeze/unfreeze function
* Update src/transformers/models/deta/modeling_deta.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/deta/modeling_deta.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add freeze/unfreeze test case in DETA
* fix type
* fix typo 2
* fix : enable aux and enc loss in training pipeline
* Add unsynced variables from original DETA for training
* modification for passing CI test
* make style
* make fix
* manual make fix
* change deta_modeling_test of configuration 'two_stage' default to TRUE and minor change of dist checking
* remove print
* divide configuration in DetaModel and DetaForObjectDetection
* image smaller size than 224 will give topk error
* pred_boxes and logits should be equivalent to two_stage_num_proposals
* add missing part in DetaConfig
* Update src/transformers/models/deta/modeling_deta.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add docstring in configure and prettify TO DO part
* change distribute related code to accelerate
* Update src/transformers/models/deta/configuration_deta.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/deta/test_modeling_deta.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* protect importing accelerate
* change variable name to specific value
* wrong import
* fix aux_loss in conditional_detr
* add test aux_loss
* add aux_loss test in deta and table_transformer
* fix yolos since it doesn't have auxiliary function
* fix maskformer auxiliary_loss related code
* make style
* change param 'auxiliary_loss' to 'use_auxiliary_loss'
* change param 'auxiliary_loss' to 'use_auxiliary_loss' in tests
* make style & fix-copies, also revert yolos related parameter
* revert variable name 'use_auxiliary_loss' to 'auxiliary_loss' due to DetrConfig
* revert variable name in yolos
* revert maskformer
* add aux_loss test in maskformer
* make style
* Update src/transformers/models/yolos/configuration_yolos.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Allow non-special tokens to be added
* Add test, fix token adding code
* Revert changes to id_to_token and token_to_id
* Update the ESM tokenizer to be a bit more standardized
* Update src/transformers/models/esm/tokenization_esm.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update convert_llava_weights_to_hf.py
Fix call to `tokenizer.add_tokens`
* Add special_tokens to tokenizer.add_tokens in convert_vipllava_weights_to_hf.py
* finalize
* make fix copies whisper
* [Tests] Make sure that we don't run tests mulitple times
* Update src/transformers/models/whisper/modeling_whisper.py
* [Tests] Make sure that we don't run tests mulitple times
* fix more
* improve
* improve
* improve further
* improve more
* improve
* fix more
* git commit and git push
* fix more
* fix more
* fix more
* New try
* Fix more whisper stuff
* Improve
* correct more
* correct more
* correct more
* Fix some tests
* Add more tests
* correct more
* correct more
* correct more
* push
* correct more
* Fix more
* Better
* without dec mask
* correct more
* clean
* save intermediate
* Fix more
* Fix VAD for large-v2
* Save new
* Correct more
* make cleaner
* correct tests
* correct src
* Finish
* Fix more
* Fix more
* finish
* Fix edge cases
* fix return_dict_in_generate
* fix all tests
* make style
* add docstrings
* add docstrings
* Fix logit processor
* make style
* fix pipeline test
* fix more style
* Apply suggestions from code review
* apply feedback Sanchit
* correct more
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* correct more
* correct more
* correct more
* Fix staticmethod
* correct more
* fix
* fix slow tests
* make style
* fix tokenizer test
* fix tokenizer test
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* finish
* finish
* revert kwargs change
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* first commit
* correct default value non causal
* update config and modeling code
* update converting checkpoint
* clean modeling and fix tests
* make style
* add new config parameters to docstring
* fix copied from statements
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* make position_embeddings_type docstrings clearer
* clean converting script
* remove function not used
* clean modeling file
* apply suggestion for test file + add convert script to not_doctested
* modify tests according to review - cleaner logic and more tests
* Apply nit suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add checker of valid position embeddings type
* instantiate new layer norm layer with the right eps
* fix freeze_feature_encoder since it can be None in some cases
* add test same output in convert script
* restore wav2vec2conformer and add new model
* create processor and FE + clean
* add new model code
* fix convert script and set default config parameters
* correct model id paths
* make style
* make fix-copies and cleaning files
* fix copied from statements
* complete .md and fixe copies
* clean convert script argument defaults
* fix config parameters docstrings
* fix config docstring
* add copied from and enrich FE tests
* fix copied from and repo-consistency
* add autotokenizer
* make test input length shorter and change docstring code
* fix docstrings and copied from
* add add_adapter to ASR training example
* make testing of adapters more robust
* adapt to multi adapter layers
* refactor input_values->input_features and remove w2v2-bert feature extractor
* remove pretraining model
* remove depreciated features and useless lines
* add copied from and ignore statements to modeling tests
* remove pretraining model #2
* change import in convert script
* change default in convert script
* update readme and remove useless line
* Update tests/models/wav2vec2_bert/test_processor_wav2vec2_bert.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* refactor BERT to Bert for consistency
* remove useless ignore copy statement
* add persistent to buffer in rotary
* add eps in LayerNorm init and remove copied from
* add adapter activation parameters and add copied from statements
* Fix copied statements and add unitest.skip reasons
* add copied statement in test_processor
* refactor processor
* make style
* replace numpy random by torch rand
* remove expected output CTC
* improve converting script with processor class
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* remove gumbel class
* remove tests related to previously deleted class
* Update src/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* correct typos
* remove uused parameters
* update processor to takes both text and audio
* update checkpoints
* update expected output and add ctc expected output
* add label_attention_mask
* replace pt with np in processor tests
* fix typo
* revert to behaviour with labels_attention_mask
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix
* last attempt
* current work
* fix forward compatibility
* save all special tokens
* current state
* revert additional changes
* updates
* remove tokenizer.model
* add a test and the fix
* nit
* revert one more break
* fix typefield issue
* quality
* more tests
* fix fields for FC
* more nits?
* new additional changes
* how
* some updates
* the fix
* where do we stand
* nits
* nits
* revert unrelated changes
* nits nits nits
* styling
* don't break llama just yet
* revert llama changes
* safe arg check
* fixup
* Add a test for T5
* Necessary changes
* Tests passing, added tokens need to not be normalized. If the added tokens are normalized, it will the stripping which seems to be unwanted for a normal functioning
* Add even more tests, when normalization is set to True (which does not work 😓 )
* Add even more tests, when normalization is set to True (which does not work 😓 )
* Update to main
* nits
* fmt
* more and more test
* comments
* revert change as tests are failing
* make the test more readble
* nits
* refactor the test
* nit
* updates
* simplify
* style
* style
* style convert slow
* Update src/transformers/convert_slow_tokenizer.py
I want to train dinov2 with bf16 but I get the following error in bc72b4e2cd/src/transformers/models/dinov2/modeling_dinov2.py (L635):
```
RuntimeError: Input type (float) and bias type (c10::BFloat16) should be the same
```
Since the input dtype is torch.float32, the parameter dtype has to be torch.float32...
@LZHgrla and I checked the code of clip vision encoder and found there is an automatic dtype transformation (bc72b4e2cd/src/transformers/models/clip/modeling_clip.py (L181-L182)).
So I add similar automatic dtype transformation to modeling_dinov2.py.
* skip bf16 test if not supported by device
* fix
* fix bis
* use is_torch_bf16_available_on_device
* use is_torch_fp16_available_on_device
* fix & use public llama
* use 1b model
* fix flacky test
---------
Co-authored-by: Your Name <you@example.com>
* Fix bug in SpeechT5 speech decoder prenet's forward method
- Removed redundant `repeat` operation on speaker_embeddings in the forward method. This line was erroneously duplicating the embeddings, leading to incorrect input size for concatenation and performance issues.
- Maintained original functionality of the method, ensuring the integrity of the speech decoder prenet's forward pass remains intact.
- This change resolves a critical bug affecting the model's performance in handling speaker embeddings.
* Refactor SpeechT5 text to speech integration tests
- Updated SpeechT5ForTextToSpeechIntegrationTests to accommodate the variability in sequence lengths due to dropout in the speech decoder pre-net. This change ensures that our tests are robust against random variations in generated speech, enhancing the reliability of our test suite.
- Removed hardcoded dimensions in test assertions. Replaced with dynamic checks based on model configuration and seed settings, ensuring tests remain valid across different runs and configurations.
- Added new test cases to thoroughly validate the shapes of generated spectrograms and waveforms. These tests leverage seed settings to ensure consistent and predictable behavior in testing, addressing potential issues in speech generation and vocoder processing.
- Fixed existing test cases where incorrect assumptions about output shapes led to potential errors.
* Fix bug in SpeechT5 speech decoder prenet's forward method
- Removed redundant `repeat` operation on speaker_embeddings in the forward method. This line was erroneously duplicating the embeddings, leading to incorrect input size for concatenation and performance issues.
- Maintained original functionality of the method, ensuring the integrity of the speech decoder prenet's forward pass remains intact.
- This change resolves a critical bug affecting the model's performance in handling speaker embeddings.
* Refactor SpeechT5 text to speech integration tests
- Updated SpeechT5ForTextToSpeechIntegrationTests to accommodate the variability in sequence lengths due to dropout in the speech decoder pre-net. This change ensures that our tests are robust against random variations in generated speech, enhancing the reliability of our test suite.
- Removed hardcoded dimensions in test assertions. Replaced with dynamic checks based on model configuration and seed settings, ensuring tests remain valid across different runs and configurations.
- Added new test cases to thoroughly validate the shapes of generated spectrograms and waveforms. These tests leverage seed settings to ensure consistent and predictable behavior in testing, addressing potential issues in speech generation and vocoder processing.
- Fixed existing test cases where incorrect assumptions about output shapes led to potential errors.
* Enhance handling of speaker embeddings in SpeechT5
- Refined the generate and generate_speech functions in the SpeechT5 class to robustly handle two scenarios for speaker embeddings: matching the batch size (one embedding per sample) and one-to-many (a single embedding for all samples in the batch).
- The update includes logic to repeat the speaker embedding when a single embedding is provided for multiple samples, and a ValueError is raised for any mismatched dimensions.
- Also added corresponding test cases to validate both scenarios, ensuring complete coverage and functionality for diverse speaker embedding situations.
* Improve Test Robustness with Randomized Speaker Embeddings
* fix mismatching behavior in from_pretrained with/without accelerate
* meaningful refactor
* remove added space
* add test
* fix model on the hub
* comment
* use tiny model
* style
* Remove `task` arg in `load_dataset` in image-classification example
* Manage case where "train" is not in dataset
* Add new args to manage image and label column names
* Similar to audio-classification example
* Fix README
* Update tests
* added args to the pipeline
* added test
* more sensical tests
* fixup
* docs
* typo
;
* docs
* made changes to support named args
* fixed test
* docs update
* styles
* docs
* docs
* Add the XPU check for pipeline mode
When setting xpu device for pipeline, It needs to use is_torch_xpu_available to load ipex and determine whether the device is available.
Signed-off-by: yuanwu <yuan.wu@intel.com>
* Don't move model to device when hf_device_map isn't None
1. Don't move model to device when hf_device_map is not None
2. The device string maybe includes the device index, so use 'in'instead of equal
Signed-off-by: yuanwu <yuan.wu@intel.com>
* Raise the error when xpu is not available
Signed-off-by: yuanwu <yuan.wu@intel.com>
* Update src/transformers/pipelines/base.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/pipelines/base.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Modify the error message
Signed-off-by: yuanwu <yuan.wu@intel.com>
* Change message format.
Signed-off-by: yuanwu <yuan.wu@intel.com>
---------
Signed-off-by: yuanwu <yuan.wu@intel.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Fix TF Regnet docstring
* Fix TF Regnet docstring
* Make a change to the PyTorch Regnet too to make sure the CI is checking it
* Add skips for TFRegnet
* Update error message for docstring checker
* Correct the implementation of auxiliary loss of mixtrtal
* correct the implementation of auxiliary loss of mixtrtal
* Implement a simpler calculation method
---------
Co-authored-by: zhangliangxu3 <zhangliangxu3@jd.com>
* chore(phi): Updates configuration_phi with missing keys.
* chore(phi): Adds first draft of combined modeling_phi.
* fix(phi): Fixes according to latest review.
* fix(phi): Removes pad_vocab_size_multiple to prevent inconsistencies.
* fix(phi): Fixes unit and integration tests.
* fix(phi): Ensures that everything works with microsoft/phi-1 for first integration.
* fix(phi): Fixes output of docstring generation.
* fix(phi): Fixes according to latest review.
* fix(phi): Fixes according to latest review.
* fix(tests): Re-enables Phi-1.5 test.
* fix(phi): Fixes attention overflow on PhiAttention (for Phi-2).
* fix(phi): Improves how queries and keys are upcast.
* fix(phi): Small updates on latest changes.
* optionally preprocess segmentation maps for mobilevit
* changed pretrained model name to that of segmentation model
* removed voc-deeplabv3 from model archive list
* added preprocess_image and preprocess_mask methods for processing images and segmentation masks respectively
* added tests for segmentation masks based on segformer feature extractor
* use crop_size instead of size
* reverting to initial model
While using `run_clm.py`,[^1] I noticed that some files were being added
to my global cache, not the local cache. I set the `cache_dir` parameter
for the one call to `evaluate.load()`, which partially solved the
problem. I figured that while I was fixing the one script upstream, I
might as well fix the problem in all other example scripts that I could.
There are still some files being added to my global cache, but this
appears to be a bug in `evaluate` itself. This commit at least moves
some of the files into the local cache, which is better than before.
To create this PR, I made the following regex-based transformation:
`evaluate\.load\((.*?)\)` -> `evaluate\.load\($1,
cache_dir=model_args.cache_dir\)`. After using that, I manually fixed
all modified files with `ruff` serving as useful guidance. During the
process, I removed one existing usage of the `cache_dir` parameter in a
script that did not have a corresponding `--cache-dir` argument
declared.
[^1]: I specifically used `pytorch/language-modeling/run_clm.py` from
v4.34.1 of the library. For the original code, see the following URL:
acc394c4f5/examples/pytorch/language-modeling/run_clm.py.
* Remove ErnieConfig, ErnieMConfig check_docstrings
* Run fix_and_overwrite for ErnieConfig, ErnieMConfig
* Replace <fill_type> and <fill_docstring> in configuration_ernie, configuration_ernie_m.py with type and docstring values
---------
Co-authored-by: vignesh-raghunathan <vignesh_raghunathan@intuit.com>
* Changed logic for renaming staging directory when saving checkpoint to only operate with the main process.
Added fsync functionality to attempt to flush the write changes in case os.rename is not atomic.
* Updated styling using make fixup
* Updated check for main process to use built-in versions from trainer
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
* Fixed incorrect usage of trainer main process checks
Added with open usage to ensure better file closing as suggested from PR
Added rotate_checkpoints into main process logic
* Removed "with open" due to not working with directory. os.open seems to work for directories.
---------
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
* Fix initialization for missing parameters in `from_pretrained` under ZeRO-3
* Test initialization for missing parameters under ZeRO-3
* Add more tests
* Only enable deepspeed context for per-module level parameters
* Enable deepspeed context only once
* Move class definition inside test case body
* Add first draft
* Use appropriate gelu function
* More improvements
* More improvements
* More improvements
* Convert checkpoint
* More improvements
* Improve docs, remove print statements
* More improvements
* Add link
* remove unused masking function
* begin tokenizer
* do_lower_case
* debug
* set split_special_tokens=True
* Remove script
* Fix style
* Fix rebase
* Use same design as CLIP
* Add fast tokenizer
* Add SiglipTokenizer to init, remove extra_ids
* Improve conversion script
* Use smaller inputs in conversion script
* Update conversion script
* More improvements
* Add processor to conversion script
* Add tests
* Remove print statements
* Add tokenizer tests
* Fix more tests
* More improvements related to weight initialization
* More improvements
* Make more tests pass
* More improvements
* More improvements
* Add copied from
* Add canonicalize_text
* Enable fast tokenizer tests
* More improvements
* Fix most slow tokenizer tests
* Address comments
* Fix style
* Remove script
* Address some comments
* Add copied from to tests
* Add more copied from
* Add more copied from
* Add more copied from
* Remove is_flax_available
* More updates
* Address comment
* Remove SiglipTokenizerFast for now
* Add caching
* Remove umt5 test
* Add canonicalize_text inside _tokenize, thanks Arthur
* Fix image processor tests
* Skip tests which are not applicable
* Skip test_initialization
* More improvements
* Compare pixel values
* Fix doc tests, add integration test
* Add do_normalize
* Remove causal mask and leverage ignore copy
* Fix attention_mask
* Fix remaining tests
* Fix dummies
* Rename temperature and bias
* Address comments
* Add copied from to tokenizer tests
* Add SiglipVisionModel to auto mapping
* Add copied from to image processor tests
* Improve doc
* Remove SiglipVisionModel from index
* Address comments
* Improve docs
* Simplify config
* Add first draft
* Make it like mistral
* More improvements
* Fix attention_mask
* Fix output_attentions
* Add note in docs
* Convert multilingual model
* Convert large checkpoint
* Convert more checkpoints
* Add pipeline support, correct image_mean and image_std
* Use padding=max_length by default
* Make processor like llava
* Add code snippet
* Convert more checkpoints
* Set keep_punctuation_string=None as in OpenCLIP
* Set normalized=False for special tokens
* Fix doc test
* Update integration test
* Add figure
* Update organization
* Happy new year
* Use AutoModel everywhere
---------
Co-authored-by: patil-suraj <surajp815@gmail.com>
* fix input audio device for windows.
* ffmpeg audio device Windows
* Fixes wrong input device assignment in Windows
* Fixed getting mic on Windows systems by adding _get_microphone_name() function.
* [DETA] fix freeze/unfreeze function
* Update src/transformers/models/deta/modeling_deta.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/deta/modeling_deta.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add freeze/unfreeze test case in DETA
* fix type
* fix typo 2
* fix : enable aux and enc loss in training pipeline
* Add unsynced variables from original DETA for training
* modification for passing CI test
* make style
* make fix
* manual make fix
* change deta_modeling_test of configuration 'two_stage' default to TRUE and minor change of dist checking
* remove print
* divide configuration in DetaModel and DetaForObjectDetection
* image smaller size than 224 will give topk error
* pred_boxes and logits should be equivalent to two_stage_num_proposals
* add missing part in DetaConfig
* Update src/transformers/models/deta/modeling_deta.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add docstring in configure and prettify TO DO part
* change distribute related code to accelerate
* Update src/transformers/models/deta/configuration_deta.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/deta/test_modeling_deta.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* protect importing accelerate
* change variable name to specific value
* wrong import
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
When running the case on multi-cards server with devcie_map-auto, It will not always be allocated to device 0,
Because other processes may be using these cards. It will select the devices that can accommodate this model.
Signed-off-by: yuanwu <yuan.wu@intel.com>
* Sort es/_toctree.yml like en/_toctree.yml
* Run make style
* Add -Rendimiento y escalabilidad- section to es/_toctree.yml
* Run make style
* Add s to section
* Add translate of performance.md
* Add performance.md to es/_toctree.yml
* Run make styele
* Fix docs links
* Run make style
* remove token_type_ids from model_input_names (like #24788)
* removed test that assumed token_type_ids should be present and updated a model reference so that it points to an available model)
* start - docs, SpeechT5 copy and rename
* add relevant code from FastSpeech2 draft, have tests pass
* make it an actual conformer, demo ex.
* matching inference with original repo, includes debug code
* refactor nn.Sequentials, start more desc. var names
* more renaming
* more renaming
* vocoder scratchwork
* matching vocoder outputs
* hifigan vocoder conversion script
* convert model script, rename some config vars
* replace postnet with speecht5's implementation
* passing common tests, file cleanup
* expand testing, add output hidden states and attention
* tokenizer + passing tokenizer tests
* variety of updates and tests
* g2p_en pckg setup
* import structure edits
* docstrings and cleanup
* repo consistency
* deps
* small cleanup
* forward signature param order
* address comments except for masks and labels
* address comments on attention_mask and labels
* address second round of comments
* remove old unneeded line
* address comments part 1
* address comments pt 2
* rename auto mapping
* fixes for failing tests
* address comments part 3 (bart-like, train loss)
* make style
* pass config where possible
* add forward method + tests to WithHifiGan model
* make style
* address arg passing and generate_speech comments
* address Arthur comments
* address Arthur comments pt2
* lint changes
* Sanchit comment
* add g2p-en to doctest deps
* move up self.encoder
* onnx compatible tensor method
* fix is symbolic
* fix paper url
* move models to espnet org
* make style
* make fix-copies
* update docstring
* Arthur comments
* update docstring w/ new updates
* add model architecture images
* header size
* md wording update
* make style
* Update modeling_whisper.py to support MPS backend
Fixed some issue with MPS backend.
First, the torch.std_mean is not implemented and is not scheduled for implementation, while the single torch.std and torch.mean are.
Second, MPS backend does not support float64, so it can not cast from float32 to float64. Inverting the double() when the matrix is in the cpu fixes the issue while should not change the logic.
* Found another instruction in modeling_whisper.py not implemented byor MPS
After a load test, where I transcribed a 2 hours audio file, I got into a branch that did not fix in the previous commit.
Similar fix, where the torch.std_mean is changed into torch.std and torch.mean
* Update modeling_whisper.py removed trailing white spaces
Removed trailing white spaces
* Update modeling_whisper.py to use is_torch_mps_available()
Using is_torch_mps_available() instead of capturing the NotImplemented exception
* Update modeling_whisper.py sorting the import block
Sorting the utils import block
* Update src/transformers/models/whisper/modeling_whisper.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/whisper/modeling_whisper.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/whisper/modeling_whisper.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix: minor enhancement and fix in bounding box visualization example
The example that was trying to visualize the bounding box was not considering an edge case,
where the bounding box can be un-normalized. So using the same set of code, we can not get
results with a different dataset with un-normalized bounding box. This commit fixes that.
* run make clean
* add an additional note on the scenarios where the box viz code works
---------
Co-authored-by: Anindyadeep <anindya@pop-os.localdomain>
* First draft
* More improvements
* More improvements
* Make all tests pass
* Remove script
* Update image processor
* Address comments
* Use new gradient checkpointing method
* Convert checkpoints, add integration test
* Do not keep aspect ratio for now
* Set keep_aspect_ratio=False for beit, add integration test
* Remove print statement
* fixes: code fixes on is_batched condition to also check for batched audio data in torch.Tensor format instead of only just checking for batched audio data in np.ndarray format
* Update src/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py
Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
* refactor: code refactoring to remove torch framework dependency
* docs: updated docstring to add torch tensor compatibility
* test: add test cases to incorporate torch tensor inputs
* test: ran make fix-copies for code conformity
* test: refactor test to separate the test_call into test_call_numpy and test_call_torch
---------
Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
* Fix vision text dual encoder
* Small cleanup for wav2vec2 (not fixed yet)
* Small fix for vision_encoder_decoder
* Fix SAM builds
* Update TFBertTokenizer test with modern exporting + tokenizer
* Fix DeBERTa
* Fix DeBERTav2
* Try RAG fix but it's impossible to test locally
* Actually fix RAG now that I got FAISS working somehow
* Fix Wav2Vec2, add sermon
* Fix Hubert
* some nits
* update test
* add support d\sd[a
* remove some dummy inputs
* all good
* style
* nits
* fixes
* fix more copies
* nits
* styling
* fix
* Update src/transformers/models/mistral/modeling_mistral.py
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* add a slow test just to be sure
* fixup
---------
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Iteratre over out_features instead of stage_names
* Update for all backbones
* Add tests
* Fix
* Align timm backbone behaviour with other backbones
* Fix tests
* Stricter checks on set out_features and out_indices
* Revert back stage selection logic
* Remove out-of-order logic
* Document restriction in docstrings
* move code to Trainer.evaluate to enable use of that function with multiple datasets
* test
* update doc string
* and a tip
* forgot the type
---------
Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
In docstring for PreTrainedModel.resize_token_embeddings, correct definition of new_num_tokens parameter to read "the new number of tokens" (meaning the new size of the vocab) rather than "the number of new tokens" (number of newly added tokens only).
to reduce the storage size and also save the time of checkpoint saving while using deepspeed for training
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* edits to _prepare_4d_causal_attention_mask()
* initial tests for 4d mask
* attention_mask_for_sdpa support
* added test for inner model hidden
* added autotest decorators
* test mask dtype to torch.int64
* torch.testing.assert_close
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* torch_device and @torch_gpu in tests
* upd tests
* +torch decorators
* torch decorators fixed
* more decorators!
* even more decorators
* fewer decorators
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add a convenience method for building in your own name scope
* Second attempt at auto layer building
* Revert "Second attempt at auto layer building"
This reverts commit e03a3aaecf9ec41a805582b83cbdfe3290a631be.
* Attempt #3
* Revert "Attempt #3"
This reverts commit b9df7a0857560d29b5abbed6127d9e9eca77cf47.
* Add missing attributes that we're going to need later
* Add some attributes we're going to need later
* A fourth attempt! Feel the power flow through you!
* Revert "A fourth attempt! Feel the power flow through you!"
This reverts commit 6bf4aaf3875d6f28485f50187617a4c616c8aff7.
* Add more values we'll need later
* TF refactor that we'll need later
* Revert "TF refactor that we'll need later"
This reverts commit ca07202fb5b7b7436b893baa8d688b4f348ea7b9.
* Revert "Revert "TF refactor that we'll need later""
This reverts commit 1beb0f39f293ed9c27594575e1c849aadeb15c13.
* make fixup
* Attempt five!
* Revert "Attempt five!"
This reverts commit 3302207958dfd0374b0447a51c06eea51a506044.
* Attempt six - this time don't add empty methods
* Revert "Attempt six - this time don't add empty methods"
This reverts commit 67d60129be75416b6beb8f47c7d38d77b18d79bb.
* Attempt seven - better base model class detection!
* Revert "Attempt seven - better base model class detection!"
This reverts commit 5f14845e92ea0e87c598da933bfbfee10f553bc9.
* Another attribute we'll need later
* Try again with the missing attribute!
* Revert "Try again with the missing attribute!"
This reverts commit 760c6f30c5dffb3e04b0e73c34a77d1882a0fef7.
* This is the attempt that will pierce the heavens!
* Revert "This is the attempt that will pierce the heavens!"
This reverts commit c868bb657de057aca7a5260350a3f831fc4dfee6.
* Attempt seven - snag list is steadily decreasing
* Revert "Attempt seven - snag list is steadily decreasing"
This reverts commit 46fbd975deda64429bfb3e5fac4fc0370c00d316.
* Attempt eight - will an empty snag list do it?
* Revert "Attempt eight - will an empty snag list do it?"
This reverts commit 7c8a3c2b083253649569e9877e02054ae5cec67b.
* Fixes to Hubert issues that cause problems later
* Trying again with Conv1D/SeparableConv fixes
* Revert "Trying again with Conv1D/SeparableConv fixes"
This reverts commit 55092bca952bc0f750aa1ffe246a640bf1e2036e.
* Apply the build shape fixes to Wav2Vec2 as well
* One more attempt!
* Revert "One more attempt!"
This reverts commit 5ac3e4cb01b9458cc93312873725f9444ae7261c.
* Another attempt!
* Revert "Another attempt!"
This reverts commit ea16d890e019d7de8792a3b8e72f3b1c02adae50.
* Let's see how many failures we get without the internal build method
* Fix OpenAI
* Fix MobileBERT
* (Mostly) fix GroupVIT
* Fix BLIP
* One more BLIP fix
* One more BLIP fix!
* Fix Regnet
* Finally fully fix GroupViT
* Fix Data2Vec and add the new AdaptivePool
* Fix Segformer
* Fix Albert
* Fix Deberta/DebertaV2
* Fix XLM
* Actually fix XLM
* Fix Flaubert
* Fix lxmert
* Fix Resnet
* Fix ConvBERT
* Fix ESM
* Fix Convnext / ConvnextV2
* Fix SAM
* Fix Efficientformer
* Fix LayoutLMv3
* Fix speech_to_text
* Fix mpnet and mobilevit
* Fix Swin
* Fix CTRL
* Fix CVT
* Fix DPR
* Fix Wav2Vec2
* Fix T5
* Fix Hubert
* Fix GPT2
* Fix Whisper
* Fix DeiT
* Fix the encoder-decoder / dual-encoder classes
* make fix-copies
* build in name scope
* Fix summarization test
* Fix tied weight names for BART + Blenderbot
* Fix tied weight name building
* Fix to TFESM weight building
* Update TF SAM
* Expand all the shapes out into Big Boy Shapes
* Add glossary to es/_toctree.yml
* Add glossary.md to es/
* A section translated
* B and C section translated
* Fix typo in en/glossary.md C section
* D section translated | Add a extra line in en/glossary.md
* E and F section translated | Fix typo in en/glossary.md
* Fix words preentrenado
* H and I section translated | Fix typo in en/glossary.md
* L section translated
* M and N section translated
* P section translated
* R section translated
* S section translated
* T section translated
* U and Z section translated | Fix TensorParallel link in both files
* Fix word
* Improve the error printed when loading an unrecognized architecture
* Improve the error printed when loading an unrecognized architecture
* Raise a ValueError instead because KeyError prints weirdly
* make fixup
* fix a typo and add an illustrative test
* appease black
* reduce code duplication and add Annotion type back with a pending deprecation warning
* remove unused code
* change warning type
* black formatting fix
* change enum deprecation approach to support 3.8 and earlier
* add stacklevel
* fix black issue
* fix ruff issues
* fix ruff issues
* move tests to own mixin
* include yolos
* fix black formatting issue
* fix black formatting issue
* use logger instead of warnings and include target version for deprecation
* Skip nn.Module.reset_parameters
* Actually skip
* Check quality
* Maybe change all inits
* Fix init issues: only modify public functions
* Add a small test for now
* Style
* test updates
* style
* nice tes
* style
* make it even faster
* one more second
* remove fx icompatible
* Update tests/test_modeling_common.py
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Update tests/test_modeling_common.py
Co-authored-by: Lysandre Debut <hi@lysand.re>
* skip
* fix quality
* protect the import
---------
Co-authored-by: Lysandre Debut <hi@lysand.re>
* add sdpa
* wip
* cleaning
* add ref
* yet more cleaning
* and more :)
* wip llama
* working llama
* add output_attentions=True support
* bigcode sdpa support
* fixes
* gpt-bigcode support, require torch>=2.1.1
* add falcon support
* fix conflicts falcon
* style
* fix attention_mask definition
* remove output_attentions from attnmaskconverter
* support whisper without removing any Copied from statement
* fix mbart default to eager renaming
* fix typo in falcon
* fix is_causal in SDPA
* check is_flash_attn_2_available in the models init as well in case the model is not initialized through from_pretrained
* add warnings when falling back on the manual implementation
* precise doc
* wip replace _flash_attn_enabled by config.attn_implementation
* fix typo
* add tests
* style
* add a copy.deepcopy on the config in from_pretrained, as we do not want to modify it inplace
* obey to config.attn_implementation if a config is passed in from_pretrained
* fix is_torch_sdpa_available when torch is not installed
* remove dead code
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/bart/modeling_bart.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* remove duplicate pretraining_tp code
* add dropout in llama
* precise comment on attn_mask
* add fmt: off for _unmask_unattended docstring
* precise num_masks comment
* nuke pretraining_tp in LlamaSDPAAttention following Arthur's suggestion
* cleanup modeling_utils
* backward compatibility
* fix style as requested
* style
* improve documentation
* test pass
* style
* add _unmask_unattended tests
* skip meaningless tests for idefics
* hard_check SDPA requirements when specifically requested
* standardize the use if XXX_ATTENTION_CLASSES
* fix SDPA bug with mem-efficient backend on CUDA when using fp32
* fix test
* rely on SDPA is_causal parameter to handle the causal mask in some cases
* fix FALCON_ATTENTION_CLASSES
* remove _flash_attn_2_enabled occurences
* fix test
* add OPT to the list of supported flash models
* improve test
* properly test on different SDPA backends, on different dtypes & properly handle separately the pad tokens in the test
* remove remaining _flash_attn_2_enabled occurence
* Update src/transformers/modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update docs/source/en/perf_infer_gpu_one.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* remove use_attn_implementation
* fix docstring & slight bug
* make attn_implementation internal (_attn_implementation)
* typos
* fix tests
* deprecate use_flash_attention_2=True
* fix test
* add back llama that was removed by mistake
* fix tests
* remove _flash_attn_2_enabled occurences bis
* add check & test that passed attn_implementation is valid
* fix falcon torchscript export
* fix device of mask in tests
* add tip about torch.jit.trace and move bt doc below sdpa
* fix parameterized.expand order
* move tests from test_modeling_attn_mask_utils to test_modeling_utils as a relevant test class is already there
* update sdpaattention class with the new cache
* Update src/transformers/configuration_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/bark/modeling_bark.py
* address review comments
* WIP torch.jit.trace fix. left: test both eager & sdpa
* add test for torch.jit.trace for both eager/sdpa
* fix falcon with torch==2.0 that needs to use sdpa
* fix doc
* hopefully last fix
* fix key_value_length that has no default now in mask converter
* is it flacky?
* fix speculative decoding bug
* tests do pass
* fix following #27907
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add pad_truncation to es/_toctree.yml
* Add pad_truncation.md to es/
* Translated first two paragraph
* Translated paddig argument section
* Translated truncation argument section
* Translated final paragraphs
* Translated table
* Fixed typo in the table of en/pad_truncation.md
* Run make style | Fix a word
* Add Padding (relleno) y el Truncation (truncamiento) in the final paragraphs
* Fix relleno and truncamiento words
* Fix issues in add and is_done for BeamHypotheses
* make newly added arguments optional for better compatibility
* Directly use cur_len as generated_len, add note for retrocompatibility
* update test expectation
* make cur_len represents the length of the entire sequence including the decoder prompt
* remove redundant if/else in testing
* Draft version of new KV Caching
This should allow Attention Sinks (https://github.com/tomaarsen/attention_sinks)
/ StreamingLLM (https://arxiv.org/abs/2309.17453) to be easily implemented
in a third-party or in transformers directly
* Address numerous PR suggestions
1. Move layer_idx from cache to ...Attention. Removes confusing set_layer_idx magic.
2. Always convert past_key_values to Cache instance at the start of ...Attention, removes all other isinstance calls.
3. Remove __bool__ and __getitem__ magic as they're confusing.
4. past_key_values.update(key, value, idx) now returns key, value.
5. Add use_legacy_cache flag, defaults to None, i.e. Falsey. This breaks generate for now, until 1) the cache is used is generate() or 2) use_legacy_cache is defaulted to True in generate() until we change it in another PR.
6. Separate key_cache and value_cache.
Some work is still needed to see if the SinkCache can conveniently be implemented with just one update method.
* Implement the SinkCache through backward+forward rotations
* Integrate (Sink)Cache with Llama FA2
* Set use_legacy_cache=True as default, allows for test passes
* Move from/to_legacy_cache to ...Model class
* Undo unnecessary newline change
* Remove copy utility from deprecated OpenLlama
* Match import style
* manual rebase with main
* Cache class working with generate (#1)
* Draft version of new KV Caching
This should allow Attention Sinks (https://github.com/tomaarsen/attention_sinks)
/ StreamingLLM (https://arxiv.org/abs/2309.17453) to be easily implemented
in a third-party or in transformers directly
* Address numerous PR suggestions
1. Move layer_idx from cache to ...Attention. Removes confusing set_layer_idx magic.
2. Always convert past_key_values to Cache instance at the start of ...Attention, removes all other isinstance calls.
3. Remove __bool__ and __getitem__ magic as they're confusing.
4. past_key_values.update(key, value, idx) now returns key, value.
5. Add use_legacy_cache flag, defaults to None, i.e. Falsey. This breaks generate for now, until 1) the cache is used is generate() or 2) use_legacy_cache is defaulted to True in generate() until we change it in another PR.
6. Separate key_cache and value_cache.
Some work is still needed to see if the SinkCache can conveniently be implemented with just one update method.
* Integrate (Sink)Cache with Llama FA2
* Move from/to_legacy_cache to ...Model class
* Undo unnecessary newline change
* Match import style
* working generate
* Add tests; Simplify code; Apply changes to Mistral and Persimmon
* fix rebase mess
* a few more manual fixes
* last manual fix
* propagate changes to phi
* upgrade test
* add use_legacy_cache docstring; beef up tests
* reintroduce unwanted deletes
---------
Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com>
* move import
* add default to model_kwargs.get('use_legacy_cache')
* correct failing test
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* apply PR suggestions
* fix failing test
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Tom Aarsen <37621491+tomaarsen@users.noreply.github.com>
* PR comments
* tmp commit
* add docstrings
* more tests, more docstrings, add to docs
* derp
* tmp commit
* tmp dbg
* more dbg
* fix beam search bug
* cache can be a list of tuples in some models
* fix group beam search
* all but sinkcache integration tests
* fix sink cache and add hard integration test
* now also compatible with input_embeds input
* PR comments
* add Cache support to Phi+FA2
* make fixup
---------
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Updates the Distributed CPU documentation to add a Kubernetes example
* Small edits
* Fixing link
* Adding missing new lines
* Minor edits
* Update to include Dockerfile snippet
* Add comment about tuning env var
* Updates based on review comments
* Un-skip tests
* Add aliasing support to tf_to_pt_weight_rename
* Refactor tf-to-pt weight rename for simplicity
* Patch mobilebert
* Let us pray that the transfo-xl one works
* Add XGLM rename
* Expand the test to see if we can get more models to break
* Expand the test to see if we can get more models to break
* Fix MPNet (it was actually an unrelated bug)
* Fix MPNet (it was actually an unrelated bug)
* Add speech2text fix
* Update src/transformers/modeling_tf_pytorch_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/mobilebert/modeling_tf_mobilebert.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update to always return a tuple from tf_to_pt_weight_rename
* reformat
* Add a couple of missing tuples
* Remove the extra test for tie_word_embeddings since it didn't cause any unexpected failures anyway
* Revert changes to modeling_tf_mpnet.py
* Skip MPNet test and add explanation
* Add weight link for BART
* Add TODO to clean this up a bit
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add model like
* logits match
* minor fixes
* fixes
* up
* up
* add todo
* llava processor
* keep the processor simple
* add conversion script
* fixup
* fix copies
* up
* add to index
* fix config + logits
* fix
* refactor
* more refactor
* more refactor
* fix copies
* add authors
* v1 tests
* add `LlavaProcessor` in init
* remove unneeded import
* up
* up
* docs
* up
* fix CI
* fix CI
* add attention mask in test
* make fixup
* remove the vision model
* that' s the dirty way to do it
* nits
* nits
* updates
* add more tests
* add input tests
* fixup
* more styling
* nits
* updates amd cleanup
* fixup the generation expected results
* fix the testing script
* some cleanup and simplification which does not work yet but almost there!
* make correct dispatch operations
* vectorize works for batch of images and text
* last todos
* nits
* update test and modeling code
* remove useless function for now
* fix few issues
* fix generation
* some nits
* add bakllava
* nits
* remove duplicated code
* finis merge
* cleanup
* missed this line
* fill the todos
* add left padding offset
* add left and rignt padding logic
* bool to properly index
* make sure
* more cleanups
* batch is fixed 😉
* add correct device for tensor creation
* fix some dtype missmatch
* ruff
* update conversion script
* Update src/transformers/__init__.py
* fa 2 support + fix conversion script
* more
* correct reshaping
* fix test dict
* fix copies by ignoring
* fix nit
* skip clip vision model
* fixup
* fixup
* LlavaForVisionText2Text -> LlavaForCausalLM
* update
* fix
* raise correct errors
* fix
* docs
* nuke for now
* nits here and there
* fixup
* fix remaining tests
* update LlavaForConditionalGeneration instead of CausalLM
* fixups
* pipeline support
* slow and piepline tests
* supports batch
* nits
* cleanup
* fix first integration tests
* add pad token where needed
* correct etsts
* fixups
* update pipeline testr
* fix quality
* nits
* revert unneeded change
* nit
* use BatchFeature
* from ...feature_extraction_utils import BatchFeature
* nits
* nits
* properly update
* more f*** nits
* fix copies
* comment
* keep slow test slow
* Update src/transformers/models/llava/processing_llava.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add piepline example
* add pixel values in docstrign
* update pr doctest
* fix
* fix slow tests
* remove hack
* fixup
* small note
* forward contrib credits from PR25789
* forward contrib credits from original implementation and work
* add arthur
* Update src/transformers/models/llava/processing_llava.py
Co-authored-by: Lysandre Debut <hi@lysand.re>
* update docstring
* nit
* move to not doctested because of timeout issues
* fixup
* add description
* more
* fix-copies
* fix docs
* add beam search
* add more comments
* add typehints on processor
* add speedup plot
* update slow tests and docs
* push test
* push batched test
* fix batched generation with different number of images
* remove benchmark due to a bug
* fix test
* fix copies
* add gcolab demo
---------
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: shauray8 <shauray8@users.noreply.github.com>
Co-authored-by: haotian-liu <haotian-liu@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Copies `modeling_flax_gpt_neo.py` to start
* MLP Block. WIP Attention and Block
* Adds Flax implementation of `LlamaMLP`
Validated with in-file test.
Some slight numeric differences, but assuming it isn't an issue
* Adds `FlaxLlamaRMSNorm` layer
`flax.linen` includes `RMSNorm` layer but not necessarily in all
versions. Hence, we add in-file.
* Adds FlaxLlamaAttention
Copied from GPT-J as it has efficient caching implementation as well as
rotary embeddings.
Notice numerically different, but not by a huge amount. Needs
investigating
* Adds `FlaxLlamaDecoderLayer`
numerically inaccurate, debugging..
* debugging rotary mismatch
gptj uses interleaved whilst llama uses contiguous
i think they match now but still final result is wrong.
maybe drop back to just debugging attention layer?
* fixes bug with decoder layer
still somewhat numerically inaccurate, but close enough for now
* adds markers for what to implement next
the structure here diverges a lot from the PT version.
not a big fan of it, but just get something working for now
* implements `FlaxLlamaBlockCollection`]
tolerance must be higher than expected, kinda disconcerting
* Adds `FlaxLlamaModule`
equivalent PyTorch model is `LlamaModel`
yay! a language model🤗
* adds `FlaxLlamaForCausalLMModule`
equivalent to `LlamaForCausalLM`
still missing returning dict or tuple, will add later
* start porting pretrained wrappers
realised it probably needs return dict as a prereq
* cleanup, quality, style
* readds `return_dict` and model output named tuples
* (tentatively) pretrained wrappers work 🔥
* fixes numerical mismatch in `FlaxLlamaRMSNorm`
seems `jax.lax.rsqrt` does not match `torch.sqrt`.
manually computing `1 / jax.numpy.sqrt` results in matching values.
* [WIP] debugging numerics
* numerical match
I think issue was accidental change of backend. forcing CPU fixes test.
We expect some mismatch on GPU.
* adds in model and integration tests for Flax Llama
summary of failing:
- mul invalid combination of dimensions
- one numerical mismatch
- bf16 conversion (maybe my local backend issue)
- params are not FrozenDict
* adds missing TYPE_CHECKING import and `make fixup`
* adds back missing docstrings
needs review on quality of docstrings, not sure what is required.
Furthermore, need to check if `CHECKPOINT_FOR_DOC` is valid. See TODO
* commenting out equivalence test as can just use common
* debugging
* Fixes bug where mask and pos_ids were swapped in pretrained models
This results in all tests passing now 🔥
* cleanup of modeling file
* cleanup of test file
* Resolving simpler review comments
* addresses more minor review comments
* fixing introduced pytest errors from review
* wip additional slow tests
* wip tests
need to grab a GPU machine to get real logits for comparison
otherwise, slow tests should be okay
* `make quality`, `make style`
* adds slow integration tests
- checking logits
- checking hidden states
- checking generation outputs
* `make fix-copies`
* fix mangled function following `make fix-copies`
* adds missing type checking imports
* fixes missing parameter checkpoint warning
* more finegrained 'Copied from' tags
avoids issue of overwriting `LLAMA_INPUTS_DOCSTRING`
* swaps import guards
??? how did these get swapped initially?
* removing `inv_freq` again as pytorch version has now removed
* attempting to get CI to pass
* adds doc entries for llama flax models
* fixes typo in __init__.py imports
* adds back special equivalence tests
these come from the gpt neo flax tests. there is special behaviour for these models that needs to override the common version
* overrides tests with dummy to see if CI passes
need to fill in these tests later
* adds my contribution to docs
* `make style; make quality`
* replaces random masking with fixed to work with flax version
* `make quality; make style`
* Update src/transformers/models/llama/modeling_flax_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Update src/transformers/models/llama/modeling_flax_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Update src/transformers/models/llama/modeling_flax_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Update src/transformers/models/llama/modeling_flax_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Update src/transformers/models/llama/modeling_flax_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Update src/transformers/models/llama/modeling_flax_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* updates `x`->`tensor` in `rotate_half`
* addresses smaller review comments
* Update docs/source/en/model_doc/llama.md
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* adds integration test class
* adds `dtype` to rotary embedding to cast outputs
* adds type to flax llama rotary layer
* `make style`
* `make fix-copies`
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* applies suggestions from review
* Update modeling_flax_llama.py
* `make fix-copies`
* Update tests/models/llama/test_modeling_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Update src/transformers/models/llama/modeling_flax_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* fixes shape mismatch in FlaxLlamaMLP
* applies some suggestions from reviews
* casts attn output logits to f32 regardless of dtype
* adds attn bias using `LlamaConfig.attention_bias`
* adds Copied From comments to Flax Llama test
* mistral and persimmon test change -copy from llama
* updates docs index
* removes Copied from in tests
it was preventing `make fix-copies` from succeeding
* quality and style
* ignores FlaxLlama input docstring
* adds revision to `_CHECKPOINT_FOR_DOC`
* repo consistency and quality
* removes unused import
* removes copied from from Phi test
now diverges from llama tests following FlaxLlama changes
* adds `_REAL_CHECKPOINT_FOR_DOC`
* removes refs from pr tests
* reformat to make ruff happy
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Copy perplexity.md file to es/ folder
* Adding perplexity to es/_toctree.yml
* Translate first section
* Calculating PPL section translate
* Example section translate
* fix translate of log-likehood
* Fix title translate
* Fix \ in second paragraph
* Change verosimilitud for log-likelihood
* Run 'make style'
* v1 fusing modules
* add fused mlp support
* up
* fix CI
* block save_pretrained
* fixup
* small fix
* add new condition
* add v1 docs
* add some comments
* style
* fix nit
* adapt from suggestion
* add check
* change arg names
* change variables name
* Update src/transformers/integrations/awq.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* style
* split up into 3 different private methods
* more conditions
* more checks
* add fused tests for custom models
* fix
* fix tests
* final update docs
* final fixes
* fix importlib metadata
* Update src/transformers/utils/quantization_config.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* change it to `do_fuse`
* nit
* Update src/transformers/utils/quantization_config.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/utils/quantization_config.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/utils/quantization_config.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* few fixes
* revert
* fix test
* fix copies
* raise error if model is not quantized
* add test
* use quantization_config.config when fusing
* Update src/transformers/modeling_utils.py
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Added test cases for rembert refering to albert and reformer test_tokenization
* removed CURL_CA_BUNDLE='
* Added flag test_sentencepiece_ignore_case and space_between_special_tokens to True
* Overrided test_added_tokens_serialization
* As slow->fast token failed due to the different initialization for [MASK] for slow and fast, Therefore it required to make the initialization for [MASK] token uniform between fast and slow token
* Added few more test cases in test_encode_decode_round_trip and modefied the slow token (mask_token) to have AddedToken instance with lstrip=True
* Added few test cases in test_encoder_decoder round trip and also modified slow tokenizer of rembert to have mask_token as AddedToken with lstrip = True
* Cleaned the code and added fmt: skip to avoid line breaks after make style + added comments to indicate from the copied test cases
* Corrected few comments
* Fixed quality issue
* Ran fix-copies
* Fixed few minor issues as (make fix-copies) broke few test cases while stripping the text
* Reverted the changes made by repo-consistancy
---------
Co-authored-by: Kokane <kokanen@apac.corpdir.net>
An upcoming change to JAX will include non-local (addressable) CPU devices in jax.devices() when JAX is used multicontroller-style, where there are multiple Python processes.
This change preserves the current behavior by replacing uses of jax.devices("cpu"), which previously only returned local devices, with jax.local_devices("cpu"), which will return local devices both now and in the future.
This change is always safe (i.e., it should always preserve the previous behavior), but it may sometimes be unnecessary if code is never used in a multicontroller setting.
Co-authored-by: Peter Hawkins <phawkins@google.com>
* [WIP] Make using safetensors files automated.
If `use_safetensors=True` is used, and it doesn't exist:
- Don't crash just yet
- Lookup for an open PR containing it.
- If yes, use that instead
- If not, touch the space to convert, wait for conversion to be finished
and the PR to be opened
- Use that new PR
- Profit.
* Remove the token.
* [Auto Safetensors] Websocket -> SSE (#27656)
* Websocket -> SSE
* Support sharded + tests +cleanup
a
* env var
* Apply suggestions from code review
* Thanks Simon
* Thanks Wauplin
Co-authored-by: Wauplin <lucainp@gmail.com>
* Cleanup
* Update tests
* Tests should pass
* Apply to other tests
* Extend extension
* relax requirement on latest hfh
* Revert
* Correct private handling & debug statements
* Skip gated repos as of now
* Address review comments
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
---------
Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: Lysandre <lysandre@huggingface.co>
Co-authored-by: Wauplin <lucainp@gmail.com>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
* Remove config reference and pass num_patches for PatchTSTforPrediction
* ensure return_dict is properly set
---------
Co-authored-by: Wesley M. Gifford <wmgifford@us.ibm.com>
* add working convertion script
* first non-working version of modeling code
* update modeling code (working)
* make style
* make fix-copies
* add config docstrings
* add config to ignore docstrings formatage due to unconventional markdown
* fix copies
* fix generation num_return_sequences
* enrich docs
* add and fix tests beside integration tests
* update integration tests
* update repo id
* add tie weights and make style
* correct naming in .md
* fix imports and so on
* correct docstrings
* fix fp16 speech forward
* fix speechencoder attention
* make style
* fix copied from
* rename SeamlessM4Tv2-v2 to SeamlessM4Tv2
* Apply suggestions on configuration
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* remove useless public models
* fix private models + better naming for T2U models
* clean speech encoder relative position embeddings
* refactor chunk attention
* add docstrings to chunk attention method
* improve naming and docstrings
* rename some attention variables + add temperature sampling in T2U model
* rename DOCSTRINGS variable names
* make style + remove 2 useless config parameters
* enrich model card
* remove any attention_head reference + fix temperature in T2U
* new fmt and make style
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* rename spkr_id->speaker_id and change docstrings of get_char_input_ids
* simplify v2attention
* make style
* Update seamless_m4t_v2.md
* update code and tests with last update
* update repo ids
* fill article name, abstract andauthors
* update not_doctested and slow_doc tests
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add distribution head to forecasting
* formatting
* Add generate function for forecasting
* Add generate function to prediction task
* formatting
* use argsort
* add past_observed_mask ordering
* fix arguments
* docs
* add back test_model_outputs_equivalence test
* formatting
* cleanup
* formatting
* use ACT2CLS
* formatting
* fix add_start_docstrings decorator
* add distribution head and generate function to regression task
add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput, PatchTSTForRegressionOutput.
* add distribution head and generate function to regression task
add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput, PatchTSTForRegressionOutput.
* fix typos
* add forecast_masking
* fixed tests
* use set_seed
* fix doc test
* formatting
* Update docs/source/en/model_doc/patchtst.md
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* better var names
* rename PatchTSTTranspose
* fix argument names and docs string
* remove compute_num_patches and unused class
* remove assert
* renamed to PatchTSTMasking
* use num_labels for classification
* use num_labels
* use default num_labels from super class
* move model_type after docstring
* renamed PatchTSTForMaskPretraining
* bs -> batch_size
* more review fixes
* use hidden_state
* rename encoder layer and block class
* remove commented seed_number
* edit docstring
* Add docstring
* formatting
* use past_observed_mask
* doc suggestion
* make fix-copies
* use Args:
* add docstring
* add docstring
* change some variable names and add PatchTST before some class names
* formatting
* fix argument types
* fix tests
* change x variable to patch_input
* format
* formatting
* fix-copies
* Update tests/models/patchtst/test_modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* move loss to forward
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* formatting
* fix a bug when pre_norm is set to True
* output_hidden_states is set to False as default
* set pre_norm=True as default
* format docstring
* format
* output_hidden_states is None by default
* add missing docs
* better var names
* docstring: remove default to False in output_hidden_states
* change labels name to target_values in regression task
* format
* fix tests
* change to forecast_mask_ratios and random_mask_ratio
* change mask names
* change future_values to target_values param in the prediction class
* remove nn.Sequential and make PatchTSTBatchNorm class
* black
* fix argument name for prediction
* add output_attentions option
* add output_attentions to PatchTSTEncoder
* formatting
* Add attention output option to all classes
* Remove PatchTSTEncoderBlock
* create PatchTSTEmbedding class
* use config in PatchTSTPatchify
* Use config in PatchTSTMasking class
* add channel_attn_weights
* Add PatchTSTScaler class
* add output_attentions arg to test function
* format
* Update doc with image patchtst.md
* fix-copies
* rename Forecast <-> Prediction
* change name of a few parameters to match with PatchTSMixer.
* Remove *ForForecasting class to match with other time series models.
* make style
* Remove PatchTSTForForecasting in the test
* remove PatchTSTForForecastingOutput class
* change test_forecast_head to test_prediction_head
* style
* fix docs
* fix tests
* change num_labels to num_targets
* Remove PatchTSTTranspose
* remove arguments in PatchTSTMeanScaler
* remove arguments in PatchTSTStdScaler
* add config as an argument to all the scaler classes
* reformat
* Add norm_eps for batchnorm and layernorm
* reformat.
* reformat
* edit docstring
* update docstring
* change variable name pooling to pooling_type
* fix output_hidden_states as tuple
* fix bug when calling PatchTSTBatchNorm
* change stride to patch_stride
* create PatchTSTPositionalEncoding class and restructure the PatchTSTEncoder
* formatting
* initialize scalers with configs
* edit output_hidden_states
* style
* fix forecast_mask_patches doc string
* doc improvements
* move summary to the start
* typo
* fix docstring
* turn off masking when using prediction, regression, classification
* return scaled output
* adjust output when using distribution head
* remove _num_patches function in the config
* get config.num_patches from patchifier init
* add output_attentions docstring, remove tuple in output_hidden_states
* change SamplePatchTSTPredictionOutput and SamplePatchTSTRegressionOutput to SamplePatchTSTOutput
* remove print("model_class: ", model_class)
* change encoder_attention_heads to num_attention_heads
* change norm to norm_layer
* change encoder_layers to num_hidden_layers
* change shared_embedding to share_embedding, shared_projection to share_projection
* add output_attentions
* more robust check of norm_type
* change dropout_path to path_dropout
* edit docstring
* remove positional_encoding function and add _init_pe in PatchTSTPositionalEncoding
* edit shape of cls_token and initialize it
* add a check on the num_input_channels.
* edit head_dim in the Prediction class to allow the use of cls_token
* remove some positional_encoding_type options, remove learn_pe arg, initalize pe
* change Exception to ValueError
* format
* norm_type is "batchnorm"
* make style
* change cls_token shape
* Change forecast_mask_patches to num_mask_patches. Remove forecast_mask_ratios.
* Bring PatchTSTClassificationHead on top of PatchTSTForClassification
* change encoder_ffn_dim to ffn_dim and edit the docstring.
* update variable names to match with the config
* add generation tests
* change num_mask_patches to num_forecast_mask_patches
* Add examples explaining the use of these models
* make style
* Revert "Revert "[time series] Add PatchTST (#25927)" (#27486)"
This reverts commit 78f6ed6c70b29c1560780e3869a7ad4c6b3d2710.
* make style
* fix default std scaler's minimum_scale
* fix docstring
* close code blocks
* Update docs/source/en/model_doc/patchtst.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/patchtst/test_modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/configuration_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix tests
* add add_start_docstrings
* move examples to the forward's docstrings
* update prepare_batch
* update test
* fix test_prediction_head
* fix generation test
* use seed to create generator
* add output_hidden_states and config.num_patches
* add loc and scale args in PatchTSTForPredictionOutput
* edit outputs if if not return_dict
* use self.share_embedding to check instead checking type.
* remove seed
* make style
* seed is an optional int
* fix test
* generator device
* Fix assertTrue test
* swap order of items in outputs when return_dict=False.
* add mask_type and random_mask_ratio to unittest
* Update modeling_patchtst.py
* add add_start_docstrings for regression model
* make style
* update model path
* Edit the ValueError comment in forecast_masking
* update examples
* make style
* fix commented code
* update examples: remove config from from_pretrained call
* Edit example outputs
* Set default target_values to None
* remove config setting in regression example
* Update configuration_patchtst.py
* Update configuration_patchtst.py
* remove config from examples
* change default d_model and ffn_dim
* norm_eps default
* set has_attentions to Trye and define self.seq_length = self.num_patche
* update docstring
* change variable mask_input to do_mask_input
* fix blank space.
* change logger.debug to logger.warning.
* remove unused PATCHTST_INPUTS_DOCSTRING
* remove all_generative_model_classes
* set test_missing_keys=True
* remove undefined params in the docstring.
---------
Co-authored-by: nnguyen <nnguyen@us.ibm.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fix mistral generate for long prompt / response
* Add unit test
* fix linter
* fix linter
* fix test
* add assisted generation test for mistral and load the model in 4 bit + fa2
* Successfully resolved the ZeroDivisionError exception in the utils.notebook.y file.
* Now I update little code mentioned by Peter
* Using Black package to reformat my file
* Now I using ruff libary to reformated my file
Change "convert predictions to logits" to "convert logits to
predictions" to fix semantic error in the evaluation section. Logits
need to be converted to predictions to evaluate the accuracy, not the
other way round
* Fix typo in warning message
The path of `default_cache_path` is hf_cache_home/hub. There is no
directory named transformers under hf_cache_home
* Fix a typo in comment
* Update the version number
v4.22.0 is the earlist version that contains those changes in PR #18492
* added flash attention for opt
* added to list
* fix use cache (#3)
* style fix
* fix text
* test fix2
* reverted until 689f599
* torch fx tests are working now!
* small fix
* added TODO docstring
* changes
* comments and .md file modification
---------
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* initial commit
* Add inital testing files and modify __init__ files to add UnivNet imports.
* Fix some bugs
* Add checkpoint conversion script and add references to transformers pre-trained model.
* Add UnivNet entries for auto.
* Add initial docs for UnivNet.
* Handle input and output shapes in UnivNetGan.forward and add initial docstrings.
* Write tests and make them pass.
* Write docs.
* Add UnivNet doc to _toctree.yml and improve docs.
* fix typo
* make fixup
* make fix-copies
* Add upsample_rates parameter to config and improve config documentation.
* make fixup
* make fix-copies
* Remove unused upsample_rates config parameter.
* apply suggestions from review
* make style
* Verify and add reason for skipped tests inherited from ModelTesterMixin.
* Add initial UnivNetGan integration tests
* make style
* Remove noise_length input to UnivNetGan and improve integration tests.
* Fix bug and make style
* Make UnivNet integration tests pass
* Add initial code for UnivNetFeatureExtractor.
* make style
* Add initial tests for UnivNetFeatureExtractor.
* make style
* Properly initialize weights for UnivNetGan
* Get feature extractor fast tests passing
* make style
* Get feature extractor integration tests passing
* Get UnivNet integration tests passing
* make style
* Add UnivNetGan usage example
* make style and use feature extractor from hub in integration tests
* Update tips in docs
* apply suggestions from review
* make style
* Calculate padding directly instead of using get_padding methods.
* Update UnivNetFeatureExtractor.to_dict to be UnivNet-specific.
* Update feature extractor to support using model(**inputs) and add the ability to generate noise and pad the end of the spectrogram in __call__.
* Perform padding before generating noise to ensure the shapes are correct.
* Rename UnivNetGan.forward's noise_waveform argument to noise_sequence.
* make style
* Add tests to test generating noise and padding the end for UnivNetFeatureExtractor.__call__.
* Add tests for checking batched vs unbatched inputs for UnivNet feature extractor and model.
* Add expected mean and stddev checks to the integration tests and make them pass.
* make style
* Make it possible to use model(**inputs), where inputs is the output of the feature extractor.
* fix typo in UnivNetGanConfig example
* Calculate spectrogram_zero from other config values.
* apply suggestions from review
* make style
* Refactor UnivNet conversion script to use load_state_dict (following persimmon).
* Rename UnivNetFeatureExtractor to UnivNetGanFeatureExtractor.
* make style
* Switch to using torch.tensor and torch.testing.assert_close for testing expected values/slices.
* make style
* Use config in UnivNetGan modeling blocks.
* make style
* Rename the spectrogram argument of UnivNetGan.forward to input_features, following Whisper.
* make style
* Improving padding documentation.
* Add UnivNet usage example to the docs.
* apply suggestions from review
* Move dynamic_range_compression computation into the mel_spectrogram method of the feature extractor.
* Improve UnivNetGan.forward return docstring.
* Update table in docs/source/en/index.md.
* make fix-copies
* Rename UnivNet components to have pattern UnivNet*.
* make style
* make fix-copies
* Update docs
* make style
* Increase tolerance on flaky unbatched integration test.
* Remove torch.no_grad decorators from UnivNet integration tests to try to avoid flax/Tensorflow test errors.
* Add padding_mask argument to UnivNetModel.forward and add batch_decode feature extractor method to remove padding.
* Update documentation and clean up padding code.
* make style
* make style
* Remove torch dependency from UnivNetFeatureExtractor.
* make style
* Fix UnivNetModel usage example
* Clean up feature extractor code/docstrings.
* apply suggestions from review
* make style
* Add comments for tests skipped via ModelTesterMixin flags.
* Add comment for model parallel tests skipped via the test_model_parallel ModelTesterMixin flag.
* Add # Copied from statements to copied UnivNetFeatureExtractionTest tests.
* Simplify UnivNetFeatureExtractorTest.test_batch_decode.
* Add support for unbatched padding_masks in UnivNetModel.forward.
* Refactor unbatched padding_mask support.
* make style
* [Whisper] Add seq gen
* [Whisper] Add seq gen
* more debug
* Fix whisper logit processor
* Improve whisper code further
* Fix more
* more debug
* more debug
* Improve further
* Add tests
* Prep for batch size > 1
* Get batch_size>1 working
* Correct more
* Add extensive tests
* more debug
* more debug
* more debug
* add more tests
* more debug
* Apply suggestions from code review
* more debug
* add comments to explain the code better
* add comments to explain the code better
* add comments to explain the code better
* Add more examples
* add comments to explain the code better
* fix more
* add comments to explain the code better
* add comments to explain the code better
* correct
* correct
* finalize
* Apply suggestions from code review
* Apply suggestions from code review
* Fix `resize_token_embeddings` about `requires_grad`
The method `resize_token_embeddings` should keep `requires_grad`
unchanged for all parameters in embeddings.
Previously, `resize_token_embeddings` always set `requires_grad`
to `True`. After fixed, `resize_token_embeddings` copy the
`requires_grad` attribute in the old embeddings.
* tvp model for video grounding
add tokenizer auto
fix param in TVPProcessor
add docs
clear comments and enable different torch dtype
add image processor test and model test and fix code style
* fix conflict
* fix model doc
* fix image processing tests
* fix tvp tests
* remove torch in processor
* fix grammar error
* add more details on tvp.md
* fix model arch for loss, grammar, and processor
* add docstring and do not regard TvpTransformer, TvpVisionModel as individual model
* use pad_image
* update copyright
* control first downsample stride
* reduce first only works for ResNetBottleNeckLayer
* fix param name
* fix style
* add testing
* fix style
* rm init_weight
* fix style
* add post init
* fix comments
* do not test TvpTransformer
* fix warning
* fix style
* fix example
* fix config map
* add link in config
* fix comments
* fix style
* rm useless param
* change attention
* change test
* add notes
* fix comments
* fix tvp
* import checkpointing
* fix gradient checkpointing
* Use a more accurate example in readme
* update
* fix copy
* fix style
* update readme
* delete print
* remove tvp test_forward_signature
* remove TvpTransformer
* fix test init model
* merge main and make style
* fix tests and others
* fix image processor
* fix style and model_input_names
* fix tests
* fix image_attention gate in idefics modeling
* update comment
* cleaner gating
* fix gate condition
* create attention gate once
* update comment
* update doc of cross-attention forward
* improve comment
* bring back no_images
* pass cross_attention_gate similarly to no_images gate
* add information on gate shape
* fix no_images placement
* make tests for gate
* take off no_images logic
* update test based on comments
* raise value error if cross_attention_gate is None
* send cross_attention_gate to device
* Revert "send cross_attention_gate to device"
This reverts commit 054f84228405bfa2e75fecc502f6a96dc83cdc0b.
* send cross_attention_gate to device
* fix device in test + nit
* fill hidden_states with zeros instead of multiplying with the gate
* style
* Update src/transformers/models/idefics/modeling_idefics.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/idefics/modeling_idefics.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Enable large-v3 downloading and update language list
* Fix type annotation
* make fixup
* Export Whisper feature extractor
* Fix error after extractor loading
* Do not use pre-computed mel filters
* Save the full preprocessor properly
* Update docs
* Remove comment
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add alignment heads consistent with each Whisper version
* Remove alignment heads calculation
* Save fast tokenizer format as well
* Fix slow to fast conversion
* Fix bos/eos/pad token IDs in the model config
* Add decoder_start_token_id to config
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* timm to pytorch conversion for vit model fix
* remove unecessary print statments
* Detect non-supported ViTs in transformers & better handle id2label mapping
* detect non supported hybrid resnet-vit models in conversion script
* remove check for overlap between cls token and pos embed
* Load idx2sym from pretrained vocab file in Transformer XL
When loading vocab file from a pretrained tokenizer for Transformer XL,
although the pickled vocabulary file contains a idx2sym key, it isn't
loaded, because it is discarded as the empty list already exists as
an attribute.
Solution is to explicitly take it into account, just like for sym2idx.
* ran make style
* Updated albert.md doc for ALBERT model
* Update docs/source/en/model_doc/albert.md
Fixed Resources heading
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update the ALBERT model doc resources
Fixed resource example for fine-tuning the ALBERT sentence-pair classification.
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/model_doc/albert.md
Removed resource duplicate
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Updated albert.md doc with reviewed changes
* Updated albert.md doc for ALBERT
* Update docs/source/en/model_doc/albert.md
Removed duplicates from updated docs/source/en/model_doc/albert.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/model_doc/albert.md
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* try to stylify using ruff
* might need to remove these changes?
* use ruf format andruff check
* use isinstance instead of type comparision
* use # fmt: skip
* use # fmt: skip
* nits
* soem styling changes
* update ci job
* nits isinstance
* more files update
* nits
* more nits
* small nits
* check and format
* revert wrong changes
* actually use formatter instead of checker
* nits
* well docbuilder is overwriting this commit
* revert notebook changes
* try to nuke docbuilder
* style
* fix feature exrtaction test
* remve `indent-width = 4`
* fixup
* more nits
* update the ruff version that we use
* style
* nuke docbuilder styling
* leve the print for detected changes
* nits
* Remove file I/O
Co-authored-by: charliermarsh
<charlie.r.marsh@gmail.com>
* style
* nits
* revert notebook changes
* Add # fmt skip when possible
* Add # fmt skip when possible
* Fix
* More ` # fmt: skip` usage
* More ` # fmt: skip` usage
* More ` # fmt: skip` usage
* NIts
* more fixes
* fix tapas
* Another way to skip
* Recommended way
* Fix two more fiels
* Remove asynch
Remove asynch
---------
Co-authored-by: charliermarsh <charlie.r.marsh@gmail.com>
* Fix bug in handling varying encoder and decoder layers
This commit resolves an issue where the script failed to convert T5x models to PyTorch models when the number of decoder layers differed from the number of encoder layers. I've addressed this issue by passing an additional 'num_decoder_layers' parameter to the relevant function.
* Fix bug in handling varying encoder and decoder layers
* Remove the torch main_process_first context manager from TF examples
* Correctly set num_beams=1 in our examples, and add a guard in GenerationConfig.validate()
* Update src/transformers/generation/configuration_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* import hf error
* nits
* fixup
* catch the error at the correct place
* style
* improve message a tiny bit
* Update src/transformers/utils/hub.py
Co-authored-by: Lucain <lucainp@gmail.com>
* add a test
---------
Co-authored-by: Lucain <lucainp@gmail.com>
* skip 4 tests
* nits
* style
* wow it's not my day
* skip new failing tests
* style
* skip for NLLB MoE as well
* skip `test_assisted_decoding_sample` for everyone
* Update and reorder docs for chat templates
* Fix Mistral docstring
* Add section link and small fixes
* Remove unneeded line in Mistral example
* Add comment on saving memory
* Fix generation prompts linl
* Fix code block languages
* fix speecht5 wrong attention mask when padding
* enable batch generation and add parameter attention_mask
* fix doc
* fix format
* batch postnet inputs, return batched lengths, and consistent to old api
* fix format
* fix format
* fix the format
* fix doc-builder error
* add test, cross attention and docstring
* optimize code based on reviews
* docbuild
* refine
* not skip slow test
* add consistent dropout for batching
* loose atol
* add another test regarding to the consistency of vocoder
* fix format
* refactor
* add return_concrete_lengths as parameter for consistency w/wo batching
* fix review issues
* fix cross_attention issue
* Initial commit of PatchTST model classes
Co-authored-by: Phanwadee Sinthong <phsinthong@gmail.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Vijay Ekambaram <vijaykr.e@gmail.com>
Co-authored-by: Ngoc Diep Do <55230119+diepi@users.noreply.github.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>
* Add PatchTSTForPretraining
* update to include classification
Co-authored-by: Phanwadee Sinthong <phsinthong@gmail.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Vijay Ekambaram <vijaykr.e@gmail.com>
Co-authored-by: Ngoc Diep Do <55230119+diepi@users.noreply.github.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>
* clean up auto files
* Add PatchTSTForPrediction
* Fix relative import
* Replace original PatchTSTEncoder with ChannelAttentionPatchTSTEncoder
* temporary adding absolute path + add PatchTSTForForecasting class
* Update base PatchTSTModel + Unittest
* Update ForecastHead to use the config class
* edit cv_random_masking, add mask to model output
* Update configuration_patchtst.py
* add masked_loss to the pretraining
* add PatchEmbeddings
* Update configuration_patchtst.py
* edit loss which considers mask in the pretraining
* remove patch_last option
* Add commits from internal repo
* Update ForecastHead
* Add model weight initilization + unittest
* Update PatchTST unittest to use local import
* PatchTST integration tests for pretraining and prediction
* Added PatchTSTForRegression + update unittest to include label generation
* Revert unrelated model test file
* Combine similar output classes
* update PredictionHead
* Update configuration_patchtst.py
* Add Revin
* small edit to PatchTSTModelOutputWithNoAttention
* Update modeling_patchtst.py
* Updating integration test for forecasting
* Fix unittest after class structure changed
* docstring updates
* change input_size to num_input_channels
* more formatting
* Remove some unused params
* Add a comment for pretrained models
* add channel_attention option
add channel_attention option and remove unused positional encoders.
* Update PatchTST models to use HF's MultiHeadAttention module
* Update paper + github urls
* Fix hidden_state return value
* Update integration test to use PatchTSTForForecasting
* Adding dataclass decorator for model output classes
* Run fixup script
* Rename model repos for integration test
* edit argument explanation
* change individual option to shared_projection
* style
* Rename integration test + import cleanup
* Fix outpu_hidden_states return value
* removed unused mode
* added std, mean and nops scaler
* add initial distributional loss for predition
* fix typo in docs
* add generate function
* formatting
* add num_parallel_samples
* Fix a typo
* copy weighted_average function, edit PredictionHead
* edit PredictionHead
* add distribution head to forecasting
* formatting
* Add generate function for forecasting
* Add generate function to prediction task
* formatting
* use argsort
* add past_observed_mask ordering
* fix arguments
* docs
* add back test_model_outputs_equivalence test
* formatting
* cleanup
* formatting
* use ACT2CLS
* formatting
* fix add_start_docstrings decorator
* add distribution head and generate function to regression task
add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput, PatchTSTForRegressionOutput.
* add distribution head and generate function to regression task
add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput, PatchTSTForRegressionOutput.
* fix typos
* add forecast_masking
* fixed tests
* use set_seed
* fix doc test
* formatting
* Update docs/source/en/model_doc/patchtst.md
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* better var names
* rename PatchTSTTranspose
* fix argument names and docs string
* remove compute_num_patches and unused class
* remove assert
* renamed to PatchTSTMasking
* use num_labels for classification
* use num_labels
* use default num_labels from super class
* move model_type after docstring
* renamed PatchTSTForMaskPretraining
* bs -> batch_size
* more review fixes
* use hidden_state
* rename encoder layer and block class
* remove commented seed_number
* edit docstring
* Add docstring
* formatting
* use past_observed_mask
* doc suggestion
* make fix-copies
* use Args:
* add docstring
* add docstring
* change some variable names and add PatchTST before some class names
* formatting
* fix argument types
* fix tests
* change x variable to patch_input
* format
* formatting
* fix-copies
* Update tests/models/patchtst/test_modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* move loss to forward
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* formatting
* fix a bug when pre_norm is set to True
* output_hidden_states is set to False as default
* set pre_norm=True as default
* format docstring
* format
* output_hidden_states is None by default
* add missing docs
* better var names
* docstring: remove default to False in output_hidden_states
* change labels name to target_values in regression task
* format
* fix tests
* change to forecast_mask_ratios and random_mask_ratio
* change mask names
* change future_values to target_values param in the prediction class
* remove nn.Sequential and make PatchTSTBatchNorm class
* black
* fix argument name for prediction
* add output_attentions option
* add output_attentions to PatchTSTEncoder
* formatting
* Add attention output option to all classes
* Remove PatchTSTEncoderBlock
* create PatchTSTEmbedding class
* use config in PatchTSTPatchify
* Use config in PatchTSTMasking class
* add channel_attn_weights
* Add PatchTSTScaler class
* add output_attentions arg to test function
* format
* Update doc with image patchtst.md
* fix-copies
* rename Forecast <-> Prediction
* change name of a few parameters to match with PatchTSMixer.
* Remove *ForForecasting class to match with other time series models.
* make style
* Remove PatchTSTForForecasting in the test
* remove PatchTSTForForecastingOutput class
* change test_forecast_head to test_prediction_head
* style
* fix docs
* fix tests
* change num_labels to num_targets
* Remove PatchTSTTranspose
* remove arguments in PatchTSTMeanScaler
* remove arguments in PatchTSTStdScaler
* add config as an argument to all the scaler classes
* reformat
* Add norm_eps for batchnorm and layernorm
* reformat.
* reformat
* edit docstring
* update docstring
* change variable name pooling to pooling_type
* fix output_hidden_states as tuple
* fix bug when calling PatchTSTBatchNorm
* change stride to patch_stride
* create PatchTSTPositionalEncoding class and restructure the PatchTSTEncoder
* formatting
* initialize scalers with configs
* edit output_hidden_states
* style
* fix forecast_mask_patches doc string
---------
Co-authored-by: Gift Sinthong <gift.sinthong@ibm.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Vijay Ekambaram <vijaykr.e@gmail.com>
Co-authored-by: Ngoc Diep Do <55230119+diepi@users.noreply.github.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>
Co-authored-by: Wesley M. Gifford <wmgifford@us.ibm.com>
Co-authored-by: nnguyen <nnguyen@us.ibm.com>
Co-authored-by: Ngoc Diep Do <diiepy@gmail.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Improve pipeline tokenizer loading and hope nothing breaks
* Let's try a hacky solution
* Revert the changes to init
* Add a falcon hack to the automapping
* Add a falcon hack to the automapping
* Normalize image - cast input images to float32.
This is done if the input image isn't of floating type. Issues can occur when do_rescale=False is set in an image processor. When this happens, the image passed to the call is of type uint8 becuase of the type casting that happens in resize because of the PIL image library. As the mean and std values are cast to match the image dtype, this can cause NaNs and infs to appear in the normalized image, as the floating values being used to divide the image are now set to 0.
The reason the mean and std values are cast is because previously they were set as float32 by default. However, if the input image was of type float16, the normalization would result in the image being upcast to float32 too.
* Add tests
* Remove float32 cast
* only dir not even init
* init
* tokenizer removed and reference of codegen added
* modeling file updated a lot remaining app_rotary_emb
* conversion script done
* conversion script fixed, a lot of factoring done and most tests pass
* added token_clf and extractive_QA_head
* integration tests pass
* flash attn tests pass!
* config done
* more docs in modeling file
* some style fix
* style and others
* doc test error fix
* more doc fix
* some attention fixes
* most fixes
* style and other fixes
* docs fix and config
* doc fix
* some comments
* conversion script updated
* conversion script updated
* Revert "conversion script updated"
This reverts commit e92378c54084ec0747041b113083d1746ecb6c7f.
* final comments
* add Phi to language_modeling.md
* edit phi.md file
* rebase and fix
* removed phi-1.5 example
* changed model_type from 'phi'->'mixformer-sequential'
* small change
* small change
* revert \small change
* changed mixformer-sequential->phi
* small change
* added phi-1.5 example instead of phi-1
* doc test might pass now
* rebase and small change
* added the dropout layer
* more fixes
* modified .md file
* very very small doc change
* fix?
* actual fix
* fixups
* add dataclass to the attention mask converter
* refine testing suite
* make sure there are no overflows
* update the test
* init commit
* attention arch done except rotary emb
* rotary emb done
* text encoder working
* outputs matching
* arch first pass done
* make commands done, tests and docs remaining
* all tests passed, only docs remaining
* docs done
* doc-builder fix
* convert script removed(not relevant)
* minor comments done
* added ckpt conversion script
* tokenizer done
* very minor fix of index.md 2
* mostly make fixup related
* all done except fe and rotary emb
* very small change
* removed unidecode dependency
* style changes
* tokenizer removed require_backends
* added require_inflect to tokenizer tests
* removed VOCAB_FILES in tokenizer test
* inflect dependency removed
* added rotary pos emb cache and simplified the apply method
* style
* little doc change
* more comments
* feature extractor added
* added processor
* auto-regressive config added
* added CLVPConditioningEncoder
* comments done except the test one
* weights added successfull(NOT tested)
* tokenizer fix with numbers
* generate outputs matching
* almost tests passing Integ tests not written
* Integ tests added
* major CUDA error fixed
* docs done
* rebase and multiple fixes
* fixed rebase overwrites
* generate code simplified and tests for AutoRegressive model added
* minor changes
* refectored gpt2 code in clvp file
* weights done and all code refactored
* mostly done except the fast_tokenizer
* doc test fix
* config file's doc fixes
* more config fix
* more comments
* tokenizer comments mostly done
* modeling file mostly refactored and can load modules
* ClvpEncoder tested
* ClvpDecoder, ClvpModel and ClvpForCausalLM tested
* integration and all tests passed
* more fixes
* docs almost done
* ckpt conversion refectored
* style and some failing tests fix
* comments
* temporary output fix but test_assisted_decoding_matches_greedy_search test fails
* majority changes done
* use_cache outputs same now! Along with the asisted_greedy_decoding test fix
* more comments
* more comments
* prepare_inputs_for_generation fixed and _prepare_model_inputs added
* style fix
* clvp.md change
* moved clvpconditionalencoder norms
* add model to new index
* added tokenizer input_ids_with_special_tokens
* small fix
* config mostly done
* added config-tester and changed conversion script
* more comments
* comments
* style fix
* some comments
* tokenizer changed back to prev state
* small commnets
* added output hidden states for the main model
* style fix
* comments
* small change
* revert small change
* .
* Update clvp.md
* Update test_modeling_clvp.py
* :)
* some minor change
* new fixes
* remove to_dict from FE
* add audio_utils usage in the FE of SpeechToText
* clean unecessary parameters of AudioSpectrogramTransformer FE
* add audio_utils usage in AST
* add serialization tests and function to FEs
* make style
* remove use_torchaudio and move to_dict to FE
* test audio_utils usage
* make style and fix import (remove torchaudio dependency import)
* fix torch dependency for jax and tensor tests
* fix typo
* clean tests with suggestions
* add lines to test if is_speech_availble is False
This commit addresses the 'NoneType' object AttributeError within the IdeficsModel forward function. Previously, the 'device' attribute was accessed directly from input_ids, resulting in a potential 'NoneType' error. Now, the device is properly calculated at the beginning of the forward function and utilized consistently throughout, ensuring the 'image_hidden_states' are derived from the correct device. This modification enables smoother processing and compatibility, ensuring the correct device attribution for 'image_encoder_embeddings' in the IdeficsModel forward pass.
* Removed the redundant SiLUActivation class and now use nn.functional.silu directly.
* I apologize for adding torch.functional.silu. I have replaced it with nn.SiLU.
* Remove redundant variable in feature_extraction file
* Fix error in convert_openai_to_hf.py: "_download() missing 1 required positional argument: root"
* Fix error in convert_openai_to_hf.py: "TypeError: byte indices must be integers or slices, not str"
* Fix decoder_attention_heads value in convert_openai_to_hf.py.
Correct the assignment for `decoder_attention_heads` in the conversion script for the Whisper model.
* Black reformat convert_openai_to_hf.py file.
* Fix Whisper model configuration defaults (for Tiny).
- Correct encoder/decoder layers and attention heads count.
- Update model width (`d_model`) to 384.
* Add docstring to the convert_openai_to_hf.py script with a doctest
* Add shebang and +x permission to the convert_openai_to_hf.py
* convert_openai_to_hf.py: reuse the read model_bytes in the _download() function
* Move convert_openai_to_hf.py doctest example to whisper.md
* whisper.md: Add an inference example to the Conversion section.
* whisper.md: remove `model.config.forced_decoder_ids` from examples (deprecated)
* whisper.md: Remove "## Format Conversion" section; not used by users
* whisper.md: Use librispeech_asr_dummy dataset and load_dataset()
I'm adding accelerate as one of the libraries to install because otherwise when running the Trainer, the model errorr out with the error.
ImportError: Using the `Trainer` with `PyTorch` requires `accelerate>=0.20.1`: Please run `pip install transformers[torch]` or `pip install accelerate -U`
Further context:
1. I've tried this across different environments so I believe that the environment is not the issue.
2. I had the latest transformers library version running.
3. Typically even after install accelerate and import it, it wouldn't resolve the issue until I restart the notebook and try again.
* first batch of structure improvements for model_docs
* second batch of structure improvements for model_docs
* more structure improvements for model_docs
* more structure improvements for model_docs
* structure improvements for cv model_docs
* more structural refactoring
* addressed feedback about image processors
* Use Llama RoPE implementation for Falcon
+ Add copy functionalities
* Use standard cache format for Falcon
* Simplify apply_rotary_pos_emb, copy from Llama
* Remove unnecessary cache conversion test
We don't need to convert any caches anymore!
* Resolve copy complaint
* Fixed base model class name extraction from PeftModels
* Changes to first unwrap the model then extract the base model name
* Changed base_model to base_model.model to stay consistent with peft model abstractions
* Removed the redundant SiLUActivation class and now use nn.functional.silu directly.
* I apologize for adding torch.functional.silu. I have replaced it with nn.SiLU.
* Fixing m4t.
* Trying to remove comparison ? Odd test failure.
* Adding shared. But why on earth does it hang ????
* Putting back the model weights checks the test is silently failing on
cuda.
* Fix style + unremoved comment.
* Fix Fuyu image scaling bug
It could produce negative padding and hence inference errors for certain
image sizes.
* initial rework commit
* add batching capabilities, refactor image processing
* add functional batching for a list of images and texts
* make args explicit
* Fuyu processing update (#27133)
* Add file headers
* Add file headers
* First pass - preprocess method with standard args
* First pass image processor rework
* Small tweaks
* More args and docstrings
* Tidying iterating over batch
* Tidying up
* Modify to have quick tests (for now)
* Fix up
* BatchFeature
* Passing tests
* Add tests for processor
* Sense check when patchifying
* Add some tests
* FuyuBatchFeature
* Post-process box coordinates
* Update to `size` in processor
* Remove unused and duplicate constants
* Store unpadded dims after resize
* Fix up
* Return FuyuBatchFeature
* Get unpadded sizes after resize
* Update exception
* Fix return
* Convert input `<box>` coordinates to model format.
* Post-process point coords, support multiple boxes/points in a single
sequence
* Replace constants
* Update src/transformers/models/fuyu/image_processing_fuyu.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Preprocess List[List[image]]
* Update src/transformers/models/fuyu/image_processing_fuyu.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update to Amy's latest state.
* post-processing returns a list of tensors
* Fix error when target_sizes is None
Co-authored-by: Pablo Montalvo <pablo.montalvo.leroux@gmail.com>
* Update src/transformers/models/fuyu/image_processing_fuyu.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update src/transformers/models/fuyu/image_processing_fuyu.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update src/transformers/models/fuyu/image_processing_fuyu.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update src/transformers/models/fuyu/image_processing_fuyu.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Review comments
* Update src/transformers/models/fuyu/image_processing_fuyu.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Fix up
* Fix up
---------
Co-authored-by: Ubuntu <ubuntu@ip-172-31-72-126.ec2.internal>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Pablo Montalvo <pablo.montalvo.leroux@gmail.com>
* Fix conflicts in fuyu_follow_up_image_processing (#27228)
fixing conflicts and updating on main
* Revert "Fix conflicts in fuyu_follow_up_image_processing" (#27232)
Revert "Fix conflicts in fuyu_follow_up_image_processing (#27228)"
This reverts commit acce10b6c653dc7041fb9d18cfed55775afd6207.
---------
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-72-126.ec2.internal>
* add whisper fa2
* correct
* change all
* correct
* correct
* fix more
* fix more
* fix more
* fix more
* fix more
* fix more
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix more
* fix more
* fix more
* fix more
* fix more
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Enable split_batches through TrainingArguments
* Extra dispatch_batches
* Keep as default false
* Add to docstring
* Add to docstring
* Remove the capturewarnings change
* Comma
* Add type annotations to TFConvNextDropPath
* Use tf.debugging.assert_equal for TFConvNextEmbeddings shape check
* Add TensorFlow implementation of ConvNeXTV2
* check_docstrings: add TFConvNextV2Model to exclusions
TFConvNextV2Model and TFConvNextV2ForImageClassification have docstrings
which are equivalent to their PyTorch cousins, but a parsing issue prevents them
from passing the test.
Adding exclusions for these two classes as discussed in #25558.
* Safetensors serialization by default
* First pass on the tests
* Second pass on the tests
* Third pass on the tests
* Fix TF weight loading from TF-format safetensors
* Specific encoder-decoder fixes for weight crossloading
* Add VisionEncoderDecoder fixes for TF too
* Change filename test for pt-to-tf
* One missing fix for TFVisionEncoderDecoder
* Fix the other crossload test
* Support for flax + updated tests
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Sanchit's comments
* Sanchit's comments 2
* Nico's comments
* Fix tests
* cleanup
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add support for loading GPTQ models on CPU
Right now, we can only load the GPTQ Quantized model on the CUDA
device. The attribute `gptq_supports_cpu` checks if the current
auto_gptq version is the one which has the cpu support for the
model or not.
The larger variants of the model are hard to load/run/trace on
the GPU and that's the rationale behind adding this attribute.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
* Update quantization.md
* Update quantization.md
* Update quantization.md
A recent PR https://github.com/huggingface/transformers/pull/26579 fixed an edge case out-of-bounds tensor indexing error in TypicalLogitsWarper, and a related behaviour change was made that we thought fixed a long-standing bug w.r.t. the token inclusion cutoff.
However after looking more closely, I am pretty certain that the original logic was correct and that the OOB fix should have been made differently.
Specifically the docs state that it should include the "smallest set of tokens that add up to P or higher" and so `last_ind` should actually be one more than the index of the last token satisfying (cumulative_probs < self.mass).
We still need a max clamp in case that last token is the very last one in the tensor.
* [docstring] Fix docstring for AltCLIPVisionConfig, AltCLIPTextConfig + cleaned some docstring
* Removed entries from check_docstring.py
* Removed entries from check_docstring.py
* Removed entry from check_docstring.py
* [docstring] Fix docstring for AltCLIPTextConfig, AltCLIPVisionConfig and AltCLIPConfig
* get default device through `PartialState().default_device` as is has
been officially released
* apply code review suggestion
* apply code review suggestion
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
---------
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
* stronger GC tests
* better tests and skip failing tests
* break down into 3 sub-tests
* break down into 3 sub-tests
* refactor a bit
* more refactor
* fix
* last nit
* credits contrib and suggestions
* credits contrib and suggestions
---------
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix
* more fixes
* fix other models
* fix long t5
* use `gradient_checkpointing_func` instead
* fix copies
* set `gradient_checkpointing_func` as a private attribute and retrieve previous behaviour
* Update src/transformers/modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* replace it with `is_gradient_checkpointing_set`
* remove default
* Update src/transformers/modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fixup
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add early stopping logits processor
* black formmated
* indent
* follow method signature
* actual logic
* check for None
* address comments on docstrings and method signature
* add unit test under `LogitsProcessorTest` wip
* unit test passing
* black formatted
* condition per sample
* add to BarkModelIntegrationTests
* wip BarkSemanticModelTest
* rename and add to kwargs handling
* not add to BarkSemanticModelTest
* correct logic and assert last outputs tokens different in test
* doc-builder style
* read from kwargs as well
* assert len of with less than that of without
* ruff
* add back seed and test case
* add original impl default suggestion
* doc-builder
* rename and use softmax
* switch back to LogitsProcessor and update docs wording
* camelCase and spelling and saving compute
* assert strictly less than
* assert less than
* expand test_generate_semantic_early_stop instead
* Support runs/
* Upload runs folder as part of push to hub
* Add a test
* Add to test deps
* Update with proposed solution from Slack
* Ensure that repo gets deleted in tests
* docs(training_args): correct docstrings
Correct docstrings of these methods in `TrainingArguments`:
- `set_save`
- `set_logging`
* docs(training_args): adjust words in docstrings
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* docs(trainer): correct a typo in comments
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* add `MaskGenerationPipeline` in docs
* Update __init__.py
* fix repo consistency and clarify docstring
* add on check docstirngs
* actually we do have a tf sam
* oops
* Fix TypicalLogitsWarper tensor OOB indexing edge case
This can be triggerd fairly quickly with low precision e.g. bfloat16 and typical_p = 0.99.
* Shift threshold index by one
* Use explicit named arg for clamp min
* Resolve incorrect ValueError in RoPE config for Falcon
* Add broken codeblock tag in Falcon Config
* Fix typo: an float -> a float
* Implement copy functionality for Fuyu and Persimmon
for RoPE scaling validation
* Make style
* Add a default decoder_attention_mask for EncoderDecoderModel during training
Since we are already creating the default decoder_input_ids from the labels, we should also
create a default decoder_attention_mask to go with it.
* Fix test constant that relied on manual_seed()
The test was changed to use a decoder_attention_mask that ignores padding instead (which is
the default one created by BERT when attention_mask is None).
* Create the decoder_attention_mask using decoder_input_ids instead of labels
* Fix formatting in test
* initial edits
* improvements for clarity and flow
* improvements for clarity and flow, removed the repetead section
* removed two docs that had no content
* Revert "removed two docs that had no content"
This reverts commit e98fa2fa0d8e171163f15cb8a04bdada1053543b.
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* feedback addressed
* more feedback addressed
* feedback addressed
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* adds agnostic decorators and availability fns
* renaming decorators and fixing imports
* updating some representative example tests
bloom, opt, and reformer for now
* wip device agnostic functions
* lru cache to device checking functions
* adds `TRANSFORMERS_TEST_DEVICE_SPEC`
if present, imports the target file and updates device to function
mappings
* comments `TRANSFORMERS_TEST_DEVICE_SPEC` code
* extra checks on device name
* `make style; make quality`
* updates default functions for agnostic calls
* applies suggestions from review
* adds `is_torch_available` guard
* Add spec file to docs, rename function dispatch names to backend_*
* add backend import to docs example for spec file
* change instances of to
* Move register backend to before device check as per @statelesshz changes
* make style
* make opt test require fp16 to run
---------
Co-authored-by: arsalanu <arsalanu@graphcore.ai>
Co-authored-by: arsalanu <hzji210@gmail.com>
* adding in logit examples for Whisper processor
* adding in updated logits processor for Whisper
* adding in cleaned version of logits processor for Whisper
* adding docstrings for whisper processor
* making sure the formatting is correct
* adding logits after doc builder
* Update src/transformers/generation/logits_process.py
Adding in suggested fix to the LogitProcessor description.
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update src/transformers/generation/logits_process.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update src/transformers/generation/logits_process.py
Removing tip per suggestion.
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update src/transformers/generation/logits_process.py
Removing redundant code per suggestion.
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* adding in revised version
* adding in version with timestamp examples
* Update src/transformers/generation/logits_process.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* enhanced paragraph on behavior of processor
* fixing doc quality issue
* removing the word poem from example
* adding in updated docstring
* adding in new version of file after doc-builder
---------
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Register ModelOutput as supported torch pytree nodes
* Test ModelOutput as supported torch pytree nodes
* Update type hints for pytree unflatten functions
* update translation of pipeline_tutorial and preprocessing(Version1.0)
* update translation of pipeline_tutorial and preprocessing(Version2.0)
* update translation docs
* update to fix problems mentioned in review
---------
Co-authored-by: jiaqiw <wangjiaqi50@huawei.com>
* first raw commit
* still POC
* tentative convert script
* almost working speech encoder conversion scripts
* intermediate code for encoder/decoders
* add modeling code
* first version of speech encoder
* make style
* add new adapter layer architecture
* add adapter block
* add first tentative config
* add working speech encoder conversion
* base model convert works now
* make style
* remove unnecessary classes
* remove unecessary functions
* add modeling code speech encoder
* rework logics
* forward pass of sub components work
* add modeling codes
* some config modifs and modeling code modifs
* save WIP
* new edits
* same output speech encoder
* correct attention mask
* correct attention mask
* fix generation
* new generation logics
* erase comments
* make style
* fix typo
* add some descriptions
* new state
* clean imports
* add tests
* make style
* make beam search and num_return_sequences>1 works
* correct edge case issue
* correct SeamlessM4TConformerSamePadLayer copied from
* replace ACT2FN relu by nn.relu
* remove unecessary return variable
* move back a class
* change name conformer_attention_mask ->conv_attention_mask
* better nit code
* add some Copied from statements
* small nits
* small nit in dict.get
* rename t2u model -> conditionalgeneration
* ongoing refactoring of structure
* update models architecture
* remove SeamlessM4TMultiModal classes
* add tests
* adapt tests
* some non-working code for vocoder
* add seamlessM4T vocoder
* remove buggy line
* fix some hifigan related bugs
* remove hifigan specifc config
* change
* add WIP tokenization
* add seamlessM4T working tokenzier
* update tokenization
* add tentative feature extractor
* Update converting script
* update working FE
* refactor input_values -> input_features
* update FE
* changes in generation, tokenizer and modeling
* make style and add t2u_decoder_input_ids
* add intermediate outputs for ToSpeech models
* add vocoder to speech models
* update valueerror
* update FE with languages
* add vocoder convert
* update config docstrings and names
* update generation code and configuration
* remove todos and update config.pad_token_id to generation_config.pad_token_id
* move block vocoder
* remove unecessary code and uniformize tospeech code
* add feature extractor import
* make style and fix some copies from
* correct consistency + make fix-copies
* add processor code
* remove comments
* add fast tokenizer support
* correct pad_token_id in M4TModel
* correct config
* update tests and codes + make style
* make some suggested correstion - correct comments and change naming
* rename some attributes
* rename some attributes
* remove unecessary sequential
* remove option to use dur predictor
* nit
* refactor hifigan
* replace normalize_mean and normalize_var with do_normalize + save lang ids to generation config
* add tests
* change tgt_lang logic
* update generation ToSpeech
* add support import SeamlessM4TProcessor
* fix generate
* make tests
* update integration tests, add option to only return text and update tokenizer fast
* fix wrong function call
* update import and convert script
* update integration tests + update repo id
* correct paths and add first test
* update how new attention masks are computed
* update tests
* take first care of batching in vocoder code
* add batching with the vocoder
* add waveform lengths to model outputs
* make style
* add generate kwargs + forward kwargs of M4TModel
* add docstrings forward methods
* reformate docstrings
* add docstrings t2u model
* add another round of modeling docstrings + reformate speaker_id -> spkr_id
* make style
* fix check_repo
* make style
* add seamlessm4t to toctree
* correct check_config_attributes
* write config docstrings + some modifs
* make style
* add docstrings tokenizer
* add docstrings to processor, fe and tokenizers
* make style
* write first version of model docs
* fix FE + correct FE test
* fix tokenizer + add correct integration tests
* fix most tokenization tests
* make style
* correct most processor test
* add generation tests and fix num_return_sequences > 1
* correct integration tests -still one left
* make style
* correct position embedding
* change numbeams to 1
* refactor some modeling code and correct one test
* make style
* correct typo
* refactor intermediate fnn
* refactor feedforward conformer
* make style
* remove comments
* make style
* fix tokenizer tests
* make style
* correct processor tests
* make style
* correct S2TT integration
* Apply suggestions from Sanchit code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* correct typo
* replace torch.nn->nn + make style
* change Output naming (waveforms -> waveform) and ordering
* nit renaming and formating
* remove return None when not necessary
* refactor SeamlessM4TConformerFeedForward
* nit typo
* remove almost copied from comments
* add a copied from comment and remove an unecessary dropout
* remove inputs_embeds from speechencoder
* remove backward compatibiliy function
* reformate class docstrings for a few components
* remove unecessary methods
* split over 2 lines smthg hard to read
* make style
* replace two steps offset by one step as suggested
* nice typo
* move warnings
* remove useless lines from processor
* make generation non-standard test more robusts
* remove torch.inference_mode from tests
* split integration tests
* enrich md
* rename control_symbol_vocoder_offset->vocoder_offset
* clean convert file
* remove tgt_lang and src_lang from FE
* change generate docstring of ToText models
* update generate docstring of tospeech models
* unify how to deal withtext_decoder_input_ids
* add default spkr_id
* unify tgt_lang for t2u_model
* simplify tgt_lang verification
* remove a todo
* change config docstring
* make style
* simplify t2u_tgt_lang_id
* make style
* enrich/correct comments
* enrich .md
* correct typo in docstrings
* add torchaudio dependency
* update tokenizer
* make style and fix copies
* modify SeamlessM4TConverter with new tokenizer behaviour
* make style
* correct small typo docs
* fix import
* update docs and add requirement to tests
* add convert_fairseq2_to_hf in utils/not_doctested.txt
* update FE
* fix imports and make style
* remove torchaudio in FE test
* add seamless_m4t.md to utils/not_doctested.txt
* nits and change the way docstring dataset is loaded
* move checkpoints from ylacombe/ to facebook/ orga
* refactor warning/error to be in the 119 line width limit
* round overly precised floats
* add stereo audio behaviour
* refactor .md and make style
* enrich docs with more precised architecture description
* readd undocumented models
* make fix-copies
* apply some suggestions
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* correct bug from previous commit
* refactor a parameter allowing to clean the code + some small nits
* clean tokenizer
* make style and fix
* make style
* clean tokenizers arguments
* add precisions for some tests
* move docs from not_tested to slow
* modify tokenizer according to last comments
* add copied from statements in tests
* correct convert script
* correct parameter docstring style
* correct tokenization
* correct multi gpus
* make style
* clean modeling code
* make style
* add copied from statements
* add copied statements
* add support with ASR pipeline
* remove file added inadvertently
* fix docstrings seamlessM4TModel
* add seamlessM4TConfig to OBJECTS_TO_IGNORE due of unconventional markdown
* add seamlessm4t to assisted generation ignored models
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* remove docstrings CodeGen from objects_to_ignore
* autofix codegen docstrings
* fill in the missing types and docstrings
* fixup
* change descriptions to be in a separate line
* apply docstring suggestions from code review
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* update n_ctx description in CodeGenConfig
---------
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Remove ChineseCLIPImageProcessor, ChineseCLIPTextConfig, ChineseCLIPVisionConfig from check_docstrings
* Run fix_and_overwrite for ChineseCLIPImageProcessor, ChineseCLIPTextConfig, ChineseCLIPVisionConfig
* Replace <fill_type> and <fill_docstring> in configuration_chinese_clip.py, image_processing_chinese_clip.py with type and docstring values
---------
Co-authored-by: vignesh-raghunathan <vignesh_raghunathan@intuit.com>
* initial commit
* add processor, add fuyu naming
* add draft processor
* fix processor
* remove dropout to fix loading of weights
* add image processing fixes from Pedro
* fix
* fix processor
* add basic processing fuyu test
* add documentation and TODO
* address comments, add tests, add doc
* replace assert with torch asserts
* add Mixins and fix tests
* clean imports
* add model tester, clean imports
* fix embedding test
* add updated tests from pre-release model
* Processor: return input_ids used for inference
* separate processing and model tests
* relax test tolerance for embeddings
* add test for logit comparison
* make sure fuyu image processor is imported in the init
* fix formattingh
* more formatting issues
* and more
* fixups
* remove some stuff
* nits
* update init
* remove the fuyu file
* Update integration test with release model
* Update conversion script.
The projection is not used, as confirmed by the authors.
* improve geenration
* Remove duplicate function
* Trickle down patches to model call
* processing fuyu updates
* remove things
* fix prepare_inputs_for_generation to fix generate()
* remove model_input
* update
* add generation tests
* nits
* draft leverage automodel and autoconfig
* nits
* fix dtype patch
* address comments, update READMEs and doc, include tests
* add working processing test, remove refs to subsequences
* add tests, remove Sequence classification
* processing
* update
* update the conversion script
* more processing cleanup
* safe import
* take out ModelTesterMixin for early release
* more cl;eanup
* more cleanup
* more cleanup
* and more
* register a buffer
* nits
* add postprocessing of generate output
* nits
* updates
* add one working test
* fix test
* make fixup works
* fixup
* Arthur's updates
* nits
* update
* update
* fix processor
* update tests
* passe more fixups
* fix
* nits
* don't import torch
* skip fuyu config for now
* fixup done
* fixup
* update
* oups
* nits
* Use input embeddings
* no buffer
* update
* styling processing fuyu
* fix test
* update licence
* protect torch import
* fixup and update not doctested
* kwargs should be passed
* udpates
* update the impofixuprts in the test
* protect import
* protecting imports
* protect imports in type checking
* add testing decorators
* protect top level import structure
* fix typo
* fix check init
* move requires_backend to functions
* Imports
* Protect types
---------
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Lysandre <lysandre@huggingface.co>
* fix
* last attempt
* current work
* fix forward compatibility
* save all special tokens
* current state
* revert additional changes
* updates
* remove tokenizer.model
* add a test and the fix
* nit
* revert one more break
* fix typefield issue
* quality
* more tests
* fix fields for FC
* more nits?
* new additional changes
* how
* some updates
* simplify all
* more nits
* revert some things to original
* nice
* nits
* a small hack
* more nits
* ahhaha
* fixup
* update
* make test run on ci
* use subtesting
* update
* Update .circleci/create_circleci_config.py
* updates
* fixup
* nits
* replace typo
* fix the test
* nits
* update
* None max dif pls
* a partial fix
* had to revert one thing
* test the fast
* updates
* fixup
* and more nits
* more fixes
* update
* Oupsy 👁️
* nits
* fix marian
* on our way to heaven
* Update src/transformers/models/t5/tokenization_t5.py
Co-authored-by: Lysandre Debut <hi@lysand.re>
* fixup
* Update src/transformers/tokenization_utils_fast.py
Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com>
* Update src/transformers/tokenization_utils_base.py
Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com>
* fix phobert
* skip some things, test more
* nits
* fixup
* fix deberta
* update
* update
* more updates
* skip one test
* more updates
* fix camembert
* can't test this one
* more good fixes
* kind of a major update
- seperate what is only done in fast in fast init and refactor
- add_token(AddedToken(..., speicla = True)) ignores it in fast
- better loading
* fixup
* more fixups
* fix pegasus and mpnet
* remove skipped tests
* fix phoneme tokenizer if self.verbose
* fix individual models
* update common tests
* update testing files
* all over again
* nits
* skip test for markup lm
* fixups
* fix order of addition in fast by sorting the added tokens decoder
* proper defaults for deberta
* correct default for fnet
* nits on add tokens, string initialized to special if special
* skip irrelevant herbert tests
* main fixes
* update test added_tokens_serialization
* the fix for bart like models and class instanciating
* update bart
* nit!
* update idefix test
* fix whisper!
* some fixup
* fixups
* revert some of the wrong chanegs
* fixup
* fixup
* skip marian
* skip the correct tests
* skip for tf and flax as well
---------
Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com>
* Chore: Typo fixed in multiple files of docs/source/en/model_doc
* Update docs/source/en/model_doc/nllb-moe.md
Co-authored-by: Aryan V S <avs050602@gmail.com>
---------
Co-authored-by: Aryan V S <avs050602@gmail.com>
* Adjust length limits and allow naked conversation list inputs
* Adjust length limits and allow naked conversation list inputs
* Maybe use a slightly more reasonable limit than 1024
* Skip tests for old models that never supported this anyway
* Cleanup input docstrings
* More docstring cleanup + skip failing TF test
* Make fixup
* Remove BertGenerationTokenizer from objects to ignore
The file BertGenerationTokenizer is removed from
objects to ignore as a first step to fix docstring.
* Docstrings fix for BertGenerationTokenizer
Docstring fix is generated for BertGenerationTokenizer
by using check_docstrings.py.
* Fix docstring for BertGenerationTokenizer
Added sep_token type and docstring in BertGenerationTokenizer.
* Remove space in template comment
I think the space between the eos and bos tokens is not present in the actual template output. I'm using this documentation as a reference for everyone asking about prompting, so would like to clarify whether there's a space or not :)
* Update fast tokenizer too
* Apply to Code Llama
* Link to original code snippet.
* Remove CanineConfig from check_docstrings
* Run fix_and_overwrite for CanineConfig
* Replace <fill_type> and <fill_docstring> in configuration_canine.py with type and docstring values
---------
Co-authored-by: vignesh-raghunathan <vignesh_raghunathan@intuit.com>
* Remove UniSpeechConfig
* Remove , at the end otherwise check_docstring changes order
* Auto add new docstring
* Update docstring for UniSpeechConfig
* Remove from check_docstrings
* Remove UniSpeechSatConfig and UniSpeechSatForCTC from check_docstrings
* Remove , at the end
* Fix docstring
* Update docstring for Wav2Vec2ForCTC
* Update Wav2Vec2ForCTC docstring
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* fix style
---------
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* llm prompting guide
* updated code examples
* an attempt to fix the code example tests
* set seed in examples
* added a doctest comment
* added einops to the doc_test_job
* string formatting
* string formatting, again
* added the toc to slow_documentation_tests.txt
* minor list fix
* string formatting + pipe renamed
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* replaced max_length with max_new_tokens and updated the outputs to match
* minor formatting fix
* removed einops from circleci config
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <hi@lysand.re>
* removed einops and trust_remote_code parameter
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Fix backward compatibility of Conversation
I ran into a case where an external library was depending on the `new_user_input` field of Conversation. https://github.com/SeldonIO/MLServer/blob/release/1.4.x/runtimes/huggingface/mlserver_huggingface/codecs/utils.py#L37
This field was deprecated as part of the refactor, but if `transformers` wants to maintain backwards compatibility for now (which is mentioned in a few comments) then there's a good argument for supporting it. Some comments referred to it as an "internal" property, but it didn't start with `_` as is Python convention, so I think it's reasonable that other libraries were referencing it directly.
It's not difficult to add it to the other supported backwards-compatible properties. In addition, the implementation of `past_user_inputs` didn't actually match the past behavior (it would contain the most recent message as well) so I updated that as well.
* make style
---------
Co-authored-by: Matt <rocketknight1@gmail.com>
* [docstring] Fix docstring for `LlamaTokenizer` and `LlamaTokenizerFast`
* [docstring] Fix docstring typo at `LlamaTokenizer` and `LlamaTokenizerFast`
* In assisted decoding, pass model_kwargs to model's forward call
Previously, assisted decoding would ignore any additional kwargs
that it doesn't explicitly handle. This was inconsistent with other
generation methods, which pass the model_kwargs through
prepare_inputs_for_generation and forward the returned dict to the
model's forward call.
The prepare_inputs_for_generation method needs to be amended in all
models, as previously it only kept the last input ID when a past_key_values
was passed.
* Improve variable names in _extend_attention_mask
* Refactor extending token_type_ids into a function
* Replace deepcopy with copy to optimize performance
* Update new persimmon model with llama changes for assisted generation
* Update new mistral model for assisted generation with prepare_inputs_for_generation
* Update position_ids creation in falcon prepare_inputs_for_generation to support assisted generation
* Your commit message here
* fix LlamaConfig docstring
* run make fixup
* fix formatting after review
reformat of the file to prevent script issues
* rerun make fixup after reformat
* removed donutimageprocessor from objects_to_ignore
* added docstring for donutimageprocessor
* readding donut file
* moved docstring to correct location
* fix typos in idefics.md
Two typos found in reviewing this documentation.
1) max_new_tokens=4, is not sufficient to generate "Vegetables" as indicated - you will get only "Veget". (incidentally - some mention of how to select this value might be useful as it seems to change in each example)
2) inputs = processor(prompts, return_tensors="pt").to(device) as inputs need to be on the same device (as they are in all other examples on the page)
* Update idefics.md
Change device to cuda explicitly to match other examples
* remove SharedDDP as it was drepracated
* apply review suggestion
* make style
* Oops,forgot to remove the compute_loss context manager in Seq2SeqTrainer.
* remove the unnecessary conditional statement
* keep the logic of IPEX
* clean code
* mix precision setup & make fixup
---------
Co-authored-by: statelesshz <jihuazhong1@huawei.com>
* Remove unnecessary `view` of `position_ids` in `modeling_llama`
When `position_ids` is `None`, its value is generated using
`torch.arange`, which creates a tensor of size `(seq_length +
past_key_values_length) - past_key_values_length = seq_length`. The
tensor is then unsqueezed, resulting in a tensor of shape `(1,
seq_length)`. This means that the last `view` to a tensor of shape
`(-1, seq_length)` is a no-op.
This commit removes the unnecessary view.
* Remove no-op `view` of `position_ids` in rest of transformer models
* Faster rotary embedding for GPTNeoX
* there might be un-necessary moves from device
* fixup
* fix dtype issue
* add copied from statements
* fox copies
* oupsy
* add copied from Llama for scaled ones as well
* fixup
* fix
* fix copies
* refactor: change default block_size
* fix: return tf to origin
* fix: change files to origin
* rebase
* rebase
* rebase
* rebase
* rebase
* rebase
* rebase
* rebase
* refactor: add min block_size to files
* reformat: add min block_size for run_clm tf
* add FA-2 support for mistral
* fixup
* add sliding windows
* fixing few nits
* v1 slicing cache - logits do not match
* add comment
* fix bugs
* more mem efficient
* add warning once
* add warning once
* oops
* fixup
* more comments
* copy
* add safety checker
* fixup
* Update src/transformers/models/mistral/modeling_mistral.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* copied from
* up
* raise when padding side is right
* fixup
* add doc + few minor changes
* fixup
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix stripping
* nits
* fix another test
* styling
* fix?
* update
* revert bad merge
* found the bug
* YES SIR
* is that change really required?
* make fast even faster
* re order functions
* add tokenizer kwarg inputs
* Adding tokenizer_kwargs to _sanitize_parameters
* Add truncation=True example to tests
* Update test_pipelines_fill_mask.py
* Update test_pipelines_fill_mask.py
* make fix-copies and make style
* Update fill_mask.py
Replace single tick with double
* make fix-copies
* Style
---------
Co-authored-by: Lysandre <lysandre@huggingface.co>
* fix wav2vec2
* nit
* stash
* one more file to update
* fix byt5
* vocab size is 256, don't change that!
* use other revision
* test persimon in smaller size
* style
* tests
* nits
* update add tokens from pretrained
* test tokenization
* nits
* potential fnet fix?
* more nits
* nits
* correct test
* assert close
* udpate
* ouch
* fix it
* some more nits
* FINALLU
* use `adept` checkpoints
* more adept checkpoints
* that was invlved!
* fix issue of canine forward requires input_ids anyway
The `forward` requires `input_ids` for deriving other variables in all cases. Change this to use the given one between `input_ids` and `inputs_embeds`
* fix canine forward
The current `forward` requires (the shape of) `input_ids` for deriving other variables whenever `input_ids` or `inputs_embeds` is provided. Change this to use the given one instead of `input_ids` all the time.
* fix format
* fix format
* Fix num_heads in _upad_input
The variable num_key_value_heads has falsely been named num_heads, which led to reshaping the query_layer using the wrong attention head count. (It would have been enough to use the correct variable self.num_heads instead of num_heads, but I renamed num_heads to num_key_value_heads for clarity)
* fixed copies using make fix-copies and ran make fixup
---------
Co-authored-by: fseiler <f.seiler@jerocom.de>
* from seq2seq speech
* [Flax] Example script for speech seq2seq
* tests and fixes
* make style
* fix: label padding tokens
* fix: label padding tokens over list
* update ln names for Whisper
* try datasets iter loader
* create readme and append results
* style
* make style
* adjust lr
* use pt dataloader
* make fast
* pin gen max len
* finish
* add pt to requirements for test
* fix pt -> torch
* add accelerate
Ignore decoder weights when using T5EncoderModel and LongT5EncoderModel
Both T5EncoderModel and LongT5EncoderModel do not have any decoder layers, so
loading a pretrained model checkpoint such as t5-small will give warnings about
keys found in the model checkpoint that are not in the model itself.
To prevent this log warning, r"decoder" has been added to _keys_to_ignore_on_load_unexpected for
both T5EncoderModel and LongT5EncoderModel
* make use of adapter_revision
* v1 adapter kwargs
* fix CI
* fix CI
* fix CI
* fixup
* add BC
* Update src/transformers/integrations/peft.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fixup
* change it to error
* Update src/transformers/modeling_utils.py
* Update src/transformers/modeling_utils.py
* fixup
* change
* Update src/transformers/integrations/peft.py
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* [VITS] Fix speaker_embed device mismatch
- pass device arg to speaker_id tensor
* [VITS] put speaker_embed on device when int
* [VITS] device=self.device
instead of self.embed_speaker.weight.device
* [VITS] make tensor directly on device
using torch.full()
* change mention of decoder_input_ids to input_ids and same with decoder_input_embeds
* Style
---------
Co-authored-by: Lysandre <lysandre@huggingface.co>
* fix PEFT multi adapters support
* refactor a bit
* save pretrained + BC + added tests
* Update src/transformers/integrations/peft.py
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
* add more tests
* add suggestion
* final changes
* adapt a bit
* fixup
* Update src/transformers/integrations/peft.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* adapt from suggestions
---------
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Fixing tokenizer when tokenizers is not installed
* Adding __repr__ function and repr=True in dataclass
* Revert "Adding __repr__ function and repr=True in dataclass"
This reverts commit 18839505d1cada3170ed623744d3e75008a18bdc.
* Add a Dockerfile for PyTorch + ROCm based on official AMD released artifact
* Add a new artifact single-amdgpu testing on main
* Attempt to test the workflow without merging.
* Changed BERT to check if things are triggered
* Meet the dependencies graph on workflow
* Revert BERT changes
* Add check_runners_amdgpu to correctly mount and check availability
* Rename setup to setup_gpu for CUDA and add setup_amdgpu for AMD
* Fix all the needs.setup -> needs.setup_[gpu|amdgpu] dependencies
* Fix setup dependency graph to use check_runner_amdgpu
* Let's do the runner status check only on AMDGPU target
* Update the Dockerfile.amd to put ourselves in / rather than /var/lib
* Restore the whole setup for CUDA too.
* Let's redisable them
* Change BERT to trigger tests
* Restore BERT
* Add torchaudio with rocm 5.6 to AMD Dockerfile (#26050)
fix dockerfile
Co-authored-by: Felix Marty <felix@hf.co>
* Place AMD GPU tests in a separate workflow (correct branch) (#26105)
AMDGPU CI lives in an other workflow
* Fix invalid job name is dependencies.
* Remove tests multi-amdgpu for now.
* Use single-amdgpu
* Use --net=host for now.
* Remote host networking.
* Removed duplicated check_runners_amdgpu step
* Let's tag machine-types with mi210 for now.
* Machine type should be only mi210
* Remove unnecessary push.branches item
* Apply review suggestions moving from `x-amdgpu` to `x-gpu` introducing `amd-gpu` and `miXXX` labels.
* Remove amdgpu from step names.
* finalize
* delete
---------
Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
Co-authored-by: Felix Marty <felix@hf.co>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* fix test for bart. Order is correct now let's skip BPEs
* ouf
* styling
* fix bert....
* slow refactoring
* current updates
* massive refactoring
* update
* NICE!
* update to see where I am at
* updates
* update
* update
* revert
* updates
* updates
* start supporting legacy_save
* styling
* big update
* revert some changes
* nits
* nniiiiiice
* small fixes
* kinda fix t5 with new behaviour
* major update
* fixup
* fix copies
* today's updates
* fix byt5
* upfate
* update
* update
* updates
* update vocab size test
* Barthez does not use not need the fairseq offset ids
* super calll must be after
* calll super
* move all super init
* move other super init
* fixup
* nits
* more fixes
* nits
* more fixes
* nits
* more fix
* remove useless files
* ouch all of them are affected
* and more!
* small imporvements
* no more sanitize token
* more changes around unique no split tokens
* partially fix more things
* keep legacy save but add warning
* so... more fixes
* updates
* guess deberta tokenizer could be nuked
* fixup
* fixup did some bad things
* nuke it if it breaks
* remove prints and pretrain fast from slow with new format.
* fixups
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fiou
* nit
* by default specials should not be normalized?
* update
* remove brakpoint
* updates
* a lot of updates
* fixup
* fixes revert some changes to match fast
* small nits
* that makes it cleaner
* fix camembert accordingly
* update
* some lest breaking changes
* update
* fixup
* fix byt5 and whisper mostly
* some more fixes, canine's byte vocab
* fix gpt2
* fix most of the perceiver tests (4 left)
* fix layout lmv3
* fixup
* fix copies for gpt2 style
* make sure to only warn once
* fix perciever and gpt2 tests
* some more backward compatibility: also read special tokens map because some ppl use it........////.....
* fixup
* add else when reading
* nits
* fresh updates
* fix copies
* will this make everything faster?
* fixes
* more fixes
* update
* more fixes
* fixup
* is the source of truth right?
* sorry camembert for the troubles
* current updates
* fixup
* update led
* update
* fix regression
* fix single word
* more model specific fixes
* fix t5 tests
* fixup
* more comments
* update
* fix nllb
* rstrip removed
* small fixes
* better handle additional_special_tokens and vocab sizes
* fixing
* styling
* fix 4 / 21
* fixup
* fix nlbb's tests
* some fixes
* fix t5
* fixes
* style
* fix canine tests
* damn this is nice
* nits
* m2m100 nit
* fixups
* fixes!
* fixup
* stash
* fix merge
* revert bad change
* fixup
* correct order for code Llama
* fix speecht5 post merge
* styling
* revert source of 11 fails
* small nits
* all changes in one go
* fnet hack
* fix 2 more tests
* update based on main branch of tokenizers
* fixup
* fix VITS issues
* more fixes
* fix mgp test
* fix camembert issues
* oups camembert still has 2 failing tests
* mluke fixes
* decode fixes
* small nits
* nits
* fix llama and vits
* fix camembert
* smal nits
* more fixes when initialising a fast from a slow and etc
* fix one of the last test
* fix CPM tokenizer test
* fixups
* fix pop2piano
* fixup
* ⚠️ Change tokenizers required version ⚠️
* ⚠️ Change tokenizers required version ⚠️
* "tokenizers>=0.14,<0.15", don't forget smaller than
* fix musicgen tests and pretraiendtokenizerfast
* fix owlvit and all
* update t5
* fix 800 red
* fix tests
* fix the fix of the fix of t5
* styling
* documentation nits
* cache _added_tokens_encoder
* fixups
* Nit
* fix red tests
* one last nit!
* make eveything a lot simpler
* Now it's over 😉
* few small nits
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* updates that work for now
* tests that should no be skipped / changed and fixed next
* fixup
* i am ashamed
* pushe the fix
* update
* fixups
* nits
* fix added_tokens_encoder
* fix canine test
* fix pegasus vocab
* fix transfoXL
* fixup
* whisper needs to be fixed for train new
* pegasus nits
* more pegasus fixes
* minor update
* better error message in failed test
* fix whisper failing test
* fix whisper failing test
* fix pegasus
* fixup
* fix **** pegasus
* reset things
* remove another file
* attempts to fix the strange custome encoder and offset
* nits here and there
* update
* fixup
* nit
* fix the whisper test
* nits nits
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* updates based on review
* some small update to potentially remove
* nits
* import rlu cache
* Update src/transformers/tokenization_utils_base.py
Co-authored-by: Lysandre Debut <hi@lysand.re>
* move warning to `from_pretrained`
* update tests results now that the special tokens are always added
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
* moved `ctrl` to `Salesforce/ctrl`
redirects should theoretically work, but still updating those repo references for clarity
* Fixup
* Slow doc tests
* Add modeling file
---------
Co-authored-by: Lysandre <lysandre@huggingface.co>
* Put tokenizer methods in the right alphabetical order in the docs
* Quick tweak to ConversationalPipeline
* Typo fixes in the developer doc
* make fixup
* add pos embed interpolation for vision encoder
* style
* update config with interpolate_pos_encoding arg
* fix imports formatting
* take off copied from on vision embeddings
* add test for image embeddings interpolation
* add credit for interpolation code
* Update src/transformers/models/idefics/configuration_idefics.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/idefics/vision.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix condition to check nbr image patches match shape of pos embeddings
* use kwargs in the forward methods for interpolation
* fix tests
* have interpolate_pos_encoding default to False instead of None
* Update tests/models/idefics/test_modeling_idefics.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/idefics/test_modeling_idefics.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/idefics/test_modeling_idefics.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/idefics/configuration_idefics.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* take off for loop meant to print k,v
* add interpolate_pos_encoding arg in prepare_inputs_for_generation
* add test for interpolated generation
* fix edge case num_patches == num_positions and height == width
* add test for edge case
* fix pos_embed in interpolate
* allow interpolation in bf16 with upcasting
* Update src/transformers/models/idefics/vision.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/idefics/vision.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add multiple images tests for interpolation and generation
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add Bros boilerplate
* copy and pasted modeling_bros.py from official Bros repo
* update copyright of bros files
* copy tokenization_bros.py from official repo and update import path
* copy tokenization_bros_fast.py from official repo and update import path
* copy configuration_bros.py from official repo and update import path
* remove trailing period in copyright line
* copy and paste bros/__init__.py from official repo
* save formatting
* remove unused unnecessary pe_type argument - using only crel type
* resolve import issue
* remove unused model classes
* remove unnecessary tests
* remove unused classes
* fix original code's bug - layer_module's argument order
* clean up modeling auto
* add bbox to prepare_config_and_inputs
* set temporary value to hidden_size (32 is too low because of the of the
Bros' positional embedding)
* remove decoder test, update create_and_check* input arguemnts
* add missing variable to model tests
* do make fixup
* update bros.mdx
* add boilerate plate for no_head inference test
* update BROS_PRETRAINED_MODEL_ARCHIVE_LIST (add naver-clova-ocr prefix)
* add prepare_bros_batch_inputs function
* update modeling_common to add bbox inputs in Bros Model Test
* remove unnecessary model inference
* add test case
* add model_doc
* add test case for token_classification
* apply fixup
* update modeling code
* update BrosForTokenClassification loss calculation logic
* revert logits preprocessing logic to make sure logits have original shape
* - update class name
* - add BrosSpadeOutput
- update BrosConfig arguments
* add boilerate plate for no_head inference test
* add prepare_bros_batch_inputs function
* add test case
* add test case for token_classification
* update modeling code
* update BrosForTokenClassification loss calculation logic
* revert logits preprocessing logic to make sure logits have original shape
* apply masking on the fly
* add BrosSpadeForTokenLinking
* update class name
put docstring to the beginning of the file
* separate the logits calculation logic and loss calculation logic
* update logic for loss calculation so that logits shape doesn't change
when return
* update typo
* update prepare_config_and_inputs
* update dummy node initialization
* update last_hidden_states getting logic to consider when return_dict is False
* update box first token mask param
* bugfix: remove random attention mask generation
* update keys to ignore on load missing
* run make style and quality
* apply make style and quality of other codes
* update box_first_token_mask to bool type
* update index.md
* apply make style and quality
* apply make fix-copies
* pass check_repo
* update bros model doc
* docstring bugfix fix
* add checkpoint for doc, tokenizer for doc
* Update README.md
* Update docs/source/en/model_doc/bros.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update bros.md
* Update src/transformers/__init__.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update docs/source/en/model_doc/bros.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* apply suggestions from code review
* apply suggestions from code review
* revert test_processor_markuplm.py
* Update test_processor_markuplm.py
* apply suggestions from code review
* apply suggestions from code review
* apply suggestions from code review
* update BrosSpadeELForTokenClassification head name to entity linker
* add doc string for config params
* update class, var names to more explicit and apply suggestions from code review
* remove unnecessary keys to ignore
* update relation extractor to be initialized with config
* add bros processor
* apply make style and quality
* update bros.md
* remove bros tokenizer, add bros processor that wraps bert tokenizer
* revert change
* apply make fix-copies
* update processor code, update itc -> initial token, stc -> subsequent token
* add type hint
* remove unnecessary condition branches in embedding forward
* fix auto tokenizer fail
* update docstring for each classes
* update bbox input dimension as standard 2 points and convert them to 4
points in forward pass
* update bros docs
* apply suggestions from code review : update Bros -> BROS in bros.md
* 1. box prefix var -> bbox
2. update variable names to be more explicit
* replace einsum with torch matmul
* apply style and quality
* remove unused argument
* remove unused arguments
* update docstrings
* apply suggestions from code review: add BrosBboxEmbeddings, replace
einsum with classical matrix operations
* revert einsum update
* update bros processor
* apply suggestions from code review
* add conversion script for bros
* Apply suggestions from code review
* fix readme
* apply fix-copies
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fix word-level timestamps for audio < 30 seconds
* Fix code quality
* fix unit tests
* Fix unit tests
* Fix unit test
* temp: print out result
* temp: set max diff to None
* fix unit tests
* fix typo
* Fix typo
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Use generation config for `num_frames`
* fix docs
* Move `num_frames` to kwargs
* compute stride/attn_mask once
* mark test as slow
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
* [MusicGen] Add streamer to generate
* add to for cond generation
* add test
* finish
* torch only
* fix type hint
* yield audio chunks
* fix typehint
* remove test
* First commit while I figure this out
* make fixup
* Remove unused method
* Store prompt attrib
* Fix prompt argument for tests
* Make same changes in fast tokenizer
* Remove global prompts from fast tokenizer too
* stash commit
* stash commit
* Migrate PromptConfig to its True Final Location
* Replace Conversation entirely with the new class
* Import/dependency fixes
* Import/dependency fixes
* Change format for lots of default prompts
* More default prompt fixups
* Revert llama old methods so we can compare
* Fix some default configs
* Fix some default configs
* Fix misspelled kwarg
* Fixes for Blenderbot
* make fixup
* little rebase cleanup
* Add basic documentation
* Quick doc fix
* Truncate docstring for now
* Add handling for the case when messages is a single string
* Quick llama merges
* Update conversational pipeline and tests
* Add a couple of legacy properties for backward compatibility
* More legacy handling
* Add docstring for build_conversation_input_ids
* Restructure PromptConfig
* Let's start T E M P L A T I N G
* Refactor all default configs to use templates instead
* Revert changes to the special token properties since we don't need them anymore
* More class templates
* Make the sandbox even sandier
* Everything replaced with pure templating
* Remove docs for PromptConfig
* Add testing and optional requirement boilerplate
* Fix imports and make fixup
* Fix LLaMA tests and add Conversation docstring
* Finally get LLaMA working with the template system
* Finally get LLaMA working with the template system
* make fixup
* make fixup
* fmt-off for the long lists of test tokens
* Rename method to apply_chat_template for now
* Start on documentation
* Make chat_template a property that reads through to the default if it's not set
* Expand docs
* Expand chat templating doc some more
* trim/lstrip blocks by default and update doc
* Few doc tweaks
* rebase cleanup
* Clarify docstring
* rebase cleanup
* rebase cleanup
* make fixup
* Quick doc edit
* Reformat the standard template to match ChatML
* Re-add PEFT check
* Update docs/source/en/chat_templating.md
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add apply_chat_template to the tokenizer doc
* make fixup
* Add doc links
* Fix chat links
* Fix chat links
* Explain system messages in the doc
* Add chat template test
* Proper save-loading for chat template attribute
* Add test skips for layout models
* Remove _build_conversation_input_ids, add default_chat_template to code_llama
* Make sure all LLaMA models are using the latest template
* Remove default_system_prompt block in code_llama because it has no default prompt
* Update ConversationPipeline preprocess
* Add correct #Copied from links to the default_chat_templates
* Remove unneeded type checking line
* Add a dummy mark_processsed method
* Reorganize Conversation to have **deprecated_kwargs
* Update chat_templating.md
* Quick fix to LLAMA tests
* Small doc tweaks
* Add proper docstrings and "copied from" statements to all default chat templates
* Merge use_default_system_prompt support for code_llama too
* Improve clarity around self.chat_template
* Docstring fix
* Fix blenderbot default template
* More doctest fix
* Break out some tokenizer kwargs
* Update doc to explain default templates
* Quick tweaks to tokenizer args
* Cleanups for tokenizer args
* Add note about cacheing
* Quick tweak to the chat-templating doc
* Update the LLaMA template with error checking and correct system message embedding
* make fixup
* make fixup
* add requires_jinja
* Cleanup to expected output formatting
* Add cacheing
* Fix typo in llama default template
* Update LLaMA tests
* Update documentation
* Improved legacy handling in the Conversation class
* Update Jinja template with proper error handling
* Quick bugfix
* Proper exception raising
* Change cacheing behaviour so it doesn't try to pickle an entire Jinja env
* make fixup
* rebase cleanup
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* [Whisper Tokenizer] Fix tests after adding timestamps
* fix s2t tokenizer tests
* fix vocab test
* backwards comp
* fix tests
* comment
* style
* fix last test
* fix fast
* make faster
* move logic to decode
* remove skip test
* fix decode with offsets
* fix special tokens
* empty commit to re-trigger ci
* use lru cache
* Add @dataclass to MaskFormerPixelDecoderOutput
* Add dataclass check if subclass of ModelOutout
* Use unittest assertRaises rather than pytest per contribution doc
* Update src/transformers/utils/generic.py per suggested change
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add: check to remove metaspace from marian tokenizer
* fix: metaspace character being removed from everywhere
* fix: remove redundant check at top
* add: test for marian tokenizer decode fix
* fix: simplified the test
* Fix issues in test_exponential_decay_length_penalty
Fix tests which were broken and add validation of negative scores.
Current test didn't take into account that ExponentialDecayLengthPenalty updates the score inplace, resulting in updates to base tested Tensor.
In addition, the gt assert had empty Tensors due to indexing along the batch dimension.
Test is currently expected to fail to show ExponentialDecayLengthPenalty issues with negative scores
* Fix ExponentialDecayLengthPenalty negative logits issue
In cases where the scores are negative, ExponentialDecayLengthPenalty decreases the score of eos_token_id instead of increasing it.
To fix this issue we compute the penalty of the absolute value and add it to the original score.
* Add examples for ExponentialDecayLengthPenalty
* Fix styling issue in ExponentialDecayLengthPenalty doc
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Style and quality fix
* Fix example outputs
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* intiial commit
* updates
* nits
* update conversion script
* update conversion script
* use path to load
* add tips etc
* some modeling logic
* modeling update
* more nits
* nits
* normal layer norm
* update config and doc
* nits
* update doc remove unused
* update
* fix inits and stuff
* fixup
* revert wrong changes
* updates
* more nits
* add default config values to the configuration file
* fixup happy
* update
* 2 tests left
* update readmes
* more nits
* slow test and more documentation
* update readme
* fix licences
* styling
* use fast if possible when saving tokenizer
* remove todo
* remove tokenization tests
* small last nits
* Apply suggestions from code review
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* nits to skip the timout doctest
* fix integration test
* fix test
* update eos token
* update to allow fast tokenization
* styling
* fix codeLlama as well for the update post processor
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add more copied from statements
* update
* doc passes doctest
* remove `# final layer norm?`
* change docstring prompot
* update
* Update README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* don't doctest the conversion script as it requires more packages
* don't init a model in the config
* oups
* fix doctest
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
This commit corrects the dropout implementation in Graphormer, aligning it with the original implementation and improving performance. Specifically:
1. The `attention_dropout` variable, intended for use in GraphormerMultiheadAttention, was defined but not used. This has been corrected to use `attention_dropout` instead of the regular `dropout`.
2. The `activation_dropout` for the activations in the feed-forward layers was missing. Instead, the regular `dropout` was used. This commit adds `activation_dropout` to the feed-forward layers.
These changes ensure the dropout implementation matches the original Graphormer and delivers empirically better performance.
* Added HerBERT to README.md
* Update README.md to contain HerBERT (#26016)
* Resolved#26016: Updated READMEs and index.md to contain Herbert
Updated READMEs and ran make fix-copies
* Add support for deepspeed optimizer and HF scheduler
* fix bug
* fix the import
* fix issue with deepspeed scheduler saving for hf optim + hf scheduler scenario
* fix loading of hf scheduler when loading deepspeed checkpoint
* fix import of `DeepSpeedSchedulerWrapper`
* add tests
* add the comment and skip the failing tests
* address comment
This cl iterates through a list of keys rather than dict items while updating the dict elements. Fixes the following error:
File "..../transformers/training_args.py", line 1544, in post_init
for k, v in self.fsdp_config.items():
RuntimeError: dictionary keys changed during iteration
* Add missing type hints and consistency to `RegNet` models
* Add missing type hints and consistency to `TFSamModel`
* Add missing type hints to `TFSegformerDecodeHead`
* Add missing type hints and consistency to `TransfoXL` family models
* Add missing type hints and consistency to `TFWav2Vec2ForSequenceClassification`
* Add type hints to `TFXLMModel`
* Fix linter
* Revert the type hints for `RegNet` to python 3.8 compliant
* Remove the redundant np.ndarray type hint.
* Add proper Falcon docs and conversion script
* Autodetect the decoder architecture instead of using an arg
* Update docs now that we can autodetect
* Fix doc error
* Add doc to toctree
* Quick doc update
* Add type hints to `TFBlipTextModel`
* Add missing type hints to DPR family models
* Add type hints to `TFLEDModel`
* Add type hints to `TFLxmertForPreTraining`
* Add missing type hints to `TFMarianMTModel` and `TFMarianModel`
* Add missing type hints to `TFRagModel` & `TFRagTokenForGeneration`
* Make type hints annotations consistent
* pad token should be None by default
* fix tests
* nits
* check if isfile vocabfile
* add warning if sp model folder was deleted
* save SPM when missing folder for sloz
* update the ` can_save_slow_tokenizer` to be a property
* first batch
* second batch
* missing one
* Add Blip2 model in VQA pipeline
* use require_torch_gpu for test_large_model_pt_blip2
* use can_generate in vqa pipeline
* test Blip2ForConditionalGeneration using float16
* remove custom can_generate from Blip2ForConditionalGeneration
* Update trainer.py (error with checking steps in args.eval_accumulation_steps to gather tensors)
While the deprecated code has the correct check (line 3772):
"if args.eval_accumulation_steps is not None and (step + 1) % args.eval_accumulation_steps == 0:"
The current code does not (line 3196):
"if args.eval_accumulation_steps is not None and self.accelerator.sync_gradients:"
We need to check "(step + 1) % args.eval_accumulation_steps == 0". Hence, the line 3196 should be modified to:
"if args.eval_accumulation_steps is not None and (step + 1) % args.eval_accumulation_steps == 0 and self.accelerator.sync_gradients:"
* Fix error with checking args.eval_accumulation_steps to gather tensors
* fix warning triggering for xglm.embed_positions
* Make TF variable a tf.constant to match (and fix some spelling)
---------
Co-authored-by: Matt <rocketknight1@gmail.com>
* fixing name position_embeddings to object_queries
* [fix] renaming variable and docstring do object queries
* [fix] comment position_embedding to object queries
* [feat] changes from make-fix-copies to keep consistency
* Revert "[feat] changes from make-fix-copies to keep consistency"
This reverts commit 56e3e9ede1d32f7aeefba707ddfaf12c9b4b9e7e.
* [tests] fix wrong expected score
* [fix] wrong assignment causing wrong tensor shapes
* [fix] fixing position_embeddings to object queries to keep consistency (make fix copies)
* [fix] make fix copies, renaming position_embeddings to object_queries
* [fix] positional_embeddingss to object queries, fixes from make fix copies
* [fix] comments frmo make fix copies
* [fix] adding args validation to keep version support
* [fix] adding args validation to keep version support -conditional detr
* [fix] adding args validation to keep version support - maskformer
* [style] make fixup style fixes
* [feat] adding args checking
* [feat] fixcopies and args checking
* make fixup
* make fixup
---------
Co-authored-by: Lorenzobattistela <lorenzobattistela@gmail.com>
* Add type hints for MGP STR model
* Add missing type hints for plbart model
* Add type hints for Pix2struct model
* Add missing type hints to Rag model and tweak the docstring
* Add missing type hints to Sam model
* Add missing type hints to Swin2sr model
* Fix a type hint for Pix2StructTextModel
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Fix typo on Rag model docstring
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Fix linter
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Add type hints for table_transformer
* Add type hints to Timesformer model
* Add type hints to Timm Backbone model
* Add type hints to TVLT family models
* Add type hints to Vivit family models
* Use the typing instance instead of the python builtin.
* Fix the `replace_return_docstrings` decorator for Vivit model
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Add missing type hint to cpmant
* Add type hints to decision_transformer model
* Add type hints to deformable_detr models
* Add type hints to detr models
* Add type hints to deta models
* Add type hints to dpr models
* Update attention mask type hint
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Update remaining attention masks type hints
* Update docstrings' type hints related to attention masks
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* add a warning=True tip to the Llama2 doc
* code llama needs a tip too
* doc nit
* build PR doc
* doc nits
Co-authored-by: Lysandre <lysandre@huggingface.co>
---------
Co-authored-by: Lysandre <lysandre@huggingface.co>
* add all
* Revert "Delete .github directory"
This reverts commit 9b0ff7b052e2b20b629a26fb13606b78a42944d1.
* make conversion script backward compatible
* fixup
* more styling
* copy to llama changes
* fix repo consistency
* nits
* document correct classes
* updates
* more fixes
* nits
* update auto mappings
* add readmes
* smallupdates
* llama-code replace with llama_code
* make fixup
* updates to the testsing suite
* fix fast nits
* more small fixes
* fix decode
* fix template processing
* properly reset the normalizer
* nits processor
* tokenization tests pass
* styling
* last tests
* additional nits
* one test is left
* nits
Co-authored-by faabian <faabian@users.noreply.github.com>
* update failing test
* fixup
* remove decode infilling users should handle it on their onw after generation, padding can be a problem
* update
* make test slow and more meaningfull
* fixup
* doc update
* fixup
* Apply suggestions from code review
* add kwargs doc
* tokenizer requires `requires_backend`
* type requires_backends
* CodeLlama instead of LlamaCode
* more name cahnges
* nits
* make doctests happy
* small pipeline nits
* last nit
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* update
* add codellama to toctree
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Correct attention mask dtype
* reformat code
* add a test for boolean mask
* convert test to fast test
* delete unwanted print
* use assertTrue for testing
* Add missing type hints for ErnieM family
* Add missing type hints for EsmForProteinFolding model
* Add missing type hints for Graphormer model
* Add type hints for InstructBlipQFormer model
* Add missing type hints for LayoutLMForMaskedLM model
* Add missing type hints for LukeForEntitySpanClassification model
* updated logits processor text
* Update logits_process.py
* fixed formatting with black
* fixed formatting with black
* fixed formatting with Make Fixup
* more formatting fixes
* Update src/transformers/generation/logits_process.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update src/transformers/generation/logits_process.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Revert "fixed formatting with Make Fixup"
This reverts commit 47643083
* Revert "fixed formatting with black"
This reverts commit bfb153673664d099cbdbcce100ceb6a64868adaf.
* Revert "fixed formatting with Make Fixup"
This reverts commit 47643083
* Revert "fixed formatting with Make Fixup"
This reverts commit 47643083
* Revert "fixed formatting with black"
This reverts commit ad6ceb64
* Revert "fixed formatting with black"
This reverts commit ad6ceb64b7cf77addcc4c863d497bf948ec335c8.
* Update src/transformers/generation/logits_process.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Revert "fixed formatting with Make Fixup"
This reverts commit 47643083
* formatted logits_process with make fixup
---------
Co-authored-by: jesspeck <jess@localseoguide.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Check if pixel values between 0-255 and add doc clarification
* Add missing docstrings
* _is_scale_image -> is_scaled_image
* Spelling is hard
* Tidy up
* [DOCS] Added docstring example for EpsilonLogitsWarper #24783
* minor code changes based on review comments
* set seed for both generate calls, reduced the example length
* fixed line length under 120 chars
* Adds `TRANSFORMERS_TEST_BACKEND`
Allows specifying arbitrary additional import following first `import torch`.
This is useful for some custom backends, that will require additional imports to trigger backend registration with upstream torch.
See https://github.com/pytorch/benchmark/pull/1805 for a similar change in `torchbench`.
* Update src/transformers/testing_utils.py
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Adds real backend example to documentation
---------
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* properly support Sequence of pretokenizers
* actual fix
* make sure the fix works. Tests are not working for sure!
* hacky way
* add TODO
* update
* add a todo
* nits
* rename test
* nits
* rename test
* add: NumberNormalizer works for integers, floats, common currencies, negative numbers and percentages
* fix: renamed number normalizer class and added normalization to SpeechT5Processor
* fix: restyled with black and ruff, should pass code quality tests
* fix: moved normalization to tokenizer and other small changes to normalizer
* add: test for normalization and changed the existing full tokenizer test
* fix: tokenization tests now pass, made changes to existing tokenization where normalization is covered; added normalize arg to func signature
* fix: changed default normalize setting to False, modified the tests a bit
* fix: added support for comma separated numbers, tokenization on the fly with kwargs and normalizer getter setter funcs
* init commit
* config updated also some modeling
* Processor and Model config combined
* extraction pipeline(upto before spectogram & mel_conditioner) added but not properly tested
* model loading successful!
* feature extractor done!
* FE can now be called from HF
* postprocessing added in fe file
* same as prev commit
* Pop2PianoConfig doc done
* cfg docs slightly changed
* fe docs done
* batched
* batched working!
* temp
* v1
* checking
* trying to go with generate
* with generate and model tests passed
* before rebasing
* .
* tests done docs done remaining others & nits
* nits
* LogMelSpectogram shifted to FeatureExtractor
* is_tf rmeoved from pop2piano/init
* import solved
* tokenization tests added
* minor fixed regarding modeling_pop2piano
* tokenizer changed to only return midi_object and other changes
* Updated paper abstract(Camera-ready version) (#2)
* more comments and nits
* ruff changes
* code quality fix
* sg comments
* t5 change added and rebased
* comments except batching
* batching done
* comments
* small doc fix
* example removed from modeling
* ckpt
* forward it compatible with fe and generation done
* comments
* comments
* code-quality fix(maybe)
* ckpts changed
* doc file changed from mdx to md
* test fixes
* tokenizer test fix
* changes
* nits done main changes remaining
* code modified
* Pop2PianoProcessor added with tests
* other comments
* added Pop2PianoProcessor to dummy_objects
* added require_onnx to modeling file
* changes
* update .md file
* remove extra line in index.md
* back to the main index
* added pop2piano to index
* Added tokenizer.__call__ with valid args and batch_decode and aligned the processor part too
* changes
* added return types to 2 tokenizer methods
* the PR build test might work now
* added backends
* PR build fix
* vocab added
* comments
* refactored vocab into 1 file
* added conversion script
* comments
* essentia version changed in .md
* comments
* more tokenizer tests added
* minor fix
* tests extended for outputs acc check
* small fix
---------
Co-authored-by: Jongho Choi <sweetcocoa@snu.ac.kr>
* a draft version
* v2 integration
* fix
* make it more generic and works for IA3
* add set adapter and multiple adapters support
* fixup
* adapt a bit
* oops
* oops
* oops
* adapt more
* fix
* add more refactor
* now works with model class
* change it to instance method as it causes issues with `jit`.
* add CR
* change method name
* add `add_adapter` method
* clean up
* Update src/transformers/adapters/peft_mixin.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add moe utils
* fixup
* Update src/transformers/adapters/peft_mixin.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* adapt
* oops
* fixup
* add is_peft_available
* remove `requires_backend`
* trainer compatibility
* fixup + docstring
* more details
* trigger CI
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/modeling_utils.py
* fixup + is_main_process
* added `save_peft_format` in save_pretrained
* up
* fix nits here and there
* nits here and there.
* docs
* revert `encoding="utf-8"`
* comment
* added slow tests before the PEFT release.
* fixup and nits
* let's be on the safe zone
* added more comments
* v1 docs
* add remaining docs
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* move to `lib_integrations`
* fixup
* this time fixup
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* address final comments
* refactor to use `token`
* add PEFT to DockerFile for slow tests.
* added pipeline support.
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* properly support Sequence of pretokenizers
* actual fix
* make sure the fix works. Tests are not working for sure!
* hacky way
* add TODO
* update
* add a todo
* draft changes
* update and add tests
* styling for no
* move test
* path to usable model
* update test
* small update
* update bertbased tokenizers
* don'tuse kwargs for _tokenize
* don'tuse kwargs for _tokenize
* fix copies
* update
* update test for special tokenizers
* fixup
* skip two tests
* remove pdb breakpiont()
* wowo
* rewrite custom tests
* nits
* revert chang in target keys
* fix markup lm
* update documentation of the argument
* Replaces calls to `.cuda` with `.to(torch_device)` in tests
`torch.Tensor.cuda()` is a pre-0.4 solution to changing a tensor's device. It is recommended to prefer `.to(...)` for greater flexibility and error handling. Furthermore, this makes it more consistent with other tests (that tend to use `.to(torch_device)`) and ensures the correct device backend is used (if `torch_device` is neither `cpu` or `cuda`).
* addressing review comments
* more formatting changes in Bloom test
* `make style`
* Update tests/models/bloom/test_modeling_bloom.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fixes style failures
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add AutoModelForTextToSpeech class
* add TTS pipeline and tessting
* add docstrings to text_to_speech pipeline
* fix torch dependency
* corrector 'processor is None' case in Pipeline
* correct repo id
* modify text-to-speech -> text-to-audio
* remove processor
* rename text_to_speech pipelines files to text_audio
* add textToWaveform and textToSpectrogram instead of textToAudio classes
* update TTS pipeline to the bare minimum
* update tests TTS pipeline
* make style and erase useless import torch in TTS pipeline tests
* modify how to check if generate or forward in TTS pipeline
* remove unnecessary extra new lines
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* refactor input_texts -> text_inputs
* correct docstrings of TTS.__call__
* correct the shape of generated waveform
* take care of Bark tokenizer special case
* correct run_pipeline_test TTS
* make style
* update TTS docstrings
* address Sylvain nit refactors
* make style
* refactor into one liners
* correct squeeze
* correct way to test if forward or generate
* Update output audio waveform shape
* make style
* correct import
* modify how the TTS pipeline test if a model can generate
* align shape output of TTS pipeline with consistent shape
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* add util for ram efficient loading of model when using fsdp
* make fix-copies
* fixes 😅
* docs
* making it further easier to use
* rename the function
* refactor to handle fsdp ram efficiency in `from_pretrained`
* fixes
* fixes
* fixes
* update
* fixes
* revert `load_pretrained_model_only_on_rank0`
* resolve `load_from_checkpoint`
* Inconsistency in PreTrainedModel.resize_token_embeddings
This PR addresses https://github.com/huggingface/transformers/issues/25241.
In previous implementation when ZeRO stage 3 was enbaled, resize_token_embeddings would create independent PyTorch weights on each device. Here we ensure that new embeddings are created with DeepSpeed init, and are properly partitioned accros devices.
* formatting with black
* adding the removed comments back in
---------
Co-authored-by: Sina Moeini <smoeini@amazon.com>
* fix EVERYTHING
* more fixes
* ⚗️⚗️ Tokenizer magic ⚗️⚗️
* wrong value but test passes for the TODO
* update
* updat
* safe protobuf import?
* style
* non gated repo
* update
* fixup
* Update src/transformers/models/llama/tokenization_llama.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/llama/tokenization_llama.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/t5/test_tokenization_t5.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* nits
* fix t5 too
* use assert equal
* fix llama decoding
* nits on t5
* fixup
* only remove the prefix space, not other spaces
* more deconding tests and more todos
* fix CI as well
* fixup
* skip failing test on CI (its tf its ok)
* skip test_subword_regularization_tokenizer that is also crashing on the CI for TF
* update llama
* revert good fixes
* fixup
* empty
* explain why we need to encode with an additional token
* better warning?
* nits
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix
* revert cahnges and update resizing of embedding layer
* use wraning
* fixup
* more styling nits
* fix all tests that overload the embedding tests
* 👀👀 remove breakpoint
* remove useless overload + overload correctly where needed
* resize lm head with new vocab size
* reverse not necessary changes
* style
* fix CIs!
* fix last CI tests, adapt bark and Marian
* fixup
* Adds `TRANSFORMERS_TEST_DEVICE`
Mirrors the same API in the diffusers library. Useful in transformers
too.
* replace backend checking with trying `torch.device`
* Adds better error message for unknown test devices
* `make style`
* adds documentation showing `TRANSFORMERS_TEST_DEVICE` usage.
* [ASR Pipeline] Fix init
* refactor test
* change default kwarg setting
* only perform checks if we have to
* override init
* move pre/forward/post checks to sanitize
* Add copied from statements for image processors
* Move out rescale and normalize to base image processor
* Remove rescale and normalize from vit (post rebase)
* Update docstrings and tidy up
* PR comments
* Add input_data_format as preprocess argument
* Resolve tests and tidy up
* Remove num_channels argument
* Update doc strings -> default ints not in code formatting
* Make training args fully immutable
* Working tests, PyTorch
* In test_trainer
* during testing
* Use proper dataclass way
* Fix test
* Another one
* Fix tf
* Lingering slow
* Exception
* Clean
Revert "Reuse the cache created for latest `main` on PRs/branches if `setup.py` is not modified (#25445)"
This reverts commit 1d75768695f667fc1efcb8823c062d41ad30f090.
* Refactor image processor test mixin
- Move test_call_numpy, test_call_pytorch, test_call_pil to mixin
- Rename mixin to reflect handling of logic more than saving
- Add prepare_image_inputs, expected_image_outputs for tests
* Fix for oneformer
* Add copied from statements for image processors
* Move out rescale and normalize to base image processor
* Remove rescale and normalize from vit (post rebase)
* Update docstrings and tidy up
* PR comments
* enable unit tests to run on third-party devcies other than CUDA and CPU.
* remove the modification that enabled ut on MPS
* control test on third-party device by env variable
* update
---------
Co-authored-by: statelesshz <jihuazhong1@huawei.com>
* Add attention mask and pad token warning to many of the models
* Remove changes under examples/research_projects
These files are not maintained by HG.
* Skip the warning check during torch.fx or JIT tracing
* Switch ordering for the warning and input shape assignment
This ordering is a little cleaner for some of the cases.
* Add missing line break in one of the files
* Register ModelOutput subclasses as supported torch.utils._pytree nodes
Fixes#25357 where DDP with static_graph=True does not sync gradients when calling backward() over tensors contained in ModelOutput subclasses
* Add test for torch pytree ModelOutput serialization and deserialization
* Add Description And Example to Docstring
* make style corrections
* make style
* Doc Style Consistent With HF
* Apply make style
* Modify Docstring
* Edit Type in Docstring
* Feedback Incorporated
* Edit Docstring
* make style
* Post Review Changes
* Review Feedback Incorporated
* Styling
* Formatting
* make style
* pep8
* Loosen output shape restrictions on GPT-style models
* Use more self-explanatory variables
* Revert "Use more self-explanatory variables"
This reverts commit 5fd9ab39119558b7e750f61aa4a19014dccc5ed5.
* Remove jnp.DeviceArray since it is deprecated.
* Replace all instances of jnp.DeviceArray with jax.Array
* Update src/transformers/models/bert/modeling_flax_bert.py
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Deal better with nested configs
* Fixes
* More fixes
* Fix last test
* Clean up existing configs
* Remove hack in MPT Config
* Update src/transformers/configuration_utils.py
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Fix setting a nested config via dict in the kwargs
* Adapt common test
* Add test for nested config load with dict
---------
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
The former spelling is deprecated and has been discouraged for a
while. The latter spelling seems to be more common in this project
anyway, so this change ought to be safe.
Fixes https://github.com/huggingface/transformers/issues/25283
* Update InstructBLIP values
Note: the tests are not independent. Running the test independentely produces different logits compared to running all the integration tests
* Update test values after rescale update
* Remove left over commented out code
* Revert to previous rescaling logic
* Update rescale tests
* Update list of logging integrations in docstring
Also update type hint
* Also add 'flyte' to report_to callback list
* Revert 'report_to' type hint update
Due to CLI breaking
Fix bug in InstructBlip generate function
Previously, the postprocessing conducted on generated sequences in InstructBlip's generate function assumed these sequences were tensors (i.e. that `return_dict_in_generate == False`).
This commit checks whether the result of the call to the wrapped language model `generate()` is a tensor, and if not attempts to postprocess the sequence attribute of the returned results object.
make build_mpt_alibi_tensor a method of MptModel so that deepspeed could override it to make autoTP work
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Fix rescaling bug
* Add tests
* Update integration tests
* Fix up
* Update src/transformers/image_transforms.py
* Update test - new possible order in list
* make run_generation more generic for other devices
* use Accelerate to support any device type it supports.
* make style
* fix error usage of accelerator.prepare_model
* use `PartialState` to make sure everything is running on the right device
---------
Co-authored-by: statelesshz <jihuazhong1@huawei.com>
fix "UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor."
Co-authored-by: 刘长伟 <hzliuchw@corp.netease.com>
* Initial addition of t5forsequenceclassification
* Adding imports and adding tests
* Formatting
* Running make fix-copies
* Adding mt5forseq
* Formatting
* run make fix-copies
* Adding to docs
* Add model_parallel
* Fix bug
* Fix
* Remove TODO
* Fixing tests for T5ForSequenceClassification
* Undo changes to dependency_versions_table.py
* Change classification head to work with T5Config directly
* Change seq length to let tests pass
* PR comments for formatting
* Formatting
* Initial addition of UMT5ForSequenceClassification
* Adding to inits and formatting
* run make fix-copies
* Add doc for UMT5ForSeqClass
* Update UMT5 config
* Fix docs
* Skip torch fx test for SequenceClassification
* Formatting
* Add skip to UMT5 tests as well
* Fix umt5 tests
* Running make fix-copies
* PR comments
* Fix for change to sentence_representation
* Rename seq_len to hidden_size since that's what it is
* Use base_model to follow format of the rest of the library
* Update docs
* Extract the decoder_input_ids changes and make one liner
* Make one-liner
* check max length is default
* nit
* update warning: no-longer deprecate
* comment in the configuration_utils in case max length's default gets changed in the futur
* added PeftModelForCausalLM to MODEL_FOR_CAUSAL_LM_MAPPING_NAMES dict
* check for PEFT model in compute_loss section
---------
Co-authored-by: Nathan Brake <nbrake3@mmm.com>
* pull and push updates
* add docs
* fix modeling
* Add and run test
* make copies
* add task
* fix tests and fix small issues
* Checks on a Pull Request
* fix docs
* add desc pvt.md
* Better handling missing SYS in llama conversation tokenizer
The existing code failed to add SYS if the conversation has history
without SYS, but did modify the passed conversation as it did.
Rearrange the code so modification to the conversation object are taken
into account for token id generation.
* Fix formatting with black
* Avoid one-liners
* Also fix fast tokenizer
* Drop List decl
* first pass at the single gpu doc
* overview: improved clarity and navigation
* WIP
* updated intro and deepspeed sections
* improved torch.compile section
* more improvements
* minor improvements
* make style
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* feedback addressed
* mdx -> md
* link fix
* feedback addressed
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
fix: store training args to wandb config without sanitization.
Allows resuming runs by reusing the wandb config.
Co-authored-by: Bharat Ramanathan <ramanathan.parameshwaran@gohuddl.com>
* fix: cast input pixels to appropriate dtype for image_to_text tasks
* fix: add casting to pixel inputs of additional models after running copy checks
* testing
* example script
* fix typehinting
* some tests
* make test
* optional update
* Union of arguments
* does this fix the issue
* remove reports
* set default to False
* documentation change
* None support
* does not need None
* Fix typing annotations for FSDP and DeepSpeed in TrainingArguments (#24549)
* Fix typing annotations for FSDP and DeepSpeed in TrainingArguments
* Change dict to Dict
* Revert "Fix typing annotations for FSDP and DeepSpeed in TrainingArguments" (#24574)
Revert "Fix typing annotations for FSDP and DeepSpeed in TrainingArguments (#24549)"
This reverts commit c5e29d4381d4b9739e6cb427adbca87fbb43a3ad.
* Fix typing annotations for FSDP and DeepSpeed in TrainingArguments (#24549)
* Fix typing annotations for FSDP and DeepSpeed in TrainingArguments
* Change dict to Dict
* merge
* hacky fix
* fixup
---------
Co-authored-by: Max Ryabinin <mryabinin0@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Resolve typo in check_repo.py
* Specify encoding when opening modeling files
* Deprecate the OpenLlama architecture
* Add disclaimer pointing to Llama
I'm open to different wordings here
* Match the capitalisation of LLaMA
* Add text classification example
* set the problem type and finetuning task
* ruff reformated
* fix bug for unseting label_to_id for regression
* update README.md
* fixed finetuning task
* update comment
* check if label exists in feature before removing
* add useful logging
* Update supported Python and PyTorch versions in readme
* Update Python, etc. versions in non-English readmes
These were more out of date than in the English readme. This
updates all the versions the readmes claim the repository is tested
with to the same versions stated in the English readme.
Those versions are current at least in the case of the Python and
PyTorch versions (and less out of date for the others).
* Propagate trailing whitespace fix to model list
This runs "make fix-copies". The only change is the removal of
whitespace. No actual information or wording is changed.
* Update tested TensorFlow to 2.6 in all readmes
Per pinning in setup.py
Unlike Python and PyTorch, the minimum supported TensorFlow version
has not very recently changed, but old versions were listed in all
READMEs.
* add llama
* add other readmes
* update padding id in readme
* add link to paper
* fix paths and tokenizer
* more nits
* styling
* fit operation in 2 lines when possible
* nits
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* add form
* update reademe
* update readme, we don't have a default pad token
* update test and tokenization
* LLaMA instead of Llama
* nits
* add expected text
* add greeedy output
* styling
* Update src/transformers/models/llama/modeling_llama.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* sequential device map
* skip relevant changes
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* remove `xpu_backend` training argument
* always call `contextlib.nullcontext()` since transformers updated to
python3.8
* these codes will not be executed
* Changed AssertionError to ValueError
try-except block was using AssesrtionError in except statement while the expected error is value error. Fixed the same.
* Changed AssertionError to ValueError
try-except block was using AssesrtionError in except statement while the expected error is ValueError. Fixed the same.
Note: While raising the ValueError args are passed to it, but later added again while handling the error (See the code snippet)
* Changed AssertionError to ValueError
try-except block was using AssesrtionError in except statement while the expected error is ValueError. Fixed the same.
Note: While raising the ValueError args are passed to it, but later added again while handling the error (See the code snippet)
* Changed AssertionError to ValueError
* Changed AssertionError to ValueError
* Changed AssertionError to ValueError
* Changed AssertionError to ValueError
* Changed AssertionError to ValueError
* Changed assert statement to ValueError based
* Changed assert statement to ValueError based
* Changed assert statement to ValueError based
* Changed incorrect error handling from AssertionError to ValueError
* Undoed change from AssertionError to ValueError as it is not needed
* Reverted back to using AssertionError as it is not necessary to make it into ValueError
* Fixed erraneous comparision
Changed == to !=
* Fixed erraneous comparision
Changed == to !=
* formatted the code
* Ran make fix-copies
* first raw version of the bark integration
* working code on small models with single run
* add converting script from suno weights 2 hf
* many changes
* correct past_kv output
* working implementation for inference
* update the converting script according to the architecture changes
* add a working end-to-end inference code
* remove some comments and make small changes
* remove unecessary comment
* add docstrings and ensure no unecessary intermediary output during audio generation
* remove done TODOs
* make style + add config docstrings
* modification for batch inference support on the whole model
* add details to .generation_audio method
* add copyright
* convert EncodecModel from original library to transformers implementation
* add two class in order to facilitate model and sub-models loading from the hub
* add support of loading the whole model
* add BarkProcessor
* correct modeling according to processor output
* Add proper __init__ and auto support
* Add up-to-date copyright/license message
* add relative import instead of absolute
* cleaner head_dim computation
* small comment removal or changes
* more verbose LayerNorm init method
* specify eps for clearer comprehension
* more verbose variable naming in the MLP module
* remove unecessary BarkBlock parameter
* clearer code in the forward pass of the BarkBlock
* remove _initialize_modules method for cleaner code
* Remove unnecessary methods from sub-models
* move code to remove unnecessary function
* rename a variable for clarity and change an assert
* move code and change variable name for clarity
* remove unnecessary asserts
* correct small bug
* correct a comment
* change variable names for clarity
* remove asserts
* change import from absolute to relative
* correct small error due to comma missing + correct import
* Add attribute Bark config
* add first version of tests
* update attention_map
* add tie_weights and resize_token_embeddings for fineModel
* correct getting attention_mask in generate_text_semantic
* remove Bark inference trick
* leave more choices in barkProcessor
* remove _no_split_modules
* fixe error in forward of block and introduce clearer notations
* correct converting script with last changes
* make style + add draft bark.mdx
* correct BarkModelTest::test_generate_text_semantic
* add Bark in main README
* add dummy_pt_objects for Bark
* add missing models in the main init
* correct test_decoder_model_past_with_large_inputs
* disable torchscript test
* change docstring of BarkProcessor
* Add test_processor_bark
* make style
* correct copyrights
* add bark.mdx + make style, quality and consistency
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Remove unnecessary test method
* simply logic of a test
* Only check first ids for slow audio generation
* split full end-to-end generation tests
* remove unneccessary comment
* change submodel names for clearer naming
* remove ModuleDict from modeling_bark
* combine two if statements
* ensure that an edge misued won't happen
* modify variable name
* move code snippet to the right place (coarse instead of semantic)
* change BarkSemanticModule -> BarkSemanticModel
* align BarkProcessor with transformers paradigm
* correct BarkProcessor tests with last commit changes
* change _validate_voice_preset to an instance method instead of a class method
* tie_weights already called with post_init
* add codec_model config to configuration
* update bark modeling tests with recent BarkProcessor changes
* remove SubModelPretrainedModel + change speakers embeddings prompt type in BarkModel
* change absolute imports to relative
* remove TODO
* change docstrings
* add examples to docs and docstrings
* make style
* uses BatchFeature in BarkProcessor insteads of dict
* continue improving docstrings and docs + make style
* correct docstrings examples
* more comprehensible speaker_embeddings load/Save
* rename speaker_embeddings_dict -> speaker_embeddings
* correct bark.mdx + add bark to documentation_tests
* correct docstrings configuration_bark
* integrate last nit suggestions
* integrate BarkGeneration configs
* make style
* remove bark tests from documentation_tests.txt because timeout - tested manually
* add proper generation config initialization
* small bark.mdx documentation changes
* rename bark.mdx -> bark.md
* add torch.no_grad behind BarkModel.generate_audio()
* replace assert by ValueError in convert_suno_to_hf.py
* integrate a series of short comments from reviewer
* move SemanticLogitsProcessors and remove .detach() from Bark docs and docstrings
* actually remove SemanticLogitsProcessor from modeling_bark.oy
* BarkProcessor returns a single output instead of tuple + correct docstrings
* make style + correct bug
* add initializer_range to BarkConfig + correct slow modeling tests
* add .clone() to history_prompt.coarse_prompt to avoid modifying input array
* Making sure no extra "`" are present
* remove extra characters in modeling_bark.py
* Correct output if history_prompt is None
* remove TODOs
* remove ravel comment
* completing generation_configuration_bark.py docstrings
* change docstrings - number of audio codebooks instead of Encodec codebooks
* change 'bias' docstrings in configuration_bark.py
* format code
* rename BarkModel.generate_audio -> BarkModel.generate_speech
* modify AutoConfig instead of EncodecConfig in BarkConfig
* correct AutoConfig wrong init
* refactor BarkModel and sub-models generate_coarse, generate_fine, generate_text_semantic
* remove SemanticLogitsProcessor and replace it with SuppressTokensLogitsProcessor
* move nb_codebook related config arguments to BarkFineConfig
* rename bark.mdx -> bark.md
* correcting BarkModelConfig from_pretrained + remove keys_to_ignore
* correct bark.md with correct hub path
* correct code bug in bark.md
* correct list tokens_to_suppress
* modify Processor to load nested speaker embeddings in a safer way
* correct batch sampling in BarkFineModel.generate_fine
* Apply suggestions from code review
Small docstrings correction and code improvements
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* give more details about num_layers in docstrings
* correct indentation mistake
* correct submodelconfig order of docstring variables
* put audio models in alphabetical order in utils/check_repo.my
* remove useless line from test_modeling_bark.py
* makes BarkCoarseModelTest inherits from (ModelTesterMixin, GenerationTesterMixin, unittest.TestCase) instead of BarkSemanticModelTest
* make a Tester class for each sub-model instead of inheriting
* add test_resize_embeddings=True for Bark sub-models
* add Copied from transformers.models.gpt_neo.modeling_gpt_neo.GPTNeoSelfAttention._split_heads
* remove 'Copied fom Bark' comment
* remove unneccessary comment
* change np.min -> min in modeling_bark.py
* refactored all custom layers to have Bark prefix
* add attention_mask as an argument of generate_text_semantic
* refactor sub-models start docstrings to have more precise config class definition
* move _tied_weights_keys overriding
* add docstrings to generate_xxx in modeling_bark.py
* add loading whole BarkModel to convert_suno_to_hf
* refactor attribute and variable names
* make style convert_suno
* update bark checkpoints
* remove never entered if statement
* move bark_modeling docstrings after BarkPretrainedModel class definition
* refactor modeling_bark.py: kv -> key_values
* small nits - code refactoring and removing unecessary lines from _init_weights
* nits - replace inplace method by variable assigning
* remove *optional* when necessary
* remove some lines in generate_speech
* add default value for optional parameter
* Refactor preprocess_histories_before_coarse -> preprocess_histories
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* correct usage after refactoring
* refactor Bark's generate_xxx -> generate and modify docstrings and tests accordingly
* update docstrings python in configuration_bark.py
* add bark files in utils/documentation_test.txt
* correct docstrings python snippet
* add the ability to use parameters in the form of e.g coarse_temperature
* add semantic_max_new_tokens in python snippet in docstrings for quicker generation
* Reformate sub-models kwargs in BakModel.generate
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* correct kwargs in BarkModel.generate
* correct attention_mask kwarg in BarkModel.generate
* add tests for sub-models args in BarkModel.generate and correct BarkFineModel.test_generate_fp16
* enrich BarkModel.generate docstrings with a description of how to use the kwargs
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Fixing double `use_auth_token.pop` (preventing private models from
being visible).
Should fix: https://github.com/huggingface/transformers/issues/14334#issuecomment-1634527833
Repro: Have a private repo, with `vocab.json` (spread out files for the
tokenizer) and use `AutoTokenizer.from_pretrained(...,
use_auth_token="token")`.
Switching _BaseAutoModelClass from_pretrained and from_config to use the register classmethod that it defines rather than using the _LazyAutoMapping register method directly. This makes use of the additional consistency check within the base model's register.
* fix: half inference error
norm_factor is still torch.float32 after using model.half
So I changed it to register_buffer so I can change it to torch.float16 after using model.half
* fix: Added a variable "persistent=False"
* run make style
* [fix] Change the condition of ValueError
convert_checkpoint_from_transformers_to_megatron
* [fix] error wording
layers -> attention heads
gpt-bigcode: avoid `zeros_` to support Core ML.
In-place `zeros_` is not supported by the Core ML conversion process.
This PR replaces it with `zeros_like` so conversion can proceed.
The change only affects a workaround for a PyTorch bug on the `cpu`
device.
* dim, and rm copy
* Don't rm copy for now
* Oops
* pad index
* Should be a working test
* Tickle down ddp timeout
* Put fix back in now that testing locally is done
* Better comment specifying timeout
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Fix non-deterministic checkpoint name
`os.listdir`'s order is not deterministic, which is a problem when
querying the first listed file as in the code (`os.listdir(...)[0]`).
This can return a checkpoint name such as `distrib_optim.pt`, which does
not include desired information such as the saved arguments originally
given to Megatron-LM.
* fix: Apostraphe splitting in the BasicTokenizer for CLIPTokenizer
* account for apostrophe at start of new word
* remove _run_split_on_punc, use re.findall instead
* remove debugging, make style and quality
* use pattern and punc splitting, repo-consistency will fail
* remove commented out debugging
* adds bool args to BasicTokenizer, remove pattern
* do_split_on_punc default True
* clean stray comments and line breaks
* rebase, repo-consistency
* update to just do punctuation split
* add unicode normalizing back
* remove redundant line
* Initial commit
* Update src/transformers/models/falcon/configuration_falcon.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/falcon/configuration_falcon.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Cleanup config docstring
* Update src/transformers/models/falcon/configuration_falcon.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Convert to relative imports
* Remove torch < 1.8 warning
* Restructure cos_sin header
* qkv -> query, key, value
* Refactor attention calculation
* Add a couple of config variables to account for the different checkpoints
* Successful merging of the code paths!
* Fix misplaced line in the non-parallel attention path
* Update config and tests
* Add a pad_token_id when testing
* Support output_attentions when alibi is None
* make fixup
* Skip KV cache shape test
* No more _keys_to_ignore_on_load_missing
* Simplify self attention a bit
* Simplify self attention a bit
* make fixup
* stash commit
* Some more attention mask updates
* Should pass all tests except assisted generation!
* Add big model generation test
* make fixup
* Add temporary workaround for test
* Test overrides for assisted generation
* Update src/transformers/models/falcon/modeling_falcon.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/falcon/modeling_falcon.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/falcon/modeling_falcon.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update tests/models/falcon/test_modeling_falcon.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Test overrides for assisted generation
* Add generation demo
* Update copyright
* Make the docstring model actually small
* Add module-level docstring
* Remove all assertions
* Add copied from bloom
* Reformat the QKV layer
* Add copied from bloom
* Update src/transformers/models/falcon/modeling_falcon.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Remove unused line and reformat
* No single letter variables
* Cleanup return names
* Add copied from line
* Remove the deprecated arguments blocks
* Change the embeddings test to an alibi on/off test
* Remove position_ids from FalconForQA
* Remove old check for token type IDs
* Fix the alibi path when multi_query is False
* Update src/transformers/models/falcon/modeling_falcon.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/falcon/modeling_falcon.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/falcon/test_modeling_falcon.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update config naming
* Fix typo for new_decoder_architecture
* Add some comments
* Fix docstring
* Fix docstring
* Create range in the right dtype from the start
* Review comment cleanup
* n_head_kv -> num_kv_heads
* self.alibi -> self.use_alibi
* self.num_kv -> self.num_kv_heads
* Reorder config args
* Made alibi arguments Optional
* Add all model docstrings
* Add extra checkpoints
* Add author info for Falcon
* Stop removing token_type_ids because our checkpoints shouldn't return it anymore
* Add one hopeful comment for the future
* Fix typo
* Update tests, fix cache issue for generation
* Use -1e9 instead of -inf to avoid float overflow
* Recompute the rotary embeddings much less often
* Re-enable disabled tests
* One final fix to attention mask calculation, and update tests
* Cleanup targeting falcon-40b equivalency
* Post-rebase docs update
* Update docstrings, especially in the config
* More descriptive variable names, and comments where we can't rename them
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* feat: Add `_build_conversation_input_ids` to GPT-SW3 tokenizer, adjust line length
* feat: Merge in PR https://github.com/huggingface/transformers/pull/24504.
This allows the GPT-SW3 models (and other GPT-2 based models) to be 4-bit quantised
using `load_in_4bit` with `bitsandbytes`.
* fix: F-string
* fix: F-string
* fix: Remove EOS token from all responses
* fix: Remove redundant newlines
* feat: Add `load_in_4bit` to `Pipeline`
* fix: Separate turns with `\n<s>\n` rather than `<s>`
* fix: Add missing newline in prompt
* tests: Add unit tests for the new `_build_conversation_input_ids` method
* style: Automatic style correction
* tests: Compare encodings rather than decodings
* fix: Remove `load_in_4bit` from pipeline arguments
* docs: Add description and references of the GPT-SW3 chat format
* style: Line breaks
* Apply suggestions from code review
Fix Conversation type hints
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix: Import TYPE_CHECKING
* style: Run automatic fixes
* tests: Remove `_build_conversation_input_ids` unit tests
* tests: Remove import of `Conversation` in GPT-SW3 unit test
* style: Revert formatting
* style: Move TYPE_CHECKING line after all imports
* style: Imports order
* fix: Change prompt to ensure that `sp_model.encode` and `encode` yields same result
* docs: Add TODO comment related to the addition of whitespace during decoding
* style: Automatic style checks
* fix: Remove final whitespace in prompt, as prefix whitespace is used by sentencepiece
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add attention dropout, post attention dropout, post mlp dropout to gpt-neox
* fix typo
* add documentation
* fix too long line
* ran Checking/fixing src/transformers/models/gpt_neox/configuration_gpt_neox.py src/transformers/models/gpt_neox/modeling_gpt_neox.py
python utils/custom_init_isort.py
python utils/sort_auto_mappings.py
doc-builder style src/transformers docs/source --max_len 119 --path_to_docs docs/source
python utils/check_doc_toc.py --fix_and_overwrite
running deps_table_update
updating src/transformers/dependency_versions_table.py
python utils/check_copies.py
python utils/check_table.py
python utils/check_dummies.py
python utils/check_repo.py
Checking all models are included.
Checking all models are public.
Checking all models are properly tested.
Checking all objects are properly documented.
Checking all models are in at least one auto class.
Checking all names in auto name mappings are defined.
Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.
Checking all auto mappings could be imported.
Checking all objects are equally (across frameworks) in the main __init__.
python utils/check_inits.py
python utils/check_config_docstrings.py
python utils/check_config_attributes.py
python utils/check_doctest_list.py
python utils/update_metadata.py --check-only
python utils/check_task_guides.py
* precompiled_charsmap checking before adding to the normalizers' list.
* precompiled_charsmap checking for all Sentencepiece tokenizer models
* precompiled_charsmap checking for SPM tokenizer models - correct formatting
* Limit Pydantic to V1 in dependencies
Pydantic is about to release V2 release which will break a lot of things. This change prevents `transformers` to be used with Pydantic V2 to avoid breaking things.
* more
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* hidden layers, huh, what are they good for (absolutely nothing)
* Some tests break with 1 hidden layer, use 2
* Use 1 hidden layer in a few slow models
* Use num_hidden_layers=2 everywhere
* Slightly higher tol for groupvit
* Slightly higher tol for groupvit
* Adding warning messages to BERT for missing attention masks
These warning messages when there are pad tokens within the input ids and
no attention masks are given. The warning message should only show up once.
* Adding warning messages to BERT for missing attention masks
These warning messages are shown when the pad_token_id is not None
and no attention masks are given. The warning message should only
show up once.
* Ran fix copies to copy over the changes to some of the other models
* Add logger.warning_once.cache_clear() to the test
* Shows warning when there are no attention masks and input_ids start/end with pad tokens
* Using warning_once() instead and fix indexing in input_ids check
---------
Co-authored-by: JB Lau <hckyn@voyager2.local>
* don't add space before single letter chars that don't have a merge
* fix the fix
* fixup
* add a test
* more testing
* fixup
* hack to make sure fast is also fixed
* update switch transformers test
* revert convert slow
* Update src/transformers/models/t5/tokenization_t5.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* add typechecking
* quality
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Preliminary work on some models
* Fix test load missing and make sure nonpersistent buffers are tested
* Always ignore nonpersistent buffers if in state_dict
* Treat models
* More models
* Treat remaining models
* Fix quality
* Fix tests
* Remove draft
* This test is not needed anymore
* Fix copies
* Fix last test
* Newly added models
* Fix last tests
* Address review comments
* Fix TypeError: Object of type int64 is not JSON serializable
* Convert numpy.float64 and numpy.int64 to float and int for json serialization
* Black reformatted examples/pytorch/token-classification/run_ner_no_trainer.py
* * make style
* Squash 88 commits
* Use markdown
* Remove mdx files due to bad rebase
* Fix modeling files due to bad rebase
* Fix style
* Update comment
* fix
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* An end to accursed version-specific imports
* No more K.is_keras_tensor() either
* Update dependency tables
* Use a cleaner call context function getter
* Add a cap to <2.14
* Add cap to examples requirements too
* Allow dict input for audio classification pipeline
* make style
* Empty commit to trigger CI
* Empty commit to trigger CI
* check for torchaudio
* add pip instructions
Co-authored-by: Sylvain <sylvain.gugger@gmail.com>
* Update src/transformers/pipelines/audio_classification.py
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* asr -> audio class
* asr -> audio class
---------
Co-authored-by: Sylvain <sylvain.gugger@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* Replace python random with torch.rand to enable dynamo.export
* revert changes to flax model code
* Remove unused random import
* Fix torch template
* Move torch.manual_seed(0) to right location
* Refactor hyperparameter search backends
* Simpler refactoring without abstract base class
* black
* review comments:
specify name in class
use methods instead of callable class attributes
name constant better
* review comments: safer bool checking, log multiple available backends
* test ALL_HYPERPARAMETER_SEARCH_BACKENDS vs HPSearchBackend in unit test, not module. format with black.
* copyright
Update outdated hyperlink hpo_train.md
Link to RayTune search space API docs was outdated - have provided correct new link for docs.
Co-authored-by: Joshua Samuel <66880119+Joshsamuel101@users.noreply.github.com>
* Slight comment cleanup
* Reduce peak mem usage when loading TF-format safetensor weights
* Tweak the PyTorch loading code to support lazy loading from safetensors
* Pass safe_open objects to the PyTorch loading function
* Do GPU transposes for speed
* One more tweak to reduce peak usage further
* One-line hasattr
* Fix bug when there's a shape mismatch
* Rename state_dict in the loading code to be clearer
* Use TF format everywhere for consistency
* let's go!
* initial implementation of token-level timestamps
* only return a single timestamp per token
* remove token probabilities
* fix return type
* fix doc comment
* strip special tokens
* rename
* revert to not stripping special tokens
* only support models that have alignment_heads
* add integration test
* consistently name it token-level timestamps
* small DTW tweak
* initial support for ASR pipeline
* fix pipeline doc comments
* resolve token timestamps in pipeline with chunking
* change warning when no final timestamp is found
* return word-level timestamps
* fixup
* fix bug that skipped final word in each chunk
* fix failing unit tests
* merge punctuations into the words
* also return word tokens
* also return token indices
* add (failing) unit test for combine_tokens_into_words
* make combine_tokens_into_words private
* restore OpenAI's punctuation rules
* add pipeline tests
* make requested changes
* PR review changes
* fix failing pipeline test
* small stuff from PR
* only return words and their timestamps, not segments
* move alignment_heads into generation config
* forgot to set alignment_heads in pipeline tests
* tiny comment fix
* grr
* Fix saved_model_creation_extended
* Skip the BLIP model creation test for now
* Fix TF SAM test
* Fix longformer tests
* Fix Wav2Vec2
* Add a skip for XLNet
* make fixup
* make fix-copies
* Add comments
* Fix resuming checkpoints for PeftModels
Fix an error occurred when resuming a PeftModel from a training checkpoint. That was caused since PeftModel.pre_trained saves only adapter-related data while _load_from_checkpoint was expecting a torch sved model. This PR fix this issue and allows the adapter checkpoint to be loaded.
Resolves: #24252
* fix last comment
* fix nits
---------
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Update __init__.py
Fix link to documentation to install Transformers from source
Probably the title changed at some point from 'Installing' to 'Install'
* Add test for proper input signatures
* No more signature pruning
* Test the dummy inputs are valid too
* fine-tine -> fine-tune
* Fix indent in test_dataset_conversion
* Use tied weight keys
* More
* Fix tied weight missing warning
* Only give info on unexpected keys with different classes
* Deal with empty archs
* Fix tests
* Refine test
* Fix one BLIP arg not being optional, remove misspelled arg
* Remove the lxmert test overrides and just use the base test_saved_model_creation
* saved_model_creation fixes and re-enabling tests across the board
* Remove unnecessary skip
* Stop caching sinusoidal embeddings in speech_to_text
* Fix transfo_xl compilation
* Fix transfo_xl compilation
* Fix the conditionals in xglm
* Set the save spec only when building
* Clarify comment
* Move comment correctly
* Correct embeddings generation for speech2text
* Mark RAG generation tests as @slow
* Remove redundant else:
* Add comment to clarify the save_spec line in build()
* Fix size tests for XGLM at last!
* make fixup
* Remove one band_part operation
* Mark test_keras_fit as @slow
* Revert whisper change and modify the test_compile_tf_model test
* make fixup
* Tweak test slightly
* Add functional model saving to test
* Ensure TF can infer shapes for data2vec
* Add override for efficientformer
* Mark test as slow
* Fix LLaMa beam search when using parallelize
same issue as T5 #11717
* fix code format in modeling_llama.py
* fix format of _reorder_cache in modeling_llama.py
* Add mms ctc fine tuning
* make style
* More fixes that are needed
* make fix-copies
* make draft for README
* add new file
* move to new file
* make style
* make style
* add quick test
* make style
* make style
* MLM prediction head output size from embed_size
Take the output size of the dense projection layer from embedding_size instead of hidden_size since there could be a projection of the input embedding into hidden_size if they are different
* project TFDebertaV2 mlm output to embedding size
embedding size can be different that hidden_size, so the final layer needs to project back to embedding size. like in ELECTRA or DeBERTaV3 style pertaining.
This should solve an error that occurs when loading models like "almanach/camemberta-base-generator".
* fix the same issue for reshaping after projection
* fix layernorm size
* add self.embedding_size to scope
* fix embed_proj scope name
* apply the same changes to TF Deberta
* add the changes to deberta
* added self.embedding_size instead of config.embedding_size
* added the same change to debertav2
* added coppied from deberta to deberta2 model
* config.embedding_size fix
* black
* fix deberta config name
* Update language_modeling.py
in "class TextDatasetForNextSentencePrediction(Dataset)", double considering "self.tokenizer.num_special_tokens_to_add(pair=True)"
so, i remove self.block_size, and add parameter for "def create_examples_from_document". like "class LineByLineWithSOPTextDataset" do
* Update language_modeling.py
* Fix URL in comment for contrastive loss function
* Stop storing references to bound methods in tf.functions
* Remove the gc.collect calls now that we resolved the underlying problem
* Remove the default signature from model.serving entirely, big cleanup
* Remove _prune_signature as self.input_signature can prune itself
* Restore serving docstring
* Update int support test to check the input signature
* Make sure other tests also use model.input_signature and not serving.input_signature
* Restore _prune_signature
* Remove the doctest GC now it's no longer needed
* Correct core tests to use the pruned sig
* order lines correctly in core tests
* Add eager_serving back with a deprecation warning
* First test
* Add info for all models
* style
* Repo consistency
* Fix last model and cleanup prints
* Repo consistency
* Use consistent function for detecting tied weights
* Porting changes from https://github.com/microsoft/DeBERTa/ that hopefully allows for fp16 training of mdeberta
* Updates to deberta modeling from microsoft repo
* Performing some cleanup
* Undoing changes that weren't necessary
* Undoing float calls
* Minimally change the p2c block
* Fix error
* Minimally changing the c2p block
* Switch to torch sqrt
* Remove math
* Adding back the to calls to scale
* Undoing attention_scores change
* Removing commented out code
* Updating modeling_sew_d.py to satisfy utils/check_copies.py
* Missed changed
* Further reduce changes needed to get fp16 working
* Reverting changes to modeling_sew_d.py
* Make same change in TF
* Change ProgressCallback to use dynamic_ncols=True
* style: make style
* Revert "style: make style"
This reverts commit dee484904cd30a072d80e3be0a3d74a03cff30c6.
* run make style only trainer_callback
* Do not prepare lr scheduler as it as the right number of steps
* Trigger CI
* Trigger CI
* Trigger CI
* Add fake comment
* Remove fake comment
* Trigger CI please!
* Let's see if we can use the smallest possible dummies
* Make GPT-2's dummies a little longer
* Just use (1,2) as the default shape
* Update other dummies in sync
* Correct imports for Keras 2.13
* Shrink the Wav2Vec2 dummies
* Add support for non-rust implemented tokenization for `__getitem__` method.
* Update for error message on adding new sub-branch for `__item__` method.
---------
Co-authored-by: liuyang17 <liuyang17@zhihu.com>
* Fix model load when it has both code on the Hub and locally
* Add input check with timeout
* Add tests
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
* Some non-saved stuff
* Add feature extractors
* Add image processor
* Add model
* Add processor and tokenizer
* Reduce timeout
---------
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
* A fun new PR where I break the entire codebase again
* A fun new PR where I break the entire codebase again
* Handle cross-attention
* Move calls to model(model.dummy_inputs) to the new build() method
* Seeing what fails with the build context thing
* make fix-copies
* Let's see what fails with new build methods
* Fix the pytorch crossload build calls
* Fix the overridden build methods in vision_text_dual_encoder
* Make sure all our build methods set self.built or call super().build(), which also sets it
* make fix-copies
* Remove finished TODO
* Tentatively remove unneeded (?) line
* Transpose b in deberta correctly and remove unused threading local
* Get rid of build_with_dummies and all it stands for
* Rollback some changes to TF-PT crossloading
* Correctly call super().build()
* Add test_backbone for convnext
* Add TimmBackbone model
* Add check for backbone type
* Tidying up - config checks
* Update convnextv2
* Tidy up
* Fix indices & clearer comment
* Exceptions for config checks
* Correclty update config for tests
* Safer imports
* Safer safer imports
* Fix where decorators go
* Update import logic and backbone tests
* More import fixes
* Fixup
* Only import all_models if torch available
* Fix kwarg updates in from_pretrained & main rebase
* Tidy up
* Add tests for AutoBackbone
* Tidy up
* Fix import error
* Fix up
* Install nattan in doc_test_job
* Revert back to setting self._out_xxx directly
* Bug fix - out_indices mapping from out_features
* Fix tests
* Dont accept output_loading_info for Timm models
* Set out_xxx and don't remap
* Use smaller checkpoint for test
* Don't remap timm indices - check out_indices based on stage names
* Skip test as it's n/a
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Cleaner imports / spelling is hard
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
expose safe_serialization argument of PreTrainedModel and TFPreTrainedModel in the save_pretrained of the pipeline api
Co-authored-by: Yessen Kanapin <yessen@deepinfra.com>
* #23675 Registering Malay language
* removing untranslated files
* some translate
* more updates to toctree
* inc index
* additional translations for toctree
* translations of more sections
* removing untranslated file
* translated index.mdx to malay
* fix for ragged list
* unpin numba
* make style
* np.object -> object
* propagate changes to tokenizer as well
* np.long -> "long"
* revert tokenization changes
* check with tokenization changes
* list/tuple logic
* catch numpy
* catch else case
* clean up
* up
* better check
* trigger ci
* Empty commit to trigger CI
* ensure banned_mask and indices in same device
* ensure banned_mask and indices in same device
switch the order in which indices and banned_mask are created and create banned_mask on the proper device
* Suport shared storage
* Really be sure we have the same storage
* Make style
* - Refactor storage identifier mechanism
- Group everything into a single for loop
* Make style
* PR
* make style
* Update src/transformers/pytorch_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* mixed precision support via accelerate
* fix issues
* fix for the sharded ddp case
* fix flax and tf failing tests
* `refactor the place to create `Accelerator` object
* move ddp prep to accelerate
* fix 😅
* resolving comments
* move fsdp handling to accelerate
* fixex
* fix saving
* shift torch dynamo handling to accelerate
* shift deepspeed integration and save & load utils to accelerate
* fix accelerate launcher support
* oops
* fix 🐛
* save ckpt fix
* Trigger CI
* nasty 🐛😅
* as deepspeed needs grad_acc fixes, transfer grad_acc to accelerate
* make tests happy
* quality ✨
* loss tracked needs to account for grad_acc
* fixing the deepspeed tests
* quality ✨
* 😅😅😅
* tests 😡
* quality ✨
* Trigger CI
* resolve comments and fix the issue with the previous merge from branch
* Trigger CI
* accelerate took over deepspeed integration
---------
Co-authored-by: Stas Bekman <stas@stason.org>
* Add tf code for efficientformer
* Fix return dict bug - return last hidden state after last stage
* Fix corresponding return dict bug
* Override test tol
* Change default values of training to False
* Set training to default False X3
* Rm axis from ln
* Set init in dense projection
* Rm debug stuff
* Make style; all tests pass.
* Modify year to 2023
* Fix attention biases codes
* Update the shape list logic
* Add a batch norm eps config
* Remove extract comments in test files
* Add conditional attn and hidden states return for serving output
* Change channel dim checking logic
* Add exception for withteacher model in training mode
* Revert layer count for now
* Add layer count for conditional layer naming
* Transpose for conv happens only in main layer
* Make tests smaller
* Make style
* Update doc
* Rm from_pt
* Change to actual expect image class label
* Remove stray print in tests
* Update image processor test
* Remove the old serving output logic
* Make style
* Make style
* Complete test
* mixed precision support via accelerate
* fix issues
* fix for the sharded ddp case
* fix flax and tf failing tests
* `refactor the place to create `Accelerator` object
* move ddp prep to accelerate
* fix 😅
* resolving comments
* move fsdp handling to accelerate
* fixex
* fix saving
* shift torch dynamo handling to accelerate
* mixed precision support via accelerate
* fix issues
* fix for the sharded ddp case
* fix flax and tf failing tests
* `refactor the place to create `Accelerator` object
* move ddp prep to accelerate
* fix 😅
* resolving comments
* move fsdp handling to accelerate
* fixex
* fix saving
* mixed precision support via accelerate
* fix issues
* fix for the sharded ddp case
* fix flax and tf failing tests
* `refactor the place to create `Accelerator` object
* move ddp prep to accelerate
* fix 😅
* resolving comments
* mixed precision support via accelerate
* fix issues
* fix for the sharded ddp case
* fix flax and tf failing tests
* `refactor the place to create `Accelerator` object
* address comments by removing debugging print statements
* Let's try autodetecting serving sigs
* Don't clobber existing sigs
* Change shapes for multiplechoice models
* Make default dummy inputs smarter too
* Fix missing f-string
* Let's YOLO a serving output too
* Read __class__.__name__ properly
* Don't just pass naked lists in there and expect it to be okay
* Code cleanup
* Update default serving sig
* Clearer error messages
* Further updates to the default serving output
* make fixup
* Update the serving output a bit more
* Cleanups and renames, raise errors appropriately when we can't infer inputs
* More renames
* we're building in a functional context again, yolo
* import DUMMY_INPUTS from the right place
* import DUMMY_INPUTS from the right place
* Support cross-attention in the dummies
* Support cross-attention in the dummies
* Complete removal of dummy/serving overrides in BERT
* Complete removal of dummy/serving overrides in RoBERTa
* Obliterate lots and lots of serving sig and dummy overrides
* merge type hint changes
* Fix for token_type_ids with vocab_size 1
* Add missing property decorator
* Fix T5 and hopefully some models that take conv inputs
* More signature pruning
* Fix T5's signature
* Fix Wav2Vec2 signature
* Fix LongformerForMultipleChoice input signature
* Fix BLIP and LED
* Better default serving output error handling
* Fix BART dummies
* Fix dummies for cross-attention, esp encoder-decoder models
* Fix visionencoderdecoder signature
* Fix BLIP serving output
* Small tweak to BART dummies
* Cleanup the ugly parameter inspection line that I used in a few places
* committed a breakpoint again
* Move the text_dims check
* Remove blip_text serving_output
* Add decoder_input_ids to the default input sig
* Remove all the manual overrides for encoder-decoder model signatures
* Tweak longformer/led input sigs
* Tweak default serving output
* output.keys() -> output
* make fixup
* Extremely small change to TF SAM dummies to reduce memory usage on build
* remove debug breakpoint
* Debug print statement to track array sizes
* More debug shape printing
* More debug shape printing
* Now remove the debug shape printing
* make fixup
* make fixup
* Rework TF type hints to use | None instead of Optional[] for tf.Tensor
* Rework TF type hints to use | None instead of Optional[] for tf.Tensor
* Don't forget the imports
* Add the imports to tests too
* make fixup
* Refactor tests that depended on get_type_hints
* Better test refactor
* Fix an old hidden bug in the test_keras_fit input creation code
* Fix for the Deit tests
* Use bool instead of uint8/byte in DebertaV2 to make it compatible with TensorRT
TensorRT cannot accept onnx graph with uint8/byte intermediate tensors. This PR uses bool tensors instead of unit8/byte tensors to make the exported onnx file can work with TensorRT.
* fix: use bool instead of uint8/byte in Deberta and SEW-D
---------
Co-authored-by: Yuxian Qiu <yuxianq@nvidia.com>
* Added lion and paged optimizers and made original tests pass.
* Added tests for paged and lion optimizers.
* Added and fixed optimizer tests.
* Style and quality checks.
---------
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
* Added lion and paged optimizers and made original tests pass.
* Added tests for paged and lion optimizers.
* Added and fixed optimizer tests.
* Style and quality checks.
* Initial draft. Some tests fail.
* Fixed dtype bug.
* Fixed bug caused by torch_dtype='auto'.
* All test green for 8-bit and 4-bit layers.
* Added fix for fp32 layer norms and bf16 compute in LLaMA.
* Initial draft. Some tests fail.
* Fixed dtype bug.
* Fixed bug caused by torch_dtype='auto'.
* All test green for 8-bit and 4-bit layers.
* Added lion and paged optimizers and made original tests pass.
* Added tests for paged and lion optimizers.
* Added and fixed optimizer tests.
* Style and quality checks.
* Fixing issues for PR #23479.
* Added fix for fp32 layer norms and bf16 compute in LLaMA.
* Reverted variable name change.
* Initial draft. Some tests fail.
* Fixed dtype bug.
* Fixed bug caused by torch_dtype='auto'.
* All test green for 8-bit and 4-bit layers.
* Added lion and paged optimizers and made original tests pass.
* Added tests for paged and lion optimizers.
* Added and fixed optimizer tests.
* Style and quality checks.
* Added missing tests.
* Fixup changes.
* Added fixup changes.
* Missed some variables to rename.
* revert trainer tests
* revert test trainer
* another revert
* fix tests and safety checkers
* protect import
* simplify a bit
* Update src/transformers/trainer.py
* few fixes
* add warning
* replace with `load_in_kbit = load_in_4bit or load_in_8bit`
* fix test
* fix tests
* this time fix tests
* safety checker
* add docs
* revert torch_dtype
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* multiple fixes
* update docs
* version checks and multiple fixes
* replace `is_loaded_in_kbit`
* replace `load_in_kbit`
* change methods names
* better checks
* oops
* oops
* address final comments
---------
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* New TF version compatibility fixes
* Remove dummy print statement, move expand_1d
* Make a proper framework inference function
* Make a proper framework inference function
* ValueError -> TypeError
* Making `safetensors` a core dependency.
To be merged later, I'm creating the PR so we can try it out.
* Update setup.py
* Remove duplicates.
* Even more redundant.
* Update modeling_open_llama.py
Fix typo in `use_memorry_efficient_attention` parameter name
* Update configuration_open_llama.py
Fix typo in `use_memorry_efficient_attention` parameter name
* Update configuration_open_llama.py
Take care of backwards compatibility ensuring that the previous parameter name is taken into account if used
* Update configuration_open_llama.py
format to adjust the line length
* Update configuration_open_llama.py
proper code formatting using `make fixup`
* Update configuration_open_llama.py
pop the argument not to let it be set later down the line
* Fix: Change tensors to integers in torch.split() for torch.dynamo and torch.compile compatibility
* Applied the suggested fix to the utils/check_copies.py test
* Applied the suggested fix by changing the original function that gets copied
* First commit
* Add auto-translation with GPT-4
* make fixup
* Add a functional layernorm for TF
* Add all the auxiliary imports etc.
* Add the extra processor and tests
* rebase to main
* Add all the needed fixes to the GPT code
* make fixup
* Make convolutions channels-last so they run on CPU
* make fixup
* Fix final issues
* Fix other models affected by test change
* Clarify comment on the sparse_prompt_embeddings check
* Refactor functional_layernorm, use shape_list in place of .shape in some places
* Remove deprecated torch-alike code
* Update tests/models/sam/test_modeling_tf_sam.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/sam/test_modeling_tf_sam.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Refactor processor with common methods and separated private methods
* make fixup
* Quietly delete the file that didn't do anything (sorry Sylvain)
* Refactor the processor tests into one file
* make fixup
* Clean up some unnecessary indirection
* Fix TF mask postprocessing
* Add more processor equivalence tests
* Refactor generate_crop_boxes to use framework-neutral np code
* Make the serving output correctly conditional
* Fix error message line length
* Use dict keys rather than indices internally in both TF and PT SAM call/forward
* Return dicts internally in the call/forward methods
* Revert changes to common tests and just override check_pt_tf_outputs
* Revert changes to other model tests
* Clarify comments for functional layernorm
* Add missing transpose from PT code
* Removed unused copied from in PT code
* Remove overrides for tests that don't exist in TF
* Fix transpose and update tests for PT and TF to check pred_masks
* Add training flag
* Update tests to use TF checkpoints
* Update index.mdx
* Add missing cross-test decorator
* Remove optional extra asterisks
* Revert return_dict changes in PT code
* Update src/transformers/models/sam/modeling_tf_sam.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Remove None return annotations on init methods
* Update tests/models/sam/test_processor_sam.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fix input_boxes shapes
* make fixup
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* initial working additions
* clean and rename, add cond stripping initial prompt to decode
* cleanup, edit create_initial_prompt_ids, add tests
* repo consistency, flip order of conditional
* fix error, move the processor fn to the tokenizer
* repo consistency, update test ids to corresponding tokenizer
* use convert_tokens_to_ids not get_vocab...
* use actual conditional in generate
* make sytle
* initial address comments
* initial working add new params to pipeline
* first draft of sequential generation for condition_on_previous_text
* add/update tests, make compatible with timestamps
* make compatible with diff. input kwargs and max length
* add None check
* add temperature check
* flip temp check operand
* refocusing to prev pr scope
* remove the params too
* make style
* edits, move max length incorporating prompt to whisper
* address comments
* remove asr pipeline prompt decoding, fix indexing
* address comments (more tests, validate prompt)
* un-comment out tests (from debug)
* remove old comment
* address comments
* fix typo
* remove timestamp token from test
* make style
* cleanup
* copy method to fast tokenizer, set max_new_tokens for test
* prompt_ids type just pt
* address Amy's comments
* make style
Previously even after finding a stop token, other stop tokens were considered, which is unnecessary and slows down processing.
Currently, this unnecessary overhead is negligible since there are usually 2 stop tokens considered and they are fairly short, but in future it may become more expensive.
It's more efficient to iterate over key, value dict pairs instead of iterating over keys and performing value lookups on each iteration. It's also more idiomatic.
It's more idiomatic and significantly more efficient because
1) it avoids repeated `append` call that Python has to resolve on each iteration
2) can preallocate the size of the final list avoiding resizing
When working on TorchInductor, I realised that there was a part from
`XLNetLMHeadModel` that was being compiled to CPU code.
This PR should allow to fuse this operation with other CUDA operations
in `torch.compile`. It also should be faster on eager mode, as it has a
this implementation has a lower foot-print.
If in-place operations are not allowed even in non-grad context, I still
believe that doing ones + tril rather than a ones + tril + zeros + cat
should be faster simply due to the number of memory reads/writes.
I tested that this code produces the same results for `0 <= qlen,mlen <
10` and `same_length in (True, False)`.
* convert numpy array to list before writing to json
per_category_iou and per_category_accuracy are ndarray in the eval_metrics
* code reformatted with make style
* update min k_value of conditional detr post-processing
* feat: add top_k arg to post processing of deformable and conditional detr
* refactor: revert changes to deprecated methods
* refactor: move prob reshape to improve code clarity and reduce repetition
* Remove nestedness in tool config
* Really do it
* Use remote tools descriptions
* Work
* Clean up eval
* Changes
* Tools
* Tools
* tool
* Fix everything
* Use last result/assign for evaluation
* Prompt
* Remove hardcoded selection
* Evaluation for chat agents
* correct some spelling
* Small fixes
* Change summarization model (#23172)
* Fix link displayed
* Update description of the tool
* Fixes in chat prompt
* Custom tools, custom prompt
* Tool clean up
* save_pretrained and push_to_hub for tool
* Fix init
* Tests
* Fix tests
* Tool save/from_hub/push_to_hub and tool->load_tool
* Clean push_to_hub and add app file
* Custom inference API for endpoints too
* Clean up
* old remote tool and new remote tool
* Make a requirements
* return_code adds tool creation
* Avoid redundancy between global variables
* Remote tools can be loaded
* Tests
* Text summarization tests
* Quality
* Properly mark tests
* Test the python interpreter
* And the CI shall be green.
* fix loading of additional tools
* Work on RemoteTool and fix tests
* General clean up
* Guard imports
* Fix tools
* docs: Fix broken link in 'How to add a model...' (#23216)
fix link
* Get default endpoint from the Hub
* Add guide
* Simplify tool config
* Docs
* Some fixes
* Docs
* Docs
* Docs
* Fix code returned by agent
* Try this
* Match args with signature in remote tool
* Should fix python interpreter for Python 3.8
* Fix push_to_hub for tools
* Other fixes to push_to_hub
* Add API doc page
* Docs
* Docs
* Custom tools
* Pin tensorflow-probability (#23220)
* Pin tensorflow-probability
* [all-test]
* [all-test] Fix syntax for bash
* PoC for some chaining API
* Text to speech
* J'ai pris des libertés
* Rename
* Basic python interpreter
* Add agents
* Quality
* Add translation tool
* temp
* GenQA + LID + S2T
* Quality + word missing in translation
* Add open assistance, support f-strings in evaluate
* captioning + s2t fixes
* Style
* Refactor descriptions and remove chain
* Support errors and rename OpenAssistantAgent
* Add setup
* Deal with typos + example of inference API
* Some rename + README
* Fixes
* Update prompt
* Unwanted change
* Make sure everyone has a default
* One prompt to rule them all.
* SD
* Description
* Clean up remote tools
* More remote tools
* Add option to return code and update doc
* Image segmentation
* ControlNet
* Gradio demo
* Diffusers protection
* Lib protection
* ControlNet description
* Cleanup
* Style
* Remove accelerate and try to be reproducible
* No randomness
* Male Basic optional in token
* Clean description
* Better prompts
* Fix args eval in interpreter
* Add tool wrapper
* Tool on the Hub
* Style post-rebase
* Big refactor of descriptions, batch generation and evaluation for agents
* Make problems easier - interface to debug
* More problems, add python primitives
* Back to one prompt
* Remove dict for translation
* Be consistent
* Add prompts
* New version of the agent
* Evaluate new agents
* New endpoints agents
* Make all tools a dict variable
* Typo
* Add problems
* Add to big prompt
* Harmonize
* Add tools
* New evaluation
* Add more tools
* Build prompt with tools descriptions
* Tools on the Hub
* Let's chat!
* Cleanup
* Temporary bs4 safeguard
* Cache agents and clean up
* Blank init
* Fix evaluation for agents
* New format for tools on the Hub
* Add method to reset state
* Remove nestedness in tool config
* Really do it
* Use remote tools descriptions
* Work
* Clean up eval
* Changes
* Tools
* Tools
* tool
* Fix everything
* Use last result/assign for evaluation
* Prompt
* Remove hardcoded selection
* Evaluation for chat agents
* correct some spelling
* Small fixes
* Change summarization model (#23172)
* Fix link displayed
* Update description of the tool
* Fixes in chat prompt
* Custom tools, custom prompt
* Tool clean up
* save_pretrained and push_to_hub for tool
* Fix init
* Tests
* Fix tests
* Tool save/from_hub/push_to_hub and tool->load_tool
* Clean push_to_hub and add app file
* Custom inference API for endpoints too
* Clean up
* old remote tool and new remote tool
* Make a requirements
* return_code adds tool creation
* Avoid redundancy between global variables
* Remote tools can be loaded
* Tests
* Text summarization tests
* Quality
* Properly mark tests
* Test the python interpreter
* And the CI shall be green.
* Work on RemoteTool and fix tests
* fix loading of additional tools
* General clean up
* Guard imports
* Fix tools
* Get default endpoint from the Hub
* Simplify tool config
* Add guide
* Docs
* Some fixes
* Docs
* Docs
* Fix code returned by agent
* Try this
* Docs
* Match args with signature in remote tool
* Should fix python interpreter for Python 3.8
* Fix push_to_hub for tools
* Other fixes to push_to_hub
* Add API doc page
* Fixes
* Doc fixes
* Docs
* Fix audio
* Custom tools
* Audio fix
* Improve custom tools docstring
* Docstrings
* Trigger CI
* Mode docstrings
* More docstrings
* Improve custom tools
* Fix for remote tools
* Style
* Fix repo consistency
* Quality
* Tip
* Cleanup on doc
* Cleanup toc
* Add disclaimer for starcoder vs openai
* Remove disclaimer
* Small fixed in the prompts
* 4.29
* Update src/transformers/tools/agents.py
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
* Complete documentation
* Small fixes
* Agent evaluation
* Note about gradio-tools & LC
* Clean up agents and prompt
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Note about gradio-tools & LC
* Add copyrights and address review comments
* Quality
* Add all language codes
* Add remote tool tests
* Move custom prompts to other docs
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* TTS tests
* Quality
---------
Co-authored-by: Lysandre <hi@lyand.re>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com>
Co-authored-by: Connor Henderson <connor.henderson@talkiatry.com>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Lysandre <lysandre@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* intiial commit
* new styling
* update
* just run doctest in CI
* remove more test for fast dev
* update
* update refs
* update path and fetch upstream
* update documentatyion trests
* typo
* parse pwd
* don't check for files that are in hidden folders
* just give paths relative to transformers
* update
* update
* update
* major refactoring
* make sure options is ok
* lest test that mdx is tested
* doctest glob
* nits
* update doctest nightly
* some cleaning
* run correct test on diff
* debug
* run on a single worker
* skip_cuda_test tampkate
* updates
* add rA and continue on failure
* test options
* parse `py` codeblock?
* we don't need to replace ignore results, don't remember whyu I put it
* cleanup
* more cleaning
* fix arg
* more cleaning
* clean an todo
* more pre-processing
* doctest-module has none so extra `- ` is needed
* remove logs
* nits
* doctest-modules ....
* oups
* let's use sugar
* make dataset go quiet
* add proper timeout
* nites
* spleling timeout
* update
* properly skip tests that have CUDSA
* proper skipping
* cleaning main and get tests to run
* remove make report?
* remove tee
* some updates
* tee was removed but is the full output still available?
* [all-test]
* only our tests
* don't touch tee in this PR
* no atee-sys
* proper sub
* monkey
* only replace call
* fix sub
* nits
* nits
* fix invalid syntax
* add skip cuda doctest env variable
* make sure all packages are installed
* move file
* update check repo
* revert changes
* nit
* finish cleanup
* fix re
* findall
* update don't test init files
* ignore pycache
* `-ignore-pycache` when running pytests
* try to fix the import missmatch error
* install dec
* pytest is required as doctest_utils imports things from it
* the only log issues were dataset, ignore results should work
* more cleaning
* Update .circleci/create_circleci_config.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* [ydshieh] empty string if cuda is found
* [ydshieh] fix condition
* style
* [ydshieh] fix
* Add comment
* style
* style
* show failure
* trigger CI
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Proposed fix for TF example now running on safetensors.
* Adding more warnings and returning keys.
* Trigger CI
* Trigger CI
---------
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* First draft of RWKV-4
* Add support for generate
* Style post-rebase
* Properly use state
* Write doc
* Fix doc
* More math
* Add model to README, dummies and clean config
* Fix init
* multiple fixes:
- fix common tests
- fix configuraion default values
- add CI test for checking state computation
- fix some CI tests
* correct tokenizer
* some tweaks
- fix config docstring
- fix failing tests
* fix CI tests
- add output_attention / output_hidden_states
- override test_initialization
- fix failing CIs
* fix conversion script
- fix sharded case
- add new arguments
* add slow tests + more fixes on conversion script
* add another test
* final fixes
* change single name variable
* add mock attention mask for pipeline to work
* correct eos token id
* fix nits
* add checkpoints
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add `tie_word_embeddings` in docstring
* change tensor name
* fix final nits
* Trigger CI
---------
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add run_mim_no_trainer.py draft from #20412
Add parse_args method and copy over other dependencies
Add Method call for sending telemetry
Initialize Accelerator
Make one log on every process
Set seed and Handle repository creation
Initialize dataset and Set validation split
Create Config
Adapt Config
Update Config
Create Feature Extractor
Create model
Set column names
Create transforms
Create mask generator
Create method to preprocess images
Shuffle datasets if needed and set transforms
Create Dataloaders
Add optimizer
Add learning rate scheduler
Prepare everything with our accelerator
Tie weights for TPU training
Recalculate training steps and training epochs
Set accelerator checkpointing steps
Initialize trackers and store configuration
Set total batch size
Fix typo: mlm -> mim
Log info at the start of training
Load in the weights and states from previous save
update the progress_bar if load from checkpoint
Define train loop
Add evaluation loop to training
Add to parse_args method
Push repo to hub
Save accelerator state
End training and save model and feature extractor
Remove unused imports
Fix trailing whitespace
* Update code based on comments, Rename feature_extractor to image_processor
* Fix linting
* Add argument for learning rate
* Add argument for setting number of training epochs
* Remove incorrect logger argument
* Convert max_train_steps to int for tqdm
---------
Co-authored-by: Saad Mahmud <shuvro.mahmud79@gmail.com>
* first draft - gives index error in question_answering.py
* maturing
* no labels
* pipeline should know about QA
* fixing checks
* formatting
* fixed docstring
* initial commit
* formatting
* adding the class to many places
* towards less unhappy checks
* nearly there
* and gpt neox for qa
* use right model
* forgot this one
* base_model_prefix is "gpt_neox" for GPTNeoX* models
* unnecessary stuff
* Update src/transformers/models/gpt_neox/modeling_gpt_neox.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* format
* Update src/transformers/models/gpt_neox/modeling_gpt_neox.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* removed gpt2 stuff
---------
Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* first draft - gives index error in question_answering.py
* maturing
* no labels
* pipeline should know about QA
* fixing checks
* formatting
* fixed docstring
* initial commit
* formatting
* adding the class to many places
* towards less unhappy checks
* nearly there
* Update src/transformers/models/gpt_neo/modeling_gpt_neo.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* avoid error
* moving to device of star/end_logits
---------
Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* [doc] Try a few ≠ ways of linking to Papers, users, and org profiles
* Empty commit
* Empty commit now that the backend is fixed
---------
Co-authored-by: Lysandre <lysandre@huggingface.co>
* first draft - gives index error in question_answering.py
* maturing
* no labels
* pipeline should know about QA
* fixing checks
* formatting
* fixed docstring
* make sure legacy code executes
* comment
* like this
---------
Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
* Add Trainer support for ReduceLROnPlateau
Fixes#16503
* Remove training argument and add default instance
---------
Co-authored-by: mmeloux <maxime.meloux@loria.fr>
* update template processing for llama fast to add eos
* style
* update
* adress training from new issue
* fix
* update
* special tokens can be given even if not used
* [neptune] fix checkpoint bug with relative out_dir
* update imports
* reformat with black
* check neptune without imports
* fix typing-related issue
* run black on code
* use os.path.sep instead of raw \
* simplify imports and remove type annotation
* make ruff happy
* apply review suggestions
* replace run with with_id kwarg to run
* update imports to avoid deprecation warnings for the latest client
---------
Co-authored-by: kshitij12345 <kshitijkalambarkar@gmail.com>
* Fixed the revert by making sure that even the regexp can cover all
duplicates.
* Code simplification using hash.
* Fixing the `ident`.
* Fixing ignoring patterened duplicate names.
* Using `accelerate@find_tied_parameters` for from_pretrained
This is more correct there, since it handles meta device seemlessly
and we don't need to handle "non-duplicate" tensors (slices of each
other).
* Protecting accelerate.
* Update src/transformers/modeling_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Feature to convert videomae huge finetuned kinetics and videomae small finetuned kinetics and ssv2 added to videomae to pytorch converter
* Reformat convert_videomae_to_pytorch using black
* Value exception added for the possible videomae model architectures
* fix: half inference error
norm_factor is still torch.float32 after using model.half
So I changed it to register_buffer so I can change it to torch.float16 after using model.half
* fix: Added a variable "persistent=False"
* run make style
* moved labels to the same device as logits for OTP model
* moved labels to the same device as logits for CODEGEN model
* Update modeling_codegen.py
* moved labels to the same device as logits for gptj and pix2struct model
* Update modeling_pix2struct.py
Generation: only check for eos_token if set
The check for unfinished_sequences.max(), which is to find sequences
that have ended early via eos_token_id, creates a synchronization point
even when there is no eos_token, which slows inference down.
This change moves the calculation to inside the condition checking for
eos_token, so that such slowdown may be removed by disabling this token.
Co-authored-by: John Doe <john.doe@example.com>
* initial work
* Add other classes
* Refactor code
* Move warning and fix dynamic pipeline
* Issue warning when necessary
* Add test
* Do not skip auto tests
* Fix failing tests
* Refactor and address review comments
* Address review comments
* wrong argument name
* append eos_token_id
* all tokenizers need mask and ctc_blank tokens
* remove reduction factor from feature extractor
* add proper TTS loss
* did shifting the wrong way around
* mask out padded portions
* remove logits again (don't really need it)
* fix unit tests
* fixup
* pad also returns the decoder attention mask, since that's useful to have
* clean up feature extractor logic
* pad can handle TTS task too
* remove stop_labels from loss calculation
* simplify logic
* fixup
* do -100 masking properly
* small STFT optimization (calculate mel filterbanks only once)
* replace torchaudio fbanks with audio_utils
* remove torchaudio dependency
* simplify & speed up the STFT
* don't serialize window and mel filters
* output cross attentions when generating speech
* add guided attention loss
* fix failing test
* Update src/transformers/models/speecht5/feature_extraction_speecht5.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Update src/transformers/models/speecht5/modeling_speecht5.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* change type annotation of attention_mask to LongTensor
* extract loss into class
* remove unused frame_signal_scale argument
* use config object in loss class
* fix type annotations in doc comments
* change optional to just bool
* implement missing tokenizer method
* add deprecation warning
* Update src/transformers/models/speecht5/feature_extraction_speecht5.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/speecht5/feature_extraction_speecht5.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* add deprecation warning for stop_labels
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Simplify update metadata job
* Match more branch names
* Install all what is necessary
* Install all what is necessary
* Forgot the dev
* Install less stuff
* This syntax?
Fixed string format; better tokenizer message.
Before: `Saving a {tokenizer_class} to {tokenizer_path}`
After: `Saving a LlamaTokenizerFast to outdir.`
* add: tokenizer training script for TF TPU LM training.
* add: script for preparing the TFRecord shards.
* add: sequence of execution to readme.
* remove limit from the tfrecord shard name.
* Add initial train_model.py
* Add basic training arguments and model init
* Get up to the point of writing the data collator
* Pushing progress so far!
* Complete first draft of model training code
* feat: grouping of texts efficiently.
Co-authored-by: Matt <rocketknight1@gmail.com>
* Add proper masking collator and get training loop working
* fix: things.
* Read sample counts from filenames
* Read sample counts from filenames
* Draft README
* Improve TPU warning
* Use distribute instead of distribute.experimental
* Apply suggestions from code review
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Modularize loading and add MLM probability as arg
* minor refactoring to better use the cli args.
* readme fillup.
* include tpu and inference sections in the readme.
* table of contents.
* parallelize maps.
* polish readme.
* change script name to run_mlm.py
* address PR feedback (round I).
---------
Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* docs: ko: init: tasks/sequence_classification.mdx
* docs: ko: revised: change voca in tasks/sequence_classification.mdx
* docs: ko: revised: [RE] change voca in tasks/sequence_classification.mdx
* docs: ko: revised: spell check and sentence naturally in tasks/sequence_classification.mdx
* docs: ko: revised: spell check and consistent vocabulary in tasks/sequence_classification.mdx
* docs: ko: revised: Add full stop and change voca in tasks/sequence_classification.mdx
* docs: ko: revised: sync first section templates in tasks/sequence_classification.mdx
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
* fix: revert use of full-stops to colons
* colons are used to emphasize the code block that follows
* @0525hhgus @wonhyeongseo docs: ko: revised: sync second section templates in tasks/sequence_classification.mdx
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
* docs: ko: revised: change 'train', 'finetuning' in tasks/sequence_classification.mdx
---------
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
* Add model to doc tests
* Remove generate and replace by prepare_inputs_for_generation
* More fixes
* Remove print statements
* Update integration tests
* Fix generate
* Remove model from auto mapping
* Use auto processor
* Fix integration tests
* Fix test
* Add inference code snippet
* Remove is_encoder_decoder
* Update docs
* Remove notebook link
* Update modeling_vilt.py
Vilt compatible with model parallelism
* Update modeling_switch_transformers.py
switch_transformers compatible with model parallelism
* Fix docstrings for TFBLIP
* Fix missing line in TF port!
* Use values from torch tests now other bugs fixed
* Use values from torch tests now other bugs fixed
* Fix doctest string
generator(model="openai/whisper-large") always returns error. As the error says the generator expects an input, just like the .flac file above. Even the generator object has no parameters called model. While there are parameters which can be passed to generator like 'batch_size' but to pass a model i believe the the parameter has to be passed while instantiating the pipeline and not as a parameter to the instance.
I believe the correct term should be:
generator = pipeline(model="openai/whisper-large", device=0)
* resolve conflicts
* rebase and make style
* test
* test
* test
* rebase and make style
* rebase and make style
* tests
* tests
* rewrite some functions
* rebase and make style
* fix load_tf_weights_in_cpmant
* reformat some unrelated files
* upgrade quality
* fix some bugs & docstring
* add models and tests
* solve conflicts
* resolve conflicts
* resolve conflicts
* resolve conflicts
* resolve conflicts
* tests
* resolve conflicts
* resolve conflicts
* fix load_tf_weights_in_cpmant
* reformat some unrelated files
* upgrade quality
* fix some bugs & docstring
* save resolution
* make style
* delete redefinition code
* reformat function
* reformat
* resolve conflicts
* resolve conflicts
* resolve conflicts
* resolve conflicts
* resolve conflicts
* tests
* resolve conflicts
* resolve conflicts
* fix load_tf_weights_in_cpmant
* reformat some unrelated files
* upgrade quality
* resolve conflicts
* resolve conflicts
* resolve conflicts
* resolve conflicts
* resolve conflicts
* fix load_tf_weights_in_cpmant
* reformat some unrelated files
* upgrade quality
* resolve conflicts
* make style
* fix bugs and refactor
* modify docstrings and make style
* unify import format in __init__.py
* fix import-altclp bug
* fix copies to update index.md
* fix unused config parameters
* fix unused config parameters
* fix unused config parameters
* update README_ja.md
* dummy commit for unit test
* fix attention mask
* add CPMAntTokenizer&-Fast to auto-mapping
* drop redundant changes in README_ko
* fix defaults in docstring
* fix use_cache and some docstring
* add missing args in tokenizer
* modify tester inheritance
* add is_jieba_available
* fix some bugs
* make style and fix-copies
* add doctests
* skip integration tests
* add is_jieba_available
* fix bugs in common tests
* adjust docstrings and make style
* add argument docstring
* adjust code to some specifications
* make style and fix-copies
* add fast tokenization test
* dummy commit for unit test
* dummy commit for unit test
* dummy commit for unit test
* normalize some comments and names
* Bert->CPMAnt
* camel names and drop redundant codes
* make style and fix-coies
* add CpmTokenizerFast _import_structure
* drop cpmanttokenizerfast in model_doc
* fix some problems
* fix CPMAnt tokenization for common test
* make style and fixup
* fix copies and fixup
* fix bugs in tokenization test
* dummy commit for connection failure in unittest
* fix copies
* drop trailing comma
* fix decorator in tests
* dummy commit for connection failure in unittest
---------
Co-authored-by: Gong Baitao <gongbaitao11@gmail.com>
* Add out_indices to backbones, deprecate out_features
* Update - can specify both out_features and out_indices but not both
* Add backbone mixin tests
* Test tidy up
* Add test_backbone for convnext
* Remove redefinition of method
* Update for Dinat and Nat backbones
* Update tests
* Smarter indexing
* Add checks on config creation for backbone
* PR comments
* Adding Llama FastTokenizer support.
- Requires https://github.com/huggingface/tokenizers/pull/1183 version
- Only support byte_fallback for llama, raise otherwise (safety net).
- Lots of questions are special tokens
How to test:
```python
from transformers.convert_slow_tokenizer import convert_slow_tokenizer
from transformers import AutoTokenizer
from tokenizers import Tokenizer
tokenizer = AutoTokenizer.from_pretrained("huggingface/llama-7b")
if False:
new_tokenizer = Tokenizer.from_file("tok.json")
else:
new_tokenizer = convert_slow_tokenizer(tokenizer)
new_tokenizer.save("tok.json")
strings = [
"This is a test",
"生活的真谛是",
"生活的真谛是[MASK]。",
# XXX: This one is problematic because of special tokens
# "<s> Something something",
]
for string in strings:
encoded = tokenizer(string)["input_ids"]
encoded2 = new_tokenizer.encode(string).ids
assert encoded == encoded2, f"{encoded} != {encoded2}"
decoded = tokenizer.decode(encoded)
decoded2 = new_tokenizer.decode(encoded2)
assert decoded.strip() == decoded2, f"{repr(decoded)} != {repr(decoded2)}"
```
The converter + some test script.
The test script.
Tmp save.
Adding Fast tokenizer + tests.
Adding the tokenization tests.
Correct combination.
Small fix.
Fixing tests.
Fixing with latest update.
Rebased.
fix copies + normalized added tokens + copies.
Adding doc.
TMP.
Doc + split files.
Doc.
Versions + try import.
Fix Camembert + warnings -> Error.
Fix by ArthurZucker.
Not a decorator.
* Fixing comments.
* Adding more to docstring.
* Doc rewriting.
* Update run_speech_recognition_ctc.py
Make sure all processes wait until data is saved before loading the processor from the output_dit
* Make sure all processes wait until data is saved before loading the processor from the output_dit
* Update run_speech_recognition_ctc.py
* Update run_speech_recognition_seq2seq.py
The logger prints a summary at the beginning of training that displays some info such as number of examples, number of parameters, total number of steps, etc. Those numbers can be quite large and difficult to read. I added a thousand separator to improve readability for the following:
- num_examples
- num_train_epochs
- per_device_train_batch_size
- total_train_batch_size
- max_steps
- num_trainable_params
* Fix inverted conditional in TF common test!
* Make the same change in the PT tests file
* Make sure hidden states for GPT2 have the same output shape in PT/TF
* Minor fix to PT implementation of token classification loss
* Skip loss equivalence test for TFHubert because it keeps overflowing to inf
* Compute LM loss for TF the (weird) way it's computed in PT
* Skip loss equivalence test for Wav2Vec2 for the same reason as Hubert
* Fix - don't try to access the hidden states property when output is a tuple
* Initial commit
* more stash commit
* Yet another stash commit
* yet more stash commit
* Mostly working except for docs / repo consistency
* Stop importing model list from torch file
* Add TF BLIP models to docs
* Add auto classes
* Move get_text_features and get_image_features
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip_text.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/blip/test_modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/blip/test_modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update tests/models/blip/test_modeling_tf_blip_text.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip_text.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Use channels_last convolutions in TF (better performance + compatibility)
* Remove _shape function
* Move multi-line statement to one line in PT + TF
* Specify tf.keras.layers instead of importing from it
* Remove test_gradient_checkpointing and empty test_training methods
* move some multi-line statements to one line
* Update docstring for generate
* Remove pruned heads set
* Remove self.seq_len_dim
* Fixed issues with loss computation, should resolve some tests. Also ensured that the PT version follows the config for output_attentions and output_hidden_states
* ensure original model follows config in more cases
* Skip the same cross-attention tests in the PT tests - didn't realize we did it twice!
* Add training args throughout the models and layers
* make fixup
* Fix docstring for inputs_embeds
* Add docstring for is_decoder
* Add docstrings to text models
* Remove redundant computation
* Add unpack_inputs / keras_serializable
* Add modeling_tf_blip to doctests
* Add config classes for keras serialization
* Changes to allow model porting with pt-to-tf
* Quick fix to decoder head and test tweaks
* Revert an issue with masking the embeddings outputs
* Allow missing keys in some equivalence tests (for unused layers)
* Add tf-pt equivalence tests back in
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip_text.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip_text.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* make fixup
* Refactor invert_attention_mask out into tf_utils
* Re-enable cross-tests on the PT side too
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fix RoFormerEncoder postion embedding when generate as decoder
* make fixup
* add test case for check generate with past key values
* remove duplicating code
* [setup] drop deprecated `distutils` usage
* drop deprecated `distutils.util.strtobool` usage
* fix import order
* reformat docstring by `doc-builder`
LayoutLMv3TokenizerFast produces empty 'Ġ' token with `offset_mapping = (0, 0)`.
Next token is wrongly assumed to also be beginning of word and isn't
correctly assigned `pad_token_label`.
Modify test with text that produce 'Ġ' token.
Remove copy check from LayoutLMv2TokenizerFast for `_batch_encode_plus`.
solves issue: #19978
`load_checkpoint()` silently fails because `".qkj_proj." in key` is always `False`, but will eventually cause an error at `model.load_state_dict(state_dict)`.
* Add out_indices to backbones, deprecate out_features
* Update - can specify both out_features and out_indices but not both
* Can specify both
* Fix copies
* Add out_indices to convnextv2 configuration
* Making sure we can use safetensors to serialize all the time.
* Expanding the tests for increased coverage.
* Update the test.
* Getting current state of affairs.
* Tentative fix.
* Fixing black version.
* Fixing the worst offenders.
* Try to modify less files.
* Fixing blip_2 (Weird solution right now).
* Fixing deta.
* Fix blip ?
* Missing extra newline.
* No deta modification.
* Adding some comments.
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Addressing comments.
* Addressing comments.
* creating warn_once.
* Warning_once !
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Revert "Error (also in original) model, scaling only q matrix not qk.T dot product (qk.T/sqrt(dim_per_head)) (#21627)"
This reverts commit bad83008377bf01a34ac2e08c74e7da89eaf4e07.
* add draft changes
* fix failing wav2vec
* style
* make sure that the argument is saved + add tests
* style
* fixup
* update test
* default clean_up_tokenization_spaces to False for Bloom and Llama
* Update code based on review
Co-authored-by: Nicolas Patry <patry.nicolas@gmail.com>
* style
* quality
---------
Co-authored-by: Nicolas Patry <patry.nicolas@gmail.com>
* ensure causal_mask is created directly on device
* add copy tag to opt, update bart implementation
* add device to all _make_causal_mask copies
* formatting fixes
* more manual fixes due to unlinked versions of _prepare_decoder_attention_mask
* [neptune] fix checkpoint bug with relative out_dir
* update imports
* reformat with black
* check neptune without imports
* fix typing-related issue
* run black on code
* use os.path.sep instead of raw \
* simplify imports and remove type annotation
* make ruff happy
* apply review suggestions
---------
Co-authored-by: Aleksander Wojnarowicz <alwojnarowicz@gmail.com>
* Initial commit
* update modeling code
* update doc
* add functions necessary
* fix impotrs
* revert changes
* fixup
* more styling to get going
* remove standalone encoder
* update code
* styling
* fix config and model
* update code and some refactoring
* make more tests pass
* Adding NLLB-200 - MoE - 54.5B for no language left behind
Fixes#21300
* fix mor common tests
* styke
* update testing file
* update
* update
* Router2 doc
* update check config with sparse layer
* add dummy router
* update current conversion script
* create on the fly conversion script
* Fixup
* style
* style 2
* fix empty return
* fix return
* Update default config sparse layers
* easier to create sparse layers
* update
* update conversion script
* update modeling
* add to toctree
* styling
* make ruff happy
* update docstring
* update conversion script
* update, will break tests but impelemting top2
* update
* ❗local groups are supported here
* ⚠️ Support for local groups is now removed ⚠️
This is because it has to work with model parallelism that we do not support
* finish simplificaiton
* Fix forward
* style
* fixup
* Update modelling and test, refactoring
* update tests
* remove final layer)norm as it is done in the FF
* routing works! Logits test added
* nit in test
* remove top1router
* style
* make sure sparse are tested. Had to change route_tokens a liottle bit
* add support for unslip models when converting
* fixup
* style
* update test s
* update test
* REFACTOR
* encoder outputs match!
* style
* update testing
* 🎉encoder and decoder logits match 🎉
* styleing
* update tests
* cleanup tests
* fix router test and CIs
* cleanup
* cleanup test styling
* fix tests
* Finally the generation tests match!
* cleanup
* update test
* style testing file
* remove script
* cleanup
* more cleanup
* nits
* update
* NLLB tokenizer is wrong and will be fixed soon
* use LongTensors
* update tests
* revert some small changes
* fix second expert sampling and batch prioritized routing
* update tests
* finish last tests
* make ruff happy
* update
* ruff again
* style
* Update docs/source/en/model_doc/nllb-moe.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Updates based on review
* style and fix import issue
* nit
* more nits
* cleanup
* styling
* update test_seconde_expert_policy
* fix name
* last nit on the markdown examples
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add initial remote hardware auto-setup docs
* Fix a few typos and clarify some language
* Add missing dependency
* Update self-hosted launch script with Sylvain's comments.
* Formatting.
* Trigger CI
* Style
* First draft
* Fix integration test
* Remove script
* Fix test and typos
* Fix one more test
* Skip tied embeddings test
* Remove line
* Address comments
Edited one line in src/transormers/generation/utils.py. Changed dist.world_size() to dist.get_world_size() since world_size() doesn't exist in pytorch.dist.
* add mega file structure and plain pytorch version of mega source code
* added config class with old naming conventions
* filled in mega documentation
* added config class and embeddings with optional token types
* updated notes
* starting the conversion process, deleted intermediate and added use_cache back to config
* renamed config attributes in modeling_mega.py
* checkpointing before refactoring incremental decoding functions
* removed stateful incremental key/values for EMA and self-attention
* refactored MovingAverageGatedAttention to remove stateful k/v history and use unified attention mask
* MovingAverageGatedAttention works with incremental decoding + past values, added sequence length enforcement
* more comments in MovingAverageGatedAttention + checkpointing before GatedCrossAttention
* bug fix in attention mask handling in MovingAverageGatedAttention
* removed incremental state from GatedCrossAttention and removed IncrementalState class
* finished gated cross attention and got MegaLayer working
* fixed causal masking in mega decoder
* fixed how padding and causal masks are passed through MegaLayer with and without k/v caching
* finished MegaModel; tested with encoder, decoder-only, and cross-attention type inputs; started work on downstream classes; removed mentions of position_ids
* added optional dense hidden layer for masked and causal LM classes
* docstring updates in MultiHeadEMA and GatedCrossAttention, removed unnecessary inputs in cross-attention
* removed before_attn_fn in Mega class and updated docstrings and comments up to there
* bug fix in MovingAverageGatedAttention masking
* working conversion of MLM checkpoint in scratchpad script -- perfect matches
* moved arg for hidden dense layer in LM head to config; discovered issue where from_pretrained is renaming gamma and beta parameters
* renamed gamma and beta parameters to avoid HF renaming when loading from checkpoint
* finished checkpoint conversion script
* cleanup old class in mega config script
* removed 'copied from' statements and passing integration tests
* added num_attention_heads=1 to config for integration compatibility, decoder tests working, generation tests failing
* fixed tuple output of megamodel
* all common tests passing after fixing issues in decoder, gradient retention, and initialization
* added mega-specific tests, ready for more documentation and style checks
* updated docstrings; checkpoint before style fixes
* style and quality checks, fixed initialization problem in float_tensor, ready for PR
* added mega to toctree
* removed unnecessary arg in megaconfig
* removed unused arg and fixed code samples with leftover roberta models
* Apply suggestions from code review
Applied all suggestions except the one renaming a class, as I'll need to update that througout
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fixed issue where .view breaks batch dimension, conversion script fixed with absolute imports, updated readme with Mega->MEGA
* removed asserts in Mega code, renamed sequencenorm, gatedcrossattention, and NFFN, replaced get_activation_fn with ACTFN, and added sequencenorm to layer norms
* reformatted .forward() docstrings to match style and removed unused mask input in cross-attention
* removed all reset_parameters() methods and rolled into MegaPreTrainedModel._init_weights()
* renamed all single-letter variables and improved readability in tensor size comments, Mega->MEGA in 2 documentation files
* variable names in NFFN
* manual Mega->MEGA changes in docs
* Mega->MEGA in config auto
* style and quality fixes
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* renamed parameters and variables with confusing names, added copied from statements, moved fft conv to its own method, other cleanup from PR comments
* commit before dealing with merge conflicts
* made new attention activation functions available in ACT2FN and added generation test from OPT
* style and quality in activations and tests
* documentation fixes, renaming variables in dropout and rotary positions, used built-in causal masking, encoders->layers in MegaModel, moved comments into docstrings
* style and quality fixes after latest updates, before rotary position ids
* causal mask in MegaBlock docstring + added missing device passing
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* added Mega prefixes where missing, reverted MegaSequenceNorm to if-else, other module renaming requested in PR
* style and quality fixes + readme updates pointing to main
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* [gptj] support older pytorch version
* contributor
* contributor
* make copies
---------
Co-authored-by: Michael Wyatt <michaelwyatt@microsoft.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
* Chunkable classification pipeline
The TokenClassificationPipeline is now able to process sequences longer than 512. No matter the framework, the model, the tokenizer. We just have to pass process_all=True and a stride number (optional). The behavior remains the same if you don't pass these optional parameters. For overlapping parts when using stride above 0, we consider only the max scores for each overlapped token in all chunks where the token is.
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* update with latest black format
* update black format
* Update token_classification.py
* Update token_classification.py
* format correction
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update comments
* Update src/transformers/pipelines/token_classification.py
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* Update token_classification.py
Correct spaces, remove process_all and keep only stride. If stride is provided, the pipeline is applied to the whole text.
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update chunk aggregation
Update the chunk aggregation strategy based on entities aggregation.
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
Remove unnecessary pop from outputs dict
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update token_classification.py
* Update src/transformers/pipelines/token_classification.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* add chunking tests
* correct formating
* correct formatting
* correct model id for test chunking
* update scores with nested simplify
* Update test_pipelines_token_classification.py
* Update test_pipelines_token_classification.py
* update model to a tiny one
* Update test_pipelines_token_classification.py
* Adding smaller test for chunking.
* Fixup
* Update token_classification.py
* Update src/transformers/pipelines/token_classification.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/pipelines/token_classification.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Fixed bug to calculate correct xpath_sub_list in MarkupLMTokenizer. Earlier xpath_sub_list was same as xpath_tags_list
Co-authored-by: dusejat <dusejat@amazon.com>
* Revert "[GPT-J] add deprecation warning (#21869)"
This reverts commit fb76994c41d1eaf09e50020cbd849d3bb686b6a3.
* Fix position embeddings for GPT-J and CodeGen
* Address review comments from @gante
* Fix "Copied from" comment referencing wrong function
* Fix copy/paste mistake
* Fix training path
* Hopefully make torch.fx happy
* Move position_ids long cast
* Revert "Hopefully make torch.fx happy"
This reverts commit e41a6f4cad3ff441124c7457b19cfb630d4ca025.
* Changes to help with torch.fx tracing
* Linter fix
* Correct position_ids tensor type hint
* Work-around torch.fx tracing issue
* Get the changes to work with torch.fx
* Address review comment from @michaelbenayoun
* Another small adjustment
* Add explanatory comment; small code tidyup
* add low_cpu_mem_usage option in run_clm.py example which will benefit LLM loading
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* update all the example and README under language-modeling
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* time to say goodbye, torch 1.7 and 1.8
* clean up torch_int_div
* clean up is_torch_less_than_1_8-9
* update
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Add kernel size to NATTEN's QK arguments.
The new NATTEN 0.14.5 supports PyTorch 2.0, but also adds an additional
argument to the QK operation to allow optional RPBs.
This ends up failing NATTEN tests.
This commit adds NATTEN back to circleci and adds the arguments to get
it working again.
* Force NATTEN >= 0.14.5
* fix AutoTP in deepspeed could not work for bloom
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* add a method in BloomModel to build ailib
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Update UNCONVERTIBLE_MODEL_ARCHITECTURES
* Deal with 2 model tester classes in single test file
* Deal with 2 model tester classes in single test file
* Deal with 2 model tester classes in single test file
* make style and quality
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Use return_loss for BridgeTowerForContrastiveLearning, add example
* fix tests
* Update example in BridgeTowerForContrastiveLearning
* Update test_modeling_bridgetower.py
* update model output format
* minor update
* Update src/transformers/models/bridgetower/modeling_bridgetower.py
* make style
---------
Co-authored-by: Tiep Le <97980157+tileintel@users.noreply.github.com>
Co-authored-by: Tiep Le <tiep.le@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Fix: unfinished_sequences with correct device
The original code was causing errors when running torch.jit.trace due to the tensor options being incorrect. I fixed this by using torch.ones to create a tensor with the correct device and dtype. This should resolve the issue with running torch.jit.trace.
* Don't rescale if in and in range 0-255
* Raise value error if int values too large
* Update tests/test_image_transforms.py
* Update tests/test_image_transforms.py
* add new model of MGP-STR
* fix the check failings
* remove torch and numpy from mgp_tokenization
* remove unused import from modeling_mgp_str
* add test_processing_mgp_str
* rm test_processing_mgp_str.py
* add test_processing_mgp_str
* add test_processing_mgp_str
* add test_processing_mgp_str
* rm test_processing_mgp_str and add softmax outs to model
* rm test_processing_mgp_str and add softmax outs to model
* rewrite the code of mgp-str according to PR suggestions
* rewrite the code of mgp-str according to PR suggestions
* add new model of MGP-STR
* fix the check failings
* remove torch and numpy from mgp_tokenization
* remove unused import from modeling_mgp_str
* add test_processing_mgp_str
* rm test_processing_mgp_str.py
* add test_processing_mgp_str
* add test_processing_mgp_str
* add test_processing_mgp_str
* rm test_processing_mgp_str and add softmax outs to model
* rewrite the code of mgp-str according to PR suggestions
* rewrite the code of mgp-str according to PR suggestions
* remove representation_size from MGPSTRConfig
* reformat configuration_mgp_str.py
* format test_processor_mgp_str.py
* add test for tokenizer and complete model/processer test and model file
* rm Unnecessary tupple in modeling_mgp_str
* reduce hidden_size/layers/label_size in test_model
* add integration tests and change MGPSTR to Mgpstr
* add test for logit values
* reformat test model file
---------
Co-authored-by: yue kun <yuekun.wp@alibaba-inc.com>
* Add an argument to pt-to-tf to allow overriding the model class
* make fixup
* Minor fix to error message
* Remove unused extra conversion from the script
* return analysis for hyperparameter_search with ray backend
* Revert "return analysis for hyperparameter_search with ray backend"
This reverts commit cd5179070930e03020d96d98eb51dec3eb21ef75.
* add run_summary attribute to BestRun and return analysis for ray backend
* fix typo
* add doc for run_summary for ray backend
In ZSH, not using ' ' around pip install fails
Running
```
pip install transformers[torch]
```
in the default ZSH terminal will fail with the error `zsh: no matches found: transformers[torch]`
The solution is to wrap the installation path in ' ' like
```
pip install 'transformers[torch]'
```
Relevant StackOverflow: https://stackoverflow.com/questions/30539798/zsh-no-matches-found-requestssecurity
* Avoid text_config_dict and vision_config_dict being saved
* for other CLIP-like models
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* add 1 to cur_len to make up the new beam length
cur_len is 1 token shorter comparing to the length of the sequence whose best_sum_logprobs is the numerator.
* cur_len+=1 before check if beam hyp is done
* format code
* reformat with black
---------
Co-authored-by: Chiming <chiming@biomap.com>
* added informer to gitignore
* added informer to gitignore
* WIP informer2020
* added checking that instantiate works
* added config using gluonTS by kashif
* WIP config
* adding informeConfig. need to remove FeatureEmbedder
* done InformerConfig, but need to change the names
* Done informer model init. working on enc-dec
* added things to address, after reading again enc-dec in the paper
* done modeling - checking initialization work
* added informer to gitignore
* WIP informer2020
* added checking that instantiate works
* added config using gluonTS by kashif
* WIP config
* adding informeConfig. need to remove FeatureEmbedder
* done InformerConfig, but need to change the names
* Done informer model init. working on enc-dec
* added things to address, after reading again enc-dec in the paper
* done modeling - checking initialization work
* moved enc-dec init to InformerEncoder/Decoder init
* added 'init_std' to config, now model init works!
* WIP conversion script, and added code sources
* WIP conversion script: loading original informer pth works
* WIP conversion script: change defaults in the config
* WIP conversion script: supporting Informer input embedding
* WIP conversion script: added parameters for the informer embed
* WIP conversion script: change dim_feedforward=2048
* WIP conversion script: remove unused args for loading checkpoint
* just cleaning up
* DataEmbedding removed, after thinking with Kashif
* working on forward pass
* WIP forward pass: trying to establish working batch for forward pass
* cleaning and finalizing
* adding HF names and docs
* init after cleaning works
* WIP in tests
* added docs for the informer specific args
* fix style
* undo change
* cleaning informer, now need to work only enc-dec
* initial enc-dec classes
* added encoder and decoder
* added todo
* add todos for conv_layers
* added decoder docs from vanilla
* added encoder docs from vanilla
* remove encoder decoder from the original informer
* removed AttentionLayer from the original paper
* removed TriangularCausalMask, same as decoder_attention_mask
* initial sparse attention
* use conv_layers
* fixed test_config test
* fix parenthesis when itearting zip(layers, conv_layers)
* error found in prob attention, added sizes as comments
* fix sizes
* added proposal for q_reduce indexing, and remove unused
* WIP ProbMask, and changed factor=2 for testing
* remove unused libs for this PR for creating the env
* fix checking the attn_weights.size() after bmm
* Q_reduce: changed from torch.gather to simple slicing
* WIP calculate final attn_output
* finish adding v_aggregated, attn_output ready
* changed tgt_len to u in attention_mask, need to fix the size error
* comment attention_mask for encoder, and fix if cond for v_agg
* added ProbMask support (wip), removed old original code
* finished ProbMask 😃
* Revert "remove unused libs for this PR for creating the env"
This reverts commit 11a081e09e92771e51a5d2758d53a9afb59547f0.
* fixes
* make style
* fix initial tests
* fix more tests
* dry
* make style
* remove unused files
* style
* added integration tests
* fix num_static_real_features
* fix header
* remove unused function
* fix example
* fix docs
* Update src/transformers/models/informer/configuration_informer.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update src/transformers/models/informer/modeling_informer.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update src/transformers/models/informer/configuration_informer.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update src/transformers/models/informer/configuration_informer.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update src/transformers/models/informer/configuration_informer.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update src/transformers/models/informer/configuration_informer.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* fixes for reviewer
* use prediction_length from model
* fix style
* fixed informer.mdx
* added to index
* updated readme
* undo
* make fix-copies
* typo
* fix copy
* added Informer to toctree
* in order
* fixed comments
* remove unneeded new lines in docs
* make static real and cat optional
* fix use of distil conv layers
* fixed integration test
* added checkpoint for convlayer
* make fix-copies
* updated from time series model
* make fix-copies
* copy decoder
* fix unit tests
* updated scaling config
* fix integration tests
* IGNORE_NON_TESTED
* IGNORE_NON_AUTO_CONFIGURED
* IGNORE_NON_AUTO_CONFIGURED
* updated check configs
* fix formatting
* undo change from time series
* prediction_length should not be None
* aliign with the blog: prettify ProbSparse and change attention_factor to sampling_factor
* make style
* make fix-copies
* niels CR: update contributed by
* niels CR: update configuration_informer.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* niels CR: update kashif -> huggingface
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* niels CR: `sampling_factor` only relevant when `attention_type`=prob
* make style
* fixed U_part: added multiplication by `L_Q`
* fixed bug: remove `is not None` from `if config.distil`
* fixed test: `decoder_seq_length` to `encoder_seq_length` in cross_attentions check
* fix integration tests
* updated model hub
* do not shift as in training
* undo
* fix make-copies
* make fix-copies
* added `if prediction_length is None`
* changed `ProbSparseAttention` to `InformerProbSparseAttention`
* changed `V_sum` -> `v_mean_dim_time`
* changed `ConvLayer` to `InformerConvLayer` and fixed `super()`
* TimeSeriesTansformer->Informer in decoder's Copied from
* more descriptive in ProbSparse
* make style
* fix coped from
* Revert "added `if prediction_length is None`"
This reverts commit b4cbddfa05e3bd739b79569cd3c3b89e316f2451.
* fixed indent
* use InformerSinusoidalPositionalEmbedding
* make fix-style
* fix from #21860
* fix name
* make fix-copies
* use time series utils
* fix dec num_heads
* docstring
* added time series util doc
* _import_structure
* formatting
* changes from review
* make style
* fix docs
* fix doc
* removed NegativeLogLikelihood
---------
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* [Whisper] Add model for audio classification
* make fix-copies
* add to docs
* add docstring
* empty returns
* add code example
* switch to fleurs
* stick everything on one line
* Make ZeroShotImageClassificationPipeline faster
The pipeline makes separate calls to model for each candidate label.
This commit combines all labels into one call.
Original code takes more that 60 seconds to process one image and 1000
candidate labels. Updated code takes less than 2 seconds.
* implement batching
* code formatting
* Creating an even faster zero-shot-image-classifiction.
Unfortunately super tailored towards CLIP.
Co-Authored-By: Yessen Kanapin <yessen@deepinfra.com>
* Quality.
* Cleanup.
* Order different on the CI it seems.
* Cleanup.
* Quality.
---------
Co-authored-by: Yessen Kanapin <yessen@deepinfra.com>
* [WIP] whisper refacto to support language output.
* Handling merges.
* A bit more cleanup and comments.
* Many improvements.
Lots of details everywhere.
* Cleanup old code and tests.
* Handle lone timestamp tokens (just recover when something bad happens).
* Adding return_language example.
* No ffmpeg.
* Hmm.
* Some corrections.
* Both fast and slow.
* New black.
* Update src/transformers/models/whisper/tokenization_whisper.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/whisper/tokenization_whisper.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Remove print.
* Undoing tests modifications.
* Smaller test modifications.
* Rename.
* Remove maxDiff.
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Make schedulers picklable by making lr_lambda fns global
* add unused _get_constant_schedule_lr_lambda arg
* remove unneeded _get_constant_schedule_lr_lamda
* add test
* make style
* rebase, remove torch dep, put lambda back
* repo-consistency and style
* Use PyAV instead of Decord
* Get frame indices
* Fix number of frames
* Update src/transformers/models/videomae/image_processing_videomae.py
* Fix up
* Fix copies
* Update timesformer doctests
* Update docstrings
Adds the ALIGN model to transformers. ALIGN is introduced in "Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision" by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
* Change the .view call to .reshape
* Change the .view call to .reshape to all the copies from bart attention
* Fix copies and style
* Fix copies and style
* Fix copies and style
* Fix copies and style
* Fix copies and style
* Revert unneccessary changes
* Revert unneccessary changes
* Revert unneccessary changes
* Revert unneccessary changes
* trying to figure out whether model is NLP
* drop my changes and apply easier fix
* trying to handle all int input types
* fix logic
---------
Co-authored-by: Stas Bekman <stas@stason.org>
* rounding_mode = "floor" instead of // to prevent behavioral change
* add other TODO
* use `torch_int_div` from pytrch_utils
* same for tests
* fix copies
* style
* use relative imports when needed
* Co-authored-by: sgugger <sylvain.gugger@gmail.com>
* First commit for the improved PT-TF weight loading
* Remove workarounds from TFEncoderDecoder tests
* Allow a custom weight renaming function in from_pretrained and use that to clean up EncoderDecoder
* make fixup
* First attempt at visionencoderdecoder
* Disable tensorfloat32 in tests to get consistent outputs
* Quick fix to tf_vision_encoder_decoder tests
* make fixup
* Update Blenderbot tests
* Remove unused arg in modeling_tf_opt
* load_tf_sharded_weights had strict=True! This meant transfer learning was impossible, so I'm setting it to False.
* Support prefixes when loading sharded TF checkpoints
* make fixup
* Add test to load sharded models with a weight prefix
* Fix sharded weight loading test
* Add a test for transfer from a sharded checkpoint
* make fixup
* Add test to check that crossloading from PT with a prefix works
* Refactor from_pretrained in the encoderdecoder classes
* Refactor from_pretrained in the encoderdecoder classes
* missmatched -> mismatched
* Explicitly check for None
* No comments showing my very impressive and attractive knowledge of Py3.9+
* Disable TF32 across all TF tests
* Add loss for BridgeTowerForMaskedLM and BridgeTowerForImageAndTextRetrieval
* minor fix return_dict
* implement test for loss computation
---------
Co-authored-by: Tiep Le <97980157+tileintel@users.noreply.github.com>
Co-authored-by: Tiep Le <tiep.le@intel.com>
* If applied, this commit fixes generate bug in gptj
* Remove extra same code block
* formatting and test fix
* Conflict fix and declaration error fix
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fix the issue of blip model returning loss even when the label is not provoided
* Fix ruff failure
* Incorporate PR feedbacks
* Incorporate PR feedbacks
* Incorporate PR feedbacks
* Incorporate PR feedbacks
* add pipeline
* update init
* add zero shot to init
* update inits and correct checkpoints
* update base to support input features
* add tests
* Update src/transformers/pipelines/zero_shot_audio_classification.py
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Update src/transformers/pipelines/zero_shot_audio_classification.py
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* update pieline code
* use tiny checkpoint
* nits and expected value with tiny model
* style
* last nit on tests values
* fix styling
* fix collate fn that was casting t float
* update
---------
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Override the decoding parameters of Seq2SeqTrainer
* Fix quality
* Fix max_length parameter
* Fix quality
* Remove redundant parameter max_length
* Separate the preprocess of train and validation to use different max_target_length
* Fix resume_from_checkpoint for deepspeed
Fix resume_from_checkpoint for deepspeed, by ensuring that the deepspeed engine is the one to load the checkpoint.
* Empty commit to trigger CI
* Removed deepspeed skipping
Removed deepspeed skipping inside the _load_from_checkpoint function, as it is obsolete
* another adjustment
* Trigger CI
* trigger circleci
* style
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
* [flax] adding support for batch norm layers
* fixing bugs related to pt+flax integration
* cleanup, batchnorm support in sharded pt to flax
* support for batchnorm tests in pt+flax integration
* simplifying checking batch norm layer
* fix: Change is_last chunk calc and add conditional break
* format fix
* account for 0 and full stride_rights, add comment
* add new test
* make style
* update slow whisper asr test timestamps
* use nested_simplify on output and round timestamp to hundreths place
* Ran Black formatting
* Added imports and reformatted
* Update src/transformers/models/encoder_decoder/modeling_tf_encoder_decoder.py
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Update expect output values - as Hub repo. files are updated
* Update expect output values - as librosa is from 0.9.2 to 0.10.0 on CI docker
* fix
* update one more
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Reinserted import statement accidentally removed during rebasing.
* Added auto_wrap functionality, restructured XLA FSDP logic to more closely match PyTorch FSDP logic.
* Fixed flag descriptions; changed several instances of fsdp_ to xla_fsdp_; pass in auto_wrap_policy and auto_wrapper_callable directly to avoid lambda saving.
* Moved XLA FSDP logic to be adjacent to Fairscale FSDP logic in trainer.
* Formatted changes in accordance with HF style requirements.
* Added back in warning which was accidentally removed.
* - Merged XLA FSDP training arguments into `fsdp_config`
- Added `xla` boolean flag to `fsdp_config` to specify XLA FSDP wrapping
- Merged XLA FSDP wrapping logic into FSDP wrapping logic within trainer
class
* Cleaned up errors, moved argument to fsdp_config
- Set `xla` and `xla_fsdp_grad_ckpt` flags by default in fsdp_config
- Added missing colons following conditionals
- Moved `fsdp_transformer_layer_cls_to_wrap` to `fsdp_config`
- Modified `fsdp_transformer_layer_cls_to_wrap` to be list of strings,
not just one string
- Changed Fairscale FSDP logic to allow for set of layer classes to wrap
- Removed unnecessary checks for `xla_fsdp`
* Corrected small errors, improved layer class flag
- Correctly set default values for `xla` and `xla_fsdp_grad_ckpt`
arguments
- Made `fsdp_transformer_layer_cls_to_wrap` a list of strings instead of
a single string
- Added processing to ensure that `fsdp_transformer_layer_cls_to_wrap`
works as expected if passed as a single string
- Updated PyTorch FSDP logic to accept a list of layers to wrap, as done
with XLA FSDP
- Replaced instances of `getattr()` with `.get()` for dictionary
retrievals with default values, including when setting
`fsdp_min_num_params`
- Corrected `self.fsdp is not None` to `len(self.fsdp) > 0`
- Removed extraneous `xla_fsdp` argument descriptions from outside
`fsdp_config`
* Changed xla-fsdp-settings to be dictionary
- Modified xla-fsdp-settings to be entered directly as dictionary
instead of loaded through JSON file
- Made small style corrections
* Reverted unintentional local_rank TPU check
* Do not block XLA FSDP if local rank is -1
* Rebased and applied automatic formatting
- Rebased
- Applied automatic formatting changes via `make style`
* Applied automatic formatting with latest version of black
* Replaced expression with
* Reran black examples tests src utils
ruff examples tests src utils --fix
make autogenerate_code
make[1]: Entering directory '/usr/local/google/home/awertheim/HF-FSDP-PR/transformers'
make[1]: Leaving directory '/usr/local/google/home/awertheim/HF-FSDP-PR/transformers' after additional formatting changes
* Additionall automatic formatting changes
* Remove unnecessary whitespace characters from src/transformers/training_args.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* * Properly register parameters in PerceiverMultimodalPreprocessor
* Adapt PerceiverTextPreprocessor to work with PerceiverMultimodalPreprocessor
* Change a few type hints
* Fix formatting; incorrect return type
* Return embeddings_wo_pos
---------
Co-authored-by: Steven Anton <antonstv@amazon.com>
* first draft of model summary
* restructure docs
* finish first draft
* ✨minor reviews and edits
* apply feedbacks
* save important info, create new page for attention
* add attention doc to toctree
* ✨ few more minor fixes
* config and tokenization(fast too) changed and ErnieEncoder added
* Slow Tokenization Added
* Tokenizer(slow) is now working and Fast Tokenizer removed
* Added Config code
* Added Base Model and utils
* ErnieMModel is now working
* All added except tests
* All tests passed except ErnieUIEM
* All tests passed
* all fixes done
* all fixes done
* fixed MAP
* fixed check_code_quality
* fixed Build PR Documentation issue
* Added changes(comments) and also updated to the latest upstream/main
* Added fixup
* Added # Copied comments
* Added fixup
* Added more comments and some nits
* Added fixup
* Fixed README_hd.md
* Added more fixes
* ErnieMTokenizer (being sentencepiece) protected and other docs edited
* Added code_quality fix
* Fixed for
* Added more fix
* modified AZ
* ernie-m tokenization test added!
* attention mask part fixed(with 0->self.config.pad_token_id)
* applied make fixup
* Error in model, scaling only q matrix not qK.T dot product (qk.T/sqrt(dim_per_head))
As per Vaswani et al, 2017 p.4
Is torch.matmul(q, k.transpose(2, 3)) / math.sqrt(dim_per_head) not q / math.sqrt(dim_per_head)
https://arxiv.org/pdf/1912.05372.pdf
Error was in original FlauBERT repo and effectively scales queries but not values
cf. 6d176880ca
* Update modeling_flaubert.py
Update to https://github.com/huggingface/transformers/pull/21627
make fixup
make repo_consistency
* Update modeling_xlm.py
* Update modeling_flaubert.py
* Update modeling_xlm.py
* Add X-MOD to Readme
* Add documentation for X-MOD
* Implement X-MOD
* Fix formatting of X-MOD docs
* Change signature of X-MOD forward methods to use lang_ids
* Minor changes
* Rebase with main and run make fix-copies
* Make suggested changes to docstrings
* Improve code readability
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Fix code style
* Conversion script: Remove asserts and type annotations
* Remove _TOKENIZER_FOR_DOC
* XMOD -> Xmod
* Update copyright note
* Fix doctests
* Fix docstring
* Add integration test for FillMaskPipeline
* Revert "Add integration test for FillMaskPipeline"
This reverts commit 4381eb3b1d0f5d85785f89caba83928e6efa6d1f.
* Add end-to-end integration test for mask fill
* make style
* Rebase with main and make fix-copies
---------
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Fix stuff related to the causal_mask in CodeGen.
1. Line 613, `_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]` => `_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.causal_mask"]` to load correctly from CodeGen checkpoint without `causal_mask`.
2. Line 152, `causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length]
` => `causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length].bool()
` to alleviate potential user warning saying like `UserWarning: where received a uint8 condition tensor. This behavior is deprecated and will be removed in a future version of PyTorch. Use a boolean condition instead.`.
* Revert the .bool()
Revert the .bool() and leave it to the future PR.
* Remove CLI spams with Whisper FeatureExtractor
Whisper feature extractor representation includes the MEL filters, a list of list that is represented as ~16,000 lines. This needlessly spams the command line. I added a `__repr__` method that replaces this list with a string "<array of shape (80, 201)>"
* Remove mel_filters from to_dict output
Credits to @ArthurZucker
* remove unused import
* update feature extraction tests for the changes in to_dict
* added with torch.no_grad() to the integration tests and applied make style
* added with torch.no_grad() to xlm roberta forward pass
---------
Co-authored-by: Bibi <Bibi@katies-mac.local>
* Enforce single model initialization
* Add OneFormer example for problem 3
* Do it the Stas way
* Actually rename the uses...
* Rewrite test
* Try to change the test this way
* Fix all init slow/fast tests
* Break connection
* Fix more tests
* Fix test for initialization
* Remove custom test
* Quality
* Fix last failing tests
* The end?
* First draft
* More improvements
* More improvements
* Improve conversion script
* Convert all weights
* Make forward pass work
* Make logits match
* More improvements
* More improvements
* More improvements
* Use get_input_embeddings
* Improve some more
* Improve model tests
* Improve model tests
* More improvements
* Fix processor
* Update files
* Update prepare_inputs_for_generation
* More improvements
* Fix copies
* More fixes
* Make fixup
* More improvements
* Add support for seq2seq language model
* More improvements
* Fix test
* More improvements
* Improve conversion script
* Remove some todo's
* Fix README's
* Improve conversion script
* Fix generation
* Fix style and remove Blip2Model
* Fix model outputs
* More improvements
* Set eos_token_id in config
* Fix quality
* Small improvements
* Add processor tests
* More improvements
* Apply suggestions
* Apply suggestions
* Add integration test
* Update image URL
* Add integration test
* Fix model_type
* Update style
* Improve docs
* Add doc tests
* Fix copies
* Remove tests which are passing
* Improve some more
* Add tests for seq2seq language models
* Minor fix
* Convert more checkpoints
* finalize CI
* Fix blip and blip2 processors
* add `accelerate` support for `blip2`
* clean up
* make style
* Update conversion script
* Update conversion script some more
* Update organization
* revert toc file
* add blip-2 to toc file
* Some more improvements
* Fix docstring
* Improve docs
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
* add tests with multiple eos_token_ids
* make math.prod instead of sum
* make fixup
* fix long and also use np.prod since math.prod does not exist <python 3.8
* make fixup
* add prod util
* use prod util instead of np.prod
* make fixup
* previous .long location
* use tensor ops
* remove prod
* remove prod
* update device
* make fixup
* fix none
* doc: introduce new section for XLM-V model
* doc: mention more details for XLM-V integration
* docs: paper abstract in italics, model identifier for base model added
* doc: mention new XLM-V support
* auto: add XLM-V mapping
* doc: run make fix-copies ;)
* Add a new test to check config attributes being used
* Add a new test to check config attributes being used
* Add a new test to check config attributes being used
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply suggestions
* Update allowed cases - part 1
* Update allowed cases - part 2
* final
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Sanity check the type of id2label and label2id arguments of from_pretrained for TokenClassification models
* Incorporate PR feedbacks
* Incorporate PR feedbacks
* fix past renamed to past_key_value
* update more `past`that were ski^êd
* fixup
* remove changes made to rag
* refactor `_reorder_cache` to use `past_key_values`
* fix git `prepare_inputs_for_generation` to pass tests when false is needed in use_cache
* Result of black 23.1
* Update target to Python 3.7
* Switch flake8 to ruff
* Configure isort
* Configure isort
* Apply isort with line limit
* Put the right black version
* adapt black in check copies
* Fix copies
* do not use prefix="val" for test
The dummy example fails when test_epoch_end is called. The prefix="test" should be dynamic in the log metrics too.
* Create test.source
* Create test.target
For IterableDataset, return DataLoader using self._train_batch_size. This is consistent with how we generate a regular DataLoader, and leads to the correct args.per_device_train_batch_size eventually ending up on each GPU.
* Add tutorial doc for TF + TPU
* Fix all those extra asterisks in the markdown
* Use the actual Tip formatting
* Remove unnecessary spaces
* Reformat checklist
* Fix checklist and reformat tips slightly
* Update docs/source/en/perf_train_tpu_tf.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/en/perf_train_tpu_tf.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/en/perf_train_tpu_tf.mdx
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update docs/source/en/perf_train_tpu_tf.mdx
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Add link to TPU notebook in the notebooks list
* Add links to the TPU notebook in the tutorial doc
* Make the markdown table a bit less wild
* Fix notebook link
* More notebook links
* More fixes to wild tables
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* make SpeechT5 model by copying Wav2Vec2
* add paper to docs
* whoops added docs in wrong file
* remove SpeechT5Tokenizer + put CTC back in the name
* remove deprecated class
* remove unused docstring
* delete SpeechT5FeatureExtractor, use Wav2Vec2FeatureExtractor instead
* remove classes we don't need right now
* initial stab at speech encoder prenet
* add more speech encoder prenet stuff
* improve SpeechEncoderPrenet
* add encoder (not finished yet)
* add relative position bias to self-attention
* add encoder CTC layers
* fix formatting
* add decoder from BART, doesn't work yet
* make it work with generate loop
* wrap the encoder into a speech encoder class
* wrap the decoder in a text decoder class
* changed my mind
* changed my mind again ;-)
* load decoder weights, make it work
* add weights for text decoder postnet
* add SpeechT5ForCTC model that uses only the encoder
* clean up EncoderLayer and DecoderLayer
* implement _init_weights in SpeechT5PreTrainedModel
* cleanup config + Encoder and Decoder
* add head + cross attention masks
* improve doc comments
* fixup
* more cleanup
* more fixup
* TextDecoderPrenet works now, thanks Kendall
* add CTC loss
* add placeholders for other pre/postnets
* add type annotation
* fix freeze_feature_encoder
* set padding tokens to 0 in decoder attention mask
* encoder attention mask downsampling
* remove features_pen calculation
* disable the padding tokens thing again
* fixup
* more fixup
* code review fixes
* rename encoder/decoder wrapper classes
* allow checkpoints to be loaded into SpeechT5Model
* put encoder into wrapper for CTC model
* clean up conversion script
* add encoder for TTS model
* add speech decoder prenet
* add speech decoder post-net
* attempt to reconstruct the generation loop
* add speech generation loop
* clean up generate_speech
* small tweaks
* fix forward pass
* enable always dropout on speech decoder prenet
* sort declaration
* rename models
* fixup
* fix copies
* more fixup
* make consistency checker happy
* add Seq2SeqSpectrogramOutput class
* doc comments
* quick note about loss and labels
* add HiFi-GAN implementation (from Speech2Speech PR)
* rename file
* add vocoder to TTS model
* improve vocoder
* working on tokenizer
* more better tokenizer
* add CTC tokenizer
* fix decode and batch_code in CTC tokenizer
* fix processor
* two processors and feature extractors
* use SpeechT5WaveformFeatureExtractor instead of Wav2Vec2
* cleanup
* more cleanup
* even more fixup
* notebooks
* fix log-mel spectrograms
* support reduction factor
* fixup
* shift spectrograms to right to create decoder inputs
* return correct labels
* add labels for stop token prediction
* fix doc comments
* fixup
* remove SpeechT5ForPreTraining
* more fixup
* update copyright headers
* add usage examples
* add SpeechT5ProcessorForCTC
* fixup
* push unofficial checkpoints to hub
* initial version of tokenizer unit tests
* add slow test
* fix failing tests
* tests for CTC tokenizer
* finish CTC tokenizer tests
* processor tests
* initial test for feature extractors
* tests for spectrogram feature extractor
* fixup
* more fixup
* add decorators
* require speech for tests
* modeling tests
* more tests for ASR model
* fix imports
* add fake tests for the other models
* fixup
* remove jupyter notebooks
* add missing SpeechT5Model tests
* add missing tests for SpeechT5ForCTC
* add missing tests for SpeechT5ForTextToSpeech
* sort tests by name
* fix Hi-Fi GAN tests
* fixup
* add speech-to-speech model
* refactor duplicate speech generation code
* add processor for SpeechToSpeech model
* add usage example
* add tests for speech-to-speech model
* fixup
* enable gradient checkpointing for SpeechT5FeatureEncoder
* code review
* push_to_hub now takes repo_id
* improve doc comments for HiFi-GAN config
* add missing test
* add integration tests
* make number of layers in speech decoder prenet configurable
* rename variable
* rename variables
* add auto classes for TTS and S2S
* REMOVE CTC!!!
* S2S processor does not support save/load_pretrained
* fixup
* these models are now in an auto mapping
* fix doc links
* rename HiFiGAN to HifiGan, remove separate config file
* REMOVE auto classes
* there can be only one
* fixup
* replace assert
* reformat
* feature extractor can process input and target at same time
* update checkpoint names
* fix commit hash
* no dot scale gradient in bf16 mode
* fix since args.fp16 might be none
* fixed typo
* typo
* only do if grad scaling is true
* self.amp_dtype == torch.float16 is true
* put back prop when fsdp is not none
input_ids_seq_length doesn't exist in the GenerationConfig, it exists as local variable in the function.
Setting exponential_decay_length_penalty therefore results in an error:
`AttributeError: 'GenerationConfig' object has no attribute 'input_ids_seq_length'`
This simple change fixes this issue, and the exponential_decay_length_penalty works as expected.
* force `memory_efficient_backward=True`
* enhancements
- trainer support
- add new flag
* some changes
- internal changes in `Trainer`
- small refactor
* make quality
* Fixes
- add new testing util
- add new test
- change test in Trainer
* fix CI test
* educate users on how to ft 8bit models
* more checks
* fix `logger` error
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* adapt from review
* fix
* add comment
* use return instead
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Added resource section to GPT-J docs
* Added most of the links found
* Addressing review comments
* Fixing formatting
* Update docs/source/en/model_doc/gptj.mdx
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Fixing one of the labels
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* initial commit. added tip placeholders and a script
* removed unused imports, fixed paths
* fixed generated links
* make style
* split language modeling doc into two: causal language modeling and masked language modeling
* added check_task_guides.py to make fix-copies
* review feedback addressed
Here's my original PR into whisper that changes the same:
https://github.com/openai/whisper/pull/401
Per [IANA registry](https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry), `iw` was deprecated as the code for Hebrew in 1989 and the preferred code is `he`
The correct subtag:
```
%%
Type: language
Subtag: he
Description: Hebrew
Added: 2005-10-16
Suppress-Script: Hebr
%%
```
And the deprecation
```
%%
Type: language
Subtag: iw
Description: Hebrew
Added: 2005-10-16
Deprecated: 1989-01-01
Preferred-Value: he
Suppress-Script: Hebr
%%
```
Currently, it incorrectly states that the exponential_decay_length_penalty tuple parameter is optional.
Also changed the corresponding type hint to be more specific.
* Fixed the following:
pipe -> pipeline
out in pipe(data()) is a list of dict, not a dict
* Fixed the TypeError: __init__() missing 1 required positional argument: 'key'
* Added a tip: code sample requires additional libraries to run
* Fixed custom config's name
* added seqeval to the required libraries
* fixed a missing dependency,
fixed metric naming,
added checkpoint to fix the datacollator
* added checkpoint to fix the datacollator,
added missing dependency
* update whisper logit processor
* add generate for whisper
* remove part of the whisper specific code from pipeline
* update logit processes
* major update
* enforce first timestamp
* update generate
* add more tests
* update new decoding strategy
* Apply suggestions from code review
* update docstring
* fixup
* default config will not have multilingual ar
* update expected tokenizer size, see pull on the hub for whisper-tiny
* Fixing the pipeline with image processor.
* Update the slow test.
* Using only the first image processor.
* Include exclusion mecanism for Image processor.
* Do not handle Gitconfig, deemed as a bug.
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove `conversational` changes. They are not supposed to be here.
* Address first row of comments.
* Remove OneFormer modifications.
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add additional kwargs handling
* fix issue when serializing
* correct order of kwargs removal for serialization in from dict
* add `dict_torch_dtype_to_str` in case a dtype is needed for generation
* add condition when adding the kwargs : not from config
* Add comment based on review
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* add test function
* default None when poping arg
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* attempts to fix:
- upcast input for `T5DenseActDense`
- add the condition `self.wo.weight.dtype != torch.int8`
- added tests on `test/mixed_int8`
- `make fixup`
* fix ci test
* Update imports and test fetcher
* Revert but keep test fetcher update
* Fix imports
* Fix all imports
* Replace fe with ip names
* Add generate kwargs to `AutomaticSpeechRecognitionPipeline` (#20952)
* Add generate kwargs to AutomaticSpeechRecognitionPipeline
* Add test for generation kwargs
* Update image processor parameters if creating with kwargs (#20866)
* Update parameters if creating with kwargs
* Shallow copy to prevent mutating input
* Pass all args in constructor dict - warnings in init
* Fix typo
* Rename tester class
* Rebase and tidy up
* Fixup
* Use ImageProcessingSavingTestMixin
* Update property ref in tests
* Update property ref in tests
* Update recently merged in models
* Small fix
Co-authored-by: bofeng huang <bofenghuang7@gmail.com>
* [FT] First commit for graphormer architecture.
The model has no tokenizer, as it uses a collator and preprocessing function for its input management.
Architecture to be tested against original one.
The arch might need to be changed to fit the checkpoint, but a revert to the original arch will make the code less nice to read.
TODO: doc
* [FIX] removed test model
* [FIX] import error
* [FIX] black and flake
* [DOC] added paper refs
* [FIX] [DOC]
* [FIX] black
* [DOC] Updated READMEs
* [FIX] Order of imports + rm Tokenizer calls
* [FIX] Moved assert in class to prevent doc build failure
* [FIX] make fix-copies
* [Doc] update from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* [FIX] Removed Graphormer from Sequence classification model list
* [DOC] Added HF copyright to Cython file
* [DOC] Fixed comments
* [FIX] typos in class doc + removed config classes.
Todo: update doc from paper definitions
* [FIX] Removed dependency to fairseq, and replaced all asserts with Exception management
* [FIX] Homogeneized initialization of weights to pretrained constructor
* [FIX] [CP] Updated multi_hop parameter to get same results as in original implementation
* [DOC] Relevant parameter description in the configuration file
* [DOC] Updated doc and comments in main graphormer file
* [FIX] make style and quality checks
* [DOC] Fix doc format
* [FIX] [WIP] Updated part of the tests, though still a wip
* [FIX] [WIP]
* [FIX] repo consistency
* [FIX] Changed input names for more understandability
* [FIX] [BUG] updated num_classes params for propagation in the model
* simplified collator
* [FIX] Updated tests to follow new naming pattern
* [TESTS] Updated test suite along with model
* |FIX] rm tokenizer import
* [DOC] add link to graphormerdoc
* Changed section in doc from text model to graph model
* Apply suggestions from code review
Spacing, inits
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* [DOC] Explain algos_graphormer functions
* Cython soft import protection
* Rm call to Callable in configuration graphormer
* [FIX] replaced asserts with Exceptions
* Add org to graphormer checkpoints
* Prefixed classes with Graphormer
* Management of init functions
* format
* fixes
* fix length file
* update indent
* relaunching ci
* Errors for missing cython imports
* fix style
* fix style doc
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* add draft logit processor
* add template functions
* update timesapmt processor parameters
* draft script
* simplify code
* cleanup
* fixup and clean
* update pipeline
* style
* clean up previous idea
* add tokenization utils
* update tokenizer and asr output
* fit whisper type
* style and update test
* clean test
* style test
* update tests
* update error test
* udpate code (not based on review yet)
* update tokenization
* update asr pipeline
* update code
* cleanup and update test
* fmt
* remove text verificatino
* cleanup
* cleanup
* add model test
* update tests
* update code add docstring
* update code and add docstring
* fix pipeline tests
* add draft logit processor
add template functions
update timesapmt processor parameters
draft script
simplify code
cleanup
fixup and clean
update pipeline
style
clean up previous idea
add tokenization utils
update tokenizer and asr output
fit whisper type
style and update test
clean test
style test
update tests
update error test
udpate code (not based on review yet)
update tokenization
update asr pipeline
update code
cleanup and update test
fmt
remove text verificatino
cleanup
cleanup
add model test
update tests
update code add docstring
update code and add docstring
fix pipeline tests
* Small update.
* Fixup.
* Tmp.
* More support.
* Making `forced_decoder_ids` non mandatory for users to set.
* update and fix first bug
* properly process sequence right after merge if last
* tofo
* allow list inputs + compute begin index better
* start adding tests
* add the 3 edge cases
* style
* format sequences
* fixup
* update
* update
* style
* test passes, edge cases should be good
* update last value
* remove Trie
* update tests and expec ted values
* handle bigger chunk_length
* clean tests a bit
* refactor chunk iter and clean pipeline
* update tests
* style
* refactor chunk iter and clean pipeline
* upade
* resolve comments
* Apply suggestions from code review
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* take stride right into account
* update test expected values
* Update code based on review
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
* major refactor
* add correct strides for tests
* Update src/transformers/pipelines/automatic_speech_recognition.py
* fix whisper timestamp test
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
* Extended the CV preprocessing section with more details and refactored the example
* added padding to the CV section, though it is a special case
* Added a tip about post processing methods
* make style
* link update
* Apply suggestions from review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* review feedback
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Add XLA torchrun support
* Clarify that currently DDP doesn't work with torch.distributed XLA backend yet
* Enable DDP with torchrun and XLA (now available in PT-XLA 1.13)
* Add check for AWS Neuron availability and AWS Neuron specific compiler flag
* Change the new test's name to TestTrainerDistributedNeuronCore
* Remove "assert" and replace raised exception
* Remove compiler flag as it is optional. If needed, will be another PR.
* Use TORCHELASTIC_RUN_ID to determine whether torchrun is used
* `blip` support for training
* remove labels creation
* remove unneeded `decoder_input_ids` creation
* final changes
- add colab link to documentation
- reduction = mean for loss
* fix nits
* update link
* clearer error message
* Add epsilon- and eta-sampling.
Add epsilon- and eta-sampling, following the official code from https://github.com/john-hewitt/truncation-sampling and adapting to be more configurable, as required by Huggingface transformers.
* Add unit tests for epsilon- and eta-sampling.
* Black: fix code formatting.
* Fix docstring spacing.
* Clean up newlines.
* Fix implementation bugs and their associated tests.
* Remove epsilon- and eta-sampling parameters from PretrainedConfig.
* Clarify and clean up the documentation.
* Remove parameters for PretrainedConfig test.
* initial commit, refactoring the text generation api reference
* removed repetitive code examples
* Refactoring the text generation docs to reduce repetition
* make style
* Part of the "text generation" rework: adding a high-level overview of the text generation strategies
* code samples update via make style
* fixed a few formatting issues
* Apply suggestions from review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fixed spaces, and switched two links to markdown
* Apply Steven's suggestions from review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* new lines after headers to fix link rendering
* review feedback addressed. added links to image captioning and audio transcription examples
* minor capitalization fix
* addressed the review feedback
* Apply suggestions from review
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Applied review suggestions
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Added TF example for image classification
* Code style polishing
* code style polishing
* minor polishing
* fixed a link in a tip, and a typo in the inference TF content
* Apply Amy's suggestions from review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update docs/source/en/tasks/image_classification.mdx
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* review feedback addressed
* make style
* added PushToHubCallback with save_strategy="no"
* minor polishing
* added PushToHubCallback with save_strategy=no
* minor polishing
* Update docs/source/en/tasks/image_classification.mdx
* added data augmentation
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* make style
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* add draft logit processor
* add template functions
* update timesapmt processor parameters
* draft script
* simplify code
* cleanup
* fixup and clean
* update pipeline
* style
* clean up previous idea
* add tokenization utils
* update tokenizer and asr output
* fit whisper type
* style and update test
* clean test
* style test
* update tests
* update error test
* udpate code (not based on review yet)
* update tokenization
* update asr pipeline
* update code
* cleanup and update test
* fmt
* remove text verificatino
* cleanup
* cleanup
* add model test
* update tests
* update code add docstring
* update code and add docstring
* fix pipeline tests
* add draft logit processor
add template functions
update timesapmt processor parameters
draft script
simplify code
cleanup
fixup and clean
update pipeline
style
clean up previous idea
add tokenization utils
update tokenizer and asr output
fit whisper type
style and update test
clean test
style test
update tests
update error test
udpate code (not based on review yet)
update tokenization
update asr pipeline
update code
cleanup and update test
fmt
remove text verificatino
cleanup
cleanup
add model test
update tests
update code add docstring
update code and add docstring
fix pipeline tests
* Small update.
* Fixup.
* Tmp.
* More support.
* Making `forced_decoder_ids` non mandatory for users to set.
* update and fix first bug
* properly process sequence right after merge if last
* tofo
* allow list inputs + compute begin index better
* start adding tests
* add the 3 edge cases
* style
* format sequences
* fixup
* update
* update
* style
* test passes, edge cases should be good
* update last value
* remove Trie
* update tests and expec ted values
* handle bigger chunk_length
* clean tests a bit
* refactor chunk iter and clean pipeline
* update tests
* style
* refactor chunk iter and clean pipeline
* upade
* resolve comments
* Apply suggestions from code review
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* take stride right into account
* update test expected values
* Update code based on review
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
* Clarify and add missing typical_p docstring.
* Make the docstring easier to understand.
* Clarify typical_p docstring
Accept the suggestion by @stevhliu for paraphrasing the docstring.
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Use the same docstring as in GenerationConfig
Follow the suggestion suggested by @stevhliu in the pull request conversation.
* Fix docstring spacing.
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Add num_workers for prepare_tf_dataset
* Bugfix in the default collator and change default tensor type
* Remove the "num_workers" arg and move it to a new PR
* Fixing #20783
* Update src/transformers/pipelines/base.py
* Fixing some tests.
* Fixup.
* Remove ffmpeg dep + a bit more relaxed for bigbird QA precision.
* Better dataset.
* Prevent failing on TF.
* Better condition. We can't use `can_use_iterator` since we cannot use it
directly.
* docs: add wandb metrics and model checkpointing to callback docstrings
* docs: update reference to wandb documentation
* fix: change default of `"WANDB_WATCH"` from ``"gradients"` to ``"false"`
* feature: add `on_save` method and update `"WANDB_LOG_MODEL` behaviour
* fix: use default wandb run names instead of `output_dir`
- removes duplicated run names from wandb workspace
- models can be logged with corresponding run names
* fix: edit deprecation warning based on review suggestions
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fix: change indentation of docstrings
* fix: change indentation of docstrings and run fixup
* fix: empty commit for circleci permissions issue
* fix: format deprecation doc strings review suggestion
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* docs: Highlight WANDB_DISABLED arg in documentaion
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* fix: run fixup after updating docstrings
Co-authored-by: Bharat Ramanathan <ramanathan.parameshwaran@gohuddl.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* [Fix] Make the attention head size in distilbert an object attribute
* Fix code style
Co-authored-by: Felix Joehnk <fjoehnk@N73GCH2NDH.corp.proofpoint.com>
[NumPy] Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy type aliases (np.bool, np.int, np.float, np.complex, np.object, np.str) with their recommended replacement (bool, int, float, complex, object, str).
NumPy 1.24 drops the deprecated aliases, so we must remove uses before updating NumPy.
Co-authored-by: Peter Hawkins <phawkins@google.com>
Co-authored-by: Peter Hawkins <phawkins@google.com>
* Add StopIdStoppingCriteria
* add a working test for stop id criteria
* add to global scope
* add stop_ids to generate
* add pipeline test
* use tokenizer encode in test
* add test to generation utils
* reformat
* fixup
* make-fix-copies
* rename to stop_token_id
* use stop_tokens instead
* add to text to text generation
* make fixup
* make repo-consistency
* Add support for list of ints for eos_token_id inside generation/utils.py
* Instead of having if elses, cast the eos_token_id into a List[int]
* Add List[int] support for logits_process.py
* add List[int] for beam_search.py
* add List[int] for forced_eos_token_id
* revert stop token id stopping criteria changes
* make fixup
* fix tests
* add eos_token_id to generation/utils.py and added tests test_utils.py
* add eos_token_id type hints and fix for pad tokens
* add comments
* remove some prints and remove forced false test
* fix
* put back test_stop_sequence_stopping_criteria
* remove unused import and make fixup
* add a none check
* update docstring
* add more docstring for list ints
* make fixup
* [run_clm example] add torch_dtype option for model load.
for BLOOM 175B model. peak memory will reduce about 350G for inference. the weight of BLOOM in model hub is bfloat16
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* add other type in option
* fix style
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* add torch_dtype attribute to Pipeline
* Use torch_dtype to cast input tensor type in AutomaticSpeechRecognitionPipeline
* Fix code quality
* Add TextGenerationPipeline fp16 test
* Fix code quality
* Remove useless require in tests
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* Avoid collisions in writing metrics via 2 APIs - azureml + mlflow
MLflow tracking API is enabled by default in AzureML and HF MLflow integration is more fully featured. I'd remove the AzureML integration but leaving the current behavior for backwards compatibility (though it should really be removed)
* Trigger CI
* torch.jit._state
* Fix past CI
* Fix for perceiver
* Fix REALM
* Fix for Bloom
* Fix for SwinMode
* Fix for TrajectoryTransformerModel
* Fix for test_wav2vec2_with_lm
* make style
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* fix fp16 loading issue
* add backward compatibility
* better refactor
* better readability
- remove `force_upcast_dtype` as it is used once
- use `inspect`
- add `TODO`
* Add script to convert T5X T5 (v1.0 and v1.1) checkpoints to PyTorch
* Remove unnecessary check and update docstring
* Format docstring
* Fix whitespace in docstring
* Supporting `fp16` for asr pipeline
* Adding test.
* Style.
* Oops.
* Flake8 update ?
* Fixing flake8 ?
* Revert "Flake8 update ?"
This reverts commit 0b917fcb520e5f34d1933d9d37d8f32b64553048.
* Style (acctidentally deleted flake8 F401.)
* Move to a bigger test (no small whisper model, and s2t doesn't seem to
accept torch_dtype=fp16).
Also we need to use a GPU to actually compute on fp16.
* Using BatchFeature capability.
* fix doc for generation, dinat, nat and prelayernorm
* style
* update
* fix cpies
* use auto config and auto tokenizer
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
* als modify roberta and the depending models
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
* Copy RoBERTa
* formatting
* implement RoBERTa with prelayer normalization
* update test expectations
* add documentation
* add convertion script for DinkyTrain weights
* update checkpoint repo
Unfortunately the original checkpoints assumes a hacked roberta model
* add to RoBERTa-PreLayerNorm docs to toc
* run utils/check_copies.py
* lint files
* remove unused import
* fix check_repo reporting wrongly a test is missing
* fix import error, caused by rebase
* run make fix-copies
* add RobertaPreLayerNormConfig to ROBERTA_EMBEDDING_ADJUSMENT_CONFIGS
* Fix documentation <Facebook> -> Facebook
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fixup: Fix documentation <Facebook> -> Facebook
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add missing Flax header
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* expected_slice -> EXPECTED_SLICE
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* update copies after rebase
* add missing copied from statements
* make fix-copies
* make prelayernorm explicit in code
* fix checkpoint path for the original implementation
* add flax integration tests
* improve docs
* update utils/documentation_tests.txt
* lint files
* Remove Copyright notice
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* make fix-copies
* Remove EXPECTED_SLICE calculation comments
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* generate from config mvp
* fix failing tests
* max_time test
* Load default gen config at model load time; Update docs
* further documentation; add tests
* adapt rag to the new structure
* handle models not instantiated with from_pretained (like in tests)
* better default generation config
* add can_generate fn
* handle legacy use case of ad hoc model config changes
* initialize gen config from config in individual methods, if gen config is none
* fix _get_decoder_start_token_id when called outside GenerationMixin
* correct model config load order (set attr > model config > decoder config)
* update rag to match latest changes
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* load gen config from model config in model.from_pretrained
* fix can_generate fn
* handle generate calls without a previous from_pretrained (e.g. tests)
* add legacy behavior (and a warning)
* lower logger severity
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
`image = to_channel_dimension_format(image, ChannelDimension.LAST)`
is redundant as this same conversion is also applied in to_pil_image().
This redundant call actually makes the training fail in rare cases.
The problem can be reproduced with the following code snippet:
```
from transformers.models.clip import CLIPFeatureExtractor
vision_processor = CLIPFeatureExtractor.from_pretrained('openai/clip-vit-large-patch14')
images = [
torch.rand(size=(3, 2, 10), dtype=torch.float),
torch.rand(size=(3, 10, 1), dtype=torch.float),
torch.rand(size=(3, 1, 10), dtype=torch.float)
]
for image in images:
processed_image = vision_processor(images=image, return_tensors="pt")['pixel_values']
print(processed_image.shape)
assert processed_image.shape == torch.Size([1, 3, 224, 224])
```
The last image has a height of 1 pixel.
The second call to to_channel_dimesion_format() will transpose the image, and the height
dimension is wrongly treated as the channels dimension afterwards.
Because of this, the following normalize() step will result in an
exception.
* Add templates for gpt-sw3
* Add templates for gpt-sw3
* Added sentencepiece tokenizer
* intermediate commit with many changes
* fixed conflicts
* Init commit for tokenization port
* Tokenization progress
* Remove fast tokenizer
* Clean up and rename spm.model -> spiece.model
* Remove TF -> PT conversion script template, Clean up Megatron -> PT script
* Optimize encode & decode performance
* added new attention
* added new attention
* attention for gpt-sw3 working
* attention good
* Cache is now working
* fixed attention mask so that it works with causal attention
* fixed badbmm bug for cpu and caching
* updated config with correct parameters
* Refactor and leave optimizations as separate functions to avoid breaking expected functionality
* Fix special tokens mapping for both tokenizers
* cleaning up of code and comments
* HF compatible attention outputs
* Tokenizer now passing tests, add documentation
* Update documentation
* reverted back to base implementation after checking that it is identical to pretrained model
* updated gpt-sw3 config
* updated conversion script
* aligned parameters with gpt-sw3 config
* changed default scale_attn_by_inverse_layer_idx to true
* removed flag from conversion script
* added temporary model path
* reverted back to functioning convert script
* small changes to default config
* updated tests for gpt-sw3
* make style, make quality, minor cleanup
* Change local paths to testing online repository
* Change name: GptSw3 -> GPTSw3
* Remove GPTSw3TokenizerFast references
* Use official model repository and add more model sizes
* Added reference to 6.7b model
* Add GPTSw3DoubleHeadsModel to IGNORE_NON_AUTO_CONFIGURED, like GPT2DoubleHeadsModel
* Remove pointers to non-existing TFGPTSw3
* Add GPTSw3 to docs/_toctree.yml
* Remove TF artifacts from GPTSw3 in __init__ files
* Update README:s with 'make fix-copies'
* Add 20b model to archive list
* Add documentation for GPT-Sw3
* Fix typo in documentation for GPT-Sw3
* Do 'make fix-copies' again after having updated docs
* Fix some typos in docs
* Update src/transformers/models/gpt_sw3/configuration_gpt_sw3.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/gpt_sw3/configuration_gpt_sw3.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/gpt_sw3/__init__.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/gpt_sw3/__init__.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/gpt_sw3/modeling_gpt_sw3.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update tests/models/gpt_sw3/test_tokenization_gpt_sw3.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/gpt_sw3/modeling_gpt_sw3.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/gpt_sw3/modeling_gpt_sw3.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Resolve comments from PR feedback
* Resolve more comments from PR feedback, also set use_cache=True in convert script
* Add '# Copied from' comments for GPTSw3 modeling
* Set 'is_parallelizable = False'
* Remove '# Copied from' where code was modified and add 'with x->y' when appropriate
* Remove parallelize in mdx
* make style, make quality
* Update GPTSw3Config default values and corresponding documentation
* Update src/transformers/models/gpt_sw3/tokenization_gpt_sw3.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/gpt_sw3/__init__.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Clean up and protect GPTSw3Tokenizer imports with is_sentencepiece_available
* Make style, make quality
* Add dummy object for GPTSw3Tokenizer via 'make fix-copies'
* make fix-copies
* Remove GPTSw3 modeling classes
* make style, make quality
* Add GPTSw3 auto-mappings for other GPT2 heads
* Update docs/source/en/model_doc/gpt-sw3.mdx
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/gpt_sw3/tokenization_gpt_sw3.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Remove old TODO-comment
* Add example usage to GPTSw3Tokenizer docstring
* make style, make quality
* Add implementation details and example usage to gpt-sw3.mdx
Co-authored-by: JoeyOhman <joeyoh@kth.se>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add deprecation warning when image FE instantiated
* Update src/transformers/models/beit/feature_extraction_beit.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update v2.7 -> v5 and add for new IPs
* Add message to Chinese CLIP
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* read to load
* base functionality
* revert init
* fix dummy data
* moving right along
* moving right along
* finally
* cleanup
* pull out comment
* add test
* update docstring for main class
* flake comments and rewriting copies from make repo-consistency`
* remove irrelevant differences/accidental spaces
* put copies back after space removals
* mid
* final test pass
* stray comment
* update test file
* update test file
* fixup
* black
* missed
* black missed one more
* sytle
* add doc update
* fix order of output class
* comment
* Revert "comment"
This reverts commit 03f86b6948808461939cc8ad4ad74305dfb67700.
* remove redundant function, and redundant reshape
* move change out of common
* style
* put common spaces back
* reorder kwargs in output
* doc style
* add `dpt-hybrid` support
* refactor
* final changes, all tests pass
* final cleanups
* final changes
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix docstring
* fix typo
* change `vit_hybrid` to `hybrid`
* replace dataclass
* add docstring
* move dataclasses
* fix test
* add `PretrainedConfig` support for `backbone_config`
* fix docstring
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* remove `embedding_type` and replace it by `is_hybrid`
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* [WIP] Rework the pipeline tutorial
- Switch to `asr` instead of another NLP task.
- It also has simpler to understand results.
- Added a section with interaction with `datasets`.
- Added a section with writing a simple webserver.
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Addressing comments.
* Links.
* Fixing docs format.
* Adding pipeline_webserver to _toctree.
* Warnig -> Tip warnings={true}.
* Fix link ?
* Links ?
* Fixing link, adding chunk batching.
* Oops.
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/pipeline_tutorial.mdx
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Created README_hd.md
A Hindi Translation for README
* updated check_copies.py
Added the Proper info for Hindi Translation of README File !
* updated README_hd.md
Fixed some translation issues !
* Update README_hd.md
* Update README_hd.md
* Update README_hd.md
* fixing 🐛 for `make fix-copies`
* run `make fix-copies`
* `make fix-copies` 😅
Co-authored-by: Akshit Gulyan <103456810+AkshitGulyan@users.noreply.github.com>
* Fix whisper and speech to text doc
# What does this PR do?
Previously the documentation was badly indented for both models and indicated that
> If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`.`
Which is on valid for the forward pass of the `ForConditionnalGeneration` not for the model alone.
* other fixes
* add type annotations for esm chunk_utils
use isinstance builtin instead of 'type(x) is y'; add assertions to aid in type inferencing; use bools instead of ints in _get_minimal_slice_set for improved type clarity; refactor to avoid re-assigning to the same variable with a different type
* add type annotations for esm data_transforms
refactor to avoid re-assigning to the same variable with a different type
* add type annotations for esm feats utils
refactor to avoid re-assigning to the same variable with a different type
* add type annotations for esm loss utils
* add/fix type annotations for esm rigit_utils
refactor to avoid re-assigning to the same variable with a different type; fix Callable, Tuple type hints; match conditional structure to other methods; fix return type on Rotation.cat and Rotation.unsqueeze
* add type annotations for esm tensor_utils
overload for tree_map; use insinstance builtin instead of 'type(x) is y'; export dict_multimap, flatten_final_dims, permute_final_dims in openfold_utils
* add type annotations for esm protein utils
add FIXME for attempted string mutation; add missing None check in get_pdb_headers; fix potentially unbound variable 'chain_tag' in to_pdb; modify get_pdb_headers return type
* add type annotations for esm residue constants
hints on collection constants; remove magic trailing comma to reduce number of lines; change list -> tuple for rigid_group_atom_positions for improved hinting
* code style fixup
Co-authored-by: Matt <rocketknight1@gmail.com>
* biogpt initial commit
* updated init
* fix faster decoding with use_cache
* 1. fix input_ids and input_embeds with correct device
2. added _keys_to_ignore_on_load_missing
3. updated prepare_inputs_for_generation
* add activation_dropout and scale_embedding
* replace fsmt attention with bart attention
* added test
* run make fix-copies
* doc init and fix build
* updated README with proper information
* 1. added tips to docs
2. updated BioGptTokenizer func
* 1. added tokenizer test
2. refactor tokenizer
* make fixup
* add biogpt fairseq to hf converter
* updated layer names more
similar to original checkpoints
* config update doc string and set defaults
* added "#copied" from bart model and
updated doc strings
* enable model_input_names in tokenizer
* 1. positionalembedding depending on attention_mask
2. added attention mask to prepare for generation
* added test to verify past and generation
* BioGptLMHeadModel -> BioGptForCausalLM
* fix typo
* tokenization and test
Copyright and updated assertion
* updated Copyright and
one func at time in line
* Copyright updates and
minor doc fix
* replace assertion with ValueError
* rm extra space
* added code syntax
* revert cmnt position change
* add tokenizer to auto
* updated doc string
* tokenizer doc string update
* biogpt hub model update to microsoft/biogpt
* make fixup
* rm cmnt to fix flake8 5.0.4 vs 6 error
* Draft addition of new head
* Finish adding contact heads + tests for ESM
* Add TF contact prediction head
* make fixup
* Minor fix to convert_esm.py
* Clean up function names and comments
error show like: “Currently the auto_kernel_selection does not support the grad mode! Please add torch.no_grad() before the inference runtime..”
since jit mode only work in inference mode, it's safe to add such logic.
Neuron supports extraction of XLA graphs for compilation.
However, when both do_train and do_eval options are enabled,
sizes returned by tensor operator can be 0. To avoid
INVALID_ARGUMENT error, we use inequality in the check whether
a tensor needs padding or not.
* add minimal working gpt2 tokenizer
* graph mode and output equivalence tests working
* not today tensorflow. serialization test passing!
* fix style, documentation, docstrings and all that jazz
* passing consistency checks
* move keras nlp to tf dependencies
* fix tf modeling utils and gpt2 attention to enable compiling
* fix (I hope) keras nlp dependencies
* rever changes on generation
* remove debug prints
* remove redundant tf dummy objects
* add from config, get config and max length settings to address review
* let flake ignore the error on distillation you are welcome
* test from config
* add padding test
* address sgugger review
* First draft
* Fix backwards compatibility
* More fixes
* More fixes
* Make backbone more general
* Improve backbone
* Improve test
* Fix config checkpoint
* Address comments
* Use model_type
* Address more comments
* Fix special model names
* Remove MaskFormerSwinModel and MaskFormerSwinPreTrainedModel from main init
* Fix typo
* Update backbone
* Apply suggestion
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Add hidden states and attentions to backbone outputs
* Update ResNet
* Fix more tests
* Debug test
* Fix test_determinism
* Fix test_save_load
* Remove file
* Disable fx tests
* Test
* Add fx support for backbones
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* INtegrate safetensos in weight offloading
* Use safetensors checkpoint for offload when available
* Make naming consistent
* Make load faster
* Quality
* Add default
* Changed assert into 7-8 exceptions
* updated syntax error
* updated error
* updated file (Co-autho: Batese2001)
* Successful test on test_modeling_distilbert.py
Successful raising errors and exceptions on the revised code in test_modeling_distilbert.py .
Co-credit: @batese2001
* Delete test_modeling_distilbert.ipynb
* Update modeling_distilbert.py
* Successful raising of exceptions with the conditions that are contrary to defined condition that asserts statements (Co-author: Batese2001)
* Successful raising of exceptions with the conditions that are contrary to defined condition that asserts statements (Co-author: Batese2001)
* committing the reformatted distilbert model
* reformatted distilbert model
* reformatted distilbert model
* reformatted distilbert model
* reformatted distilbert model with black
* Changed comments that explain better about raising exceptions for not having the even number of multi heads
* Changed comments that explain better about raising exceptions for not having the even number of multi heads
* changed based on the feedback
* Changed line 833 based on the suggestion made from @younesbelkada
* Changed line 833 based on the suggestion made from @younesbelkada draft2
* reformatted file
* Update src/transformers/models/distilbert/modeling_distilbert.py
* Update src/transformers/models/distilbert/modeling_distilbert.py
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Add a test to ensure int dummy inputs are int64
* Move the test into the existing int64 test and update a lot of existing dummies
* Fix remaining dummies
* Fix remaining dummies
* Test for int64 serving sigs as well
* Update core tests to use tf.int64
* Add better messages to the assertions
* Update all serving sigs to int64
* More sneaky hiding tf.int32s
* Add an optional int32 signature in save_pretrained
* make fixup
* Add Amy's suggestions
* Switch all serving sigs back to tf.int32
* Switch all dummies to tf.int32
* Adjust tests to check for tf.int32 instead of tf.int64
* Fix base dummy_inputs dtype
* Start casting to tf.int32 in input_processing
* Change dtype for unpack_inputs test
* Add proper tf.int32 test
* Make the alternate serving signature int64
* change the way sentinel tokens can retrived
* Fix line length for doc string
* Fix line length for doc string
* Add more stronger test for t5 tokenization
* Format file changes
* Make a stronger test for filtering sentinel tokens
* fix file format issues
* Optimizes DonutProcessor token2json method for speed
* Applies black formatting
* Updates Donut pretrained model name in test file
* remaining pytorch type hints (#20217)
* Update modeling_flava.py
* Update modeling_markuplm.py
* Update modeling_glpn.py
* Update modeling_roc_bert.py
* Update modeling_segformer.py
* Update modeling_tapas.py
* Update modeling_tapas.py
* Update modeling_tapas.py
* Update modeling_tapas.py
* Update modeling_trocr.py
* Update modeling_videomae.py
* Update modeling_videomae.py
* Update modeling_videomae.py
* Update modeling_yolos.py
* Update modeling_wav2vec2.py
* Update modeling_jukebox.py
* Update modeling_jukebox.py
* Update modeling_jukebox.py
* Update modeling_jukebox.py
* Data collator for token classification pads labels column when receives pytorch tensors (#20244)
* token cls data_collator pads labels column
* remove walrus operator for code quality
* remove redundat space
* remove comment that was fixed
* PR comments fix
Co-authored-by: Alexander Markov <amarkov.me@gmail.com>
* [Doctest] Add configuration_deformable_detr.py (#20273)
* Update configuration_deformable_detr.py comment
* Add DeformableDetrConfig to documentation_tests.txt
* Fix summarization script (#20286)
* [DOCTEST] Fix the documentation of RoCBert (#20142)
* update part of the doc
* add temp values, fix part of the doc
* add template outputs
* add correct models and outputss
* style
* fixup
* [bnb] Let's warn users when saving 8-bit models (#20282)
* add warning on 8-bit models
- added tests
- added wrapper
* move to a private attribute
- remove wrapper
- changed `save_pretrained` method
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fix suggestions
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Adding `zero-shot-object-detection` pipeline doctest. (#20274)
* Adding `zero-shot-object-detection` pipeline doctest.
* Remove nested_simplify.
* Adding doctest for `object-detection` pipeline. (#20258)
* Adding doctest for `object-detection` pipeline.
* Removed nested_simplify.
* Image transforms functionality used instead (#20278)
* Image transforms functionality used instead
* Import torch
* Import rather than copy
* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py
* TF: add test for `PushToHubCallback` (#20231)
* test hub tf callback
* create repo before cloning it
* Generate: general TF XLA constrastive search are now slow tests (#20277)
* move contrastive search test to slow
* Fixing the doctests failures. (#20294)
* Fixing the doctests failures.
* Fixup.
* set the default cache_enable to True, aligned with the default value in pytorch cpu/cuda amp autocast (#20289)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Add docstrings for canine model (#19457)
* Add docstrings for canine model
* Update CanineForTokenClassification
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Add AutoBackbone + ResNetBackbone (#20229)
* Add ResNetBackbone
* Define channels and strides as property
* Remove file
* Add test for backbone
* Update BackboneOutput class
* Remove strides property
* Fix docstring
* Add backbones to SHOULD_HAVE_THEIR_OWN_PAGE
* Fix auto mapping name
* Add sanity check for out_features
* Set stage names based on depths
* Update to tuple
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Add missing report button for Example test (#20293)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* refactor test (#20300)
- simplifies the devce checking test
* [Tiny model creation] deal with `ImageProcessor` (#20298)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Fix blender bot missleading doc (#20301)
* fix the doc to specify that add_prefix_space = False
* add correct expected output
* remove two tokens that should not be suppressed (#20302)
* [ASR Examples] Update README for Whisper (#20230)
* [ASR Examples] Update README for seq2seq
* add language info
* add training results
* re-word
* Add padding image transformation (#19838)
* Add padding transformation
* Add in upstream changes
* Update tests & docs
* Code formatting tuples in docstring
* Pin TensorFlow (#20313)
* Pin to the right version...
* Also pin TensorFlow CPU
* Add AnyPrecisionAdamW optimizer (#18961)
* Add AnyPrecisionAdamW optimizer
* Add optim_args argument to TrainingArgs
* Add tests for AnyPrecisionOptimizer
* Change AnyPrecisionAdam default params to float32
* Move default_anyprecision_kwargs in trainer test
* Rename AnyPrecisionAdamW
* [Proposal] Breaking change `zero-shot-object-detection` for improved consistency. (#20280)
* [Proposal] Breaking change `zero-shot-object-detection` for improved
consistency.
This is a proposal to modify the output of `zero-shot-object-detection`
to provide better alignment with other pipelines.
The output is now strictly the same as `object-detection` whereas before
it would output lists of lists.
The name `candidate_labels` is used throughout for consistency with
other `zero-shot` pipelines.
The pipeline is changed to `ChunkPipeline` to support batching cleanly.
This removes all the lists and list of lists shenanigans, it's now a
matter of the base pipeline handling all this not this specific one.
**Breaking change**: It did remove complex calls potentials `pipe(images = [image1, image2],
text_queries=[candidates1, candidates2])` to support only
`pipe([{"image": image1, "candidate_labels": candidates1}, {"image": image2, "candidate_labels": candidates2}])`
when dealing with lists and/or datasets.
We could keep them, but it will add a lot of complexity to the code
base, since the pipeline is rather young, I'd rather break to keep the
code simpler, but we can revert this.
**Breaking change**: The name of the argument is now `image` instead of
`images` since it expects by default only 1 image. This is revertable
like the previous one.
**Breaking change**: The types is now simplified and flattened:
`pipe(inputs) == [{**object1}, {**object2}]`
instead of the previous
`pipe(inputs) == [[{**object1}, {**object1}], [{**object2}]]`
Where the different instances would be grouped by candidate labels
within lists.
IMHO this is not really desirable, since it would output empty lists and
is only adding superflous indirection compared to
`zero-shot-object-detection`.
It is relatively change free in terms of how the results, it does change
computation however since now the batching is handled by the pipeline
itself. It **did** change the results for the small models so there
seems to be a real difference in how the models handle this.
* Fixing the doctests.
* Behind is_torch_available.
* Fix flakey test with seed (#20318)
* Pin TF 2.10.1 for Push CI (#20319)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Remove double brackets (#20307)
* remove double brackets
* oops get other bracket
* TF: future proof our keras imports (#20317)
* future proof our tf code
* parse tf versions
* Add Neighborhood Attention Transformer (NAT) and Dilated NAT (DiNAT) models (#20219)
* Add DiNAT
* Adds DiNAT + tests
* Minor fixes
* Added HF model
* Add natten to dependencies.
* Cleanup
* Minor fixup
* Reformat
* Optional NATTEN import.
* Reformat & add doc to _toctree
* Reformat (finally)
* Dummy objects for DiNAT
* Add NAT + minor changes
Adds NAT as its own independent model + docs, tests
Adds NATTEN to ext deps to ensure ci picks it up.
* Remove natten from `all` and `dev-torch` deps, add manual pip install to ci tests
* Minor fixes.
* Fix READMEs.
* Requested changes to docs + minor fixes.
* Requested changes.
* Add NAT/DiNAT tests to layoutlm_job
* Correction to Dinat doc.
* Requested changes.
* organize pipelines by modality (#20306)
* Fix torch device issues (#20304)
* fix device issue
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Generate: add generation config class (#20218)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* translate zh quicktour(#20095) (#20181)
* zh quicktour(#20095)
* add zh to doc workflow
* remove untranslation from toctree
Co-authored-by: BeifangSusu <BeifangSusu@bfss.com>
* Add Spanish translation of serialization.mdx (#20245)
* Update _toctree and clone original content
* Translate first three sections
* Add more translated chapters. Only 3 more left.
* Finish translation
* Run style from doc-builder
* Address recommended changes from reviewer
* Add LayerScale to NAT/DiNAT (#20325)
* Add LayerScale to NAT/DiNAT.
Completely dropped the ball on LayerScale in the original PR (#20219).
This is just an optional argument in both models, and is only activated for larger variants in order to provide training stability.
* Add LayerScale to NAT/DiNAT.
Minor error fixed.
Co-authored-by: Ali Hassani <ahassanijr@gmail.com>
* [Switch Transformers] Fix failing slow test (#20346)
* run slow test on GPU
* remove unnecessary device assignment
* use `torch_device` instead
* fix: "BigSicence" typo in docs (#20331)
* add MobileNetV1 model (#17799)
* add model files etc for MobileNetV2
rename files for MobileNetV1
initial implementation of MobileNetV1
fix conversion script
cleanup
write docs
tweaks
fix conversion script
extract hidden states
fix test cases
make fixup
fixup it all
remove main from doc link
fixes
fix tests
fix up
use google org
fix weird assert
* fixup
* use google organization for checkpoints
* Generate: `model_kwargs` can also be an input to `prepare_inputs_for_generation` (#20353)
* Update Special Language Tokens for PLBART (#19980)
* Update Special Language Tokens for PLBART
* fix format
* making mapping for language codes and updating tests:
* fix format
* fix consistency
* add assert to both tokenizer tests.
* fix format
* Update src/transformers/models/plbart/tokenization_plbart.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* improvin readability, setting self.tgt_lang
* fixing
* readability
Co-authored-by: jordiclive <jordiclive19@imperial.ac.uk>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add resources (#20296)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Enhance HfArgumentParser functionality and ease of use (#20323)
* Enhance HfArgumentParser
* Fix type hints for older python versions
* Fix and add tests (+formatting)
* Add changes
* doc-builder formatting
* Remove unused import "Call"
* Add Audio Spectogram Transformer (#19981)
* First draft
* Make conversion script work
* Add id2label mapping, run code quality
* Fix copies
* Add first draft of feature extractor
* Update conversion script to use feature extractor
* Make more tests pass
* Add docs
* update input_features to input_values + pad by default to max length
* Fix doc tests
* Add feature extractor tests
* Add proper padding/truncation to feature extractor
* Add support for conversion of all audioset checkpoints
* Improve docs and extend conversion script
* Fix README
* Rename spectogram to spectrogram
* Fix copies
* Add integration test
* Remove dummy conv
* Update to ast
* Update organization
* Fix init
* Rename model to AST
* Add require_torchaudio annotator
* Move import of ASTFeatureExtractor under a is_speech_available
* Fix rebase
* Add pipeline config
* Update name of classifier head
* Rename time_dimension and frequency_dimension for clarity
* Remove print statement
* Fix pipeline test
* Fix pipeline test
* Fix index table
* Fix init
* Fix conversion script
* Rename to ForAudioClassification
* Fix index table
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Add inference section to task guides (#18781)
* 📝 start adding inference section to task guides
* ✨ make style
* 📝 add multiple choice
* add rest of inference sections
* make style
* add compute_metric, push_to_hub, pipeline
* make style
* add updated sequence and token classification
* make style
* make edits in token classification
* add audio classification
* make style
* add asr
* make style
* add image classification
* make style
* add summarization
* make style
* add translation
* make style
* add multiple choice
* add language modeling
* add qa
* make style
* review and edits
* apply reviews
* make style
* fix call to processor
* apply audio reviews
* update to better asr model
* make style
* Fix toctree for Section 3 in Spanish Documentation (#20360)
* Order and group topics in the right section
* Translate "Computer Vision"
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: IMvision12 <88665786+IMvision12@users.noreply.github.com>
Co-authored-by: Alexander Markov <almarkv@yandex.ru>
Co-authored-by: Alexander Markov <amarkov.me@gmail.com>
Co-authored-by: Saad Mahmud <shuvro.mahmud79@gmail.com>
Co-authored-by: Zachary Mueller <muellerzr@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: raghavanone <115454562+raghavanone@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: atturaioe <76523524+atturaioe@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Ali Hassani <68103095+alihassanijr@users.noreply.github.com>
Co-authored-by: BFSS <31245245+bfss@users.noreply.github.com>
Co-authored-by: BeifangSusu <BeifangSusu@bfss.com>
Co-authored-by: Ian C <7807897+donelianc@users.noreply.github.com>
Co-authored-by: Ali Hassani <ahassanijr@gmail.com>
Co-authored-by: Raj Rajhans <me@rajrajhans.com>
Co-authored-by: Matthijs Hollemans <mail@hollance.com>
Co-authored-by: Jordan Clive <jordan.clive19@imperial.ac.uk>
Co-authored-by: jordiclive <jordiclive19@imperial.ac.uk>
Co-authored-by: Konstantin Dobler <konstantin.j.dobler@gmail.com>
* First draft
* Make conversion script work
* Add id2label mapping, run code quality
* Fix copies
* Add first draft of feature extractor
* Update conversion script to use feature extractor
* Make more tests pass
* Add docs
* update input_features to input_values + pad by default to max length
* Fix doc tests
* Add feature extractor tests
* Add proper padding/truncation to feature extractor
* Add support for conversion of all audioset checkpoints
* Improve docs and extend conversion script
* Fix README
* Rename spectogram to spectrogram
* Fix copies
* Add integration test
* Remove dummy conv
* Update to ast
* Update organization
* Fix init
* Rename model to AST
* Add require_torchaudio annotator
* Move import of ASTFeatureExtractor under a is_speech_available
* Fix rebase
* Add pipeline config
* Update name of classifier head
* Rename time_dimension and frequency_dimension for clarity
* Remove print statement
* Fix pipeline test
* Fix pipeline test
* Fix index table
* Fix init
* Fix conversion script
* Rename to ForAudioClassification
* Fix index table
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Update Special Language Tokens for PLBART
* fix format
* making mapping for language codes and updating tests:
* fix format
* fix consistency
* add assert to both tokenizer tests.
* fix format
* Update src/transformers/models/plbart/tokenization_plbart.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* improvin readability, setting self.tgt_lang
* fixing
* readability
Co-authored-by: jordiclive <jordiclive19@imperial.ac.uk>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add model files etc for MobileNetV2
rename files for MobileNetV1
initial implementation of MobileNetV1
fix conversion script
cleanup
write docs
tweaks
fix conversion script
extract hidden states
fix test cases
make fixup
fixup it all
remove main from doc link
fixes
fix tests
fix up
use google org
fix weird assert
* fixup
* use google organization for checkpoints
* Add LayerScale to NAT/DiNAT.
Completely dropped the ball on LayerScale in the original PR (#20219).
This is just an optional argument in both models, and is only activated for larger variants in order to provide training stability.
* Add LayerScale to NAT/DiNAT.
Minor error fixed.
Co-authored-by: Ali Hassani <ahassanijr@gmail.com>
* Update _toctree and clone original content
* Translate first three sections
* Add more translated chapters. Only 3 more left.
* Finish translation
* Run style from doc-builder
* Address recommended changes from reviewer
* Add DiNAT
* Adds DiNAT + tests
* Minor fixes
* Added HF model
* Add natten to dependencies.
* Cleanup
* Minor fixup
* Reformat
* Optional NATTEN import.
* Reformat & add doc to _toctree
* Reformat (finally)
* Dummy objects for DiNAT
* Add NAT + minor changes
Adds NAT as its own independent model + docs, tests
Adds NATTEN to ext deps to ensure ci picks it up.
* Remove natten from `all` and `dev-torch` deps, add manual pip install to ci tests
* Minor fixes.
* Fix READMEs.
* Requested changes to docs + minor fixes.
* Requested changes.
* Add NAT/DiNAT tests to layoutlm_job
* Correction to Dinat doc.
* Requested changes.
* [Proposal] Breaking change `zero-shot-object-detection` for improved
consistency.
This is a proposal to modify the output of `zero-shot-object-detection`
to provide better alignment with other pipelines.
The output is now strictly the same as `object-detection` whereas before
it would output lists of lists.
The name `candidate_labels` is used throughout for consistency with
other `zero-shot` pipelines.
The pipeline is changed to `ChunkPipeline` to support batching cleanly.
This removes all the lists and list of lists shenanigans, it's now a
matter of the base pipeline handling all this not this specific one.
**Breaking change**: It did remove complex calls potentials `pipe(images = [image1, image2],
text_queries=[candidates1, candidates2])` to support only
`pipe([{"image": image1, "candidate_labels": candidates1}, {"image": image2, "candidate_labels": candidates2}])`
when dealing with lists and/or datasets.
We could keep them, but it will add a lot of complexity to the code
base, since the pipeline is rather young, I'd rather break to keep the
code simpler, but we can revert this.
**Breaking change**: The name of the argument is now `image` instead of
`images` since it expects by default only 1 image. This is revertable
like the previous one.
**Breaking change**: The types is now simplified and flattened:
`pipe(inputs) == [{**object1}, {**object2}]`
instead of the previous
`pipe(inputs) == [[{**object1}, {**object1}], [{**object2}]]`
Where the different instances would be grouped by candidate labels
within lists.
IMHO this is not really desirable, since it would output empty lists and
is only adding superflous indirection compared to
`zero-shot-object-detection`.
It is relatively change free in terms of how the results, it does change
computation however since now the batching is handled by the pipeline
itself. It **did** change the results for the small models so there
seems to be a real difference in how the models handle this.
* Fixing the doctests.
* Behind is_torch_available.
* Add ResNetBackbone
* Define channels and strides as property
* Remove file
* Add test for backbone
* Update BackboneOutput class
* Remove strides property
* Fix docstring
* Add backbones to SHOULD_HAVE_THEIR_OWN_PAGE
* Fix auto mapping name
* Add sanity check for out_features
* Set stage names based on depths
* Update to tuple
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Add resources of OpenAI GPT
* Delete Deploy section and add .
* Add scripts
* Update docs/source/en/model_doc/openai-gpt.mdx
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Delete causal-language-modeling section
* Add TFOpenAIGPTLMHeadModel
* Add resources from community
* Delete a link
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Adding ASR pipeline example.
* De indent.
* Example deindent.
* Fixing example ?
* Putting the example in a more prominent place.
* Fixup.
* Adding the file.
* Adding the doctest to the daily test.
* Fixing comments.
* transcriber name.
* Adding `>>>`.
* Removing assert.
Adds image-guided object detection method to OwlViTForObjectDetection class as described in the original paper. One-shot/ image-guided object detection enables users to use a query image to search for similar objects in the input image.
Co-Authored-By: Dhruv Karan k4r4n.dhruv@gmail.com
* Slightly alter Keras dummy loss
* Slightly alter Keras dummy loss
* Add sample weight to test_keras_fit
* Fix test_keras_fit for datasets
* Skip the sample_weight stuff for models where the model tester has no batch_size
* allow loading projection in text and vision model
* begin tests
* finish test for CLIPTextModelTest
* style
* add slow tests
* add new classes for projection heads
* remove with_projection
* add in init
* add in doc
* fix tests
* fix some more tests
* fix copies
* fix docs
* remove leftover from fix-copies
* add the head models in IGNORE_NON_AUTO_CONFIGURED
* fix docstr
* fix tests
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add docstr for models
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Try PT1.13 by removing torch scatter
* Skip failing tests
* Style
* Remvoe testing extras for repo utils
* Try with all decorators
* Try to wipe the cache
* Fix all tests?
* Try this way
* Fix comma
* Update to main
* Try with less deps
* Quality
* add `accelerate` support for `ViT` family
- add `_no_split_modules`
- manually cast to the right `dtype`: to change
* enable `float16` for `deit`
* fix `make fixup`
* add `slow` test for `fp16` inference
* another safety check
* Update src/transformers/models/deit/modeling_deit.py
* update relative positional embedding
* make fix copies
* add `use_cache` to list of arguments
* fixup
* 1line fucntion
* add `test_decoder_model_past_with_large_inputs_relative_pos_emb`
* add relative pos embedding test for more models
* style
* Fix ImageSegmentationPipelineTests
* Use 0.9
* no zip
* links to show images
* links to show images
* rebase
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* docs: fix: set overflowing image width to auto-scale
* docs: fix: new language Korean is also affected
* docs: fix: unnecessary line break in index page
* merge conflicts
* bos and eos in datacollator
* (temp) hardcode removal of attention mask
* freeze encoder
* actually freeze encoder
* set max length / num beams according to gen kwargs
* (temp) fix tests
* don't pop attn mask
* override return attention mask config from Hub
* Hub configs updated 🤗
* final fixes
* update type annotations
* backward comp
docs: i18n: first draft of index page
docs: fix: first revision of index page
docs: i18n: missed section - supported frameworks
docs: fix: second revision of index page
review by @ArthurZucker
refactor: remove untranslated files from korean
docs: fix: remove untranslated references from toctree.yml
feat: enable korean docs in gh actions
docs: feat: add in_translation page as placeholder
docs: bug: testing if internal toc need alphabet chars
docs: fix: custom english anchor for non-alphanumeric headings
review by @sgugger
docs: i18n: translate comments on install methods in _config.py
docs: refactor: more concise wording for translations
* Proposal Remove the weird `inspect` in ASR pipeline and make
WhisperEncoder just nice to use.
It seems that accepting `attention_mask` is kind of an invariant of our
models. For Seq2Seq ASR models, we had a special comment on how it
actually was important to send it.
`inspecting` seems pretty brittle way to handle this case.
My suggestion is to simply add it as an kwarg that and just ignoring
it with the docstring explaining why it's ignored.
* Fixup.
* Update src/transformers/models/whisper/modeling_whisper.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Doc fixing .
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add model files etc for MobileNetV2
* rename files for MobileNetV1
* initial implementation of MobileNetV1
* fix conversion script
* cleanup
* write docs
* tweaks
* fix conversion script
* extract hidden states
* fix test cases
* make fixup
* fixup it all
* rename V1 to V2
* fix checkpoints
* fixup
* implement first block + weight conversion
* add remaining layers
* add output stride and dilation
* fixup
* add tests
* add deeplabv3+ head
* a bit of fixup
* finish deeplab conversion
* add link to doc
* fix issue with JIT trace
in_height and in_width would be Tensor objects during JIT trace, which caused Core ML conversion to fail on the remainder op. By making them ints, the result of the padding calculation becomes a constant value.
* cleanup
* fix order of models
* fix rebase error
* remove main from doc link
* add image processor
* remove old feature extractor
* fix converter + other issues
* fixup
* fix unit test
* add to onnx tests (but these appear broken now)
* add post_process_semantic_segmentation
* use google org
* remove unused imports
* move args
* replace weird assert
* Apply fix
* Fix test
* Remove another argument which is not used
* Fix pipeline test
* Add argument back, add deprecation warning
* Add warning add other location
* Use warnings instead
* Add num_channels to config
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
* Adding support for LayoutLMvX variants for `object-detection`.
* Revert bogs `layoutlm` feature extractor which does not exist (it was a
V2 model) .
* Updated condition.
* Handling the comments.
* move generation_*.py src files into generation/*.py
* populate generation.__init__ with lazy loading
* move imports and references from generation.xxx.object to generation.object
* Attempting to test automatically the `_keys_to_ignore`.
* Style.
* First fix pass.
* Moving test on its own.
* Another batch.
* Second round removing BatchNorm
* Fixing layoutlmv{2,3} + support older Python.
* Disable miss missing warning.
* Removing dodgy additions.
* Big pass.
* mbart.
* More corrections.
* Fixup.
* Updating test_correct_missing_keys
* Add escape hatch for when the head has no extra params so doesn't need
the missing keys check.
* Fixing test.
* Greener.
* Green ! (except for weird splinter bug).
* Adding a test about `named_parameters` usage.
* Shorten message.
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* After rebase modifications.
* More explicit condition checking.
* Fixing slow tests issues.
* Remove extra pdb.
* Remove print.
* Attempt to make failure consistent + fixing roc_bert.
* Removing the seed (all tests passing with it).
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add first draft
* Update conversion script
* Improve conversion script
* Improve conversion script some more
* Add conditional embeddings
* Add initial decoder
* Fix activation function of decoder
* Make decoder outputs match original implementation
* Make decoder outputs match original implementation
* Add more copied from statements
* Improve model outputs
* Fix auto tokenizer file
* Fix more tests
* Add test
* Improve README and docs, improve conditional embeddings
* Fix more tests
* Remove print statements
* Remove initial embeddings
* Improve conversion script
* Add interpolation of position embeddings
* Finish addition of interpolation of position embeddings
* Add support for refined checkpoint
* Fix refined checkpoint
* Remove unused parameter
* Improve conversion script
* Add support for training
* Fix conversion script
* Add CLIPSegFeatureExtractor
* Fix processor
* Fix CLIPSegProcessor
* Fix conversion script
* Fix most tests
* Fix equivalence test
* Fix README
* Add model to doc tests
* Use better variable name
* Convert other checkpoint as well
* Update config, add link to paper
* Add docs
* Update organization
* Replace base_model_prefix with clip
* Fix base_model_prefix
* Fix checkpoint of config
* Fix config checkpoint
* Remove file
* Use logits for output
* Fix tests
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* docs: Fix typo in ONNX parser help: 'tolerence' => 'tolerance'
* docs: Resolve many typos in the English docs
Typos found via 'codespell ./docs/source/en'
* Speed up TF postprocessing by converting to numpy before
* Fix bug that was triggered when offset_mapping was None
Co-authored-by: Patrick Deutschmann <patrick.deutschmann@dedalus.com>
* Add test for SentencePiece not adding special tokens to strings
* Add SentencePieceStringConversionMixin to fix issue 15003
* Fix conversion from tokens to string for most SentencePiece tokenizers
Tokenizers fixed:
- AlbertTokenizer
- BarthezTokenizer
- CamembertTokenizer
- FNetTokenizer
- M2M100Tokenizer
- MBart50Tokenizer
- PegasusTokenizer
- Speech2TextTokenizer
* Fix MarianTokenizer, adjust SentencePiece test to accomodate vocab
* Fix DebertaV2Tokenizer
* Ignore LayoutXLMTokenizer in SentencePiece string conversion test
* Run 'make style' and 'make quality'
* Clean convert_tokens_to_string test
Instead of explicitly ignoring LayoutXLMTokenizer in the test,
override the test in LayoutLMTokenizationTest and do nothing in it.
* Remove commented out code
* Improve robustness of convert_tokens_to_string test
Instead of comparing lengths of re-tokenized text and input_ids,
check that converting all special tokens to string yields a string
with all special tokens.
* Inline and remove SentencePieceStringConversionMixin
The convert_tokens_to_string method is now implemented
in each relevant SentencePiece tokenizer.
* Run 'make style' and 'make quality'
* Revert removal of space in convert_tokens_to_string
* Remove redundant import
* Revert test text to original
* Uncomment the lowercasing of the reverse_text variable
* Mimic Rust tokenizer behavior for tokenizers
- Albert
- Barthez
- Camembert
- MBart50
- T5
* Fix accidentally skipping test in wrong tokenizer
* Add test for equivalent Rust and slow tokenizer behavior
* Override _decode in BigBirdTokenizer to mimic Rust behavior
* Override _decode in FNetTokenizer to mimic Rust behavior
* Override _decode in XLNetTokenizer to mimic Rust behavior
* Remove unused 're' import
* Update DebertaV2Tokenizer to mimic Rust tokenizer
* Deberta tokenizer now behaves like Albert and its `convert_tokens_to_string` is not tested.
* Ignore problematic tests in Deberta V2
* Add comment on why the Deberta V2 tests are skipped
* initial commit
* First draft that gets outputs without crashing!
* Add all the ported openfold dependencies
* testing
* Restructure config files for ESMFold
* Debugging to find output discrepancies
* Mainly style
* Make model runnable without extra deps
* Remove utils and merge them to the modeling file
* Use correct gelu and remove some debug prints
* More cleanup
* Update esm docs
* Update conversion script to support ESMFold properly
* Port some top-level changes from ESMFold repo
* Expand EsmFold docstrings
* Make attention_mask optional (default to all 1s)
* Add inference test for ESMFold
* Use config and not n kwargs
* Add modeling output class
* Remove einops
* Remove chunking in ESM FFN
* Update tests for ESMFold
* Quality
* REpo consistency
* Remove tree dependency from ESMFold
* make fixup
* Add an error in case my structure map function breaks later
* Remove needless code
* Stop auto-casting the LM to float16 so CPU tests pass
* Stop auto-casting the LM to float16 so CPU tests pass
* Final test updates
* Split test file
* Copyright and quality
* Unpin PyTorch to see built doc
* Fix config file to_dict() method
* Add some docstrings to the output
* Skip TF checkpoint tests for ESM until we reupload those
* make fixup
* More docstrings
* Unpin to get even with main
* Flag example to write
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* Add Example docstring to DebertaConfig
* Add configuration_deberta to documentation_tests
* Add microsoft/deberta-base to example docstring
* Fix example docstring mistake
* Support segformer fx
* Add fx_compatible attribute to test_modeling_segformer.py
* Update glpn model (fx support)
glpn model was copied from segformer.
* Update utils/fx.py | add semantic-segmentation
for SegformerForSemanticSegmentation model
* Fix minor import order(isort)
* Add random input generation for segformer fx
Co-authored-by: noelbird <lduldu00228@gmail.com>
* Let inputs of fast tokenizers be tuples as well as lists
* Update src/transformers/tokenization_utils_fast.py
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
* Style
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
* Wip
* Add safetensors support for TensorFlow
* First tests
* Add final test for now
* Retrigger CI like this
* Update src/transformers/modeling_tf_utils.py
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
* Change the import of kenlm from github to pypi
* Change the import of kenlm from github to pypi in circleci config
* Fix code quality issues
* Fix isort issue, add kenlm in extras for audio
* Add kenlm to deps
* Add kenlm to deps
* Commit 'make fixup' changes
* Remove version from kenlm deps
* commit make fixup changes
* Remove manual installation of kenlm
* Remove manual installation of kenlm
* Remove manual installation of kenlm
* Add missing information on token_type_ids for roberta model
* Fix code format issues
* Fix code format issues
* Add more explicit document for token_type_ids for roberta
* Fix flake8 issues
* Fix flake8 issues
* Fix flake8 issues
* Fix flake8 issues
* Fix flake8 issues
* Factored out some code in the image-segmentation pipeline
Re-enable `small_model_pt`.
Re-enable `small_model_pt`.
Enabling the current test with the current values.
Debugging the values on the CI.
More logs ? Printing doesn't work ?
Using the CI values instead. Seems to be a Pillow sensitivity.
Added a test showcasing that models not supporting some tasks get a
clear error.
Factored out code.
Further factor out.
Fixup.
Bad rebase.
Put `panoptic` before `instance` as it should be a superset.
* Fixing tests.
* Adding subtasks tests
+ Fixes `instance` segmentation which was broken due to default and
non kwargs arguments.
* Fix bad replace.
* Translated multiple_choice.mdx, question_answering.mdx. Added them to _toctree.yml
* Added translation for a missed line.
* Update _toctree.yml as per Omar's suggestions
* Update multiple_choice.mdx as per Omar's comments
* Updt question_answering.mdx as per Omar's comments
* [ custom_models.mdx ] - Translated to Portuguese the custom models tutorial.
* [ run_scripts.mdx ] - Translated to Portuguese the run scripts tutorial.
* support sentencepiece for bertjapanesetokenizer
* add test vocab file for sentencepiece, bertjapanesetokenizer
* make BasicTokenizer be identical to transformers.models.bert.tokenization_bert.BasicTokenizer
* fix missing of \n in comment
* fix init argument missing in tests
* make spm_file be optional, exclude spiece.model from tests/fixtures, and add description comments
* make comment length less than 119
* apply doc style check
* Added support for multivariate independent emission heads
* fix typo
* rename distr_cls
* scale is a vector for multivariate
* set affine transform event_dim
* fix typo
* added variable
* added beta in the config
* set beta
* remove beta-nll option in nll
* First step of PT->TF for composite models
* Update the tests
* For VisionEncoderDecoderModel
* Fix
* Fix
* Add comment
* Fix
* clean up import
* Save memory
* For (TF)EncoderDecoderModel
* For (TF)EncoderDecoderModel
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Re-enable `small_model_pt`.
Re-enable `small_model_pt`.
Enabling the current test with the current values.
Debugging the values on the CI.
More logs ? Printing doesn't work ?
Using the CI values instead. Seems to be a Pillow sensitivity.
* Update src/transformers/pipelines/image_segmentation.py
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
* Change the import order of the model and configuration classes
* Add (with random weights) in the comment before model initialization
* Add configuration_wavlm to doctest
* add: the contrastive search for generaton_utils
* add: testing scripts for contrastive search under examples/text-generation
* update the quality of codes
* revise the docstring; make the generation_contrastive_search.py scripts;
* revise the examples/pytorch/text-generation/run_generation_contrastive_search.py to the auto-APIs format
* revise the necessary documents
* fix: revise the docstring of generation_contrastive_search.py
* Fix the code indentation
* fix: revise the nits and examples in contrastive_search docstring.
* fix the copyright
* delete generation_contrastive_search.py
* revise the logic in contrastive_search
* update the intergration test and the docstring
* run the tests over
* add the slow decorate to the contrastive_search intergrate test
* add more test
* do the style, quality, consistency checks
* Clean up deprecation warnings
Notes:
Changed some strings in tests to raw strings, which will change the literal content of the strings as they are fed into whatever machine handles them.
Test cases for past in the past/past_key_values switch changed/removed due to warning of impending removal
* Add PILImageResampling abstraction for PIL.Image.Resampling
This PR (https://github.com/huggingface/transformers/pull/19367) introduced a few breaking changes:
- Removed an argument `mask_threshold`.
- Broke the default behavior (instance vs panoptic in the function call)
https://github.com/huggingface/transformers/pull/19367/files#diff-60f846b86fb6a21d4caf60f5b3d593a04accb8f248de3029cccae2ff898c5bc3R119-R120
- Broke the actual masks: https://github.com/huggingface/transformers/pull/1961
This PR is the start of a handful that will aim at bringing back the old
behavior(s).
- tests should not have to specify `task` by default, unless we want to
modify the behavior and have a lower form of segmentation running)
- `test_small_model_pt` should be working.
This specific PR starts with adding more information to the masks hash
because missing the actual mask was actual easy to miss (the hashes do
change, but it was easy to miss that one code path wasn't properly
updated).
So we go from a simple `hash` to
```
{"hash": #smaller hash, "shape": (h, w), "white_pixels": n}
```
The `shape` should help make sure the interpolation of the mask works
correctly, the `white_pixels` hopefully helps detect big regressions in
their amount when the hash gets modified.
* add return_tensors parameter for feature_extraction w/ test
add return_tensor parameter for feature extraction
Revert "Merge branch 'feature-extraction-return-tensor' of https://github.com/ajsanjoaquin/transformers into feature-extraction-return-tensor"
This reverts commit d559da743b87914e111a84a98ba6dbb70d08ad88, reversing
changes made to bbef89278650c04c090beb65637a8e9572dba222.
call parameter directly
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Fixup.
Update src/transformers/pipelines/feature_extraction.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fix the imports.
* Fixing the test by not overflowing the model capacity.
Co-authored-by: AJ San Joaquin <ajsanjoaquin@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Adapt FE methods to transforms library
* Mixin for saving the image processor
* Base processor skeleton
* BatchFeature for packaging image processor outputs
* Initial image processor for GLPN
* REmove accidental import
* Fixup and docs
* Mixin for saving the image processor
* Fixup and docs
* Import BatchFeature from feature_extraction_utils
* Fixup and docs
* Fixup and docs
* Fixup and docs
* Fixup and docs
* BatchFeature for packaging image processor outputs
* Import BatchFeature from feature_extraction_utils
* Import BatchFeature from feature_extraction_utils
* Fixup and docs
* Fixup and docs
* BatchFeature for packaging image processor outputs
* Import BatchFeature from feature_extraction_utils
* Fixup and docs
* Mixin for saving the image processor
* Fixup and docs
* Add rescale back and remove ImageType
* fix import mistake
* Fix enum var reference
* Can transform and specify image data format
* Remove redundant function
* Update reference
* Data format flag for rescale
* Fix typo
* Fix dimension check
* Fixes to make IP and FE outputs match
* Add tests for transforms
* Add test for utils
* Update some docstrings
* Make sure in channels last before converting to PIL
* Remove default to numpy batching
* Fix up
* Add docstring and model_input_types
* Use feature processor config from hub
* Alias GLPN feature extractor to image processor
* Alias feature extractor mixin
* Add return_numpy=False flag for resize
* Fix up
* Fix up
* Use different frameworks safely
* Safely import PIL
* Call function checking if PIL available
* Only import if vision available
* Address Sylvain PR comments
Co-authored-by: Sylvain.gugger@gmail.com
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/image_transforms.py
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
* Update src/transformers/models/glpn/feature_extraction_glpn.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Add in docstrings
* Fix TFSwinSelfAttention to have relative position index as non-trainable weight (#18226)
Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
* Refactor `TFSwinLayer` to increase serving compatibility (#18352)
* Refactor `TFSwinLayer` to increase serving compatibility
Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
* Fix missed parameters while refactoring
Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
* Fix window_reverse to calculate batch size
Signed-off-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add TF prefix to TF-Res test class (#18481)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Remove py.typed (#18485)
* Fix pipeline tests (#18487)
* Fix pipeline tests
* Make sure all pipelines tests run with init changes
* Use new huggingface_hub tools for download models (#18438)
* Draft new cached_file
* Initial draft for config and model
* Small fixes
* Fix first batch of tests
* Look in cache when internet is down
* Fix last tests
* Bad black, not fixing all quality errors
* Make diff less
* Implement change for TF and Flax models
* Add tokenizer and feature extractor
* For compatibility with main
* Add utils to move the cache and auto-do it at first use.
* Quality
* Deal with empty commit shas
* Deal with empty etag
* Address review comments
* Fix `test_dbmdz_english` by updating expected values (#18482)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Move cache folder to huggingface/hub for consistency with hf_hub (#18492)
* Move cache folder to just huggingface
* Thank you VsCode for this needless import
* Move to hub
* Forgot one
* Update some expected values in `quicktour.mdx` for `resampy 0.3.0` (#18484)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Forgot one new_ for cache migration
* disable Onnx test for google/long-t5-tglobal-base (#18454)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Typo reported by Joel Grus on TWTR (#18493)
* Just re-reading the whole doc every couple of months 😬 (#18489)
* Delete valohai.yaml
* NLP => ML
* typo
* website supports https
* datasets
* 60k + modalities
* unrelated link fixing for accelerate
* Ok those links were actually broken
* Fix link
* Make `AutoTokenizer` auto-link
* wording tweak
* add at least one non-nlp task
* `transformers-cli login` => `huggingface-cli login` (#18490)
* zero chance anyone's using that constant no?
* `transformers-cli login` => `huggingface-cli login`
* `transformers-cli repo create` => `huggingface-cli repo create`
* `make style`
* Add seed setting to image classification example (#18519)
* [DX fix] Fixing QA pipeline streaming a dataset. (#18516)
* [DX fix] Fixing QA pipeline streaming a dataset.
QuestionAnsweringArgumentHandler would iterate over the whole dataset
effectively killing all properties of the pipeline.
This restores nice properties when using `Dataset` or `Generator` since
those are meant to be consumed lazily.
* Handling TF better.
* Clean up hub (#18497)
* Clean up utils.hub
* Remove imports
* More fixes
* Last fix
* update fsdp docs (#18521)
* updating fsdp documentation
* typo fix
* Fix compatibility with 1.12 (#17925)
* Fix compatibility with 1.12
* Remove pin from examples requirements
* Update torch scatter version
* Fix compatibility with 1.12
* Remove pin from examples requirements
* Update torch scatter version
* fix torch.onnx.symbolic_opset12 import
* Reject bad version
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Remove debug statement
* Specify en in doc-builder README example (#18526)
Co-authored-by: Ankur Goyal <ankur@impira.com>
* New cache fixes: add safeguard before looking in folders (#18522)
* unpin resampy (#18527)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* ✨ update to use interlibrary links instead of Markdown (#18500)
* Add example of multimodal usage to pipeline tutorial (#18498)
* 📝 add example of multimodal usage to pipeline tutorial
* 🖍 apply feedbacks
* 🖍 apply niels feedback
* [VideoMAE] Add model to doc tests (#18523)
* Add videomae to doc tests
* Add pip install decord
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Update perf_train_gpu_one.mdx (#18532)
* Update no_trainer.py scripts to include accelerate gradient accumulation wrapper (#18473)
* Added accelerate gradient accumulation wrapper to run_image_classification_no_trainer.py example script
* make fixup changes
* PR comments
* changed input to Acceletor based on PR comment, ran make fixup
* Added comment explaining the sync_gradients statement
* Fixed lr scheduler max steps
* Changed run_clm_no_trainer.py script to use accelerate gradient accum wrapper
* Fixed all scripts except wav2vec2 pretraining to use accelerate gradient accum wrapper
* Added accelerate gradient accum wrapper for wav2vec2_pretraining_no_trainer.py script
* make fixup and lr_scheduler step inserted back into run_qa_beam_search_no_trainer.py
* removed changes to run_wav2vec2_pretraining_no_trainer.py script and fixed using wrong constant in qa_beam_search_no_trainer.py script
* Add Spanish translation of converting_tensorflow_models.mdx (#18512)
* Add file in spanish docs to be translated
* Finish translation to Spanish
* Improve Spanish wording
* Add suggested changes from review
* Spanish translation of summarization.mdx (#15947) (#18477)
* Add Spanish translation of summarization.mdx
* Apply suggestions from code review
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
* Let's not cast them all (#18471)
* add correct dtypes when checking for params dtype
* forward contrib credits
* Update src/transformers/modeling_utils.py
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>
* more comments
- added more comments on why we cast only floating point parameters
* Update src/transformers/modeling_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: sgugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>
* fix: data2vec-vision Onnx ready-made configuration. (#18427)
* feat: add the data2vec conf that are missing https://huggingface.co/docs/transformers/serialization
* fix: wrong config
* Add mt5 onnx config (#18394)
* update features
* MT5OnnxConfig added with updated with tests and docs
* fix imports
* fix onnc_config_cls for mt5
Co-authored-by: Thomas Chaigneau <thomas.deeptools.ai>
* Minor update of `run_call_with_unpacked_inputs` (#18541)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* BART - Fix attention mask device issue on copied models (#18540)
* attempt to fix attn mask device
* fix bart `_prepare_decoder_attention_mask`
- add correct device
- run `make fix-copies` to propagate the fix
* Adding a new `align_to_words` param to qa pipeline. (#18010)
* Adding a new `align_to_words` param to qa pipeline.
* Update src/transformers/pipelines/question_answering.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Import protection.
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* 📝 update metric with evaluate (#18535)
* Restore _init_weights value in no_init_weights (#18504)
* Recover _init_weights value in no_init_weights
For potential nested use.
In addition, users might modify private no_init_weights as well.
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Remove private variable change check
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Clean up comment
* 📝 update documentation build section (#18548)
* `bitsandbytes` - `Linear8bitLt` integration into `transformers` models (#17901)
* first commit
* correct replace function
* add final changes
- works like charm!
- cannot implement tests yet
- tested
* clean up a bit
* add bitsandbytes dependencies
* working version
- added import function
- added bitsandbytes utils file
* small fix
* small fix
- fix import issue
* fix import issues
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* refactor a bit
- move bitsandbytes utils to utils
- change comments on functions
* reformat docstring
- reformat docstring on init_empty_weights_8bit
* Update src/transformers/__init__.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* revert bad formatting
* change to bitsandbytes
* refactor a bit
- remove init8bit since it is useless
* more refactoring
- fixed init empty weights issue
- added threshold param
* small hack to make it work
* Update src/transformers/modeling_utils.py
* Update src/transformers/modeling_utils.py
* revmoe the small hack
* modify utils file
* make style + refactor a bit
* create correctly device map
* add correct dtype for device map creation
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* apply suggestions
- remove with torch.grad
- do not rely on Python bool magic!
* add docstring
- add docstring for new kwargs
* add docstring
- comment `replace_8bit_linear` function
- fix weird formatting
* - added more documentation
- added new utility function for memory footprint tracking
- colab demo to add
* few modifs
- typo doc
- force cast into float16 when load_in_8bit is enabled
* added colab link
* add test architecture + docstring a bit
* refactor a bit testing class
* make style + refactor a bit
* enhance checks
- add more checks
- start writing saving test
* clean up a bit
* male style
* add more details on doc
* add more tests
- still needs to fix 2 tests
* replace by "or"
- could not fix it from GitHub GUI
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* refactor a bit testing code + add readme
* make style
* fix import issue
* Update src/transformers/modeling_utils.py
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* add few comments
* add more doctring + make style
* more docstring
* raise error when loaded in 8bit
* make style
* add warning if loaded on CPU
* add small sanity check
* fix small comment
* add bitsandbytes on dockerfile
* Improve documentation
- improve documentation from comments
* add few comments
* slow tests pass on the VM but not on the CI VM
* Fix merge conflict
* make style
* another test should pass on a multi gpu setup
* fix bad import in testing file
* Fix slow tests
- remove dummy batches
- no more CUDA illegal memory errors
* odify dockerfile
* Update docs/source/en/main_classes/model.mdx
* Update Dockerfile
* Update model.mdx
* Update Dockerfile
* Apply suggestions from code review
* few modifications
- lm head can stay on disk/cpu
- change model name so that test pass
* change test value
- change test value to the correct output
- torch bmm changed to baddmm in bloom modeling when merging
* modify installation guidelines
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* replace `n`by `name`
* merge `load_in_8bit` and `low_cpu_mem_usage`
* first try - keep the lm head in full precision
* better check
- check the attribute `base_model_prefix` instead of computing the number of parameters
* added more tests
* Update src/transformers/utils/bitsandbytes.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Merge branch 'integration-8bit' of https://github.com/younesbelkada/transformers into integration-8bit
* improve documentation
- fix typos for installation
- change title in the documentation
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* TF: XLA-trainable DeBERTa v2 (#18546)
* fix deberta issues
* add different code paths for gpu and tpu
* shorter gpu take along axis
* Stable Dropout without tf cond
* variable must be float
* Preserve hub-related kwargs in AutoModel.from_pretrained (#18545)
* Preserve hub-related kwargs in AutoModel.from_pretrained
* Fix tests
* Remove debug statement
* TF Examples Rewrite (#18451)
* Finished QA example
* Dodge a merge conflict
* Update text classification and LM examples
* Update NER example
* New Keras metrics WIP, fix NER example
* Update NER example
* Update MC, summarization and translation examples
* Add XLA warnings when shapes are variable
* Make sure batch_size is consistently scaled by num_replicas
* Add PushToHubCallback to all models
* Add docs links for KerasMetricCallback
* Add docs links for prepare_tf_dataset and jit_compile
* Correct inferred model names
* Don't assume the dataset has 'lang'
* Don't assume the dataset has 'lang'
* Write metrics in text classification
* Add 'framework' to TrainingArguments and TFTrainingArguments
* Export metrics in all examples and add tests
* Fix training args for Flax
* Update command line args for translation test
* make fixup
* Fix accidentally running other tests in fp16
* Remove do_train/do_eval from run_clm.py
* Remove do_train/do_eval from run_mlm.py
* Add tensorflow tests to circleci
* Fix circleci
* Update examples/tensorflow/language-modeling/run_mlm.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update examples/tensorflow/test_tensorflow_examples.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update examples/tensorflow/translation/run_translation.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update examples/tensorflow/token-classification/run_ner.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Fix save path for tests
* Fix some model card kwargs
* Explain the magical -1000
* Actually enable tests this time
* Skip text classification PR until we fix shape inference
* make fixup
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Use commit hash to look in cache instead of calling head (#18534)
* Use commit hash to look in cache instead of calling head
* Add tests
* Add attr for local configs too
* Stupid typos
* Fix tests
* Update src/transformers/utils/hub.py
Co-authored-by: Julien Chaumond <julien@huggingface.co>
* Address Julien's comments
Co-authored-by: Julien Chaumond <julien@huggingface.co>
* `pipeline` support for `device="mps"` (or any other string) (#18494)
* `pipeline` support for `device="mps"` (or any other string)
* Simplify `if` nesting
* Update src/transformers/pipelines/base.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fix? @sgugger
* passing `attr=None` is not the same as not passing `attr` 🤯
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update philosophy to include other preprocessing classes (#18550)
* 📝 update philosophy to include other preprocessing classes
* 🖍 apply feedbacks
* Properly move cache when it is not in default path (#18563)
* Adds CLIP to models exportable with ONNX (#18515)
* onnx config for clip
* default opset as 14
* changes from the original repo
* input values order fix
* outputs fix
* remove unused import
* ran make fix-copies
* black format
* review comments: forward ref, import fix, model change revert, .to cleanup
* make style
* formatting fixes
* revert groupvit
* comment for cast to int32
* comment fix
* make .T as .t() for onnx conversion
* ran make fix-copies
* remove unneeded comment
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fix copies
* remove comment
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* raise atol for MT5OnnxConfig (#18560)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* fix string (#18568)
* Segformer TF: fix output size in documentation (#18572)
* Segformer TF: fix output size in doc
* Segformer pytorch: fix output size in doc
Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>
* Fix resizing bug in OWL-ViT (#18573)
* Fixes resizing bug in OWL-ViT
* Defaults to square resize if size is set to an int
* Sets do_center_crop default value to False
* Fix LayoutLMv3 documentation (#17932)
* fix typos
* fix sequence_length docs of LayoutLMv3Model
* delete trailing white spaces
* fix layoutlmv3 docs more
* apply make fixup & quality
* change to two versions of input docstring
* apply make fixup & quality
* Skip broken tests
* Change BartLearnedPositionalEmbedding's forward method signature to support Opacus training (#18486)
* changing BartLearnedPositionalEmbedding forward signature and references to it
* removing debugging dead code (thanks style checker)
* blackened modeling_bart file
* removing copy inconsistencies via make fix-copies
* changing references to copied signatures in Bart variants
* make fix-copies once more
* using expand over repeat (thanks @michaelbenayoun)
* expand instead of repeat for all model copies
Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>
* german docs translation (#18544)
* Create _config.py
* Create _toctree.yml
* Create index.mdx
not sure about "du / ihr" oder "sie"
* Create quicktour.mdx
* Update _toctree.yml
* Update build_documentation.yml
* Update build_pr_documentation.yml
* fix build
* Update index.mdx
* Update quicktour.mdx
* Create installation.mdx
* Update _toctree.yml
* Deberta V2: Fix critical trace warnings to allow ONNX export (#18272)
* Fix critical trace warnings to allow ONNX export
* Force input to `sqrt` to be float type
* Cleanup code
* Remove unused import statement
* Update model sew
* Small refactor
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* Use broadcasting instead of repeat
* Implement suggestion
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* Match deberta v2 changes in sew_d
* Improve code quality
* Update code quality
* Consistency of small refactor
* Match changes in sew_d
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* [FX] _generate_dummy_input supports audio-classification models for labels (#18580)
* Support audio classification architectures for labels generation, as well as provides a flag to print warnings or not
* Use ENV_VARS_TRUE_VALUES
* Fix docstrings with last version of hf-doc-builder styler (#18581)
* Fix docstrings with last version of hf-doc-builder styler
* Remove empty Parameter block
* Bump nbconvert from 6.0.1 to 6.3.0 in /examples/research_projects/lxmert (#18565)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)
---
updated-dependencies:
- dependency-name: nbconvert
dependency-type: direct:production
...
Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
* Bump nbconvert in /examples/research_projects/visual_bert (#18566)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)
---
updated-dependencies:
- dependency-name: nbconvert
dependency-type: direct:production
...
Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
* fix owlvit tests, update docstring examples (#18586)
* Return the permuted hidden states if return_dict=True (#18578)
* Load sharded pt to flax (#18419)
* initial commit
* add small test
* add cross pt tf flag to test
* fix quality
* style
* update test with new repo
* fix failing test
* update
* fix wrong param ordering
* style
* update based on review
* update related to recent new caching mechanism
* quality
* Update based on review
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
* quality and style
* Update src/transformers/modeling_flax_utils.py
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add type hints for ViLT models (#18577)
* Add type hints for Vilt models
* Add missing return type for TokenClassification class
* update doc for perf_train_cpu_many, add intel mpi introduction (#18576)
* update doc for perf_train_cpu_many, add mpi introduction
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Update docs/source/en/perf_train_cpu_many.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/en/perf_train_cpu_many.mdx
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* typos (#18594)
* FSDP bug fix for `load_state_dict` (#18596)
* Add `TFAutoModelForSemanticSegmentation` to the main `__init__.py` (#18600)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Generate: validate `model_kwargs` (and catch typos in generate arguments) (#18261)
* validate generate model_kwargs
* generate tests -- not all models have an attn mask
* Supporting seq2seq models for `bitsandbytes` integration (#18579)
* Supporting seq2seq models for `bitsandbytes` integration
- `bitsandbytes` integration supports now seq2seq models
- check if a model has tied weights as an additional check
* small modification
- tie the weights before looking at tied weights!
* Add Donut (#18488)
* First draft
* Improve script
* Update script
* Make conversion work
* Add final_layer_norm attribute to Swin's config
* Add DonutProcessor
* Convert more models
* Improve feature extractor and convert base models
* Fix bug
* Improve integration tests
* Improve integration tests and add model to README
* Add doc test
* Add feature extractor to docs
* Fix integration tests
* Remove register_buffer
* Fix toctree and add missing attribute
* Add DonutSwin
* Make conversion script work
* Improve conversion script
* Address comment
* Fix bug
* Fix another bug
* Remove deprecated method from docs
* Make Swin and Swinv2 untouched
* Fix code examples
* Fix processor
* Update model_type to donut-swin
* Add feature extractor tests, add token2json method, improve feature extractor
* Fix failing tests, remove integration test
* Add do_thumbnail for consistency
* Improve code examples
* Add code example for document parsing
* Add DonutSwin to MODEL_NAMES_MAPPING
* Add model to appropriate place in toctree
* Update namespace to appropriate organization
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Fix URLs (#18604)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Update BLOOM parameter counts (#18531)
* Update BLOOM parameter counts
* Update BLOOM parameter counts
* [doc] fix anchors (#18591)
the manual anchors end up being duplicated with automatically added anchors and no longer work.
* [fsmt] deal with -100 indices in decoder ids (#18592)
* [fsmt] deal with -100 indices in decoder ids
Fixes: https://github.com/huggingface/transformers/issues/17945
decoder ids get the default index -100, which breaks the model - like t5 and many other models add a fix to replace -100 with the correct pad index.
For some reason this use case hasn't been used with this model until recently - so this issue was there since the beginning it seems.
Any suggestions to how to add a simple test here? or perhaps we have something similar already? user's script is quite massive.
* style
* small change (#18584)
* Flax Remat for LongT5 (#17994)
* [Flax] Add remat (gradient checkpointing)
* fix variable naming in test
* flip: checkpoint using a method
* fix naming
* fix class naming
* apply PVP's suggestions from code review
* add gradient_checkpointing to examples
* Add gradient_checkpointing to run_mlm_flax
* Add remat to longt5
* Add gradient checkpointing test longt5
* Fix args errors
* Fix remaining tests
* Make fixup & quality fixes
* replace kwargs
* remove unecessary kwargs
* Make fixup changes
* revert long_t5_flax changes
* Remove return_dict and copy to LongT5
* Remove test_gradient_checkpointing
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
* mac m1 `mps` integration (#18598)
* mac m1 `mps` integration
* Update docs/source/en/main_classes/trainer.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* addressing comments
* Apply suggestions from code review
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>
* resolve comment
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>
* Change scheduled CIs to use torch 1.12.1 (#18644)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Add checks for some workflow jobs (#18583)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* TF: Fix generation repetition penalty with XLA (#18648)
* Update longt5.mdx (#18634)
* Update run_translation_no_trainer.py (#18637)
* Update run_translation_no_trainer.py
found an error in selecting `no_decay` parameters and some small modifications when the user continues to train from a checkpoint
* fixs `no_decay` and `resume_step` issue
1. change `no_decay` list
2. if use continue to train their model from provided checkpoint, the `resume_step` will not be initialized properly if `args.gradient_accumulation_steps != 1`
* [bnb] Minor modifications (#18631)
* bnb minor modifications
- refactor documentation
- add troubleshooting README
- add PyPi library on DockerFile
* Apply suggestions from code review
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Apply suggestions from code review
* Apply suggestions from code review
* Apply suggestions from code review
* put in one block
- put bash instructions in one block
* update readme
- refactor a bit hardware requirements
* change text a bit
* Apply suggestions from code review
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* apply suggestions
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* add link to paper
* Apply suggestions from code review
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Update tests/mixed_int8/README.md
* Apply suggestions from code review
* refactor a bit
* add instructions Turing & Amperer
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* add A6000
* clarify a bit
* remove small part
* Update tests/mixed_int8/README.md
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Examples: add Bloom support for token classification (#18632)
* examples: add Bloom support for token classification (FLAX, PyTorch and TensorFlow)
* examples: remove support for Bloom in token classication (FLAX and TensorFlow currently have no support for it)
* Fix Yolos ONNX export test (#18606)
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Fixup
* Fix up
* Move PIL default arguments inside function for safe imports
* Add image utils to toctree
* Update `rescale` method to reflect changes in #18677
* Update docs/source/en/internal/image_processing_utils.mdx
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Address Niels PR comments
* Add normalize method to transforms library
* Apply suggestions from code review - remove defaults to None
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fix docstrings and revert to PIL.Image.XXX resampling
Use PIL.Image.XXX resampling values instead of PIL.Image.Resampling.XXX enum as it's only in the recent version >= 9.10 and version is not yet pinned and older version support deprecated
* Some more docstrings and PIL.Image tidy up
* Reorganise arguments so flags by modifiers
* Few last docstring fixes
* Add normalize to docs
* Accept PIL.Image inputs with deprecation warning
* Update src/transformers/image_transforms.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update warning to include version
* Trigger CI - hash clash on doc build
Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Co-authored-by: Ankur Goyal <ankrgyl@gmail.com>
Co-authored-by: Ankur Goyal <ankur@impira.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Mishig Davaadorj <dmishig@gmail.com>
Co-authored-by: Rasmus Arpe Fogh Jensen <Rasmus.arpe@gmail.com>
Co-authored-by: Ian Castillo <7807897+donelianc@users.noreply.github.com>
Co-authored-by: AguilaCudicio <aguila.cudicio@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>
Co-authored-by: Niklas Hansson <niklas.sven.hansson@gmail.com>
Co-authored-by: Thomas Chaigneau <t.chaigneau.tc@gmail.com>
Co-authored-by: YouJiacheng <1503679330@qq.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Dhruv Karan <k4r4n.dhruv@gmail.com>
Co-authored-by: Michael Wyatt <mrwyattii@gmail.com>
Co-authored-by: Maxime G <joihn@users.noreply.github.com>
Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>
Co-authored-by: Wonseok Lee (Jack) <rollerkid02@snu.ac.kr>
Co-authored-by: Dan Jones <dan.j.jones2@gmail.com>
Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>
Co-authored-by: flozi00 <flozi00.fz@gmail.com>
Co-authored-by: iiLaurens <iiLaurens@users.noreply.github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Karim Foda <35491698+KMFODA@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>
Co-authored-by: zhoutang776 <47708118+zhoutang776@users.noreply.github.com>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
* fix warnings in deberta
* fix copies
* Revert "fix copies"
This reverts commit 324cb3fed11e04190ba7b4662644baa8143b60be.
* fix copies
* fix copies again
* revert changes to whitespace that make style did since it results in an infinite chain of fix-copies
* argh
Co-authored-by: Sander Land <sander@chatdesk.com>
* added type hints for Yolos Pytorch model
* make fixup
* Update src/transformers/models/yolos/convert_yolos_to_pytorch.py
* Update src/transformers/models/yolos/convert_yolos_to_pytorch.py
* Update src/transformers/models/yolos/convert_yolos_to_pytorch.py
Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Partial TF port for ESM model
* Add ESM-TF tests
* Add the various imports for TF-ESM
* TF weight conversion almost ready
* Stop ignoring the decoder weights in PT
* Add tests and lots of fixes
* fix-copies
* Fix imports, add model docs
* Add get_vocab() to tokenizer
* Fix vocab links for pretrained files
* Allow multiple inputs with a sep
* Use EOS as SEP token because ESM vocab lacks SEP
* Correctly return special tokens mask from ESM tokenizer
* make fixup
* Stop testing unsupported embedding resizing
* Handle TF bias correctly
* Skip all models with slow tokenizers in the token classification test
* Fixing the batch/unbatcher of pipelines to accomodate the `None` being
passed around.
* Fixing pipeline bug caused by slow tokenizer being different.
* Update src/transformers/models/esm/modeling_tf_esm.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update src/transformers/models/esm/modeling_tf_esm.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update src/transformers/models/esm/modeling_tf_esm.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update set_input_embeddings and the copyright notices
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* add type hints to mctct
* run auto style corrections
* change torch.bool to bool#
* Update src/transformers/models/mctct/modeling_mctct.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Remove optional tags for attention_mask and head_mask'
* fix optional tags'
* Update src/transformers/models/mctct/modeling_mctct.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Remove key word argument X from pipeline predict and transform methods
As __call__ of pipeline clasees require one positional argument, passing
the input as a keyword argument inside predict, transform methods, causing
__call__ to fail. Hence in this commit the keyword argument is modified
into positional argument.
* Implement basic tests for scikitcompat pipeline interface
* Seperate tests instead of running with parameterized based on framework as both frameworks will not be active at the same time
* update feature extractor params
* update attention mask handling
* fix doc and pipeline test
* add warning when skipping test
* add whisper translation and transcription test
* fix build doc test
* Correct whisper processor
* make fix copies
* remove sample docstring as it does not fit whisper model
* Update src/transformers/models/whisper/modeling_whisper.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fix, doctests are passing
* Nit
* last nit
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Improve error messaging for ASR pipeline.
- Raise error early (in `_sanitize`) so users don't waste time trying to
run queries with invalid params.
- Fix the error was after using `config.inputs_to_logits_ratio` so our
check was masked by the failing property does not exist.
- Added some manual check on s2t for the error message.
No non ctc model seems to be used by the default runner (they are all
skipped).
* Removing pdb.
* Stop the early error it doesn't really work :(.
* GPTTOkenizer dependency removed from deberta class
Fixup
made the Deberta Tokenizer fast independent of GPT-2 tokenizer
Copied annotation added
Done the dependency removal
* Added some missing copied statement
* Added some copied statements
* add suport for non fast tf bert tokenizer
* add tests for non fast tf bert tokenizer
* fix fast bert tf tokenizer flag
* double tokenizers list on tf tokenizers test to aovid breaking zip on test output equivalence
* reformat code with black to comply with code quality checks
* trigger ci
* fix BLOOM ONNX config
- `value` params have `seq_len` as their 2nd axe as opposed to other models which have it as 3rd
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
* [Doctest] Add `configuration_bigbird_pegasus.py` and `configuration_big_bird`
[Doctest] Re-style `configuration_big_bird.py`
* [Doctest] One python instruction per line
* [Doctest] Fix styling
* [Doctest] More styling fixes
* Added type hints for TF: XLNet
* Added type hints for TF: XLNet
* Added type hints for TF: XLNet
* Added type hints for TF: XLNet
* Added type hints for TF: XLNet
* Added type hints for TF: XLNet
* Add type hints for XLnet (TF)
* Added type hints for XLnet (TF)
* Update src/transformers/models/xlnet/modeling_tf_xlnet.py
* yoso config for doctest
* Revert "yoso config for doctest"
This reverts commit eae128d6f1b3631b676ffbcc181390e338819bd1.
* add configurations_blenderbot_small.py for doctests
* yoso config for doctest
* Revert "yoso config for doctest"
This reverts commit eae128d6f1b3631b676ffbcc181390e338819bd1.
* add configurations.blenderbot.py for doctests
* add configuration.blenderbot for doctest
* Added (with random weights) in the comment before model initialization line
* Added configuration_bert_generation.py to utils/documentation_tests.txt
Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
* return None to avoid recursive call
* Give error
* Give error
* Add test
* More tests
* Quality
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Adapt FE methods to transforms library
* Mixin for saving the image processor
* Base processor skeleton
* BatchFeature for packaging image processor outputs
* Initial image processor for GLPN
* REmove accidental import
* Fixup and docs
* Mixin for saving the image processor
* Fixup and docs
* Import BatchFeature from feature_extraction_utils
* Fixup and docs
* Fixup and docs
* Fixup and docs
* Fixup and docs
* BatchFeature for packaging image processor outputs
* Import BatchFeature from feature_extraction_utils
* Import BatchFeature from feature_extraction_utils
* Fixup and docs
* Fixup and docs
* BatchFeature for packaging image processor outputs
* Import BatchFeature from feature_extraction_utils
* Fixup and docs
* Mixin for saving the image processor
* Fixup and docs
* Add rescale back and remove ImageType
* fix import mistake
* Fix enum var reference
* Can transform and specify image data format
* Remove redundant function
* Update reference
* Data format flag for rescale
* Fix typo
* Fix dimension check
* Fixes to make IP and FE outputs match
* Add tests for transforms
* Add test for utils
* Update some docstrings
* Make sure in channels last before converting to PIL
* Remove default to numpy batching
* Fix up
* Add docstring and model_input_types
* Use feature processor config from hub
* Alias GLPN feature extractor to image processor
* Alias feature extractor mixin
* Add return_numpy=False flag for resize
* Fix up
* Fix up
* Use different frameworks safely
* Safely import PIL
* Call function checking if PIL available
* Only import if vision available
* Address Sylvain PR comments
Co-authored-by: Sylvain.gugger@gmail.com
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/image_transforms.py
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
* Update src/transformers/models/glpn/feature_extraction_glpn.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Add in docstrings
* Fix TFSwinSelfAttention to have relative position index as non-trainable weight (#18226)
Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
* Refactor `TFSwinLayer` to increase serving compatibility (#18352)
* Refactor `TFSwinLayer` to increase serving compatibility
Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
* Fix missed parameters while refactoring
Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
* Fix window_reverse to calculate batch size
Signed-off-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add TF prefix to TF-Res test class (#18481)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Remove py.typed (#18485)
* Fix pipeline tests (#18487)
* Fix pipeline tests
* Make sure all pipelines tests run with init changes
* Use new huggingface_hub tools for download models (#18438)
* Draft new cached_file
* Initial draft for config and model
* Small fixes
* Fix first batch of tests
* Look in cache when internet is down
* Fix last tests
* Bad black, not fixing all quality errors
* Make diff less
* Implement change for TF and Flax models
* Add tokenizer and feature extractor
* For compatibility with main
* Add utils to move the cache and auto-do it at first use.
* Quality
* Deal with empty commit shas
* Deal with empty etag
* Address review comments
* Fix `test_dbmdz_english` by updating expected values (#18482)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Move cache folder to huggingface/hub for consistency with hf_hub (#18492)
* Move cache folder to just huggingface
* Thank you VsCode for this needless import
* Move to hub
* Forgot one
* Update some expected values in `quicktour.mdx` for `resampy 0.3.0` (#18484)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Forgot one new_ for cache migration
* disable Onnx test for google/long-t5-tglobal-base (#18454)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Typo reported by Joel Grus on TWTR (#18493)
* Just re-reading the whole doc every couple of months 😬 (#18489)
* Delete valohai.yaml
* NLP => ML
* typo
* website supports https
* datasets
* 60k + modalities
* unrelated link fixing for accelerate
* Ok those links were actually broken
* Fix link
* Make `AutoTokenizer` auto-link
* wording tweak
* add at least one non-nlp task
* `transformers-cli login` => `huggingface-cli login` (#18490)
* zero chance anyone's using that constant no?
* `transformers-cli login` => `huggingface-cli login`
* `transformers-cli repo create` => `huggingface-cli repo create`
* `make style`
* Add seed setting to image classification example (#18519)
* [DX fix] Fixing QA pipeline streaming a dataset. (#18516)
* [DX fix] Fixing QA pipeline streaming a dataset.
QuestionAnsweringArgumentHandler would iterate over the whole dataset
effectively killing all properties of the pipeline.
This restores nice properties when using `Dataset` or `Generator` since
those are meant to be consumed lazily.
* Handling TF better.
* Clean up hub (#18497)
* Clean up utils.hub
* Remove imports
* More fixes
* Last fix
* update fsdp docs (#18521)
* updating fsdp documentation
* typo fix
* Fix compatibility with 1.12 (#17925)
* Fix compatibility with 1.12
* Remove pin from examples requirements
* Update torch scatter version
* Fix compatibility with 1.12
* Remove pin from examples requirements
* Update torch scatter version
* fix torch.onnx.symbolic_opset12 import
* Reject bad version
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Remove debug statement
* Specify en in doc-builder README example (#18526)
Co-authored-by: Ankur Goyal <ankur@impira.com>
* New cache fixes: add safeguard before looking in folders (#18522)
* unpin resampy (#18527)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* ✨ update to use interlibrary links instead of Markdown (#18500)
* Add example of multimodal usage to pipeline tutorial (#18498)
* 📝 add example of multimodal usage to pipeline tutorial
* 🖍 apply feedbacks
* 🖍 apply niels feedback
* [VideoMAE] Add model to doc tests (#18523)
* Add videomae to doc tests
* Add pip install decord
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Update perf_train_gpu_one.mdx (#18532)
* Update no_trainer.py scripts to include accelerate gradient accumulation wrapper (#18473)
* Added accelerate gradient accumulation wrapper to run_image_classification_no_trainer.py example script
* make fixup changes
* PR comments
* changed input to Acceletor based on PR comment, ran make fixup
* Added comment explaining the sync_gradients statement
* Fixed lr scheduler max steps
* Changed run_clm_no_trainer.py script to use accelerate gradient accum wrapper
* Fixed all scripts except wav2vec2 pretraining to use accelerate gradient accum wrapper
* Added accelerate gradient accum wrapper for wav2vec2_pretraining_no_trainer.py script
* make fixup and lr_scheduler step inserted back into run_qa_beam_search_no_trainer.py
* removed changes to run_wav2vec2_pretraining_no_trainer.py script and fixed using wrong constant in qa_beam_search_no_trainer.py script
* Add Spanish translation of converting_tensorflow_models.mdx (#18512)
* Add file in spanish docs to be translated
* Finish translation to Spanish
* Improve Spanish wording
* Add suggested changes from review
* Spanish translation of summarization.mdx (#15947) (#18477)
* Add Spanish translation of summarization.mdx
* Apply suggestions from code review
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
* Let's not cast them all (#18471)
* add correct dtypes when checking for params dtype
* forward contrib credits
* Update src/transformers/modeling_utils.py
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>
* more comments
- added more comments on why we cast only floating point parameters
* Update src/transformers/modeling_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: sgugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>
* fix: data2vec-vision Onnx ready-made configuration. (#18427)
* feat: add the data2vec conf that are missing https://huggingface.co/docs/transformers/serialization
* fix: wrong config
* Add mt5 onnx config (#18394)
* update features
* MT5OnnxConfig added with updated with tests and docs
* fix imports
* fix onnc_config_cls for mt5
Co-authored-by: Thomas Chaigneau <thomas.deeptools.ai>
* Minor update of `run_call_with_unpacked_inputs` (#18541)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* BART - Fix attention mask device issue on copied models (#18540)
* attempt to fix attn mask device
* fix bart `_prepare_decoder_attention_mask`
- add correct device
- run `make fix-copies` to propagate the fix
* Adding a new `align_to_words` param to qa pipeline. (#18010)
* Adding a new `align_to_words` param to qa pipeline.
* Update src/transformers/pipelines/question_answering.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Import protection.
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* 📝 update metric with evaluate (#18535)
* Restore _init_weights value in no_init_weights (#18504)
* Recover _init_weights value in no_init_weights
For potential nested use.
In addition, users might modify private no_init_weights as well.
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Remove private variable change check
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Clean up comment
* 📝 update documentation build section (#18548)
* `bitsandbytes` - `Linear8bitLt` integration into `transformers` models (#17901)
* first commit
* correct replace function
* add final changes
- works like charm!
- cannot implement tests yet
- tested
* clean up a bit
* add bitsandbytes dependencies
* working version
- added import function
- added bitsandbytes utils file
* small fix
* small fix
- fix import issue
* fix import issues
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* refactor a bit
- move bitsandbytes utils to utils
- change comments on functions
* reformat docstring
- reformat docstring on init_empty_weights_8bit
* Update src/transformers/__init__.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* revert bad formatting
* change to bitsandbytes
* refactor a bit
- remove init8bit since it is useless
* more refactoring
- fixed init empty weights issue
- added threshold param
* small hack to make it work
* Update src/transformers/modeling_utils.py
* Update src/transformers/modeling_utils.py
* revmoe the small hack
* modify utils file
* make style + refactor a bit
* create correctly device map
* add correct dtype for device map creation
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* apply suggestions
- remove with torch.grad
- do not rely on Python bool magic!
* add docstring
- add docstring for new kwargs
* add docstring
- comment `replace_8bit_linear` function
- fix weird formatting
* - added more documentation
- added new utility function for memory footprint tracking
- colab demo to add
* few modifs
- typo doc
- force cast into float16 when load_in_8bit is enabled
* added colab link
* add test architecture + docstring a bit
* refactor a bit testing class
* make style + refactor a bit
* enhance checks
- add more checks
- start writing saving test
* clean up a bit
* male style
* add more details on doc
* add more tests
- still needs to fix 2 tests
* replace by "or"
- could not fix it from GitHub GUI
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* refactor a bit testing code + add readme
* make style
* fix import issue
* Update src/transformers/modeling_utils.py
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* add few comments
* add more doctring + make style
* more docstring
* raise error when loaded in 8bit
* make style
* add warning if loaded on CPU
* add small sanity check
* fix small comment
* add bitsandbytes on dockerfile
* Improve documentation
- improve documentation from comments
* add few comments
* slow tests pass on the VM but not on the CI VM
* Fix merge conflict
* make style
* another test should pass on a multi gpu setup
* fix bad import in testing file
* Fix slow tests
- remove dummy batches
- no more CUDA illegal memory errors
* odify dockerfile
* Update docs/source/en/main_classes/model.mdx
* Update Dockerfile
* Update model.mdx
* Update Dockerfile
* Apply suggestions from code review
* few modifications
- lm head can stay on disk/cpu
- change model name so that test pass
* change test value
- change test value to the correct output
- torch bmm changed to baddmm in bloom modeling when merging
* modify installation guidelines
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* replace `n`by `name`
* merge `load_in_8bit` and `low_cpu_mem_usage`
* first try - keep the lm head in full precision
* better check
- check the attribute `base_model_prefix` instead of computing the number of parameters
* added more tests
* Update src/transformers/utils/bitsandbytes.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Merge branch 'integration-8bit' of https://github.com/younesbelkada/transformers into integration-8bit
* improve documentation
- fix typos for installation
- change title in the documentation
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* TF: XLA-trainable DeBERTa v2 (#18546)
* fix deberta issues
* add different code paths for gpu and tpu
* shorter gpu take along axis
* Stable Dropout without tf cond
* variable must be float
* Preserve hub-related kwargs in AutoModel.from_pretrained (#18545)
* Preserve hub-related kwargs in AutoModel.from_pretrained
* Fix tests
* Remove debug statement
* TF Examples Rewrite (#18451)
* Finished QA example
* Dodge a merge conflict
* Update text classification and LM examples
* Update NER example
* New Keras metrics WIP, fix NER example
* Update NER example
* Update MC, summarization and translation examples
* Add XLA warnings when shapes are variable
* Make sure batch_size is consistently scaled by num_replicas
* Add PushToHubCallback to all models
* Add docs links for KerasMetricCallback
* Add docs links for prepare_tf_dataset and jit_compile
* Correct inferred model names
* Don't assume the dataset has 'lang'
* Don't assume the dataset has 'lang'
* Write metrics in text classification
* Add 'framework' to TrainingArguments and TFTrainingArguments
* Export metrics in all examples and add tests
* Fix training args for Flax
* Update command line args for translation test
* make fixup
* Fix accidentally running other tests in fp16
* Remove do_train/do_eval from run_clm.py
* Remove do_train/do_eval from run_mlm.py
* Add tensorflow tests to circleci
* Fix circleci
* Update examples/tensorflow/language-modeling/run_mlm.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update examples/tensorflow/test_tensorflow_examples.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update examples/tensorflow/translation/run_translation.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update examples/tensorflow/token-classification/run_ner.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Fix save path for tests
* Fix some model card kwargs
* Explain the magical -1000
* Actually enable tests this time
* Skip text classification PR until we fix shape inference
* make fixup
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Use commit hash to look in cache instead of calling head (#18534)
* Use commit hash to look in cache instead of calling head
* Add tests
* Add attr for local configs too
* Stupid typos
* Fix tests
* Update src/transformers/utils/hub.py
Co-authored-by: Julien Chaumond <julien@huggingface.co>
* Address Julien's comments
Co-authored-by: Julien Chaumond <julien@huggingface.co>
* `pipeline` support for `device="mps"` (or any other string) (#18494)
* `pipeline` support for `device="mps"` (or any other string)
* Simplify `if` nesting
* Update src/transformers/pipelines/base.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fix? @sgugger
* passing `attr=None` is not the same as not passing `attr` 🤯
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update philosophy to include other preprocessing classes (#18550)
* 📝 update philosophy to include other preprocessing classes
* 🖍 apply feedbacks
* Properly move cache when it is not in default path (#18563)
* Adds CLIP to models exportable with ONNX (#18515)
* onnx config for clip
* default opset as 14
* changes from the original repo
* input values order fix
* outputs fix
* remove unused import
* ran make fix-copies
* black format
* review comments: forward ref, import fix, model change revert, .to cleanup
* make style
* formatting fixes
* revert groupvit
* comment for cast to int32
* comment fix
* make .T as .t() for onnx conversion
* ran make fix-copies
* remove unneeded comment
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fix copies
* remove comment
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* raise atol for MT5OnnxConfig (#18560)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* fix string (#18568)
* Segformer TF: fix output size in documentation (#18572)
* Segformer TF: fix output size in doc
* Segformer pytorch: fix output size in doc
Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>
* Fix resizing bug in OWL-ViT (#18573)
* Fixes resizing bug in OWL-ViT
* Defaults to square resize if size is set to an int
* Sets do_center_crop default value to False
* Fix LayoutLMv3 documentation (#17932)
* fix typos
* fix sequence_length docs of LayoutLMv3Model
* delete trailing white spaces
* fix layoutlmv3 docs more
* apply make fixup & quality
* change to two versions of input docstring
* apply make fixup & quality
* Skip broken tests
* Change BartLearnedPositionalEmbedding's forward method signature to support Opacus training (#18486)
* changing BartLearnedPositionalEmbedding forward signature and references to it
* removing debugging dead code (thanks style checker)
* blackened modeling_bart file
* removing copy inconsistencies via make fix-copies
* changing references to copied signatures in Bart variants
* make fix-copies once more
* using expand over repeat (thanks @michaelbenayoun)
* expand instead of repeat for all model copies
Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>
* german docs translation (#18544)
* Create _config.py
* Create _toctree.yml
* Create index.mdx
not sure about "du / ihr" oder "sie"
* Create quicktour.mdx
* Update _toctree.yml
* Update build_documentation.yml
* Update build_pr_documentation.yml
* fix build
* Update index.mdx
* Update quicktour.mdx
* Create installation.mdx
* Update _toctree.yml
* Deberta V2: Fix critical trace warnings to allow ONNX export (#18272)
* Fix critical trace warnings to allow ONNX export
* Force input to `sqrt` to be float type
* Cleanup code
* Remove unused import statement
* Update model sew
* Small refactor
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* Use broadcasting instead of repeat
* Implement suggestion
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* Match deberta v2 changes in sew_d
* Improve code quality
* Update code quality
* Consistency of small refactor
* Match changes in sew_d
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* [FX] _generate_dummy_input supports audio-classification models for labels (#18580)
* Support audio classification architectures for labels generation, as well as provides a flag to print warnings or not
* Use ENV_VARS_TRUE_VALUES
* Fix docstrings with last version of hf-doc-builder styler (#18581)
* Fix docstrings with last version of hf-doc-builder styler
* Remove empty Parameter block
* Bump nbconvert from 6.0.1 to 6.3.0 in /examples/research_projects/lxmert (#18565)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)
---
updated-dependencies:
- dependency-name: nbconvert
dependency-type: direct:production
...
Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
* Bump nbconvert in /examples/research_projects/visual_bert (#18566)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)
---
updated-dependencies:
- dependency-name: nbconvert
dependency-type: direct:production
...
Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
* fix owlvit tests, update docstring examples (#18586)
* Return the permuted hidden states if return_dict=True (#18578)
* Load sharded pt to flax (#18419)
* initial commit
* add small test
* add cross pt tf flag to test
* fix quality
* style
* update test with new repo
* fix failing test
* update
* fix wrong param ordering
* style
* update based on review
* update related to recent new caching mechanism
* quality
* Update based on review
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
* quality and style
* Update src/transformers/modeling_flax_utils.py
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add type hints for ViLT models (#18577)
* Add type hints for Vilt models
* Add missing return type for TokenClassification class
* update doc for perf_train_cpu_many, add intel mpi introduction (#18576)
* update doc for perf_train_cpu_many, add mpi introduction
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Update docs/source/en/perf_train_cpu_many.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/en/perf_train_cpu_many.mdx
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* typos (#18594)
* FSDP bug fix for `load_state_dict` (#18596)
* Add `TFAutoModelForSemanticSegmentation` to the main `__init__.py` (#18600)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Generate: validate `model_kwargs` (and catch typos in generate arguments) (#18261)
* validate generate model_kwargs
* generate tests -- not all models have an attn mask
* Supporting seq2seq models for `bitsandbytes` integration (#18579)
* Supporting seq2seq models for `bitsandbytes` integration
- `bitsandbytes` integration supports now seq2seq models
- check if a model has tied weights as an additional check
* small modification
- tie the weights before looking at tied weights!
* Add Donut (#18488)
* First draft
* Improve script
* Update script
* Make conversion work
* Add final_layer_norm attribute to Swin's config
* Add DonutProcessor
* Convert more models
* Improve feature extractor and convert base models
* Fix bug
* Improve integration tests
* Improve integration tests and add model to README
* Add doc test
* Add feature extractor to docs
* Fix integration tests
* Remove register_buffer
* Fix toctree and add missing attribute
* Add DonutSwin
* Make conversion script work
* Improve conversion script
* Address comment
* Fix bug
* Fix another bug
* Remove deprecated method from docs
* Make Swin and Swinv2 untouched
* Fix code examples
* Fix processor
* Update model_type to donut-swin
* Add feature extractor tests, add token2json method, improve feature extractor
* Fix failing tests, remove integration test
* Add do_thumbnail for consistency
* Improve code examples
* Add code example for document parsing
* Add DonutSwin to MODEL_NAMES_MAPPING
* Add model to appropriate place in toctree
* Update namespace to appropriate organization
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Fix URLs (#18604)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Update BLOOM parameter counts (#18531)
* Update BLOOM parameter counts
* Update BLOOM parameter counts
* [doc] fix anchors (#18591)
the manual anchors end up being duplicated with automatically added anchors and no longer work.
* [fsmt] deal with -100 indices in decoder ids (#18592)
* [fsmt] deal with -100 indices in decoder ids
Fixes: https://github.com/huggingface/transformers/issues/17945
decoder ids get the default index -100, which breaks the model - like t5 and many other models add a fix to replace -100 with the correct pad index.
For some reason this use case hasn't been used with this model until recently - so this issue was there since the beginning it seems.
Any suggestions to how to add a simple test here? or perhaps we have something similar already? user's script is quite massive.
* style
* small change (#18584)
* Flax Remat for LongT5 (#17994)
* [Flax] Add remat (gradient checkpointing)
* fix variable naming in test
* flip: checkpoint using a method
* fix naming
* fix class naming
* apply PVP's suggestions from code review
* add gradient_checkpointing to examples
* Add gradient_checkpointing to run_mlm_flax
* Add remat to longt5
* Add gradient checkpointing test longt5
* Fix args errors
* Fix remaining tests
* Make fixup & quality fixes
* replace kwargs
* remove unecessary kwargs
* Make fixup changes
* revert long_t5_flax changes
* Remove return_dict and copy to LongT5
* Remove test_gradient_checkpointing
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
* mac m1 `mps` integration (#18598)
* mac m1 `mps` integration
* Update docs/source/en/main_classes/trainer.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* addressing comments
* Apply suggestions from code review
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>
* resolve comment
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>
* Change scheduled CIs to use torch 1.12.1 (#18644)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Add checks for some workflow jobs (#18583)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* TF: Fix generation repetition penalty with XLA (#18648)
* Update longt5.mdx (#18634)
* Update run_translation_no_trainer.py (#18637)
* Update run_translation_no_trainer.py
found an error in selecting `no_decay` parameters and some small modifications when the user continues to train from a checkpoint
* fixs `no_decay` and `resume_step` issue
1. change `no_decay` list
2. if use continue to train their model from provided checkpoint, the `resume_step` will not be initialized properly if `args.gradient_accumulation_steps != 1`
* [bnb] Minor modifications (#18631)
* bnb minor modifications
- refactor documentation
- add troubleshooting README
- add PyPi library on DockerFile
* Apply suggestions from code review
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Apply suggestions from code review
* Apply suggestions from code review
* Apply suggestions from code review
* put in one block
- put bash instructions in one block
* update readme
- refactor a bit hardware requirements
* change text a bit
* Apply suggestions from code review
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* apply suggestions
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* add link to paper
* Apply suggestions from code review
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Update tests/mixed_int8/README.md
* Apply suggestions from code review
* refactor a bit
* add instructions Turing & Amperer
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* add A6000
* clarify a bit
* remove small part
* Update tests/mixed_int8/README.md
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Examples: add Bloom support for token classification (#18632)
* examples: add Bloom support for token classification (FLAX, PyTorch and TensorFlow)
* examples: remove support for Bloom in token classication (FLAX and TensorFlow currently have no support for it)
* Fix Yolos ONNX export test (#18606)
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Fixup
* Fix up
* Move PIL default arguments inside function for safe imports
* Add image utils to toctree
* Update `rescale` method to reflect changes in #18677
* Update docs/source/en/internal/image_processing_utils.mdx
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Address Niels PR comments
* Apply suggestions from code review - remove defaults to None
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fix docstrings and revert to PIL.Image.XXX resampling
Use PIL.Image.XXX resampling values instead of PIL.Image.Resampling.XXX enum as it's only in the recent version >= 9.10 and version is not yet pinned and older version support deprecated
* Some more docstrings and PIL.Image tidy up
* Reorganise arguments so flags by modifiers
* Few last docstring fixes
Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Co-authored-by: Ankur Goyal <ankrgyl@gmail.com>
Co-authored-by: Ankur Goyal <ankur@impira.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Mishig Davaadorj <dmishig@gmail.com>
Co-authored-by: Rasmus Arpe Fogh Jensen <Rasmus.arpe@gmail.com>
Co-authored-by: Ian Castillo <7807897+donelianc@users.noreply.github.com>
Co-authored-by: AguilaCudicio <aguila.cudicio@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>
Co-authored-by: Niklas Hansson <niklas.sven.hansson@gmail.com>
Co-authored-by: Thomas Chaigneau <t.chaigneau.tc@gmail.com>
Co-authored-by: YouJiacheng <1503679330@qq.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Dhruv Karan <k4r4n.dhruv@gmail.com>
Co-authored-by: Michael Wyatt <mrwyattii@gmail.com>
Co-authored-by: Maxime G <joihn@users.noreply.github.com>
Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>
Co-authored-by: Wonseok Lee (Jack) <rollerkid02@snu.ac.kr>
Co-authored-by: Dan Jones <dan.j.jones2@gmail.com>
Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>
Co-authored-by: flozi00 <flozi00.fz@gmail.com>
Co-authored-by: iiLaurens <iiLaurens@users.noreply.github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Karim Foda <35491698+KMFODA@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>
Co-authored-by: zhoutang776 <47708118+zhoutang776@users.noreply.github.com>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
* Make `MobileBert` tokenizers independent from `Bert`
* Update src/transformers/models/mobilebert/tokenization_mobilebert.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fixed the name in the error message
* Update src/transformers/models/mobilebert/tokenization_mobilebert.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Removed extra space from the "copied" comment
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add initial files for depth estimation pipelines
* Add test file for depth estimation pipeline
* Update model mapping names
* Add updates for depth estimation output
* Add generic test
* Hopefully fixing the tests.
* Check if test passes
* Add make fixup and make fix-copies changes after rebase with main
* Rebase with main
* Fixing up depth pipeline.
* This is not used anymore.
* Fixing the test. `Image` is a module `Image.Image` is the type.
* Update docs/source/en/main_classes/pipelines.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fixed typo for SQuAD
* Fixed the preprocess_validation_function function for the labels to reflect the remaining truncated instances
* Rolled back the trainer_seq2seq_qa.py for UnboundLocalError: local variable 'metrics' referenced before assignment
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* First draft
* Fix more things
* Improve more things
* Remove some head models
* Fix more things
* Add missing layers
* Remove tokenizer
* Fix more things
* Fix copied from statements
* Make all tests pass
* Remove print statements
* Remove files
* Fix README and docs
* Add integration test and fix organization
* Add tips
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Make tests faster, improve docs
* Fix doc tests
* Add model to toctree
* Add docs
* Add note about creating new checkpoint
* Remove is_decoder
* Make tests smaller, add docs
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Generate config on the file
* Fake modif for all test launch
* Upload more artifacts
* Typo and quality
* Try converting th yml to txt
* Leave my long lines alone yaml
* Debug prints
* Debug prints v2
* Try without sorting
* Was it really working before?
* Typo
* Use a parameter
* Use a parameter?
* Typo
* Here is some JSON
* Another try
* Learning to read...
* Check default is used
* Does this work?
* With continuation
* WiP
* Use a parameter for test list
* Other fake modif
* With the comma
* Name the test step so it doesn't blow up
* Just one example modification
* Final steps
* Add nightlies
* Move config generator
* Add trigger for nightlies
* Better workflow
* Rebase on recent changes
* Fix config creation
* Fake modif in an example
* Now fake modif in one config file
* Fix install step in custom tokenizers test
* Fix generated config
* Better fix hopefully
* Finally test modif in setup
* final cleanup
* implemented TFCvtModel and TFCvtForImageClassification and modified relevant files, added an exception in convert_tf_weight_name_to_pt_weight_name, added quick testing file to compare with pytorch model
* added docstring + testing file in transformers testing suite
* added test in testing file, modified docs to pass repo-consistency, passed formatting test
* refactoring + passing all test
* small refacto, removing unwanted comments
* improved testing config
* corrected import error
* modified acces to pretrained model archive list, to pass tf_test
* corrected import structure in init files
* modified testing for keras_fit with cpu
* correcting PR issues + Refactoring
* Refactoring : improving readability and reducing the number of permutations
* corrected momentum value + cls_token initialization
* removed from_pt as weights were added to the hub
* Update tests/models/cvt/test_modeling_tf_cvt.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* added test
* correct embedding init
* some changes in blenderbot (incomplete)
* update blenderbot (diff to be used as reference)
* update blenderbot_small
* update LED
* update marian
* update T5 and remove TFWrappedEmbeddings
* nullcontext() -> ContextManagers()
* fix embedding init
* fix device mismatch
* make fixup
* added slow tests
- added slow tests on `bnb` models to make sure generate works correctly
* replace with `self.device`
* revert force device assign
* Update src/transformers/generation_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* set the warning in `generate` instead of `sample`
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* decouples xlm_prophet from prophet and adds copy patterns that pass the copy check
* adds copy patterns to copied docstrings too
* restores autodoc for XLMProphetNetModel
* removes all-casing in a bunch of places to ensure that the model is compatible with all checkpoints on the hub
* adds missing model to main init
* adds autodocs to make document checker happy
* adds missing pretrained model import
* adds missing pretrained model import to main init
* adds XLMProphetNetPreTrainedModel to the dummy pt objects
* removes examples from the source-doc file since docstrings contain them already
* adds a missing new line to make check_repo happy
* cast positions dtype in XGLMModel
* Get the correct dtype at init time
* Get the correct dtype at init time
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* update feature extractor params
* update attention mask handling
* fix doc and pipeline test
* add warning when skipping test
* add whisper translation and transcription test
* fix build doc test
* Fixed a non-working hyperlink in the README.md file
The hyperlink to the community notebooks was outdated.
* Fixing missing double slash in hyperlink
The momentum value for PyTorch and TensorFlow batch normalization layers is not equivalent. The TensorFlow value should be (1 - pytorch_momentum) in order to ensure the correct updates are applied to the running mean and running variance calculations. We wouldn't observe a difference loading a pretrained model and performing inference, but evaluation outputs would change after some training steps.
* Add `OPTForQuestionAnswering`
- added `OPTForQuestionAnswering` class based on `BloomForQuestionAnswering`
- added `OPTForQuestionAnswering` in common tests
- all common tests pass
- make fixup done
* added docstrings for OPTForQuestionAnswering
* Fix docstrings for OPTForQuestionAnswering
* Remove dependency of Roberta in Blenderbot
* Move Copied from statements to each method of the Roberta classes
* Remove copied from line for mask_token.setter
* update output from example in docs
* Rework pipeline tests
* Try to fix Flax tests
* Try to put it before
* Use a new decorator instead
* Remove ignore marker since it doesn't work
* Filter pipeline tests
* Woopsie
* Use the fitlered list
* Clean up and fake modif
* Remove init
* Revert fake modif
- Fixes the image segmentation pipeline test failures caused by changes to the postprocessing methods of supported models
- Updates the ImageSegmentationPipeline tests
- Improves docs, adds 'task' argument to optionally perform semantic, instance or panoptic segmentation
* Copied all the code required from transformers.models.bert.modeling_bert to here
* Fixed styling issues
* Reformatted copied names with Model specific name.
* Reverted BertEncoder part as there is already a class called BertGenerationEncoder
* Added prefixes in missing places.
Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
* camembert tf version independent
* fixup
* fixup, all working
* remove comments
* Adding copied from roberta
Co-authored-by: Mustapha AJEGHRIR <mustapha.ajeghrir@kleegroup.com>
* removed dependency from bart(slow)
* removed dependency from bart(slow)
* adding copying comments (copied from bart to led)
* updated led docstring
* updated led docstring
* removed dependency from Bart (fast)
* replaced bart with LED in docstrings
* complying flake8
* added more copy comments
* fixing copying comments
* added comments back
* fix copy comments
* fixing copied from comments
* fixing copied from comments
* Remove dependency of Bert from Squeezebert tokenizer
* run style corrections
* update copies from BertTokenizers
* Update changes and style to Squeezebert files
* update copies for bert-fast
* validate onnx models with a different input geometry than saved with
* only test working features for now
* simpler test skipping
* rm TODO
* expose batch_size/seq_length on vit
* skip certain name, feature, framework parameterizations known to fail validation
* Trigger CI
* Trigger CI
* Add ZeroShotObjectDetectionPipeline (#18445)
* Add AutoModelForZeroShotObjectDetection task
This commit also adds the following
- Add explicit _processor method for ZeroShotObjectDetectionPipeline.
This is necessary as pipelines don't auto infer processors yet and
`OwlVitProcessor` wraps tokenizer and feature_extractor together, to
process multiple images at once
- Add auto tests and other tests for ZeroShotObjectDetectionPipeline
* Add AutoModelForZeroShotObjectDetection task
This commit also adds the following
- Add explicit _processor method for ZeroShotObjectDetectionPipeline.
This is necessary as pipelines don't auto infer processors yet and
`OwlVitProcessor` wraps tokenizer and feature_extractor together, to
process multiple images at once
- Add auto tests and other tests for ZeroShotObjectDetectionPipeline
* Add batching for ZeroShotObjectDetectionPipeline
* Fix doc-string ZeroShotObjectDetectionPipeline
* Fix output format: ZeroShotObjectDetectionPipeline
The link to https://github.com/vasudevgupta7/bigbird is vulnerable to repojacking (it redirects to the orignial project that changed name), you should change the link to the current name of the project. if you won't change the link, an attacker can open the linked repository and attacks users that trust your links
This PR aims to rectify the discrepancy between the training performances of HF and Timm ViT implementations.
- Initializes torch and flax ViT dense layer weights with trunc_normal instead of normal (consistent with the TF implementation.
- Initializes cls_token and positional_embeddings with trunc_normal
- Updates DeiT copy to reflect the changes
Ensures post_process_instance_segmentation and post_process_panoptic_segmentation methods return a tensor of shape (target_height, target_width) filled with -1 values if no segment with score > threshold is found.
Ensures post_process_instance_segmentation and post_process_panoptic_segmentation methods return a tensor of shape (target_height, target_width) filled with -1 values if no segment with score > threshold is found.
* removes roberta and bert config dependencies from longformer
* adds copied from statements
* fixes style
* removes excessive comments and replace bert with longformer in a couple places
* fixes style
* Add a build_from_serving_sig_and_dummies method and replace all calls like model(model.dummy_inputs) with it.
* make fixup
* Remove the overridden save() as this is no longer necessary
* Also call _set_save_spec(), the last missing piece
* Ensure we set the save spec when loading from config too
* Turn this whole thing into a one-line PR
* Turn this whole thing into a one-line PR
* Turn this whole thing into a one-line PR
Co-authored-by: Your Name <you@example.com>
* add sudachipy and jumanpp tokenizers for bert_japanese
* use ImportError instead of ModuleNotFoundError in SudachiTokenizer and JumanppTokenizer
* put test cases of test_tokenization_bert_japanese in one line
* add require_sudachi and require_jumanpp decorator for testing
* add sudachi and pyknp(jumanpp) to dependencies
* remove sudachi_dict_small and sudachi_dict_full from dependencies
* empty commit for ci
- Improves MaskFormer docs, corrects minor typos
- Restructures MaskFormerFeatureExtractor.post_process_panoptic_segmentation for better readability, adds target_sizes argument for optional resizing
- Adds post_process_semantic_segmentation and post_process_instance_segmentation methods.
- Adds a deprecation warning to post_process_segmentation method in favour of post_process_instance_segmentation
* add bloom for question answering
- attempt to add Bloom for question answering
- adapted from `GPTJForQuestionAnswering`
- Fixed `num_labels` to `2` for common tests
- Added a bit of docstring
- All common tests pass
* Update src/transformers/models/bloom/modeling_bloom.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* revert changes related to `num_labels`
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Poc to use safetensors
* Typo
* Final version
* Add tests
* Save with the right name!
* Update tests/test_modeling_common.py
Co-authored-by: Julien Chaumond <julien@huggingface.co>
* Support for sharded checkpoints
* Test from Hub part 1
* Test from hub part 2
* Fix regular checkpoint sharding
* Bump for fixes
Co-authored-by: Julien Chaumond <julien@huggingface.co>
* chore: add expected output to the sample code.
* add: imagenet-1k labels to the model config.
* chore: apply code formatting.
* chore: change the expected output.
* Rebase ESM PR and update all file formats
* Fix test relative imports
* Add __init__.py to the test dir
* Disable gradient checkpointing
* Remove references to TFESM... FOR NOW >:|
* Remove completed TODOs from tests
* Convert docstrings to mdx, fix-copies from BERT
* fix-copies for the README and index
* Update ESM's __init__.py to the modern format
* Add to _toctree.yml
* Ensure we correctly copy the pad_token_id from the original ESM model
* Ensure we correctly copy the pad_token_id from the original ESM model
* Tiny grammar nitpicks
* Make the layer norm after embeddings an optional flag
* Make the layer norm after embeddings an optional flag
* Update the conversion script to handle other model classes
* Remove token_type_ids entirely, fix attention_masking and add checks to convert_esm.py
* Break the copied from link from BertModel.forward to remove token_type_ids
* Remove debug array saves
* Begin ESM-2 porting
* Add a hacky workaround for the precision issue in original repo
* Code cleanup
* Remove unused checkpoint conversion code
* Remove unused checkpoint conversion code
* Fix copyright notices
* Get rid of all references to the TF weights conversion
* Remove token_type_ids from the tests
* Fix test code
* Update src/transformers/__init__.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/__init__.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add credit
* Remove _ args and __ kwargs in rotary embedding
* Assertively remove asserts
* Replace einsum with torch.outer()
* Fix docstring formatting
* Remove assertions in tokenization
* Add paper citation to ESMModel docstring
* Move vocab list to single line
* Remove ESMLayer from init
* Add Facebook copyrights
* Clean up RotaryEmbedding docstring
* Fix docstring formatting
* Fix docstring for config object
* Add explanation for new config methods
* make fix-copies
* Rename all the ESM- classes to Esm-
* Update conversion script to allow pushing to hub
* Update tests to point at my repo for now
* Set config properly for tests
* Remove the gross hack that forced loss of precision in inv_freq and instead copy the data from the model being converted
* make fixup
* Update expected values for slow tests
* make fixup
* Remove EsmForCausalLM for now
* Remove EsmForCausalLM for now
* Fix padding idx test
* Updated README and docs with ESM-1b and ESM-2 separately (#19221)
* Updated README and docs with ESM-1b and ESM-2 separately
* Update READMEs, longer entry with 3 citations
* make fix-copies
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Tom Sercu <tsercu@fb.com>
Co-authored-by: Your Name <you@example.com>
* pass sampled_negative_indices parameter to the model to avoid getting a None loss
* concerns doc examples for Wav2Vec2ForPreTraining and Wav2Vec2ConformerForPreTraining
* Just stick a couple of casts into generate()
* Cast decoder_input_ids too
* Don't accidentally cast floats
* Move to _generate()
* Move to after input validation
Co-authored-by: Your Name <you@example.com>
* Ensures consistent arguments and outputs with other post-processing methods
* Adds post_process_semantic_segmentation, post_process_instance_segmentation, post_process_panoptic_segmentation, post_process_object_detection methods to DetrFeatureExtractor
* Adds deprecation warnings to post_process, post_process_segmentation and post_process_panoptic
* Fix test fetching for examples
* Fake example modif
* Debug statements
* Typo
* You need to persist the file...
* Revert change in example
* Remove debug statements
* fix opt softmax nit
- Use the same logic as 1eb09537550734a783c194e416029cb9bc4cb119 for consistency
* Update src/transformers/models/opt/modeling_opt.py
* chore: initial commit
* chore: adding util methods
yet to work on the nn.functional.interpolate port with align_corener=True
* chore: refactor the utils
* used tf.compat.v1.image.resize to align the F.interpolate function
* added type hints to the method signatures
* added references to the gists where one 2 one alignment of torch and tf has been shown
* chore: adding the layers
* chore: porting all the layers from torch to tf
This is the initial draft, nothing is tested yet.
* chore: aligning the layers with reference to tf clip
* chore: aligning the modules
* added demaraction comments
* added copied and adapted from comments
* chore: aligning with CLIP
* chore: wrangling the layers to keep it tf compatible
* chore: aligning the names of the layers for porting
* chore: style changes
* chore: adding docs and inits
* chore: adding tfp dependencis
the code is taken from TAPAS
* chore: initial commit for testing
* chore: aligning the vision embeddings with the vit implementatino
* chore: changing model prefix
* chore: fixing the name of the model and the layer normalization test case
* chore: every test passes but the slow ones
* chore: fix style and integration test
* chore: moving comments below decorators
* chore: make fixup and fix-copies changes
* chore: adding the Vision and Text Model to check_repo
* chore: modifying the prefix name to align it with the torch implementation
* chore: fix typo in configuration
* choer: changing the name of the model variable
* chore: adding segmentation flag
* chore: gante's review
* chore: style refactor
* chore: amy review
* chore: adding shape_list to parts that have been copied from other snippets
* chore: init batchnorm with torch defaults
* chore: adding shape_list to pass the tests
* test fix: adding seed as 0
* set seed
* chore: changing the straight through trick to fix -ve dimensinos
* chore: adding a dimension to the loss
* chore: adding reviewers and contributors names to the docs
* chore: added changes after review
* chore: code quality fixup
* chore: fixing the segmentation snippet
* chore: adding to the layer calls
* chore: changing int32 to int64 for inputs of serving
* chore: review changes
* chore: style changes
* chore: remove from_pt=True
* fix: repo consistency
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Add a gpt_j_residual argument to control the residual computing way
* Put duplicate code outside of the if block
* Rename parameter "gpt_j_residual" to "use_parallel_residual" and set the default value to True
* Fix bug in example and add to tests
* Fix failing tests
* Check the size of logits
* Code style
* Try again...
* Add expected loss for PerceiverForMaskedLM doctest
Co-authored-by: Steven Anton <antonstv@amazon.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* support for multiple eval datasets
* support multiple datasets in seq2seq trainer
* add documentation
* update documentation
* make fixup
* revert option for multiple compute_metrics
* revert option for multiple compute_metrics
* revert added empty line
* Add DeformableDetrFeatureExtractor
* Fix post_process
* Fix name
* Add tests for feature extractor
* Fix doc tests
* Fix name
* Address comments
* Apply same fix to DETR and YOLOS as well
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Fix: update ltp word segmentation call in mlm_wwm
* Fix: update ltp word segmentation call in mlm_wwm
* Fix: update ltp word segmentation call in mlm_wwm
need to find out solution for following cases
*if we need to use trial in model_init, how to do it for non-main rank, sync the model with rank0 in app?
*how to use optuna prune feature for DDP, if we do it in rank0, how does other rank know it.
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Add tips
* Add BEiT figure
* Fix URL
* Move tip to start
* Add tip to TF model as well
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Added type hints to ResNetForImageClassification
* Resolved check_repository_consistency failure issue
Running fix-copies changed the type hints for RegNetForImageClassification in modeling_regnet.py file
* Added type hints for TFMPNetModel
* Added type hints for TFMPNetForMaskedLM
* Added type hints for TFMPNetForSequenceClassification
* Added type hints for TFMPNetForMultipleChoice
* Added type hints for TFMPNetForTokenClassification
* Added Type hints for TFMPNetForQuestionAnswering
* Tests conditional run
* Syntax
* Deps
* Try early exit
* Another way
* Test with no tests to run
* Test all
* Typo
* Try this way
* With tests to run
* Mostly finished
* Typo
* With a modification in one file only
* No change, no tests
* Final cleanup
* Address review comments
* init PR
* optimize top p and add edge case
* styling
* style
* revert tf and flax test
* add edge case test for FLAX and TF
* update doc with smallest set sampling for top p
* make style
* Override save() to use the serving signature as the default
* Replace int32 with int64 in all our serving signatures
* Remember one very important line so as not to break every test at once
* Dtype fix for TFLED
* dtype fix for shift_tokens_right in general
* Dtype fixes in mBART and RAG
* Fix dtypes for test_unpack_inputs
* More dtype fixes
* Yet more mBART + RAG dtype fixes
* Yet more mBART + RAG dtype fixes
* Add a check that the model actually has a serving method
* Updated test values
The image segmentation pipeline tests - tests/pipelines/test_pipelines_image_segmentation.py - were failing after the merging of #1849 (49e44b216b2559e34e945d5dcdbbe2238859e29b). This was due to the difference in rescaling. Previously the images were rescaled by `image = image / 255`. In the new commit, a `rescale` method was added, and images rescaled using `image = image * scale`. This was known to cause small differences in the processed images (see
[PR comment](https://github.com/huggingface/transformers/pull/18499#discussion_r940347575)).
Testing locally, changing the `rescale` method to divide by a scale factor (255) resulted in the tests passing. It was therefore decided the test values could be updated, as there was no logic difference between the commits.
* Use double quotes, like previous example
* Fix up
* add gpt-neox-japanese model and tokenizer as new model
* Correction to PR's comment for GPT NeoX Japanese
- Fix to be able to use gpu
- Add comment # Copied... at the top of RotaryEmbedding
- Implement nn.Linear instead of original linear class
- Add generation test under @slow
* fix bias treatment for gpt-neox-japanese
* Modidy gpt-neox-japanese following PR
- add doc for bias_dropout_add
- style change following a PR comment
* add document for gpt-neox-japanese
* remove unused import from gpt-neox-japanese
* fix README for gpt-neox-japanese
* First draft
* More improvements
* Improve model, add custom CUDA code
* Import torch before
* Add script that imports custom layer
* Add everything in new ops directory
* Import custom layer in modeling file
* Fix ARCHIVE_MAP typo
* Creating the custom kernel on the fly.
* Import custom layer in modeling file
* More improvements
* Fix CUDA loading
* More improvements
* Improve conversion script
* Improve conversion script
* Make it work until encoder_outputs
* Make forward pass work
* More improvements
* Make logits match original implementation
* Make implementation also support single_scale model
* Add support for single_scale and dilation checkpoint
* Add support for with_box_refine model
* Support also two stage model
* Improve tests
* Fix more tests
* Make more tests pass
* Upload all models to the hub
* Clean up some code
* Improve decoder outputs
* Rename intermediate hidden states and reference points
* Improve model outputs
* Move tests to dedicated folder
* Improve model outputs
* Fix retain_grad test
* Improve docs
* Clean up and make test_initialization pass
* Improve variable names
* Add copied from statements
* Improve docs
* Fix style
* Improve docs
* Improve docs, move tests to model folder
* Fix rebase
* Remove DetrForSegmentation from auto mapping
* Apply suggestions from code review
* Improve variable names and docstrings
* Apply some more suggestions from code review
* Apply suggestion from code review
* better docs and variables names
* hint to num_queries and two_stage confusion
* remove asserts and code refactor
* add exception if two_stage is True and with_box_refine is False
* use f-strings
* Improve docs and variable names
* Fix code quality
* Fix rebase
* Add require_torch_gpu decorator
* Add pip install ninja to CI jobs
* Apply suggestion of @sgugger
* Remove DeformableDetrForObjectDetection from auto mapping
* Remove DeformableDetrModel from auto mapping
* Add model to toctree
* Add model back to mappings, skip model in pipeline tests
* Apply @sgugger's suggestion
* Fix imports in the init
* Fix copies
* Add CPU implementation
* Comment out GPU function
* Undo previous change
* Apply more suggestions
* Remove require_torch_gpu annotator
* Fix quality
* Add logger.info
* Fix logger
* Fix variable names
* Fix initializaztion
* Add missing initialization
* Update checkpoint name
* Add model to doc tests
* Add CPU/GPU equivalence test
* Add Deformable DETR to pipeline tests
* Skip model for object detection pipeline
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
FlaxLongT5PreTrainedModel is missing "enable_gradient_checkpointing" function. This gives an error if someone tries to enable gradient checkpointing for longt5.
This pull request fixes it.
only main_process will have HPO, and pass argument to other process
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Use int64 throughout TFLongFormer
* make style
* Do some more fixed casting in TFLongFormer
* Fix some wonky "is None" conditionals
* Cast all the dtypes, salt the earth
* Fix copies to TFLED as well and do some casting there
* dtype fix in TFLongformer test
* Make fixup
* Expand tolerances on the LED tests too (I think this is a TF32 thing)
* Expand test tolerances for LED a tiny bit (probably a Tensorfloat thing again)
only main_process will have HPO, and pass argument to other process
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Fix train_step and test_step, correctly enable CLIP fit test
* Stop using get_args on older Python versions
* Don't use get_origin either
* UnionType is actually even newer, don't use that either
* Apply the same fix to test_loss_computation
* Just realized I was accidentally skipping a bunch of tests!
* Fix test_loss_computation for models without separable labels
* Fix scalar losses in test_step and train_step
* Stop committing your breakpoints
* Fix Swin loss shape
* Fix Tapas loss shape
* Shape fixes for TAPAS, DeIT, HuBERT and ViTMAE
* Add loss computation to TFMobileBertForPreTraining
* make fixup and move copied from statement
* make fixup and move copied from statement
* Correct copied from
* Add labels and next_sentence_label inputs to TFMobileBERT
* Make sure total_loss is always defined
* Update tests/test_modeling_tf_common.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fix copied from
* Ensure CTC models get labels in tests
* Ensure CTC models get labels in tests
* Fix tests for vit_mae
* Fix tests for vit_mae
* Fix tests for vit_mae
* Reduce batch size for wav2vec2 testing because it was causing OOM
* Skip some TAPAS tests that are failing
* Skip a failing HuBERT test
* make style
* Fix mobilebertforpretraining test
* Skip Wav2Vec2 tests that use huge amounts of mem
* Skip keras_fit for Wav2Vec2 as well
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* NeptuneCallback improvements
* After review suggestions and deduplication of initial run
* Added volatile checkpoints support due to missing post-rebase commit
* Update README per review comments
- Remove list formatting
- Correct Neptune docs link
Co-authored-by: Sabine <sabine.nyholm@neptune.ai>
* First draft
* Improve conversion script
* Make vision encoder work
* More improvements
* Improve conversion script
* Fix quality
* Add MultiframeIntegrationTransformer
* More improvements
* Make MiT output work
* Fix quality
* Add prompts generator
* Add tests
* Fix some tests
* Fix some more tests
* Fix more tests
* Improve conversion script
* Fix model outputs
* Fix more tests
* Add XClipProcessor
* Use processor in conversion script
* Fix integration test
* Update README, fix docs
* Fix all tests
* Add MIT output to XClipOutput
* Create better variable names
* Rename XClip to XCLIP
* Extend conversion script
* Add support for large models
* Add support for 16 frame models
* Add another model'
* Fix module issue
* Apply suggestions from code review
* Add figure to docs
* Fix CLIPProcessor issue
* Apply suggestions from code review
* Delete file
* Convert more checkpoints
* Convert last checkpoint
* Update nielsr to microsoft
* [WIP] Skeleton of VisualQuestionAnweringPipeline extended to support LayoutLM-like models
* Fixup
* Use the full encoding
* Basic refactoring to DocumentQuestionAnsweringPipeline
* Cleanup
* Improve args, docs, and implement preprocessing
* Integrate OCR
* Refactor question_answering pipeline
* Use refactored QA code in the document qa pipeline
* Fix tests
* Some small cleanups
* Use a string type annotation for Image.Image
* Update encoding with image features
* Wire through the basic docs
* Handle invalid response
* Handle empty word_boxes properly
* Docstring fix
* Integrate Donut model
* Fixup
* Incorporate comments
* Address comments
* Initial incorporation of tests
* Address Comments
* Change assert to ValueError
* Comments
* Wrap `score` in float to make it JSON serializable
* Incorporate AutoModeLForDocumentQuestionAnswering changes
* Fixup
* Rename postprocess function
* Fix auto import
* Applying comments
* Improve docs
* Remove extra assets and add copyright
* Address comments
Co-authored-by: Ankur Goyal <ankur@impira.com>
* use tokenizer to output tensor
* add preprocessing for decoder_input_ids for bare T5Model
* add preprocessing to tf and flax
* linting
* linting
* Update src/transformers/models/t5/modeling_flax_t5.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/t5/modeling_tf_t5.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/t5/modeling_t5.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add position bias head masking if heads pruned
* fix pruning function in t5 encoder
* make style
* make fix-copies
* Revert added folder
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add Image2TextGenerationPipeline to supported pipelines
* Add Flax and Tensorflow support
* Add Flax and Tensorflow small tests
* Add default model for Tensorflow
* Add docstring
* Fix doc style
* Add tiny models for pytorch and flax
* Remove flax from pipeline.
Fix tests
* Use ydshieh/vit-gpt2-coco-en as a default for both PyTorch and Tensorflow
* Fix Tensorflow support
Co-authored-by: Olivier Dehaene <olivier@huggingface.co>
* chore(training_args): Adds support for timeout argument.
* fix(training_args): Passes make style through changes.
* fix(training_args): Removes wrong docstring sentence.
* fix(training_args): Fixes timeout not being JSON serializable.
* fix(training_args_sm): Also updates timeout to timeout_delta.
* fix(training_args): Fixes PR according to suggestions.
* fix memory leak
* fix typos
* use singular last hidden state variable names
* eliminate double call to self.owlvit to return last hidden states
* eliminate 2nd call to self.vision_model in OwlViTModel
* Automatic detection for framework to use when exporting to ONNX
* Log message change
* Incorporating PR comments, adding unit test
* Adding tf for pip install for run_tests_onnxruntime CI
* Restoring past changes to circleci yaml and test_onnx_v2.py, tests moved to tests/onnx/test_features.py
* Fixup
* Adding test to fetcher
* Updating circleci config to log more
* Changing test class name
* Comment typo fix in tests/onnx/test_features.py
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
* Moving torch_str/tf_str to self.framework_pt/tf
* Remove -rA flag in circleci config
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
* Implement ONNX support for Longformer
Fix repo consistency check complaints
Fix value mismatches
Add pooler output for default model
Increase validation atol to accommodate multiple-choice error
Fix copies
Fix chunking for longer sequence lengths
Add future comment
* Fix issue in mask_invalid_locations
* Remove torch imports in configuration_longformer
* Change config access to fix LED
* Push opset version to support tril
* Work in review comments (mostly style)
* Add Longformer to ONNX tests
* add warning to let the user know that the method is slower that for a fast tokenizer
* user warnings
* fix layoutlmv2
* fix layout*
* change warnings into logger.warning
* Add minor doc-string change to include hp_name
* fix: missing type-information for kwargs
* fix: missing white-space in hyperparameter_search doc-strings
* add examples subfolder
* mention examples in codeparrot readme
* use Trainer optimizer and scheduler type and add output_dir as argument
* add example of text-to-python and python-to-text models
* mention the downstream examples in the readme
* fix typo
* Update methods to optionally rescale
This is necessary to allow for casting our images / videos to numpy arrays within the feature extractors' call. We want to do this to make sure the behaviour is as expected when flags like are False. If some transformations aren't applied, then the output type can't be unexpected e.g. a list of PIL images instead of numpy arrays.
* Cast images to numpy arrays in call to enable consistent behaviour with different configs
* Remove accidental clip changes
* Update tests to reflect the scaling logic
We write a generic function to handle rescaling of our arrays. In order for the API to be intuitive, we take some factor c and rescale the image values by that. This means, the rescaling done in normalize and to_numpy_array are now done with array * (1/255) instead of array / 255. This leads to small differences in the resulting image. When testing, this was in the order of 1e-8, and so deemed OK
* examples: add Bloom support for token classification (FLAX, PyTorch and TensorFlow)
* examples: remove support for Bloom in token classication (FLAX and TensorFlow currently have no support for it)
* bnb minor modifications
- refactor documentation
- add troubleshooting README
- add PyPi library on DockerFile
* Apply suggestions from code review
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Apply suggestions from code review
* Apply suggestions from code review
* Apply suggestions from code review
* put in one block
- put bash instructions in one block
* update readme
- refactor a bit hardware requirements
* change text a bit
* Apply suggestions from code review
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* apply suggestions
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* add link to paper
* Apply suggestions from code review
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Update tests/mixed_int8/README.md
* Apply suggestions from code review
* refactor a bit
* add instructions Turing & Amperer
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* add A6000
* clarify a bit
* remove small part
* Update tests/mixed_int8/README.md
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Update run_translation_no_trainer.py
found an error in selecting `no_decay` parameters and some small modifications when the user continues to train from a checkpoint
* fixs `no_decay` and `resume_step` issue
1. change `no_decay` list
2. if use continue to train their model from provided checkpoint, the `resume_step` will not be initialized properly if `args.gradient_accumulation_steps != 1`
* [fsmt] deal with -100 indices in decoder ids
Fixes: https://github.com/huggingface/transformers/issues/17945
decoder ids get the default index -100, which breaks the model - like t5 and many other models add a fix to replace -100 with the correct pad index.
For some reason this use case hasn't been used with this model until recently - so this issue was there since the beginning it seems.
Any suggestions to how to add a simple test here? or perhaps we have something similar already? user's script is quite massive.
* style
* Supporting seq2seq models for `bitsandbytes` integration
- `bitsandbytes` integration supports now seq2seq models
- check if a model has tied weights as an additional check
* small modification
- tie the weights before looking at tied weights!
* initial commit
* add small test
* add cross pt tf flag to test
* fix quality
* style
* update test with new repo
* fix failing test
* update
* fix wrong param ordering
* style
* update based on review
* update related to recent new caching mechanism
* quality
* Update based on review
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
* quality and style
* Update src/transformers/modeling_flax_utils.py
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fix critical trace warnings to allow ONNX export
* Force input to `sqrt` to be float type
* Cleanup code
* Remove unused import statement
* Update model sew
* Small refactor
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* Use broadcasting instead of repeat
* Implement suggestion
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* Match deberta v2 changes in sew_d
* Improve code quality
* Update code quality
* Consistency of small refactor
* Match changes in sew_d
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* changing BartLearnedPositionalEmbedding forward signature and references to it
* removing debugging dead code (thanks style checker)
* blackened modeling_bart file
* removing copy inconsistencies via make fix-copies
* changing references to copied signatures in Bart variants
* make fix-copies once more
* using expand over repeat (thanks @michaelbenayoun)
* expand instead of repeat for all model copies
Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>
* fix typos
* fix sequence_length docs of LayoutLMv3Model
* delete trailing white spaces
* fix layoutlmv3 docs more
* apply make fixup & quality
* change to two versions of input docstring
* apply make fixup & quality
* onnx config for clip
* default opset as 14
* changes from the original repo
* input values order fix
* outputs fix
* remove unused import
* ran make fix-copies
* black format
* review comments: forward ref, import fix, model change revert, .to cleanup
* make style
* formatting fixes
* revert groupvit
* comment for cast to int32
* comment fix
* make .T as .t() for onnx conversion
* ran make fix-copies
* remove unneeded comment
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fix copies
* remove comment
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* `pipeline` support for `device="mps"` (or any other string)
* Simplify `if` nesting
* Update src/transformers/pipelines/base.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fix? @sgugger
* passing `attr=None` is not the same as not passing `attr` 🤯
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Finished QA example
* Dodge a merge conflict
* Update text classification and LM examples
* Update NER example
* New Keras metrics WIP, fix NER example
* Update NER example
* Update MC, summarization and translation examples
* Add XLA warnings when shapes are variable
* Make sure batch_size is consistently scaled by num_replicas
* Add PushToHubCallback to all models
* Add docs links for KerasMetricCallback
* Add docs links for prepare_tf_dataset and jit_compile
* Correct inferred model names
* Don't assume the dataset has 'lang'
* Don't assume the dataset has 'lang'
* Write metrics in text classification
* Add 'framework' to TrainingArguments and TFTrainingArguments
* Export metrics in all examples and add tests
* Fix training args for Flax
* Update command line args for translation test
* make fixup
* Fix accidentally running other tests in fp16
* Remove do_train/do_eval from run_clm.py
* Remove do_train/do_eval from run_mlm.py
* Add tensorflow tests to circleci
* Fix circleci
* Update examples/tensorflow/language-modeling/run_mlm.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update examples/tensorflow/test_tensorflow_examples.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update examples/tensorflow/translation/run_translation.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update examples/tensorflow/token-classification/run_ner.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Fix save path for tests
* Fix some model card kwargs
* Explain the magical -1000
* Actually enable tests this time
* Skip text classification PR until we fix shape inference
* make fixup
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* fix deberta issues
* add different code paths for gpu and tpu
* shorter gpu take along axis
* Stable Dropout without tf cond
* variable must be float
* first commit
* correct replace function
* add final changes
- works like charm!
- cannot implement tests yet
- tested
* clean up a bit
* add bitsandbytes dependencies
* working version
- added import function
- added bitsandbytes utils file
* small fix
* small fix
- fix import issue
* fix import issues
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* refactor a bit
- move bitsandbytes utils to utils
- change comments on functions
* reformat docstring
- reformat docstring on init_empty_weights_8bit
* Update src/transformers/__init__.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* revert bad formatting
* change to bitsandbytes
* refactor a bit
- remove init8bit since it is useless
* more refactoring
- fixed init empty weights issue
- added threshold param
* small hack to make it work
* Update src/transformers/modeling_utils.py
* Update src/transformers/modeling_utils.py
* revmoe the small hack
* modify utils file
* make style + refactor a bit
* create correctly device map
* add correct dtype for device map creation
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* apply suggestions
- remove with torch.grad
- do not rely on Python bool magic!
* add docstring
- add docstring for new kwargs
* add docstring
- comment `replace_8bit_linear` function
- fix weird formatting
* - added more documentation
- added new utility function for memory footprint tracking
- colab demo to add
* few modifs
- typo doc
- force cast into float16 when load_in_8bit is enabled
* added colab link
* add test architecture + docstring a bit
* refactor a bit testing class
* make style + refactor a bit
* enhance checks
- add more checks
- start writing saving test
* clean up a bit
* male style
* add more details on doc
* add more tests
- still needs to fix 2 tests
* replace by "or"
- could not fix it from GitHub GUI
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* refactor a bit testing code + add readme
* make style
* fix import issue
* Update src/transformers/modeling_utils.py
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* add few comments
* add more doctring + make style
* more docstring
* raise error when loaded in 8bit
* make style
* add warning if loaded on CPU
* add small sanity check
* fix small comment
* add bitsandbytes on dockerfile
* Improve documentation
- improve documentation from comments
* add few comments
* slow tests pass on the VM but not on the CI VM
* Fix merge conflict
* make style
* another test should pass on a multi gpu setup
* fix bad import in testing file
* Fix slow tests
- remove dummy batches
- no more CUDA illegal memory errors
* odify dockerfile
* Update docs/source/en/main_classes/model.mdx
* Update Dockerfile
* Update model.mdx
* Update Dockerfile
* Apply suggestions from code review
* few modifications
- lm head can stay on disk/cpu
- change model name so that test pass
* change test value
- change test value to the correct output
- torch bmm changed to baddmm in bloom modeling when merging
* modify installation guidelines
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* replace `n`by `name`
* merge `load_in_8bit` and `low_cpu_mem_usage`
* first try - keep the lm head in full precision
* better check
- check the attribute `base_model_prefix` instead of computing the number of parameters
* added more tests
* Update src/transformers/utils/bitsandbytes.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Merge branch 'integration-8bit' of https://github.com/younesbelkada/transformers into integration-8bit
* improve documentation
- fix typos for installation
- change title in the documentation
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* update features
* MT5OnnxConfig added with updated with tests and docs
* fix imports
* fix onnc_config_cls for mt5
Co-authored-by: Thomas Chaigneau <thomas.deeptools.ai>
* Added accelerate gradient accumulation wrapper to run_image_classification_no_trainer.py example script
* make fixup changes
* PR comments
* changed input to Acceletor based on PR comment, ran make fixup
* Added comment explaining the sync_gradients statement
* Fixed lr scheduler max steps
* Changed run_clm_no_trainer.py script to use accelerate gradient accum wrapper
* Fixed all scripts except wav2vec2 pretraining to use accelerate gradient accum wrapper
* Added accelerate gradient accum wrapper for wav2vec2_pretraining_no_trainer.py script
* make fixup and lr_scheduler step inserted back into run_qa_beam_search_no_trainer.py
* removed changes to run_wav2vec2_pretraining_no_trainer.py script and fixed using wrong constant in qa_beam_search_no_trainer.py script
* [DX fix] Fixing QA pipeline streaming a dataset.
QuestionAnsweringArgumentHandler would iterate over the whole dataset
effectively killing all properties of the pipeline.
This restores nice properties when using `Dataset` or `Generator` since
those are meant to be consumed lazily.
* Handling TF better.
* Delete valohai.yaml
* NLP => ML
* typo
* website supports https
* datasets
* 60k + modalities
* unrelated link fixing for accelerate
* Ok those links were actually broken
* Fix link
* Make `AutoTokenizer` auto-link
* wording tweak
* add at least one non-nlp task
* Draft new cached_file
* Initial draft for config and model
* Small fixes
* Fix first batch of tests
* Look in cache when internet is down
* Fix last tests
* Bad black, not fixing all quality errors
* Make diff less
* Implement change for TF and Flax models
* Add tokenizer and feature extractor
* For compatibility with main
* Add utils to move the cache and auto-do it at first use.
* Quality
* Deal with empty commit shas
* Deal with empty etag
* Address review comments
* Adding a better error message when the model is improperly configured
within transformers.
* Update src/transformers/pipelines/__init__.py
* Black version.
* Overriding task aliases so that tokenizer+feature_extractor
values are correct.
* Fixing task aliases by overriding their names early
* X.
* Fixing feature-extraction.
* black again.
* Normalizing `translation` too.
* Fixing last few corner cases.
translation need to use its non normalized name (translation_XX_to_YY,
so that the task_specific_params are correctly overloaded).
This can be removed and cleaned up in a later PR.
`speech-encode-decoder` actually REQUIRES to pass a `tokenizer` manually
so the error needs to be discarded when the `tokenizer` is already
there.
* doc-builder fix.
* Fixing the real issue.
* Removing dead code.
* Do not import the actual config classes.
* First draft
* Add VideoMAEForVideoClassification
* Improve conversion script
* Add VideoMAEForPreTraining
* Add VideoMAEFeatureExtractor
* Improve VideoMAEFeatureExtractor
* Improve docs
* Add first draft of model tests
* Improve VideoMAEForPreTraining
* Fix base_model_prefix
* Make model take pixel_values of shape (B, T, C, H, W)
* Add loss computation of VideoMAEForPreTraining
* Improve tests
* Improve model testsé
* Make all tests pass
* Add VideoMAE to main README
* Add tests for VideoMAEFeatureExtractor
* Add integration test
* Improve conversion script
* Rename patch embedding class
* Remove VideoMAELayer from init
* Update design of patch embeddings
* Improve comments
* Improve conversion script
* Improve conversion script
* Add conversion of pretrained model
* Add loss verification of pretrained model
* Add loss verification of unnormalized targets
* Add integration test for pretraining model
* Apply suggestions from code review
* Fix bug to make feature extractor resize only shorter edge
* Address more comments
* Improve normalization of videos
* Add doc examples
* Move constants to dedicated script
* Remove scripts
* Transfer checkpoints, fix docs
* Update script
* Update image mean and std
* Fix doc tests
* Set return_tensors to NumPy by default
* Revert the previous change
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Enable HFTracer to trace with custom dummy inputs instead of pre-computed ones
* Add HFTracer.trace docstring, and make it possible to handle callable and torch.nn.Module in general
* Remove pdb comment
* Apply suggestions
* Cleanup some code
* Improve signatures
* Try to reduce the number of reshape/copies
* I don't think we actually need the layer_num scaling trick
* No need for duplication
* Try to fix beam_search
* Fix beam search
* Removing layer num normalization seems to be breaking
* Not sure self.layer_number normalization actually matters
* Try and be backward compatible
* Try to fix beam_search
* Revert attempt to be backward compatible
* Improve documentation on past_key_values format
* Optimize the device allocation in case of hidden_states in multiple devices
* No need to manually cast the values to a specific device
* Rename with long version of variables
* Improve type hinting
* Add comment that explains that some methods return views
* Actually i think the attention casting only makes sense when we use torch.float16
* We don't actually need layer_number to be passed anymore
* Fix FX test
* Bypass torch.baddbmm
* Apply suggestions from code review
* Add comment about support for torchScript v1.11
* fix ONNX support for bloom (#18456)
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
Comparisons like
version.parse(torch.__version__) > version.parse("1.6")
are True for torch==1.6.0+cu101 or torch==1.6.0+cpu
version.parse(version.parse(torch.__version__).base_version) are preferred (and available in pytorch_utils.py
* fix: keras fit tests for segformer tf and minor refactors.
* refactor: test_keras_fit to make it simpler using the existing one.
* fix: styling issues.
* Add file in spanish docs to be translated
* Translate first two sections to Spanish
* Translate four additional sections to Spanish
* Finish translation to Spanish
* Improve writing style in Spanish
* Add suggested changes from reviewer
This PR moves GroupViT and LXMert to their correct sections. As pointed out by @NielsRogge and @LysandreJik, GroupViT and LXMert are both multimodal models.
* Update pipeline word heuristic to work with whitespace in token offsets
This change checks for whitespace in the input string at either the
character preceding the token or in the first character of the token.
This works with tokenizers that return offsets excluding whitespace
between words or with offsets including whitespace.
fixes#18111
starting
* Use smaller model, ensure expected tokenization
* Re-run CI (please squash)
`torch.Tensor` creates an unitialized tensor (as via `torch.empty`), this leads to undeterministic behavior, poor initialization, and nans if you have unlucky init. The paper does not specify the initialization for bias terms, so I guess zero seems like a good choice - no bias initially. `torch.Tensor` is usually populated with zeros, so this fix will be close to the intended behavior:
```
>>> torch.Tensor(100, 100).sum()
tensor(0.)
>>> torch.Tensor(100, 100).sum()
tensor(nan)
>>> torch.Tensor(100, 100).sum()
tensor(0.)
```
* Added option for users to modify config parameter used by pytesseract during feature extraction
- Added optional 'tess_config' kwarg when setting up LayoutLMV2 processor that is used by pytesseract during feature extraction
- Eg. Can be used to modify psm values by setting tess_config to '--psm 7'
- Different psm values significantly influences the output of layoutlmv2
* Update src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Updated variable names to be more explicit
* Fixed styles
* Added option for users to modify config parameter when calling pytesseract during feature extraction
- Added option to set "tesseract_config" parameter during LayoutLMV3 processor initialization
- Can be used to modify PSM values, eg. by setting tesseract_config="--psm 6"
* Removed from function signature
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* add LUKE models for downstream tasks
* add new LUKE models to docs
* fix typos
* remove commented lines
* exclude None items from tuple return values
Fix#18385
I don't know whether `use_auth_token`, `cache_dir` and `local_files_only` should be passed to `(cls.slow_tokenizer_class)._from_pretrained`, but I guess it should.
* Bloom model can now be traced
* Bloom traced model can be torch scripted and serialized
* Bloom can be traced with variable keyword arguments
* Enable XLNet support
* Disable XLNet for now
Currently, tensorflow examples use the `load_metric` function from
Datasets library, commit migrates function call to `load` function
from Evaluate library.
* Migrate metric to Evaluate library in tf examples
Currently tensorflow examples use `load_metric` function from Datasets
library , commit migrates function call to `load` function to
Evaluate library.
Fix for #18306
* Migrate metric to Evaluate library in tf examples
Currently tensorflow examples use `load_metric` function from Datasets
library , commit migrates function call to `load` function to
Evaluate library.
Fix for #18306
* Migrate `metric` to Evaluate for all tf examples
Currently tensorflow examples use `load_metric` function from Datasets
library , commit migrates function call to `load` function to
Evaluate library.
Left the term fine-tuning since there is no correct translation into Italian and the English term is generally used. The same was done with some terms like "learning rate"
* start from 1.12, torch_ccl is renamed as oneccl_bindings_for_pytorch and should import it before use
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* add doc for perf_train_cpu_many
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* update doc
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Add files generated using transformer-cli add-new-model-like command
* Add changes for swinv2 attention and forward method
* Add fixes
* Add modifications for weight conversion and remaining args in swin model
* Add changes for patchmerging
* Add changes for SwinV2selfattention
* Update conversion script
* Add final fixes for the swin_v2 model
* Add changes for conversion script for pretrained window size case
* Add pretrained window size value from config in SwinV2Encoder class
* Make fixup
* Add swinv2 to models_not_in_readme to utils/check_copies.py
* Modify Swinv2v2 to Swin Transformer V2
* Remove copied from, to run make fixup command
* Add updates to swinv2tf from main branch
* Add pretrained_window_size to config, to make tests pass
* Add modified weights from nandwalritik profile for swinv2
* Update model weights from swinv2 from nandwalritik profile
* Add fix for build_pr_documentation CI fix
* Add fixes for weight conversion
* Add change to make input with padding work
* Add fixes for test cases
* Add few changes from swin to swinv2 to pass test cases
* Remove tests for tensorflow as swinv2 for TF is not added yet
* Overide test_pt_tf_model_equivalence function as TF implementation for swinv2 is not added yet
* Add modeling_tf_swinv2 to _ignore_modules as test file is removed for this one right now.
* Update docs url for swinv2 in README.md
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Undo changes for check_repo
* Update url in readme.md
* Remove overrided function to test pt_tf_model_equivalence
* Remove TF model imports for Swinv2 as its not implemented in this PR
* Add changes for index.mdx
* Add swinv2 papers link,abstract and contributors details
* Rename cpb_mlp to continous_position_bias_mlp
* Add tips for swinv2 model
* Update src/transformers/models/swinv2/configuration_swinv2.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update src/transformers/models/swinv2/configuration_swinv2.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Fix indentation for docstring example in src/transformers/models/swinv2/configuration_swinv2.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update import order in src/transformers/models/swinv2/configuration_swinv2.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Add copyright statements in weights conversion script.
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Remove Swinv2 from models_not_in_readme
* Reformat code
* Remove TF implementation file for swinv2
* Update start docstring.
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Add changes for docstring
* Update orgname for weights to microsoft
* Remove to_2tuple function
* Add copied from statements wherever applicable
* Add copied from to Swinv2ForMaskedImageModelling class
* Reformat code.
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Add unittest.skip(with reason.) for test_inputs_embeds test case.
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Add updates for test_modeling_swinv2.py
* Add @unittest.skip() annotation for clarity to create_and_test_config_common_properties function
* Add continuous_position_bias_mlp parameter to conversion script
* Add test for testing masked_image_modelling for swinv2
* Update Swinv2 to Swin Transformer v2 in docs/source/en/model_doc/swinv2.mdx
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update Swinv2 to Swin Transformer v2 in docs/source/en/model_doc/swinv2.mdx
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update docs/source/en/model_doc/swinv2.mdx
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update docs/source/en/model_doc/swinv2.mdx
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Add suggested changes
* Add copied from to forward methods of Swinv2Stage and Swinv2Encoder
* Add push_to_hub flag to weight conversion script
* Change order or Swinv2DropPath class
* Add id2label mapping for imagenet 21k
* Add updated url for SwinV2 functions and classes used in implementation
* Update input_feature dimensions format, mentioned in comments.
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
* Add suggested changes for modeling_swin2.py
* Update docs
* Remove create_and_test_config_common_properties function, as test_model_common_attributes is sufficient.
* Fix indentation.
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add changes for making Nit objects in code style
* Add suggested changes
* Add suggested changes for test_modelling_swinv2
* make fix-copies
* Update docs/source/en/model_doc/swinv2.mdx
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fixes torch jit tracing for LayoutLMv2 model.
Pytorch seems to reuse memory for input_shape which caused a mismatch in shapes later in the forward pass.
* Fixed code quality
* avoid unneeded allocation of vector for shape
* add info about megatron training
* upload models and datasets from CodeParrot organization
* upload models and datasets from CodeParrot organization
* Update examples/research_projects/codeparrot/README.md
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* Update examples/research_projects/codeparrot/README.md
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* Update examples/research_projects/codeparrot/README.md
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* Update examples/research_projects/codeparrot/README.md
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* Update examples/research_projects/codeparrot/README.md
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* fix typo and add comment about codeparrot vs megatron
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* Improve docs
* Improve docs of speech one as well
* Apply suggestions from code review
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Removes a duplicated instantiation of device. I removed the second instance of the line to maintain code alignment with the GPT-J implementation of forward.
* Update index
* Translate to Spanish two sections from custom_models
* Translate to Spanish custom models documentation
* Fixing typos and grammatical errors
* Add requested changes from reviewer
* [ fast_tokenizers.mdx ] - Added translation to portuguese to tutorial
* Delete docs/source/pt-br directory
* [ fast_tokenizers.mdx ] - Continuing work on file
* [ fast_tokenizers.mdx ] - Continuing work on file
* Add fast tokenizers to _toctree.yml
* Eliminated config and toctree.yml
* Nits in fast_tokenizers.mdx
* Finishing create_a_model
* [ create_a_model.mdx ] finishing create a model in pt-br
* [ Changing _toctree.yml ] adding create a model in pt
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
* Ensure value and attn weights have the same dtype
* Remove prints
* Modify decision transformers copied from gpt2
* Nit device
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Fix style
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Add serving_output and serving methods to some vision models
* Add serving outputs for DeiT
* Don't convert hidden states - differing shapes
* Make saveable
* Fix up
* Make swin saveable
* Add in tests
* Fix funnel tests (can't convert to tensor)
* Fix numpy call
* Tidy up a bit
* Add in hidden states - resnet
* Remove numpy
* Fix failing tests - tensor shape and skipping tests
* Remove duplicated function
* PR comments - formatting and var names
* PR comments
Add suggestions made by Joao Gante:
* Use tf.shape instead of shape_list
* Use @tooslow decorator on tests
* Simplify some of the logic
* PR comments
Address Yih-Dar Sheih comments - making tensor names consistent and make types float
* Types consistent with docs; disable test on swin (slow)
* CI trigger
* Change input_features to float32
* Add serving_output for segformer
* Fixup
Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
* Change how `take_along_axis` is computed in DeBERTa to stop confusing XLA
* Greatly simplify take_along_axis() since the code wasn't using most of it
* First commit
* final changes
* Changed create_model to create_a_model
Translated into crea un'architettura personalizzata in the file it/_toctree.yml
* Added _toctree.yml in the italian translation loca: serialization title Esporta modelli transformers
* Edit translation for create_model.mdx
* t with '#' will be ignored, and an empty message aborts the commit.
* Added file serialization for translation in italian
* Fix toctree serialization position
I checked the eng toctree and realized I made a mistake.
* Update _toctree.yml
Correct spacing
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* add: segformer utils and img. classification.
* add: segmentation layer.
* feat: working implementation of segformer.
* chore: remove unused variable.
* add test, remaining modifications.
* remove: unnecessary files.
* add: rest of the files.
Co-authored-by: matt <rocketknight1@gmail.com>
* chore: remove ModuleList comment.
* chore: apply make style.
* chore: apply make fixup-copies.
* add to check_repo.py
* add decode head to IGNORE_NON_TESTED
* chore: run make style.
* chore: PR comments.
* chore: minor changes to model doc.
* tests: reduction across samples.
* add a note on the space.
* sort importats.
* fix: reduction in loss computation.
* chore: align loss function with that of NER.
* chore: correct utils/documentation_tests.txt
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* chore: simplify the interpolation of logits in loss computation.
* chore: return transposed logits when return_dict=False.
* chore: add link to the tf fine-tuning repo.
* address pr comments.
* address niels's comments.
* remove from_pt=True since tf weights are in.
* remove comment from pt model.
* address niels's comments.
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Run_scripts Italian translation gh-17459
* Updated run_scripts gh-17642
* Updated run_scripts gh-17642
Made the text more gender-neutral.
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* More informative error message
* raise dynamic error
* remove_excess_nesting application
* incorrect shape assertion for collator & function to remove excess nesting from DatasetDict
* formatting
* eliminating datasets import
* removed and relocated remove_excess_nesting to the datasets library and updated docs accordingly
* independent assert instructions
* inform user of excess nesting
* Add support for Sagemaker Model Parallel >= 1.10 new checkpoint API
* Support loading checkpoints saved with SMP < 1.10 in SMP < 1.10 and SMP >= 1.10
* Support loading checkpoints saved with SMP >= 1.10 in SMP >= 1.10
* Fix bug and styling
* Update based on reviewer feedback
* Initial work
* More work
* Add tests for custom pipelines on the Hub
* Protect import
* Make the test work for TF as well
* Last PyTorch specific bit
* Add documentation
* Style
* Title in toc
* Bad names!
* Update docs/source/en/add_new_pipeline.mdx
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
* Auto stash before merge of "custom_pipeline" and "origin/custom_pipeline"
* Address review comments
* Address more review comments
* Update src/transformers/pipelines/__init__.py
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
* Adding support for `device_map` directly in `pipeline(..)` function.
* Updating the docstring.
* Adding a better docstring
* Put back type hints.
* Blacked. (`make fixup` didn't work ??!!)
* Report value for a step instead of epoch.
Report an objective function value for a step instead of epoch to optuna.
I made this modification for the following reason:
If "eval_steps" is less than steps per epoch, there maybe warnings like this: "optuna/trial/_trial.py:592: UserWarning: The reported value is ignored because this `step` 0 is already reported.". So "step" are more appropriate than "epoch" here.
* MOD: make style.
Co-authored-by: zhaowei01 <zhaowei01@yuanfudao.com>
* fix tolerance for a bloom slow test
* enhance alibi padding
- get rid of for loops
- deals better with padded batched input
- avoid useless cpu/gpu communication when creating alibi
Co-authored-by: justheuristic <justheuristic@gmail.com>
* optimize attention mask
* fix scaled softmax limit values
* optimize building alibi tensor
Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>
* fix attention_mask shape when it's None
* minor fixes
- fix docstring + arg names
* remove colons in docstring
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* apply suggestion
* remove unsued arg
* refactor a bit
- use [:, None] for consistency
* refactor attention block
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
* quick fixes
* first attempt
* refactor attention block and fix all tests except "test_simple_generation"
- added comments to better explain attention block
* remove debug lines and add TODO comment
* change `torch.bmm` to `torch.baddbmm`
- fixes `test_simple_generation`but breaks `test_batch_generation_padd`
* styling
* all tests are passing now
- use `bmm`
- add explanation for `allow_fp16_reduced_precision_reduction`
Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>
* styling
Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>
* fix support for accelerate
Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* remove attn softmax in fp32
* refactor comments
* refactor a bit
- remove warning message
- remove print on test
* refer to pytorch t5
* change the slow tests
- do the tests in fp32
- remove some comments
- keep large comments
* update expected output for `test_simple_generation`
- we now test using fp32
* make style + change comments a bit
* fix dtype padd test
Co-authored-by: justheuristic <justheuristic@gmail.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fix RESOURCE_EXHAUSTED error for large datasets on Flax example scripts
* using np.permutation for creating batch_idx
* train_samples_idx -> training_samples_idx
* fix type hints
* Fix type issue in using bucketing with Trainer
- Fix type issues in LengthGrouperSampler,
DistributedLengthGroupedSampler
refs: #18003
* Change logging type in LengthGroupedSampler
- Change `logger.warning` to `logger.info`
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Change logging type in DistributedLengthGroupedSampler
- Change `logger.warning` to `logger.info`
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Remove adundant clause in LengthGroupedSampler
- Use `elif`
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Remove adundant clause in DistributedLengthGroupedSampler
- Use `elif`
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply black, isort to modified codes in the script
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Drop columns after loading samples, rather than before, to avoid breaking transforms
* make fixup
* Add workaround so this PR can work with current datasets version
* Return scalar losses instead of per-sample means
* Make loss shape (1,) instead of scalar
* Allow scalar losses in test_loss_computation
* Allow scalar losses in test_loss_computation
* Allow scalar losses in test_loss_computation
* Remove XLA loss function for RAG
* Refactor to inherit from nn.Module instead of nn.ModuleList
* Fix typo
* Empty to trigger CI re-run
Blender Bot tests failing (should be unrelated to this PR) and pass locally). I don't have sufficient permisisons to re-run the CI workflow (totally or from failed)
* Rought TF conversion outline
* Tidy up
* Fix padding differences between layers
* Add back embedder - whoops
* Match test file to main
* Match upstream test file
* Correctly pass and assign image_size parameter
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Add in MainLayer
* Correctly name layer
* Tidy up AdaptivePooler
* Small tidy-up
More accurate type hints and remove whitespaces
* Change AdaptiveAvgPool
Use the AdaptiveAvgPool implementation by @Rocketknight1, which correctly pools if the output shape does not evenly divide by input shape c.f. 9e26607e22 (r900109509)
Co-authored-by: From: matt <rocketknight1@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Use updated AdaptiveAvgPool
Co-authored-by: matt <rocketknight1@gmail.com>
* Make AdaptiveAvgPool compatible with CPU
* Remove image_size from configuration
* Fixup
* Tensorflow -> TensorFlow
* Fix pt references in tests
* Apply suggestions from code review - grammar and wording
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Add TFResNet to doc tests
* PR comments - GlobalAveragePooling and clearer comments
* Remove unused import
* Add in keepdims argument
* Add num_channels check
* grammar fix: by -> of
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Remove transposes - keep NHWC throughout forward pass
* Fixup look sharp
* Add missing layer names
* Final tidy up - remove from_pt now weights on hub
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Exclude Databricks from notebook env only if the runtime is below 11.0
* Dummy commit to trigger CI
* Empty commit to trigger CI
* Empty commit to trigger CI
* Empty commit to trigger CI
* Empty commit to trigger CI
* Empty commit to trigger CI
* Empty commit to trigger CI
* Empty commit to trigger CI
* Shifting labels for causal LM when using label smoother
When training CausalLM, loss is computed within model's foward() function and
labels are shifted internally. However, if label smoothing is applied, loss is
computed in trainer's compute_loss function and labels are not shifted.
This causes unintended confusion during the alignment of labels and corresponding
inputs. This commit is for resolving this confusion.
Resolves#17960
On branch shift_labels_for_causalLM
Changes to be committed:
modified: src/transformers/trainer.py
modified: src/transformers/trainer_pt_utils.py
* Update trainer.py
* Update src/transformers/trainer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Copy inputs to train and test step before modifying them, as this breaks things
* Add XLA tests, fix our loss functions to be XLA-compatible
* make fixup
* Update loss computation test to expect vector of per-sample losses
* Patch loss for TFLED
* Patch loss for TFAlbert
* Add a tf_legacy_loss config flag that enables old loss functions
* Stop using config.get() because it's not a dict
* Skip loss computation test for RAG because its loss is very strange and I'm afraid to rewrite it
* make fixup
* Add XLA-compatible RAG loss
* Fix dtype of loss mask for TFAlbert
* Fix test for XLNet too because it overrides the default one
* make fixup
* Fix config test
* No more depending on GPU NaN behaviour
* Add test, avoid potential zero division
* Fix test item assignment
* Fix loss computation masking test
* make fixup
* Fix dtype bugs
* [Flax] Add remat (gradient checkpointing)
* fix variable naming in test
* flip: checkpoint using a method
* fix naming
* fix class naming
* apply PVP's suggestions from code review
* make fix-copies
* fix big-bird, electra, roberta
* cookie-cutter
* fix flax big-bird
* move test to common
* add onnx support for BLOOM
* use TYPE_CHECKING for type annotations
* fix past_shape for bloom (different from gpt2)
* use logical_or instead of `+` for onnx support
* bigger `atol_for_validation` for larger bloom models
* copied -> taken because it's no longer an exact copy
* remove "copied from" comment
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* sharded conversion; add flag to control max hidden error
* better hidden name matching
* Add test: load TF from PT shards
* fix test (PT data must be local)
* first draft adding Flax-t5-encoder and Flax-mt5-encoder
* imports
* after make fixup
* flax t5 encoder test
* black on test
* make fix-copies
* clean
* all_model_classes -> tuple
* clean test
* is_encoder_decoder=False in t5-enc tester
* remove file docstring before FlaxT5Encoder
* black
* isort
* commit suggestions on src/transformers/models/t5/modeling_flax_t5.py
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* commit suggestions on src/transformers/models/t5/modeling_flax_t5.py
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* Apply suggestions from code review
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* remove _get_encoder_module
* self.decoder_seq_length -> self.encoder_seq_length as t5-enc does not have decoder
* bugfix - self.module_class is class itself, not instance;
* docs for mt5 and t5
* call -> __call__ in t5 doc
* FlaxMT5EncoderModel to TYPE_HINT
* run doc-builder to allow change the files
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* Revert "Skip failing test until they are fixed."
This reverts commit 8f400775fc5bc1011a2674dcfd5408d30d69f678.
* Use `tiny-detr` checkpts from `hf-internal-testing`
* chore: initial commit
Copied the torch implementation of regnets and porting the code to tf step by step. Also introduced an output layer which was needed for regnets.
* chore: porting the rest of the modules to tensorflow
did not change the documentation yet, yet to try the playground on the model
* Fix initilizations (#1)
* fix: code structure in few cases.
* fix: code structure to align tf models.
* fix: layer naming, bn layer still remains.
* chore: change default epsilon and momentum in bn.
* chore: styling nits.
* fix: cross-loading bn params.
* fix: regnet tf model, integration passing.
* add: tests for TF regnet.
* fix: code quality related issues.
* chore: added rest of the files.
* minor additions..
* fix: repo consistency.
* fix: regnet tf tests.
* chore: reorganize dummy_tf_objects for regnet.
* chore: remove checkpoint var.
* chore: remov unnecessary files.
* chore: run make style.
* Update docs/source/en/model_doc/regnet.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* chore: PR feedback I.
* fix: pt test. thanks to @ydshieh.
* New adaptive pooler (#3)
* feat: new adaptive pooler
Co-authored-by: @Rocketknight1
* chore: remove image_size argument.
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: matt <rocketknight1@gmail.com>
* Empty-Commit
* chore: remove image_size comment.
* chore: remove playground_tf.py
* chore: minor changes related to spacing.
* chore: make style.
* Update src/transformers/models/regnet/modeling_tf_regnet.py
Co-authored-by: amyeroberts <aeroberts4444@gmail.com>
* Update src/transformers/models/regnet/modeling_tf_regnet.py
Co-authored-by: amyeroberts <aeroberts4444@gmail.com>
* chore: refactored __init__.
* chore: copied from -> taken from./g
* adaptive pool -> global avg pool, channel check.
* chore: move channel check to stem.
* pr comments - minor refactor and add regnets to doc tests.
* Update src/transformers/models/regnet/modeling_tf_regnet.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* minor fix in the xlayer.
* Empty-Commit
* chore: removed from_pt=True.
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: amyeroberts <aeroberts4444@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Fixing a regression with `return_all_scores` introduced in #17606
- The legacy test actually tested `return_all_scores=False` (the actual
default) instead of `return_all_scores=True` (the actual weird case).
This commit adds the correct legacy test and fixes it.
Tmp legacy tests.
Actually fix the regression (also contains lists)
Less diffed code.
* Add a TF in-graph tokenizer for BERT
* Add from_pretrained
* Add proper truncation, option handling to match other tokenizers
* Add proper imports and guards
* Add test, fix all the bugs exposed by said test
* Fix truncation of paired texts in graph mode, more test updates
* Small fixes, add a (very careful) test for savedmodel
* Add tensorflow-text dependency, make fixup
* Update documentation
* Update documentation
* make fixup
* Slight changes to tests
* Add some docstring examples
* Update tests
* Update tests and add proper lowercasing/normalization
* make fixup
* Add docstring for padding!
* Mark slow tests
* make fixup
* Fall back to BertTokenizerFast if BertTokenizer is unavailable
* Fall back to BertTokenizerFast if BertTokenizer is unavailable
* make fixup
* Properly handle tensorflow-text dummies
* Add CodeGen model
* Add missing key and switch order of super()
* Fix torch.ones init with uint8 instead of bool
* Address comments: copy statements and doc
* update tests
* remove old model parallel
* fix batch gen tests
* fix batch gen test
* update test_gpt2_sample_max_time
* fix codgen test and revert gpt2 test change
* Fix incorrect tie_word_embedding value, typo, URL
* Fix model order in README and styling
* Reorder model list alphabetically
* Set tie_word_embedding to False by default
* Apply suggestions from code review
* Better attn mask name & remove attn masked_bias
* add tokenizer for codegen
* quality
* doc tokenizer
* fix-copies
* add CodeGenTokenizer in converter
* make truncation optional
* add test for truncation
* add copyright
* fix-copies
* fix fast tokenizer decode
* Update src/transformers/models/codegen/tokenization_codegen.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* increase vocab_size in tests
Co-authored-by: patil-suraj <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Fix tests that broke when models used batchnorm
* Initializing the model twice does not actually...
...give you the same weights each time.
I am good at machine learning.
* Fix speed regression
* few fixes:
- hardcode tokenizer padding side
- remove unused args
* few fixes:
- added new attribute on TokenizerTesterMixin
- added new slow test
- remove unused arg on tokenizer class
* make style
* Update src/transformers/models/bloom/tokenization_bloom_fast.py
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
* make quality
* apply changes
- remove new attribute
- redefine test on the class
* add comments
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
* add skeleton files
* fix cpu inference link
* add hint to make clear that single gpu section contains general info
* add new files to ToC
* update toctree to have subsection for performance
* add "coming soon" to the still empty sections
* fix missing title
* fix typo
* add reference to empty documents
* Apply suggestions from code review
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Feat: add missing type hints for QDQBertModel
* fix: ran black and isort
* feat: Add missing output type for QDQBertModel
* feat: Add type hints for QDQBertLMHeadModel and models starting with QDQBertFor
* fix: add missing return type for QDQBertModel
* fix: remove wrong return type for QDQBertEmbeddings
* fix: readded config argument to load_tf_weights_in_qdqbert
* fix: add BertConfig type to BertEmbeddings config due t checko error in ci
* fix: removed config type hints to avoid copy checks
* Add logits_processor parameter, used by `generate`, to `Seq2SeqTrainer` methods `evaluate` and `predict`
* Add all generate parameters to `Seq2SeqTrainer`, and also to `QuestionAnsweringSeq2SeqTrainer` which overrides it
* Remove `self._num_beams` from trainer classes
* - Run fixup
- Fix "Constraint" not exposed
- Fix synced_gpus to actually read from param
* Use kwargs
* Copy kwargs before making changes to it
* Fix style issues unused imports
- Fix `top_k_top_p_filtering` not passing `filter_value` to
`TopPLogitsWarper` causing any top-p filtered logits to be -inf
instead of specified value
- Add corresponding test
* Add final_layer_norm to OPT model
* Add JAX and TF version
* Fix Keras name
* Woops
* Allow for non breaking change
* Apply suggestions from code review
* add tests
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* rename to check_pt_flax_outputs
* update check_pt_flax_outputs
* use 5e-5 for BigBird PT/Flax test
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Prepare CI for v0.8.0
* pin hfh (revert before merge)
* Revert "pin hfh (revert before merge)"
This reverts commit a0103140e1c77b810ffcb735192968bc03be3e1f.
* Test rc3
* Test latest rc
* Unpin to the RC
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* Fix docstrings and variable names
* Rename x to something better
* Improve messages
* Fix docstrings and add test for greyscale images
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* deduplication draft
* update style
* update style test
* dummy test main
* rename modules
* rename functions
* return extremes in deduplicate_clusters
* update style
* cast str for gzip
* update doc string
* time processing
* use dataset map to compute minhash
* fill value for short token
* remove da map method
* update style
* use share object to multiprocess
* update style
* use f-string and minor fix
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>
* update style
* use module parameters
* change ds_dedup to ds_filter
* save ds_dedup
* mv test to script tests
* make jaccard threshold a parameter of deduplicate_dataset
* update style
* add doc strings
* update style
* add doc string for DuplicationIndex
* save files into data dir
* update readme
* Update examples/research_projects/codeparrot/README.md
Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>
* make near deduplication optional
* move near deduplication in README
* Update examples/research_projects/codeparrot/README.md
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* use f string
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>
On line 180, `torch.tensor(-1.0, xxx)` gives the error "TypeError: 'float' object cannot be interpreted as an integer"
This is because the dtype here is `int64`. For `dtype=int64`, this needs to simply be `-1`.
This impacts the long-t5-tglogbal-x model. It does not impact the long-t5-local-x version which does not appear to call this line.
* Use torch.finfo(self.dtype).min
* for GPTNeoX
* for Albert
* For Splinter
* Update src/transformers/models/data2vec/modeling_data2vec_audio.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix -inf used in Bart-like models
* Fix a few remaining -inf
* more fix
* clean up
* For CLIP
* For FSMT
* clean up
* fix test
* Add dtype argument and use it for LayoutLMv3
* update FlaxLongT5Attention
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Added translation of installation.mdx to Portuguese, as well
as default templates of _toctree.yml and _config.py
* [ build_documentation.yml ] - Updated doc_builder to build
documentation in Portuguese.
[ pipeline_tutorial.mdx ] - Created translation for the pipeline_tutorial.mdx.
* [ build_pr_documentation.yml ] - Added pt language to pr_documentation builder.
[ pipeline_tutorial.mdx ] - Grammar changes.
* [ accelerate.mdx ] - Translated to Portuguese the acceleration tutorial.
* [ multilingual.mdx ] - Added portuguese translation for multilingual tutorial.
[ training.mdx ] - Added portuguese translation for training tutorial.
* [ preprocessing.mdx ] - WIP
* Update _toctree.yml
* Adding Pré-processamento to _toctree.yml
* Update accelerate.mdx
* Nits and eliminate preprocessing file while it is ready
* [ index.mdx ] - Translated to Portuguese the index apresentation page.
* [ docs/source/pt ] - Updated _toctree.yml to match newest translations.
* Fix build_pr_documentation.yml
* Fix index nits
* nits in _toctree
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
* Fix eval to compute rouge correctly for rouge_score
* styling
* moving sentence tokenization to utils from run_eval
* saving ckpt in mlflow
* use existing format of args
* fix documentation
Co-authored-by: Swetha Mandava <smandava@nvidia.com>
* Migrate HFDeepSpeedConfig from trfrs to accelerate
* add `accelerate` to testing dep
* addressing comments
* addressing comments
Using `_shared_state` and avoiding object creation. This is necessary as `notebook_launcher` in `launcers.py` checks `len(AcceleratorState._shared_state)>0` to throw an error.
* resolving comments
1. Use simple API from accelerate to manage the deepspeed config integration
2. Update the related documentation
* reverting changes and addressing comments
* docstring correction
* addressing nits
* addressing nits
* addressing nits 3
* bumping up the accelerate version to 0.10.0
* resolving import
* update setup.py to include deepspeed dependencies
* Update dependency_versions_table.py
* fixing imports
* reverting changes to CI dependencies for "run_tests_pipelines_tf*" tests
These changes didn't help with resolving the failures and I believe this needs to be addressed in another PR.
* removing `accelerate` as hard dependency
Resolves issues related to CI Tests
* adding `accelerate` as dependency for building docs
resolves failure in Build PR Documentation test
* adding `accelerate` as dependency in "dev" to resolve doc build issue
* resolving comments
1. adding `accelerate` to extras["all"]
2. Including check for accelerate too before import HFDeepSpeedConfig from there
Co-Authored-By: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* resolving comments
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* rembert: fix python codeblock
* rembert: use correct google/rembert checkpoint name in documentation
* rembert: use correct google/rembert checkpoint name in TF documentation
* add new bloom classes
* (feat) add bloom classification tests; make style
* style: change import in test
* add some typehints to bloom classes
* merge main into branch
* fix: input checking in bloom seq classification
* fix tests
* change model class tests
* fix few tests
- more tests should pass
- one test left
* make token classifier return hidden states
* style: make BLOOM typehints consistent
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Initial commit
* Make some fixes
* Make PT model full forward pass
* Drop TF & Flax implementation, fix copies etc
* Add Flax model and update some corresponding stuff
* Drop some TF things
* Update config and flax local attn
* Add encoder_attention_type to config
* .
* Update docs
* Do some cleansing
* Fix some issues -> make style; add some docs
* Fix position_bias + mask addition + Update tests
* Fix repo consistency
* Fix model consistency by removing flax operation over attn_mask
* [WIP] Add PT TGlobal LongT5
* .
* [WIP] Add flax tglobal model
* [WIP] Update flax model to use the right attention type in the encoder
* Fix flax tglobal model forward pass
* Make the use of global_relative_attention_bias
* Add test suites for TGlobal model
* Fix minor bugs, clean code
* Fix pt-flax equivalence though not convinced with correctness
* Fix LocalAttn implementation to match the original impl. + update READMEs
* Few updates
* Update: [Flax] improve large model init and loading #16148
* Add ckpt conversion script accoring to #16853 + handle torch device placement
* Minor updates to conversion script.
* Typo: AutoModelForSeq2SeqLM -> FlaxAutoModelForSeq2SeqLM
* gpu support + dtype fix
* Apply some suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* * Remove (de)parallelize stuff
* Edit shape comments
* Update README.md
* make fix-copies
* Remove caching logic for local & tglobal attention
* Apply another batch of suggestions from code review
* Add missing checkpoints
* Format converting scripts
* Drop (de)parallelize links from longT5 mdx
* Fix converting script + revert config file change
* Revert "Remove caching logic for local & tglobal attention"
This reverts commit 2a619828f6ddc3e65bd9bb1725a12b77fa883a46.
* Stash caching logic in Flax model
* Make side relative bias used always
* Drop caching logic in PT model
* Return side bias as it was
* Drop all remaining model parallel logic
* Remove clamp statements
* Move test files to the proper place
* Update docs with new version of hf-doc-builder
* Fix test imports
* Make some minor improvements
* Add missing checkpoints to docs
* Make TGlobal model compatible with torch.onnx.export
* Replace some np.ndarray with jnp.ndarray
* Fix TGlobal for ONNX conversion + update docs
* fix _make_global_fixed_block_ids and masked neg value
* update flax model
* style and quality
* fix imports
* remove load_tf_weights_in_longt5 from init and fix copies
* add slow test for TGlobal model
* typo fix
* Drop obsolete is_parallelizable and one warning
* Update __init__ files to fix repo-consistency
* fix pipeline test
* Fix some device placements
* [wip]: Update tests -- need to generate summaries to update expected_summary
* Fix quality
* Update LongT5 model card
* Update (slow) summarization tests
* make style
* rename checkpoitns
* finish
* fix flax tests
Co-authored-by: phungvanduy <pvduy23@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: patil-suraj <surajp815@gmail.com>
* enable cpu distribution training using mpirun
*command like
* mpirun -n 2 python3 run_qa.py --no_cuda --xpu_backend ccl xxxx
*MASTER_ADDR and MASTER_PORT should be set as env
*export MASTER_ADDR=127.0.0.1
*export MASTER_PORT=29500
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* fix according to the review comment
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* use accelerate logic for cpu distribution training to set "RANK","LOCAL_RANK","WORLD_SIZE" environment
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* allow scope from trainer arg
* add ray_scope to training args
* escape double quotes
* make style && quality
* attempt to solve doc style issues
* splitting up URLs for style
* make fixup
* Update src/transformers/training_args.py
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
* make style
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
I'm guessing that the intention was to have the `_no_split_modules` class attribute for `GPTNeoXPreTrainedModel` to be set to `["GPTNeoXLayer"]`, akin to how its set as `["GPTJBlock"]` for `GPTJPreTrainedModel`.
If this is incorrect, please feel free to just close the PR.
Thanks!
* Raise RepoNotFoundError in case of 401
* Include changes from revert-17646-skip_repo_not_found
* Add a comment
* 💄 Code quality
* 💚 Update `get_from_cache` test
* 💚 Code quality & skip failing test
VisibleDeprecationWarning is addressed by specifying dtype=object when creating numpy array.
Update code based on review feedback.
Undo whitespace changes to tokenization_utils_base.py.
Co-authored-by: I like data <ilikedata@nym.hush.com>
When we're preparing the tensors for CPU for postprocessing, we need
to upgrade the `float16` to `float32` since CPUs don't have instructions
for `[b]float16`.
* Adding `top_k` and `sort` arguments to `text-classification` pipeline.
- Deprecate `return_all_scores` as `top_k` is more uniform with other
pipelines, and a superset of what `return_all_scores` can do.
BC is maintained though.
`return_all_scores=True` -> `top_k=None`
`return_all_scores=False` -> `top_k=1`
- Using `top_k` will imply sorting the results, but using no argument
will keep the results unsorted for backward compatibility.
* Remove `sort`.
* Fixing the test.
* Remove bad doc.
* Use shape_list to safely get shapes
* Add relevant test
* Tidy and add metrics
* Resolve dynamic shaping issues and move test
* Tidy up and all samples in batch
* Formatting
* adding template
* update model
* model update
* update conf for debug model
* update conversion
* update conversion script
* update conversion script
* fix missing keys check
* add tests to test the tokenizer in the local machine
* Change variable name
* add tests on xnli dataset
* add more description
* add descriptions + clearer code
* clearer code
* adding new tests + skipping few tests because of env problems
* change comment
* add dtype on the configuration
* add test embeddings
* add hardcoded test
* fix dtype issue
* adding torch.float16 to config
* adding more metrics (min, max, mean)
* add sum
* now the test passes with almost equal
* add files for conversion - test passes on cpu gpu
* add final changes
* cleaning code
* add new args in the docstring
* fix one liner function
* remove macros
* remove forward attention
* clean up init funtion
* add comments on the issue
* rm scale mask softmax
* do make style
* fix dtype in init
* fixing for loop on att probs
* fix style with black
* fix style + doc error
* fix and debug CI errors (docs + style)
* some updates
- change new operations
- finally add scaled softmax
- added new args in the config
* make use cache working
* add changes
- save sharded models
- final changes on the modeling script
* add changes
- comment on alibi
- add TODO on seq length
* test commit
- added a text to test the commit
Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>
* final changes
- attention mask change
- generation works on BS176b
Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>
* changes - model + conversion
* move to correct dir
* put ,
* fex fixes
* fix tokenizer autodoc
* fix minor CI issues
* fix minor CI issues
* fix minor CI issues
* fix style issue
* fix minor import issues
* fix few issues
* remove def main on the test
* add require torch
* replace decorator with 'with'
* fix style
* change to bloom
* add quick fix tokenizer
* fix tokenizer file
* fix tokenizer
- merge tests
- small fixes
* fix import issue
* add bloom to readme
* fix consistency
* Update docs/source/en/model_doc/bloom.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply suggestions from code review
fix comment issues on file headers
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fix doc issue
* small fix - modeling test
* some changes
- refactor some code
- taking into account reviews
- more tests should pass
- removed pruning tests
* remove useless division
* more tests should pass
* more tests should pass
* more tests should pass
* let's try this one
-add alibi offset
- remove all permutes to make the grad operations work
- finger crossed
* refactor
- refactor code
- style changes
- add new threshold for test
* major changes
- change BLOOM to Bloom
- add quick doc on bloom.mdx
- move embeddings test on modeling test
* modify readme
* small fixes
* small fix
- better threshold for a test
* remove old test file from fetcher
* fix small typo
* major change
- change BloomLMHead to BloomForCausalLM
* remove onnx config
* major changes
- refactor the code
- remove asserts
- change tol for test
* make style
* small change
* adding a slow test + commenting old ones for now
* make style
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* make style
* fix duplicates
* cleaning comments on config
* clean a bit conversion file
* refacor a bit modeling file
* refactor tokenizer file
* fix tokenization test issue
* fix tokenization issue #2
* fix tokenization issue second try
* fix test issue
* make style + add suggestions
* change test fetcher
* try this one
- slow tests should pass
- finger crossed
* possible final changes
* make style
* try fix padding side issue
* fix side
* fix padding issue
* fix ko-readme
* fix config auto
* cleaning modeling file
* keep bloom in caps in ko
* update config docs
* remove pretraining_pp
* remove model parallel
* update config
- add correct config files
* fix duplicates
* fix fetcher
* fix refactor issue
- remove divide function
* try to remove alibi
* small fixes
- fix alibi
- remove seq length
- refactor a bit the code
* put correct values
- fix bos and eos token ids
* fix attention mask loop
Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>
* small fixes:
- remove skip bias add
* small fixes
- fix typo in readme
- fix typos in config
* small changes
- remove a test
- add reconstruction test
- change config
* small changes
- change Scaled Softmax to BloomScaledSoftmax
* small fixes
- fix alibi dtype
* major changes
- removing explicit dtype when loading modules
- fixing test args (torch_dtype=auto)
- add dosctring
* fix readmes
* major changes
- now bloom supports alibi shifting
- refactor a bit the code
- better test tolerance now
* refactor a bit
* refactor a bit
* put correct name on test
* change docstring
* small changes
- fix docstring modeling
- fix test tolerance
* fix small nit
- take dtype from tensors in the conversion script
* minor fix
- fix mdx issue
* minor fix
- change config docstring
* forward contrib credits from PR14084
* Apply suggestions from code review
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* apply modifications
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* resolve softmax upcast
* Apply suggestions from code review
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Update src/transformers/models/bloom/modeling_bloom.py
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
* final changes modeling
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Merge commit 'd156898f3b9b2c990e5963f5030a7143d57921a2'
* merge commit
* Apply suggestions from code review
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* apply suggestions
Apply suggestions from Stas comments
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Fix gradient checkpointing
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* add slow but exact
* add accelerate compatibility
Co-authored-by: Nicolas Patry <Narsil@users.noreply.github.com>
* forward contrib credits
Co-authored-by: thomasw21 <thomasw21@users.noreply.github.com>
Co-authored-by: sgugger <sgugger@users.noreply.github.com>
Co-authored-by: patrickvonplaten <patrickvonplaten@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: LysandreJik <LysandreJik@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix torch device on tests
* make style
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix nits
Co-authored-by: patrickvonplaten<patrickvonplaten@users.noreply.github.com>
* remove final nits
* fix doc
- add more details on the doc
- add links to checkpoints
* Update src/transformers/__init__.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/bloom/modeling_bloom.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* apply suggestions
Co-authored-by: sgugger <sgugger@users.noreply.github.com>
* put test torchscript to false
* Update src/transformers/models/bloom/modeling_bloom.py
Co-authored-by: justheuristic <justheuristic@gmail.com>
* fix alibi
- create alibi only once
* add small doc
* make quality
* replace torch.nn
* remove token type emb
* fix fused op + output bias
* add fused op
- now can control fused operation from config
* remove fused op
* make quality
* small changes
- remove unsed args on config
- removed bias gelu file
- make the model torchscriptable
- add torchscript slow tests
* Update src/transformers/models/bloom/modeling_bloom.py
* fix slow
* make style
* add accelerate support
* add bloom to deepspeed tests
* minor changes
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* minor change
* slow tests pass
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/en/model_doc/bloom.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* minor changes:
- change docstring
- add link to paper
Co-authored-by: Thomwolf <thomwolf@gmail.com>
Co-authored-by: Thomas Wolf <thomas@huggingface.co>
Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: sIncerass <sheng.s@berkeley.edu>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Nicolas Patry <Narsil@users.noreply.github.com>
Co-authored-by: thomasw21 <thomasw21@users.noreply.github.com>
Co-authored-by: sgugger <sgugger@users.noreply.github.com>
Co-authored-by: patrickvonplaten <patrickvonplaten@users.noreply.github.com>
Co-authored-by: LysandreJik <LysandreJik@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: justheuristic <justheuristic@gmail.com>
Co-authored-by: Stas Bekman <stas@stason.org>
* feat: initial implementation of data2vec segmentation model in TF.
* chore: minor corrections to make the segmenter work.
* chore: removed unncessary files.
* chore: add tests and other modifications.
* fix: loss computation for segmentation.
* chore: remove unused variable.
* chore: formatting.
* added a dummy adaptive pooling layer.
* removed unnecessary file.
* potentially add identifiers to layer names.
* fix: layer naming.
* chore: removed unnecessary print.
* Skipping unneeded test
* chore: add logging to debug tolerance.
* fix: segmentation tests for tfdata2vecvision
* chore: make style.
* fix: layer names, assertion to be resolved.
* Bumping test tolerance a bit
* chore: bump the tol in PT test.
Co-authored-by: matt <rocketknight1@gmail.com>
* Stricter pt-to-tf checks; Update docker image for related tests
* check all attributes in the output
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* added cbs to notebooks, made copy-paste error fix in generation_utils
* initial push for mctc model
* mctc feature extractor done
* added processor, tokenizer and their tests for MCTC. Have added an MCTC modeling test, adjusting model code accordingly.
* added processor, tokenizer and their tests for MCTC. Have added an MCTC modeling test, adjusting model code accordingly.
* passing attention, now struggling to figure out how attention masks make sense here
* works when excluding attention masks. ask later how one would integrate attention maskshere
* bizarre configuration error (model prefix comes first in config dict json and messes up the order)
* all passing but bizzarre config dict ordering issue when to_dict
* passing all major tests
* feature extraction, processor, tokenizer added & tests passing
* style & consistency & other logistical fixes
* copy paste fix
* model after feature extraction working
* commiting final feature extraction results; need to fix normalization
* feature extraction passing tests; probably should add tests on the specific flashlight-copied functions?
* delete print ; format code a bit
* fixing tests
* passing major tests
* fixing styles
* completed tokenization test with real example; not sure if these values are entirely correct.
* last test fixes from local
* reverting accidentally included custom setup configs
* remove load tf weights; fix config error
* testing couldnt import featureextractor
* fix docs
* fix docs
* resolving comments
* style fixes
* style fixes
* Update to MCTCConv1dSubSampler
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* relposemb fixes
* conv1d name issue; expecting config fail with paraentheses
* fix config issue
* fix config issue
* fix config issue
* change everything to MCTCT
* fixing naming change errors
* archive list
* copyrights and docs
* copyrights and docs
* copyrights and docs
* merge resolution
* move tests, fix to changed optionaldependency structure
* test directories changed
* fixing tests
* how to avoid tf tests?
* how to avoid tf tests?
* tests passing locally
* allow mctctprocessor imported any env
* allow mctctprocessor imported any env
* fixed second round of feedback, need to fix docs
* doc changes not being applied
* all fixed
* style fix
* feedback fixes
* fix copies and feature extraction style fix
* Update tests/models/visual_bert/test_modeling_visual_bert.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* copy paste huggingface:main visual bert
* added eof newline to visual bert; all tests are passing otherwise
* fix slow tests by adding attention mask
* change model id to speechbrain
* make fix-copies
* fix readme unwanted deletes
* fixing readmes, make fix-copies
* consistent M-CTC-T naming
* Update src/transformers/models/mctct/__init__.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* all fixed but variable naming
* adjust double quotes
* fixed variable names
* copyright and mr quilter
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* correct slow tests
* make fix-copies
* Update src/transformers/models/mctct/configuration_mctct.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/mctct/configuration_mctct.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* m-ctc-t not mctct
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Quicktour Portuguese Translation
Translated quicktour.mdx until line 161
* Finished translating quicktour.mdx
Ready to upload and adjust eventual .mdx or translation mistakes.
* Add _toctree.yml and fix nits
* Fixed pt-br mdx syntax problem
Closed <frameworkcontent> instance
* Changed </frameworkcontent> line
* Copied missing block from english version of quicktour.mdx
* Reviwed the entire file once again. It should be working now.
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
* Add examples telemetry
* Alternative approach
* Add to all other examples
* Add to templates as well
* Put framework separately
* Same for TensorFlow
* Add method to call to_tf_dataset() with column inference
* Add test for dataset creation
* Add a default arg for data collator
* Fix test
* Fix call with non-dev version of datasets
* Test correct column removal too
* make fixup
* More tests to make sure we remove unwanted columns
* Fix test to avoid predicting on unbuilt models
* Fix test to avoid predicting on unbuilt models
* Fix test to remove unwanted head mask columns from inputs
* Stop pushing your debug breakpoints to the main repo of the $2bn company you work for
* Skip the test in convnext because no grouped conv support
* Drop bools from the dataset dict
* Make style
* Skip the training test for models whose input dicts don't give us labels
* Skip transformerXL in the test because it doesn't return a simple loss
* Skip TFTapas because of some odd NaN losses
* make style
* make fixup
* Add docstring
* fixup
* Update src/transformers/modeling_tf_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/modeling_tf_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/modeling_tf_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/modeling_tf_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/modeling_tf_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Remove breakpoint from tests
* Fix assert, add requires_backends
* Protect tokenizer import with if TYPE_CHECKING
* make fixup
* Add noqa, more fixup
* More rearranging for ~* aesthetics *~
* Adding defaults for shuffle and batch_size to match to_tf_dataset()
* Update src/transformers/modeling_tf_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add the Italian translation of the file installation.mdx and edit _toctree
* Add the Italian translation of the file installation.mdx and edit _toctree
This PR updates our Expert Acceleration Program image with a new image featuring our experts.
This is similar to our Transformers/README.md image update that has proven to be successful.
* Add gated-silu to t5 architecture to support UL2
* Fix error message
* formatting
* formatting again
* refactor
* fix classnames in _init_weights
* remove is_gated
* add test
* fix test
* Try without the test?
* Add back the test.
* Improve error message.
Co-authored-by: Daniel Hesslow <daniel@lighton.ai>
* Implemented loss for training AudioFrameClassification
* reported changes in wav2vec2 main class and used make copies to propagate
* running black for code formatting
* print more lib. versions and just befor test runs
* update print_env_pt.py
* rename to print_env
* Disable warning + better job name
* print python version
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* add a test for a word only input
* make LukeForMaskedLM work without entity inputs
* update test
* add LukeForMaskedLM to MODEL_FOR_MASKED_LM_MAPPING_NAMES
* restore pyproject.toml
* empty line at the end of pyproject.toml
I think you mean to accept either an instance of `PreTrainedTokenizer` or `PreTrainedTokenizerFast` inside of the `pipeline(...)` factory function, if the `tokenizer` argument isn't a `str`.
* initial commit
* add init file
* update globakl init
* update index and dummy objects
* style
* update modelling auto
* fix initi typo in src/transformers
* fix typo in modeling tf auto, opt was in wrong mapping name
* fixed a slow test : saved_model
* style
* fix positionnal embedding if no position id is provided
* update tf test
* update test flax requirements
* fixed serialization
* update
* update tf name to allow smooth convertion
* update flax tests
* style
* fix test typo
* fix tf typo test
* add xla for generate support in causal LM
* fixed bug
* cleaned tf tests
* style
* removed from PT for slow tests
* fix typp
* opt test as slow
* trying to fix GPT2 undefined
* correct documentation and add to test doc
* update tf doc
* fix doc
* fake commit
* Apply suggestions from code review
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* update test based on review
* merged main layer for functionning test
* fixup + quality
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* update long comment
* make fix copies
Co-authored-by: Arthur <arthur@huggingface.co>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* [Json dump] Make json prettier
* correct more tokenizeirs
* more patterns
* add aggressive test
* the aggressive test was actually useful :-)
* more tests
* Apply suggestions from code review
* Accumulate tokens into batches in PreTrainedTokenizerBase.add_tokens()
For tokenizers with a small number of special tokens or special tokens
with consecutive token IDs, this reduces the time complexity of creating
the trie from quadratic to linear, see also #16936.
* Extend explanation of batching added tokens
* Setup for Italian translation and add first document
- Add 'it' folder for files translated into Italian
- Add _config.py and _toctree.yml files
- Add translation of quicktour.mdx
* Fix style issue of italian documentation files
* Add 'it' to the languages section in the .github/workflows
* Remove - installation from _toctree for Italian
* Translation for index file
- Add index to _toctree.yml
- Add translation of index.mdx
* Fix typo in docs/source/it/index.mdx
* Translate code comments in docs/source/it/_config.py
Co-authored-by: Martina Fumanelli <martinafumanelli@Martinas-MBP.homenet.telecomitalia.it>
* Add onnx configuration for xlm
* Add supported features for xlm
* Add xlm to models exportable with onnx
* Add xlm architecture to test file
* Modify docs
* Make code quality fixes
* Support for Bart and LayoutLM, and partial support for XLNet
* Support for mbart
* A lot of new models supported
* Support for other models
* LayoutLM fix
* Use strings instead of classes
* Make forward pass work
* More improvements
* Remove unused imports
* Remove timm dependency
* Improve loss calculation of token classifier
* Fix most tests
* Add docs
* Add model integration test
* Make all tests pass
* Add LayoutLMv3FeatureExtractor
* Improve integration test + make fixup
* Add example script
* Fix style
* Add LayoutLMv3Processor
* Fix style
* Add option to add visual labels
* Make more tokenizer tests pass
* Fix more tests
* Make more tests pass
* Fix bug and improve docs
* Fix import of processors
* Improve docstrings
* Fix toctree and improve docs
* Fix auto tokenizer
* Move tests to model folder
* Move tests to model folder
* change default behavior add_prefix_space
* add prefix space for fast
* add_prefix_spcae set to True for Fast
* no space before `unique_no_split` token
* add test to hightligh special treatment of added tokens
* fix `test_batch_encode_dynamic_overflowing` by building a long enough example
* fix `test_full_tokenizer` with add_prefix_token
* Fix tokenizer integration test
* Make the code more readable
* Add tests for LayoutLMv3Processor
* Fix style
* Add model to README and update init
* Apply suggestions from code review
* Replace asserts by value errors
* Add suggestion by @ducviet00
* Add model to doc tests
* Simplify script
* Improve README
* a step ahead to fix
* Update pair_input_test
* Make all tokenizer tests pass - phew
* Make style
* Add LayoutLMv3 to CI job
* Fix auto mapping
* Fix CI job name
* Make all processor tests pass
* Make tests of LayoutLMv2 and LayoutXLM consistent
* Add copied from statements to fast tokenizer
* Add copied from statements to slow tokenizer
* Remove add_visual_labels attribute
* Fix tests
* Add link to notebooks
* Improve docs of LayoutLMv3Processor
* Fix reference to section
Co-authored-by: SaulLu <lucilesaul.com@gmail.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Initial work
* More or less finished with first draft
* Update src/transformers/modeling_utils.py
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Update src/transformers/modeling_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Fix randomly initialized weights
* Update src/transformers/modeling_utils.py
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
* Address review comments
* Rename DeepSpeed folder to temporarily fix the test issue?
* Revert to try if Accelerate fix works
* Use latest Accelerate release
* Quality and fixes
* Style
* Quality
* Add doc
* Test + fix
* More blocks
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
* Fix torch.jit.script and pickling issues
* Fix get_attr issues
* Fix import in function
* Fix GPT-J and T5 tracing for torch=1.11
* Gate graph surgery on torch version
* Modeling minor changes to enable TorchScripting
* Model serialization / deserialization test
* Remove _assert_is_none users
* add inference example to LayoutLMv2ForQuestionAnswering, passing doctest
* add loss example to LayoutLMv2ForQuestionAnswering, passing doctest
* Add correct doctest for LayoutLMv2ForTokenClassification, passing doctest
* add correct doctest for LayoutLMv2ForSequenceClassification, passing test
* add correct doctest for LayoutLMv2Model, passing test
* make fixup
* fix to address review comments
* make style
* fix doctest line break issue, add to documentaiton_tests.txt, address review comments
* move comment about layoutlmv2 dependencies to the doc page
* format doc page as suggested
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* delete extraneous backtick
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* average loss over batches and accumulated steps for tracking
* fix layernorm weight decay
* use AdamW from Pytorch instead of Transformers
* add shuffling of sequences inside the batches
* add shuffling of sequences inside the batches
* add logging dir and reformat code
* fix lr tracking
* remove Mistral scaling
* keep Mistral scaling
* reformat code
* fix error
* fix error
* use shuffling function from Pytorch
* remove argument for shuffling batch sequences as it isn't optional
* update package versions and install accelerate from source
* remove unused package
* Update loss average over accumulated steps
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* Update loss average over accumulated steps
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* use one shuffle buffer argument
* compute avg_loss in one line
Co-authored-by: Loubna ben allal <loubnabenallal@gmail.com>
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* [BC] Fixing usage of text pairs
The BC is actually preventing users from misusing the pipeline since
users could have been willing to send text pairs and the pipeline would
instead understand the thing as a batch returning bogus results.
The correct usage of text pairs is preserved in this PR even when that
makes the code clunky.
Adds support for {"text":..,, "text_pair": ...} inputs for both dataset
iteration and more explicit usage to pairs.
* Updating the doc.
* Update src/transformers/pipelines/text_classification.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/pipelines/text_classification.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update tests/pipelines/test_pipelines_text_classification.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* quality.
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Fix length in no_trainer examples
* Add setup and teardown
* Use new accelerator config generator to automatically make tests able to run based on environment
* Add information gain filtration algorithm
* Complying with black requirements
* Added author
* Fixed import order
* flake8 corrections
Co-authored-by: Javier Turek <javier.turek@intel.com>
* added type hints to prophetnet
* reformatted with black
* fix bc black misformatted some parts
* fix imports
* fix imports
* Update src/transformers/models/prophetnet/configuration_prophetnet.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* update OPTIONAL type hint and docstring
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* [LED] fixed global_attention_mask not passed for generation + docs clarification for gradient checkpointing
* LED docs clarification
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* [LED] gradient_checkpointing=True should be passed to TrainingArguments
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* [LED] docs: remove wrong word
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* [LED] docs fix typo
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
- Add --ignore_mismatched_sizes argument to classification examples
- Expand the error message when loading a model whose head dimensions are different from expected dimensions
* Initial commit
* Better label renaming
* Remove breakpoint before pushing (this is your job)
* Test a lot more in the Keras fit() test
* make fixup
* Clarify the case where we flatten y dicts into tensors
* Clarify the case where we flatten y dicts into tensors
* Extract label name remapping to a method
* Automatically sort auto mappings
* Better class extraction
* Some auto class magic
* Adapt test and underlying behavior
* Remove re-used config
* Quality
* fixed bug run_mlm_flax_stream.py
Fixed bug caused by an update to tokenizer keys introduced in recent transformers versions (between `4.6.2` and `4.18.0`) where additional keys were introduced to the tokenizer output.
* Update run_mlm_flax_stream.py
* adding missing paranthesis
* formatted to black
* remove cols from dataset instead
* reformat to black
* moved rem. columns to map
* formatted to black
Co-authored-by: KennethEnevoldsen <kennethcenevolsen@gmail.com>
* [doc] performance/scalability revamp
* link the new docs
* no :
* mixed precision
* work on the first doc
* expand the main doc
* Trigger CI
* style
* revamp single GPU training section
* work on training performance
* remove files not used anymore or will be added later
* final touches
* fix rebase
* Add hardware section to toctree
* fix toctree again
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* remove `fast_tokenizers` entry that was copied in rebase
* add warning about DP vs DDP
* remove todo
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fix missing closure of codeblock
* Update docs/source/en/perf_train_gpu_many.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* sync with #16860
* update toc
Co-authored-by: leandro <leandro.vonwerra@spoud.io>
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* [ fast_tokenizers.mdx ] - Added translation to portuguese to tutorial
* Delete docs/source/pt-br directory
* [ fast_tokenizers.mdx ] - Continuing work on file
* [ fast_tokenizers.mdx ] - Continuing work on file
* Add fast tokenizers to _toctree.yml
* Eliminated config and toctree.yml
* Nits in fast_tokenizers.mdx
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
* Added translation of installation.mdx to Portuguese, as well
as default templates of _toctree.yml and _config.py
* [ build_documentation.yml ] - Updated doc_builder to build
documentation in Portuguese.
[ pipeline_tutorial.mdx ] - Created translation for the pipeline_tutorial.mdx.
* [ build_pr_documentation.yml ] - Added pt language to pr_documentation builder.
[ pipeline_tutorial.mdx ] - Grammar changes.
* [ accelerate.mdx ] - Translated to Portuguese the acceleration tutorial.
* [ multilingual.mdx ] - Added portuguese translation for multilingual tutorial.
[ training.mdx ] - Added portuguese translation for training tutorial.
* [ preprocessing.mdx ] - WIP
* Update _toctree.yml
* Adding Pré-processamento to _toctree.yml
* Update accelerate.mdx
* Nits and eliminate preprocessing file while it is ready
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
* Add test to ensure models can take int64 inputs
* is_integer is an attribute, not a method
* Fix test when some inputs aren't tensors
* Add casts to blenderbot and blenderbot-small
* Add casts to the other failing models
## Motivation
We are going to use a new blob account to store the checkpoints.
## Modification
Modify the azure blob storage URLs for BEiT checkpoints.
* First version - OPT model
* Final changes
- putting use cache to False
* few changes
- remove commented block
* few changes
- remove unecessary files
* fix style issues
* few changes
- remove a test file
- added the logits test
* Update src/transformers/models/auto/tokenization_auto.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add gen tests
* few changes
- rm mask filling example on docstring
* few changes
- remove useless args
* some changes
- more tests should pass now
- needs to clean more
- documentation still needs to be done
* fix code quality
* major changes
- change attention architecture to BART-like
- modify some tests
- style fix
* rm useless classes
- remove opt for:
- QA
- cond generation
- seq classif
* Removed autodoc calls to non-existant classes
TOkenizers are not implemented
* Update src/transformers/__init__.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/__init__.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/auto/modeling_tf_auto.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Replaced OPTTokeniser with GPT2 tokenizer
* added GPT2Tokenizer.from_pretrained("patrickvonplaten/opt_gpt2_tokenizer")
* Removed OPTTokenizer
* make style
* Make style replaces
``` ...).unsqueeze(```
by
``` >>>).unsqueeze(```
* make repo consistency
* Removed PretrainedOPTModel
* fix opt.mdx removed other heads
* fix init, removed 3 heads
* removed heads
* finished cleaning head
* removed seauence classif and question answering
* removed unused imports
* removed useless dummy object for QA, SC and CG
* removed tests for removed useless dummy object for QA, SC and CG
* Removed head_mask using encoder layers which don't exist
* fixed test
* fix line
* added OPT to toctree
* Updated model path with pushed weigths
* fix model path
* fixed code quality
* fixed embeddings and generation tests
* update paths
* clean comments
* removed OPTClassificationHead for sentence classification
* renamed hidden layer
* renamed num layers to standard num_hidden_layers
* num_attention_heads fix
* changes for 125m
* add first version for 125m
* add first version - flax
* add new version
* causal LM output
* replace output type with BaseModelOutputWithPastAndCrossAttentions
* revert working config from 150m to 350m
* clean
* removed decoder input ids
* fixed embed dim
* more embed_dim issues
* make style + removed enc_dec test
* update falx model
* removed troublesome copy
* added is_encoder_decoder=False to config
* added set_input emb fuinction to model class
* requires torch on embed test
* use head mask instead of decoder head mask input param solves a test
* 8 test remaining, update
* Updated create_and_check_decoder_model_past_large_inputs
* Make style
* update op tokenizer with condition
* make style
* See if I can push
* some clean up
* remove linear head hack
* save intermediate
* save correct attention
* add copied from from bart
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix part of the reviewss
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* same changes in naming / conversion
* correct mask
* more fixes
* delete FlaxOPT and TfOPT
* clean traces of Flax and Tf
* fix mask
* fixed positionnal embedding length when past key value is provoded
* get 125m, 6.7b to work
* Added do_layer_norm
* solved mismatch in load dictionnary
* clean up preapre opt input dict
* fixed past key value as bool
* fix previus
* fixed return dict False tuple issue
* All tests are passing
* Make style
* Ignore OPTDecoder non tested
* make fix-copies
* make repo consistency
* small fix
* removed uselss @torch.no_grad decorator
* make styl;e
* fix previous opt test
* style
* make style
* added opt documentation
* update OPT_PRETRAINED_MODEL_ARCHIVE_LIST
* up
* more fixes
* model & config work
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* added comment on padding hack (+2)
* cleaup
* review update
* docstring for missing arg
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/opt/__init__.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* update pretrained map
* update path and tests
* make style
* styling
* make consistency
* add gpt2 tok new
* more tok fixes
* Update src/transformers/models/auto/tokenization_auto.py
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update tests/models/opt/test_modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update based on reviews
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* make style
* make tokenizer auto tests pass
* apply Lysandre suggestion
* finish tests
* add some good tokenizer tests
* improve docs slighly
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Change nits in Spanish for quicktour.mdx
- Add tasks names in English too.
- Fix small nits in Spanish
* Translate index.mdx to Spanish
* Translate body of index.
* Translated the compatible models list (not the papers´ names). Since this should not be updated manually, I can come back to the original text.
* Add models and a dataset for Spanish in the code exmaples
* Replaced the English models to Spanish versions.
* Add index to _toctree.yml and fix Spanish
* Fix double ““ error
* Change negative example in ASR example
* make style
* Debug style in quicktour.mdx
* [WIP] Add FLAVA model
This PR aims to add [FLAVA](ihttps://arxiv.org/abs/2112.04482) model to the transformers repo.
Following checklist delineates the list of things to be done for this PR
to be complete:
[x] Flava init
[x] Flava base models
[x] Flava layers
[x] Flava Configs
[x] Flava encoders
[x] Flava pretraining models
[ ] Flava classification/retrieval models (To be added in a separate PR)
[x] Documentation updates
[x] Imports updates
[x] Argstring updates
[x] Flava pretrained checkpoints
[x] Flava tests
[x] Flava processors
[x] Sanity check
[x] Lint
* add seed worker and set_deterministic_seed_for_cuda function to enforce reproducability
* change function name to enable determinism, add docstrings, reproducability support for tf
* change function name to enable_determinism_for_distributed_training
* revert changes in set_seed and call set_seed within enable_full_determinism
* add one position argument for seed_worker function
* add full_determinism flag in training args and call enable_full_determinism when it is true
* add enable_full_determinism to documentation
* apply make fixup after the last commit
* Update src/transformers/training_args.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* unhardcode pretrained model path, make it a class var
* add tests for mobilebert tokenizer
* allow tempfiles for vocab & merge similarity test to autodelete
* add explanatory comments
* remove unused imports, let make style do its.. thing
* remove inheritance and use BERT tok tests for MobileBERT
* Update tests/mobilebert/test_tokenization_mobilebert.py
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
* amend class names, remove unused import, add fix for mobilebert's hub pathname
* unhardcode pretrained model path, make it a class var
* add tests for mobilebert tokenizer
* allow tempfiles for vocab & merge similarity test to autodelete
* add explanatory comments
* remove unused imports, let make style do its.. thing
* remove inheritance and use BERT tok tests for MobileBERT
* Update tests/mobilebert/test_tokenization_mobilebert.py
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
* amend class names, remove unused import, add fix for mobilebert's hub pathname
* amend paths for model tests being in models/ subdir of /tests
* explicitly rm test from prev path
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
* add support for MLFLOW_FLATTEN_PARAMS
* ensure key is str
* fix style and update warning msg
* Empty commit to trigger CI
* fix bug in check_inits.py
* add unittest for flatten_dict utils
* fix 'NoneType' object is not callable on __del__
* add generic flatten_dict unittest to SPECIAL_MODULE_TO_TEST_MAP
* fix style
* ensure mlflow.end_run() is executed at end of training when mlflow.start_run() was executed by the callback
* add debug msg
* add support for MLFLOW_TAGS, MLFLOW_RUN_ID, and MLFLOW_NESTED_RUN
* update to support python 3.6+
* Validate env variables using ENV_VARS_TRUE_VALUES
* Empty-Commit
* PyTorch FSDP integration in Trainer
* reformatting
make style and make quality are now compliant.
* Updating dependency check
* Trigger CI
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* Add type hints for remaining BigBirdPegasus models
Here I added type hints to the BigBirdPegasusForCausalLM class.
* Add missing type hints for Data2VecText models
Added type hints to the Data2VecTextForCausalLM, Data2VecTextForMaskedLM,
Data2VecTextForMultipleChoice, Data2VecTextForQuestionAnswering,
Data2VecTextForSequenceClassification, and
Data2VecTextForTokenClassification classes.
* add get_overflowing_images function to ensure 1-to-1 mapping between samples and images in LayoutLMv2Processor
* make style
* add test for overflowing_tokens, change assert to ValueError, avoiding unrelated formatting changes
* change line length by passing --preview into black
* Added spanish translation of autoclass_tutorial.
Added 'local' and 'title' fields for autoclass_tutorial.
* Fixed autoclass_tutorial title in _toctree.yml and autoclass_tutorial.mdx
* CLIP Serving
* Add type hints per code review
* Use black, flake8, and isort
* Update src/transformers/models/clip/modeling_tf_clip.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Rollback serving_output and add TODO
* Remove irrelevant portions of failing tests
* Revert "Rollback serving_output and add TODO"
This reverts commit a4abfa6ba3b7875a13538dbc2ddc4eb17dfcca8d.
* Rollback to original test/serving_output
* Fix unused var
* Apply suggestions from code review
* Update formatting with black
* Fix style again from rebase
* Update tests/models/clip/test_modeling_tf_clip.py
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sean Moriarity <sean.l.moriarity.mil@army.mil>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Type hint complete Albert model file.
* Update typing.
* Update src/transformers/models/albert/modeling_albert.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* [T5 Tokenizer] Model has no fixed position ids - there is no hardcoded max length
* [T5 Tokenizer] Model has no fixed position ids - there is no hardcoded max length
* correct t5 tokenizer
* correct t5 tokenizer
* fix test
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* finish
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* First draft
* Add YolosForObjectDetection
* Make forward pass work
* Add mid position embeddings
* Add interpolation of position encodings
* Add expected values
* Add YOLOS to tests
* Add integration test
* Support tiny model as well
* Support all models in conversion script
* Remove mid_pe_size attribute
* Make more tests pass
* Add model to README and fix config
* Add copied from statements
* Rename base_model_prefix to vit
* Add missing YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP
* Apply suggestions from code review
* Apply more suggestions from code review
* Convert remaining checkpoints
* Improve docstrings
* Add YolosFeatureExtractor
* Add feature extractor to docs
* Add corresponding tests
* Fix style
* Fix docs
* Apply suggestion from code review
* Fix bad rebase
* Fix some more bad rebase
* Fix missing character
* Improve docs and variable names
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Add meta proxy
* Uses meta data to trace data dependent control-flow
* Remove commented class
* Handles torch creating functions
* Added type annotation to fix tracing
* Tracing works for everything but T5 and GPT-J
* Almost all previously supported models pass
* All architectures can be traced except T5
* Intermediate commit to have a trace of the comparison operators for HFProxy
* Everything works, except loss computation
* Everything works
* Removed unused import
* Overriden methods do not use underlying ops (linear and torch.matmul), and model attributes are copied to the traced version
* Fix torch_matmul_override
* Change attributes reference to deepcopy
* Remove breakpoint and add torch_index_override
* Small fix
* Fix typo
* Replace asserts by explicit exceptions
The emoji version must be either 0.5.4 or 0.6.0. Newer emoji versions have been updated to newer versions of the Emoji Charts, thus not consistent with the one used for pre-processing the pre-training Tweet corpus (i.e. not consistent with the vocab).
1. Fixes evaluation errors popping up when you train/eval on squad v2 (one was newly encountered and one that was previously reported Running SQuAD 1.0 sample command raises IndexError #15401 but not completely fixed).
2. Removes boolean arguments that don't use store_true. Please, don't use these: *ANY non-empty string is being converted to True in this case and this clearly is not the desired behavior (and it creates a LOT of confusion).
3. All no-trainer test scripts are now saving metric values in the same way (with the right prefix eval_), which is consistent with the trainer-based versions.
4. Adds forgotten model.eval() in the no-trainer versions. This improved some results, but not everything (see the discussion in the end). Please, see the F1 scores and the discussion below.
* Add first draft
* Improve script and README
* Improve README
* Apply suggestions from code review
* Improve script, add link to resulting model
* Add corresponding test
* Adjust learning rate
* Add doctest BERT
* make fixup
* fix typo
* change checkpoints
* make fixup
* define doctest output value, update doctest for mobilebert
* solve fix-copies
* update QA target start index and end index
* change checkpoint for docs and reuse defined variable
* Update src/transformers/models/bert/modeling_tf_bert.py
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* make fixup
* Add Doctest for Albert and Bigbird
* make fixup
* overwrite examples for Albert and Bigbird
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* update longer examples for Bigbird
* using examples from squad_v2
* print out example text
* change name token-classification-big-bird checkpoint to random
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add tflops logging and fix grad accumulation
* add accelerate tracking and checkpointing
* scale loss of last batch correctly
* fix typo
* compress loss computation
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* add resume from checkpoint argument
* add load_state accelerate from checkpoint, register lr scheduler and add tflops function
* reformat code
* reformat code
* add condition on path for resume checkpoint
* combine if conditions
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* add source for tflops formula
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* add gptj to TOKENIZER_MAPPING_NAMES
* fix int32 to float to avoid problem in onnx
* Update src/transformers/models/gptj/modeling_gptj.py
Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
- all activations should be fetched through ACT2FN
- it returns ReLU as `nn.Module`, which allows attaching hooks on the activation function and prints it to stdout when `print(model)`
* Adding support for `array` key in raw dictionnaries in ASR pipeline.
* ES .
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Making it work by not popping `array` first.
* Black 22.3
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Correct Logging of Eval metric to Tensorboard
An empty dictionary ``eval_metrics`` was being logged, is replaced by ``eval_metric`` which is the output dictionary of ``metric.compute()``.
* Remove unused variable
* Add doc about `attention_mask` on gpt2
Add a simple sentence describing how `attention_mask` needs to be constructed when ``past_key_values` is used.
* Add doc about attention_mask on gpt2_tf
* clean up style
* remove empty line white spaces
* remove whitespace in empty line
* Add first draft
* Improve README and run fixup
* Make script aligned with other scripts, improve README
* Improve script and add test
* Remove print statement
* Apply suggestions from code review
* Add num_labels to make test pass
* Improve README
* begin do_init
* add params_shape_tree
* raise error if params are accessed when do_init is False
* don't allow do_init=False when keys are missing
* make shape tree a property
* assign self._params at the end
* add test for do_init
* add do_init arg to all flax models
* fix param setting
* disbale do_init for composite models
* update test
* add do_init in FlaxBigBirdForMultipleChoice
* better names and errors
* improve test
* style
* add a warning when do_init=False
* remove extra if
* set params after _required_params
* add test for from_pretrained
* do_init => _do_init
* chage warning to info
* fix typo
* add params in init_weights
* add params to gpt neo init
* add params to init_weights
* update do_init test
* Trigger CI
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* update template
* trigger CI
* style
* style
* fix template
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Solved href rendering issue in heading
Markdown references in headings such as '####' don't render well.
Replaced it with <h4>...<a></a></h> banners.
* PhonemeTokenizer optimization using phonemizer lib
The backend should only be initialized once, otherwise it is reloaded.
Added `init_backend` function, intializes a backend attribute.
Phonemize re-uses self.backend.
Should give ~10 times faster phonemization.
* formatted file with make style
* Documentation suggestion
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update /tokenization_wav2vec2_phoneme.py based on PR suggestion
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update CONTRIBUTING.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add first draft from previous PR
* First draft
* Improve README and remove num_labels
* Make script more aligned with other scripts
* Improve README and apply suggestion from code review
* Add passing encoder_outputs as tuple to existing test
* Add check for tuple
* Add check for tuple also for speech and vision
Co-authored-by: jsnfly <jsnfly@gmx.de>
* Improve code
* Fix bugs
* Fix another bug
* Clean up DTP as well
* Update DPT model outputs
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* [trainer / deepspeed] fix hyperparameter_search
* require optuna
* style
* oops
* add dep in the right place
* create deepspeed-testing dep group
* Trigger CI
* Change tracking to store_true
* Remove step param and use it in the log dictionary directly
* use vars(args) when passing args to init_trackers
* Include tracking tests since tensorboard is already a dep
* Improve CTRL doctests
* Fix `CTRLForSequenceClassification` flakiness with inconsistent losses
* Remove unused
* Fixup
* Add CTRL to documentation_tests.txt
* Fix control code not being first
* Add output assertions
* Change from sshleifer/tiny-ctrl -> ctrl
* Run `make fixup`
* apply `list` to output logits shape for clarity
* Reduce output loss precision to make assertion more robust
* Add assertion of control code being first
* Fix docstyle
* upper case sentence following control code
* Weird bug fixes
* Add a better generation example
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Required the values GPTJ unfortunately cannot run the model =)
* Added the file to the doc tests
* Run Fixup and Style
* Fixed with the test versions of gptj. Ran Style and Fixup.
* Trigger ci
* A Minor Change to License
* Fixed spacing added to the benchmark_utils. Then refactored tests to const variables.
* Removed strings that were included as default parameters anyways.
Co-authored-by: ArEnSc <xx.mike.chung.xx@gmail.com>
* Fix setters of *_token_id properties of SpecialTokensMixin
* Test setters of common tokens ids
* Move to a separate test checks of setters of tokens ids
* Add independent test for ByT5
* Add Canine test
* Test speech to text
* Change the chunk_iter function to handle
the subtle cases where the last chunk gets ignored since all the
data is in the `left_strided` data.
We need to remove the right striding on the previous item.
* Remove commented line.
This avoids an unnecessary call and avoids problems during
initialization of class hierarchies.
Co-authored-by: Samuel Melm <samuel.melm@stud.uni-heidelberg.de>
* First Pass All Tests Pass
* WIP
* Adding file to documentation tests
* Change the base model for the example in the doc test.
* Fix Code Styling by running
make fixup
* Called Style
* Reverted to gpt2 model rather than distill gpt2
Then used a token classification model over a sequence model for an example.
* Fix Styling Issue
* Hopefully ignores the formatting issue.
Co-authored-by: ArEnSc <xx.mike.chung.xx@gmail.com>
* Fix t5 shard on TPU Pods
The current script doesn't work properly on a TPU pod because the global batch is not divided correctly per host.
This pull request fixes this issue by dividing the global batch to each host before it is shared on each host.
* fix style
Co-authored-by: ahmed-elnaggar <ahmed.elnaggar@allianz.com>
I create an archive of older checkpoints during training the checkpoint has a name with `f"{checkpoint_prefix}-*.zip/.tar `
previously `glob(f"{checkpoint_prefix}-*")` takes all files/folders starting with the name checkpoint, and later `shutil.rmtree(checkpoint)` takes a folder name; since at some point it my get a zip file; it crashes training; adding this `if os.path.isdir(x)` allows only folders on `glob_checkpoints`
* add simple multi gpu complet
* add human_eval_multi_gpu
* use copy strategy to distribute across gpu, to avoid padding
* add doc string
* update code style
* use task id to arrange output
* truncate input to avoid zero pad
* Stop the copy mechanism
* update style
* restore copies to scale better in distributed mode
* update style
* replace human eval
* Apply suggestions from code review
1. Tokenize all input at the same time
2. use attention_mask to get the input length
3. other small fixes
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* correct typo and update docstring
* update code style
* remove num sample division constraint
* remove max len calculation
* use accelerator.gather once to speed up
* use accelerate set_seed; update accelerate version
* correct gather bug
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* update proto sentencepiece model
* Revert "update proto sentencepiece model"
This reverts commit b07f671747fec35773d0b3d4788b8b15aefa0229.
* add check
* add test
* Revert "Revert "update proto sentencepiece model""
This reverts commit 46108257b8927b73627ec8f4f3eed53a95fc700d.
* test for log level
* test for log level 2
* warning at the warning level
* clean
* format
* add explanation in docstring
* Fixed some bugs involving saving during epochs
* Added tests mimicking the existing examples tests
* Added in json exporting to all `no_trainer` examples for consistency
* Add TapexTokenizer
* Improve docstrings and provide option to provide answer
* Remove option for pretokenized inputs
* Add TAPEX to README
* Fix copies
* Remove option for pretokenized inputs
* Initial commit: add tapex fine-tuning examples on both table-based question answering and table-based fact verification.
* - Draft a README file for running the script and introducing some background.
- Remove unused code lines in tabfact script.
- Disable the deafult `pad_to_max_length` option which is memory-consuming.
* * Support `as_target_tokenizer` function for TapexTokenizer.
* Fix the do_lower_case behaviour of TapexTokenizer.
* Add unit tests for target scenarios and cased/uncased scenarios for both source and target.
* * Replace the label BartTokenizer with TapexTokenizer's as_target_tokenizer function.
* Fix typos in tapex example README.
* * fix the evaluation script - remove the property `task_name`
* * Make the label space more clear for tabfact tasks
* * Using a new fine-tuning script for tapex-base on tabfact.
* * Remove the lowercase code outside the tokenizer - we use the tokenizer to control whether do_lower_case
* Guarantee the hyper-parameter can be run without out-of-memory on 16GB card and report the new reproduced number on wikisql
* * Remove the default tokenizer_name option.
* Provide evaluation command.
* * Support for WikiTableQuestion dataset.
* Fix a typo in README.
* * Fix the datasets's key name in WikiTableQuestions
* Run make fixup and move test to folder
* Fix quality
* Apply suggestions from code review
* Apply suggestions from code review
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* Apply suggestions from code review
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply some more suggestions from code review
* Improve docstrings
* Overwrite failing test
* Improve comment in example scripts
* Fix rebase
* Add TAPEX to Auto mapping
* Add TAPEX to auto config mappings
* Put TAPEX higher than BART in auto mapping
* Add TAPEX to doc tests
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
Co-authored-by: SivilTaram <qianlxc@outlook.com>
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Update README.md Support Image
Updates the Support image linking to our EAP page (to give it a refresh + help avoid image fatigue).
Slack thread checking in with #open-source-internal on this update (https://huggingface.slack.com/archives/C021H1P1HKR/p1648838903316709)
* Compressed Updated Support image
* Improves Support Image Logo + Height
Updated the image based on logo + size feedback. Big thanks to Bibi for making quick edits to this image.
* Add inputs vector to calculate metric method
* Include inputs for evaluation metrics with backwards compatibility
* Prevent inputs create OOM issue and documentation details
* Update style and code documentation
* Fix style formatting issues
* Update files format with make style
* Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* 📝 add image/vision classification and asr
* 🖍 minor formatting fixes
* Fixed a typo in legacy seq2seq_trainer.py (#16531)
* Add ONNX export for BeiT (#16498)
* Add beit onnx conversion support
* Updated docs
* Added cross reference to ViT ONNX config
* call on_train_end when trial is pruned (#16536)
* Type hints added (#16529)
* Fix Bart type hints (#16297)
* Add type hints to PLBart PyTorch
* Remove pending merge conflicts
* Fix PLBart Type Hints
* Add changes from review
* Add VisualBert type hints (#16544)
* Adding missing type hints for mBART model (PyTorch) (#16429)
* added type hints for mbart tensorflow tf implementation
* Adding missing type hints for mBART model
Tensorflow Implementation model added with missing type hints
* Missing Type hints - correction
For TF model
* Code fixup using make quality tests
* Hint types - typo error
* make fix-copies and make fixup
* type hints
* updated files
* type hints update
* making dependent modesls coherent
Co-authored-by: matt <rocketknight1@gmail.com>
* Remove MBart subclass of XLMRoberta in tokenzier docs (#16546)
* Remove MBart subclass of XLMRoberta in tokenzier
* Fix style
* Copy docs from MBart50 tokenizer
* Use random_attention_mask for TF tests (#16517)
* use random_attention_mask for TF tests
* Fix for TFCLIP test (for now).
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Improve code example (#16450)
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
* Pin tokenizers version <0.13 (#16539)
* Pin tokenizers version <0.13
* Style
* Add code samples for TF speech models (#16494)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* [FlaxSpeechEncoderDecoder] Fix dtype bug (#16581)
* [FlaxSpeechEncoderDecoder] Fix dtype bug
* more fixes
* Making the impossible to connect error actually report the right URL. (#16446)
* Fix flax import in __init__.py: modeling_xglm -> modeling_flax_xglm (#16556)
* Add utility to find model labels (#16526)
* Add utility to find model labels
* Use it in the Trainer
* Update src/transformers/utils/generic.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Quality
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Enable doc in Spanish (#16518)
* Reorganize doc for multilingual support
* Fix style
* Style
* Toc trees
* Adapt templates
* Add use_auth to load_datasets for private datasets to PT and TF examples (#16521)
* fix formatting and remove use_auth
* Add use_auth_token to Flax examples
* add a test checking the format of `convert_tokens_to_string`'s output (#16540)
* add new tests
* add comment to overridden tests
* TF: Finalize `unpack_inputs`-related changes (#16499)
* Add unpack_inputs to remaining models
* removed kwargs to `call()` in TF models
* fix TF T5 tests
* [SpeechEncoderDecoderModel] Correct Encoder Last Hidden State Output (#16586)
* initialize the default rank set on TrainerState (#16530)
* initialize the default rank set on TrainerState
* fix style
* Trigger doc build
* Fix CI: test_inference_for_pretraining in ViTMAEModelTest (#16591)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* add a template to add missing tokenization test (#16553)
* add a template to add missing tokenization test
* add cookiecutter setting
* improve doc
* Update templates/adding_a_missing_tokenization_test/README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* made _load_pretrained_model_low_mem static + bug fix (#16548)
* handle torch_dtype in low cpu mem usage (#16580)
* [Doctests] Correct filenaming (#16599)
* [Doctests] Correct filenaming
* improve quicktour
* make style
* Adding new train_step logic to make things less confusing for users (#15994)
* Adding new train_step logic to make things less confusing for users
* DO NOT ASK WHY WE NEED THAT SUBCLASS
* Metrics now working, at least for single-output models with type annotations!
* Updates and TODOs for the new train_step
* Make fixup
* Temporary test workaround until T5 has types
* Temporary test workaround until T5 has types
* I think this actually works! Needs a lot of tests though
* MAke style/quality
* Revert changes to T5 tests
* Deleting the aforementioned unmentionable subclass
* Deleting the aforementioned unmentionable subclass
* Adding a Keras API test
* Style fixes
* Removing unneeded TODO and comments
* Update test_step too
* Stop trying to compute metrics with the dummy_loss, patch up test
* Make style
* make fixup
* Docstring cleanup
* make fixup
* make fixup
* Stop expanding 1D input tensors when using dummy loss
* Adjust T5 test given the new compile()
* make fixup
* Skipping test for convnext
* Removing old T5-specific Keras test now that we have a common one
* make fixup
* make fixup
* Only skip convnext test on CPU
* Update src/transformers/modeling_tf_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/modeling_tf_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Avoiding TF import issues
* make fixup
* Update compile() to support TF 2.3
* Skipping model.fit() on template classes for now
* Skipping model.fit() on template class tests for now
* Replace ad-hoc solution with find_labels
* make fixup
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Adding missing type hints for BigBird model (#16555)
* added type hints for mbart tensorflow tf implementation
* Adding missing type hints for mBART model
Tensorflow Implementation model added with missing type hints
* Missing Type hints - correction
For TF model
* Code fixup using make quality tests
* Hint types - typo error
* make fix-copies and make fixup
* type hints
* updated files
* type hints update
* making dependent modesls coherent
* Type hints for BigBird
* removing typos
Co-authored-by: matt <rocketknight1@gmail.com>
* [deepspeed] fix typo, adjust config name (#16597)
* 🖍 apply feedback
Co-authored-by: Cathy <815244047@qq.com>
Co-authored-by: Jim Rohrer <jrohrer1@gmail.com>
Co-authored-by: Ferdinand Schlatt <fschlatt@gmail.com>
Co-authored-by: Dahlbomii <101373053+Dahlbomii@users.noreply.github.com>
Co-authored-by: Gunjan Chhablani <chhablani.gunjan@gmail.com>
Co-authored-by: Rishav Chandra Varma <rishavchandra.v16@iiits.in>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Daniel Stancl <46073029+stancld@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Karim Foda <35491698+KMFODA@users.noreply.github.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Andres Codas <andrescodas@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Francesco Saverio Zuppichini <francesco.zuppichini@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
If global_attention_mask is found in the models inputs (used by certain
models, like LED) in the prediction_step method of Seq2SeqTrainer,
it is added to the gen_kwargs, which are passed to model.decode().
This allows us to properly set the global attention when decoding.
* added type hints for mbart tensorflow tf implementation
* Adding missing type hints for mBART model
Tensorflow Implementation model added with missing type hints
* Missing Type hints - correction
For TF model
* Code fixup using make quality tests
* Hint types - typo error
* make fix-copies and make fixup
* type hints
* updated files
* type hints update
* making dependent modesls coherent
* Type hints for BigBird
* removing typos
Co-authored-by: matt <rocketknight1@gmail.com>
* Adding new train_step logic to make things less confusing for users
* DO NOT ASK WHY WE NEED THAT SUBCLASS
* Metrics now working, at least for single-output models with type annotations!
* Updates and TODOs for the new train_step
* Make fixup
* Temporary test workaround until T5 has types
* Temporary test workaround until T5 has types
* I think this actually works! Needs a lot of tests though
* MAke style/quality
* Revert changes to T5 tests
* Deleting the aforementioned unmentionable subclass
* Deleting the aforementioned unmentionable subclass
* Adding a Keras API test
* Style fixes
* Removing unneeded TODO and comments
* Update test_step too
* Stop trying to compute metrics with the dummy_loss, patch up test
* Make style
* make fixup
* Docstring cleanup
* make fixup
* make fixup
* Stop expanding 1D input tensors when using dummy loss
* Adjust T5 test given the new compile()
* make fixup
* Skipping test for convnext
* Removing old T5-specific Keras test now that we have a common one
* make fixup
* make fixup
* Only skip convnext test on CPU
* Update src/transformers/modeling_tf_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/modeling_tf_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Avoiding TF import issues
* make fixup
* Update compile() to support TF 2.3
* Skipping model.fit() on template classes for now
* Skipping model.fit() on template class tests for now
* Replace ad-hoc solution with find_labels
* make fixup
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* added type hints for mbart tensorflow tf implementation
* Adding missing type hints for mBART model
Tensorflow Implementation model added with missing type hints
* Missing Type hints - correction
For TF model
* Code fixup using make quality tests
* Hint types - typo error
* make fix-copies and make fixup
* type hints
* updated files
* type hints update
* making dependent modesls coherent
Co-authored-by: matt <rocketknight1@gmail.com>
* Translate accelerate.mdx from english to spanish
* Update docs/source_es/accelerate.mdx
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
* Apply suggestions from code review
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
* Apply suggestions from code review
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
* Fix nits and finish translation
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
* make tuple annotation more specific to avoid failures during symbolic_trace
* make tuple annotation more specific to avoid failures during symbolic_trace
* first proposal
* replace model outputs in various models
* conflicts
* docstring
* update poolformer
* minor change in docstring
* CI
* removed poolformer specific outputs from doc
* removed convnext specific outputs from doc
* CI
* weird char in segformer
* conversations
* reverted docstring for BaseModelOutputWithPooling
* update outputs
* changed docstring in BaseModelOutput
* updated docstring in modeling outputs
* typos :)
* fixed typo after copy & paste it all around
* CI
* Apply suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* segformer
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* feature extractor accepts
* resolved conversations
* added examples in test for ADE20K
* num_classes -> num_labels
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* resolving conversations
* resolving conversations
* removed ADE
* CI
* minor changes in conversion script
* reduce_labels in feature extractor
* minor changes
* correct preprocess for instace segmentation maps
* minor changes
* minor changes
* CI
* debugging
* better padding
* going to update labels inside the model
* going to update labels inside the model
* minor changes
* tests
* removed changes in feature_extractor_utils
* conversation
* conversation
* example in feature extractor
* more docstring in modeling
* test
* make style
* doc
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* add unpack_inputs decorator to Main Layer
* add unpack_inputs decorator to Model
* add unpack_inputs decorator to LMHead Model
* add unpack_inputs decorator to Double Head Model
* add unpack_inputs decorator to Sequence Classification Model
* run fixup recipe
* make unpack_inputs the first decorator
* ported TFViTMAEIntermediate and TFViTMAEOutput.
* added TFViTMAEModel and TFViTMAEDecoder.
* feat: added a noise argument in the implementation for reproducibility.
* feat: vit mae models with an additional noise argument for reproducibility.
Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Add type hints for UniSpeech
* Added type hints for UniSpeechSat
* Added type hints for Wave2Vec2 (PT)
* Added type hints for models dependent of wave2vec
* Fix for test_mixed_precision
* Fix test_saved_model_creation by using shape_list instead of shape
* skit test_model_from_pretrained on GPU for now to avoid GPU OOM
* skip test_gptj_sample_max_time for now
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Added type hints for PyTorch T5 model
* removed a type hint
* ran make style
* added type hints for ibert pytorch
* added type hints for lxmert pytorch
* removed kwargs type hint and fixed arguments order
* Add missing type hints for ConvBERT flavored models.
* Update src/transformers/models/convbert/modeling_convbert.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Type hints and TF decorator added
* Re-add XLA generation method
* Re-add lines that were deleted by conflicting updates
* Re-add lines that were deleted by conflicting updates
* Re-add lines that were deleted by conflicting updates
Co-authored-by: matt <rocketknight1@gmail.com>
* Make BigBird model compatiable to fp16 dtype.
* Use tree_map instead of map
* Reformat the code
* Fix import order
* Convert masks to the correct dtype
* Fix format issue
* Address comments.
* Created the Decision Transformer Modle
* updating tests, copy to other machine
* Added last hidden size to Decision Transformer modelling outputs
* Removed copy of original DT file
* made a temporary change to gpt2 to have it conform with the Decision Transformer version
* Updated tests
* Ignoring a file used to test the DT model
* added comments to config file
* added comments and argument descriptions to decision transformer file
* Updated doc
* Ran "make style"
* Remove old model imports
* Removed unused imports, cleaned up init file
* Update docs/source/model_doc/decision_transformer.mdx
added my username
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Reverted changes made to gpt2
* Removed datasets submodule
* Update the modeling outputs to include gpt2 attentions, hidden states and last hidden states
* Added support for return of hidden states, attentions and return dict of gpt2 model.
* Updated tests to include many of the ModelTesterMixin tests.
The following tests are skipped: test_generate_without_input_ids, test_pruning, test_resize_embeddings, test_head_masking, test_attention_outputs, test_hidden_states_output, test_inputs_embeds, test_model_common_attributes
* Added missing line to the end of gpt2 file
* Added an integration test for the Decision Transformer
Test performs and autoregressive evaluation for two time steps
* Set done and info to _ to fix failing test
* Updated integration test to be deterministic and check expected outputs
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Removed unnecessary config options
* Cleaned up commented code and old comments.
* Cleaned up commented code.
* Changed DecisionTransformer to Decision Transformer
* Added Decision Transformer to the main README file
* Added copy of GTP2 called DecisionTranformerGPT2Model
* isorted imports
* isorted imports
* Added model to non-English README files
* Ran make fix-copies and corrected some cases.
* Updated index file to include Decision Transformer
* Added gpt2 model as copy inside the Decision Transformer model file
* Added the unit test file to the list of TEST_FILES_WITH_NO_COMMON_TESTS
* Deleted redundant checkpoint files (I don't know how these got committed)
* Removed testing files. (These should have never been committed)
* Removed accidentally committed files
* Moved the Decision Transformer test to its own directory
* Add type hints for Pegasus (#16324)
* Funnel type hints (#16323)
* add pt funnel type hints
* add tf funnel type hints
* Add type hints for ProphetNet PyTorch (#16272)
* [GLPN] Improve docs (#16331)
* Add link to notebook
* Add link
* Fix bug
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Added type hints for Pytorch Marian calls (#16200)
* Added type hinting for forward functions in pytorch marian
* typo correction
* Removed type hints on functions from BART per Suraj Patil request
* fix import pb
* fix typo
* corrected tuple call
* ran black
* after fix-copies
Some optional tags on primitives were removed, past_key_values in MarianForCausalLM changed from Tuple of Tuple to List
* Fixing copies to roformer and pegasus
Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>
* Moved DecisionTransformOutput to modeling_decision_transformer
* Moved the example usage to research project and cleaned comments
* Made tests ignore the copy of gpt2 in Decision Transformer
* Added module output to modelling decision transformer
* removed copied gpt2 model from list of transformers models
* Updated tests and created __init__ file for new test location
* Update README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Removed unneeded summary type from config file
* Fixed copies
* Updated pretrained config map to refer to hopper-medium checkpoint
* done (#16340)
* Added Decision transformer to model docs
* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add type annotations for Rembert/Splinter and copies (#16338)
* undo black autoformat
* minor fix to rembert forward with default
* make fix-copies, make quality
* Adding types to template model
* Removing List from the template types
* Remove `Optional` from a couple of types that don't accept `None`
Co-authored-by: matt <rocketknight1@gmail.com>
* [Bug template] Shift responsibilities for long-range (#16344)
* Fix code repetition in serialization guide (#16346)
* Adopt framework-specific blocks for content (#16342)
* ✨ refactor code samples with framework-specific blocks
* ✨ update training.mdx
* 🖍 apply feedback
* Updates the default branch from master to main (#16326)
* Updates the default branch from master to main
* Links from `master` to `main`
* Typo
* Update examples/flax/README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Updated model with custom docstring example
* Created the Decision Transformer Modle
* updating tests, copy to other machine
* Added last hidden size to Decision Transformer modelling outputs
* Removed copy of original DT file
* made a temporary change to gpt2 to have it conform with the Decision Transformer version
* Updated tests
* Ignoring a file used to test the DT model
* added comments to config file
* added comments and argument descriptions to decision transformer file
* Updated doc
* Ran "make style"
* Remove old model imports
* Removed unused imports, cleaned up init file
* Update docs/source/model_doc/decision_transformer.mdx
added my username
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Reverted changes made to gpt2
* Removed datasets submodule
* Update the modeling outputs to include gpt2 attentions, hidden states and last hidden states
* Added support for return of hidden states, attentions and return dict of gpt2 model.
* Updated tests to include many of the ModelTesterMixin tests.
The following tests are skipped: test_generate_without_input_ids, test_pruning, test_resize_embeddings, test_head_masking, test_attention_outputs, test_hidden_states_output, test_inputs_embeds, test_model_common_attributes
* Added missing line to the end of gpt2 file
* Added an integration test for the Decision Transformer
Test performs and autoregressive evaluation for two time steps
* Set done and info to _ to fix failing test
* Updated integration test to be deterministic and check expected outputs
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Removed unnecessary config options
* Cleaned up commented code and old comments.
* Cleaned up commented code.
* Changed DecisionTransformer to Decision Transformer
* Added Decision Transformer to the main README file
* Added copy of GTP2 called DecisionTranformerGPT2Model
* isorted imports
* isorted imports
* Added model to non-English README files
* Ran make fix-copies and corrected some cases.
* Updated index file to include Decision Transformer
* Added gpt2 model as copy inside the Decision Transformer model file
* Added the unit test file to the list of TEST_FILES_WITH_NO_COMMON_TESTS
* Deleted redundant checkpoint files (I don't know how these got committed)
* Removed testing files. (These should have never been committed)
* Removed accidentally committed files
* Moved the Decision Transformer test to its own directory
* Moved DecisionTransformOutput to modeling_decision_transformer
* Moved the example usage to research project and cleaned comments
* Made tests ignore the copy of gpt2 in Decision Transformer
* Added module output to modelling decision transformer
* removed copied gpt2 model from list of transformers models
* Updated tests and created __init__ file for new test location
* Update README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Removed unneeded summary type from config file
* Fixed copies
* Updated pretrained config map to refer to hopper-medium checkpoint
* Added Decision transformer to model docs
* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Updated model with custom docstring example
* Updated copies, config auto, and readme files.
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Tegzes <48134725+Tegzes@users.noreply.github.com>
Co-authored-by: Adam Montgomerie <adam@avanssion.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Clémentine Fourrier <22726840+clefourrier@users.noreply.github.com>
Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Francesco Saverio Zuppichini <francesco.zuppichini@gmail.com>
Co-authored-by: Jacob Dineen <54680234+jacobdineen@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
* Make Transformers use cache files when hf.co is down
* Fix tests
* Was there a random circleCI failure?
* Isolate patches
* Style
* Comment out the failure since it doesn't fail anymore
* Better comment
* added type hints for mbart tensorflow tf implementation
* Adding missing type hints for mBART model
Tensorflow Implementation model added with missing type hints
* Missing Type hints - correction
For TF model
* Code fixup using make quality tests
* Hint types - typo error
* make fix-copies and make fixup
* type hints
* updated files
Co-authored-by: matt <rocketknight1@gmail.com>
* Initial commit
* Reversed signs, adjusted log entery.
* Check only when
* Cleanup checks
* Only trigger if we want to eval
* Run
* Move changes to callback
* Split file_utils in several submodules
* Fixes
* Add back more objects
* More fixes
* Who exactly decided to import that from there?
* Second suggestion to code with code review
* Revert wront move
* Fix imports
* Adapt all imports
* Adapt all imports everywhere
* Revert this import, will fix in a separate commit
* undo black autoformat
* minor fix to rembert forward with default
* make fix-copies, make quality
* Adding types to template model
* Removing List from the template types
* Remove `Optional` from a couple of types that don't accept `None`
Co-authored-by: matt <rocketknight1@gmail.com>
* Added type hinting for forward functions in pytorch marian
* typo correction
* Removed type hints on functions from BART per Suraj Patil request
* fix import pb
* fix typo
* corrected tuple call
* ran black
* after fix-copies
Some optional tags on primitives were removed, past_key_values in MarianForCausalLM changed from Tuple of Tuple to List
* Fixing copies to roformer and pegasus
Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>
* Add type annotations for TF Longformer
* Update docstring data types to include numpy array
* Implement unpack_inputs decorator
* fixup after decorator updates
* Numpy array -> np.ndarray in docstring
Co-authored-by: Johnny Greco <johnny.greco@radpartners.com>
* Add Flaubert to ONNX to make it available for conversion.
* Fixed features for FlauBERT. fixup command remove flaubert to docs list.
Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
* Remove unused attributes
* Add link to blog and add clarification about input size
* Improve readability of the code
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Add typing hints for base model class
* Add typing hints for causal LM model class
* Add typing hints for double heads model class
* Add typing hints for sequence classification model class
* Add typing hints for Main Layer
* Run fixup
* added type hints for BART model
* make fixup, adding imports to copied files
* Adding some missing types to cookiecutter
* Adding some missing types to cookiecutter
* Adding some missing types to cookiecutter
Co-authored-by: matt <rocketknight1@gmail.com>
* Update training.mdx
Fixed Error Raised Due to Wrongly Accessing Training Sample
* Ran make style
* Revert to Old Commit
* Apply suggestions from code review
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* up
* up
* up
* fix
* yeh
* ups
* Empty test commit
* correct quicktour
* correct
* correct
* up
* up
* uP
* uP
* up
* up
* uP
* up
* up
* up
* up
* up
* up
* up
* up
* up
* up
* Update src/transformers/models/van/modeling_van.py
* finish
* apply suggestions
* remove folder
* revert to daily testing
* Aggressive PT/TF equivalence test on PT side
* Ugly fix for `TFTapasForQuestionAnswering`
* apply review suggestions
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* value check for typical sampling
* value check for typical sampling
* change from float to int comparison
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Override _pad in LEDTokenizer
* Override _pad in LEDTokenizerFast
* add Copied from
* calling the super method
* add comment about -1
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Attention mask is important in the case of batching...
* Improve the fix.
* Making the sentence different enough that they exhibit different
predictions.
* Update expected slices for pillow > 9
* Add expected slices depending on pillow version
* Add different slices depending on pillow version for other models
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* add types annotations for Beit (PyTorch)
* add types annotations for ViT (PyTorch)
* add types annotations for Deit (PyTorch)
* change Optional[bool] to bool into some places at Beit
* change Optional[bool] to bool into some places at ViT
* padding done
* correctly return one attention per layer
* almost correct, attentions are not flatten one tuple per stage
* tests green
* doc
* conversations
* reshaping hidden_states
* view in the test
* reshape_hidden_states in Encoder and Model
* new outputs with reshaped_hidden_states
* conversations
* doc
* Update docs/source/model_doc/swin.mdx
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* conversations
* fix tests
* minor changes
* resolved conversations
* attentions one per stage
* typo
* typos
* typos
* function signature
* CI
* clean up tests
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Minor fixes
* Fix vocab union
* Update examples/research_projects/xtreme-s/README.md
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update README
* unused import
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix the last element in `hidden_states`
* fix missing elements in outputs for FlaxWav2Vec2EncoderLayerStableLayerNormCollection
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Add type hints for FlauBERT PyTorch Base model. Others downstream tasks are inherited from XLM RoBERTa.
* Add type hints for FlaubERT Tensorflow models.
* fix output for TFFlaubertWithLMHeadModel
* First attempt at TF XLA generation
* Fix comments
* Update XLA greedy generate with direct XLA calls
* Support attention mask, prepare_inputs_for_generation no longer hardcoded for greedy
* Handle position_ids correctly
* make xla generate work for non xla case
* force using xla generate
* refactor
* more fixes
* finish cleaning
* finish
* finish
* clean gpt2 tests
* add gpt2 tests
* correct more cases
* up
* finish
* finish
* more fixes
* flake 8 stuff
* final rag fix
* Update src/transformers/models/rag/modeling_tf_rag.py
* finish t5 as well
* finish
* Update src/transformers/generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Fix inconsistent example variable naming
- Example code for a sequence classification in Tensorflow had spelling mistakes and incorrect and inconsistent naming
- Changed variable naming to be consistent with the two other TF examples
* Fix incorrect incorrect training examples
* Added spanish translation of quicktour.mdx
* Suggestions applied in the revision of the translation
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
* first commit
* ResNet model correctly implemented.
basic modeling + weights conversion is done
removed unused doc
mdx file
doc and conversion script
added feature_extractor to auto
test
minor changes + style + quality
doc
test
Delete process.yml
A left over from my attempt of running circleci locally
* minor changes
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* new test format
* minor changes from conversations
* minor changes from conversations
* make style + quality
* readded the tests
* test + README
* minor changes from conversations
* error in README
* make fix-copies
* removed regression for classification head
* make quality
* fixed loss control flow
* fixed loss control flow
* resolved conversations
* Apply suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* READMEs
* index.mdx
* minor changes
* updated tests and models
* unused import
* outputs
* Update docs/source/model_doc/resnet.mdx
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* added embeddings_size
* Apply suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* conversation
* added push to hub
* test
* embedding_size
* make fix-copies
* resolved conversations
* CI
* changed organization
* minor changes
* CI
* minor changes
* conversations
* conversation
* doc
* tests
* removed unused docstring
* conversation
* removed unused outputs
* CI
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Add type hints for LukeModel
* Add type hints for entitypairclassification
* Remove blank space
Co-authored-by: bhavika <bhavika@debian-BULLSEYE-live-builder-AMD64>
* Add type hints for TFDistilBert
* Update src/transformers/models/distilbert/modeling_tf_distilbert.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Spanish translation of the file training.mdx
* Settings - Spanish translation of the file training.mdx
* Latest changes to the Spanish translation of the training.mdx file
* Delete Hugging.mdx
* Last changes to the training fil Espanish version
* Latest modifications
* Latest changes, document ready for PR
* Nits
Co-authored-by: Yhary Arias <yharystefa@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
* Change unpacking of TF mobilebert inputs to use decorator
* Move unpack_inputs as the top decorator
* make fixup
Co-authored-by: ChienVM <chien_vm@detomo.co.jp>
* Make TF pt-tf equivalence test more aggressive
* Fix for TFConvNextModelTest and TFTransfoXLModelTest
* fix kwargs for outputs
* clean-up
* Add docstring for check_outputs()
* remove: need to rename encoder-decoder
* clean-up
* send PyTorch things to the correct device
* Add back the accidentally removed test case in test_pt_tf_model_equivalence()
* Fix: change to tuple before calling check_outputs()
* Fix: tfo could be a list
* use to_tuple()
* allow tfo only to be tuple or tensor
* allow tfo to be list or tuple for now + style change
* minor fix
* remove np.copy and update comments
* tfo -> tf_output, same for pt
* Add more detailed comment
* remove the incorrect comment
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Add missing type hints for all flavors of LayoutLMv2 PyTorch models.
* Fixed return types and added type hints for LayoutLM.
* Fix removed arguments which breaks tests.
* add possibility to softly regulate length when using sampling method in model.generate() function
* fix test config, fix formatting
* fix rag integration, fix docstyling
* fix wrong docstring
* change param to tuple, add test
* fix old param in rag_model, remove unused import
* change test according to new param
* fix formatting
* fix test case
* fix doc style
* move start_length calculation to Logitprocessor
* add possibility to softly regulate length when using sampling method in model.generate() function
* fix rag integration, fix docstyling
* fix test config, fix formatting
* change param to tuple, add test
* fix old param in rag_model, remove unused import
* add possibility to softly regulate length when using sampling method in model.generate() function
* change param to tuple, add test
* fix old param in rag_model, remove unused import
* remove unused import
* fix small errors
* fix test
* add possibility to softly regulate length when using sampling method in model.generate() function
* fix test config, fix formatting
* fix rag integration, fix docstyling
* change param to tuple, add test
* fix old param in rag_model, remove unused import
* change test according to new param
* fix test case
* move start_length calculation to Logitprocessor
* add possibility to softly regulate length when using sampling method in model.generate() function
* fix rag integration, fix docstyling
* fix test config, fix formatting
* change param to tuple, add test
* fix old param in rag_model, remove unused import
* add possibility to softly regulate length when using sampling method in model.generate() function
* fix test config, fix formatting
* fix rag integration, fix docstyling
* add possibility to softly regulate length when using sampling method in model.generate() function
* fix rag integration, fix docstyling
* change param to tuple, add test
* fix old param in rag_model, remove unused import
* fix small errors
* Update src/transformers/generation_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/generation_utils.py
* Update src/transformers/generation_utils.py
* fix docstring, add type ind model rag
* fix docstrings
* introduce seq_length variable for cleaner code
* fix black formatting
* add input_ids_seq_length to modeling_rag
* add input_ids_seq_length to test
* retrigger checks
* retrigger checks
Co-authored-by: Kevin Bondzio <kev@AIM-LAP-02.local>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Kevin Bondzio <kev@AIM-LAP-02.fritz.box>
* Fix duplicate arguments passed to dummy inputs in ONNX export
* Fix M2M100 ONNX config
* Ensure we check PreTrained model only if torch is available
* Remove TensorFlow tests for models without PyTorch parity
* MVP
* apply decorator to TFBertModel
* finish updating bert
* update rembert (copy-linked to bert)
* update roberta (copy-linked to bert); Fix args
* Now working for non-text modalities
* Build the doc in a seperate folder then move it
* Allow job
* Is this it?
* Dislike comments?
* Copy instead of move
* Removing version built
* Typos
* No variable
* Take _versions.yml into account
* Finish main job and add dev job
* Forgot the run
* Fix syntax error
* Execute builder from the repo
* Typo
* Add ONNX support for ViT
* Refactor to use generic preprocessor
* Add vision dep to tests
* Extend ONNX slow tests to ViT
* Add dummy image generator
* Use model_type to determine modality
* Add deprecation warnings for tokenizer argument
* Add warning when overwriting the preprocessor
* Add optional args to docstrings
* Add minimum PyTorch version to OnnxConfig
* Refactor OnnxConfig class variables from CONSTANT_NAME to snake_case
* Add reasonable value for default atol
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* test
* up
* up
* Empty test commit
* up
* update tests
* up
* fix some vision models
* correct
* correct docs
* Trigger notification
* finalize
* check
* correct quicktour
* Apply suggestions from code review
* improve doctests
* Trigger Build
* next try
* next try
* and again
* Output current clone information
* Output current clone information
* Correct path
* add tf round again
* revert to daily job
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
* Seed get_train_sampler's generator with arg seed to improve reproducibility
and make the world_size<=1 code path more similar to the others
* move test file into trainer test explicitly
* dumb typo
* make style lint happy
* per discussion, switch to data_seed
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* added classes to get started with constrained beam search
* in progress, think i can directly force tokens now but not yet with the round robin
* think now i have total control, now need to code the bank selection
* technically works as desired, need to optimize and fix design choices leading to undersirable outputs
* complete PR #1 without disjunctive decoding
* removed incorrect tests
* Delete k.txt
* Delete test.py
* Delete test.sh
* revert changes to test scripts
* genutils
* full implementation with testing, no disjunctive yet
* shifted docs
* passing all tests realistically ran locally
* removing accidentally included print statements
* fixed source of error in initial PR test
* fixing the get_device() vs device trap
* fixed documentation docstrings about constrained_beam_search
* fixed tests having failing for Speech2TextModel's floating point inputs
* fix cuda long tensor
* added examples and testing for them and founx & fixed a bug in beam_search and constrained_beam_search
* deleted accidentally added test halting code with assert False
* code reformat
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
* fixing based on comments on PR
* took out the testing code that should but work fails without the beam search moditification ; style changes
* fixing comments issues
* docstrings for ConstraintListState
* typo in PhrsalConstraint docstring
* docstrings improvements
* finished adding what is sort of an opinionated implementation of disjunctive generation, but it revealed errors in inner beam search logic during testing.
* fixed bug found in constrained beam search that used beam_idx that were not global across all the batches
* disjunctive constraint working 100% correctly
* passing all tests
* Accidentally included mlruns
* Update src/transformers/generation_beam_constraints.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/generation_beam_constraints.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* complete overhaul of type complexities and other nits
* strict type checks in generate()
* fixing second round of feedback by narsil
* fixed failing generation test because of type check overhaul
* generation test fail fix
* fixing test fails
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Do not change the output from tuple to list - to match PT's version
* Fix the same issues for 5 other models and the template
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Fix to support fast tokenizer with `CLIPProcessor`
* Update CLIPProcessor test for fast tokenizer
* Fix Docstring Style
* Rename into meaningful Variable name in test code
* send PyTorch inputs to the correct device
* Fix: TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Update delete-dev-doc job to match build-dev-doc
* More debug info
* More debug info
* Stash if needed
* Remove the comment update
* Fix paths
* Wtf is going on..
* Fix git status test
* Try another way
* I don't understand what's happening
* Bash shell
* What's happening now...
* What's happening now...
* Try like this
* Back to trying to use bash
* And like that?
* Refine tests
* Stash after adding new files
* Stash after adding new files
* Proper commit sha and PR number
* Address review comments
* Add TF logits wrappers
* Add sample method
* add tests for TF logit wrappers
* TF generate sample tests now run on CPU
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* maskformer
* conflicts
* conflicts
* minor fixes
* feature extractor test fix
refactor MaskFormerLoss following conversation
MaskFormer related types should not trigger a module time import error
missed one
removed all the types that are not used
update config mapping
minor updates in the doc
resolved conversation that doesn't need a discussion
minor changes
resolved conversations
fixed DetrDecoder
* minor changes
minor changes
fixed mdx file
test feature_extractor return types
functional losses -> classes
removed the return type test for the feature extractor
minor changes + style + quality
* conflicts?
* rebase master
* readme
* added missing files
* deleded poolformers test that where in the wrong palce
* CI
* minor changes
* Apply suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* resolved conversations
* minor changes
* conversations
[Unispeech] Fix slow tests (#15818)
* remove soundfile old way of loading audio
* Adapt slow test
[Barthez Tokenizer] Fix saving (#15815)
[TFXLNet] Correct tf xlnet generate (#15822)
* [TFXLNet] Correct tf xlnet
* adapt test comment
Fix the push run (#15807)
Fix semantic segmentation pipeline test (#15826)
Fix dummy_inputs() to dummy_inputs in symbolic_trace doc (#15776)
Add model specific output classes to PoolFormer model docs (#15746)
* Added model specific output classes to poolformer docs
* Fixed Segformer typo in Poolformer docs
Adding the option to return_timestamps on pure CTC ASR models. (#15792)
* Adding the option to return_timestamps on pure CTC ASR models.
* Remove `math.prod` which was introduced in Python 3.8
* int are not floats.
* Reworking the PR to support "char" vs "word" output.
* Fixup!
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Quality.
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
HFTracer.trace should use/return self.graph to be compatible with torch.fx.Tracer (#15824)
Fix tf.concatenate + test past_key_values for TF models (#15774)
* fix wrong method name tf.concatenate
* add tests related to causal LM / decoder
* make style and quality
* clean-up
* Fix TFBertModel's extended_attention_mask when past_key_values is provided
* Fix tests
* fix copies
* More tf.int8 -> tf.int32 in TF test template
* clean-up
* Update TF test template
* revert the previous commit + update the TF test template
* Fix TF template extended_attention_mask when past_key_values is provided
* Fix some styles manually
* clean-up
* Fix ValueError: too many values to unpack in the test
* Fix more: too many values to unpack in the test
* Add a comment for extended_attention_mask when there is past_key_values
* Fix TFElectra extended_attention_mask when past_key_values is provided
* Add tests to other TF models
* Fix for TF Electra test: add prepare_config_and_inputs_for_decoder
* Fix not passing training arg to lm_head in TFRobertaForCausalLM
* Fix tests (with past) for TF Roberta
* add testing for pask_key_values for TFElectra model
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
[examples/summarization and translation] fix readme (#15833)
Add ONNX Runtime quantization for text classification notebook (#15817)
Re-enable doctests for the quicktour (#15828)
* Re-enable doctests for the quicktour
* Re-enable doctests for task_summary (#15830)
* Remove &
Framework split model report (#15825)
Add TFConvNextModel (#15750)
* feat: initial implementation of convnext in tensorflow.
* fix: sample code for the classification model.
* chore: added checked for from the classification model.
* chore: set bias initializer in the classification head.
* chore: updated license terms.
* chore: removed ununsed imports
* feat: enabled argument during using drop_path.
* chore: replaced tf.identity with layers.Activation(linear).
* chore: edited default checkpoint.
* fix: minor bugs in the initializations.
* partial-fix: tf model errors for loading pretrained pt weights.
* partial-fix: call method updated
* partial-fix: cross loading of weights (4x3 variables to be matched)
* chore: removed unneeded comment.
* removed playground.py
* rebasing
* rebasing and removing playground.py.
* fix: renaming TFConvNextStage conv and layer norm layers
* chore: added initializers and other minor additions.
* chore: added initializers and other minor additions.
* add: tests for convnext.
* fix: integration tester class.
* fix: issues mentioned in pr feedback (round 1).
* fix: how output_hidden_states arg is propoagated inside the network.
* feat: handling of arg for pure cnn models.
* chore: added a note on equal contribution in model docs.
* rebasing
* rebasing and removing playground.py.
* feat: encapsulation for the convnext trunk.
* Fix variable naming; Test-related corrections; Run make fixup
* chore: added Joao as a contributor to convnext.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* chore: corrected copyright year and added comment on NHWC.
* chore: fixed the black version and ran formatting.
* chore: ran make style.
* chore: removed from_pt argument from test, ran make style.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* fix: tests in the convnext subclass, ran make style.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* chore: moved convnext test to the correct location
* fix: locations for the test file of convnext.
* fix: convnext tests.
* chore: applied sgugger's suggestion for dealing w/ output_attentions.
* chore: added comments.
* chore: applied updated quality enviornment style.
* chore: applied formatting with quality enviornment.
* chore: revert to the previous tests/test_modeling_common.py.
* chore: revert to the original test_modeling_common.py
* chore: revert to previous states for test_modeling_tf_common.py and modeling_tf_utils.py
* fix: tests for convnext.
* chore: removed output_attentions argument from convnext config.
* chore: revert to the earlier tf utils.
* fix: output shapes of the hidden states
* chore: removed unnecessary comment
* chore: reverting to the right test_modeling_tf_common.py.
* Styling nits
Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* minor changes
* doc fix in feature extractor
* doc
* typose
* removed detr logic from config
* removed detr logic from config
* removed num_labels
* small fix in the config
* auxilary -> auxiliary
* make style
* some test is failing
* fix a weird char in config prevending doc-builder
* retry to fix the doc-builder issue
* make style
* new try to fix the doc builder
* CI
* change weights to facebook
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* Create optimizer after model creation for SMP
* update dp_rank to rdp_rank for opt_state_dict
* update world_size and process_index for smp
* Address comments
* Lint fix
Co-authored-by: Cavdar <dcavdar@a07817b12d7e.ant.amazon.com>
* Add data2vec model cloned from roberta
* Add checkpoint conversion script
* Fix copies
* Update docs
* Add checkpoint conversion script
* Remove fairseq data2vec_text script and fix format
* Add comment on where to get data2vec_text.py
* Remove mock implementation cheat.py and fix style
* Fix copies
* Remove TF and Flax classes from init
* Add back copy from fairseq data2vec_text.py and fix style
* Update model name in docs/source/index.mdx to be CamelCase
* Revert model name in table to lower-case to get check_table test to pass
* Update src/transformers/models/data2vec/__init__.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update docs/source/model_doc/data2vec.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/model_doc/data2vec.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/auto/configuration_auto.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update tests/test_modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update documentation
* Copy-paste Data2VecConfig from BertConfig
* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency
* Update config special tokens to match RoBERTa
* Split multiple assertions and add individual error messages
* Rename Data2VecModel to Data2VecForTextModel
* Add Data2Vec to _toctree.yml
* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings
* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).
* finish audio model
* finish audio file
* Update names and fix style, quality and repo consistency
* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.
* add inputs to logits to data2vec'
* correct autio models
* correct config auto
* correct tok auto
* Update utils/tests_fetcher.py
* delete unnecessary files
* delete unnecessary files
* further renaming
* make all tests pass
* finish
* remove useless test file
* Update tests/test_modeling_common.py
* Update utils/check_repo.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec_text.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Fix copies
* Update docs
* Remove fairseq data2vec_text script and fix format
* Add comment on where to get data2vec_text.py
* Remove mock implementation cheat.py and fix style
* Fix copies
* Remove TF and Flax classes from init
* Add back copy from fairseq data2vec_text.py and fix style
* Update model name in docs/source/index.mdx to be CamelCase
* Revert model name in table to lower-case to get check_table test to pass
* Update documentation
* Update src/transformers/models/data2vec/__init__.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/auto/configuration_auto.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update tests/test_modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Copy-paste Data2VecConfig from BertConfig
* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency
* Update config special tokens to match RoBERTa
* Split multiple assertions and add individual error messages
* Rename Data2VecModel to Data2VecForTextModel
* Add Data2Vec to _toctree.yml
* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings
* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).
* finish audio model
* finish audio file
* add inputs to logits to data2vec'
* Update names and fix style, quality and repo consistency
* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.
* correct autio models
* correct config auto
* correct tok auto
* delete unnecessary files
* delete unnecessary files
* Update utils/tests_fetcher.py
* further renaming
* make all tests pass
* finish
* remove useless test file
* Update tests/test_modeling_common.py
* Update utils/check_repo.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec_text.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Move data2vec tests to new structure
* Fix test imports for text tests
* Remove fairseq files
* Change paper link to arxiv
* Modify Data2Vec documentation to reflect that the encoder is not shared across the audio and text models in the current implementation.
* Update text model checkpoint to be facebook/data2vec-text-base
* Add 'Copy from' statements and update paper links and docs
* fix copy from statements
* improve copied from
* correct more copied from statements
* finish copied from stuff
* make style
* add model to README
* add to master
Co-authored-by: Eduardo Gonzalez Ponferrada <eduardo@ferrumhealth.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fixing the timestamps with chunking.
* The changes modified (and fixed) the striding tests.
* Adding a tokenizer test.
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Defense -> comment.
* Update src/transformers/models/wav2vec2/tokenization_wav2vec2.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* rebase
* Delete shift tokens func
* downsample decoder input seq len for init
* correct attention mask
* add tests
* pt flax cross test
* make fixup
* init file for import
* change pt-flax cross test threshold
* pt-flax test logits only
* move tests
* make repo-consistency
* consistent indentation
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* feat: initial implementation of convnext in tensorflow.
* fix: sample code for the classification model.
* chore: added checked for from the classification model.
* chore: set bias initializer in the classification head.
* chore: updated license terms.
* chore: removed ununsed imports
* feat: enabled argument during using drop_path.
* chore: replaced tf.identity with layers.Activation(linear).
* chore: edited default checkpoint.
* fix: minor bugs in the initializations.
* partial-fix: tf model errors for loading pretrained pt weights.
* partial-fix: call method updated
* partial-fix: cross loading of weights (4x3 variables to be matched)
* chore: removed unneeded comment.
* removed playground.py
* rebasing
* rebasing and removing playground.py.
* fix: renaming TFConvNextStage conv and layer norm layers
* chore: added initializers and other minor additions.
* chore: added initializers and other minor additions.
* add: tests for convnext.
* fix: integration tester class.
* fix: issues mentioned in pr feedback (round 1).
* fix: how output_hidden_states arg is propoagated inside the network.
* feat: handling of arg for pure cnn models.
* chore: added a note on equal contribution in model docs.
* rebasing
* rebasing and removing playground.py.
* feat: encapsulation for the convnext trunk.
* Fix variable naming; Test-related corrections; Run make fixup
* chore: added Joao as a contributor to convnext.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* chore: corrected copyright year and added comment on NHWC.
* chore: fixed the black version and ran formatting.
* chore: ran make style.
* chore: removed from_pt argument from test, ran make style.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* fix: tests in the convnext subclass, ran make style.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* chore: moved convnext test to the correct location
* fix: locations for the test file of convnext.
* fix: convnext tests.
* chore: applied sgugger's suggestion for dealing w/ output_attentions.
* chore: added comments.
* chore: applied updated quality enviornment style.
* chore: applied formatting with quality enviornment.
* chore: revert to the previous tests/test_modeling_common.py.
* chore: revert to the original test_modeling_common.py
* chore: revert to previous states for test_modeling_tf_common.py and modeling_tf_utils.py
* fix: tests for convnext.
* chore: removed output_attentions argument from convnext config.
* chore: revert to the earlier tf utils.
* fix: output shapes of the hidden states
* chore: removed unnecessary comment
* chore: reverting to the right test_modeling_tf_common.py.
* Styling nits
Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* fix wrong method name tf.concatenate
* add tests related to causal LM / decoder
* make style and quality
* clean-up
* Fix TFBertModel's extended_attention_mask when past_key_values is provided
* Fix tests
* fix copies
* More tf.int8 -> tf.int32 in TF test template
* clean-up
* Update TF test template
* revert the previous commit + update the TF test template
* Fix TF template extended_attention_mask when past_key_values is provided
* Fix some styles manually
* clean-up
* Fix ValueError: too many values to unpack in the test
* Fix more: too many values to unpack in the test
* Add a comment for extended_attention_mask when there is past_key_values
* Fix TFElectra extended_attention_mask when past_key_values is provided
* Add tests to other TF models
* Fix for TF Electra test: add prepare_config_and_inputs_for_decoder
* Fix not passing training arg to lm_head in TFRobertaForCausalLM
* Fix tests (with past) for TF Roberta
* add testing for pask_key_values for TFElectra model
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Adding the option to return_timestamps on pure CTC ASR models.
* Remove `math.prod` which was introduced in Python 3.8
* int are not floats.
* Reworking the PR to support "char" vs "word" output.
* Fixup!
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Quality.
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Enabling Beit SegFormer to `image-segmentation`.
* Fixing the score.
* Fix import ?
* Missing in type hint.
* Multiple test fixes:
- Add `raw_image` support. It should be the default IMHO since in Python
world it doesn't make any sense to base64 encode the image (Sorry
@mishig, didn't catch that in my review). I really think we should
consider breaking BC here.
- Add support for Segformer tiny test (needed
`SegformerModelTester.get_config` to enable TinyConfig
@NielsRogge)
- Add the check that `batch_size` works correctly on that pipeline.
Uncovered that it doesn't for Detr, which IMO is OK since images
after `feature_extractor` don't have the same size. Comment should
explain.
* Type hint as a string.
* Make fixup + update black.
* torch+vision protections.
* Don't use torchvision, use F.interpolate instead (no new dep).
* Last fixes for Segformer.
* Update test to reflect new image (which was broken)
* Update tests.
* Major BC modification:
- Removed the string compressed PNG string, that's a job for users
`transformers` stays in python land.
- Removed the `score` for semantic segmentation. It has hardly a meaning
on its own in this context.
- Don't include the grayscale with logits for now (which could enable
users to get a sense of confidence). Might be done later.
- Don't include the surface of the mask (could be used for sorting by
users, to filter out small masks). It's already calculable, and
it's easier to add later, than to add now and break later if we need.
* `make fixup`.
* Small changes.
* Rebase + doc fixup.
* [Proposal] Adding ZeroShotImageClassificationPipeline
- Based on CLIP
* WIP, Resurection in progress.
* Resurrection... achieved.
* Reword handling different `padding_value` for `feature_extractor` and
`tokenizer`.
* Thanks doc-builder !
* Adding docs + global namespace `ZeroShotImageClassificationPipeline`.
* Fixing templates.
* Make the test pass and be robust to floating error.
* Adressing suraj's comments on docs mostly.
* Tf support start.
* TF support.
* Update src/transformers/pipelines/zero_shot_image_classification.py
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* begin script
* update script
* fix features and data args
* main
* add requirements
* add column name args
* fix captions
* don't jit transforms
* fix caption
* fix labels, handle attention mask
* convert pixel values to numpy
* labels => input_ids
* transform images on the fly
* use AutoModel class, create the hybird model outside of the script
* fix version message
* add readme
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* adderss review comments
* add more comments
* allow freezing vision and text models
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix bug in PT speech-encoder-decoder
* add pt test for `inputs is not None`
* fix test
* new pt test
* Update tests/test_modeling_speech_encoder_decoder.py
* make fixup
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Very big changes concerning the tokenizer fast of CLIP which did not correspond to the tokenizer slow of CLIP
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Added all files, PoolFormerFeatureExtractor still failing tests
* Fixed PoolFormerFeatureExtractor not being able to import
* Completed Poolformer doc
* Applied Suggested fixes
* Fixed errors in modeling_auto.py
* Fix feature extractor, convert docs to Markdown, styling of code
* Remove PoolFormer from check_repo and fix integration test
* Remove Poolformer from check_repo
* Fixed configuration_poolformer.py docs and removed inference.py from poolformer
* Ran with black v22
* Added PoolFormer to _toctree.yml
* Updated poolformer doc
* Applied suggested fixes and added on README.md
* Did make fixup and make fix-copies, tests should pass now
* Changed PoolFormer weights conversion script name and fixed README
* Applied fixes in test_modeling_poolformer.py and modeling_poolformer.py
* Added PoolFormerFeatureExtractor to AutoFeatureExtractor API
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
* Implement activations as pytorch modules
* Apply fixup
* Add missing tests for activations
* Update docstring
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* TF generate start refactor
* Add tf tests for sample generate
* re-organize
* boom boom
* Apply suggestions from code review
* re-add
* add all code
* make random greedy pass
* make encoder-decoder random work
* further improvements
* delete bogus file
* make gpt2 and t5 tests work
* finish logits tests
* correct logits processors
* correct past / encoder_outputs drama
* refactor some methods
* another fix
* refactor shape_list
* fix more shape list
* import shape
_list
* finish docs
* fix imports
* make style
* correct tf utils
* Fix TFRag as well
* Apply Lysandre's and Sylvais suggestions
* Update tests/test_generation_tf_logits_process.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Update src/transformers/tf_utils.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* remove cpu according to gante
* correct logit processor
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Fix loading pipelines with wav2vec models with lm when in local paths
* Adding tests
* Fix test
* Adding tests
* Flake8 fixes
* Removing conflict files :(
* Adding task type to test
* Remove unnecessary test and imports
* Rework AutoFeatureExtractor.from_pretrained internal
* Custom feature extractor
* Add more tests
* Add support for custom feature extractor code
* Clean up
* Add register API to AutoFeatureExtractor
* Compute loss independent from decoder (as 14139)
* fix expected seq_len + style
* Apply the same change to TFVisionEncoderDecoderModel
* fix style
* Add case with labels in equivalence test
* uncomment
* Add case with labels in equivalence test
* add decoder_token_labels
* use hf_compute_loss
* Apply suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Add copied from
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Add TensorFlow support for ONNX export
* Change documentation to mention conversion with Tensorflow
* Refactor export into export_pytorch and export_tensorflow
* Check model's type instead of framework installation to choose between TF and Pytorch
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Alberto Bégué <alberto.begue@della.ai>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
* added classes to get started with constrained beam search
* in progress, think i can directly force tokens now but not yet with the round robin
* think now i have total control, now need to code the bank selection
* technically works as desired, need to optimize and fix design choices leading to undersirable outputs
* complete PR #1 without disjunctive decoding
* removed incorrect tests
* Delete k.txt
* Delete test.py
* Delete test.sh
* revert changes to test scripts
* genutils
* full implementation with testing, no disjunctive yet
* shifted docs
* passing all tests realistically ran locally
* removing accidentally included print statements
* fixed source of error in initial PR test
* fixing the get_device() vs device trap
* fixed documentation docstrings about constrained_beam_search
* fixed tests having failing for Speech2TextModel's floating point inputs
* fix cuda long tensor
* added examples and testing for them and founx & fixed a bug in beam_search and constrained_beam_search
* deleted accidentally added test halting code with assert False
* code reformat
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
* fixing based on comments on PR
* took out the testing code that should but work fails without the beam search moditification ; style changes
* fixing comments issues
* docstrings for ConstraintListState
* typo in PhrsalConstraint docstring
* docstrings improvements
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* typical decoding
* changing arg name
* add test config params
* forgotten arg rename
* fix edge case where scores are same
* test for typical logits warper
* code quality fixes
* Add wrapper classes
* convert inner layers to tf
* Add TF Encoder and Decoder layers
* TFSpeech2Text models
* Loadable model
* TF model with same outputs as PT model
* test skeleton
* correct tests and run the fixup
* correct attention expansion
* TFSpeech2Text pask_key_values with TF format
* use_cache = False for PT models if labels is passed
* Fix for BigBirdPegasusForConditionalGeneration
* add warning if users specify use_cache=True
* Use logger.warning instead of warnings.warn
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* electra is added to onnx supported model
* add google/electra-base-generator for test onnx module
Co-authored-by: Lewis Tunstall <lewis.c.tunstall@gmail.com>
* Change the way tracing happens, enabling dynamic axes out of the box
* Update the tests and modeling xlnet
* Add the non recoding of leaf modules to avoid recording more values for the methods to record than what will be seen at tracing time (which would otherwise desynchronize the recorded values and the values that need to be given to the proxies during tracing, causing errors).
* Comments and making tracing work for gpt-j and xlnet
* Refactore things related to num_choices (and batch_size, sequence_length)
* Update fx to work on PyTorch 1.10
* Postpone autowrap_function feature usage for later
* Add copyrights
* Remove unnecessary file
* Fix issue with add_new_model_like
* Apply suggestions
* Wav2Vec2 models must either throw or deal with add_apater
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add pre-add_adapter backwards compatibility
* Add pre-add_adapter backwards compatibility
* Fix issue in tests/test_modeling_wav2vec2.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
# Add support for W&B hyperparameter sweep
This PR:
* allows using wandb for running hyperparameter search.
* The runs are visualized on W&B sweeps dashboard
* This supports runnning sweeps on parallel devices, all reporting to the same central dashboard.
### Usage
**To run new a hyperparameter search:**
```
trainer.hyperparameter_search(
backend="wandb",
project="transformers_sweep", # name of the project
n_trials=5,
metric="eval/loss", # metric to be optimized, default 'eval/loss'. A warning is raised if the passed metric is not found
)
```
This outputs a sweep id. Eg. `my_project/sweep_id`
**To run sweeps on parallel devices:**
Just pass sweep id which you want to run parallel
```
trainer.hyperparameter_search(
backend="wandb",
sweep_id = "my_project/sweep_id"
)
```
* Adding support for `microphone` streaming within pipeline.
- Uses `ffmpeg` to get microphone data.
- Makes sure alignment is made to `size_of_sample`.
- Works by sending `{"raw": ..data.., "stride": (n, left, right),
"partial": bool}`
directly to the pipeline enabling to stream partial results and still
get inference.
- Let's `partial` information flow through the pipeline to enable caller
to get it back and choose to display text or not.
- The striding reconstitution is bound to have errors since CTC does not
keep previous state. Currently most of the errors are we don't know if
there's a space or not between two chunks.
Since we have some left striding info, we could use that during decoding
to choose what to do with those spaces and even extra letters maybe (if
the stride is long enough, it's bound to cover at least a few symbols)
Fixing tests.
Protecting with `require_torch`.
`raw_ctc` support for nicer demo.
Post rebase fixes.
Revamp to split raw_mic_data from it's live chunking.
- Requires a refactor to make everything a bit cleaner.
Automatic resampling.
Small fix.
Small fix.
* Post rebase fix (need to let super handle more logic, reorder args.)
* Update docstrings
* Docstring format.
* Remove print.
* Prevent flow of `input_values`.
* Fixing `stride` too.
* Fixing the PR by removing `raw_ctc`.
* Better docstrings.
* Fixing init.
* Update src/transformers/pipelines/audio_utils.py
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* Update tests/test_pipelines_automatic_speech_recognition.py
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* Quality.
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* Add torchvision's resize
* Rename torch_resize to default_to_square
* Apply suggestions from code review
* Add support for default_to_square and tuple of length 1
* add new test
* update test
* remove `tokenizer_file` from `additional_files_names` in `tokenization_utils_base.py`
* add `tokenizer_file` for the fast only tokenizer
* change global variables layoutxml
* remove `"tokenizer_file"` from DPR tokenizer's Global variables
* remove `tokenizer_file` from herbert slow tokenizer init
* `"tokenizer_file"` from LED tokenizer's Global variables
* remove `tokenizer_file` from mbart slow tokenizer init
* remove `tokenizer_file` from slow tokenizer template
* adapt to versioning
* adapt the `test_tokenizer_mismatch_warning` test
* clean test
* clarify `VOCAB_FILES_NAMES` in tokenization_utils_fast.py
* Revert "remove `tokenizer_file` from mbart slow tokenizer init"
This reverts commit 0dbb723fa9c7599d4640fe30b3647a74eb4a64e1.
* Revert "`"tokenizer_file"` from LED tokenizer's Global variables"
This reverts commit 5a3f879bdd651233f3d74a3d1146c34cde82b0c2.
* Revert "remove `tokenizer_file` from herbert slow tokenizer init"
This reverts commit f5e10007b7b0ec5345e015b9de7ffec72c5407fd.
* Revert "remove `"tokenizer_file"` from DPR tokenizer's Global variables"
This reverts commit da0895330bedfafc81ae3073470a9348c669f032.
* set `tokenizer_file` in super `__init__` of mbart
* replace assert with exception for `padding_side` arg in `PreTrainedTokenizerBase` `__init__`
* add test
* fix kwargs
* reformat test
* format
* format
* fix typo to render the documentation
* Update modeling_wav2vec2.py
With very tiny sound files (less than 0.1 seconds) the num_masked_span can be too long. The issue is described in issue #15366 and discussed with @patrickvonplaten.
* correct errors with mask time indices
* remove bogus file
* make fix-copies
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Fix loss calculation in TFFunnelForTokenClassification
* revert the change in TFFunnelForTokenClassification
* fix FunnelForTokenClassification loss
* fix other TokenClassification loss
* fix more
* fix more
* add num_labels to ElectraForTokenClassification
* revert the change to research projects
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Add Luke training
* Fix true label tags
* Fix true label tags
* Fix true label tags
* Update the data collator for Luke
* Some training refactor for Luke
* Improve data collator for Luke
* Fix import
* Fix datasets concatenation
* Add the --max_entity_length argument for Luke models
* Remove unused code
* Fix style issues
* Fix style issues
* Move the Luke training into a separate folder
* Fix style
* Fix naming
* Fix filtering
* Fix filtering
* Fix filter
* Update some preprocessing
* Move luke to research_projects
* Checkstyle
* Address comments
* Fix style
* Fix the inconsistency of loss calculation between PT/TF XLNetLMHeadModel
* overwrite test_loss_computation
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* add xlm roberta xl
* add convert xlm xl fairseq checkpoint to pytorch
* fix init and documents for xlm-roberta-xl
* fix indention
* add test for XLM-R xl,xxl
* fix model hub name
* fix some stuff
* up
* correct init
* fix more
* fix as suggestions
* add torch_device
* fix default values of doc strings
* fix leftovers
* merge to master
* up
* correct hub names
* fix docs
* fix model
* up
* finalize
* last fix
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* add copied from
* make style
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* clean commit of changes
* apply review feedback, make edits
* fix backticks, minor formatting
* 🖍 make fixup and minor edits
* 🖍 fix # in header
* 📝 update code sample without from_pt
* 📝 final review
* [deepspeed] saving checkpoint fallback when fp16 weights aren't saved
* Bump required deepspeed version to match usage when saving checkpoints
* update version
Co-authored-by: Mihai Balint <balint.mihai@gmail.com>
* Fixing support `batch_size` and `num_return_Sequences` in
`text-generation` pipeline
And `text2text-generation` too.
The bug was caused by the batch_size containing both the incoming batch
**and** the generated `num_sequences`.
The fix simply consists into splitting both of these again into
different dimensions.
* TF support.
* Odd backward compatibility script in the way.
* add new test
* add a feature to same the sentencepiece tokenizer model when the init file was deleted
* update marian
* update m2m_100
* fix marian
* update speech to text
* override test for layoutxlm
* fix saving bartpho
* remove harcoded values bartpho
* special token string version
* finish bartpho
* override layoutxml test
* add mbart
* move special tokens list
* format
* Revert "format"
This reverts commit 37a40df37903a932c2f951cbd33acb684246bae7.
* simplify list of string of special tokens
* Re-write `self.fairseq_tokens_to_ids ` initialization logic with special tokens
Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
* Fix prediction with generate() and the inference of column names
Should now have very few differences with the PyTorch implementation
* Minor edit to parent class
* Update src/transformers/keras_callbacks.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Explaining the dict conversion
* Putting main_input_name back
* Fixes to main_input_name
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fix_torch_device_generate_test
* remove @
* doc tests
* up
* up
* fix doctests
* adapt files
* finish refactor
* up
* save intermediate
* add more logic
* new change
* improve
* next try
* next try
* next try
* next try
* fix final spaces
* fix final spaces
* improve
* renaming
* correct more bugs
* finish wavlm
* add comment
* run on test runner
* finish all speech models
* adapt
* finish
* Added missing code in exemplary notebook - custom datasets fine-tuning
Added missing code in tokenize_and_align_labels function in the exemplary notebook on custom datasets - token classification.
The missing code concerns adding labels for all but first token in a single word.
The added code was taken directly from huggingface official example - this [colab notebook](https://github.com/huggingface/notebooks/blob/master/transformers_doc/custom_datasets.ipynb).
* Changes requested in the review - keep the code as simple as possible
* Avoid using get_list_of_files in config
* Wip, change tokenizer file getter
* Remove call in tokenizer files
* Remove last call to get_list_model_files
* Better tests
* Unit tests for new function
* Document bad API
* Add new model like command
* Bad doc-styler
* black and doc-styler, stop fighting!
* black and doc-styler, stop fighting!
* At last
* Clean up
* Typo
* Bad doc-styler
* Bad doc-styler
* All good maybe?
* Use constants
* Add doc and type hints
* More cleaning
* Add doc
* Fix Copied from
* Doc template
* Use typing.Pattern instead
* Framework-specific files
* Fixes
* Select frameworks clean model init
* Deal with frameworks in main init
* fixes
* Last fix
* Prompt user for info
* Delete exemple config
* Last fixes
* Add test config
* Fix bug with model_type included in each other
* Fixes
* More fixes
* More fixes
* Adapt config
* Remove print statements
* Will fix tokenization later, leave it broken for now
* Add test
* Quality
* Try this way
* Debug
* Maybe by setting the path?
* Let's try another way
* It should go better when actually passing the arg...
* Remove debug statements and style
* Fix config
* Add tests
* Test require the three backends
* intermediate commit
* Revamp pattern replacements and start work on feature extractors
* Adapt model info
* Finalize code for processors
* Fix in main init additions
* Finish questionnaire for processing classes
* Fix file name
* Fix for real
* Fix patterns
* Style
* Remove needless warnings
* Copied from should work now.
* Include Copied form in blocks
* Add test
* More fixes and tests
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Address review comment
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* better
* save intermediate
* finish code
* up
* docs
* Apply suggestions from code review
* up
* add compute transition beam scores function to model and make sure scores are correct with eos
* apply nicos comments
* Apply suggestions from code review
* another fix
* Refine errors for pretrained objects
* PoC to avoid using get_list_of_files
* Adapt tests to use new errors
* Quality + Fix PoC
* Revert "PoC to avoid using get_list_of_files"
This reverts commit cb93b7cae8504ef837c2a7663cb7955e714f323e.
* Revert "Quality + Fix PoC"
This reverts commit 3ba6d0d4ca546708b31d355baa9e68ba9736508f.
* Fix doc
* Revert PoC
* Add feature extractors
* More tests and PT model
* Adapt error message
* Feature extractor tests
* TF model
* Flax model and test
* Merge flax auto tests
* Add tokenization
* Fix test
* Add missing __spec__ for transformers.models.auto
* Moves the __spec__-test to the UnitTest class
* Adds module_spec to all instances of _LazyModule
* Refactors an old test from pytest to unittest
* [EncoderDecoder] Add test for usage of extra kwargs
* [EncoderDecoder] Fix usage of extra kwargs in from pretrained
* [EncoderDecoder] apply suggested changes (passing **kwargs_encoder)
* [EncoderDecoder] create new test function and make sure it passes
Co-authored-by: jonas <jsnfly@gmx.de>
* [WIP] Make chuking smartly (long files) work on asr ctc_with_lm.
* Slow test with functionality.
* Fixing regular test.
* fix for batch size 1
* Handling batch outside `rescale_Stride`.
- Renamed to `rescale_stride`.
* Disable equality in the test.
* Remove print.
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* First commit
* Add conversion script
* Make conversion script work for base model
* More improvements
* Update conversion script, works for vqa
* Add indexing argument to meshgrid
* Make conversion script work for ViltForPreTraining
* Add ViltForPreTraining to docs
* Fix device issue
* Add processor
* Add MinMaxResize to feature extractor
* Implement call method of ViltProcessor
* Fix tests
* Add integration test
* Add loss calculation for VQA
* Improve tests
* Improve some more tests
* Debug tests
* Small improvements
* Add support for attention_mask
* Remove mask_it
* Add pixel_mask
* Add tests for ViltFeatureExtractor
* Improve tests
* Add ViltForNaturalLanguageVisualReasoning
* Add ViltForNaturalLanguageVisualReasoning to conversion script
* Minor fixes
* Add support for image_embeds, update docstrings to markdown
* Update docs to markdown
* Improve conversion script
* Rename ViltForPreTraining to ViltForMaskedLM
* Improve conversion script
* Convert docstrings to markdown
* Fix code example of retrieval model
* Properly convert masked language model
* Add integration test for nlvr
* Fix code quality
* Apply suggestions from code review
* Add copied from statements
* Fix pretrained_config_archive_map
* Fix docs
* Add model to README
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply more suggestions from code review
* Make code more readable
* Add ViltForNaturalLanguageVisualReasoning to the tests
* Rename ViltForVisualQuestionAnswering to ViltForQuestionAnswering
* Replace pixel_values_2 by single tensor
* Add hidden_states and attentions
* Fix one more test
* Fix all tests
* Update year
* Fix rebase issues
* Fix another rebase issue
* Remove ViltForPreTraining from auto mapping
* Rename ViltForImageRetrievalTextRetrieval to ViltForImageAndTextRetrieval
* Make it possible to use BertTokenizerFast in the processor
* Use BertTokenizerFast by default
* Rename ViltForNaturalLanguageVisualReasoning, define custom model output
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Rename compute_loss to hf_compute_loss to avoid conflicts with the new Keras method
* make style
* Adding deprecation warning to `compute_loss`
* Fix sneaky reference to compute_loss
* Replace logger.warning with warnings.warn
* Clarifying warning and deprecation timeline
* up
* improve readme
* up
* up
* more info
* up
* up
* Apply suggestions from code review
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* add more stuff for eval
* update
* up
* Update README.md
* Update examples/research_projects/xls_r/README.md
Co-authored-by: Omar Sanseviero <osanseviero@users.noreply.github.com>
* apply omar's suggestions
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: Omar Sanseviero <osanseviero@users.noreply.github.com>
* fix doc example - MarianForCausalLM example
* try to keep copies
* fix copies
* fix more similar doc examples
* fix more
* fix style
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* First draft
* More improvements
* More improvements
* More improvements
* Fix embeddings
* Add conversion script
* Finish conversion script
* More improvements
* Fix forward pass
* Remove print statements
* Add weights initialization
* Add initialization of decoder weights
* Add support for other models in the conversion script
* Fix patch_size for huge model
* Fix most of the tests
* Fix integration test
* Fix docs
* Fix archive_list
* Apply suggestions from code review
* Improve documentation
* Apply more suggestions
* Skip some tests due to non-deterministic behaviour
* Fix test_initialization
* Remove unneccessary initialization of nn.Embedding
* Improve docs
* Fix dummies
* Remove ViTMAEFeatureExtractor from docs
* Add model to README and table of contents
* Delete inference file
* Fix deprecation warnings for int div
Co-authored-by: mgoldey <matthew.goldey@gmail.com>
* Fix import
* ensure that tensor output is python scalar
* make backward compatible
* make code more readable
* adapt test functions
Co-authored-by: mgoldey <matthew.goldey@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix doc example - NameError: name 'PATH' is not defined
* fix name 'TFRagModel' is not defined
* correct TFRagRagSequenceForGeneration
* fix name 'tf' is not defined
* fix style
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* update XLMProphetNet link
* update DPR link
* change prophetnet link
* change link MBART
* change link GPT
* update gpt2 link
* ctrl update link
* update Transformer-XL link
* Update Reformer link
* update xlnet link
* bert update link
* udpate albert link
* roberta update link
* update distilbert link
* update convbert link
* update XLM link
* xlm roberta update link
* update Flaubert link
* update electra link
* update funnel transformer and longformer
* bart update link
* pegasus update link
* udpate marianmt link
* t5 update link
* mt5 update link
* Add ONNX classes to main package
* Remove permalinks from ONNX guide
* Fix ToC entry
* Revert "Add ONNX classes to main package"
This reverts commit eb794a5b00d66b0b4eab234987301676d8357630.
* Add ONNX classes to main doc
* Fix syntax highlighting in doc
* Fix text
* Add FeaturesManager to doc
* Use paths to reference ONNX classes
* Add FeaturesManager to init
* Add missing ONNX paths
* Pipeline ASR with LM.
* Revamped into `self.decoder`.
* Fixing.
* 2nd fix.
* Update src/transformers/pipelines/__init__.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Fixing.
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
All specific tokenizer config properties must be passed to its base
class (XLMTokenizer) in order to be saved. This was not the case for
do_lowercase config. Thus it was not saved by save_pretrained() method
and saving and reloading the tokenizer changed its behaviour.
This commit fixes it.
* Add IBertOnnxConfig and tests
* add all the supported features for IBERT and remove outputs in IbertOnnxConfig
* use OnnxConfig
* fix codestyle
* remove serialization.rst
* codestyle
* Start the work on TFVisionEncoderDecoderModel
* Expose TFVisionEncoderDecoderModel
* fix import
* Add modeling_tf_vision_encoder_decoder to _ignore_modules in get_model_modules()
* reorder
* Apply the fix for checkpoint loading as in #14016
* remove attention_mask + fix VISION_DUMMY_INPUTS
* A minimal change to make TF generate() work for vision models as encoder in encoder-decoder setting
* fix wrong condition: shape_list(input_ids) == 2
* add tests
* use personal TFViTModel checkpoint (for now)
* Add equivalence tests + projection layer
* style
* make sure projection layer can run
* Add examples
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Clean comments (need to work on TODOs for PyTorch models)
* Remove TF -> PT in check_pt_tf_equivalence for TFVisionEncoderDecoderModel
* fixes
* Revert changes in PT code.
* Update tests/test_modeling_tf_vision_encoder_decoder.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add test_inference_coco_en for TF test
* fix quality
* fix name
* build doc
* add main_input_name
* Fix ckpt name in test
* fix diff between master and this PR
* fix doc
* fix style and quality
* fix missing doc
* fix labels handling
* Delete auto.rst
* Add the changes done in #14016
* fix prefix
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* make style
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Make OpenAIGPTTokenizer work with SpaCy 3.x
SpaCy 3.x introduced an API change to creating the tokenizer that
breaks OpenAIGPTTokenizer. The old API for creating the tokenizer in
SpaCy 2.x no longer works under SpaCy 3.x, but the new API for creating
the tokenizer in SpaCy 3.x DOES work under SpaCy 2.x. Switching to the
new API should allow OpenAIGPTTokenizer to work under both SpaCy 2.x and
SpaCy 3.x versions.
* Add is_spacy_available and is_ftfy_available methods to file utils
* Add spacy and ftfy unittest decorator to testing utils
* Add tests for OpenAIGPTTokenizer that require spacy and ftfy
* Modify CircleCI config to run tests that require spacy and ftfy
* Remove unneeded unittest decorators are reuse test code
* Run make fixup
* fix doc example - AttributeError: 'numpy.ndarray' object has no attribute 'to'
* fix more
* Apply suggestions from code review
* Update src/transformers/models/unispeech/modeling_unispeech.py
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Hotfix `chunk_length_s` instead of `_ms`.
* Adding fix of `pad_token` which should be last/previous token for CTC
proper decoding
* Fixing ChunkPipeline unwrapping.
* Adding a PackIterator specific test.
* Add FlaxRoFormer
* Clean code + make quality
* Fix output pooling for FlaxRoFormerForMultipleChoiceModule
* Apply suggestions from code review
* add flax model to repos
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Enabling `tokenizers` upgrade.
* Moved ugly comment.
* Tokenizers==0.11.1 needs an update to keep borrow checker
happy in highly contiguous calls.
* Support both 0.11.1 and 0.11.0
* [AutoProcessor] Correct AutoProcessor and automatically add processor class
* up
* up
* up
* up
* up
* up
* up
* up
* continue tomorrow
* up
* up
* up
* make processor class private
* fix loop
* start
* add gradient checkpointing and feature extractor freezing
* Apply suggestions from code review
* up
* up
* up
* correct
* up
* more changes
* up
* up
* up
* remove rst
* Fix bad examples
* Add black formatting to style_doc
* Use first nonempty line
* Put it at the right place
* Don't add spaces to empty lines
* Better templates
* Deal with triple quotes in docstrings
* Result of style_doc
* Enable mdx treatment and fix code examples in MDXs
* Result of doc styler on doc source files
* Last fixes
* Break copy from
* New doc styler
* Fix issue with args at the start
* Code sample fixes
* Style code examples in MDX
* Fix more patterns
* Typo
* Typo
* More patterns
* Do without black for now
* Get more info in error
* Docstring style
* Re-enable check
* Quality
* Fix add_end_docstring decorator
* Fix docstring
* Fix duplicate call to save_checkpoint when using deepspeed / stage3_gather_fp16_weights_on_model_save
* Revert "Fix duplicate call to save_checkpoint when using deepspeed / stage3_gather_fp16_weights_on_model_save"
This reverts commit 6a3dec0397723a8417351dc38fdebf14ab17756c.
* Delete correct duplicate invocation of deepspeed save_checkpoint
* Add ElectraForCausalLM and cover some basic tests & need to fix a few tests
* Fix bugs
* make style
* make fix-copies
* Update doc
* Change docstring to markdown format
* Remove redundant update_keys_to_ignore
* Pipeline chunks.
* Batching for Chunking pipelines ?
* Batching for `question-answering` and `zero-shot-cls`.
* Fixing for FNet.
* Making ASR a chunk pipeline.
* Chunking ASR API.
* doc style.
* Fixing ASR test.
* Fixing QA eror (p_mask, padding is 1, not 0).
* Enable both vad and simple chunking.
* Max length for vad.
* remove inference mode, crashing on s2t.
* Revert ChunkPipeline for ASRpipeline.
Too many knobs for simple integration within the pipeline, better stick
to external convenience functions instead, more control to be had,
simpler pipeline and also easier to replace with other things later.
* Drop necessity for PT for these.
* Enabling generators.
* Add mic + cleanup.
* Typo.
* Typo2.
* Remove ASR work, it does not belong in this PR anymore.
* Update src/transformers/pipelines/pt_utils.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Update src/transformers/pipelines/zero_shot_classification.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Adding many comments.
* Doc quality.
* `hidden_states` handling.
* Adding doc.
* Bad rebase.
* Autofixing docs.
* Fixing CRITICAL bug in the new Zerocls pipeline.
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
As `jax` cuda requires special instructions to be installed correctly add a link to jax installation instructions.
Note: Flax install page only covers cpu jax installation info.
* First commit to add MarianMT to ONNX
* Now MarianModel.forward() automatically generates decoder_input_ids, like BartModel.forward()
* Adjusted MarianOnnxConfig.inputs and outputs to work with seq2seq-lm feature
* Style fix
* Added support for other features for already supported models
* Partial support for causal and seq2seq models
* Partial support for causal and seq2seq models
* Add default task for MarianMT ONNX
* Remove automatic creation of decoder_input_ids
* Extend inputs and outputs for MarianMT ONNX config
* Add MarianMT to ONNX unit tests
* Refactor
* OnnxSeq2SeqConfigWithPast to support seq2seq models
* Parameterized the onnx tests
* Restored run_mlm.py
* Restored run_mlm.py
* [WIP] BART update
* BART and MBART
* Add past_key_values and fix dummy decoder inputs
Using a sequence length of 1 in generate_dummy_outputs() produces large discrepancies, presumably due to some hidden optimisations.
* Refactor MarianOnnxConfig to remove custom past_key_values logic
* Fix quality
* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"
This reverts commit 0f4e39c5599523c110cd713f60a3bfa145dad807.
* is_torch_available test to avoid failing imports
* sorting parameterize parameters to solve ERROR gw0 gw1
* tests fix
* tests fix
* GPT2 with past fix
* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially
* Removed onnx file
* Refactor Marian export to account for base changes
* Fix copies
* Implemented suggestions
* Extend support for causal LM
* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"
This reverts commit 0f4e39c5599523c110cd713f60a3bfa145dad807.
* is_torch_available test to avoid failing imports
* sorting parameterize parameters to solve ERROR gw0 gw1
* tests fix
* tests fix
* GPT2 with past fix
* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially
* Removed onnx file
* Implemented suggestions
* Fixed __init__ to resolve conflict with master
* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"
This reverts commit 0f4e39c5599523c110cd713f60a3bfa145dad807.
* is_torch_available test to avoid failing imports
* sorting parameterize parameters to solve ERROR gw0 gw1
* tests fix
* tests fix
* GPT2 with past fix
* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially
* Removed onnx file
* Implemented suggestions
* Fixed __init__ to resolve conflict with master
* Remove commented import
* Remove ONNX model
* Remove redundant class method
* Tidy up imports
* Fix quality
* Refactor dummy input function
* Add copied from statements to Marian config functions
* Remove false copied from comments
* Fix copy from comment
Co-authored-by: Massimiliano Bruni <massimiliano.bruni@hcl.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* Working on splitting out labels
* First working version
* Fixed concatenation of outputs and labels
* val_dataset -> eval_dataset
* Only pass input arrays in tokenizer.model_input_names
* Only pass input arrays in tokenizer.model_input_names
* Only remove unexpected keys when predict_with_generate is True
* Adding proper docstring
* Adding example to docstring
* Add a proper ROUGE metric example
* Add a proper ROUGE metric example
* Add version checking
* Update src/transformers/keras_callbacks.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/keras_callbacks.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/keras_callbacks.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/keras_callbacks.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Remove requirement for tokenizer with predict_with_generate
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"
This reverts commit 0f4e39c5599523c110cd713f60a3bfa145dad807.
* is_torch_available test to avoid failing imports
* sorting parameterize parameters to solve ERROR gw0 gw1
* tests fix
* tests fix
* GPT2 with past fix
* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially
* Removed onnx file
* Implemented suggestions
* Fixed __init__ to resolve conflict with master
* Remove commented import
* add tests
* change post-processor, pre-tokenizer and decoder (can't update decoder)
* update test (remove decoder which doesn't depend on trim and add_prefix)
* just update the post_processor
* fix change
* `trim_offsets` has no influence on `pre_tokenizer`
* remove a test that need some input from the `tokenizers` lib maintainers
* format
* add new test offsets roberta
* polish comments
* Convert docstrings of all configurations and tokenizers
* Processors and fixes
* Last modeling files and fixes to models
* Pipeline modules
* Utils files
* Data submodule
* All the other files
* Style
* Missing examples
* Style again
* Fix copies
* Say bye bye to rst docstrings forever
* add custom `stopping_criteria` and `logits_processor` to `generate`
* add tests for custom `stopping_criteria` and `logits_processor`
* fix typo in RAG
* address reviewer comments
* improve custom logits processor/stopping criteria error message
* fix types in merge function signature
* change default for custom list from `None` to empty list
* fix rag generate
* add string split suggestion
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Convert file_utils docstrings to Markdown
* Test on BERT
* Return block indent
* Temporarily disable doc styler
* Remove from quality checks as well
* Remove doc styler mess
* Remove check from circleCI
* Fix typo
* Convert file_utils docstrings to Markdown
* Test on BERT
* Return block indent
* Temporarily disable doc styler
* Remove from quality checks as well
* Remove doc styler mess
* Remove check from circleCI
* Fix typo
* Let's go on all other model files
* Add templates too
* Styling and quality
* Add a main_input_name attribute to all models
* Fix tests
* Wtf Vs Code?
* Update src/transformers/models/imagegpt/modeling_imagegpt.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Style
* Fix copies
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Implement head_mask for Flax BERT and other models copied from BERT
* Remove `from jax._src.nn.functions import sigmoid`
Remove `from jax._src.nn.functions import sigmoid` unintentionally added by IDE
* Remove no more valid copy statement
* Apply patil-suraj's suggestions from code review
* Apply suggestions from the code review
* Update Flax template
* Fix a typo
* Also update template for CausalLM modules
* PoC for conserving old links
* Do the same for other links
* remap the redirects section
* add instructions on how to move sections
* improve
Co-authored-by: Stas Bekman <stas@stason.org>
* Initial commit for Keras model cards
* Revert accidental change
* make style
* make style
* make style
* Fix PR comments
* Move repo creation to __init__
* Fixes to README.md creation
* Partial progress for proper card creation on `push_to_hub`
* Proper card creation from `push_to_hub` plus fixes for malformed model cards
* Fixes for model card creation outside the callback
* Adding a model card creation test
* Putting the model card creation test in the right file.
Good job, Matt.
* make style
* Fix model card test temp dir usage
* Fix model card creation when no optimizer present
* Fixes for when training history not present
* Fix accidental edit to test_modeling_common
* Adding support for multiple mask tokens.
- Original implem: https://github.com/huggingface/transformers/pull/10222
Co-authored-by: njafer <naveen.jafer@oracle.com>
* In order to accomodate optionally multimodal models like Perceiver
we add information to the tasks to specify tasks where we know for sure
if we need the tokenizer/feature_extractor or not.
* Adding info in the documentation about multi masks.
+ marked as experimental.
* Add a copy() to prevent overriding the same tensor over and over.
* Fixup.
* Adding small test for multi mask with real values..
Co-authored-by: njafer <naveen.jafer@oracle.com>
* Adding some slow test to check for perceiver at least from a high level.
* Re-enabling fast tests for Perceiver ImageClassification.
* Perceiver might try to run without Tokenizer (Fast doesn't exist) and
with FeatureExtractor some text only pipelines.
* Oops.
* Adding a comment for `update_config_with_model_class`.
* Remove `model_architecture` to get `tiny_config`.
* Finalize rebase.
* Smarter way to handle undefined FastTokenizer.
* Remove old code.
* Addressing some nits.
* Don't instantiate `None`.
* Fix doc examples: cannot import name
* remove copy because of some necessary minor changes (maybe add copy to the individual methods instead)
* Keep copy with some modifications
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
- Do not run image-classification pipeline (_CHECKPOINT_FOR_DOC uses the checkpoint for
langage, which cannot load a FeatureExtractor so current logic fails).
- Add a safeguard to not run tests when `tokenizer_class` or
`feature_extractor_class` **are** defined, but cannot be loaded
This happens for Perceiver for the "FastTokenizer" (which doesn't exist
so None) and FeatureExtractor (which does exist but cannot be loaded
because the checkpoint doesn't define one which is reasonable for the
said checkpoint)
- Added `get_vocab` function to `PerceiverTokenizer` since it is used by
`fill-mask` pipeline when the argument `targets` is used to narrow a
subset of possible values.
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
* Add some nicety flags for better controlling evaluation.
* Fix dependency issue with outdated requirement
* Add additional flag to example to ensure eval is done
* Wrap code into main function for accelerate launcher to find
* Fix valid batch size flag in readme
* Add note to install git-lfs when initializing/training the model
* Update examples/research_projects/codeparrot/scripts/arguments.py
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* Update examples/research_projects/codeparrot/README.md
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* Revert "Wrap code into main function for accelerate launcher to find"
This reverts commit ff11df1c810d4df198d04b827538eb4572147ba3.
* Fix formatting issue
* Move git-lfs instructions to installation section
* Add a quick check before code generation for code evaluation
* Fix styling issue
* Update examples/research_projects/codeparrot/scripts/human_eval.py
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* Make iterable dataset use passed in tokenizer rather than globally defined one
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: ncoop57 <nac33@students.uwf.edu>
* Test workflow
* Build doc
* Make a clean build
* Add doc config
* Restore other workflows
* Final job
* Print something in else statements
* Pull before making changes
* Fix doc examples: name '...' is not defined
* remove >>> and ... in some docstrings in visual_bert
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* change args to address overwriting issue
* remove project name from args
* remove passing args as kwargs to experiment object
* remove passing args as kwargs to offline experiment
* fix offline directory assignment in experiment kwargs
* log checkpoint folder on training end
* log entire output_dir as asset folder
* log asset folder recursively
* end experiment at the end of training
* clean up
* clean up
* Default to always log training assets to Comet when using CometCallback
* change logging training assets to be true when running callback setup
* fix so that experiment always ends when training ends
* styling and quality fixes
* update docstring for COMET_LOG_ASSETS environment variable
* run styling and quality checks
* clean up to docstring
* remove merge markers
* change asset logging to false to avoid hitting max assets per experiment limit
* update training asset description
* fix styling
* fix: verify jsonl in run_translation (#14660)
* fix(run_translation.py): json/jsonl validation
Both json and jsonl are to be accepted as valid jsonlines file extension
* fix(run_translation.py): make black happy
* Ran make style
* Convert a few docs
* And another
* Last tutorials
* New syntax for colab links
* Convert a few docs
* And another
* Last tutorials
* New syntax for colab links
* Added support for other features for already supported models
* Partial support for causal and seq2seq models
* Partial support for causal and seq2seq models
* OnnxSeq2SeqConfigWithPast to support seq2seq models
* Parameterized the onnx tests
* Restored run_mlm.py
* Restored run_mlm.py
* [WIP] BART update
* BART and MBART
* Added comments
* Another sequence length of the past_key_values
* First draft
* Style and remove mlm
* Make forward pass work
* More improvements
* More improvements
* Fix bug
* More improvements
* More improvements
* Add PerceiverTokenizer first draft
* Improve conversion script
* More improvements
* Make conversion script work for the encoder
* Make conversion script work with local pickle files
* Style & quality, fix-copies
* Add dummy input to conversion script
* Add absolute position embeddings to TextPreProcessor
* Make forward pass of encoder work
* More improvements
* Move text preprocessor to separate script
* More improvements
* More improvements
* Add post processor
* Make MLM model work
* Style
* Add PerceiverForMaskedLM
* Add PerceiverImagePreprocessor
* Make style
* Make PerceiverForImageClassification work
* More improvements
* More improvements
* Use tokenizer in conversion script
* Use PerceiverForMaskedLM in conversion script
* Define custom PerceiverModelOutput
* Improve PerceiverAttention to make it work for both MLM and image classification
* More improvements
* More improvements
* More improvements to the conversion script
* Make conversion script work for both MLM and image classification
* Add PerceiverFeatureExtractor
* More improvements
* Style and quality
* Add center cropping
* Fix bug
* Small fix
* Add print statement
* Fix bug in image preprocessor
* Fix bug with conversion script
* Make output position embeddings an nn.Parameter layer instead of nn.Embedding
* Comment out print statements
* Add position encoding classes
* More improvements
* Use position_encoding_kwargs
* Add PerceiverForImageClassificationFourier
* Make style & quality
* Add PerceiverForImageClassificationConvProcessing
* Style & quality
* Add flow model
* Move processors to modeling file
* Make position encodings modular
* Make basic decoder use modular position encodings
* Add PerceiverForOpticalFlow to conversion script
* Add AudioPreprocessor
* Make it possible for the basic decoder to use Fourier position embeddings
* Add PerceiverForMultimodalAutoencoding
* Improve model for optical flow
* Improve _build_network_inputs method
* Add print statement
* Fix device issue
* Fix device of Fourier embeddings
* Add print statements for debugging
* Add another print statement
* Add another print statement
* Add another print statement
* Add another print statement
* Improve PerceiverAudioPreprocessor
* Improve conversion script for multimodal modal
* More improvements
* More improvements
* Improve multimodal model
* Make forward pass multimodal model work
* More improvements
* Improve tests
* Fix some more tests
* Add output dataclasses
* Make more tests pass
* Add print statements for debuggin
* Add tests for image classification
* Add PerceiverClassifierOutput
* More improvements
* Make more tests pass for the optical flow model
* Make style & quality
* Small improvements
* Don't support training for optical flow model for now
* Fix _prepare_for_class for tests
* Make more tests pass, add some docs
* Add multimodal model to tests
* Minor fixes
* Fix tests
* Improve conversion script
* Make fixup
* Remove pos_dim argument
* Fix device issue
* Potential fix for OOM
* Revert previous commit
* Fix test_initialization
* Add print statements for debugging
* Fix print statement
* Add print statement
* Add print statement
* Add print statement
* Add print statement
* Add print statement
* Add print statement
* Remove need for output_shape
* Comment out output_shape
* Remove unnecessary code
* Improve docs
* Fix make fixup
* Remove PerceiverTextProcessor from init
* Improve docs
* Small improvement
* Apply first batch of suggestions from code review
* Apply more suggestions from code review
* Update docstrings
* Define dicts beforehand for readability
* Rename task to architecture in conversion script, include PerceiverModel in tests
* Add print statements for debugging
* Fix tests on GPU
* Remove preprocessors, postprocessors and decoders from main init
* Add integration test
* Fix docs
* Replace einops by torch
* Update for new docs frontend
* Rename PerceiverForImageClassification
* Improve docs
* Improve docs
* Improve docs of PerceiverModel
* Fix some more tests
* Improve center_crop
* Add PerceiverForSequenceClassification
* Small improvements
* Fix tests
* Add integration test for optical flow model
* Clean up
* Add tests for tokenizer
* Fix tokenizer by adding special tokens properly
* Fix CI
* up
* up
* up
* make it cleaner
* correct
* make styhahalal
* add more tests
* finish
* small fix
* make style
* up
* tryout to solve cicrle ci
* up
* fix more tests
* fix more tests
* apply sylvains suggestions
* fix import
* correct docs
* add pyctcdecode only to speech tests
* fix more tests
* add tf, flax and pt tests
* add pt
* fix last tests
* fix more tests
* Apply suggestions from code review
* change lines
* Apply suggestions from code review
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* correct tests
* correct tests
* add doc string
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* fix bug, trainer_seq2seq.py, Line 172, generation_inputs must be a dict before feeding into self.model.generation()
* fix bug, trainer_seq2seq.py, Line 172, generation_inputs must be a dict before feeding into self.model.generation()
* quick fix SummarizationPipeline error messages
Fix error messages to avoid spam errors, and errors of type:
`Your max_length is set to 50, but you input_length is only 46. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=50)`
* correcto SummarizationPipeline error messages fixes
* implement MLukeTokenizer and LukeForMaskedLM
* update tests
* update docs
* add LukeForMaskedLM to check_repo.py
* update README
* fix test and specify the entity pad id in tokenization_(m)luke
* fix EntityPredictionHeadTransform
* add cross_attention_hidden_size to text-2-text encoder-decoder models (PT/Flax)
* for TFEncoderDecoderModel
* add equivalence test for TFEncoderDecoderModel
* fix
* fix failed equivalence tests
* remove unused import
* add detailed comment
* Fix check_equivalence_tf_to_pt by using encoder/decoder
* cleaning
* Use cross_attention_hidden_size in speech-to-text
* clean fast init logging msg in encoder decoder models
* increase tol from 1e-5 to 1e-3 for tf test
* style
* style
* make sure projection layer can run
* remove type conversion + add check
* fix conflict (config.output_hidden_size)
* Remove TF -> PT in check_pt_tf_equivalence for TFEncoderDecoderModel
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Add AutoProcessor class
Init and tests
Add doc
Fix init
Update src/transformers/models/auto/processing_auto.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Reverts to tokenizer or feature extractor when available
Adapt test
* Revert "Adapt test"
This reverts commit bbdde5fab02465f24b54b227390073082cb32093.
* Revert "Reverts to tokenizer or feature extractor when available"
This reverts commit 77659ff5d21b6cc0baf6f443017e35e056a525bb.
* Don't revert everything Lysandre!
Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
* Update code to resolve comments left in previous PR.
* Add README.md file for this example.
* Update examples/onnx/pytorch/translation/README.md
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update examples/onnx/pytorch/translation/README.md
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update examples/onnx/pytorch/translation/README.md
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update README.md file to resolve comments.
* Add a section name.
* Update examples/onnx/pytorch/translation/README.md
Co-authored-by: Gary Miguel <garymm@garymm.org>
* Add more comments for _convert_past_list_to_tuple().
* Change the default file name to a consistent one.
* Fix a format issue.
* Update examples/onnx/pytorch/translation/README.md
Co-authored-by: Gary Miguel <garymm@garymm.org>
* Update examples/onnx/pytorch/translation/run_onnx_exporter.py
Co-authored-by: Gary Miguel <garymm@garymm.org>
* Update examples/onnx/pytorch/translation/README.md
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
* Change the folder to summarization and address some other coments.
* Update the torch version.
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Gary Miguel <garymm@garymm.org>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
* add test for glue
* add tests for clm
* fix clm test
* add summrization tests
* more tests
* fix few tests
* add test for t5 mlm
* fix t5 mlm test
* fix tests for multi device
* cleanup
* ci job
* fix metric file name
* make t5 more robust
* Make DefaultDataCollator importable from root
* Add documentation for DefaultDataCollator and add return_tensors argument to all class docstrings
* make style
* Add DefaultDataCollator to data_collator.rst
* Add DefaultDataCollator to data_collator.rst
* fix#14524 (IndexError when mask prob is too low)
* fix formatting
* correct documentation, add option for setting min_num_masks
* change the semantic meaning of `mask_prob` in _compute_mask_indices
With this commit the meaing of `mask_prob` actually adhered to the probability for each
vector to be the start of a masked span of length.
* fix check_copies test
* fix documentation to semantic meaning of `upper bound of overall masking percentage`, revert changes to _compute_mask_indices
* fix typo
* started bf16 integration
* minor changes
* code now runs
* style
* lay foundation for bf16 testing
* lay foundation for bf16 testing
* start the tests
* better bf16 check
* style
* 2 separate checkers - one for bf16 support, another for bf16+autocast
* Update src/transformers/training_args.py
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* a couple of comment resolutions
* more comment resolutions
* resolved a small bug
* just some print statemtns
* added todo marking
* added a todo
* adjust for API change s/fast_dtype/dtype/
* fix style
* merge 2 bf16 util functions
* bf16 now does scaling too
* Add support for bfloat16
* Revert T5 layernorm to float32
This is based on the comment at https://github.com/huggingface/transformers/pull/14448/files#r752660929 and the PyTorch PR https://github.com/pytorch/pytorch/pull/66920 .
* Add comment about conversion to float32 before returning the numpy data
* Add comment about AMP-bfloat16 incompatibility
* Fix formatting
* typo
* reformer / bf16
* cleanup
* require at least pt-1.10
* fix
* will deal with deepspeed separately
* cleanup
* revert
* cleanup
* fp16_full_eval and bf16_full_eval are separate modes
* proper deprecation
* cleanup
* test and fixes
* spelling
* cleanup
* add a note that this API is experimental
Co-authored-by: jamie <jamie@cortx.com>
Co-authored-by: Stas Bekman <stas@stason.org>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: suriya <suriya@cortx.com>
Co-authored-by: Manuel R. Ciosici <manuelrciosici@gmail.com>
* Init Flax implementation for Blenderbot
* Add a majority of stuff except for tests
* make style quality
* Add tests and fix some bugs
* Add tests
* Clean source code and fix some bugs
* Fix copies and docs
* Fix jax device condition for tests
* Fix layer norm in the encoder
* Fix a few typos in the test file
* make fix-copies
* make fix-copies
* fix layer norm
* Fix Flax params dtype (#13090)
* Fix PR reference (#13098)
* make fix-copies
* Update tests/test_modeling_flax_blenderbot.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* TF Tapas first commit
* updated docs
* updated logger message
* updated pytorch weight conversion
script to support scalar array
* added use_cache to tapas model config to
work properly with tf input_processing
* 1. rm embeddings_sum
2. added # Copied
3. + TFTapasMLMHead
4. and lot other small fixes
* updated docs
* + test for tapas
* updated testing_utils to check
is_tensorflow_probability_available
* converted model logits post processing using
numpy to work with both PT and TF models
* + TFAutoModelForTableQuestionAnswering
* added TF support
* added test for
TFAutoModelForTableQuestionAnswering
* added test for
TFAutoModelForTableQuestionAnswering pipeline
* updated auto model docs
* fixed typo in import
* added tensorflow_probability to run tests
* updated MLM head
* updated tapas.rst with TF model docs
* fixed optimizer import in docs
* updated convert to np
data from pt model is not
`transformers.tokenization_utils_base.BatchEncoding`
after pipeline upgrade
* updated pipeline:
1. with torch.no_gard removed, pipeline forward handles
2. token_type_ids converted to numpy
* updated docs.
* removed `use_cache` from config
* removed floats_tensor
* updated code comment
* updated Copyright Year and
logits_aggregation Optional
* updated docs and comments
* updated docstring
* fixed model weight loading
* make fixup
* fix indentation
* added tf slow pipeline test
* pip upgrade
* upgrade python to 3.7
* removed from_pt from tests
* revert commit f18cfa9
* Added the lang argument to apply_tesseract in feature_extraction_layoutlmv2.py, which is used in pytesseract.image_to_data.
* Added ocr_lang argument to LayoutLMv2FeatureExtractor.__init__, which is used when calling apply_tesseract
* Updated the documentation of the LayoutLMv2FeatureExtractor
* Specified in the documentation of the LayoutLMv2FeatureExtractor that the ocr_lang argument should be a language code.
* Update src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Split comment into two lines to adhere to the max line size limit.
* Update src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* added save_directories for _psave_pretrained_pt and _tf, changed model to tf_model and pt_model, enable the notebook to run cleanly from top to bottom without error
* Update quicktour.rst
* added >>>
* dependencies
* added space
When loading a pretrained tokenizer, a verification is done to ensure
that the actual tokenizer class matches the class it was called from.
If the tokenizer is absent, its config file is loaded from the repo.
However, the cache_dir for downloading is not provided, which leads to
ignoring of the user-specified cache_dir, storing files in several
places and and may result in incorrect warnings when the default
cache_dir is unreachsble.
This commit fixes that.
* test: make sure model configs are jsonifiable
* fix: return python dict instead of config object
* fix: accept pretrained config and use correct class
* Re-enabling slow tests and applying them to core models only
* Re-enabling slow tests and applying them to core models only
* Add new test file to fetcher
* Remove tooslow tests from test_modeling_tf_common.py
* make style
* Style fixes
* Style fixes
* Style fixes
* Style fixes
* Adding core tests to GPT2 and BART
* Removing unused imports
Co-authored-by: niklas.fruehauf <niklas.fruehauf@sovanta.com>
Co-authored-by: matt <rocketknight1@gmail.com>
* add new wav2vec2 translation
* correct
* up
* add tests
* correct end copy
* correct more
* up
* correct unispeech sat
* finish
* finalize
* finish
* up
* stop training when a finite IterableDataset is exhausted
when using an iterable dataset num_epochs is set to
sys.maxsize to make sure all data is consumed
likewise we want to set max_steps high enough
but still stop when all data is consumed
(cherry picked from commit 6f0e1d6363153da9051e93acffe1cbab3a3f3b12)
* fix typo flase -> false
* add test for stopping training on exhausted finite iterable dataset
* remove redundant gradient_accumulation_steps
* run make style
reformat training_args docstring
* Fix gradient_checkpointing backward compatibility
* Remove needless line
* make sure mask prob is big enough and length small enough
* Fix tests
Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
* Adding support for raw python `generator` in addition to `Dataset`
The main goal is to ease the create of streaming data to the pipe.
`Dataset` is more involved and pytorch specific.
This PR, provides a way to use a python iterator too.
This enabled #14250 but can be proposed as a standalone PR.
```python
from transformers import pipeline
def read_data(filename):
with open(filename, 'r') as f:
for line in f:
yield f
pipe = pipeline("text-classification")
for classified in pipe(read_data("large_file.txt")):
print("Success ! ", classified)
```
The main caveat of this, is the interaction with `DataLoader` with
`num_workers>1`. When you have multiple workers, each receive a copy
of the generator (like `IterableDataset`). That means the naive Iterator
will fail since all workers iterate on all items of the generator.
There are ways to do clever "skipping", but it could be bad still
because all workers still do have to pass through all items of the
generator (they just ignore items they don't handle), depending on
the case it might be bad.
Using `num_workers=1` is the simplest fix and if the cost of loading
your data is small enough should be good enough. In the above example
trying to do smart tricks to skip some lines is unlikely to be a net
positive for instance.
If there are better ways to do "jumps" on some data, then using
`Dataset` is more advised (since then differents workers can just jump
themselves).
* Adding iterator support for `tf` too.
* fix loading flax bf16 weights in pt
* fix clip test
* fix t5 test
* add logging statement
* Update src/transformers/modeling_flax_pytorch_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* switch back to native any
* fix check for bf16 weights
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Start the work for TFViTModel
* Convert to TF code - need to check in the follow up commits
* Clean up model code
* Expose TFViTModel
* make style
* make quality
* Add test
* make style & quality
* Fix some imports
* fix wrong usage - *kwargs => ** kwargs
* Fix Conv2D weight loading (PT->TF) issue
* Add tests for images with different sizes + fix model
* Fix some common tests for TFViTModel
* Use inputs instead of input_ids in test_compile_tf_model
* Add a comment about transpose and Conv2D in convert_tf_weight_name_to_pt_weight_name
* Avoid transpose in TFViT call
* Fix Conv2D issue in load_tf2_weights_in_pytorch_model
* Use tf.keras.layers.Conv2D instead of tf.nn.conv2d
* Using simpler heuristic to detect Conv2D layer
* Change convert_tf_weight_name_to_pt_weight_name to return TransposeType
* Check tf_weight_shape is not None before using it
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fix missing comma
* fix input dtype
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* correct order of overflowing tokens for LayoutLmV2 tokenizer
* test to check order of overflowing_tokens for a seq of input_ids
* fix up quality
* added suggested changes
* check that tests the bbox sequence
* pair_input test added
* pass quality test
* check bbox sequence added
* unittest method
* comments added
* add overflowing bbox test
* improved "seq_1"
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
* improve code quality
Co-authored-by: SaulLu <lucilesaul.com@gmail.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
* minor modification to the wav2vec2 modeling file to support tensor-parallelism with DeepSpeed on this HuggingFace model
* refine the comments
* synch changes
* fix comments
* refine comments
* fix format
* Start PR doc
* Cleanup the quality checks and document them
* Add reference in the contributing guide
* Apply suggestions from code review
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Rename file as per review suggestion
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Fix of issue #13327: Wrong weight initialization for TF t5 model
* run black formatter
* fix typo
* remove my name tag from comments
Co-authored-by: Shirron <dan.shirron@intel.com>
* Adding support for `truncation` parameter on `feature-extraction`
pipeline.
Fixes#14183
* Fixing tests on ibert, longformer, and roberta.
* Rebase fix.
* minimal fixes to run DataCollatorForWholeWordMask with return_tensors="np" and return_tensors="tf"
* more consinstent implementation for numpy_mask_tokens
* Add cross attentions to TFGPT2Model
* change to is_pt_tf_cross_test
* A minor correction to a comment
* Remove n_ctx when creating self.crossattention
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add Beit model ouput class
* inherting from BaseModelOuputWithPooling
* updated docs if use_mean_pooling is False
* added beit specific outputs in model docs
* changed the import path
* Fix docs
Co-authored-by: Niels Rogge <niels.rogge1@gmail.com>
* check test_configuration_tie
* Fix test_configuration_tie
* make test slow again
* Remove property and use model.module.bind
* revert to slow test
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Add first draft
* Make forward pass work
* Improve conversion script
* Add notebook that checks if it works
* Add BeitForSemanticSegmentation to the tests
* More improvements
* Make BeitForSemanticSegmentation consistent with Segformer
* Small bug fix
* Add BeitForSemanticSegmentation to docs
* Make sure model doesn't output hidden states when the user doesn't want to
* Make it possible to convert the large model
* Fix issue
* Fix conversion script for large model
* Add auxiliary_head option to semantic segmentation model
* Apply suggestions from @sgugger's review
* Apply suggestions from code review
* Fix failing test
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
* Fixing image segmentation for inference mode.
* Update src/transformers/pipelines/base.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Adding `handle_long_generation` paramters for `text-generation` pipeline.
* More error handling
* Fixing tests by dropping tf support on this functionality, it needs
`max_new_tokens` to make it possible to understand user's intent.
Otherwise, `max_length` == `tokenizer.model_max_length` <
input_ids.shape[0].
* Fixing doc ?
* Doc ?
* Remove link from doc.
* Catched an issue on roberta.
* Damn doc.
* Non BC proposal ?
* Cleaning the fix ?
* Finally using only a test override.
* Don't need to modify this.
* Bad print.
* Add the support for the fast (rust) implementation of BlenbderbotTokenizer
* Fix a converter and a typo in a doc
* Apply the patil-suraj's suggestion
* (Nitpick) Fast tokenization -> Fast Tokenization in doc
* Apply the SaulLu's suggestion
* Apply Narsil's suggestion to fix test pipelines
* Add encoder_no_repeat_ngram_size according to the Narsil's suggestion
* Revert the last (unnecessary) commit
* Override pipeline config for Blenderbot to allow for larger pos. emb.
* make fix-copies
* Remove n_ctx from configs
* Fix GPTJ and OpenAIGPT, both are acceptable breaking changes as there are no configs such that it breaks
* Remove unecessary n_positions from TFOpenAIGPT
This is a document explaining how to deal with various issues on Circle-CI. The entries may include actually solutions or pointers to Issues that cover those.
This is a document explaining how to deal with various issues on Circle-CI. The entries may include actual solutions or pointers to Issues that cover those.
* [ ] the official example scripts: (give details below)
* [ ] my own modified scripts: (give details below)
The tasks I am working on is:
* [ ] an official GLUE/SQUaD task: (give the name)
* [ ] my own task or dataset: (give details below)
## To reproduce
Steps to reproduce the behavior:
1.
2.
3.
<!-- If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.-->
## Expected behavior
<!-- A clear and concise description of what you would expect to happen. -->
Maintained examples (not research project or legacy):
- Flax: @sanchit-gandhi
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
- TensorFlow: @Rocketknight1
Research projects are not maintained and should be taken as is.
placeholder:"@Username ..."
- type:checkboxes
id:information-scripts-examples
attributes:
label:Information
description:'The problem arises when using:'
options:
- label:"The official example scripts"
- label:"My own modified scripts"
- type:checkboxes
id:information-tasks
attributes:
label:Tasks
description:"The tasks I am working on are:"
options:
- label:"An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...)"
- label:"My own task or dataset (give details below)"
- type:textarea
id:reproduction
validations:
required:true
attributes:
label:Reproduction
description:|
Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder:|
Steps to reproduce the behavior:
1.
2.
3.
- type:textarea
id:expected-behavior
validations:
required:true
attributes:
label:Expected behavior
description:"A clear and concise description of what you would expect to happen."
description:Submit a proposal/request for a new transformers feature
labels:["feature"]
body:
- type:textarea
id:feature-request
validations:
required:true
attributes:
label:Feature request
description:|
A clear and concise description of the feature proposal. Please provide a link to the paper and code in case they exist.
- type:textarea
id:motivation
validations:
required:true
attributes:
label:Motivation
description:|
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
- type:textarea
id:contribution
validations:
required:true
attributes:
label:Your contribution
description:|
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md)
about: Start a new translation effort in your language
title: '[i18n-<languageCode>] Translating docs to <languageName>'
labels: WIP
assignees: ''
---
<!--
Note: Please search to see if an issue already exists for the language you are trying to translate.
-->
Hi!
Let's bring the documentation to all the <languageName>-speaking community 🌐 (currently 0 out of 267 complete)
Who would want to translate? Please follow the 🤗 [TRANSLATING guide](https://github.com/huggingface/transformers/blob/main/docs/TRANSLATING.md). Here is a list of the files ready for translation. Let us know in this issue if you'd like to translate any, and we'll add your name to the list.
Some notes:
* Please translate using an informal tone (imagine you are talking with a friend about transformers 🤗).
* Please translate in a gender-neutral way.
* Add your translations to the folder called `<languageCode>` inside the [source folder](https://github.com/huggingface/transformers/tree/main/docs/source).
* Register your translation in `<languageCode>/_toctree.yml`; please follow the order of the [English version](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml).
* Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @stevhliu and @MKhalusova for review.
* 🙋 If you'd like others to help you with the translation, you can also post in the 🤗 [forums](https://discuss.huggingface.co/).
name: "\U0001F4DA Migration from pytorch-pretrained-bert or pytorch-transformers"
about: Report a problem when migrating from pytorch-pretrained-bert or pytorch-transformers
to transformers
title: ''
labels: Migration
assignees: ''
---
# 📚 Migration
## Information
<!-- Important information -->
Model I am using (Bert, XLNet ...):
Language I am using the model on (English, Chinese ...):
The problem arises when using:
* [ ] the official example scripts: (give details below)
* [ ] my own modified scripts: (give details below)
The tasks I am working on is:
* [ ] an official GLUE/SQUaD task: (give the name)
* [ ] my own task or dataset: (give details below)
## Details
<!-- A clear and concise description of the migration issue.
If you have code snippets, please provide it here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
-->
## Environment info
<!-- You can run the command `python transformers-cli env` and copy-and-paste its output below.
Don't forget to fill out the missing fields in that output! -->
-`transformers` version:
- Platform:
- Python version:
- PyTorch version (GPU?):
- Tensorflow version (GPU?):
- Using GPU in script?:
- Using distributed or parallel set-up in script?:
<!-- IMPORTANT: which version of the former library do you use? -->
*`pytorch-transformers` or `pytorch-pretrained-bert` version (or branch):
## Checklist
- [ ] I have read the migration guide in the readme.
- label:"An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...)"
- label:"My own task or dataset (give details below)"
- type:textarea
id:reproduction
validations:
required:true
attributes:
label:Reproduction
description:|
Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder:|
Steps to reproduce the behavior:
1.
2.
3.
- type:textarea
id:expected-behavior
validations:
required:true
attributes:
label:Expected behavior
description:"A clear and concise description of what you would expect to happen."
render:shell
- type:checkboxes
id:checklist
attributes:
label:Checklist
options:
- label:"I have read the migration guide in the readme.
description:Submit a proposal/request to implement a new model
labels:["New model"]
body:
- type:textarea
id:description-request
validations:
required:true
attributes:
label:Model description
description:|
Put any and all important information relative to the model
- type:checkboxes
id:information-tasks
attributes:
label:Open source status
description:|
Please note that if the model implementation isn't available or if the weights aren't open-source, we are less likely to implement it in `transformers`.
options:
- label:"The model implementation is available"
- label:"The model weights are available"
- type:textarea
id:additional-info
attributes:
label:Provide useful links for the implementation
description:|
Please provide information regarding the implementation, the weights, and the authors.
Please mention the authors by @gh-username if you're aware of their usernames.
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/master/CONTRIBUTING.md#start-contributing-pull-requests),
- [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request),
Pull Request section?
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/master/docs), and
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/master/docs#writing-source-documentation).
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
- [ ] Did you write any new necessary tests?
@ -39,36 +39,40 @@ members/contributors who may be interested in your PR.
This is a document explaining how to deal with various issues on github-actions self-hosted CI. The entries may include actually solutions or pointers to Issues that cover those.
This is a document explaining how to deal with various issues on github-actions self-hosted CI. The entries may include actual solutions or pointers to Issues that cover those.
RUN_SLOW:yes# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
# Important note: each job (run_tests_single_gpu, run_tests_multi_gpu, run_examples_gpu, run_pipelines_torch_gpu) requires all the previous jobs before running.
# This is done so that we avoid parallelizing the scheduled tests, to leave available
# runners for the push CI that is running on the same machine.
@ -14,303 +14,336 @@ See the License for the specific language governing permissions and
limitations under the License.
limitations under the License.
-->
-->
# How to contribute to transformers?
# Contribute to 🤗 Transformers
Everyone is welcome to contribute, and we value everybody's contribution. Code
Everyone is welcome to contribute, and we value everybody's contribution. Code
is thus not the only way to help the community. Answering questions, helping
contributions are not the only way to help the community. Answering questions, helping
others, reaching out and improving the documentations are immensely valuable to
others, and improving the documentation are also immensely valuable.
the community.
It also helps us if you spread the word: reference the library from blog posts
It also helps us if you spread the word! Reference the library in blog posts
on the awesome projects it made possible, shout out on Twitter every time it has
about the awesome projects it made possible, shout out on Twitter every time it has
helped you, or simply star the repo to say "thank you".
helped you, or simply ⭐️ the repository to say thank you.
Whichever way you choose to contribute, please be mindful to respect our
However you choose to contribute, please be mindful and respect our
[code of conduct](https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md).
[code of conduct](https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md).
## You can contribute in so many ways!
**This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/main/CONTRIBUTING.md).**
There are 4 ways you can contribute to transformers:
## Ways to contribute
* Fixing outstanding issues with the existing code;
* Implementing new models;
* Contributing to the examples or to the documentation;
* Submitting issues related to bugs or desired new features.
In particular there is a special [Good First
There are several ways you can contribute to 🤗 Transformers:
* Fix outstanding issues with the existing code.
* Submit issues related to bugs or desired new features.
* Implement new models.
* Contribute to the examples or to the documentation.
If you don't know where to start, there is a special [Good First
Issue](https://github.com/huggingface/transformers/contribute) listing. It will give you a list of
Issue](https://github.com/huggingface/transformers/contribute) listing. It will give you a list of
open Issues that are open to anybody to work on. Just comment in the issue that you'd like to work
open issues that are beginner-friendly and help you start contributing to open-source. The best way to do that is to open a Pull Request and link it to the issue that you'd like to work on. We try to give priority to opened PRs as we can easily track the progress of the fix, and if the contributor does not have time anymore, someone else can take the PR over.
on it. In that same listing you will also find some Issues with `Good Second Issue` label. These are
typically slightly more complicated than the Issues with just `Good First Issue` label. But if you
feel you know what you're doing, go for it.
*All are equally valuable to the community.*
For something slightly more challenging, you can also take a look at the [Good Second Issue](https://github.com/huggingface/transformers/labels/Good%20Second%20Issue) list. In general though, if you feel like you know what you're doing, go for it and we'll help you get there! 🚀
## Submitting a new issue or feature request
> All contributions are equally valuable to the community. 🥰
Do your best to follow these guidelines when submitting an issue or a feature
## Fixing outstanding issues
If you notice an issue with the existing code and have a fix in mind, feel free to [start contributing](#create-a-pull-request) and open a Pull Request!
## Submitting a bug-related issue or feature request
Do your best to follow these guidelines when submitting a bug-related issue or a feature
request. It will make it easier for us to come back to you quickly and with good
request. It will make it easier for us to come back to you quickly and with good
feedback.
feedback.
### Did you find a bug?
### Did you find a bug?
The 🤗 Transformers library is robust and reliable thanks to the users who notify us of
The 🤗 Transformers library is robust and reliable thanks to users who report the problems they encounter.
the problems they encounter. So thank you for reporting an issue.
First, we would really appreciate it if you could **make sure the bug was not
Before you report an issue, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on Github under Issues).
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask in the [forum](https://discuss.huggingface.co/) first. This helps us respond quicker to fixing issues related to the library versus general questions.
Did not find it? :( So we can act quickly on it, please follow these steps:
Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so we can quickly resolve it:
*Include your **OS type and version**, the versions of**Python**, **PyTorch** and
*Your **OS type and version** and**Python**, **PyTorch** and
**Tensorflow** when applicable;
**TensorFlow** versions when applicable.
* A short, self-contained, code snippet that allows us to reproduce the bug in
* A short, self-contained, code snippet that allows us to reproduce the bug in
less than 30s;
less than 30s.
*Provide the *full* traceback if an exception is raised.
*The *full* traceback if an exception is raised.
* Attach any other additional information, like screenshots, you think may help.
To get the OS and software versions automatically, you can run the following command:
To get the OS and software versions automatically, run the following command:
```bash
```bash
transformers-cli env
transformers-cli env
```
```
or from the root of the repository the following command:
You can also run the same command from the root of the repository:
If there is a new feature you'd like to see in 🤗 Transformers, please open an issue and describe:
Awesome! Please provide the following information:
1. What is the *motivation* behind this feature? Is it related to a problem or frustration with the library? Is it a feature related to something you need for a project? Is it something you worked on and think it could benefit the community?
* Short description of the model and link to the paper;
Whatever it is, we'd love to hear about it!
* Link to the implementation if it is open-source;
2. Describe your requested feature in as much detail as possible. The more you can tell us about it, the better we'll be able to help you.
3. Provide a *code snippet* that demonstrates the features usage.
4. If the feature is related to a paper, please include a link.
If your issue is well written we're already 80% of the way there by the time you create it.
We have added [templates](https://github.com/huggingface/transformers/tree/main/templates) to help you get started with your issue.
## Do you want to implement a new model?
New models are constantly released and if you want to implement a new model, please provide the following information:
* A short description of the model and a link to the paper.
* Link to the implementation if it is open-sourced.
* Link to the model weights if they are available.
* Link to the model weights if they are available.
If you are willing to contribute the model yourself, let us know so we can best
If you are willing to contribute the model yourself, let us know so we can help you add it to 🤗 Transformers!
guide you.
We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them
We have added a [detailed guide and templates](https://github.com/huggingface/transformers/tree/main/templates) to help you get started with adding a new model, and we also have a more technical guide for [how to add a model to 🤗 Transformers](https://huggingface.co/docs/transformers/add_new_model).
in the [`templates`](https://github.com/huggingface/transformers/tree/master/templates) folder.
### Do you want a new feature (that is not a model)?
## Do you want to add documentation?
A world-class feature request addresses the following points:
We're always looking for improvements to the documentation that make it more clear and accurate. Please let us know how the documentation can be improved such as typos and any content that is missing, unclear or inaccurate. We'll be happy to make the changes or help you make a contribution if you're interested!
1. Motivation first:
For more details about how to generate, build, and write the documentation, take a look at the documentation [README](https://github.com/huggingface/transformers/tree/main/docs).
* Is it related to a problem/frustration with the library? If so, please explain
why. Providing a code snippet that demonstrates the problem is best.
* Is it related to something you would need for a project? We'd love to hear
about it!
* Is it something you worked on and think could benefit the community?
Awesome! Tell us what problem it solved for you.
2. Write a *full paragraph* describing the feature;
3. Provide a **code snippet** that demonstrates its future use;
4. In case this is related to a paper, please attach a link;
5. Attach any additional information (drawings, screenshots, etc.) you think may help.
If your issue is well written we're already 80% of the way there by the time you
## Create a Pull Request
post it.
We have added **templates** to guide you in the process of adding a new example script for training or testing the
Before writing any code, we strongly advise you to search through the existing PRs or
models in the library. You can find them in the [`templates`](https://github.com/huggingface/transformers/tree/master/templates)
issues to make sure nobody is already working on the same thing. If you are
folder.
## Start contributing! (Pull Requests)
Before writing code, we strongly advise you to search through the existing PRs or
issues to make sure that nobody is already working on the same thing. If you are
unsure, it is always a good idea to open an issue to get some feedback.
unsure, it is always a good idea to open an issue to get some feedback.
You will need basic `git` proficiency to be able to contribute to
You will need basic `git` proficiency to contribute to
`transformers`.`git` is not the easiest tool to use but it has the greatest
🤗 Transformers. While`git` is not the easiest tool to use, it has the greatest
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
manual. Type `git --help` in a shell and enjoy! If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
Git](https://git-scm.com/book/en/v2) is a very good reference.
Follow these steps to start contributing:
You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main/setup.py#L426)** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
1. Fork the [repository](https://github.com/huggingface/transformers) by
1. Fork the [repository](https://github.com/huggingface/transformers) by
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
clicking on the **[Fork](https://github.com/huggingface/transformers/fork)** button on the repository's page. This creates a copy of the code
under your GitHub user account.
under your GitHub user account.
2. Clone your fork to your local disk, and add the base repository as a remote:
2. Clone your fork to your local disk, and add the base repository as a remote:
If you have already cloned that repo, you might need to `git pull` to get the most recent changes in the `datasets`
which should be enough for most use cases.
library.
5. Develop the features on your branch.
5. Develop the features in your branch.
As you work on the features, you should make sure that the test suite
As you work on your code, you should make sure the test suite
passes:
passes. Run the tests impacted by your changes like this:
```bash
```bash
$ make test
pytest tests/<TEST_TO_RUN>.py
```
```
Note, that this command uses `-n auto` pytest flag, therefore, it will start as many parallel `pytest` processes as the number of your computer's CPU-cores, and if you have lots of those and a few GPUs and not a great amount of RAM, it's likely to overload your computer. Therefore, to run the test suite, you may want to consider using this command instead:
some files when adding a new model. You can run these scripts with:
It is a good idea to sync your copy of the code with the original
repository regularly. This way you can quickly account for changes:
```bash
```bash
$ git fetch upstream
make repo-consistency
$ git rebase upstream/master
```
```
Push the changes to your account using:
To learn more about those checks and how to fix any issues with them, check out the
[Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide.
If you're modifying documents under the `docs/source` directory, make sure the documentation can still be built. This check will also run in the CI when you open a pull request. To run a local check
make sure you install the documentation builder:
```bash
pip install ".[docs]"
```
Run the following command from the root of the repository:
If you've already opened a pull request, you'll need to force push with the `--force` flag. Otherwise, if the pull request hasn't been opened yet, you can just push your changes normally.
6. Now you can go to your fork of the repository on GitHub and click on **Pull Request** to open a pull request. Make sure you tick off all the boxes on our [checklist](#pull-request-checklist) below. When you're ready, you can send your changes to the project maintainers for review.
7. It's ok if maintainers request changes, it happens to our core contributors
too! So everyone can see the changes in the pull request, work in your local
branch and push the changes to your fork. They will automatically appear in
branch and push the changes to your fork. They will automatically appear in
the pull request.
the pull request.
### Pull request checklist
### Checklist
☐ The pull request title should summarize your contribution.<br>
☐ If your pull request addresses an issue, please mention the issue number in the pull
1. The title of your pull request should be a summary of its contribution;
request description to make sure they are linked (and people viewing the issue know you
2. If your pull request addresses an issue, please mention the issue number in
are working on it).<br>
the pull request description to make sure they are linked (and people
☐ To indicate a work in progress please prefix the title with `[WIP]`. These are
consulting the issue know you are working on it);
useful to avoid duplicated work, and to differentiate it from PRs ready to be merged.<br>
3. To indicate a work in progress please prefix the title with `[WIP]`. These
☐ Make sure existing tests pass.<br>
are useful to avoid duplicated work, and to differentiate it from PRs ready
☐ If adding a new feature, also add tests for it.<br>
to be merged;
- If you are adding a new model, make sure you use
4. Make sure existing tests pass;
`ModelTester.all_model_classes = (MyModel, MyModelWithLMHead,...)` to trigger the common tests.
5. Add high-coverage tests. No quality testing = no merge.
- If you are adding a new model, make sure that you use
`ModelTester.all_model_classes = (MyModel, MyModelWithLMHead,...)`, which triggers the common tests.
- If you are adding new `@slow` tests, make sure they pass using
- If you are adding new `@slow` tests, make sure they pass using
You can open a PR on this dataset repository and ask a Hugging Face member to merge it.
For more information about the checks run on a pull request, take a look at our [Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide.
### Tests
### Tests
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
the [tests folder](https://github.com/huggingface/transformers/tree/master/tests) and examples tests in the
the [tests](https://github.com/huggingface/transformers/tree/main/tests) folder and examples tests in the
We like `pytest` and `pytest-xdist` because it's faster. From the root of the
We like `pytest` and `pytest-xdist` because it's faster. From the root of the
repository, here's how to run tests with `pytest` for the library:
repository, specify a *path to a subfolder or a test file* to run the test:
```bash
```bash
$ python -m pytest -n auto --dist=loadfile -s -v ./tests/
python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model
```
```
and for the examples:
Similarly, for the `examples` directory, specify a *path to a subfolder or test file* to run the test. For example, the following command tests the text classification subfolder in the PyTorch `examples` directory:
```bash
```bash
$ pip install -r examples/xxx/requirements.txt # only needed the first time
pip install -r examples/xxx/requirements.txt # only needed the first time
$ python -m pytest -n auto --dist=loadfile -s -v ./examples/
python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification
```
```
In fact, that's how `make test` and `make test-examples` are implemented (sans the `pip install` line)!
You can specify a smaller set of tests in order to test only the feature
In fact, this is actually how our `make test` and `make test-examples` commands are implemented (not including the `pip install`)!
You can also specify a smaller set of tests in order to test only the feature
you're working on.
you're working on.
By default, slow tests are skipped. Set the `RUN_SLOW` environment variable to
By default, slow tests are skipped but you can set the `RUN_SLOW` environment variable to
`yes` to run them. This will download many gigabytes of models — make sure you
`yes` to run them. This will download many gigabytes of models so make sure you
have enough disk space and a good Internet connection, or a lot of patience!
have enough disk space, a good internet connection or a lot of patience!
<Tip warning={true}>
Remember to specify a *path to a subfolder or a test file* to run the test. Otherwise, you'll run all the tests in the `tests` or `examples` folder, which will take a very long time!
#### This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md)
### Develop on Windows
### Develop on Windows
On windows, you need to configure git to transform Windows `CRLF` line endings to Linux `LF` line endings:
On Windows (unless you're working in [Windows Subsystem for Linux](https://learn.microsoft.com/en-us/windows/wsl/) or WSL), you need to configure git to transform Windows `CRLF` line endings to Linux `LF` line endings:
`git config core.autocrlf input`
```bash
git config core.autocrlf input
```
One way one can run the make command on Window is to pass by MSYS2:
One way to run the `make` command on Windows is with MSYS2:
1. [Download MSYS2](https://www.msys2.org/), we assume to have it installed in C:\msys64
1. [Download MSYS2](https://www.msys2.org/), and we assume it's installed in `C:\msys64`.
2. Open the command line C:\msys64\msys2.exe (it should be available from the start menu)
2. Open the command line `C:\msys64\msys2.exe` (it should be available from the **Start** menu).
3. Run in the shell: `pacman -Syu` and install make with `pacman -S make`
3. Run in the shell: `pacman -Syu` and install `make` with `pacman -S make`.
4. Add `C:\msys64\usr\bin` to your PATH environment variable.
4. Add `C:\msys64\usr\bin` to your PATH environment variable.
You can now use `make` from any terminal (Powershell, cmd.exe, etc) 🎉
You can now use `make` from any terminal (PowerShell, cmd.exe, etc.)! 🎉
### Syncing forked master with upstream (HuggingFace) master
### Sync a forked repository with upstream main (the HuggingFace repository)
To avoid pinging the upstream repository which adds reference notes to each upstream PR and sends unnessary notifications to the developers involved in these PRs,
When updating the main branch of a forked repository, please follow these steps to avoid pinging the upstream repository which adds reference notes to each upstream PR, and sends unnecessary notifications to the developers involved in these PRs.
when syncing the master branch of a forked repository, please, follow these steps:
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead merge directly into the forked master.
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead, merge directly into the forked main.
2. If a PR is absolutely necessary, use the following steps after checking out your branch:
2. If a PR is absolutely necessary, use the following steps after checking out your branch:
```
$ git checkout -b your-branch-for-syncing
```bash
$ git pull --squash --no-commit upstream master
git checkout -b your-branch-for-syncing
$ git commit -m '<your message without GitHub references>'
This is an Open Source Project so please be mindful that like in any other project of this kind there is no obligation to answer all requests for help.
This is an Open Source Project so please be mindful that like in any other project of this kind there is no obligation to answer all requests for help.
However, we want to encourage you to ask for help whenever you think it's needed! We are happy about every question we get because it allows us to better understand your needs, possible misunderstandings, and most importantly a way for you to help us make this library better. That being said, this document's main purpose is to provide guidelines at how you can formulate your requests to increase your chances to be understood and to get support.
However, we want to encourage you to ask for help whenever you think it's needed! We are happy about every question we get because it allows us to better understand your needs, possible misunderstandings, and most importantly a way for you to help us make this library better. That being said, this document's main purpose is to provide guidelines at how you can formulate your requests to increase your chances to be understood and to get support.
There are two main venues to receive support: [the forums](https://discuss.huggingface.co/) and [the GitHub issues](https://github.com/huggingface/transformers/issues).
There are two main venues to receive support: [the forums](https://discuss.huggingface.co/) and [the GitHub issues](https://github.com/huggingface/transformers/issues).
@ -71,8 +71,8 @@ You are not required to read the following guidelines before opening an issue. H
File "/transformers/src/transformers/__init__.py", line 34, in <module>
File "/transformers/src/transformers/__init__.py", line 34, in <module>
from . import dependency_versions_check
from . import dependency_versions_check
File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module>
File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module>
from .file_utils import is_tokenizers_available
from .utils import is_tokenizers_available
File "/transformers/src/transformers/file_utils.py", line 40, in <module>
File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module>
from tqdm.auto import tqdm
from tqdm.auto import tqdm
ModuleNotFoundError: No module named 'tqdm.auto'
ModuleNotFoundError: No module named 'tqdm.auto'
```
```
@ -124,8 +124,8 @@ You are not required to read the following guidelines before opening an issue. H
File "/transformers/src/transformers/__init__.py", line 34, in <module>
File "/transformers/src/transformers/__init__.py", line 34, in <module>
from . import dependency_versions_check
from . import dependency_versions_check
File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module>
File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module>
from .file_utils import is_tokenizers_available
from .utils import is_tokenizers_available
File "/transformers/src/transformers/file_utils.py", line 40, in <module>
File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module>
from tqdm.auto import tqdm
from tqdm.auto import tqdm
ModuleNotFoundError: No module named 'tqdm.auto'
ModuleNotFoundError: No module named 'tqdm.auto'
```
```
@ -152,13 +152,13 @@ You are not required to read the following guidelines before opening an issue. H
<imgalt="Hugging Face Transformers Library"src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg"width="352"height="59"style="max-width: 100%;">
🤗 Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation and more in over 100 languages. Its aim is to make cutting-edge NLP easier to use for everyone.
🤗 Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.
These models can be applied on:
* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, and text generation, in over 100 languages.
* 🖼️ Images, for tasks like image classification, object detection, and segmentation.
* 🗣️ Audio, for tasks like speech recognition and audio classification.
Transformer models can also perform tasks on **several modalities combined**, such as table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our [model hub](https://huggingface.co/models). At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our [model hub](https://huggingface.co/models). At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
@ -66,25 +88,63 @@ limitations under the License.
You can test most of our models directly on their pages from the [model hub](https://huggingface.co/models). We also offer [private model hosting, versioning, & an inference API](https://huggingface.co/pricing) for public and private models.
You can test most of our models directly on their pages from the [model hub](https://huggingface.co/models). We also offer [private model hosting, versioning, & an inference API](https://huggingface.co/pricing) for public and private models.
Here are a few examples:
Here are a few examples:
- [Masked word completion with BERT](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Name Entity Recognition with Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Text generation with GPT-2](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [Natural Language Inference with RoBERTa](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Summarization with BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Question answering with DistilBERT](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Translation with T5](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team, is the official demo of this repo’s text generation capabilities.
In Natural Language Processing:
- [Masked word completion with BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Named Entity Recognition with Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Text generation with Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
- [Natural Language Inference with RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Summarization with BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Question answering with DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Translation with T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
In Computer Vision:
- [Image classification with ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Object Detection with DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Semantic Segmentation with SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Panoptic Segmentation with Mask2Former](https://huggingface.co/facebook/mask2former-swin-large-coco-panoptic)
- [Depth Estimation with Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)
- [Video Classification with VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Universal Segmentation with OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
In Audio:
- [Automatic Speech Recognition with Whisper](https://huggingface.co/openai/whisper-large-v3)
- [Keyword Spotting with Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Audio Classification with Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
In Multimodal tasks:
- [Table Question Answering with TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Visual Question Answering with ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Image captioning with LLaVa](https://huggingface.co/llava-hf/llava-1.5-7b-hf)
- [Zero-shot Image Classification with SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384)
- [Document Question Answering with LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Zero-shot Video Classification with X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
- [Zero-shot Object Detection with OWLv2](https://huggingface.co/docs/transformers/en/model_doc/owlv2)
- [Zero-shot Image Segmentation with CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)
- [Automatic Mask Generation with SAM](https://huggingface.co/docs/transformers/model_doc/sam)
## 100 projects using Transformers
Transformers is more than a toolkit to use pretrained models: it's a community of projects built around it and the
Hugging Face Hub. We want Transformers to enable developers, researchers, students, professors, engineers, and anyone
else to build their dream projects.
In order to celebrate the 100,000 stars of transformers, we have decided to put the spotlight on the
community, and we have created the [awesome-transformers](./awesome-transformers.md) page which lists 100
incredible projects built in the vicinity of transformers.
If you own or use a project that you believe should be part of the list, please open a PR to add it!
## If you are looking for custom support from the Hugging Face team
## If you are looking for custom support from the Hugging Face team
To immediately use a model on a given text, we provide the `pipeline` API. Pipelines group together a pretrained model with the preprocessing that was used during that model's training. Here is how to quickly use a pipeline to classify positive versus negative texts:
To immediately use a model on a given input (text, image, audio, ...), we provide the `pipeline` API. Pipelines group together a pretrained model with the preprocessing that was used during that model's training. Here is how to quickly use a pipeline to classify positive versus negative texts:
```python
```python
>>>fromtransformersimportpipeline
>>>fromtransformersimportpipeline
@ -95,54 +155,79 @@ To immediately use a model on a given text, we provide the `pipeline` API. Pipel
[{'label':'POSITIVE','score':0.9996980428695679}]
[{'label':'POSITIVE','score':0.9996980428695679}]
```
```
The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here the answer is "positive" with a confidence of 99.97%.
The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here, the answer is "positive" with a confidence of 99.97%.
Many NLP tasks have a pre-trained `pipeline` ready to go. For example, we can easily extract question answers given context:
Many tasks have a pre-trained `pipeline` ready to go, in NLP but also in computer vision and speech. For example, we can easily extract detected objects in an image:
In addition to the answer, the pretrained model used here returned its confidence score, along with the start position and end position of the answer in the tokenized sentence. You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/transformers/task_summary.html).
Here, we get a list of objects detected in the image, with a box surrounding the object and a confidence score. Here is the original image on the left, with the predictions displayed on the right:
To download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/docs/transformers/task_summary).
In addition to `pipeline`, to download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
```python
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> from transformers import AutoTokenizer, AutoModel
The tokenizer is responsible for all the preprocessing the pretrained model expects, and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
The tokenizer is responsible for all the preprocessing the pretrained model expects and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use normally. [This tutorial](https://huggingface.co/transformers/training.html) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use as usual. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
## Why should I use transformers?
## Why should I use transformers?
1. Easy-to-use state-of-the-art models:
1. Easy-to-use state-of-the-art models:
- High performance on NLU and NLG tasks.
- High performance on natural language understanding & generation, computer vision, and audio tasks.
- Low barrier to entry for educators and practitioners.
- Low barrier to entry for educators and practitioners.
- Few user-facing abstractions with just three classes to learn.
- Few user-facing abstractions with just three classes to learn.
- A unified API for using all our pretrained models.
- A unified API for using all our pretrained models.
@ -150,12 +235,12 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
1. Lower compute costs, smaller carbon footprint:
1. Lower compute costs, smaller carbon footprint:
- Researchers can share trained models instead of always retraining.
- Researchers can share trained models instead of always retraining.
- Practitioners can reduce compute time and production costs.
- Practitioners can reduce compute time and production costs.
- Dozens of architectures with over 2,000 pretrained models, some in more than 100 languages.
- Dozens of architectures with over 400,000 pretrained models across all modalities.
1. Choose the right framework for every part of a model's lifetime:
1. Choose the right framework for every part of a model's lifetime:
- Train state-of-the-art models in 3 lines of code.
- Train state-of-the-art models in 3 lines of code.
- Move a single model between TF2.0/PyTorch frameworks at will.
- Move a single model between TF2.0/PyTorch/JAX frameworks at will.
- Seamlessly pick the right framework for training, evaluation and production.
- Seamlessly pick the right framework for training, evaluation, and production.
1. Easily customize a model or an example to your needs:
1. Easily customize a model or an example to your needs:
- We provide examples for each architecture to reproduce the results published by its original authors.
- We provide examples for each architecture to reproduce the results published by its original authors.
@ -165,21 +250,21 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
## Why shouldn't I use transformers?
## Why shouldn't I use transformers?
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library.
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library (possibly, [Accelerate](https://huggingface.co/docs/accelerate)).
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/master/examples) are just that: examples. It is expected that they won't work out-of-thebox on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/main/examples) are just that: examples. It is expected that they won't work out-of-the-box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
## Installation
## Installation
### With pip
### With pip
This repository is tested on Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ and TensorFlow 2.3+.
This repository is tested on Python 3.8+, Flax 0.4.1+, PyTorch 1.11+, and TensorFlow 2.6+.
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
First, create a virtual environment with the version of Python you're going to use and activate it.
First, create a virtual environment with the version of Python you're going to use and activate it.
Then, you will need to install at least one of Flax, PyTorch or TensorFlow.
Then, you will need to install at least one of Flax, PyTorch, or TensorFlow.
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax installation page](https://github.com/google/flax#quick-install) regarding the specific install command for your platform.
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific installation command for your platform.
When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows:
When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows:
@ -187,131 +272,311 @@ When one of those backends has been installed, 🤗 Transformers can be installe
pip install transformers
pip install transformers
```
```
If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must [install the library from source](https://huggingface.co/transformers/installation.html#installing-from-source).
If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must [install the library from source](https://huggingface.co/docs/transformers/installation#installing-from-source).
### With conda
### With conda
Since Transformers version v4.0.0, we now have a conda channel: `huggingface`.
🤗 Transformers can be installed using conda as follows:
🤗 Transformers can be installed using conda as follows:
```shell script
```shell script
conda install -c huggingface transformers
conda install conda-forge::transformers
```
```
> **_NOTE:_** Installing `transformers` from the `huggingface` channel is deprecated.
Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.
Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.
> **_NOTE:_** On Windows, you may be prompted to activate Developer Mode in order to benefit from caching. If this is not an option for you, please let us know in [this issue](https://github.com/huggingface/huggingface_hub/issues/1062).
## Model architectures
## Model architectures
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co) where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co/models), where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
Current number of checkpoints: 
Current number of checkpoints: 
🤗 Transformers currently provides the following architectures (see [here](https://huggingface.co/transformers/model_summary.html) for a high-level summary of each them):
🤗 Transformers currently provides the following architectures (see [here](https://huggingface.co/docs/transformers/model_summary) for a high-level summary of each them):
1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[BART](https://huggingface.co/transformers/model_doc/bart.html)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[BARThez](https://huggingface.co/transformers/model_doc/barthez.html)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[BARTpho](https://huggingface.co/transformers/model_doc/bartpho.html)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[BEiT](https://huggingface.co/transformers/model_doc/beit.html)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[BERT](https://huggingface.co/transformers/model_doc/bert.html)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BERTweet](https://huggingface.co/transformers/model_doc/bertweet.html)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer.
1. **[BERT For Sequence Generation](https://huggingface.co/transformers/model_doc/bertgeneration.html)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BigBird-RoBERTa](https://huggingface.co/transformers/model_doc/bigbird.html)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/transformers/model_doc/bigbird_pegasus.html)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[Blenderbot](https://huggingface.co/transformers/model_doc/blenderbot.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
1. **[BlenderbotSmall](https://huggingface.co/transformers/model_doc/blenderbot_small.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BORT](https://huggingface.co/transformers/model_doc/bort.html)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[ByT5](https://huggingface.co/transformers/model_doc/byt5.html)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[CamemBERT](https://huggingface.co/transformers/model_doc/camembert.html)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[CANINE](https://huggingface.co/transformers/model_doc/canine.html)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[CLIP](https://huggingface.co/transformers/model_doc/clip.html)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[ConvBERT](https://huggingface.co/transformers/model_doc/convbert.html)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[CPM](https://huggingface.co/transformers/model_doc/cpm.html)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[CTRL](https://huggingface.co/transformers/model_doc/ctrl.html)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[DeBERTa](https://huggingface.co/transformers/model_doc/deberta.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[DeBERTa-v2](https://huggingface.co/transformers/model_doc/deberta_v2.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[DeiT](https://huggingface.co/transformers/model_doc/deit.html)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[DETR](https://huggingface.co/transformers/model_doc/detr.html)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[DialoGPT](https://huggingface.co/transformers/model_doc/dialogpt.html)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[DPR](https://huggingface.co/transformers/model_doc/dpr.html)** (from Facebook) released with the paper [Dense Passage Retrieval
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[EncoderDecoder](https://huggingface.co/transformers/model_doc/encoderdecoder.html)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[FlauBERT](https://huggingface.co/transformers/model_doc/flaubert.html)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[FNet](https://huggingface.co/transformers/model_doc/fnet.html)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[Funnel Transformer](https://huggingface.co/transformers/model_doc/funnel.html)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[GPT](https://huggingface.co/transformers/model_doc/gpt.html)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[GPT-2](https://huggingface.co/transformers/model_doc/gpt2.html)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (from Cohere) released with the paper [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[GPT-J](https://huggingface.co/transformers/model_doc/gptj.html)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[GPT Neo](https://huggingface.co/transformers/model_doc/gpt_neo.html)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[Hubert](https://huggingface.co/transformers/model_doc/hubert.html)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[I-BERT](https://huggingface.co/transformers/model_doc/ibert.html)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[LayoutLM](https://huggingface.co/transformers/model_doc/layoutlm.html)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[LayoutLMv2](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[LayoutXLM](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[LED](https://huggingface.co/transformers/model_doc/led.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Longformer](https://huggingface.co/transformers/model_doc/longformer.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[LUKE](https://huggingface.co/transformers/model_doc/luke.html)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[LXMERT](https://huggingface.co/transformers/model_doc/lxmert.html)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[M2M100](https://huggingface.co/transformers/model_doc/m2m_100.html)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[MarianMT](https://huggingface.co/transformers/model_doc/marian.html)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[MBart](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[MBart-50](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Megatron-BERT](https://huggingface.co/transformers/model_doc/megatron_bert.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[Megatron-GPT2](https://huggingface.co/transformers/model_doc/megatron_gpt2.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[MPNet](https://huggingface.co/transformers/model_doc/mpnet.html)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[MT5](https://huggingface.co/transformers/model_doc/mt5.html)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[Pegasus](https://huggingface.co/transformers/model_doc/pegasus.html)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[PhoBERT](https://huggingface.co/transformers/model_doc/phobert.html)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[ProphetNet](https://huggingface.co/transformers/model_doc/prophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[Reformer](https://huggingface.co/transformers/model_doc/reformer.html)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[RemBERT](https://huggingface.co/transformers/model_doc/rembert.html)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[RoFormer](https://huggingface.co/transformers/model_doc/roformer.html)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[SegFormer](https://huggingface.co/transformers/model_doc/segformer.html)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[SEW](https://huggingface.co/transformers/model_doc/sew.html)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[SEW-D](https://huggingface.co/transformers/model_doc/sew_d.html)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[SpeechToTextTransformer](https://huggingface.co/transformers/model_doc/speech_to_text.html)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[SpeechToTextTransformer2](https://huggingface.co/transformers/model_doc/speech_to_text_2.html)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[Splinter](https://huggingface.co/transformers/model_doc/splinter.html)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[SqueezeBert](https://huggingface.co/transformers/model_doc/squeezebert.html)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[T5](https://huggingface.co/transformers/model_doc/t5.html)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[T5v1.1](https://huggingface.co/transformers/model_doc/t5v1.1.html)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[TAPAS](https://huggingface.co/transformers/model_doc/tapas.html)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (from ESPnet) released with the paper [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[Transformer-XL](https://huggingface.co/transformers/model_doc/transformerxl.html)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[TrOCR](https://huggingface.co/transformers/model_doc/trocr.html)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[UniSpeech](https://huggingface.co/transformers/model_doc/unispeech.html)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[UniSpeechSat](https://huggingface.co/transformers/model_doc/unispeech_sat.html)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Vision Transformer (ViT)](https://huggingface.co/transformers/model_doc/vit.html)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[VisualBERT](https://huggingface.co/transformers/model_doc/visual_bert.html)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Wav2Vec2](https://huggingface.co/transformers/model_doc/wav2vec2.html)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[XLM](https://huggingface.co/transformers/model_doc/xlm.html)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[XLM-ProphetNet](https://huggingface.co/transformers/model_doc/xlmprophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[XLM-RoBERTa](https://huggingface.co/transformers/model_doc/xlmroberta.html)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[XLNet](https://huggingface.co/transformers/model_doc/xlnet.html)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[XLSR-Wav2Vec2](https://huggingface.co/transformers/model_doc/xlsr_wav2vec2.html)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (from Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) released with the paper [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (from Hugging Face) released with the blog [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (from Albert Gu and Tri Dao) released with the paper [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (from Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) released with the paper [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (from the Qwen team, Alibaba Group) released with the paper [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (from the Qwen team, Alibaba Group) released with [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (from Google) released with the paper [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (from Beijing Academy of Artificial Intelligence (BAAI)) released with the paper [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (from Google AI) released with the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (from Microsoft Research) released with the paper [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (from University of Wisconsin–Madison) released with the paper [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedback before starting your PR.
To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to [this table](https://huggingface.co/transformers/index.html#supported-frameworks).
To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to [this table](https://huggingface.co/docs/transformers/index#supported-frameworks).
These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the [documentation](https://huggingface.co/transformers/examples.html).
These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the [documentation](https://github.com/huggingface/transformers/tree/main/examples).
## Learn more
## Learn more
| Section | Description |
| Section | Description |
|-|-|
|-|-|
| [Documentation](https://huggingface.co/transformers/) | Full API documentation and tutorials |
| [Documentation](https://huggingface.co/docs/transformers/) | Full API documentation and tutorials |
| [Task summary](https://huggingface.co/transformers/task_summary.html) | Tasks supported by 🤗 Transformers |
| [Task summary](https://huggingface.co/docs/transformers/task_summary) | Tasks supported by 🤗 Transformers |
| [Preprocessing tutorial](https://huggingface.co/transformers/preprocessing.html) | Using the `Tokenizer` class to prepare data for the models |
| [Preprocessing tutorial](https://huggingface.co/docs/transformers/preprocessing) | Using the `Tokenizer` class to prepare data for the models |
| [Training and fine-tuning](https://huggingface.co/transformers/training.html) | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the `Trainer` API |
| [Training and fine-tuning](https://huggingface.co/docs/transformers/training) | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the `Trainer` API |
| [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/master/examples) | Example scripts for fine-tuning models on a wide range of tasks |
| [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/main/examples) | Example scripts for fine-tuning models on a wide range of tasks |
| [Model sharing and uploading](https://huggingface.co/transformers/model_sharing.html) | Upload and share your fine-tuned models with the community |
| [Model sharing and uploading](https://huggingface.co/docs/transformers/model_sharing) | Upload and share your fine-tuned models with the community |
| [Migration](https://huggingface.co/transformers/migration.html) | Migrate to 🤗 Transformers from `pytorch-transformers` or `pytorch-pretrained-bert` |
<imgalt="Hugging Face Transformers Library"src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg"width="352"height="59"style="max-width: 100%;">
🤗 Transformers bietet Tausende von vortrainierten Modellen, um Aufgaben in verschiedenen Modalitäten wie Text, Bild und Audio durchzuführen.
Diese Modelle können angewendet werden, auf:
* 📝 Text - für Aufgaben wie Textklassifizierung, Informationsextraktion, Question Answering, automatische Textzusammenfassung, maschinelle Übersetzung und Textgenerierung in über 100 Sprachen.
* 🖼️ Bilder - für Aufgaben wie Bildklassifizierung, Objekterkennung und Segmentierung.
* 🗣️ Audio - für Aufgaben wie Spracherkennung und Audioklassifizierung.
Transformer-Modelle können auch Aufgaben für **mehrere Modalitäten in Kombination** durchführen, z. B. tabellenbasiertes Question Answering, optische Zeichenerkennung, Informationsextraktion aus gescannten Dokumenten, Videoklassifizierung und visuelles Question Answering.
🤗 Transformers bietet APIs, um diese vortrainierten Modelle schnell herunterzuladen und für einen gegebenen Text zu verwenden, sie auf Ihren eigenen Datensätzen zu feintunen und dann mit der Community in unserem [Model Hub](https://huggingface.co/models) zu teilen. Gleichzeitig ist jedes Python-Modul, das eine Architektur definiert, komplett eigenständig und kann modifiziert werden, um schnelle Forschungsexperimente zu ermöglichen.
🤗 Transformers unterstützt die nahtlose Integration von drei der beliebtesten Deep-Learning-Bibliotheken: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) und [TensorFlow](https://www.tensorflow.org/). Trainieren Sie Ihr Modell in einem Framework und laden Sie es zur Inferenz unkompliziert mit einem anderen.
## Online-Demos
Sie können die meisten unserer Modelle direkt auf ihren Seiten im [Model Hub](https://huggingface.co/models) testen. Wir bieten auch [privates Modell-Hosting, Versionierung, & eine Inferenz-API](https://huggingface.co/pricing) für öffentliche und private Modelle an.
Hier sind einige Beispiele:
In der Computerlinguistik:
- [Maskierte Wortvervollständigung mit BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Eigennamenerkennung mit Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Textgenerierung mit GPT-2](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [Natural Language Inference mit RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Automatische Textzusammenfassung mit BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Question Answering mit DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Maschinelle Übersetzung mit T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
In der Computer Vision:
- [Bildklassifizierung mit ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Objekterkennung mit DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Semantische Segmentierung mit SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Panoptische Segmentierung mit MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
- [Depth Estimation mit DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
- [Videoklassifizierung mit VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Universelle Segmentierung mit OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
Im Audio-Bereich:
- [Automatische Spracherkennung mit Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Keyword Spotting mit Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Audioklassifizierung mit Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
In multimodalen Aufgaben:
- [Tabellenbasiertes Question Answering mit TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Visuelles Question Answering mit ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Zero-Shot-Bildklassifizierung mit CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
- [Dokumentenbasiertes Question Answering mit LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Zero-Shot-Videoklassifizierung mit X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
## 100 Projekte, die 🤗 Transformers verwenden
🤗 Transformers ist mehr als nur ein Toolkit zur Verwendung von vortrainierten Modellen: Es ist eine Gemeinschaft von Projekten, die darum herum und um den Hugging Face Hub aufgebaut sind. Wir möchten, dass 🤗 Transformers es Entwicklern, Forschern, Studenten, Professoren, Ingenieuren und jedem anderen ermöglicht, ihre Traumprojekte zu realisieren.
Um die 100.000 Sterne von 🤗 Transformers zu feiern, haben wir beschlossen, die Gemeinschaft in den Mittelpunkt zu stellen und die Seite [awesome-transformers](./awesome-transformers.md) erstellt, die 100 unglaubliche Projekte auflistet, die zusammen mit 🤗 Transformers realisiert wurden.
Wenn Sie ein Projekt besitzen oder nutzen, von dem Sie glauben, dass es Teil der Liste sein sollte, öffnen Sie bitte einen PR, um es hinzuzufügen!
## Wenn Sie individuelle Unterstützung vom Hugging Face-Team möchten
Um sofort ein Modell mit einer bestimmten Eingabe (Text, Bild, Audio ...) zu verwenden, bieten wir die `pipeline`-API an. Pipelines kombinieren ein vortrainiertes Modell mit der jeweiligen Vorverarbeitung, die während dessen Trainings verwendet wurde. Hier sehen Sie, wie man schnell eine Pipeline verwenden kann, um positive und negative Texte zu klassifizieren:
```python
>>>fromtransformersimportpipeline
# Zuweisung einer Pipeline für die Sentiment-Analyse
>>>classifier=pipeline('sentiment-analysis')
>>>classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label':'POSITIVE','score':0.9996980428695679}]
```
Die zweite Codezeile lädt und cacht das vortrainierte Modell, das von der Pipeline verwendet wird, während die dritte es an dem gegebenen Text evaluiert. Hier ist die Antwort "positiv" mit einer Konfidenz von 99,97 %.
Viele Aufgaben, sowohl in der Computerlinguistik als auch in der Computer Vision und Sprachverarbeitung, haben eine vortrainierte `pipeline`, die sofort einsatzbereit ist. Z. B. können wir leicht erkannte Objekte in einem Bild extrahieren:
Hier erhalten wir eine Liste von Objekten, die im Bild erkannt wurden, mit einer Markierung, die das Objekt eingrenzt, und einem zugehörigen Konfidenzwert. Folgend ist das Originalbild links und die Vorhersagen rechts dargestellt:
Sie können mehr über die von der `pipeline`-API unterstützten Aufgaben in [diesem Tutorial](https://huggingface.co/docs/transformers/task_summary) erfahren.
Zusätzlich zur `pipeline` benötigt es nur drei Zeilen Code, um eines der vortrainierten Modelle für Ihre Aufgabe herunterzuladen und zu verwenden. Hier ist der Code für die PyTorch-Version:
```python
>>> from transformers import AutoTokenizer, AutoModel
Der Tokenizer ist für die gesamte Vorverarbeitung, die das vortrainierte Modell benötigt, verantwortlich und kann direkt auf einem einzelnen String (wie in den obigen Beispielen) oder einer Liste ausgeführt werden. Er gibt ein Dictionary aus, das Sie im darauffolgenden Code verwenden oder einfach direkt Ihrem Modell übergeben können, indem Sie den ** Operator zum Entpacken von Argumenten einsetzen.
Das Modell selbst ist ein reguläres [PyTorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) oder ein [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (abhängig von Ihrem Backend), das Sie wie gewohnt verwenden können. [Dieses Tutorial](https://huggingface.co/docs/transformers/training) erklärt, wie man ein solches Modell in eine klassische PyTorch- oder TensorFlow-Trainingsschleife integrieren kann oder wie man unsere `Trainer`-API verwendet, um es schnell auf einem neuen Datensatz zu feintunen.
## Warum sollten Sie 🤗 Transformers verwenden?
1. Benutzerfreundliche Modelle auf dem neuesten Stand der Technik:
- Hohe Leistung bei Aufgaben zu Natural Language Understanding & Generation, Computer Vision und Audio.
- Niedrige Einstiegshürde für Bildungskräfte und Praktiker.
- Wenige benutzerseitige Abstraktionen mit nur drei zu lernenden Klassen.
- Eine einheitliche API für die Verwendung aller unserer vortrainierten Modelle.
- Forscher können trainierte Modelle teilen, anstatt sie immer wieder neu zu trainieren.
- Praktiker können die Rechenzeit und Produktionskosten reduzieren.
- Dutzende Architekturen mit über 400.000 vortrainierten Modellen über alle Modalitäten hinweg.
1. Wählen Sie das richtige Framework für jeden Lebensabschnitt eines Modells:
- Trainieren Sie Modelle auf neustem Stand der Technik in nur drei Codezeilen.
- Verwenden Sie ein einzelnes Modell nach Belieben mit TF2.0-/PyTorch-/JAX-Frameworks.
- Wählen Sie nahtlos das richtige Framework für Training, Evaluation und Produktiveinsatz.
1. Passen Sie ein Modell oder Beispiel leicht an Ihre Bedürfnisse an:
- Wir bieten Beispiele für jede Architektur an, um die von ihren ursprünglichen Autoren veröffentlichten Ergebnisse zu reproduzieren.
- Modellinterna sind so einheitlich wie möglich verfügbar gemacht.
- Modelldateien können unabhängig von der Bibliothek für schnelle Experimente verwendet werden.
## Warum sollten Sie 🤗 Transformers nicht verwenden?
- Diese Bibliothek ist kein modularer Werkzeugkasten mit Bausteinen für neuronale Netze. Der Code in den Modelldateien ist absichtlich nicht mit zusätzlichen Abstraktionen refaktorisiert, sodass Forscher schnell mit jedem der Modelle iterieren können, ohne sich in zusätzliche Abstraktionen/Dateien vertiefen zu müssen.
- Die Trainings-API ist nicht dafür gedacht, mit beliebigen Modellen zu funktionieren, sondern ist für die Verwendung mit den von der Bibliothek bereitgestellten Modellen optimiert. Für generische Trainingsschleifen von maschinellem Lernen sollten Sie eine andere Bibliothek verwenden (möglicherweise [Accelerate](https://huggingface.co/docs/accelerate)).
- Auch wenn wir bestrebt sind, so viele Anwendungsfälle wie möglich zu veranschaulichen, sind die Beispielskripte in unserem [`examples`](./examples) Ordner genau das: Beispiele. Es ist davon auszugehen, dass sie nicht sofort auf Ihr spezielles Problem anwendbar sind und einige Codezeilen geändert werden müssen, um sie für Ihre Bedürfnisse anzupassen.
## Installation
### Mit pip
Dieses Repository wurde mit Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ und TensorFlow 2.6+ getestet.
Sie sollten 🤗 Transformers in einer [virtuellen Umgebung](https://docs.python.org/3/library/venv.html) installieren. Wenn Sie mit virtuellen Python-Umgebungen nicht vertraut sind, schauen Sie sich den [Benutzerleitfaden](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) an.
Erstellen und aktivieren Sie zuerst eine virtuelle Umgebung mit der Python-Version, die Sie verwenden möchten.
Dann müssen Sie entweder Flax, PyTorch oder TensorFlow installieren. Bitte beziehe dich entsprechend auf die jeweiligen Installationsanleitungen für [TensorFlow](https://www.tensorflow.org/install/), [PyTorch](https://pytorch.org/get-started/locally/#start-locally), und/oder [Flax](https://github.com/google/flax#quick-install) und [Jax](https://github.com/google/jax#installation) für den spezifischen Installationsbefehl für Ihre Plattform.
Wenn eines dieser Backends installiert ist, kann 🤗 Transformers wie folgt mit pip installiert werden:
```bash
pip install transformers
```
Wenn Sie mit den Beispielen experimentieren möchten oder die neueste Version des Codes benötigen und nicht auf eine neue Veröffentlichung warten können, müssen Sie [die Bibliothek von der Quelle installieren](https://huggingface.co/docs/transformers/installation#installing-from-source).
### Mit conda
🤗 Transformers kann wie folgt mit conda installiert werden:
```shell script
conda install conda-forge::transformers
```
> **_HINWEIS:_** Die Installation von `transformers` aus dem `huggingface`-Kanal ist veraltet.
Folgen Sie den Installationsanleitungen von Flax, PyTorch oder TensorFlow, um zu sehen, wie sie mit conda installiert werden können.
> **_HINWEIS:_** Auf Windows werden Sie möglicherweise aufgefordert, den Entwicklermodus zu aktivieren, um von Caching zu profitieren. Wenn das für Sie keine Option ist, lassen Sie es uns bitte in [diesem Issue](https://github.com/huggingface/huggingface_hub/issues/1062) wissen.
## Modellarchitekturen
**[Alle Modell-Checkpoints](https://huggingface.co/models)**, die von 🤗 Transformers bereitgestellt werden, sind nahtlos aus dem huggingface.co [Model Hub](https://huggingface.co/models) integriert, wo sie direkt von [Benutzern](https://huggingface.co/users) und [Organisationen](https://huggingface.co/organizations) hochgeladen werden.
Aktuelle Anzahl der Checkpoints: 
🤗 Transformers bietet derzeit die folgenden Architekturen an (siehe [hier](https://huggingface.co/docs/transformers/model_summary) für eine jeweilige Übersicht):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (from Cohere) released with the paper [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (from ESPnet) released with the paper [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (from Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) released with the paper [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (from Hugging Face) released with the paper [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (from Albert Gu and Tri Dao) released with the paper [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (from Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) released with the paper [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (from the Qwen team, Alibaba Group) released with the paper [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (from the Qwen team, Alibaba Group) released with the paper [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (from Google) released with the paper [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (from Beijing Academy of Artificial Intelligence (BAAI) released with the paper [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (from Google AI) released with the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (from Microsoft Research) released with the paper [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (from University of Wisconsin–Madison) released with the paper [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Möchten Sie ein neues Modell beitragen? Wir haben einen **detaillierten Leitfaden und Vorlagen** hinzugefügt, um Sie beim Hinzufügen eines neuen Modells zu unterstützen. Sie können diese im [`templates`](./templates) Ordner des Repositorys finden. Lesen Sie unbedingt die [Beitragshinweise](./CONTRIBUTING.md) und kontaktieren Sie die Maintainer oder erstellen Sie ein Issue, um Feedback zu sammeln, bevor Sie mit der PR starten.
Um zu überprüfen, ob jedes Modell eine Implementierung in Flax, PyTorch oder TensorFlow hat oder über einen zugehörigen Tokenizer verfügt, der von der 🤗 Tokenizers-Bibliothek unterstützt wird, schauen Sie auf [diese Tabelle](https://huggingface.co/docs/transformers/index#supported-frameworks).
Diese Implementierungen wurden mit mehreren Datensätzen getestet (siehe Beispielskripte) und sollten den Leistungen der ursprünglichen Implementierungen entsprechen. Weitere Details zur Leistung finden Sie im Abschnitt der Beispiele in der [Dokumentation](https://github.com/huggingface/transformers/tree/main/examples).
## Mehr erfahren
| Abschnitt | Beschreibung |
|-|-|
| [Dokumentation](https://huggingface.co/docs/transformers/) | Vollständige API-Dokumentation und Tutorials |
| [Zusammenfassung der Aufgaben](https://huggingface.co/docs/transformers/task_summary) | Von 🤗 Transformers unterstützte Aufgaben |
| [Vorverarbeitungs-Tutorial](https://huggingface.co/docs/transformers/preprocessing) | Verwendung der `Tokenizer`-Klasse zur Vorverarbeitung der Daten für die Modelle |
| [Training und Feintuning](https://huggingface.co/docs/transformers/training) | Verwendung der von 🤗 Transformers bereitgestellten Modelle in einer PyTorch-/TensorFlow-Trainingsschleife und der `Trainer`-API |
| [Schnelleinstieg: Feintuning/Anwendungsskripte](https://github.com/huggingface/transformers/tree/main/examples) | Beispielskripte für das Feintuning von Modellen für eine breite Palette von Aufgaben |
| [Modellfreigabe und -upload](https://huggingface.co/docs/transformers/model_sharing) | Laden Sie Ihre feingetunten Modelle hoch und teilen Sie sie mit der Community |
## Zitation
Wir haben jetzt ein [Paper](https://www.aclweb.org/anthology/2020.emnlp-demos.6/), das Sie für die 🤗 Transformers-Bibliothek zitieren können:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
🤗 Transformers aporta miles de modelos preentrenados para realizar tareas en diferentes modalidades como texto, visión, y audio.
Estos modelos pueden ser aplicados en:
* 📝 Texto, para tareas como clasificación de texto, extracción de información, responder preguntas, resumir, traducir, generación de texto, en más de 100 idiomas.
* 🖼️ Imágenes, para tareas como clasificación de imágenes, detección the objetos, y segmentación.
* 🗣️ Audio, para tareas como reconocimiento de voz y clasificación de audio.
Los modelos de Transformer también pueden realizar tareas en **muchas modalidades combinadas**, como responder preguntas, reconocimiento de carácteres ópticos,extracción de información de documentos escaneados, clasificación de video, y respuesta de preguntas visuales.
🤗 Transformers aporta APIs para descargar rápidamente y usar estos modelos preentrenados en un texto dado, afinarlos en tus propios sets de datos y compartirlos con la comunidad en nuestro [centro de modelos](https://huggingface.co/models). Al mismo tiempo, cada módulo de Python que define una arquitectura es completamente independiente y se puede modificar para permitir experimentos de investigación rápidos.
🤗 Transformers está respaldado por las tres bibliotecas de deep learning más populares — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) y [TensorFlow](https://www.tensorflow.org/) — con una perfecta integración entre ellos. Es sencillo entrenar sus modelos con uno antes de cargarlos para la inferencia con el otro.
## Demostraciones en línea
Puedes probar la mayoría de nuestros modelos directamente en sus páginas desde el [centro de modelos](https://huggingface.co/models). También ofrecemos [alojamiento de modelos privados, control de versiones y una API de inferencia](https://huggingface.co/pricing) para modelos públicos y privados.
Aquí hay algunos ejemplos:
En procesamiento del lenguaje natural:
- [Terminación de palabras enmascaradas con BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Reconocimiento del nombre de la entidad con Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Generación de texto con GPT-2](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [Inferencia del lenguaje natural con RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Resumen con BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Responder a preguntas con DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Traducción con T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
En visión de ordenador:
- [Clasificación de imágenes con ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Detección de objetos con DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Segmentación semántica con SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Segmentación panóptica con DETR](https://huggingface.co/facebook/detr-resnet-50-panoptic)
- [Segmentación Universal con OneFormer (Segmentación Semántica, de Instancia y Panóptica con un solo modelo)](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
En Audio:
- [Reconocimiento de voz automático con Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Detección de palabras clave con Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
En tareas multimodales:
- [Respuesta visual a preguntas con ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
**[Escribe con Transformer](https://transformer.huggingface.co)**, construido por el equipo de Hugging Face, es la demostración oficial de las capacidades de generación de texto de este repositorio.
## Si está buscando soporte personalizado del equipo de Hugging Face
Para usar inmediatamente un modelo en una entrada determinada (texto, imagen, audio, ...), proporcionamos la API de `pipeline`. Los pipelines agrupan un modelo previamente entrenado con el preprocesamiento que se usó durante el entrenamiento de ese modelo. Aquí se explica cómo usar rápidamente un pipeline para clasificar textos positivos frente a negativos:
```python
>>>fromtransformersimportpipeline
# Allocate a pipeline for sentiment-analysis
>>>classifier=pipeline('sentiment-analysis')
>>>classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label':'POSITIVE','score':0.9996980428695679}]
```
La segunda línea de código descarga y almacena en caché el modelo previamente entrenado que usa la canalización, mientras que la tercera lo evalúa en el texto dado. Aquí la respuesta es "positiva" con una confianza del 99,97%.
Muchas tareas tienen un `pipeline` preentrenado listo para funcionar, en NLP pero también en visión por ordenador y habla. Por ejemplo, podemos extraer fácilmente los objetos detectados en una imagen:
Aquí obtenemos una lista de objetos detectados en la imagen, con un cuadro que rodea el objeto y una puntuación de confianza. Aquí está la imagen original a la derecha, con las predicciones mostradas a la izquierda:
Puedes obtener más información sobre las tareas admitidas por la API de `pipeline` en [este tutorial](https://huggingface.co/docs/transformers/task_summary).
Además de `pipeline`, para descargar y usar cualquiera de los modelos previamente entrenados en su tarea dada, todo lo que necesita son tres líneas de código. Aquí está la versión de PyTorch:
```python
>>> from transformers import AutoTokenizer, AutoModel
El tokenizador es responsable de todo el preprocesamiento que espera el modelo preentrenado y se puede llamar directamente en una sola cadena (como en los ejemplos anteriores) o en una lista. Este dará como resultado un diccionario que puedes usar en el código descendente o simplemente pasarlo directamente a su modelo usando el operador de desempaquetado de argumento **.
El modelo en si es un [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) normal o un [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (dependiendo De tu backend) que puedes usar de forma habitual. [Este tutorial](https://huggingface.co/docs/transformers/training) explica cómo integrar un modelo de este tipo en un ciclo de entrenamiento PyTorch o TensorFlow clásico, o como usar nuestra API `Trainer` para ajustar rápidamente un nuevo conjunto de datos.
## ¿Por qué debo usar transformers?
1. Modelos de última generación fáciles de usar:
- Alto rendimiento en comprensión y generación de lenguaje natural, visión artificial y tareas de audio.
- Baja barrera de entrada para educadores y profesionales.
- Pocas abstracciones de cara al usuario con solo tres clases para aprender.
- Una API unificada para usar todos nuestros modelos preentrenados.
1. Menores costes de cómputo, menor huella de carbono:
- Los investigadores pueden compartir modelos entrenados en lugar de siempre volver a entrenar.
- Los profesionales pueden reducir el tiempo de cómputo y los costos de producción.
- Docenas de arquitecturas con más de 60 000 modelos preentrenados en todas las modalidades.
1. Elija el marco adecuado para cada parte de la vida útil de un modelo:
- Entrene modelos de última generación en 3 líneas de código.
- Mueva un solo modelo entre los marcos TF2.0/PyTorch/JAX a voluntad.
- Elija sin problemas el marco adecuado para la formación, la evaluación y la producción.
1. Personalice fácilmente un modelo o un ejemplo según sus necesidades:
- Proporcionamos ejemplos de cada arquitectura para reproducir los resultados publicados por sus autores originales..
- Los internos del modelo están expuestos lo más consistentemente posible..
- Los archivos modelo se pueden usar independientemente de la biblioteca para experimentos rápidos.
## ¿Por qué no debería usar transformers?
- Esta biblioteca no es una caja de herramientas modular de bloques de construcción para redes neuronales. El código en los archivos del modelo no se refactoriza con abstracciones adicionales a propósito, de modo que los investigadores puedan iterar rápidamente en cada uno de los modelos sin sumergirse en abstracciones/archivos adicionales.
- La API de entrenamiento no está diseñada para funcionar en ningún modelo, pero está optimizada para funcionar con los modelos proporcionados por la biblioteca. Para bucles genéricos de aprendizaje automático, debe usar otra biblioteca (posiblemente, [Accelerate](https://huggingface.co/docs/accelerate)).
- Si bien nos esforzamos por presentar tantos casos de uso como sea posible, los scripts en nuestra [carpeta de ejemplos](https://github.com/huggingface/transformers/tree/main/examples) son solo eso: ejemplos. Se espera que no funcionen de forma inmediata en su problema específico y que deba cambiar algunas líneas de código para adaptarlas a sus necesidades.
## Instalación
### Con pip
Este repositorio está probado en Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ y TensorFlow 2.6+.
Deberías instalar 🤗 Transformers en un [entorno virtual](https://docs.python.org/3/library/venv.html). Si no estas familiarizado con los entornos virtuales de Python, consulta la [guía de usuario](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Primero, crea un entorno virtual con la versión de Python que vas a usar y actívalo.
Luego, deberás instalar al menos uno entre Flax, PyTorch o TensorFlow.
Por favor, ve a la [página de instalación de TensorFlow](https://www.tensorflow.org/install/), [página de instalación de PyTorch](https://pytorch.org/get-started/locally/#start-locally) y/o las páginas de instalación de [Flax](https://github.com/google/flax#quick-install) y [Jax](https://github.com/google/jax#installation) con respecto al comando de instalación específico para tu plataforma.
Cuando se ha instalado uno de esos backends, los 🤗 Transformers se pueden instalar usando pip de la siguiente manera:
```bash
pip install transformers
```
Si deseas jugar con los ejemplos o necesitas la última versión del código y no puedes esperar a una nueva versión, tienes que [instalar la librería de la fuente](https://huggingface.co/docs/transformers/installation#installing-from-source).
### Con conda
🤗 Transformers se puede instalar usando conda de la siguiente manera:
```shell script
conda install conda-forge::transformers
```
> **_NOTA:_** Instalar `transformers` desde el canal `huggingface` está obsoleto.
Sigue las páginas de instalación de Flax, PyTorch o TensorFlow para ver cómo instalarlos con conda.
> **_NOTA:_** En Windows, es posible que se le pida que active el modo de desarrollador para beneficiarse del almacenamiento en caché. Si esta no es una opción para usted, háganoslo saber en [esta issue](https://github.com/huggingface/huggingface_hub/issues/1062).
## Arquitecturas modelo
**[Todos los puntos de control del modelo](https://huggingface.co/models)** aportados por 🤗 Transformers están perfectamente integrados desde huggingface.co [Centro de modelos](https://huggingface.co) donde son subidos directamente por los [usuarios](https://huggingface.co/users) y [organizaciones](https://huggingface.co/organizations).
Número actual de puntos de control: 
🤗 Transformers actualmente proporciona las siguientes arquitecturas (ver [aquí](https://huggingface.co/docs/transformers/model_summary) para un resumen de alto nivel de cada uno de ellas.):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (from Cohere) released with the paper [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (from ESPnet) released with the paper [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (from Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) released with the paper [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (from Hugging Face) released with the paper [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (from Albert Gu and Tri Dao) released with the paper [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Facebook) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released with the paper [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (from Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) released with the paper [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (from the Qwen team, Alibaba Group) released with the paper [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (from the Qwen team, Alibaba Group) released with the paper [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (from Google) released with the paper [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng) released with the paper [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (from Beijing Academy of Artificial Intelligence (BAAI) released with the paper [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (from Google AI) released with the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with a coming soon paper.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (from Microsoft Research) released with the paper [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (from University of Wisconsin–Madison) released with the paper [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. ¿Quieres aportar un nuevo modelo? Hemos agregado una **guía detallada y plantillas** para guiarte en el proceso de agregar un nuevo modelo. Puedes encontrarlos en la carpeta de [`templates`](./templates) del repositorio. Asegúrate de revisar las [pautas de contribución](./CONTRIBUTING.md) y comunícate con los mantenedores o abra un problema para recopilar comentarios antes de comenzar su PR.
Para comprobar si cada modelo tiene una implementación en Flax, PyTorch o TensorFlow, o tiene un tokenizador asociado respaldado por la librería 🤗 Tokenizers, ve a [esta tabla](https://huggingface.co/docs/transformers/index#supported-frameworks).
Estas implementaciones se han probado en varios conjuntos de datos (consulte los scripts de ejemplo) y deberían coincidir con el rendimiento de las implementaciones originales. Puede encontrar más detalles sobre el rendimiento en la sección Examples de la [documentación](https://github.com/huggingface/transformers/tree/main/examples).
## Aprender más
| Sección | Descripción |
|-|-|
| [Documentación](https://huggingface.co/docs/transformers/) | Toda la documentación de la API y tutoriales |
| [Resumen de tareas](https://huggingface.co/docs/transformers/task_summary) | Tareas soportadas 🤗 Transformers |
| [Tutorial de preprocesamiento](https://huggingface.co/docs/transformers/preprocessing) | Usando la clase `Tokenizer` para preparar datos para los modelos |
| [Entrenamiento y puesta a punto](https://huggingface.co/docs/transformers/training) | Usando los modelos aportados por 🤗 Transformers en un bucle de entreno de PyTorch/TensorFlow y la API de `Trainer` |
| [Recorrido rápido: secuencias de comandos de ajuste/uso](https://github.com/huggingface/transformers/tree/main/examples) | Scripts de ejemplo para ajustar modelos en una amplia gama de tareas |
| [Compartir y subir modelos](https://huggingface.co/docs/transformers/model_sharing) | Carga y comparte tus modelos perfeccionados con la comunidad |
| [Migración](https://huggingface.co/docs/transformers/migration) | Migra a 🤗 Transformers desde `pytorch-transformers` o `pytorch-pretrained-bert` |
## Citación
Ahora nosotros tenemos un [paper](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) que puedes citar para la librería de 🤗 Transformers:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
<imgalt="Bibliothèque Hugging Face Transformers"src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg"width="352"height="59"style="max-width: 100%;">
🤗 Transformers fournit des milliers de modèles pré-entraînés pour effectuer des tâches sur différentes modalités telles que le texte, la vision et l'audio.
Ces modèles peuvent être appliqués à :
* 📝 Texte, pour des tâches telles que la classification de texte, l'extraction d'informations, la réponse aux questions, le résumé, la traduction et la génération de texte, dans plus de 100 langues.
* 🖼️ Images, pour des tâches telles que la classification d'images, la détection d'objets et la segmentation.
* 🗣️ Audio, pour des tâches telles que la reconnaissance vocale et la classification audio.
Les modèles de transformer peuvent également effectuer des tâches sur **plusieurs modalités combinées**, telles que la réponse aux questions sur des tableaux, la reconnaissance optique de caractères, l'extraction d'informations à partir de documents numérisés, la classification vidéo et la réponse aux questions visuelles.
🤗 Transformers fournit des API pour télécharger et utiliser rapidement ces modèles pré-entraînés sur un texte donné, les affiner sur vos propres ensembles de données, puis les partager avec la communauté sur notre [hub de modèles](https://huggingface.co/models). En même temps, chaque module Python définissant une architecture est complètement indépendant et peut être modifié pour permettre des expériences de recherche rapides.
🤗 Transformers est soutenu par les trois bibliothèques d'apprentissage profond les plus populaires — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) et [TensorFlow](https://www.tensorflow.org/) — avec une intégration transparente entre eux. Il est facile de former vos modèles avec l'un avant de les charger pour l'inférence avec l'autre.
## Démos en ligne
Vous pouvez tester la plupart de nos modèles directement sur leurs pages du [hub de modèles](https://huggingface.co/models). Nous proposons également [l'hébergement privé de modèles, le versionning et une API d'inférence](https://huggingface.co/pricing) pour des modèles publics et privés.
Voici quelques exemples :
En traitement du langage naturel :
- [Complétion de mots masqués avec BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Reconnaissance d'entités nommées avec Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Génération de texte avec GPT-2](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [Inférence de langage naturel avec RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Résumé avec BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Réponse aux questions avec DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Traduction avec T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
En vision par ordinateur :
- [Classification d'images avec ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Détection d'objets avec DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Segmentation sémantique avec SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Segmentation panoptique avec MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
- [Estimation de profondeur avec DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
- [Classification vidéo avec VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Segmentation universelle avec OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
En audio :
- [Reconnaissance automatique de la parole avec Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Spotting de mots-clés avec Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Classification audio avec Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
Dans les tâches multimodales :
- [Réponses aux questions sur table avec TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Réponses aux questions visuelles avec ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Classification d'images sans étiquette avec CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
- [Réponses aux questions sur les documents avec LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Classification vidéo sans étiquette avec X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
## 100 projets utilisant Transformers
Transformers est plus qu'une boîte à outils pour utiliser des modèles pré-entraînés : c'est une communauté de projets construits autour de lui et du Hub Hugging Face. Nous voulons que Transformers permette aux développeurs, chercheurs, étudiants, professeurs, ingénieurs et à quiconque d'imaginer et de réaliser leurs projets de rêve.
Afin de célébrer les 100 000 étoiles de transformers, nous avons décidé de mettre en avant la communauté et avons créé la page [awesome-transformers](./awesome-transformers.md) qui répertorie 100 projets incroyables construits autour de transformers.
Si vous possédez ou utilisez un projet que vous pensez devoir figurer dans la liste, veuillez ouvrir une pull request pour l'ajouter !
## Si vous recherchez un support personnalisé de la part de l'équipe Hugging Face
Pour utiliser immédiatement un modèle sur une entrée donnée (texte, image, audio,...), nous fournissons l'API `pipeline`. Les pipelines regroupent un modèle pré-entraîné avec la préparation des données qui a été utilisée lors de l'entraînement de ce modèle. Voici comment utiliser rapidement un pipeline pour classer des textes en positif ou négatif :
```python
>>>fromtransformersimportpipeline
# Allouer un pipeline pour l'analyse de sentiment
>>>classifieur=pipeline('sentiment-analysis')
>>>classifieur("Nous sommes très heureux d'introduire le pipeline dans le référentiel transformers.")
[{'label':'POSITIF','score':0.9996980428695679}]
```
La deuxième ligne de code télécharge et met en cache le modèle pré-entraîné utilisé par le pipeline, tandis que la troisième l'évalue sur le texte donné. Ici, la réponse est "positive" avec une confiance de 99,97%.
De nombreuses tâches ont une pipeline pré-entraîné prêt à l'emploi, en NLP, mais aussi en vision par ordinateur et en parole. Par exemple, nous pouvons facilement extraire les objets détectés dans une image :
Ici, nous obtenons une liste d'objets détectés dans l'image, avec une boîte entourant l'objet et un score de confiance. Voici l'image originale à gauche, avec les prédictions affichées à droite :
Vous pouvez en savoir plus sur les tâches supportées par l'API pipeline dans [ce tutoriel](https://huggingface.co/docs/transformers/task_summary).
En plus de `pipeline`, pour télécharger et utiliser n'importe lequel des modèles pré-entraînés sur votre tâche donnée, il suffit de trois lignes de code. Voici la version PyTorch :
inputs=tokenizer("Bonjour le monde !",return_tensors="tf")
outputs=model(**inputs)
```
Le tokenizer est responsable de toutes les étapes de prétraitement que le modèle préentraîné attend et peut être appelé directement sur une seule chaîne de caractères (comme dans les exemples ci-dessus) ou sur une liste. Il produira un dictionnaire que vous pouvez utiliser dans votre code ou simplement passer directement à votre modèle en utilisant l'opérateur de déballage **.
Le modèle lui-même est un module [`nn.Module` PyTorch](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) ou un modèle [`tf.keras.Model` TensorFlow](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (selon votre backend) que vous pouvez utiliser comme d'habitude. [Ce tutoriel](https://huggingface.co/docs/transformers/training) explique comment intégrer un tel modèle dans une boucle d'entraînement classique PyTorch ou TensorFlow, ou comment utiliser notre API `Trainer` pour affiner rapidement sur un nouvel ensemble de données.
## Pourquoi devrais-je utiliser transformers ?
1. Des modèles de pointe faciles à utiliser :
- Hautes performances en compréhension et génération de langage naturel, en vision par ordinateur et en tâches audio.
- Faible barrière à l'entrée pour les éducateurs et les praticiens.
- Peu d'abstractions visibles pour l'utilisateur avec seulement trois classes à apprendre.
- Une API unifiée pour utiliser tous nos modèles préentraînés.
1. Coûts informatiques réduits, empreinte carbone plus petite :
- Les chercheurs peuvent partager des modèles entraînés au lieu de toujours les réentraîner.
- Les praticiens peuvent réduire le temps de calcul et les coûts de production.
- Des dizaines d'architectures avec plus de 400 000 modèles préentraînés dans toutes les modalités.
1. Choisissez le bon framework pour chaque partie de la vie d'un modèle :
- Entraînez des modèles de pointe en 3 lignes de code.
- Trasnférer un seul modèle entre les frameworks TF2.0/PyTorch/JAX à volonté.
- Choisissez facilement le bon framework pour l'entraînement, l'évaluation et la production.
1. Personnalisez facilement un modèle ou un exemple selon vos besoins :
- Nous fournissons des exemples pour chaque architecture afin de reproduire les résultats publiés par ses auteurs originaux.
- Les détails internes du modèle sont exposés de manière aussi cohérente que possible.
- Les fichiers de modèle peuvent être utilisés indépendamment de la bibliothèque pour des expériences rapides.
## Pourquoi ne devrais-je pas utiliser transformers ?
- Cette bibliothèque n'est pas une boîte à outils modulaire de blocs de construction pour les réseaux neuronaux. Le code dans les fichiers de modèle n'est pas refactored avec des abstractions supplémentaires à dessein, afin que les chercheurs puissent itérer rapidement sur chacun des modèles sans plonger dans des abstractions/fichiers supplémentaires.
- L'API d'entraînement n'est pas destinée à fonctionner avec n'importe quel modèle, mais elle est optimisée pour fonctionner avec les modèles fournis par la bibliothèque. Pour des boucles génériques d'apprentissage automatique, vous devriez utiliser une autre bibliothèque (éventuellement, [Accelerate](https://huggingface.co/docs/accelerate)).
- Bien que nous nous efforcions de présenter autant de cas d'utilisation que possible, les scripts de notre [dossier d'exemples](https://github.com/huggingface/transformers/tree/main/examples) ne sont que cela : des exemples. Il est prévu qu'ils ne fonctionnent pas immédiatement sur votre problème spécifique et que vous devrez probablement modifier quelques lignes de code pour les adapter à vos besoins.
## Installation
### Avec pip
Ce référentiel est testé sur Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ et TensorFlow 2.6+.
Vous devriez installer 🤗 Transformers dans un [environnement virtuel](https://docs.python.org/3/library/venv.html). Si vous n'êtes pas familier avec les environnements virtuels Python, consultez le [guide utilisateur](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
D'abord, créez un environnement virtuel avec la version de Python que vous allez utiliser et activez-le.
Ensuite, vous devrez installer au moins l'un de Flax, PyTorch ou TensorFlow.
Veuillez vous référer à la page d'installation de [TensorFlow](https://www.tensorflow.org/install/), de [PyTorch](https://pytorch.org/get-started/locally/#start-locally) et/ou de [Flax](https://github.com/google/flax#quick-install) et [Jax](https://github.com/google/jax#installation) pour connaître la commande d'installation spécifique à votre plateforme.
Lorsqu'un de ces backends est installé, 🤗 Transformers peut être installé avec pip comme suit :
```bash
pip install transformers
```
Si vous souhaitez jouer avec les exemples ou avez besoin de la dernière version du code et ne pouvez pas attendre une nouvelle version, vous devez [installer la bibliothèque à partir de la source](https://huggingface.co/docs/transformers/installation#installing-from-source).
### Avec conda
🤗 Transformers peut être installé avec conda comme suit :
```shell
conda install conda-forge::transformers
```
> **_NOTE:_** L'installation de `transformers` depuis le canal `huggingface` est obsolète.
Suivez les pages d'installation de Flax, PyTorch ou TensorFlow pour voir comment les installer avec conda.
> **_NOTE:_** Sur Windows, on peut vous demander d'activer le mode développeur pour bénéficier de la mise en cache. Si ce n'est pas une option pour vous, veuillez nous le faire savoir dans [cette issue](https://github.com/huggingface/huggingface_hub/issues/1062).
## Architectures de modèles
**[Tous les points de contrôle](https://huggingface.co/models)** de modèle fournis par 🤗 Transformers sont intégrés de manière transparente depuis le [hub de modèles](https://huggingface.co/models) huggingface.co, où ils sont téléchargés directement par les [utilisateurs](https://huggingface.co/users) et les [organisations](https://huggingface.co/organizations).
Nombre actuel de points de contrôle : 
🤗 Transformers fournit actuellement les architectures suivantes (consultez [ici](https://huggingface.co/docs/transformers/model_summary) pour un résumé global de chacune d'entre elles) :
1.**[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (de Google Research et du Toyota Technological Institute at Chicago) publié dans l'article [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), par Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1.**[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (de Google Research) publié dans l'article [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) de Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1.**[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (de BAAI) publié dans l'article [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) de Chen, Zhongzhi et Liu, Guang et Zhang, Bo-Wen et Ye, Fulong et Yang, Qinghong et Wu, Ledell.
1.**[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (du MIT) publié dans l'article [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) de Yuan Gong, Yu-An Chung, James Glass.
1.**[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (de l'Université Tsinghua) publié dans l'article [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) de Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1.**[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (de Suno) publié dans le référentiel [suno-ai/bark](https://github.com/suno-ai/bark) par l'équipe Suno AI.
1.**[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (de Facebook) publié dans l'article [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) de Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov et Luke Zettlemoyer.
1.**[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (de l'École polytechnique) publié dans l'article [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) de Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1.**[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (de VinAI Research) publié dans l'article [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) de Nguyen Luong Tran, Duong Minh Le et Dat Quoc Nguyen.
1.**[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (de Microsoft) publié dans l'article [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) par Hangbo Bao, Li Dong, Furu Wei.
1.**[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (de Google) publié dans l'article [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) par Jacob Devlin, Ming-Wei Chang, Kenton Lee et Kristina Toutanova.
1.**[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (de Google) publié dans l'article [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) parSascha Rothe, Shashi Narayan, Aliaksei Severyn.
1.**[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (de VinAI Research) publié dans l'article [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) par Dat Quoc Nguyen, Thanh Vu et Anh Tuan Nguyen.
1.**[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (de Google Research) publié dans l'article [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) par Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1.**[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (de Google Research) publié dans l'article [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) par Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1.**[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (de Microsoft Research AI4Science) publié dans l'article [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) par Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon et Tie-Yan Liu.
1.**[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (de Google AI) publié dans l'article [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) par Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1.**[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (de Facebook) publié dans l'article [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) par Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1.**[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (de Facebook) publié dans l'article [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) par Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1.**[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (de Salesforce) publié dans l'article [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) par Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1.**[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (de Salesforce) publié dans l'article [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) par Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1.**[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (de l'atelier BigScience) publié par l'[atelier BigScience](https://bigscience.huggingface.co/).
1.**[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (d'Alexa) publié dans l'article [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) par Adrian de Wynter et Daniel J. Perry.
1.**[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (de l'Institut de technologie de Harbin/Microsoft Research Asia/Intel Labs) publié dans l'article [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) par Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1.**[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (de NAVER CLOVA) publié dans l'article [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) par Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1.**[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (de Google Research) publié dans l'article [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) par Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1.**[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (d'Inria/Facebook/Sorbonne) publié dans l'article [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) par Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah et Benoît Sagot.
1.**[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (de Google Research) publié dans l'article [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) par Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1.**[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (d'OFA-Sys) publié dans l'article [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) par An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1.**[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (de LAION-AI) publié dans l'article [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) par Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1.**[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (d'OpenAI) publié dans l'article [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) par Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1.**[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (de l'Université de Göttingen) publié dans l'article [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) par Timo Lüddecke et Alexander Ecker.
1.**[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** publié dans l'article [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) par James Betker.
1.**[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (de Salesforce) publié dans l'article [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) par Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1.**[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (de MetaAI) publié dans l'article [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) par Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1.**[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (de Cohere) publié dans l'article [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) parCohere.
1.**[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (de Microsoft Research Asia) publié dans l'article [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) par Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1.**[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (de YituTech) publié dans l'article [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) par Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1.**[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (de Facebook AI) publié dans l'article [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) par Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1.**[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (de Facebook AI) publié dans l'article [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) par Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1.**[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (de l'Université de Tsinghua) publié dans l'article [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) par Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1.**[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (d'OpenBMB) publié par l'[OpenBMB](https://www.openbmb.org/).
1.**[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (de Salesforce) publié dans l'article [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) par Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong et Richard Socher.
1.**[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (de Microsoft) publié dans l'article [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) par Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1.**[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (de Facebook) publié dans l'article [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) par Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1.**[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (de Microsoft) publié dans l'article [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) par Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1.**[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (de Microsoft) publié dans l'article [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) par Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1.**[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (de Berkeley/Facebook/Google) publié dans l'article [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) par Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1.**[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (de SenseTime Research) publié dans l'article [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) par Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1.**[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (de Facebook) publié dans l'article [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) par Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1.**[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (de Google AI) publié dans l'article [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) par Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1.**[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (de l'université d'Hong Kong et TikTok) publié dans l'article [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1.**[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (de l'Université du Texas à Austin) publié dans l'article [NMS Strikes Back](https://arxiv.org/abs/2212.06137) par Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1.**[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (de Facebook) publié dans l'article [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) par Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1.**[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (de Microsoft Research) publié dans l'article [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) par Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1.**[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (de SHI Labs) publié dans l'article [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) par Ali Hassani et Humphrey Shi.
1.**[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (de Meta AI) publié dans l'article [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) par Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1.**[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (de HuggingFace), publié dans l'article [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) par Victor Sanh, Lysandre Debut et Thomas Wolf. La même méthode a été appliquée pour compresser GPT2 en [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa en [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT en [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) et une version allemande de DistilBERT.
1.**[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (de Microsoft Research) publié dans l'article [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) par Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1.**[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (de NAVER), publié dans l'article [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) par Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1.**[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (de Facebook) publié dans l'article [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) par Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen et Wen-tau Yih.
1.**[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (d'Intel Labs) publié dans l'article [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) par René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1.**[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (de Snap Research) publié dans l'article [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) par Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1.**[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (de Google Brain) publié dans l'article [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) par Mingxing Tan, Quoc V. Le.
1.**[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (de Google Research/Université Stanford) publié dans l'article [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) par Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1.**[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (de Meta AI) publié dans l'article [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) par Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1.**[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (de Google Research) publié dans l'article [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) par Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1.**[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (de Baidu) publié dans l'article [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) par Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1.**[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (de Baidu) publié dans l'article [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) par Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1.**[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (de Meta AI) sont des modèles de langage de protéines de type transformateur. **ESM-1b** a été publié dans l'article [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) par Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma et Rob Fergus. **ESM-1v** a été publié dans l'article [Les modèles de langage permettent une prédiction hors champ des effets des mutations sur la fonction des protéines](https://doi.org/10.1101/2021.07.09.450648) par Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu et Alexander Rives. **ESM-2 et ESMFold** ont été publiés avec l'article [Les modèles de langage des séquences de protéines à l'échelle de l'évolution permettent une prédiction précise de la structure](https://doi.org/10.1101/2022.07.20.500902) par Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1.**[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (de Technology Innovation Institute) par Almazrouei, Ebtesam et Alobeidli, Hamza et Alshamsi, Abdulaziz et Cappelli, Alessandro et Cojocaru, Ruxandra et Debbah, Merouane et Goffinet, Etienne et Heslow, Daniel et Launay, Julien et Malartic, Quentin et Noune, Badreddine et Pannier, Baptiste et Penedo, Guilherme.
1.**[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (d'ESPnet) publié dans l'article [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) par Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang et Yuekai Zhang.
1.**[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (de Google AI) publié dans le référentiel [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) par Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le et Jason Wei
1.**[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (de Google AI) publié dans le référentiel [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) par Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le et Jason Wei
1.**[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (du CNRS) publié dans l'article [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) par Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1.**[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (de Facebook AI) publié dans l'article [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) par Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach et Douwe Kiela.
1.**[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (de Google Research) publié dans l'article [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) par James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1.**[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (de Microsoft Research) publié dans l'article [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) par Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1.**[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (de l'Université Carnegie Mellon/Google Brain) publié dans l'article [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) par Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1.**[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (de ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Publié dans l'article [blog post](https://www.adept.ai/blog/fuyu-8b)
1.**[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (de Google) publié dans l'article [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) parthe Gemma Google team.
1.**[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (de Microsoft Research) publié dans l'article [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) par Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1.**[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (de la KAIST) publié dans l'article [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) par Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1.**[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (d'OpenAI) publié dans l'article [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) par Alec Radford, Karthik Narasimhan, Tim Salimans et Ilya Sutskever.
1.**[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (d'EleutherAI) publié dans le référentiel [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) par Sid Black, Stella Biderman, Leo Gao, Phil Wang et Connor Leahy.
1.**[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (d'EleutherAI) publié dans l'article [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) par Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1.**[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (de ABEJA) publié par Shinya Otani, Takayoshi Makabe, Anuj Arora et Kyo Hattori.
1.**[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (d'OpenAI) a été publié dans l'article [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) par Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei et Ilya Sutskever.
1.**[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (d'EleutherAI) a été publié dans le dépôt [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) par Ben Wang et Aran Komatsuzaki.
1.**[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (d'AI-Sweden) a été publié dans l'article [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) par Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1.**[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (de BigCode) a été publié dans l'article [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) par Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1.**[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** a été publié dans le dépôt [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) par Toshiyuki Sakamoto (tanreinama).
1.**[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (de Microsoft) a été publié dans l'article [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) par Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1.**[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (de Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) publié dans l'article [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) parShilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1.**[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (de l'UCSD, NVIDIA) a été publié dans l'article [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) par Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1.**[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (d'Allegro.pl, AGH University of Science and Technology) a été publié dans l'article [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) par Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1.**[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (de Facebook) a été publié dans l'article [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) par Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1.**[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (de Berkeley) a été publié dans l'article [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) par Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1.**[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (de HuggingFace) a été publié dans l'article [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) par Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1.**[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (de Hugging Face) publié dans l'article [IDEFICS2](https://huggingface.co/blog/idefics2) parLéo Tronchon, Hugo Laurencon, Victor Sanh.
1.**[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (d'OpenAI) a été publié dans l'article [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) par Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1.**[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (de l'Université de Beihang, UC Berkeley, Rutgers University, SEDD Company) a été publié dans l'article [Informer : Au-delà du Transformer efficace pour la prévision de séries temporel
1.**[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (de Salesforce) a été publié dans l'article [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) de Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1.**[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (d'OpenAI) a été publié dans l'article [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) de Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1.**[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (de Microsoft Research Asia) a été publié dans l'article [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) de Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1.**[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (de Microsoft Research Asia) a été publié dans l'article [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) de Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1.**[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (de Microsoft Research Asia) a été publié dans l'article [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) de Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1.**[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (de Microsoft Research Asia) a été publié dans l'article [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) de Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1.**[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (de Microsoft Research Asia) a été publié dans l'article [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) de Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1.**[LED](https://huggingface.co/docs/transformers/model_doc/led)** (d'AllenAI) a été publié dans l'article [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) de Iz Beltagy, Matthew E. Peters, Arman Cohan.
1.**[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (de Meta AI) a été publié dans l'article [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) de Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1.**[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (de l'Université de technologie du Sud de la Chine) a été publié dans l'article [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) de Jiapeng Wang, Lianwen Jin, Kai Ding.
1.**[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (de l'équipe FAIR de Meta AI) a été publié dans l'article [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) de Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1.**[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (de l'équipe FAIR de Meta AI) a été publié dans l'article [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) de Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1.**[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (de Microsoft Research & University of Wisconsin-Madison) a été publié dans l'article [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) de Haotian Liu, Chunyuan Li, Yuheng Li et Yong Jae Lee.
1.**[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (de Microsoft Research & University of Wisconsin-Madison) publié dans l'article [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) parHaotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1.**[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (d'AllenAI) a été publié dans l'article [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) de Iz Beltagy, Matthew E. Peters, Arman Cohan.
1.**[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (de Google AI) a été publié dans l'article [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) de Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1.**[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (de Studio Ousia) a été publié dans l'article [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) de Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1.**[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (de l'UNC Chapel Hill) a été publié dans l'article [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) de Hao Tan et Mohit Bansal.
1.**[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (de Facebook) a été publié dans l'article [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) de Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve et Ronan Collobert.
1.**[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (de Facebook) a été publié dans l'article [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) de Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1.**[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (de Google) a été publié dans l'article [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) de Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1.**[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (de Albert Gu and Tri Dao) publié dans l'article [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) parAlbert Gu and Tri Dao.
1.**[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Des modèles de traduction automatique formés avec les données [OPUS](http://opus.nlpl.eu/) par Jörg Tiedemann. Le [cadre Marian](https://marian-nmt.github.io/) est en cours de développement par l'équipe Microsoft Translator.
1.**[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (de Microsoft Research Asia) a été publié dans l'article [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) de Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1.**[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (de FAIR et UIUC) a été publié dans l'article [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) de Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1.**[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (de Meta et UIUC) a été publié dans l'article [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) de Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1.**[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (de Google AI) a été publié dans l'article [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) de Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1.**[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (de Facebook) a été publié dans l'article [Pré-entraînement de débruitage multilingue pour la traduction automatique neuronale
1.**[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (de Facebook) a été publié dans l'article [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) par Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1.**[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (de Meta/USC/CMU/SJTU) a été publié dans l'article [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) par Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May et Luke Zettlemoyer.
1.**[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (de NVIDIA) a été publié dans l'article [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) par Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper et Bryan Catanzaro.
1.**[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (de NVIDIA) a été publié dans l'article [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) par Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper et Bryan Catanzaro.
1.**[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (d'Alibaba Research) a été publié dans l'article [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) par Peng Wang, Cheng Da et Cong Yao.
1.**[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (de Mistral AI) par l'équipe [Mistral AI](https://mistral.ai) : Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1.**[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (de Mistral AI) par l'équipe [Mistral AI](https://mistral.ai) : Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1.**[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (de Studio Ousia) a été publié dans l'article [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) par Ryokan Ri, Ikuya Yamada et Yoshimasa Tsuruoka.
1.**[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (de Facebook) a été publié dans l'article [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) par Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1.**[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (de CMU/Google Brain) a été publié dans l'article [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) par Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang et Denny Zhou.
1.**[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (de Google Inc.) a été publié dans l'article [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) par Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1.**[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (de Google Inc.) a été publié dans l'article [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) par Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1.**[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (d'Apple) a été publié dans l'article [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) par Sachin Mehta et Mohammad Rastegari.
1.**[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (d'Apple) a été publié dans l'article [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) par Sachin Mehta et Mohammad Rastegari.
1.**[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (de Microsoft Research) a été publié dans l'article [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) par Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1.**[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (de MosaiML) a été publié avec le référentiel [llm-foundry](https://github.com/mosaicml/llm-foundry/) par l'équipe MosaiML NLP.
1.**[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (de l'Université du Wisconsin - Madison) a été publié dans l'article [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) par Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1.**[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (de Google AI) a été publié dans l'article [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) par Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1.**[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (de Meta) a été publié dans l'article [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) par Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi et Alexandre Défossez.
1.**[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (de Meta) publié dans l'article [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) parJade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1.**[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (de RUC AI Box) a été publié dans l'article [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) par Tianyi Tang, Junyi Li, Wayne Xin Zhao et Ji-Rong Wen.
1.**[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (de SHI Labs) a été publié dans l'article [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) par Ali Hassani, Steven Walton, Jiachen Li, Shen Li et Humphrey Shi.
1.**[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (du laboratoire Noah's Ark de Huawei) a été publié dans l'article [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) par Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen et Qun Liu.
1.**[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (de Meta) a été publié dans l'article [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) par l'équipe NLLB.
1.**[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (de Meta) a été publié dans l'article [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) par l'équipe NLLB.
1.**[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (de Meta AI) a été publié dans l'article [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) par Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1.**[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (de l'Université du Wisconsin - Madison) a été publié dans l'article [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) par Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1.**[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (de SHI Labs) a été publié dans l'article [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) par Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1.**[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (de [s-JoL](https://huggingface.co/s-JoL)) publié sur GitHub (maintenant supprimé).
1.**[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (de Meta AI) a été publié dans l'article [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) par Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1.**[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (de Google AI) a été publié dans l'article [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) par Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf et Neil Houlsby.
1.**[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (de Google AI) a été publié dans l'article [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) par Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1.**[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (d'IBM Research) a été publié dans l'article [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) par Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1.**[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (d'IBM) a été publié dans l'article [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) par Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1.**[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (de Google) a été publié dans l'article [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) par Jingqing Zhang, Yao Zhao, Mohammad Saleh et Peter J. Liu.
1.**[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (de Google) a été publié dans l'article [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) par Jason Phang, Yao Zhao et Peter J. Liu.
1.**[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (de Deepmind) a été publié dans l'article [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) par Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals et João Carreira.
1.**[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (d'ADEPT) a été publié dans un [blog post](https://www.adept.ai/blog/persimmon-8b) par Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1.**[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (de Microsoft) a été publié avec les articles - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) par Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee et Yuanzhi Li, [Textbooks Are All You Need II : Rapport technique phi-1.5](https://arxiv.org/abs/2309.05463) par Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar et Yin Tat Lee.
1.**[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (de VinAI Research) a été publié dans l'article [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) par Dat Quoc Nguyen et Anh Tuan Nguyen.
1.**[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (de Google) a été publié dans l'article [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) par Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1.**[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (de UCLA NLP) a été publié dans l'article [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) par Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1.**[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (de Sea AI Labs) a été publié dans l'article [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) par Yu, Weihao et Luo, Mi et Zhou, Pan et Si, Chenyang et Zhou, Yichen et Wang, Xinchao et Feng, Jiashi et Yan, Shuicheng.
1.**[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** a été publié dans l'article [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) par Jongho Choi et Kyogu Lee.
1.**[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (de Microsoft Research) a été publié dans l'article [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) par Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang et Ming Zhou.
1.**[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (de l'Université de Nankin, l'Université de Hong Kong, etc.) a été publié dans l'article [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) par Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo et Ling Shao.
1.**[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (de Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) publié dans l'article [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) parWenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1.**[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (de NVIDIA) a été publié dans l'article [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) par Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev et Paulius Micikevicius.
1.**[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (de l'équipe Qwen, Alibaba Group) a été publié avec le rapport technique [Qwen Technical Report](https://arxiv.org/abs/2309.16609) par Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou et Tianhang Zhu.
1.**[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (de l'équipe Qwen, Alibaba Group) a été publié avec le rapport technique [blog post](https://qwenlm.github.io/blog/qwen-moe/) par Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1.**[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (de Facebook) a été publié dans l'article [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) par Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1.**[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (de Google Research) a été publié dans l'article [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) par Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat et Ming-Wei Chang.
1.**[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (de Google) publié dans l'article [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) parthe Griffin, RLHF and Gemma Teams.
1.**[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (de Google Research) a été publié dans l'article [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) par Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1.**[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (de META Platforms) a été publié dans l'article [Designing Network Design Space](https://arxiv.org/abs/2003.13678) par Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1.**[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (de Google Research) a été publié dans l'article [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) par Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1.**[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (de Microsoft Research) a été publié dans l'article [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) par Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1.**[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (de Facebook), publié dans l'article [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) par Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1.**[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (de Facebook) a été publié dans l'article [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) par Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1.**[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (de WeChatAI) a été publié dans l'article [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) par HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1.**[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (de ZhuiyiTechnology), publié dans l'article [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) par Jianlin Su et Yu Lu et Shengfeng Pan et Bo Wen et Yunfeng Liu.
1.**[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (de Bo Peng), publié sur [this repo](https://github.com/BlinkDL/RWKV-LM) par Bo Peng.
1.**[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (de Meta AI) a été publié dans l'article [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) par l'équipe de communication transparente.
1.**[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (de Meta AI) a été publié dans l'article [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) par l'équipe de communication transparente.
1.**[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (de NVIDIA) a été publié dans l'article [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) par Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1.**[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (de Beijing Academy of Artificial Intelligence (BAAI) publié dans l'article [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) parXinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1.**[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (de Meta AI) a été publié dans l'article [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) par Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1.**[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (de ASAPP) a été publié dans l'article [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) par Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1.**[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (de ASAPP) a été publié dans l'article [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) par Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1.**[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (de Google AI) a été publié dans l'article [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) par Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1.**[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (de Microsoft Research) a été publié dans l'article [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) par Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1.**[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (de Facebook), publié dans l'article [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) par Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1.**[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (de Facebook), publié dans l'article [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) par Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1.**[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (de l'Université de Tel Aviv), publié dans l'article [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) par Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1.**[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (de Berkeley) a été publié dans l'article [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) par Forrest N. Iandola, Albert E. Shaw, Ravi Krishna et Kurt W. Keutzer.
1.**[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1.**[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1.**[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (de MagicLeap) publié dans l'article [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) parDaniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1.**[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (de MBZUAI) a été publié dans l'article [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) par Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1.**[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (de Microsoft) a été publié dans l'article [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) par Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1.**[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (de Microsoft) a été publié dans l'article [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) par Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1.**[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (de l'Université de Würzburg) a été publié dans l'article [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) par Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1.**[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (de Google) a été publié dans l'article [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) par William Fedus, Barret Zoph, Noam Shazeer.
1.**[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (de Google AI) a été publié dans l'article [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) par Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li et Peter J. Liu.
1.**[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (de Google AI) a été publié dans le dépôt [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) par Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li et Peter J. Liu.
1.**[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (de Microsoft Research) a été publié dans l'article [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) par Brandon Smock, Rohith Pesala, Robin Abraham.
1.**[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (de Google AI) a été publié dans l'article [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) par Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno et Julian Martin Eisenschlos.
1.**[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (de Microsoft Research) a été publié dans l'article [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) par Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen et Jian-Guang Lou.
1.**[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (de HuggingFace).
1.**[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (de Facebook) a été publié dans l'article [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) par Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1.**[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (de l'Université de Californie à Berkeley) a été publié dans l'article [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) par Michael Janner, Qiyang Li, Sergey Levine.
1.**[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (de Google/CMU) a été publié dans l'article [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) par Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1.**[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (de Microsoft), publié dans l'article [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) par Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1.**[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (de l'UNC Chapel Hill) a été publié dans l'article [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) par Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1.**[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (d'Intel) a été publié dans l'article [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) par Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1.**[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (de Microsoft Research) publié dans l'article [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) parZineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1.**[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (de Google Research) a été publié dans l'article [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) par Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler.
1.**[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (de Google Research) a été publié dans l'article [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) par Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1.**[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (de Microsoft Research) a été publié dans l'article [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) par Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1.**[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (de Microsoft Research) a été publié dans l'article [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) par Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1.**[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (de Kakao Corporation) a été publié dans l'article [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) par Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim et Juntae Kim.
1.**[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (de l'Université de Pékin) a été publié dans l'article [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) par Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1.**[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (de l'Université Tsinghua et de l'Université Nankai) publié dans l'article [Visual Attention Network](https://arxiv.org/abs/2202.09741) par Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1.**[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (du groupe d'informatique multimédia, Université de Nankin) publié dans l'article [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) par Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1.**[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (du NAVER AI Lab/Kakao Enterprise/Kakao Brain) publié dans l'article [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) par Wonjae Kim, Bokyung Son, Ildoo Kim.
1.**[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (de l'Université du Wisconsin–Madison) publié dans l'article [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) par Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1.**[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (de Google AI) publié dans l'article [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) par Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1.**[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (de UCLA NLP) publié dans l'article [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) par Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1.**[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (de Google AI) publié dans l'article [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) par Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1.**[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (de Meta AI) publié dans l'article [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) par Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1.**[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (de Meta AI) publié dans l'article [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) par Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1.**[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (de HUST-VL) publié dans l'article [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) par Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1.**[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (de Meta AI) publié dans l'article [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) par Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1.**[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (de Kakao Enterprise) publié dans l'article [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) par Jaehyeon Kim, Jungil Kong, Juhee Son.
1.**[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (de Google Research) publié dans l'article [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) par Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1.**[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (de Facebook AI) publié dans l'article [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) par Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1.**[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (de Meta AI) publié dans l'article [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) par l'équipe Seamless Communication.
1.**[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (de Facebook AI) a été publié dans l'article [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) par Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1.**[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (de Facebook AI) a été publié dans l'article [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) par Qiantong Xu, Alexei Baevski, Michael Auli.
1.**[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (de Microsoft Research) a été publié dans l'article [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) par Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1.**[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (d'OpenAI) a été publié dans l'article [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) par Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1.**[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (de Microsoft Research) a été publié dans l'article [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) par Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1.**[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (de Meta AI) a été publié dans l'article [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) par Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1.**[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (de Facebook AI) a été publié dans l'article [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) par Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1.**[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (de Facebook) a été publié dans l'article [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) par Guillaume Lample et Alexis Conneau.
1.**[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (de Microsoft Research) a été publié dans l'article [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) par Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang et Ming Zhou.
1.**[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (de Facebook AI), publié dans l'article [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) par Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer et Veselin Stoyanov.
1.**[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (de Facebook AI), publié dans l'article [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) par Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1.**[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (de Meta AI) a été publié dans l'article [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) par Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1.**[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (de Google/CMU) a été publié dans l'article [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) par Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1.**[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (de Facebook AI) publié dans l'article [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) par Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1.**[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (de Facebook AI) publié dans l'article [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) par Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1.**[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (de l'Université Huazhong des sciences et technologies) publié dans l'article [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) par Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1.**[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (de l'Université du Wisconsin - Madison) publié dans l'article [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) par Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Vous souhaitez contribuer avec un nouveau modèle ? Nous avons ajouté un **guide détaillé et des modèles types** pour vous guider dans le processus d'ajout d'un nouveau modèle. Vous pouvez les trouver dans le dossier [`templates`](./templates) du référentiel. Assurez-vous de consulter les [directives de contribution](./CONTRIBUTING.md) et de contacter les mainteneurs ou d'ouvrir un ticket pour recueillir des commentaires avant de commencer votre pull request.
Pour vérifier si chaque modèle a une implémentation en Flax, PyTorch ou TensorFlow, ou s'il a un tokenizer associé pris en charge par la bibliothèque 🤗 Tokenizers, consultez [ce tableau](https://huggingface.co/docs/transformers/index#supported-frameworks).
Ces implémentations ont été testées sur plusieurs ensembles de données (voir les scripts d'exemple) et devraient correspondre aux performances des implémentations originales. Vous pouvez trouver plus de détails sur les performances dans la section Exemples de la [documentation](https://github.com/huggingface/transformers/tree/main/examples).
## En savoir plus
| Section | Description |
|-|-|
| [Documentation](https://huggingface.co/docs/transformers/) | Documentation complète de l'API et tutoriels |
| [Résumé des tâches](https://huggingface.co/docs/transformers/task_summary) | Tâches prises en charge par les 🤗 Transformers |
| [Tutoriel de prétraitement](https://huggingface.co/docs/transformers/preprocessing) | Utilisation de la classe `Tokenizer` pour préparer les données pour les modèles |
| [Entraînement et ajustement fin](https://huggingface.co/docs/transformers/training) | Utilisation des modèles fournis par les 🤗 Transformers dans une boucle d'entraînement PyTorch/TensorFlow et de l'API `Trainer` |
| [Tour rapide : Scripts d'ajustement fin/d'utilisation](https://github.com/huggingface/transformers/tree/main/examples) | Scripts d'exemple pour ajuster finement les modèles sur une large gamme de tâches |
| [Partage et téléversement de modèles](https://huggingface.co/docs/transformers/model_sharing) | Téléchargez et partagez vos modèles ajustés avec la communauté |
## Citation
Nous disposons désormais d'un [article](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) que vous pouvez citer pour la bibliothèque 🤗 Transformers :
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title="Transformers: State-of-the-Art Natural Language Processing",
author="Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle="Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month=oct,
year="2020",
address="Online",
publisher="Association for Computational Linguistics",
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<!---
A useful guide for English-Hindi translation of Hugging Face documentation
-Add space around English words and numbers when they appear between Hindi characters. E.g., कुल मिलाकर 100 से अधिक भाषाएँ; ट्रांसफॉर्मर लाइब्रेरी का उपयोग करता है।
-वर्गाकार उद्धरणों का प्रयोग करें, जैसे, "उद्धरण"
Dictionary
Hugging Face: गले लगाओ चेहरा
token: शब्द (और मूल अंग्रेजी को कोष्ठक में चिह्नित करें)
tokenize: टोकननाइज़ करें (और मूल अंग्रेज़ी को चिह्नित करने के लिए कोष्ठक का उपयोग करें)
tokenizer: Tokenizer (मूल अंग्रेजी में कोष्ठक के साथ)
transformer: transformer
pipeline: समनुक्रम
API: API (अनुवाद के बिना)
inference: विचार
Trainer: प्रशिक्षक। कक्षा के नाम के रूप में प्रस्तुत किए जाने पर अनुवादित नहीं किया गया।
pretrained/pretrain: पूर्व प्रशिक्षण
finetune: फ़ाइन ट्यूनिंग
community: समुदाय
example: जब विशिष्ट गोदाम example कैटलॉग करते समय "केस केस" के रूप में अनुवादित
Python data structures (e.g., list, set, dict): मूल अंग्रेजी को चिह्नित करने के लिए सूचियों, सेटों, शब्दकोशों में अनुवाद करें और कोष्ठक का उपयोग करें
NLP/Natural Language Processing: द्वारा NLP अनुवाद के बिना प्रकट होते हैं Natural Language Processing प्रस्तुत किए जाने पर प्राकृतिक भाषा संसाधन में अनुवाद करें
🤗 Transformers 100 से अधिक भाषाओं में पाठ वर्गीकरण, सूचना निष्कर्षण, प्रश्न उत्तर, सारांशीकरण, अनुवाद, पाठ निर्माण का समर्थन करने के लिए हजारों पूर्व-प्रशिक्षित मॉडल प्रदान करता है। इसका उद्देश्य सबसे उन्नत एनएलपी तकनीक को सभी के लिए सुलभ बनाना है।
🤗 Transformers त्वरित डाउनलोड और उपयोग के लिए एक एपीआई प्रदान करता है, जिससे आप किसी दिए गए पाठ पर एक पूर्व-प्रशिक्षित मॉडल ले सकते हैं, इसे अपने डेटासेट पर ठीक कर सकते हैं और इसे [मॉडल हब](https://huggingface.co/models) के माध्यम से समुदाय के साथ साझा कर सकते हैं। इसी समय, प्रत्येक परिभाषित पायथन मॉड्यूल पूरी तरह से स्वतंत्र है, जो संशोधन और तेजी से अनुसंधान प्रयोगों के लिए सुविधाजनक है।
🤗 Transformers तीन सबसे लोकप्रिय गहन शिक्षण पुस्तकालयों का समर्थन करता है: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — और इसके साथ निर्बाध रूप से एकीकृत होता है। आप अपने मॉडल को सीधे एक ढांचे के साथ प्रशिक्षित कर सकते हैं और दूसरे के साथ लोड और अनुमान लगा सकते हैं।
## ऑनलाइन डेमो
आप सबसे सीधे मॉडल पृष्ठ पर परीक्षण कर सकते हैं [model hub](https://huggingface.co/models) मॉडल पर। हम [निजी मॉडल होस्टिंग, मॉडल संस्करण, और अनुमान एपीआई](https://huggingface.co/pricing) भी प्रदान करते हैं।。
यहाँ कुछ उदाहरण हैं:
- [शब्द को भरने के लिए मास्क के रूप में BERT का प्रयोग करें](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [इलेक्ट्रा के साथ नामित इकाई पहचान](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [जीपीटी-2 के साथ टेक्स्ट जनरेशन](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [रॉबर्टा के साथ प्राकृतिक भाषा निष्कर्ष](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [बार्ट के साथ पाठ सारांश](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [डिस्टिलबर्ट के साथ प्रश्नोत्तर](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [अनुवाद के लिए T5 का प्रयोग करें](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Write With Transformer](https://transformer.huggingface.co)**,हगिंग फेस टीम द्वारा बनाया गया, यह एक आधिकारिक पाठ पीढ़ी है demo。
## यदि आप हगिंग फेस टीम से बीस्पोक समर्थन की तलाश कर रहे हैं
हम त्वरित उपयोग के लिए मॉडल प्रदान करते हैं `pipeline` (पाइपलाइन) एपीआई। पाइपलाइन पूर्व-प्रशिक्षित मॉडल और संबंधित पाठ प्रीप्रोसेसिंग को एकत्रित करती है। सकारात्मक और नकारात्मक भावना को निर्धारित करने के लिए पाइपलाइनों का उपयोग करने का एक त्वरित उदाहरण यहां दिया गया है:
```python
>>>fromtransformersimportpipeline
# भावना विश्लेषण पाइपलाइन का उपयोग करना
>>>classifier=pipeline('sentiment-analysis')
>>>classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label':'POSITIVE','score':0.9996980428695679}]
```
कोड की दूसरी पंक्ति पाइपलाइन द्वारा उपयोग किए गए पूर्व-प्रशिक्षित मॉडल को डाउनलोड और कैश करती है, जबकि कोड की तीसरी पंक्ति दिए गए पाठ पर मूल्यांकन करती है। यहां उत्तर 99 आत्मविश्वास के स्तर के साथ "सकारात्मक" है।
कई एनएलपी कार्यों में आउट ऑफ़ द बॉक्स पाइपलाइनों का पूर्व-प्रशिक्षण होता है। उदाहरण के लिए, हम किसी दिए गए पाठ से किसी प्रश्न का उत्तर आसानी से निकाल सकते हैं:
उत्तर देने के अलावा, पूर्व-प्रशिक्षित मॉडल संगत आत्मविश्वास स्कोर भी देता है, जहां उत्तर टोकनयुक्त पाठ में शुरू और समाप्त होता है। आप [इस ट्यूटोरियल](https://huggingface.co/docs/transformers/task_summary) से पाइपलाइन एपीआई द्वारा समर्थित कार्यों के बारे में अधिक जान सकते हैं।
अपने कार्य पर किसी भी पूर्व-प्रशिक्षित मॉडल को डाउनलोड करना और उसका उपयोग करना भी कोड की तीन पंक्तियों की तरह सरल है। यहाँ PyTorch संस्करण के लिए एक उदाहरण दिया गया है:
```python
>>> from transformers import AutoTokenizer, AutoModel
टोकननाइज़र सभी पूर्व-प्रशिक्षित मॉडलों के लिए प्रीप्रोसेसिंग प्रदान करता है और इसे सीधे एक स्ट्रिंग (जैसे ऊपर दिए गए उदाहरण) या किसी सूची पर बुलाया जा सकता है। यह एक डिक्शनरी (तानाशाही) को आउटपुट करता है जिसे आप डाउनस्ट्रीम कोड में उपयोग कर सकते हैं या `**` अनपैकिंग एक्सप्रेशन के माध्यम से सीधे मॉडल को पास कर सकते हैं।
मॉडल स्वयं एक नियमित [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) या [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (आपके बैकएंड के आधार पर), जो हो सकता है सामान्य तरीके से उपयोग किया जाता है। [यह ट्यूटोरियल](https://huggingface.co/transformers/training.html) बताता है कि इस तरह के मॉडल को क्लासिक PyTorch या TensorFlow प्रशिक्षण लूप में कैसे एकीकृत किया जाए, या हमारे `ट्रेनर` एपीआई का उपयोग कैसे करें ताकि इसे जल्दी से फ़ाइन ट्यून किया जा सके।एक नया डेटासेट पे।
## ट्रांसफार्मर का उपयोग क्यों करें?
1. उपयोग में आसानी के लिए उन्नत मॉडल:
- एनएलयू और एनएलजी पर बेहतर प्रदर्शन
- प्रवेश के लिए कम बाधाओं के साथ शिक्षण और अभ्यास के अनुकूल
- उपयोगकर्ता-सामना करने वाले सार तत्व, केवल तीन वर्गों को जानने की जरूरत है
- सभी मॉडलों के लिए एकीकृत एपीआई
1. कम कम्प्यूटेशनल ओवरहेड और कम कार्बन उत्सर्जन:
- शोधकर्ता हर बार नए सिरे से प्रशिक्षण देने के बजाय प्रशिक्षित मॉडल साझा कर सकते हैं
- इंजीनियर गणना समय और उत्पादन ओवरहेड को कम कर सकते हैं
- दर्जनों मॉडल आर्किटेक्चर, 2,000 से अधिक पूर्व-प्रशिक्षित मॉडल, 100 से अधिक भाषाओं का समर्थन
1.मॉडल जीवनचक्र के हर हिस्से को शामिल करता है:
- कोड की केवल 3 पंक्तियों में उन्नत मॉडलों को प्रशिक्षित करें
- मॉडल को मनमाने ढंग से विभिन्न डीप लर्निंग फ्रेमवर्क के बीच स्थानांतरित किया जा सकता है, जैसा आप चाहते हैं
- निर्बाध रूप से प्रशिक्षण, मूल्यांकन और उत्पादन के लिए सबसे उपयुक्त ढांचा चुनें
1. आसानी से अनन्य मॉडल को अनुकूलित करें और अपनी आवश्यकताओं के लिए मामलों का उपयोग करें:
- हम मूल पेपर परिणामों को पुन: पेश करने के लिए प्रत्येक मॉडल आर्किटेक्चर के लिए कई उपयोग के मामले प्रदान करते हैं
- मॉडल की आंतरिक संरचना पारदर्शी और सुसंगत रहती है
- मॉडल फ़ाइल को अलग से इस्तेमाल किया जा सकता है, जो संशोधन और त्वरित प्रयोग के लिए सुविधाजनक है
## मुझे ट्रांसफॉर्मर का उपयोग कब नहीं करना चाहिए?
- यह लाइब्रेरी मॉड्यूलर न्यूरल नेटवर्क टूलबॉक्स नहीं है। मॉडल फ़ाइल में कोड जानबूझकर अल्पविकसित है, बिना अतिरिक्त सार इनकैप्सुलेशन के, ताकि शोधकर्ता अमूर्तता और फ़ाइल जंपिंग में शामिल हुए जल्दी से पुनरावृति कर सकें।
- `ट्रेनर` एपीआई किसी भी मॉडल के साथ संगत नहीं है, यह केवल इस पुस्तकालय के मॉडल के लिए अनुकूलित है। यदि आप सामान्य मशीन लर्निंग के लिए उपयुक्त प्रशिक्षण लूप कार्यान्वयन की तलाश में हैं, तो कहीं और देखें।
- हमारे सर्वोत्तम प्रयासों के बावजूद, [उदाहरण निर्देशिका](https://github.com/huggingface/transformers/tree/main/examples) में स्क्रिप्ट केवल उपयोग के मामले हैं। आपकी विशिष्ट समस्या के लिए, वे जरूरी नहीं कि बॉक्स से बाहर काम करें, और आपको कोड की कुछ पंक्तियों को सूट करने की आवश्यकता हो सकती है।
## स्थापित करना
### पिप का उपयोग करना
इस रिपॉजिटरी का परीक्षण Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ और TensorFlow 2.6+ के तहत किया गया है।
आप [वर्चुअल एनवायरनमेंट](https://docs.python.org/3/library/venv.html) में 🤗 ट्रांसफॉर्मर इंस्टॉल कर सकते हैं। यदि आप अभी तक पायथन के वर्चुअल एनवायरनमेंट से परिचित नहीं हैं, तो कृपया इसे [उपयोगकर्ता निर्देश](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) पढ़ें।
सबसे पहले, पायथन के उस संस्करण के साथ एक आभासी वातावरण बनाएं जिसका आप उपयोग करने और उसे सक्रिय करने की योजना बना रहे हैं।
फिर, आपको Flax, PyTorch या TensorFlow में से किसी एक को स्थापित करने की आवश्यकता है। अपने प्लेटफ़ॉर्म पर इन फ़्रेमवर्क को स्थापित करने के लिए, [TensorFlow स्थापना पृष्ठ](https://www.tensorflow.org/install/), [PyTorch स्थापना पृष्ठ](https://pytorch.org/get-started/locally)
देखें start-locally या [Flax स्थापना पृष्ठ](https://github.com/google/flax#quick-install).
जब इनमें से कोई एक बैकएंड सफलतापूर्वक स्थापित हो जाता है, तो ट्रांसफॉर्मर निम्नानुसार स्थापित किए जा सकते हैं:
```bash
pip install transformers
```
यदि आप उपयोग के मामलों को आज़माना चाहते हैं या आधिकारिक रिलीज़ से पहले नवीनतम इन-डेवलपमेंट कोड का उपयोग करना चाहते हैं, तो आपको [सोर्स से इंस्टॉल करना होगा](https://huggingface.co/docs/transformers/installation#installing-from-) स्रोत।
### कोंडा का उपयोग करना
ट्रांसफॉर्मर कोंडा के माध्यम से निम्नानुसार स्थापित किया जा सकता है:
```shell script
conda install conda-forge::transformers
```
> **_नोट:_** `huggingface` चैनल से `transformers` इंस्टॉल करना पुराना पड़ चुका है।
कोंडा के माध्यम से Flax, PyTorch, या TensorFlow में से किसी एक को स्थापित करने के लिए, निर्देशों के लिए उनके संबंधित स्थापना पृष्ठ देखें।
## मॉडल आर्किटेक्चर
[उपयोगकर्ता](https://huggingface.co/users) और [organization](https://huggingface.co) द्वारा ट्रांसफॉर्मर समर्थित [**सभी मॉडल चौकियों**](https://huggingface.co/models/users) हगिंगफेस.को/ऑर्गनाइजेशन), सभी को बिना किसी बाधा के हगिंगफेस.को [मॉडल हब](https://huggingface.co) के साथ एकीकृत किया गया है।
चौकियों की वर्तमान संख्या: 
🤗 ट्रांसफॉर्मर वर्तमान में निम्नलिखित आर्किटेक्चर का समर्थन करते हैं (मॉडल के अवलोकन के लिए [यहां देखें](https://huggingface.co/docs/transformers/model_summary)):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (Google Research and the Toyota Technological Institute at Chicago) साथ थीसिस [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), झेंझोंग लैन, मिंगदा चेन, सेबेस्टियन गुडमैन, केविन गिम्पेल, पीयूष शर्मा, राडू सोरिकट
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research से) Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. द्वाराअनुसंधान पत्र [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) के साथ जारी किया गया
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (फेसबुक) साथ थीसिस [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) पर निर्भर माइक लुईस, यिनहान लियू, नमन गोयल, मार्जन ग़ज़विनिनेजाद, अब्देलरहमान मोहम्मद, ओमर लेवी, वेस स्टोयानोव और ल्यूक ज़ेटलमॉयर
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (से École polytechnique) साथ थीसिस [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) पर निर्भर Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis रिहाई।
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (VinAI Research से) साथ में पेपर [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701)गुयेन लुओंग ट्रान, डुओंग मिन्ह ले और डाट क्वोक गुयेन द्वारा पोस्ट किया गया।
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (Microsoft से) साथ में कागज [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) Hangbo Bao, Li Dong, Furu Wei द्वारा।
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (गूगल से) साथ वाला पेपर [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) जैकब डेवलिन, मिंग-वेई चांग, केंटन ली और क्रिस्टीना टौटानोवा द्वारा प्रकाशित किया गया था। .
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (गूगल से) साथ देने वाला पेपर [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) साशा रोठे, शशि नारायण, अलियाक्सि सेवेरिन द्वारा।
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (VinAI Research से) साथ में पेपर [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) डाट क्वोक गुयेन, थान वु और अन्ह तुआन गुयेन द्वारा प्रकाशित।
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (गूगल रिसर्च से) साथ वाला पेपर [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) मंज़िल ज़हीर, गुरु गुरुगणेश, अविनावा दुबे, जोशुआ आइंस्ली, क्रिस अल्बर्टी, सैंटियागो ओंटानोन, फिलिप फाम, अनिरुद्ध रावुला, किफ़ान वांग, ली यांग, अमर अहमद द्वारा।
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (गूगल रिसर्च से) साथ में पेपर [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) मंज़िल ज़हीर, गुरु गुरुगणेश, अविनावा दुबे, जोशुआ आइंस्ली, क्रिस अल्बर्टी, सैंटियागो ओंटानन, फिलिप फाम द्वारा , अनिरुद्ध रावुला, किफ़ान वांग, ली यांग, अमर अहमद द्वारा पोस्ट किया गया।
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (फेसबुक से) साथ में कागज [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) स्टीफन रोलर, एमिली दीनन, नमन गोयल, दा जू, मैरी विलियमसन, यिनहान लियू, जिंग जू, मायल ओट, कर्ट शस्टर, एरिक एम। स्मिथ, वाई-लैन बॉरो, जेसन वेस्टन द्वारा।
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (फेसबुक से) साथ में पेपर [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) स्टीफन रोलर, एमिली दीनन, नमन गोयल, दा जू, मैरी विलियमसन, यिनहान लियू, जिंग जू, मायल ओट, कर्ट शस्टर, एरिक एम स्मिथ, वाई-लैन बॉरो, जेसन वेस्टन द्वारा।
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce से) Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. द्वाराअनुसंधान पत्र [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) के साथ जारी किया गया
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (एलेक्सा से) कागज के साथ [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) एड्रियन डी विंटर और डैनियल जे पेरी द्वारा।
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (हरबिन इंस्टिट्यूट ऑफ़ टेक्नोलॉजी/माइक्रोसॉफ्ट रिसर्च एशिया/इंटेल लैब्स से) कागज के साथ [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (NAVER CLOVA से) Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park. द्वाराअनुसंधान पत्र [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) के साथ जारी किया गया
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google अनुसंधान से) साथ में कागज [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Linting Xue, Aditya Barua, Noah Constant, रामी अल-रफू, शरण नारंग, मिहिर काले, एडम रॉबर्ट्स, कॉलिन रैफेल द्वारा पोस्ट किया गया।
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (इनरिया/फेसबुक/सोरबोन से) साथ में कागज [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) लुई मार्टिन*, बेंजामिन मुलर*, पेड्रो जेवियर ऑर्टिज़ सुआरेज़*, योआन ड्यूपॉन्ट, लॉरेंट रोमरी, एरिक विलेमोन्टे डे ला क्लर्जरी, जैमे सेडाह और बेनोइट सगोट द्वारा।
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google रिसर्च से) साथ में दिया गया पेपर [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) जोनाथन एच क्लार्क, डैन गैरेट, यूलिया टर्क, जॉन विएटिंग द्वारा।
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI से) Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov. द्वाराअनुसंधान पत्र [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) के साथ जारी किया गया
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (सेल्सफोर्स से) साथ में पेपर [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) एरिक निजकैंप, बो पैंग, हिरोआकी हयाशी, लिफू तू, हुआन वांग, यिंगबो झोउ, सिल्वियो सावरेस, कैमिंग जिओंग रिलीज।
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI से) Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve. द्वाराअनुसंधान पत्र [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) के साथ जारी किया गया
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (Cohere से) Cohere. द्वाराअनुसंधान पत्र [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) के साथ जारी किया गया
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (माइक्रोसॉफ्ट रिसर्च एशिया से) कागज के साथ [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) डेपू मेंग, ज़ियाओकांग चेन, ज़ेजिया फैन, गैंग ज़ेंग, होउकियांग ली, युहुई युआन, लेई सन, जिंगडोंग वांग द्वारा।
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech से) साथ में कागज [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) जिहांग जियांग, वीहाओ यू, डाकान झोउ, युनपेंग चेन, जियाशी फेंग, शुइचेंग यान द्वारा।
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI से) साथ वाला पेपर [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) ज़ुआंग लियू, हेंज़ी माओ, चाओ-युआन वू, क्रिस्टोफ़ फीचटेनहोफ़र, ट्रेवर डेरेल, सैनिंग ज़ी द्वारा।
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (सिंघुआ यूनिवर्सिटी से) साथ में पेपर [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) झेंग्यान झांग, जू हान, हाओ झोउ, पेई के, युक्सियन गु, डेमिंग ये, युजिया किन, युशेंग सु, हाओझे जी, जियान गुआन, फैंचाओ क्यूई, ज़ियाओझी वांग, यानान झेंग द्वारा , गुओयांग ज़ेंग, हुआनकी काओ, शेंगकी चेन, डाइक्सुआन ली, ज़ेनबो सन, ज़ियुआन लियू, मिनली हुआंग, वेंटाओ हान, जी तांग, जुआनज़ी ली, ज़ियाओयान झू, माओसोंग सन।
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (सेल्सफोर्स से) साथ में पेपर [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) नीतीश शिरीष केसकर*, ब्रायन मैककैन*, लव आर. वार्ष्णेय, कैमिंग जिओंग और रिचर्ड द्वारा सोचर द्वारा जारी किया गया।
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft से) साथ में दिया गया पेपर [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) हैपिंग वू, बिन जिओ, नोएल कोडेला, मेंगचेन लियू, जियांग दाई, लू युआन, लेई झांग द्वारा।
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (फेसबुक से) साथ में कागज [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) एलेक्सी बाएव्स्की, वेई-निंग सू, कियानटोंग जू, अरुण बाबू, जियाताओ गु, माइकल औली द्वारा पोस्ट किया गया।
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft से) साथ में दिया गया पेपर [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) पेंगचेंग हे, ज़ियाओडोंग लियू, जियानफेंग गाओ, वीज़ू चेन द्वारा।
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft से) साथ में दिया गया पेपर [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) पेंगचेंग हे, ज़ियाओडोंग लियू, जियानफेंग गाओ, वीज़ू चेन द्वारा पोस्ट किया गया।
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (बर्कले/फेसबुक/गूगल से) पेपर के साथ [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) लिली चेन, केविन लू, अरविंद राजेश्वरन, किमिन ली, आदित्य ग्रोवर, माइकल लास्किन, पीटर एबील, अरविंद श्रीनिवास, इगोर मोर्डच द्वारा पोस्ट किया गया।
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (सेंसटाइम रिसर्च से) साथ में पेपर [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, जिफेंग दाई द्वारा पोस्ट किया गया।
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (फेसबुक से) साथ में पेपर [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) ह्यूगो टौव्रोन, मैथ्यू कॉर्ड, मैथिज्स डूज़, फ़्रांसिस्को मस्सा, एलेक्ज़ेंडर सबलेरोल्स, हर्वे जेगौ द्वारा।
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI से) Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. द्वाराअनुसंधान पत्र [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) के साथ जारी किया गया
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (University of Hong Kong and TikTok से) Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao. द्वाराअनुसंधान पत्र [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) के साथ जारी किया गया
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (फेसबुक से) साथ में कागज [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) निकोलस कैरियन, फ़्रांसिस्को मस्सा, गेब्रियल सिनेव, निकोलस उसुनियर, अलेक्जेंडर किरिलोव, सर्गेई ज़ागोरुयको द्वारा।
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI से) Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski. द्वाराअनुसंधान पत्र [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) के साथ जारी किया गया
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (हगिंगफेस से), साथ में कागज [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) विक्टर सनह, लिसांड्रे डेब्यू और थॉमस वुल्फ द्वारा पोस्ट किया गया। यही तरीका GPT-2 को [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERta से [DistilRoBERta](https://github.com) पर कंप्रेस करने के लिए भी लागू किया जाता है। / हगिंगफेस/ट्रांसफॉर्मर्स/ट्री/मेन/उदाहरण/डिस्टिलेशन), बहुभाषी BERT से [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) और डिस्टिलबर्ट का जर्मन संस्करण।
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) जुनलॉन्ग ली, यिहेंग जू, टेंगचाओ लव, लेई कुई, चा झांग द्वारा फुरु वेई द्वारा पोस्ट किया गया।
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (फेसबुक से) साथ में पेपर [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) व्लादिमीर करपुखिन, बरलास ओज़ुज़, सेवन मिन, पैट्रिक लुईस, लेडेल वू, सर्गेई एडुनोव, डैनकी चेन, और वेन-ताऊ यिह द्वारा।
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (इंटेल लैब्स से) साथ में कागज [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) रेने रैनफ्टल, एलेक्सी बोचकोवस्की, व्लादलेन कोल्टन द्वारा।
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google रिसर्च/स्टैनफोर्ड यूनिवर्सिटी से) साथ में दिया गया पेपर [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) केविन क्लार्क, मिन्ह-थांग लुओंग, क्वोक वी. ले, क्रिस्टोफर डी. मैनिंग द्वारा पोस्ट किया गया।
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI से) Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. द्वाराअनुसंधान पत्र [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) के साथ जारी किया गया
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google रिसर्च से) साथ में दिया गया पेपर [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) साशा रोठे, शशि नारायण, अलियाक्सि सेवेरिन द्वारा।
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)**(Baidu से) साथ देने वाला पेपर [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) यू सन, शुओहुआन वांग, युकुन ली, शिकुन फेंग, ज़ुई चेन, हान झांग, शिन तियान, डैनक्सियांग झू, हाओ तियान, हुआ वू द्वारा पोस्ट किया गया।
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu से) Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. द्वाराअनुसंधान पत्र [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) के साथ जारी किया गया
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (मेटा AI से) ट्रांसफॉर्मर प्रोटीन भाषा मॉडल हैं। **ESM-1b** पेपर के साथ जारी किया गया था [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) जेसन लियू, डेमी गुओ, मायल ओट, सी. लॉरेंस ज़िटनिक, जेरी मा और रॉब फर्गस। **ESM-1v** को पेपर के साथ जारी किया गया था [भाषा मॉडल प्रोटीन फ़ंक्शन पर उत्परिवर्तन के प्रभावों की शून्य-शॉट भविष्यवाणी को सक्षम करते हैं](https://doi.org/10.1101/2021.07.09.450648) जोशुआ मेयर, रोशन राव, रॉबर्ट वेरकुइल, जेसन लियू, टॉम सर्कु और अलेक्जेंडर राइव्स द्वारा। **ESM-2** को पेपर के साथ जारी किया गया था [भाषा मॉडल विकास के पैमाने पर प्रोटीन अनुक्रम सटीक संरचना भविष्यवाणी को सक्षम करते हैं](https://doi.org/10.1101/2022.07.20.500902) ज़ेमिंग लिन, हलील अकिन, रोशन राव, ब्रायन ही, झोंगकाई झू, वेंटिंग लू, ए द्वारा लान डॉस सैंटोस कोस्टा, मरियम फ़ज़ल-ज़रंडी, टॉम सर्कू, साल कैंडिडो, अलेक्जेंडर राइव्स।
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (ESPnet and Microsoft Research से) Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang. द्वाराअनुसंधान पत्र [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) के साथ जारी किया गया
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS से) साथ वाला पेपर [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, बेंजामिन लेकोउटेक्स, अलेक्जेंड्रे अल्लाउज़ेन, बेनोइट क्रैबे, लॉरेंट बेसेसियर, डिडिएर श्वाब द्वारा।
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) साथ वाला पेपर अमनप्रीत सिंह, रोंगहांग हू, वेदानुज गोस्वामी, गुइल्यूम कुएरॉन, वोज्शिएक गालुबा, मार्कस रोहरबैक, और डौवे कीला द्वारा।
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (गूगल रिसर्च से) साथ वाला पेपर [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) जेम्स ली-थॉर्प, जोशुआ आइंस्ली, इल्या एकस्टीन, सैंटियागो ओंटानन द्वारा।
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (Microsoft Research से) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. द्वाराअनुसंधान पत्र [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) के साथ जारी किया गया
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) जिहांग दाई, गुओकुन लाई, यिमिंग यांग, क्वोक वी. ले द्वारा रिहाई।
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (Google से) the Gemma Google team. द्वाराअनुसंधान पत्र [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) के साथ जारी किया गया
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST से) साथ वाला पेपर [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) डोयोन किम, वूंगह्युन गा, प्युंगवान आह, डोंगग्यू जू, सेहवान चुन, जुनमो किम द्वारा।
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI से) साथ में दिया गया पेपर [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) एलेक रैडफोर्ड, कार्तिक नरसिम्हन, टिम सालिमन्स और इल्या सुत्स्केवर द्वारा।
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (EleutherAI से) रिपॉजिटरी के साथ [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) रिलीज। सिड ब्लैक, स्टेला बिडरमैन, लियो गाओ, फिल वांग और कॉनर लेही द्वारा पोस्ट किया गया।
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI से) पेपर के साथ जारी किया गया [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) सिड ब्लैक, स्टेला बिडरमैन, एरिक हैलाहन, क्वेंटिन एंथोनी, लियो गाओ, लॉरेंस गोल्डिंग, होरेस हे, कॉनर लेही, काइल मैकडोनेल, जेसन फांग, माइकल पाइलर, यूएसवीएसएन साई प्रशांत द्वारा , शिवांशु पुरोहित, लारिया रेनॉल्ड्स, जोनाथन टो, बेन वांग, सैमुअल वेनबैक
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (ओपनएआई से) साथ में पेपर [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) एलेक रैडफोर्ड, जेफरी वू, रेवन चाइल्ड, डेविड लुआन, डारियो एमोडी द्वारा और इल्या सुत्सकेवर ने पोस्ट किया।
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (EleutherAI से) साथ वाला पेपर [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) बेन वांग और अरन कोमात्सुजाकी द्वारा।
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode से) Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra. द्वाराअनुसंधान पत्र [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) के साथ जारी किया गया
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others से) Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang. द्वाराअनुसंधान पत्र [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) के साथ जारी किया गया
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA से) साथ में कागज [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) जियारुई जू, शालिनी डी मेलो, सिफ़ी लियू, वोनमिन बायन, थॉमस ब्रेउएल, जान कौट्ज़, ज़ियाओलोंग वांग द्वारा।
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (Allegro.pl, AGH University of Science and Technology से) Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik. द्वाराअनुसंधान पत्र [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) के साथ जारी किया गया
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (फेसबुक से) साथ में पेपर [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) वेई-निंग सू, बेंजामिन बोल्टे, याओ-हंग ह्यूबर्ट त्साई, कुशाल लखोटिया, रुस्लान सालाखुतदीनोव, अब्देलरहमान मोहम्मद द्वारा।
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (Hugging Face से) Léo Tronchon, Hugo Laurencon, Victor Sanh. द्वाराअनुसंधान पत्र [IDEFICS2](https://huggingface.co/blog/idefics2) के साथ जारी किया गया
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce से) Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi. द्वाराअनुसंधान पत्र [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) के साथ जारी किया गया
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (माइक्रोसॉफ्ट रिसर्च एशिया से) साथ देने वाला पेपर [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) युपन हुआंग, टेंगचाओ लव, लेई कुई, युटोंग लू, फुरु वेई द्वारा पोस्ट किया गया।
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (मेटा AI से) साथ वाला पेपर [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) बेन ग्राहम, अलाएल्डिन एल-नौबी, ह्यूगो टौवरन, पियरे स्टॉक, आर्मंड जौलिन, हर्वे जेगौ, मैथिज डूज़ द्वारा।
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (दक्षिण चीन प्रौद्योगिकी विश्वविद्यालय से) साथ में कागज [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) जियापेंग वांग, लियानवेन जिन, काई डिंग द्वारा पोस्ट किया गया।
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI से) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. द्वाराअनुसंधान पत्र [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) के साथ जारी किया गया
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI से) Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.. द्वाराअनुसंधान पत्र [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) के साथ जारी किया गया
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (Microsoft Research & University of Wisconsin-Madison से) Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee. द्वाराअनुसंधान पत्र [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) के साथ जारी किया गया
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (Microsoft Research & University of Wisconsin-Madison से) Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee. द्वाराअनुसंधान पत्र [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) के साथ जारी किया गया
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (मैंडी गुओ, जोशुआ आइंस्ली, डेविड यूथस, सैंटियागो ओंटानन, जियानमो नि, यूं-हुआन सुंग, यिनफेई यांग द्वारा पोस्ट किया गया।
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (स्टूडियो औसिया से) साथ में पेपर [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto द्वारा।
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC चैपल हिल से) साथ में पेपर [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) हाओ टैन और मोहित बंसल द्वारा।
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (फेसबुक से) साथ देने वाला पेपर [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) एंजेला फैन, श्रुति भोसले, होल्गर श्वेन्क, झी मा, अहमद अल-किश्की, सिद्धार्थ गोयल, मनदीप बैनेस, ओनूर सेलेबी, गुइल्लाम वेन्जेक, विश्रव चौधरी, नमन गोयल, टॉम बर्च, विटाली लिपचिंस्की, सर्गेई एडुनोव, एडौर्ड द्वारा ग्रेव, माइकल औली, आर्मंड जौलिन द्वारा पोस्ट किया गया।
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (Albert Gu and Tri Dao से) Albert Gu and Tri Dao. द्वाराअनुसंधान पत्र [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) के साथ जारी किया गया
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Jörg द्वारा [OPUS](http://opus.nlpl.eu/) डेटा से प्रशिक्षित मशीनी अनुवाद मॉडल पोस्ट किया गया टाइडेमैन द्वारा। [मैरियन फ्रेमवर्क](https://marian-nmt.github.io/) माइक्रोसॉफ्ट ट्रांसलेटर टीम द्वारा विकसित।
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (माइक्रोसॉफ्ट रिसर्च एशिया से) साथ में पेपर [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) जुनलॉन्ग ली, यिहेंग जू, लेई कुई, फुरु द्वारा वी द्वारा पोस्ट किया गया।
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC से) Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. द्वाराअनुसंधान पत्र [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) के साथ जारी किया गया
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (मेटा और UIUC से) पेपर के साथ जारी किया गया [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) बोवेन चेंग, अलेक्जेंडर जी. श्विंग, अलेक्जेंडर किरिलोव द्वारा >>>>>> रिबेस ठीक करें
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI से) Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. द्वाराअनुसंधान पत्र [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) के साथ जारी किया गया
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (फेसबुक से) साथ में पेपर [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) युकिंग टैंग, चाउ ट्रान, जियान ली, पेंग-जेन चेन, नमन गोयल, विश्रव चौधरी, जियाताओ गु, एंजेला फैन द्वारा।
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook से) Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. द्वाराअनुसंधान पत्र [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) के साथ जारी किया गया
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA से) कागज के साथ [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) मोहम्मद शोएबी, मोस्टोफा पटवारी, राउल पुरी, पैट्रिक लेग्रेस्ले, जेरेड कैस्पर और ब्रायन कैटानज़ारो द्वारा।
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA से) साथ वाला पेपर [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) मोहम्मद शोएबी, मोस्टोफा पटवारी, राउल पुरी, पैट्रिक लेग्रेस्ले, जेरेड कैस्पर और ब्रायन कैटानज़ारो द्वारा पोस्ट किया गया।
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research से) Peng Wang, Cheng Da, and Cong Yao. द्वाराअनुसंधान पत्र [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) के साथ जारी किया गया
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (फ्रॉम Studio Ousia) साथ में पेपर [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) रयोकन री, इकुया यामाडा, और योशिमासा त्सुरोका द्वारा।
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook से) Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli. द्वाराअनुसंधान पत्र [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) के साथ जारी किया गया
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, और Denny Zhou द्वारा पोस्ट किया गया।
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple से) साथ में कागज [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) सचिन मेहता और मोहम्मद रस्तगरी द्वारा पोस्ट किया गया।
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple से) Sachin Mehta and Mohammad Rastegari. द्वाराअनुसंधान पत्र [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) के साथ जारी किया गया
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML से) the MosaicML NLP Team. द्वाराअनुसंधान पत्र [llm-foundry](https://github.com/mosaicml/llm-foundry/) के साथ जारी किया गया
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison से) Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh. द्वाराअनुसंधान पत्र [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) के साथ जारी किया गया
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI से) साथ वाला पेपर [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) लिंटिंग ज़ू, नोआ कॉन्सटेंट, एडम रॉबर्ट्स, मिहिर काले, रामी अल-रफू, आदित्य सिद्धांत, आदित्य बरुआ, कॉलिन रैफेल द्वारा पोस्ट किया गया।
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (हुआवेई नूह के आर्क लैब से) साथ में कागज़ [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) जुन्किउ वेई, ज़ियाओज़े रेन, ज़िआओगुआंग ली, वेनयोंग हुआंग, यी लियाओ, याशेंग वांग, जियाशू लिन, शिन जियांग, जिओ चेन और कुन लियू द्वारा।
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (फ्रॉम मेटा) साथ में पेपर [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) एनएलएलबी टीम द्वारा प्रकाशित।
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta से) the NLLB team. द्वाराअनुसंधान पत्र [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) के साथ जारी किया गया
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (Meta AI से) Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic. द्वाराअनुसंधान पत्र [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) के साथ जारी किया गया
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में कागज [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) युनयांग ज़िओंग, झानपेंग ज़ेंग, रुद्रसिस चक्रवर्ती, मिंगक्सिंग टैन, ग्लेन फंग, यिन ली, विकास सिंह द्वारा पोस्ट किया गया।
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs से) पेपर [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) जितेश जैन, जिआचेन ली, मांगटिक चिउ, अली हसनी, निकिता ओरलोव, हम्फ्री शि के द्वारा जारी किया गया है।
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI से) साथ में कागज [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) मैथियास मिंडरर, एलेक्सी ग्रिट्सेंको, ऑस्टिन स्टोन, मैक्सिम न्यूमैन, डिर्क वीसेनबोर्न, एलेक्सी डोसोवित्स्की, अरविंद महेंद्रन, अनुराग अर्नब, मुस्तफा देहघानी, ज़ुओरन शेन, जिओ वांग, ज़ियाओहुआ झाई, थॉमस किफ़, और नील हॉल्सबी द्वारा पोस्ट किया गया।
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI से) Matthias Minderer, Alexey Gritsenko, Neil Houlsby. द्वाराअनुसंधान पत्र [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) के साथ जारी किया गया
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** ( IBM Research से) Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. द्वाराअनुसंधान पत्र [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) के साथ जारी किया गया
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (IBM से) Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. द्वाराअनुसंधान पत्र [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) के साथ जारी किया गया
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google की ओर से) साथ में दिया गया पेपर [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) जेसन फांग, याओ झाओ, पीटर जे लियू द्वारा।
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (दीपमाइंड से) साथ में पेपर [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) एंड्रयू जेगल, सेबेस्टियन बोरग्यूड, जीन-बैप्टिस्ट अलायराक, कार्ल डोर्श, कैटलिन इओनेस्कु, डेविड द्वारा डिंग, स्कंद कोप्पुला, डैनियल ज़ोरान, एंड्रयू ब्रॉक, इवान शेलहैमर, ओलिवियर हेनाफ, मैथ्यू एम। बोट्विनिक, एंड्रयू ज़िसरमैन, ओरिओल विनियल्स, जोआओ कैरेरा द्वारा पोस्ट किया गया।
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (ADEPT से) Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani. द्वाराअनुसंधान पत्र [blog post](https://www.adept.ai/blog/persimmon-8b) के साथ जारी किया गया
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research से) कागज के साथ [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) डैट क्वोक गुयेन और अन्ह तुआन गुयेन द्वारा पोस्ट किया गया।
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google से) Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. द्वाराअनुसंधान पत्र [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) के साथ जारी किया गया
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP से) साथ वाला पेपर [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) वसी उद्दीन अहमद, सैकत चक्रवर्ती, बैशाखी रे, काई-वेई चांग द्वारा।
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) यू यान, वीज़ेन क्यूई, येयुन गोंग, दयाहेंग लियू, नान डुआन, जिउशेंग चेन, रुओफ़ेई झांग और मिंग झोउ द्वारा पोस्ट किया गया।
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. से) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. द्वाराअनुसंधान पत्र [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) के साथ जारी किया गया
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc. से) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. द्वाराअनुसंधान पत्र [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) के साथ जारी किया गया
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA से) साथ वाला पेपर [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) हाओ वू, पैट्रिक जुड, जिआओजी झांग, मिखाइल इसेव और पॉलियस माइकेविसियस द्वारा।
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (the Qwen team, Alibaba Group से) Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu. द्वाराअनुसंधान पत्र [Qwen Technical Report](https://arxiv.org/abs/2309.16609) के साथ जारी किया गया
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (the Qwen team, Alibaba Group से) Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou. द्वाराअनुसंधान पत्र [blog post](https://qwenlm.github.io/blog/qwen-moe/) के साथ जारी किया गया
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google अनुसंधान से) केल्विन गु, केंटन ली, ज़ोरा तुंग, पानुपोंग पसुपत और मिंग-वेई चांग द्वारा साथ में दिया गया पेपर [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909)।
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (Google से) the Griffin, RLHF and Gemma Teams. द्वाराअनुसंधान पत्र [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) के साथ जारी किया गया
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (META रिसर्च से) [Designing Network Design Space](https://arxiv.org/abs/2003.13678) पेपर के साथ जारी किया गया एब्स/2003.13678) इलिजा राडोसावोविक, राज प्रतीक कोसाराजू, रॉस गिर्शिक, कैमिंग ही, पिओटर डॉलर द्वारा।
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (गूगल रिसर्च से) साथ वाला पेपर [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) ह्युंग वोन चुंग, थिबॉल्ट फ़ेवरी, हेनरी त्साई, एम. जॉनसन, सेबेस्टियन रुडर द्वारा।
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (माइक्रोसॉफ्ट रिसर्च से) [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) कैमिंग हे, जियांग्यु झांग, शाओकिंग रेन, जियान सन द्वारा।
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (झुईई टेक्नोलॉजी से), साथ में पेपर [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) जियानलिन सु और यू लू और शेंगफेंग पैन और बो वेन और युनफेंग लियू द्वारा प्रकाशित।
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng से) Bo Peng. द्वाराअनुसंधान पत्र [this repo](https://github.com/BlinkDL/RWKV-LM) के साथ जारी किया गया
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (Beijing Academy of Artificial Intelligence (BAAI से) Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang. द्वाराअनुसंधान पत्र [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) के साथ जारी किया गया
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI से) Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. द्वाराअनुसंधान पत्र [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) के साथ जारी किया गया
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP से) साथ देने वाला पेपर [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) फेलिक्स वू, क्वांगयुन किम, जिंग पैन, क्यू हान, किलियन क्यू. वेनबर्गर, योव आर्टज़ी द्वारा।
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP से) साथ में पेपर [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) फेलिक्स वू, क्वांगयुन किम, जिंग पैन, क्यू हान, किलियन क्यू. वेनबर्गर, योआव आर्टज़ी द्वारा पोस्ट किया गया।
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (Google AI से) Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer. द्वाराअनुसंधान पत्र [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) के साथ जारी किया गया
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (फेसबुक से), साथ में पेपर [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) चांगहान वांग, यूं तांग, जुताई मा, ऐनी वू, दिमित्रो ओखोनको, जुआन पिनो द्वारा पोस्ट किया गया。
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (फेसबुक से) साथ में पेपर [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) चांगहान वांग, ऐनी वू, जुआन पिनो, एलेक्सी बेवस्की, माइकल औली, एलेक्सिस द्वारा Conneau द्वारा पोस्ट किया गया।
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (तेल अवीव यूनिवर्सिटी से) साथ में पेपर [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) ओरि राम, युवल कर्स्टन, जोनाथन बेरेंट, अमीर ग्लोबर्सन, ओमर लेवी द्वारा।
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (बर्कले से) कागज के साथ [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) फॉरेस्ट एन. इनडोला, अल्बर्ट ई. शॉ, रवि कृष्णा, और कर्ट डब्ल्यू. केटज़र द्वारा।
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI से) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. द्वाराअनुसंधान पत्र [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) के साथ जारी किया गया
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (来自 Google AI)कॉलिन रैफेल और नोम शज़ीर और एडम रॉबर्ट्स और कैथरीन ली और शरण नारंग और माइकल मटेना द्वारा साथ में पेपर [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) और यांकी झोउ और वेई ली और पीटर जे लियू।
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (Google AI से) साथ वाला पेपर [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) कॉलिन रैफेल और नोम शज़ीर और एडम रॉबर्ट्स और कैथरीन ली और शरण नारंग द्वारा और माइकल मटेना और यांकी झोउ और वेई ली और पीटर जे लियू।
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) ब्रैंडन स्मॉक, रोहित पेसाला, रॉबिन अब्राहम द्वारा पोस्ट किया गया।
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI से) साथ में कागज [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) जोनाथन हर्ज़िग, पावेल क्रिज़िस्तोफ़ नोवाक, थॉमस मुलर, फ्रांसेस्को पिकिन्नो और जूलियन मार्टिन ईसेन्च्लोस द्वारा।
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) कियान लियू, बेई चेन, जियाकी गुओ, मोर्टेज़ा ज़ियादी, ज़ेकी लिन, वीज़ू चेन, जियान-गुआंग लू द्वारा पोस्ट किया गया।
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU की ओर से) कागज के साथ [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) क्वोकोक वी. ले, रुस्लैन सलाखुतदी
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (Microsoft Research से) Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal. द्वाराअनुसंधान पत्र [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) के साथ जारी किया गया
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research से) Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant. द्वाराअनुसंधान पत्र [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) के साथ जारी किया गया
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (माइक्रोसॉफ्ट रिसर्च से) साथ में दिया गया पेपर [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) चेंगई वांग, यू वू, याओ कियान, केनिची कुमातानी, शुजी लियू, फुरु वेई, माइकल ज़ेंग, ज़ुएदोंग हुआंग द्वारा।
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) सानयुआन चेन, यू वू, चेंग्यी वांग, झेंगयांग चेन, झूओ चेन, शुजी लियू, जियान वू, याओ कियान, फुरु वेई, जिन्यु ली, जियांगज़ान यू द्वारा पोस्ट किया गया।
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (सिंघुआ यूनिवर्सिटी और ननकाई यूनिवर्सिटी से) साथ में पेपर [Visual Attention Network](https://arxiv.org/abs/2202.09741) मेंग-हाओ गुओ, चेंग-ज़े लू, झेंग-निंग लियू, मिंग-मिंग चेंग, शि-मिन हू द्वारा।
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (मल्टीमीडिया कम्प्यूटिंग ग्रुप, नानजिंग यूनिवर्सिटी से) साथ में पेपर [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) ज़ान टोंग, यिबिंग सॉन्ग, जुए द्वारा वांग, लिमिन वांग द्वारा पोस्ट किया गया।
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain से) साथ में कागज [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) वोनजे किम, बोक्यूंग सोन, इल्डू किम द्वारा पोस्ट किया गया।
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (University of Wisconsin–Madison से) Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee. द्वाराअनुसंधान पत्र [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) के साथ जारी किया गया
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (गूगल एआई से) कागज के साथ [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) एलेक्सी डोसोवित्स्की, लुकास बेयर, अलेक्जेंडर कोलेसनिकोव, डिर्क वीसेनबोर्न, शियाओहुआ झाई, थॉमस अनटरथिनर, मुस्तफा देहघानी, मैथियास मिंडरर, जॉर्ज हेगोल्ड, सिल्वेन गेली, जैकब उस्ज़कोरेइट द्वारा हॉल्सबी द्वारा पोस्ट किया गया।
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP से) साथ वाला पेपर [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) लियुनियन हेरोल्ड ली, मार्क यात्स्कर, दा यिन, चो-जुई हसीह, काई-वेई चांग द्वारा।
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI से) Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He. द्वाराअनुसंधान पत्र [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) के साथ जारी किया गया
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (मेटा एआई से) साथ में कागज [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) कैमिंग हे, ज़िनेली चेन, सेनिंग ज़ी, यांगहो ली, पिओट्र डॉलर, रॉस गिर्शिक द्वारा।
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (HUST-VL से) Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang. द्वाराअनुसंधान पत्र [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) के साथ जारी किया गया
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise से) Jaehyeon Kim, Jungil Kong, Juhee Son. द्वाराअनुसंधान पत्र [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) के साथ जारी किया गया
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (फेसबुक एआई से) साथ में पेपर [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) एलेक्सी बेवस्की, हेनरी झोउ, अब्देलरहमान मोहम्मद, माइकल औली द्वारा।
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI से) साथ वाला पेपर [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) चांगहान वांग, यूं तांग, जुताई मा, ऐनी वू, सरव्या पोपुरी, दिमित्रो ओखोनको, जुआन पिनो द्वारा पोस्ट किया गया।
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI से) साथ वाला पेपर [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) कियानटोंग जू, एलेक्सी बाएव्स्की, माइकल औली द्वारा।
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (माइक्रोसॉफ्ट रिसर्च से) पेपर के साथ जारी किया गया [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) सानयुआन चेन, चेंगयी वांग, झेंगयांग चेन, यू वू, शुजी लियू, ज़ुओ चेन, जिन्यु ली, नाओयुकी कांडा, ताकुया योशियोका, ज़िओंग जिओ, जियान वू, लॉन्ग झोउ, शुओ रेन, यानमिन कियान, याओ कियान, जियान वू, माइकल ज़ेंग, फुरु वेई।
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI से) साथ में कागज [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) एलेक रैडफोर्ड, जोंग वूक किम, ताओ जू, ग्रेग ब्रॉकमैन, क्रिस्टीन मैकलीवे, इल्या सुत्स्केवर द्वारा।
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) बोलिन नी, होउवेन पेंग, मिंगाओ चेन, सोंगयांग झांग, गाओफेंग मेंग, जियानलोंग फू, शिमिंग जियांग, हैबिन लिंग द्वारा।
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI से) Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. द्वाराअनुसंधान पत्र [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) के साथ जारी किया गया
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (फेसबुक से) साथ में पेपर [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) गिलाउम लैम्पल और एलेक्सिस कोनो द्वारा।
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (माइक्रोसॉफ्ट रिसर्च से) साथ में कागज [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) यू यान, वीज़ेन क्यूई, येयुन गोंग, दयाहेंग लियू, नान डुआन, जिउशेंग चेन, रुओफ़ेई झांग और मिंग झोउ द्वारा।
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (फेसबुक एआई से), साथ में पेपर [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) एलेक्सिस कोन्यू*, कार्तिकेय खंडेलवाल*, नमन गोयल, विश्रव चौधरी, गिलाउम वेनज़ेक, फ्रांसिस्को गुज़मैन द्वारा , एडौर्ड ग्रेव, मायल ओट, ल्यूक ज़ेटलमॉयर और वेसेलिन स्टोयानोव द्वारा।
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI से) साथ में कागज [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) नमन गोयल, जिंगफेई डू, मायल ओट, गिरि अनंतरामन, एलेक्सिस कोनो द्वारा पोस्ट किया गया।
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU से) साथ वाला पेपर [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) ज़ीलिन यांग*, ज़िहांग दाई*, यिमिंग यांग, जैम कार्बोनेल, रुस्लान सलाखुतदीनोव, क्वोक वी. ले द्वारा।
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI से) साथ वाला पेपर [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) अरुण बाबू, चांगहान वांग, एंड्रोस तजंद्रा, कुशाल लखोटिया, कियानटोंग जू, नमन गोयल, कृतिका सिंह, पैट्रिक वॉन प्लैटन, याथार्थ सराफ, जुआन पिनो, एलेक्सी बेवस्की, एलेक्सिस कोन्यू, माइकल औली द्वारा पोस्ट किया गया।
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (फेसबुक एआई से) साथ में पेपर [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) एलेक्सिस कोन्यू, एलेक्सी बेवस्की, रोनन कोलोबर्ट, अब्देलरहमान मोहम्मद, माइकल औली द्वारा।
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (हुआझोंग यूनिवर्सिटी ऑफ साइंस एंड टेक्नोलॉजी से) साथ में पेपर [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) युक्सिन फेंग, बेनचेंग लियाओ, जिंगगैंग वांग, जेमिन फेंग, जियांग क्यूई, रुई वू, जियानवेई नीयू, वेन्यू लियू द्वारा पोस्ट किया गया।
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में पेपर [यू ओनली सैंपल (लगभग) ज़ानपेंग ज़ेंग, युनयांग ज़िओंग द्वारा , सत्य एन. रवि, शैलेश आचार्य, ग्लेन फंग, विकास सिंह द्वारा पोस्ट किया गया।
1. एक नए मॉडल में योगदान देना चाहते हैं? नए मॉडल जोड़ने में आपका मार्गदर्शन करने के लिए हमारे पास एक **विस्तृत मार्गदर्शिका और टेम्प्लेट** है। आप उन्हें [`टेम्पलेट्स`](./templates) निर्देशिका में पा सकते हैं। पीआर शुरू करने से पहले [योगदान दिशानिर्देश](./CONTRIBUTING.md) देखना और अनुरक्षकों से संपर्क करना या प्रतिक्रिया प्राप्त करने के लिए एक नया मुद्दा खोलना याद रखें।
यह जांचने के लिए कि क्या किसी मॉडल में पहले से ही Flax, PyTorch या TensorFlow का कार्यान्वयन है, या यदि उसके पास Tokenizers लाइब्रेरी में संबंधित टोकन है, तो [यह तालिका](https://huggingface.co/docs/transformers/index#supported) देखें। -फ्रेमवर्क)।
इन कार्यान्वयनों का परीक्षण कई डेटासेट पर किया गया है (देखें केस स्क्रिप्ट का उपयोग करें) और वैनिला कार्यान्वयन के लिए तुलनात्मक रूप से प्रदर्शन करना चाहिए। आप उपयोग के मामले के दस्तावेज़ [इस अनुभाग](https://huggingface.co/docs/transformers/examples) में व्यवहार का विवरण पढ़ सकते हैं।
## अधिक समझें
|अध्याय | विवरण |
|-|-|
| [दस्तावेज़ीकरण](https://huggingface.co/transformers/) | पूरा एपीआई दस्तावेज़ीकरण और ट्यूटोरियल |
| [कार्य सारांश](https://huggingface.co/docs/transformers/task_summary) | ट्रांसफॉर्मर समर्थित कार्य |
| [प्रीप्रोसेसिंग ट्यूटोरियल](https://huggingface.co/docs/transformers/preprocessing) | मॉडल के लिए डेटा तैयार करने के लिए `टोकनाइज़र` का उपयोग करना |
| [प्रशिक्षण और फाइन-ट्यूनिंग](https://huggingface.co/docs/transformers/training) | PyTorch/TensorFlow के ट्रेनिंग लूप या `ट्रेनर` API में ट्रांसफॉर्मर द्वारा दिए गए मॉडल का उपयोग करें |
| [क्विक स्टार्ट: ट्वीकिंग एंड यूज़ केस स्क्रिप्ट्स](https://github.com/huggingface/transformers/tree/main/examples) | विभिन्न कार्यों के लिए केस स्क्रिप्ट का उपयोग करें |
| [मॉडल साझा करना और अपलोड करना](https://huggingface.co/docs/transformers/model_sharing) | समुदाय के साथ अपने फाइन टूनड मॉडल अपलोड और साझा करें |
| [माइग्रेशन](https://huggingface.co/docs/transformers/migration) | `पाइटोरच-ट्रांसफॉर्मर्स` या `पाइटोरच-प्रीट्रेनड-बर्ट` से ट्रांसफॉर्मर में माइग्रेट करना |
## उद्धरण
हमने आधिकारिक तौर पर इस लाइब्रेरी का [पेपर](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) प्रकाशित किया है, अगर आप ट्रान्सफ़ॉर्मर्स लाइब्रेरी का उपयोग करते हैं, तो कृपया उद्धृत करें:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (Google Research and the Toyota Technological Institute at Chicago から) Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut から公開された研究論文: [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942)
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research から) Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. から公開された研究論文 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918)
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (BAAI から) Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell から公開された研究論文: [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679)
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (Facebook から) Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer から公開された研究論文: [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461)
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (École polytechnique から) Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis から公開された研究論文: [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321)
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (VinAI Research から) Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen から公開された研究論文: [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701)
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (Microsoft から) Hangbo Bao, Li Dong, Furu Wei から公開された研究論文: [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254)
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (Google から) Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova から公開された研究論文: [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805)
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (VinAI Research から) Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen から公開された研究論文: [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/)
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (Google Research から) Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed から公開された研究論文: [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062)
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (Google Research から) Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed から公開された研究論文: [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062)
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (Microsoft Research AI4Science から) Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu から公開された研究論文: [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9)
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (Google AI から) Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil から公開された研究論文: [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370)Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (Facebook から) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston から公開された研究論文: [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637)
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (Facebook から) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston から公開された研究論文: [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637)
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (Salesforce から) Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi から公開された研究論文: [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086)
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce から) Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. から公開された研究論文 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597)
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (Alexa から) Adrian de Wynter and Daniel J. Perry から公開された研究論文: [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499)
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (Harbin Institute of Technology/Microsoft Research Asia/Intel Labs から) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (NAVER CLOVA から) Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park. から公開された研究論文 [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539)
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google Research から) Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel から公開された研究論文: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626)
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (Inria/Facebook/Sorbonne から) Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot から公開された研究論文: [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894)
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google Research から) Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting から公開された研究論文: [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874)
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI から) Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov. から公開された研究論文 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687)
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI から) Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever から公開された研究論文: [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (University of Göttingen から) Timo Lüddecke and Alexander Ecker から公開された研究論文: [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003)
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (Salesforce から) Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong から公開された研究論文: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474)
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI から) Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve. から公開された研究論文 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (Cohere から) Cohere. から公開された研究論文 [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>)
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (Microsoft Research Asia から) Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang から公開された研究論文: [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152)
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI から) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie から公開された研究論文: [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545)
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (Tsinghua University から) Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun から公開された研究論文: [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413)
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (Salesforce から) Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher から公開された研究論文: [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858)
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft から) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang から公開された研究論文: [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808)
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (Facebook から) Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli から公開された研究論文: [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555)
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (Berkeley/Facebook/Google から) Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch から公開された研究論文: [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345)
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (SenseTime Research から) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai から公開された研究論文: [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159)
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (Facebook から) Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou から公開された研究論文: [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877)
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI から) Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. から公開された研究論文 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505)
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (University of Hong Kong and TikTok から) Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao. から公開された研究論文 [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891)
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (The University of Texas at Austin から) Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl. から公開された研究論文 [NMS Strikes Back](https://arxiv.org/abs/2212.06137)
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook から) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko から公開された研究論文: [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research から) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan から公開された研究論文: [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536)
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (SHI Labs から) Ali Hassani and Humphrey Shi から公開された研究論文: [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001)
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI から) Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski. から公開された研究論文 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (HuggingFace から), Victor Sanh, Lysandre Debut and Thomas Wolf. 同じ手法で GPT2, RoBERTa と Multilingual BERT の圧縮を行いました.圧縮されたモデルはそれぞれ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108)、[DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation)、[DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) と名付けられました. 公開された研究論文: [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108)
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (Microsoft Research から) Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei から公開された研究論文: [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378)
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER から), Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park から公開された研究論文: [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664)
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (Facebook から) Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih から公開された研究論文: [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906)
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (Intel Labs から) René Ranftl, Alexey Bochkovskiy, Vladlen Koltun から公開された研究論文: [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413)
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (Snap Research から) Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. から公開された研究論文 [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191)
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google Research/Stanford University から) Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning から公開された研究論文: [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555)
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI から) Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. から公開された研究論文 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438)
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google Research から) Sascha Rothe, Shashi Narayan, Aliaksei Severyn から公開された研究論文: [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461)
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu から) Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. から公開された研究論文 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674)
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (Meta AI から) はトランスフォーマープロテイン言語モデルです. **ESM-1b** は Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus から公開された研究論文: [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118). **ESM-1v** は Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rivesから公開された研究論文: [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648). **ESM-2** と **ESMFold** は Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives から公開された研究論文: [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902)
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (ESPnet and Microsoft Research から) Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang. から公開された研究論文 [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956)
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (Google AI から) Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V から公開されたレポジトリー [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS から) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab から公開された研究論文: [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372)
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (Facebook AI から) Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela から公開された研究論文: [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482)
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (Google Research から) James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon から公開された研究論文: [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824)
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (Microsoft Research から) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. から公開された研究論文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926)
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (CMU/Google Brain から) Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le から公開された研究論文: [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (Google から) the Gemma Google team. から公開された研究論文 [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/)
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (Microsoft Research から) Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. から公開された研究論文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100)
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST から) Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim から公開された研究論文: [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436)
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI から) Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever から公開された研究論文: [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/)
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (EleutherAI から) Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy から公開されたレポジトリー : [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo)
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI から) Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach から公開された研究論文: [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745)
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (OpenAI から) Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever から公開された研究論文: [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/)
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (EleutherAI から) Ben Wang and Aran Komatsuzaki から公開されたレポジトリー [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/)
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (AI-Sweden から) Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren から公開された研究論文: [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf)
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode から) Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra. から公開された研究論文 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988)
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (Microsoft から) Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu から公開された研究論文: [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234).
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others から) Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang. から公開された研究論文 [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499)
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA から) Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang から公開された研究論文: [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094)
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (Allegro.pl, AGH University of Science and Technology から) Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik. から公開された研究論文 [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf)
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (Facebook から) Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed から公開された研究論文: [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447)
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (Berkeley から) Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer から公開された研究論文: [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321)
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (Hugging Face から) Léo Tronchon, Hugo Laurencon, Victor Sanh. から公開された研究論文 [IDEFICS2](https://huggingface.co/blog/idefics2)
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (OpenAI から) Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever から公開された研究論文: [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/)
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce から) Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi. から公開された研究論文 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500)
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (OpenAI から) Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever から公開された研究論文: [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf)
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (Microsoft Research Asia から) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou から公開された研究論文: [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318)
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (Microsoft Research Asia から) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou から公開された研究論文: [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740)
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (Microsoft Research Asia から) Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei から公開された研究論文: [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387)
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (Microsoft Research Asia から) Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei から公開された研究論文: [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836)
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (AllenAI から) Iz Beltagy, Matthew E. Peters, Arman Cohan から公開された研究論文: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150)
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (Meta AI から) Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze から公開された研究論文: [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136)
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (South China University of Technology から) Jiapeng Wang, Lianwen Jin, Kai Ding から公開された研究論文: [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669)
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI から) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. から公開された研究論文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI から) Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.. から公開された研究論文 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/)
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (Microsoft Research & University of Wisconsin-Madison から) Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee. から公開された研究論文 [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485)
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (Microsoft Research & University of Wisconsin-Madison から) Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee. から公開された研究論文 [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744)
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI から) Iz Beltagy, Matthew E. Peters, Arman Cohan から公開された研究論文: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150)
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI から) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang から公開された研究論文: [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916)
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC Chapel Hill から) Hao Tan and Mohit Bansal から公開された研究論文: [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490)
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (Facebook から) Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert から公開された研究論文: [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161)
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (Albert Gu and Tri Dao から) Albert Gu and Tri Dao. から公開された研究論文 [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752)
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (Microsoft Research Asia から) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei から公開された研究論文: [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518)
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC から) Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. から公開された研究論文 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527)
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (Meta and UIUC から) Bowen Cheng, Alexander G. Schwing, Alexander Kirillov から公開された研究論文: [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278)
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI から) Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. から公開された研究論文 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662)
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook から) Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer から公開された研究論文: [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210)
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook から) Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan から公開された研究論文: [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401)
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook から) Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. から公開された研究論文 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655)
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA から) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro から公開された研究論文: [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053)
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA から) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro から公開された研究論文: [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053)
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research から) Peng Wang, Cheng Da, and Cong Yao. から公開された研究論文 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592)
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (Studio Ousia から) Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka から公開された研究論文: [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151)
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (CMU/Google Brain から) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou から公開された研究論文: [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984)
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (Google Inc. から) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam から公開された研究論文: [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861)
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (Google Inc. から) Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen から公開された研究論文: [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple から) Sachin Mehta and Mohammad Rastegari から公開された研究論文: [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178)
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple から) Sachin Mehta and Mohammad Rastegari. から公開された研究論文 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680)
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (Microsoft Research から) Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu から公開された研究論文: [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297)
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML から) the MosaicML NLP Team. から公開された研究論文 [llm-foundry](https://github.com/mosaicml/llm-foundry/)
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison から) Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh. から公開された研究論文 [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284)
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI から) Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel から公開された研究論文: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934)
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (RUC AI Box から) Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen から公開された研究論文: [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131)
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (SHI Labs から) Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi から公開された研究論文: [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143)
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noah’s Ark Lab から) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu から公開された研究論文: [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204)
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta から) the NLLB team から公開された研究論文: [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta から) the NLLB team. から公開された研究論文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (Meta AI から) Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic. から公開された研究論文 [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418)
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison から) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh から公開された研究論文: [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902)
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs から) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi から公開された研究論文: [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220)
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI から) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al から公開された研究論文: [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068)
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby から公開された研究論文: [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230)
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Neil Houlsby. から公開された研究論文 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683)
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** ( IBM Research から) Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. から公開された研究論文 [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf)
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (IBM から) Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. から公開された研究論文 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730)
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google から) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu から公開された研究論文: [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777)
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google から) Jason Phang, Yao Zhao, and Peter J. Liu から公開された研究論文: [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347)
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (Deepmind から) Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira から公開された研究論文: [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795)
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (ADEPT から) Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani. から公開された研究論文 [blog post](https://www.adept.ai/blog/persimmon-8b)
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research から) Dat Quoc Nguyen and Anh Tuan Nguyen から公開された研究論文: [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/)
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google から) Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. から公開された研究論文 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347)
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP から) Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang から公開された研究論文: [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333)
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (Sea AI Labs から) Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng から公開された研究論文: [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418)
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research から) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou から公開された研究論文: [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063)
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. から) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. から公開された研究論文 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf)
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc. から) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. から公開された研究論文 [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797)
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA から) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius から公開された研究論文: [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602)
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (the Qwen team, Alibaba Group から) Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu. から公開された研究論文 [Qwen Technical Report](https://arxiv.org/abs/2309.16609)
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (the Qwen team, Alibaba Group から) Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou. から公開された研究論文 [blog post](https://qwenlm.github.io/blog/qwen-moe/)
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (Facebook から) Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela から公開された研究論文: [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401)
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google Research から) Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang から公開された研究論文: [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909)
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (Google から) the Griffin, RLHF and Gemma Teams. から公開された研究論文 [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf)
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (Google Research から) Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya から公開された研究論文: [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451)
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (Google Research から) Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder から公開された研究論文: [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821)
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (Microsoft Research から) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun から公開された研究論文: [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (Facebook から), Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov から公開された研究論文: [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692)
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (Facebook から) Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli から公開された研究論文: [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038)
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (WeChatAI から) HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou から公開された研究論文: [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf)
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (ZhuiyiTechnology から), Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu から公開された研究論文: [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864)
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng から) Bo Peng. から公開された研究論文 [this repo](https://github.com/BlinkDL/RWKV-LM)
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (NVIDIA から) Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo から公開された研究論文: [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203)
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (Beijing Academy of Artificial Intelligence (BAAI から) Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang. から公開された研究論文 [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284)
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI から) Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. から公開された研究論文 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf)
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP から) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi から公開された研究論文: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP から) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi から公開された研究論文: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (Google AI から) Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer. から公開された研究論文 [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343)
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (Microsoft Research から) Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei. から公開された研究論文 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205)
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (Facebook から), Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino から公開された研究論文: [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171)
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook から), Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau から公開された研究論文: [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678)
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University から), Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy から公開された研究論文: [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438)
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley から) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer から公開された研究論文: [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316)
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI から) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. から公開された研究論文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft から) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo から公開された研究論文: [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft から) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo から公開された研究論文: [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883)
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (University of Würzburg から) Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte から公開された研究論文: [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345)
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (Google から) William Fedus, Barret Zoph, Noam Shazeer から公開された研究論文: [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961)
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (Google AI から) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu から公開された研究論文: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683)
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (Google AI から) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu から公開されたレポジトリー [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511)
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (Microsoft Research から) Brandon Smock, Rohith Pesala, Robin Abraham から公開された研究論文: [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061)
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI から) Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos から公開された研究論文: [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349)
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (Microsoft Research から) Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou から公開された研究論文: [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653)
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (HuggingFace から).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (Facebook から) Gedas Bertasius, Heng Wang, Lorenzo Torresani から公開された研究論文: [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095)
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (the University of California at Berkeley から) Michael Janner, Qiyang Li, Sergey Levine から公開された研究論文: [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039)
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU から) Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov から公開された研究論文: [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860)
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (Microsoft から), Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei から公開された研究論文: [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282)
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill から), Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal から公開された研究論文: [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156)
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (Intel から), Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding から公開された研究論文: [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995)
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (Microsoft Research から) Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal. から公開された研究論文 [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623)
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (Google Research から) Yi Tay, Mostafa Dehghani, Vinh Q から公開された研究論文: [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research から) Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant. から公開された研究論文 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi)
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (Microsoft Research から) Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang から公開された研究論文: [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597)
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (Peking University から) Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun. から公開された研究論文 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221)
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (Tsinghua University and Nankai University から) Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu から公開された研究論文: [Visual Attention Network](https://arxiv.org/abs/2202.09741)
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (Multimedia Computing Group, Nanjing University から) Zhan Tong, Yibing Song, Jue Wang, Limin Wang から公開された研究論文: [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602)
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain から) Wonjae Kim, Bokyung Son, Ildoo Kim から公開された研究論文: [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334)
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (University of Wisconsin–Madison から) Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee. から公開された研究論文 [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784)
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP から) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang から公開された研究論文: [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557)
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI から) Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He. から公開された研究論文 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527)
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI から) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick から公開された研究論文: [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377)
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI から) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas から公開された研究論文: [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141)
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise から) Jaehyeon Kim, Jungil Kong, Juhee Son. から公開された研究論文 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103)
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (Facebook AI から) Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli から公開された研究論文: [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477)
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI から) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino から公開された研究論文: [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171)
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI から) Qiantong Xu, Alexei Baevski, Michael Auli から公開された研究論文: [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680)
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (Microsoft Research から) Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei から公開された研究論文: [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900)
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI から) Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever から公開された研究論文: [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf)
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (Microsoft Research から) Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling から公開された研究論文: [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816)
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI から) Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. から公開された研究論文 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255)
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li から公開された研究論文: [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668)
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (Facebook から) Guillaume Lample and Alexis Conneau から公開された研究論文: [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291)
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (Microsoft Research から) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou から公開された研究論文: [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063)
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (Facebook AI から), Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov から公開された研究論文: [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116)
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI から), Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau から公開された研究論文: [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572)
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (Meta AI から) Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa から公開された研究論文: [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472)
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU から) Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le から公開された研究論文: [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237)
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI から) Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli から公開された研究論文: [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296)
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (Facebook AI から) Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli から公開された研究論文: [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979)
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (Huazhong University of Science & Technology から) Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu から公開された研究論文: [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666)
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (the University of Wisconsin - Madison から) Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh から公開された研究論文: [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714)
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
🤗 Transformers는 분류, 정보 추출, 질문 답변, 요약, 번역, 문장 생성 등을 100개 이상의 언어로 수행할 수 있는 수천개의 사전학습된 모델을 제공합니다. 우리의 목표는 모두가 최첨단의 NLP 기술을 쉽게 사용하는 것입니다.
🤗 Transformers는 분류, 정보 추출, 질문 답변, 요약, 번역, 문장 생성 등을 100개 이상의 언어로 수행할 수 있는 수천개의 사전학습된 모델을 제공합니다. 우리의 목표는 모두가 최첨단의 NLP 기술을 쉽게 사용하는 것입니다.
🤗 Transformers는 이러한 사전학습 모델을 빠르게 다운로드해 특정 텍스트에 사용하고, 원하는 데이터로 fine-tuning해 커뮤니티나 우리의 [모델 허브](https://huggingface.co/models)에 공유할 수 있도록 API를 제공합니다. 또한, 모델 구조를 정의하는 각 파이썬 모듈은 완전히 독립적이여서 연구 실험을 위해 손쉽게 수정할 수 있습니다.
🤗 Transformers는 이러한 사전학습 모델을 빠르게 다운로드해 특정 텍스트에 사용하고, 원하는 데이터로 fine-tuning해 커뮤니티나 우리의 [모델 허브](https://huggingface.co/models)에 공유할 수 있도록 API를 제공합니다. 또한, 모델 구조를 정의하는 각 파이썬 모듈은 완전히 독립적이여서 연구 실험을 위해 손쉽게 수정할 수 있습니다.
🤗 Transformers는 가장 유명한 3개의 딥러닝 라이브러리를 지원합니다. 이들은 서로 완벽히 연동됩니다 — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/). 간단하게 이 라이브러리 중 하나로 모델을 학습하고, 또 다른 라이브러리로 추론을 위해 모델을 불러올 수 있습니다.
🤗 Transformers는 가장 유명한 3개의 딥러닝 라이브러리를 지원합니다. 이들은 서로 완벽히 연동됩니다 — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/). 간단하게 이 라이브러리 중 하나로 모델을 학습하고, 또 다른 라이브러리로 추론을 위해 모델을 불러올 수 있습니다.
## 온라인 데모
## 온라인 데모
대부분의 모델을 [모델 허브](https://huggingface.co/models) 페이지에서 바로 테스트해볼 수 있습니다. 공개 및 비공개 모델을 위한 [비공개 모델 호스팅, 버전 관리, 추론 API](https://huggingface.co/pricing)도 제공합니다.
대부분의 모델을 [모델 허브](https://huggingface.co/models) 페이지에서 바로 테스트해볼 수 있습니다. 공개 및 비공개 모델을 위한 [비공개 모델 호스팅, 버전 관리, 추론 API](https://huggingface.co/pricing)도 제공합니다.
예시:
예시:
- [BERT로 마스킹된 단어 완성하기](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [BERT로 마스킹된 단어 완성하기](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Electra를 이용한 개체명 인식](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Electra를 이용한 개체명 인식](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [GPT-2로 텍스트 생성하기](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [GPT-2로 텍스트 생성하기](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [BART를 이용한 요약](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [BART를 이용한 요약](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [DistilBERT를 이용한 질문 답변](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [DistilBERT를 이용한 질문 답변](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
**[Transformer와 글쓰기](https://transformer.huggingface.co)** 는 이 저장소의 텍스트 생성 능력에 관한 Hugging Face 팀의 공식 데모입니다.
**[Transformer와 글쓰기](https://transformer.huggingface.co)** 는 이 저장소의 텍스트 생성 능력에 관한 Hugging Face 팀의 공식 데모입니다.
## Hugging Face 팀의 커스텀 지원을 원한다면
## Hugging Face 팀의 커스텀 지원을 원한다면
@ -112,14 +121,14 @@ limitations under the License.
```
```
답변뿐만 아니라, 여기에 사용된 사전학습 모델은 확신도와 토크나이즈된 문장 속 답변의 시작점, 끝점까지 반환합니다. [이 튜토리얼](https://huggingface.co/transformers/task_summary.html)에서 `pipeline` API가 지원하는 다양한 과제를 확인할 수 있습니다.
답변뿐만 아니라, 여기에 사용된 사전학습 모델은 확신도와 토크나이즈된 문장 속 답변의 시작점, 끝점까지 반환합니다. [이 튜토리얼](https://huggingface.co/docs/transformers/task_summary)에서 `pipeline` API가 지원하는 다양한 과제를 확인할 수 있습니다.
코드 3줄로 원하는 과제에 맞게 사전학습 모델을 다운로드 받고 사용할 수 있습니다. 다음은 PyTorch 버전입니다:
코드 3줄로 원하는 과제에 맞게 사전학습 모델을 다운로드 받고 사용할 수 있습니다. 다음은 PyTorch 버전입니다:
```python
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> from transformers import AutoTokenizer, AutoModel
@ -166,13 +175,13 @@ limitations under the License.
- 이 라이브러리는 신경망 블록을 만들기 위한 모듈이 아닙니다. 연구자들이 여러 파일을 살펴보지 않고 바로 각 모델을 사용할 수 있도록, 모델 파일 코드의 추상화 수준을 적정하게 유지했습니다.
- 이 라이브러리는 신경망 블록을 만들기 위한 모듈이 아닙니다. 연구자들이 여러 파일을 살펴보지 않고 바로 각 모델을 사용할 수 있도록, 모델 파일 코드의 추상화 수준을 적정하게 유지했습니다.
- 학습 API는 모든 모델에 적용할 수 있도록 만들어지진 않았지만, 라이브러리가 제공하는 모델들에 적용할 수 있도록 최적화되었습니다. 일반적인 머신 러닝을 위해선, 다른 라이브러리를 사용하세요.
- 학습 API는 모든 모델에 적용할 수 있도록 만들어지진 않았지만, 라이브러리가 제공하는 모델들에 적용할 수 있도록 최적화되었습니다. 일반적인 머신 러닝을 위해선, 다른 라이브러리를 사용하세요.
- 가능한 많은 사용 예시를 보여드리고 싶어서, [예시 폴더](https://github.com/huggingface/transformers/tree/master/examples)의 스크립트를 준비했습니다. 이 스크립트들을 수정 없이 특정한 문제에 바로 적용하지 못할 수 있습니다. 필요에 맞게 일부 코드를 수정해야 할 수 있습니다.
- 가능한 많은 사용 예시를 보여드리고 싶어서, [예시 폴더](https://github.com/huggingface/transformers/tree/main/examples)의 스크립트를 준비했습니다. 이 스크립트들을 수정 없이 특정한 문제에 바로 적용하지 못할 수 있습니다. 필요에 맞게 일부 코드를 수정해야 할 수 있습니다.
## 설치
## 설치
### pip로 설치하기
### pip로 설치하기
이 저장소는 Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+, TensorFlow 2.3+에서 테스트 되었습니다.
이 저장소는 Python 3.8+, Flax 0.4.1+, PyTorch 1.11+, TensorFlow 2.6+에서 테스트 되었습니다.
[가상 환경](https://docs.python.org/3/library/venv.html)에 🤗 Transformers를 설치하세요. Python 가상 환경에 익숙하지 않다면, [사용자 가이드](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)를 확인하세요.
[가상 환경](https://docs.python.org/3/library/venv.html)에 🤗 Transformers를 설치하세요. Python 가상 환경에 익숙하지 않다면, [사용자 가이드](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)를 확인하세요.
@ -187,18 +196,18 @@ limitations under the License.
pip install transformers
pip install transformers
```
```
예시들을 체험해보고 싶거나, 최최최첨단 코드를 원하거나, 새로운 버전이 나올 때까지 기다릴 수 없다면 [라이브러리를 소스에서 바로 설치](https://huggingface.co/transformers/installation.html#installing-from-source)하셔야 합니다.
예시들을 체험해보고 싶거나, 최최최첨단 코드를 원하거나, 새로운 버전이 나올 때까지 기다릴 수 없다면 [라이브러리를 소스에서 바로 설치](https://huggingface.co/docs/transformers/installation#installing-from-source)하셔야 합니다.
### conda로 설치하기
### conda로 설치하기
Transformers 버전 v4.0.0부터, conda 채널이 생겼습니다: `huggingface`.
🤗 Transformers는 다음과 같이 conda로 설치할 수 있습니다:
🤗 Transformers는 다음과 같이 conda로 설치할 수 있습니다:
```shell script
```shell script
conda install -c huggingface transformers
conda install conda-forge::transformers
```
```
> **_노트:_** `huggingface` 채널에서 `transformers`를 설치하는 것은 사용이 중단되었습니다.
Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 방법을 확인하세요.
Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 방법을 확인하세요.
## 모델 구조
## 모델 구조
@ -207,107 +216,289 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
현재 사용 가능한 모델 체크포인트의 개수: 
현재 사용 가능한 모델 체크포인트의 개수: 
🤗 Transformers는 다음 모델들을 제공합니다 (각 모델의 요약은 [여기](https://huggingface.co/transformers/model_summary.html)서 확인하세요):
🤗 Transformers는 다음 모델들을 제공합니다 (각 모델의 요약은 [여기](https://huggingface.co/docs/transformers/model_summary)서 확인하세요):
1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[BART](https://huggingface.co/transformers/model_doc/bart.html)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research 에서 제공)은 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.의 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918)논문과 함께 발표했습니다.
1. **[BARThez](https://huggingface.co/transformers/model_doc/barthez.html)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[BARTpho](https://huggingface.co/transformers/model_doc/bartpho.html)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[BEiT](https://huggingface.co/transformers/model_doc/beit.html)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[BERT](https://huggingface.co/transformers/model_doc/bert.html)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BERT For Sequence Generation](https://huggingface.co/transformers/model_doc/bertgeneration.html)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BERTweet](https://huggingface.co/transformers/model_doc/bertweet.html)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BigBird-Pegasus](https://huggingface.co/transformers/model_doc/bigbird_pegasus.html)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BigBird-RoBERTa](https://huggingface.co/transformers/model_doc/bigbird.html)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[Blenderbot](https://huggingface.co/transformers/model_doc/blenderbot.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BlenderbotSmall](https://huggingface.co/transformers/model_doc/blenderbot_small.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BORT](https://huggingface.co/transformers/model_doc/bort.html)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[ByT5](https://huggingface.co/transformers/model_doc/byt5.html)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[CamemBERT](https://huggingface.co/transformers/model_doc/camembert.html)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[CANINE](https://huggingface.co/transformers/model_doc/canine.html)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[CLIP](https://huggingface.co/transformers/model_doc/clip.html)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[ConvBERT](https://huggingface.co/transformers/model_doc/convbert.html)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[CPM](https://huggingface.co/transformers/model_doc/cpm.html)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[CTRL](https://huggingface.co/transformers/model_doc/ctrl.html)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[DeBERTa](https://huggingface.co/transformers/model_doc/deberta.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce 에서 제공)은 Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.의 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597)논문과 함께 발표했습니다.
1. **[DeBERTa-v2](https://huggingface.co/transformers/model_doc/deberta_v2.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[DeiT](https://huggingface.co/transformers/model_doc/deit.html)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (Alexa 에서) Adrian de Wynter and Daniel J. Perry 의 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 논문과 함께 발표했습니다.
1. **[DETR](https://huggingface.co/transformers/model_doc/detr.html)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[DialoGPT](https://huggingface.co/transformers/model_doc/dialogpt.html)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (NAVER CLOVA 에서 제공)은 Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.의 [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539)논문과 함께 발표했습니다.
1. **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google Research 에서) Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 의 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 논문과 함께 발표했습니다.
1. **[DPR](https://huggingface.co/transformers/model_doc/dpr.html)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (Inria/Facebook/Sorbonne 에서) Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 의 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 논문과 함께 발표했습니다.
1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google Research 에서) Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 의 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 논문과 함께 발표했습니다.
1. **[EncoderDecoder](https://huggingface.co/transformers/model_doc/encoderdecoder.html)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (OFA-Sys 에서) An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou 의 [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) 논문과 함께 발표했습니다.
1. **[FlauBERT](https://huggingface.co/transformers/model_doc/flaubert.html)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI 에서 제공)은 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.의 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687)논문과 함께 발표했습니다.
1. **[FNet](https://huggingface.co/transformers/model_doc/fnet.html)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI 에서) Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 의 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 논문과 함께 발표했습니다.
1. **[Funnel Transformer](https://huggingface.co/transformers/model_doc/funnel.html)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (University of Göttingen 에서) Timo Lüddecke and Alexander Ecker 의 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 논문과 함께 발표했습니다.
1. **[GPT](https://huggingface.co/transformers/model_doc/gpt.html)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[GPT Neo](https://huggingface.co/transformers/model_doc/gpt_neo.html)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (Salesforce 에서) Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 의 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 논문과 함께 발표했습니다.
1. **[GPT-2](https://huggingface.co/transformers/model_doc/gpt2.html)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI 에서 제공)은 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.의 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)논문과 함께 발표했습니다.
1. **[GPT-J](https://huggingface.co/transformers/model_doc/gptj.html)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (Cohere 에서 제공)은 Cohere. 의 [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>)논문과 함께 발표했습니다.
1. **[Hubert](https://huggingface.co/transformers/model_doc/hubert.html)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (Microsoft Research Asia 에서) Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 의 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 논문과 함께 발표했습니다.
1. **[I-BERT](https://huggingface.co/transformers/model_doc/ibert.html)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech 에서) Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 의 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 논문과 함께 발표했습니다.
1. **[LayoutLM](https://huggingface.co/transformers/model_doc/layoutlm.html)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI 에서) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 의 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 논문과 함께 발표했습니다.
1. **[LayoutLMv2](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[LayoutXLM](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (Tsinghua University 에서) Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 의 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 논문과 함께 발표했습니다.
1. **[LED](https://huggingface.co/transformers/model_doc/led.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[Longformer](https://huggingface.co/transformers/model_doc/longformer.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (Salesforce 에서) Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 의 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 논문과 함께 발표했습니다.
1. **[LUKE](https://huggingface.co/transformers/model_doc/luke.html)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft 에서) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 의 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 논문과 함께 발표했습니다.
1. **[LXMERT](https://huggingface.co/transformers/model_doc/lxmert.html)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (Facebook 에서) Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 의 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 논문과 함께 발표했습니다.
1. **[M2M100](https://huggingface.co/transformers/model_doc/m2m_100.html)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다.
1. **[MarianMT](https://huggingface.co/transformers/model_doc/marian.html)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다.
1. **[MBart](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (Berkeley/Facebook/Google 에서) Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 의 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 논문과 함께 발표했습니다.
1. **[MBart-50](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (SenseTime Research 에서) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 의 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 논문과 함께 발표했습니다.
1. **[Megatron-BERT](https://huggingface.co/transformers/model_doc/megatron_bert.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (Facebook 에서) Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 의 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 논문과 함께 발표했습니다.
1. **[Megatron-GPT2](https://huggingface.co/transformers/model_doc/megatron_gpt2.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI 에서 제공)은 Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.의 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505)논문과 함께 발표했습니다.
1. **[MPNet](https://huggingface.co/transformers/model_doc/mpnet.html)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (University of Hong Kong and TikTok 에서 제공)은 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.의 [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891)논문과 함께 발표했습니다.
1. **[MT5](https://huggingface.co/transformers/model_doc/mt5.html)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (The University of Texas at Austin 에서 제공)은 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.의 [NMS Strikes Back](https://arxiv.org/abs/2212.06137)논문과 함께 발표했습니다.
1. **[Pegasus](https://huggingface.co/transformers/model_doc/pegasus.html)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook 에서) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 의 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 논문과 함께 발표했습니다.
1. **[PhoBERT](https://huggingface.co/transformers/model_doc/phobert.html)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research 에서) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 의 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 논문과 함께 발표했습니다.
1. **[ProphetNet](https://huggingface.co/transformers/model_doc/prophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (SHI Labs 에서) Ali Hassani and Humphrey Shi 의 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 논문과 함께 발표했습니다.
1. **[Reformer](https://huggingface.co/transformers/model_doc/reformer.html)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI 에서 제공)은 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.의 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)논문과 함께 발표했습니다.
1. **[RemBERT](https://huggingface.co/transformers/model_doc/rembert.html)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (HuggingFace 에서) Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT 의 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 논문과 함께 발표했습니다.
1. **[RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (Microsoft Research 에서) Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 의 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 논문과 함께 발표했습니다.
1. **[RoFormer](https://huggingface.co/transformers/model_doc/roformer.html)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER 에서) Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 의 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 논문과 함께 발표했습니다.
1. **[SegFormer](https://huggingface.co/transformers/model_doc/segformer.html)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (Facebook 에서) Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 의 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 논문과 함께 발표했습니다.
1. **[SEW](https://huggingface.co/transformers/model_doc/sew.html)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (Intel Labs 에서) René Ranftl, Alexey Bochkovskiy, Vladlen Koltun 의 [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) 논문과 함께 발표했습니다.
1. **[SEW-D](https://huggingface.co/transformers/model_doc/sew_d.html)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[SpeechToTextTransformer](https://huggingface.co/transformers/model_doc/speech_to_text.html)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[SpeechToTextTransformer2](https://huggingface.co/transformers/model_doc/speech_to_text_2.html)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google Research/Stanford University 에서) Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 의 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 논문과 함께 발표했습니다.
1. **[Splinter](https://huggingface.co/transformers/model_doc/splinter.html)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI 에서 제공)은 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.의 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438)논문과 함께 발표했습니다.
1. **[SqueezeBert](https://huggingface.co/transformers/model_doc/squeezebert.html)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google Research 에서) Sascha Rothe, Shashi Narayan, Aliaksei Severyn 의 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 논문과 함께 발표했습니다.
1. **[T5](https://huggingface.co/transformers/model_doc/t5.html)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (Baidu 에서) Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 의 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) 논문과 함께 발표했습니다.
1. **[T5v1.1](https://huggingface.co/transformers/model_doc/t5v1.1.html)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu 에서 제공)은 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.의 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674)논문과 함께 발표했습니다.
1. **[TAPAS](https://huggingface.co/transformers/model_doc/tapas.html)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Transformer-XL](https://huggingface.co/transformers/model_doc/transformerxl.html)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[TrOCR](https://huggingface.co/transformers/model_doc/trocr.html)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (ESPnet and Microsoft Research 에서 제공)은 Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.의 [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956)논문과 함께 발표했습니다.
1. **[UniSpeech](https://huggingface.co/transformers/model_doc/unispeech.html)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[UniSpeechSat](https://huggingface.co/transformers/model_doc/unispeech_sat.html)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[Vision Transformer (ViT)](https://huggingface.co/transformers/model_doc/vit.html)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[VisualBERT](https://huggingface.co/transformers/model_doc/visual_bert.html)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[Wav2Vec2](https://huggingface.co/transformers/model_doc/wav2vec2.html)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[XLM](https://huggingface.co/transformers/model_doc/xlm.html)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[XLM-ProphetNet](https://huggingface.co/transformers/model_doc/xlmprophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[XLM-RoBERTa](https://huggingface.co/transformers/model_doc/xlmroberta.html)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. 논문과 함께 공개 [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[XLNet](https://huggingface.co/transformers/model_doc/xlnet.html)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (Google 에서 제공)은 the Gemma Google team.의 [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/)논문과 함께 발표했습니다.
1. **[XLSR-Wav2Vec2](https://huggingface.co/transformers/model_doc/xlsr_wav2vec2.html)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. 새로운 모델을 올리고 싶나요? 우리가 **상세한 가이드와 템플릿** 으로 새로운 모델을 올리도록 도와드릴게요. 가이드와 템플릿은 이 저장소의 [`templates`](./templates) 폴더에서 확인하실 수 있습니다. [컨트리뷰션 가이드라인](./CONTRIBUTING.md)을 꼭 확인해주시고, PR을 올리기 전에 메인테이너에게 연락하거나 이슈를 오픈해 피드백을 받으시길 바랍니다.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI 에서) Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbac 의 [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) 논문과 함께 발표했습니다.
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (OpenAI 에서) Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever 의 [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) 논문과 함께 발표했습니다.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (AI-Sweden 에서) Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren. 의 [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) 논문과 함께 발표했습니다.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode 에서 제공)은 Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.의 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988)논문과 함께 발표했습니다.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu 의 [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) 논문과 함께 발표했습니다.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others 에서 제공)은 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.의 [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499)논문과 함께 발표했습니다.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA 에서) Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 의 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 논문과 함께 발표했습니다.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (Allegro.pl, AGH University of Science and Technology 에서 제공)은 Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.의 [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf)논문과 함께 발표했습니다.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (Facebook 에서) Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 의 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 논문과 함께 발표했습니다.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (Berkeley 에서) Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 의 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 논문과 함께 발표했습니다.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (Hugging Face 에서 제공)은 Léo Tronchon, Hugo Laurencon, Victor Sanh.의 [IDEFICS2](https://huggingface.co/blog/idefics2)논문과 함께 발표했습니다.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (OpenAI 에서) Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 의 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 논문과 함께 발표했습니다.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce 에서 제공)은 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.의 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500)논문과 함께 발표했습니다.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (OpenAI 에서) Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever 의 [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) 논문과 함께 발표했습니다.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (Microsoft Research Asia 에서) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 의 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 논문과 함께 발표했습니다.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (Microsoft Research Asia 에서) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 의 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 논문과 함께 발표했습니다.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (Microsoft Research Asia 에서) Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 의 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 논문과 함께 발표했습니다.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (Microsoft Research Asia 에서) Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 의 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 논문과 함께 발표했습니다.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (AllenAI 에서) Iz Beltagy, Matthew E. Peters, Arman Cohan 의 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 논문과 함께 발표했습니다.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (Meta AI 에서) Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 의 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 논문과 함께 발표했습니다.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (South China University of Technology 에서) Jiapeng Wang, Lianwen Jin, Kai Ding 의 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 논문과 함께 발표했습니다.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.의 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)논문과 함께 발표했습니다.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..의 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/)논문과 함께 발표했습니다.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (Microsoft Research & University of Wisconsin-Madison 에서 제공)은 Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.의 [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485)논문과 함께 발표했습니다.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (Microsoft Research & University of Wisconsin-Madison 에서 제공)은 Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.의 [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744)논문과 함께 발표했습니다.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI 에서) Iz Beltagy, Matthew E. Peters, Arman Cohan 의 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 논문과 함께 발표했습니다.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI 에서) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 의 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 논문과 함께 발표했습니다.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia 에서) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 의 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 논문과 함께 발표했습니다.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC Chapel Hill 에서) Hao Tan and Mohit Bansal 의 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 논문과 함께 발표했습니다.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (Facebook 에서) Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 의 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 논문과 함께 발표했습니다.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (Facebook 에서) Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin 의 [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) 논문과 함께 발표했습니다.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (Albert Gu and Tri Dao 에서 제공)은 Albert Gu and Tri Dao.의 [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752)논문과 함께 발표했습니다.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (Microsoft Research Asia 에서) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei 의 [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) 논문과 함께 발표했습니다.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC 에서 제공)은 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.의 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527)논문과 함께 발표했습니다.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (Meta and UIUC 에서) Bowen Cheng, Alexander G. Schwing, Alexander Kirillov 의 [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) 논문과 함께 발표했습니다.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI 에서 제공)은 Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.의 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662)논문과 함께 발표했습니다.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook 에서) Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 의 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 논문과 함께 발표했습니다.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook 에서) Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 의 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 논문과 함께 발표했습니다.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook 에서 제공)은 Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.의 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655)논문과 함께 발표했습니다.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA 에서) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 의 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 논문과 함께 발표했습니다.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA 에서) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 의 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 논문과 함께 발표했습니다.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research 에서 제공)은 Peng Wang, Cheng Da, and Cong Yao.의 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592)논문과 함께 발표했습니다.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (Studio Ousia 에서) Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 의 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 논문과 함께 발표했습니다.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook 에서 제공)은 Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.의 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516)논문과 함께 발표했습니다.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (CMU/Google Brain 에서) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 의 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 논문과 함께 발표했습니다.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (Google Inc. 에서) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 의 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 논문과 함께 발표했습니다.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (Google Inc. 에서) Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 의 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 논문과 함께 발표했습니다.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple 에서) Sachin Mehta and Mohammad Rastegari 의 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 논문과 함께 발표했습니다.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple 에서 제공)은 Sachin Mehta and Mohammad Rastegari.의 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680)논문과 함께 발표했습니다.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (Microsoft Research 에서) Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 의 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 논문과 함께 발표했습니다.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML 에서 제공)은 the MosaicML NLP Team.의 [llm-foundry](https://github.com/mosaicml/llm-foundry/)논문과 함께 발표했습니다.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison 에서 제공)은 Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.의 [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) 논문과 함께 발표했습니다.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI 에서) Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 의 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 논문과 함께 발표했습니다.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (RUC AI Box 에서) Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 의 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 논문과 함께 발표했습니다.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (SHI Labs 에서) Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 의 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 논문과 함께 발표했습니다.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noah’s Ark Lab 에서) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 의 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 논문과 함께 발표했습니다.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta 에서) the NLLB team 의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 논문과 함께 발표했습니다.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta 에서 제공)은 the NLLB team.의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)논문과 함께 발표했습니다.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (Meta AI 에서 제공)은 Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.의 [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418)논문과 함께 발표했습니다.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison 에서) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 의 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 논문과 함께 발표했습니다.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs 에서) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 의 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 논문과 함께 발표했습니다.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI 에서) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 의 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 논문과 함께 발표했습니다.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI 에서) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 의 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 논문과 함께 발표했습니다.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI 에서 제공)은 Matthias Minderer, Alexey Gritsenko, Neil Houlsby.의 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683)논문과 함께 발표했습니다.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** ( IBM Research 에서 제공)은 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.의 [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf)논문과 함께 발표했습니다.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (IBM 에서 제공)은 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.의 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730)논문과 함께 발표했습니다.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google 에서) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 의 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 논문과 함께 발표했습니다.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google 에서) Jason Phang, Yao Zhao, Peter J. Liu 의 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 논문과 함께 발표했습니다.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (Deepmind 에서) Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 의 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 논문과 함께 발표했습니다.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (ADEPT 에서 제공)은 Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.의 [blog post](https://www.adept.ai/blog/persimmon-8b)논문과 함께 발표했습니다.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research 에서) Dat Quoc Nguyen and Anh Tuan Nguyen 의 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 논문과 함께 발표했습니다.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google 에서 제공)은 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.의 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347)논문과 함께 발표했습니다.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP 에서) Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 의 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 논문과 함께 발표했습니다.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (Sea AI Labs 에서) Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 의 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 논문과 함께 발표했습니다.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. 에서 제공)은 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.의 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf)논문과 함께 발표했습니다.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc. 에서 제공)은 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.의 [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797)논문과 함께 발표했습니다.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA 에서) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 의 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 논문과 함께 발표했습니다.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (the Qwen team, Alibaba Group 에서 제공)은 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.의 [Qwen Technical Report](https://arxiv.org/abs/2309.16609)논문과 함께 발표했습니다.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (the Qwen team, Alibaba Group 에서 제공)은 Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.의 [blog post](https://qwenlm.github.io/blog/qwen-moe/)논문과 함께 발표했습니다.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (Facebook 에서) Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 의 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 논문과 함께 발표했습니다.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google Research 에서) Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 의 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 논문과 함께 발표했습니다.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (Google 에서 제공)은 the Griffin, RLHF and Gemma Teams.의 [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf)논문과 함께 발표했습니다.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (Google Research 에서) Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 의 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 논문과 함께 발표했습니다.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (META Research 에서) Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár 의 [Designing Network Design Space](https://arxiv.org/abs/2003.13678) 논문과 함께 발표했습니다.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (Google Research 에서) Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 의 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) 논문과 함께 발표했습니다.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (Microsoft Research 에서) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun 의 [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) 논문과 함께 발표했습니다.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (Facebook 에서) Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 의 a [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 논문과 함께 발표했습니다.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (Facebook 에서) Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli 의 [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) 논문과 함께 발표했습니다.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (WeChatAI 에서) HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou 의 [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) 논문과 함께 발표했습니다.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (ZhuiyiTechnology 에서) Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 의 a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) 논문과 함께 발표했습니다.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng 에서 제공)은 Bo Peng.의 [this repo](https://github.com/BlinkDL/RWKV-LM)논문과 함께 발표했습니다.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (NVIDIA 에서) Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 의 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 논문과 함께 발표했습니다.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (Beijing Academy of Artificial Intelligence (BAAI 에서 제공)은 Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.의 [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284)논문과 함께 발표했습니다.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI 에서 제공)은 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.의 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf)논문과 함께 발표했습니다.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP 에서) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 의 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 논문과 함께 발표했습니다.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP 에서) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 의 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 논문과 함께 발표했습니다.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (Google AI 에서 제공)은 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.의 [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343)논문과 함께 발표했습니다.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (Microsoft Research 에서 제공)은 Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.의 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205)논문과 함께 발표했습니다.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (Facebook 에서) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 의 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 논문과 함께 발표했습니다.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook 에서) Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 의 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 논문과 함께 발표했습니다.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University 에서) Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 의 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 논문과 함께 발표했습니다.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley 에서) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 의 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 논문과 함께 발표했습니다.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI 에서 제공)은 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.의 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)논문과 함께 발표했습니다.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft 에서) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 의 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 논문과 함께 발표했습니다.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft 에서) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 의 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 논문과 함께 발표했습니다.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (University of Würzburg 에서) Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 의 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 논문과 함께 발표했습니다.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (Google 에서) William Fedus, Barret Zoph, Noam Shazeer. 의 [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) 논문과 함께 발표했습니다.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (Google AI 에서) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 의 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 논문과 함께 발표했습니다.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (Microsoft Research 에서) Brandon Smock, Rohith Pesala, Robin Abraham 의 [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) 논문과 함께 발표했습니다.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI 에서) Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 의 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 논문과 함께 발표했습니다.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (Microsoft Research 에서) Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 의 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 논문과 함께 발표했습니다.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (Facebook 에서) Gedas Bertasius, Heng Wang, Lorenzo Torresani 의 [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) 논문과 함께 발표했습니다.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (the University of California at Berkeley 에서) Michael Janner, Qiyang Li, Sergey Levin 의 [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) 논문과 함께 발표했습니다.
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU 에서) Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 의 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 논문과 함께 발표했습니다.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (Microsoft 에서) Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 의 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 논문과 함께 발표했습니다.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill 에서) Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal 의 [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) 논문과 함께 발표했습니다.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (Intel 에서) Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding 의 [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) 논문과 함께 발표했습니다.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (Microsoft Research 에서 제공)은 Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.의 [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623)논문과 함께 발표했습니다.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (Google Research 에서) Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzle 의 [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) 논문과 함께 발표했습니다.
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research 에서 제공)은 Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.의 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi)논문과 함께 발표했습니다.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (Microsoft Research 에서) Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 의 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 논문과 함께 발표했습니다.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (Microsoft Research 에서) Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 의 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 논문과 함께 발표했습니다.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (Peking University 에서 제공)은 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.의 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221)논문과 함께 발표했습니다.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (Tsinghua University and Nankai University 에서) Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu 의 [Visual Attention Network](https://arxiv.org/abs/2202.09741) 논문과 함께 발표했습니다.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (Multimedia Computing Group, Nanjing University 에서) Zhan Tong, Yibing Song, Jue Wang, Limin Wang 의 [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) 논문과 함께 발표했습니다.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain 에서) Wonjae Kim, Bokyung Son, Ildoo Kim 의 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 논문과 함께 발표했습니다.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (University of Wisconsin–Madison 에서 제공)은 Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.의 [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784)논문과 함께 발표했습니다.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP 에서) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 의 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 논문과 함께 발표했습니다.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI 에서 제공)은 Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.의 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527)논문과 함께 발표했습니다.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI 에서) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 의 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 논문과 함께 발표했습니다.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (HUST-VL 에서 제공)은 Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.의 [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272)논문과 함께 발표했습니다.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI 에서) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 의 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) 논문과 함께 발표했습니다.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise 에서 제공)은 Jaehyeon Kim, Jungil Kong, Juhee Son.의 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103)논문과 함께 발표했습니다.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (Facebook AI 에서) Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 의 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 논문과 함께 발표했습니다.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI 에서) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 의 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 논문과 함께 발표했습니다.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI 에서) Qiantong Xu, Alexei Baevski, Michael Auli 의 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 논문과 함께 발표했습니다.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (Microsoft Research 에서) Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei 의 [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) 논문과 함께 발표했습니다.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI 에서) Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever 의 [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) 논문과 함께 발표했습니다.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (Microsoft Research 에서) Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling 의 [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) 논문과 함께 발표했습니다.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI 에서 제공)은 Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.의 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255)논문과 함께 발표했습니다.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (Facebook AI 에서 제공) Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li 의 [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) 논문과 함께 발표했습니다.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (Facebook 에서) Guillaume Lample and Alexis Conneau 의 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 논문과 함께 발표했습니다.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (Facebook AI 에서) Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 의 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 논문과 함께 발표했습니다.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI 에서) Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau 의 [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) 논문과 함께 발표했습니다.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (Meta AI 에서) Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa 의 [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) 논문과 함께 발표했습니다.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU 에서) Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 의 [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 논문과 함께 발표했습니다.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI 에서) Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 의 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 논문과 함께 발표했습니다.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (Facebook AI 에서) Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 의 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 논문과 함께 발표했습니다.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (Huazhong University of Science & Technology 에서) Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 의 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 논문과 함께 발표했습니다.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (the University of Wisconsin - Madison 에서) Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 의 [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) 논문과 함께 발표했습니다.
1. 새로운 모델을 올리고 싶나요? 우리가 **상세한 가이드와 템플릿** 으로 새로운 모델을 올리도록 도와드릴게요. 가이드와 템플릿은 이 저장소의 [`templates`](./templates) 폴더에서 확인하실 수 있습니다. [컨트리뷰션 가이드라인](./CONTRIBUTING.md)을 꼭 확인해주시고, PR을 올리기 전에 메인테이너에게 연락하거나 이슈를 오픈해 피드백을 받으시길 바랍니다.
각 모델이 Flax, PyTorch, TensorFlow으로 구현되었는지 또는 🤗 Tokenizers 라이브러리가 지원하는 토크나이저를 사용하는지 확인하려면, [이 표](https://huggingface.co/transformers/index.html#supported-frameworks)를 확인하세요.
각 모델이 Flax, PyTorch, TensorFlow으로 구현되었는지 또는 🤗 Tokenizers 라이브러리가 지원하는 토크나이저를 사용하는지 확인하려면, [이 표](https://huggingface.co/docs/transformers/index#supported-frameworks)를 확인하세요.
이 구현은 여러 데이터로 검증되었고 (예시 스크립트를 참고하세요) 오리지널 구현의 성능과 같아야 합니다. [도큐먼트](https://huggingface.co/transformers/examples.html)의 Examples 섹션에서 성능에 대한 자세한 설명을 확인할 수 있습니다.
이 구현은 여러 데이터로 검증되었고 (예시 스크립트를 참고하세요) 오리지널 구현의 성능과 같아야 합니다. [도큐먼트](https://huggingface.co/docs/transformers/examples)의 Examples 섹션에서 성능에 대한 자세한 설명을 확인할 수 있습니다.
## 더 알아보기
## 더 알아보기
| 섹션 | 설명 |
| 섹션 | 설명 |
|-|-|
|-|-|
| [도큐먼트](https://huggingface.co/transformers/) | 전체 API 도큐먼트와 튜토리얼 |
| [도큐먼트](https://huggingface.co/transformers/) | 전체 API 도큐먼트와 튜토리얼 |
| [과제 요약](https://huggingface.co/transformers/task_summary.html) | 🤗 Transformers가 지원하는 과제들 |
| [과제 요약](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers가 지원하는 과제들 |
| [전처리 튜토리얼](https://huggingface.co/transformers/preprocessing.html) | `Tokenizer` 클래스를 이용해 모델을 위한 데이터 준비하기 |
| [전처리 튜토리얼](https://huggingface.co/docs/transformers/preprocessing) | `Tokenizer` 클래스를 이용해 모델을 위한 데이터 준비하기 |
| [학습과 fine-tuning](https://huggingface.co/transformers/training.html) | 🤗 Transformers가 제공하는 모델 PyTorch/TensorFlow 학습 과정과 `Trainer` API에서 사용하기 |
| [학습과 fine-tuning](https://huggingface.co/docs/transformers/training) | 🤗 Transformers가 제공하는 모델 PyTorch/TensorFlow 학습 과정과 `Trainer` API에서 사용하기 |
| [퀵 투어: Fine-tuning/사용 스크립트](https://github.com/huggingface/transformers/tree/master/examples) | 다양한 과제에서 모델 fine-tuning하는 예시 스크립트 |
| [퀵 투어: Fine-tuning/사용 스크립트](https://github.com/huggingface/transformers/tree/main/examples) | 다양한 과제에서 모델 fine-tuning하는 예시 스크립트 |
| [모델 공유 및 업로드](https://huggingface.co/transformers/model_sharing.html) | 커뮤니티에 fine-tune된 모델을 업로드 및 공유하기 |
| [모델 공유 및 업로드](https://huggingface.co/docs/transformers/model_sharing) | 커뮤니티에 fine-tune된 모델을 업로드 및 공유하기 |
<imgalt="Hugging Face Transformers Library"src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg"width="352"height="59"style="max-width: 100%;">
A biblioteca 🤗 Transformers oferece milhares de modelos pré-treinados para executar tarefas em diferentes modalidades, como texto, visão e áudio.
Esses modelos podem ser aplicados a:
* 📝 Texto, para tarefas como classificação de texto, extração de informações, resposta a perguntas, sumarização, tradução, geração de texto, em mais de 100 idiomas.
* 🖼️ Imagens, para tarefas como classificação de imagens, detecção de objetos e segmentação.
* 🗣️ Áudio, para tarefas como reconhecimento de fala e classificação de áudio.
Os modelos Transformer também podem executar tarefas em diversas modalidades combinadas, como responder a perguntas em tabelas, reconhecimento óptico de caracteres, extração de informações de documentos digitalizados, classificação de vídeo e resposta a perguntas visuais.
A biblioteca 🤗 Transformers oferece APIs para baixar e usar rapidamente esses modelos pré-treinados em um texto específico, ajustá-los em seus próprios conjuntos de dados e, em seguida, compartilhá-los com a comunidade em nosso [model hub](https://huggingface.co/models). Ao mesmo tempo, cada módulo Python que define uma arquitetura é totalmente independente e pode ser modificado para permitir experimentos de pesquisa rápidos.
A biblioteca 🤗 Transformers é respaldada pelas três bibliotecas de aprendizado profundo mais populares — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) e [TensorFlow](https://www.tensorflow.org/) — com uma integração perfeita entre elas. É simples treinar seus modelos com uma delas antes de carregá-los para inferência com a outra
## Demonstração Online
Você pode testar a maioria de nossos modelos diretamente em suas páginas a partir do [model hub](https://huggingface.co/models). Também oferecemos [hospedagem de modelos privados, versionamento e uma API de inferência](https://huggingface.co/pricing)
para modelos públicos e privados.
Aqui estão alguns exemplos:
Em Processamento de Linguagem Natural:
- [Completar palavra mascarada com BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Reconhecimento de Entidades Nomeadas com Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Geração de texto com GPT-2](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C)
- [Inferência de Linguagem Natural com RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Sumarização com BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Resposta a perguntas com DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Tradução com T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
Em Visão Computacional:
- [Classificação de Imagens com ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Detecção de Objetos com DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Segmentação Semântica com SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Segmentação Panóptica com MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
- [Estimativa de Profundidade com DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
- [Classificação de Vídeo com VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Segmentação Universal com OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
Em Áudio:
- [Reconhecimento Automático de Fala com Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Detecção de Palavras-Chave com Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Classificação de Áudio com Transformer de Espectrograma de Áudio](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
Em Tarefas Multimodais:
- [Respostas de Perguntas em Tabelas com TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Respostas de Perguntas Visuais com ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Classificação de Imagens sem Anotação com CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
- [Respostas de Perguntas em Documentos com LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Classificação de Vídeo sem Anotação com X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
## 100 Projetos Usando Transformers
Transformers é mais do que um conjunto de ferramentas para usar modelos pré-treinados: é uma comunidade de projetos construídos ao seu redor e o Hugging Face Hub. Queremos que o Transformers permita que desenvolvedores, pesquisadores, estudantes, professores, engenheiros e qualquer outra pessoa construa seus projetos dos sonhos.
Para celebrar as 100.000 estrelas do Transformers, decidimos destacar a comunidade e criamos a página [awesome-transformers](./awesome-transformers.md), que lista 100 projetos incríveis construídos nas proximidades dos Transformers.
Se você possui ou utiliza um projeto que acredita que deveria fazer parte da lista, abra um PR para adicioná-lo!
## Se você está procurando suporte personalizado da equipe Hugging Face
Para usar imediatamente um modelo em uma entrada específica (texto, imagem, áudio, ...), oferecemos a API `pipeline`. Os pipelines agrupam um modelo pré-treinado com o pré-processamento que foi usado durante o treinamento desse modelo. Aqui está como usar rapidamente um pipeline para classificar textos como positivos ou negativos:
```python
fromtransformersimportpipeline
# Carregue o pipeline de classificação de texto
>>>classifier=pipeline("sentiment-analysis")
# Classifique o texto como positivo ou negativo
>>>classifier("Estamos muito felizes em apresentar o pipeline no repositório dos transformers.")
[{'label':'POSITIVE','score':0.9996980428695679}]
```
A segunda linha de código baixa e armazena em cache o modelo pré-treinado usado pelo pipeline, enquanto a terceira linha o avalia no texto fornecido. Neste exemplo, a resposta é "positiva" com uma confiança de 99,97%.
Muitas tarefas têm um `pipeline` pré-treinado pronto para uso, não apenas em PNL, mas também em visão computacional e processamento de áudio. Por exemplo, podemos facilmente extrair objetos detectados em uma imagem:
Aqui obtemos uma lista de objetos detectados na imagem, com uma caixa envolvendo o objeto e uma pontuação de confiança. Aqui está a imagem original à esquerda, com as previsões exibidas à direita:
Você pode aprender mais sobre as tarefas suportadas pela API `pipeline` em [este tutorial](https://huggingface.co/docs/transformers/task_summary).
Além do `pipeline`, para baixar e usar qualquer um dos modelos pré-treinados em sua tarefa específica, tudo o que é necessário são três linhas de código. Aqui está a versão em PyTorch:
```python
>>> from transformers import AutoTokenizer, AutoModel
O tokenizador é responsável por todo o pré-processamento que o modelo pré-treinado espera, e pode ser chamado diretamente em uma única string (como nos exemplos acima) ou em uma lista. Ele produzirá um dicionário que você pode usar no código subsequente ou simplesmente passar diretamente para o seu modelo usando o operador de descompactação de argumentos **.
O modelo em si é um [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) ou um [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)(dependendo do seu back-end) que você pode usar como de costume. [Este tutorial](https://huggingface.co/docs/transformers/training) explica como integrar esse modelo em um ciclo de treinamento clássico do PyTorch ou TensorFlow, ou como usar nossa API `Trainer` para ajuste fino rápido em um novo conjunto de dados.
## Por que devo usar transformers?
1. Modelos state-of-the-art fáceis de usar:
- Alto desempenho em compreensão e geração de linguagem natural, visão computacional e tarefas de áudio.
- Barreira de entrada baixa para educadores e profissionais.
- Poucas abstrações visíveis para o usuário, com apenas três classes para aprender.
- Uma API unificada para usar todos os nossos modelos pré-treinados.
1. Menores custos de computação, menor pegada de carbono:
- Pesquisadores podem compartilhar modelos treinados em vez de treinar sempre do zero.
- Profissionais podem reduzir o tempo de computação e os custos de produção.
- Dezenas de arquiteturas com mais de 60.000 modelos pré-treinados em todas as modalidades.
1. Escolha o framework certo para cada parte da vida de um modelo:
- Treine modelos state-of-the-art em 3 linhas de código.
- Mova um único modelo entre frameworks TF2.0/PyTorch/JAX à vontade.
- Escolha o framework certo de forma contínua para treinamento, avaliação e produção.
1. Personalize facilmente um modelo ou um exemplo para atender às suas necessidades:
- Fornecemos exemplos para cada arquitetura para reproduzir os resultados publicados pelos autores originais.
- Os detalhes internos do modelo são expostos de maneira consistente.
- Os arquivos do modelo podem ser usados de forma independente da biblioteca para experimentos rápidos.
## Por que não devo usar transformers?
- Esta biblioteca não é uma caixa de ferramentas modular para construir redes neurais. O código nos arquivos do modelo não é refatorado com abstrações adicionais de propósito, para que os pesquisadores possam iterar rapidamente em cada um dos modelos sem se aprofundar em abstrações/arquivos adicionais.
- A API de treinamento não é projetada para funcionar com qualquer modelo, mas é otimizada para funcionar com os modelos fornecidos pela biblioteca. Para loops de aprendizado de máquina genéricos, você deve usar outra biblioteca (possivelmente, [Accelerate](https://huggingface.co/docs/accelerate)).
- Embora nos esforcemos para apresentar o maior número possível de casos de uso, os scripts em nossa [pasta de exemplos](https://github.com/huggingface/transformers/tree/main/examples) são apenas isso: exemplos. É esperado que eles não funcionem prontos para uso em seu problema específico e que seja necessário modificar algumas linhas de código para adaptá-los às suas necessidades.
### Com pip
Este repositório é testado no Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ e TensorFlow 2.6+.
Você deve instalar o 🤗 Transformers em um [ambiente virtual](https://docs.python.org/3/library/venv.html). Se você não está familiarizado com ambientes virtuais em Python, confira o [guia do usuário](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Primeiro, crie um ambiente virtual com a versão do Python que você vai usar e ative-o.
Em seguida, você precisará instalar pelo menos um dos back-ends Flax, PyTorch ou TensorFlow.
Consulte a [página de instalação do TensorFlow](https://www.tensorflow.org/install/), a [página de instalação do PyTorch](https://pytorch.org/get-started/locally/#start-locally) e/ou [Flax](https://github.com/google/flax#quick-install) e [Jax](https://github.com/google/jax#installation) páginas de instalação para obter o comando de instalação específico para a sua plataforma.
Quando um desses back-ends estiver instalado, o 🤗 Transformers pode ser instalado usando pip da seguinte forma:
```bash
pip install transformers
```
Se você deseja experimentar com os exemplos ou precisa da versão mais recente do código e não pode esperar por um novo lançamento, você deve instalar a [biblioteca a partir do código-fonte](https://huggingface.co/docs/transformers/installation#installing-from-source).
### Com conda
O 🤗 Transformers pode ser instalado com conda da seguinte forma:
```bash
conda install conda-forge::transformers
```
> **_NOTA:_** Instalar `transformers` pelo canal `huggingface` está obsoleto.
Siga as páginas de instalação do Flax, PyTorch ou TensorFlow para ver como instalá-los com conda.
Siga as páginas de instalação do Flax, PyTorch ou TensorFlow para ver como instalá-los com o conda.
> **_NOTA:_** No Windows, você pode ser solicitado a ativar o Modo de Desenvolvedor para aproveitar o cache. Se isso não for uma opção para você, por favor nos avise [neste problema](https://github.com/huggingface/huggingface_hub/issues/1062).
## Arquiteturas de Modelos
**[Todos os pontos de verificação de modelo](https://huggingface.co/models)** fornecidos pelo 🤗 Transformers são integrados de forma transparente do [model hub](https://huggingface.co/models) do huggingface.co, onde são carregados diretamente por [usuários](https://huggingface.co/users) e [organizações](https://huggingface.co/organizations).
Número atual de pontos de verificação: 
🤗 Transformers atualmente fornece as seguintes arquiteturas (veja [aqui](https://huggingface.co/docs/transformers/model_summary) para um resumo de alto nível de cada uma delas):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (from Cohere) released with the paper [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (from ESPnet) released with the paper [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (from Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) released with the paper [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (from Hugging Face) released with the paper [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (from Albert Gu and Tri Dao) released with the paper [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the paper [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (from Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) released with the paper [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (from the Qwen team, Alibaba Group) released with the paper [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (from the Qwen team, Alibaba Group) released with the paper [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (from Google) released with the paper [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (from Beijing Academy of Artificial Intelligence (BAAI) released with the paper [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (from Google AI) released with the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (from Microsoft Research) released with the paper [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (from University of Wisconsin–Madison) released with the paper [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) rreleased with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Quer contribuir com um novo modelo? Adicionamos um **guia detalhado e modelos de exemplo** para orientar você no processo de adição de um novo modelo. Você pode encontrá-los na pasta [`templates`](./templates) do repositório. Certifique-se de verificar as [diretrizes de contribuição](./CONTRIBUTING.md) e entrar em contato com os mantenedores ou abrir uma issue para coletar feedback antes de iniciar sua PR.
Para verificar se cada modelo tem uma implementação em Flax, PyTorch ou TensorFlow, ou possui um tokenizador associado com a biblioteca 🤗 Tokenizers, consulte [esta tabela](https://huggingface.co/docs/transformers/index#supported-frameworks).
Essas implementações foram testadas em vários conjuntos de dados (veja os scripts de exemplo) e devem corresponder ao desempenho das implementações originais. Você pode encontrar mais detalhes sobre o desempenho na seção de Exemplos da [documentação](https://github.com/huggingface/transformers/tree/main/examples).
## Saiba mais
| Seção | Descrição |
|-|-|
| [Documentação](https://huggingface.co/docs/transformers/) | Documentação completa da API e tutoriais |
| [Resumo de Tarefas](https://huggingface.co/docs/transformers/task_summary) | Tarefas suportadas pelo 🤗 Transformers |
| [Tutorial de Pré-processamento](https://huggingface.co/docs/transformers/preprocessing) | Usando a classe `Tokenizer` para preparar dados para os modelos |
| [Treinamento e Ajuste Fino](https://huggingface.co/docs/transformers/training) | Usando os modelos fornecidos pelo 🤗 Transformers em um loop de treinamento PyTorch/TensorFlow e a API `Trainer` |
| [Tour Rápido: Scripts de Ajuste Fino/Utilização](https://github.com/huggingface/transformers/tree/main/examples) | Scripts de exemplo para ajuste fino de modelos em uma ampla gama de tarefas |
| [Compartilhamento e Envio de Modelos](https://huggingface.co/docs/transformers/model_sharing) | Envie e compartilhe seus modelos ajustados com a comunidade |
## Citação
Agora temos um [artigo](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) que você pode citar para a biblioteca 🤗 Transformers:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = out,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
<imgalt="Hugging Face Transformers Library"src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg"width="352"height="59"style="max-width: 100%;">
🤗 Transformers предоставляет тысячи предварительно обученных моделей для выполнения различных задач, таких как текст, зрение и аудио.
Эти модели могут быть применены к:
* 📝 Тексту для таких задач, как классификация текстов, извлечение информации, ответы на вопросы, обобщение, перевод, генерация текстов на более чем 100 языках.
* 🖼️ Изображениям для задач классификации изображений, обнаружения объектов и сегментации.
* 🗣️ Аудио для задач распознавания речи и классификации аудио.
Модели transformers также могут выполнять несколько задач, такие как ответы на табличные вопросы, распознавание оптических символов, извлечение информации из отсканированных документов, классификация видео и ответы на визуальные вопросы.
🤗 Transformers предоставляет API для быстрой загрузки и использования предварительно обученных моделей, их тонкой настройки на собственных датасетах и последующего взаимодействия ими с сообществом на нашем [сайте](https://huggingface.co/models). В то же время каждый python модуль, определяющий архитектуру, полностью автономен и может быть модифицирован для проведения быстрых исследовательских экспериментов.
🤗 Transformers опирается на три самые популярные библиотеки глубокого обучения - [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) и [TensorFlow](https://www.tensorflow.org/) - и легко интегрируется между ними. Это позволяет легко обучать модели с помощью одной из них, а затем загружать их для выводов с помощью другой.
## Онлайн демонстрация
Большинство наших моделей можно протестировать непосредственно на их страницах с [сайта](https://huggingface.co/models). Мы также предлагаем [привтаный хостинг моделей, контроль версий и API для выводов](https://huggingface.co/pricing) для публичных и частных моделей.
Вот несколько примеров:
В области NLP ( Обработка текстов на естественном языке ):
- [Маскированное заполнение слов с помощью BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Распознавание сущностей с помощью Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Генерация текста с помощью GPT-2](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [Выводы на естественном языке с помощью RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Обобщение с помощью BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Ответы на вопросы с помощью DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Перевод с помощью T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
В области компьютерного зрения:
- [Классификация изображений с помощью ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Обнаружение объектов с помощью DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Семантическая сегментация с помощью SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Сегментация паноптикума с помощью MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
- [Оценка глубины с помощью DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
- [Классификация видео с помощью VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Универсальная сегментация с помощью OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
В области звука:
- [Автоматическое распознавание речи с помощью Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Поиск ключевых слов с помощью Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Классификация аудиоданных с помощью траснформера аудиоспектрограмм](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
В мультимодальных задачах:
- [Ответы на вопросы по таблице с помощью TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Визуальные ответы на вопросы с помощью ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Zero-shot классификация изображений с помощью CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
- [Ответы на вопросы по документам с помощью LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Zero-shot классификация видео с помощью X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
## 100 проектов, использующих Transformers
Transformers - это не просто набор инструментов для использования предварительно обученных моделей: это сообщество проектов, созданное на его основе, и
Hugging Face Hub. Мы хотим, чтобы Transformers позволил разработчикам, исследователям, студентам, профессорам, инженерам и всем желающим
создавать проекты своей мечты.
Чтобы отпраздновать 100 тысяч звезд Transformers, мы решили сделать акцент на сообществе, и создали страницу [awesome-transformers](./awesome-transformers.md), на которой перечислены 100
невероятных проектов, созданных с помощью transformers.
Если вы являетесь владельцем или пользователем проекта, который, по вашему мнению, должен быть включен в этот список, пожалуйста, откройте PR для его добавления!
## Если вы хотите получить индивидуальную поддержку от команды Hugging Face
Для использования модели на заданном входе (текст, изображение, звук, ...) мы предоставляем API `pipeline`. Конвейеры объединяют предварительно обученную модель с препроцессингом, который использовался при ее обучении. Вот как можно быстро использовать конвейер для классификации положительных и отрицательных текстов:
```python
>>>fromtransformersimportpipeline
# Выделение конвейера для анализа настроений
>>>classifier=pipeline('sentiment-analysis')
>>>classifier('Мы очень рады представить конвейер в transformers.')
[{'label':'POSITIVE','score':0.9996980428695679}]
```
Вторая строка кода загружает и кэширует предварительно обученную модель, используемую конвейером, а третья оценивает ее на заданном тексте. Здесь ответ "POSITIVE" с уверенностью 99,97%.
Во многих задачах, как в НЛП, так и в компьютерном зрении и речи, уже есть готовый `pipeline`. Например, мы можем легко извлечь обнаруженные объекты на изображении:
Здесь мы получаем список объектов, обнаруженных на изображении, с рамкой вокруг объекта и оценкой достоверности. Слева - исходное изображение, справа прогнозы:
Подробнее о задачах, поддерживаемых API `pipeline`, можно узнать в [этом учебном пособии](https://huggingface.co/docs/transformers/task_sum)
В дополнение к `pipeline`, для загрузки и использования любой из предварительно обученных моделей в заданной задаче достаточно трех строк кода. Вот версия для PyTorch:
```python
>>> from transformers import AutoTokenizer, AutoModel
Токенизатор отвечает за всю предварительную обработку, которую ожидает предварительно обученная модель, и может быть вызван непосредственно с помощью одной строки (как в приведенных выше примерах) или на списке. В результате будет получен словарь, который можно использовать в последующем коде или просто напрямую передать в модель с помощью оператора распаковки аргументов **.
Сама модель представляет собой обычный [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) или [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (в зависимости от используемого бэкенда), который можно использовать как обычно. [В этом руководстве](https://huggingface.co/docs/transformers/training) рассказывается, как интегрировать такую модель в классический цикл обучения PyTorch или TensorFlow, или как использовать наш API `Trainer` для быстрой тонкой настройки на новом датасете.
## Почему необходимо использовать transformers?
1. Простые в использовании современные модели:
- Высокая производительность в задачах понимания и генерации естественного языка, компьютерного зрения и аудио.
- Низкий входной барьер для преподавателей и практиков.
- Небольшое количество абстракций для пользователя и всего три класса для изучения.
- Единый API для использования всех наших предварительно обученных моделей.
1. Более низкие вычислительные затраты, меньший "углеродный след":
- Исследователи могут обмениваться обученными моделями вместо того, чтобы постоянно их переобучать.
- Практики могут сократить время вычислений и производственные затраты.
- Десятки архитектур с более чем 60 000 предварительно обученных моделей для всех модальностей.
1. Выбор подходящего фреймворка для каждого этапа жизни модели:
- Обучение самых современных моделей за 3 строки кода.
- Перемещайте одну модель между фреймворками TF2.0/PyTorch/JAX по своему усмотрению.
- Беспрепятственный выбор подходящего фреймворка для обучения, оценки и производства.
1. Легко настроить модель или пример под свои нужды:
- Мы предоставляем примеры для каждой архитектуры, чтобы воспроизвести результаты, опубликованные их авторами.
- Внутренние компоненты модели раскрываются максимально последовательно.
- Файлы моделей можно использовать независимо от библиотеки для проведения быстрых экспериментов.
## Почему я не должен использовать transformers?
- Данная библиотека не является модульным набором строительных блоков для нейронных сетей. Код в файлах моделей специально не рефакторится дополнительными абстракциями, чтобы исследователи могли быстро итеративно работать с каждой из моделей, не погружаясь в дополнительные абстракции/файлы.
- API обучения не предназначен для работы с любой моделью, а оптимизирован для работы с моделями, предоставляемыми библиотекой. Для работы с общими циклами машинного обучения следует использовать другую библиотеку (возможно, [Accelerate](https://huggingface.co/docs/accelerate)).
- Несмотря на то, что мы стремимся представить как можно больше примеров использования, скрипты в нашей папке [примеров](https://github.com/huggingface/transformers/tree/main/examples) являются именно примерами. Предполагается, что они не будут работать "из коробки" для решения вашей конкретной задачи, и вам придется изменить несколько строк кода, чтобы адаптировать их под свои нужды.
## Установка
### С помощью pip
Данный репозиторий протестирован на Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ и TensorFlow 2.6+.
Устанавливать 🤗 Transformers следует в [виртуальной среде](https://docs.python.org/3/library/venv.html). Если вы не знакомы с виртуальными средами Python, ознакомьтесь с [руководством пользователя](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Сначала создайте виртуальную среду с той версией Python, которую вы собираетесь использовать, и активируйте ее.
Затем необходимо установить хотя бы один бекенд из Flax, PyTorch или TensorFlow.
Пожалуйста, обратитесь к страницам [TensorFlow установочная страница](https://www.tensorflow.org/install/), [PyTorch установочная страница](https://pytorch.org/get-started/locally/#start-locally) и/или [Flax](https://github.com/google/flax#quick-install) и [Jax](https://github.com/google/jax#installation), где описаны команды установки для вашей платформы.
После установки одного из этих бэкендов 🤗 Transformers может быть установлен с помощью pip следующим образом:
```bash
pip install transformers
```
Если вы хотите поиграть с примерами или вам нужен самый современный код и вы не можете ждать нового релиза, вы должны [установить библиотеку из исходного кода](https://huggingface.co/docs/transformers/installation#installing-from-source).
### С помощью conda
Установить Transformers с помощью conda можно следующим образом:
```bash
conda install conda-forge::transformers
```
> **_ЗАМЕТКА:_** Установка `transformers` через канал `huggingface` устарела.
О том, как установить Flax, PyTorch или TensorFlow с помощью conda, читайте на страницах, посвященных их установке.
> **_ЗАМЕТКА:_** В операционной системе Windows вам может быть предложено активировать режим разработчика, чтобы воспользоваться преимуществами кэширования. Если для вас это невозможно, сообщите нам об этом [здесь](https://github.com/huggingface/huggingface_hub/issues/1062).
## Модельные архитектуры
**[Все контрольные точки моделей](https://huggingface.co/models)**, предоставляемые 🤗 Transformers, беспрепятственно интегрируются с huggingface.co [model hub](https://huggingface.co/models), куда они загружаются непосредственно [пользователями](https://huggingface.co/users) и [организациями](https://huggingface.co/organizations).
Текущее количество контрольных точек: 
🤗 В настоящее время Transformers предоставляет следующие архитектуры (подробное описание каждой из них см. [здесь](https://huggingface.co/docs/transformers/model_summary)):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (from Cohere) released with the paper [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (from ESPnet) released with the paper [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (from Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) released with the paper [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (from Hugging Face) released with the paper [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (from Albert Gu and Tri Dao) released with the paper [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft Research) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (from Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) released with the paper [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (from the Qwen team, Alibaba Group) released with the paper [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (from the Qwen team, Alibaba Group) released with the paper [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (from Google) released with the paper [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (from Beijing Academy of Artificial Intelligence (BAAI) released with the paper [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (from Google AI) released with the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (from Microsoft Research) released with the paper [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (from University of Wisconsin–Madison) released with the paper [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) rreleased with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Хотите внести новую модель? Мы добавили **подробное руководство и шаблоны**, чтобы помочь вам в процессе добавления новой модели. Вы можете найти их в папке [`templates`](./templates) репозитория. Обязательно ознакомьтесь с [руководством по внесению изменений](./CONTRIBUTING.md) и свяжитесь с ответственным разработчиком или откройте задачу, чтобы собрать отзывы перед началом работы над вашим пулл-реквестом.
Чтобы проверить, есть ли у каждой модели реализация на Flax, PyTorch или TensorFlow, или связанный с ней токенизатор, поддерживаемый библиотекой 🤗 Tokenizers, обратитесь к [этой таблице](https://huggingface.co/docs/transformers/index#supported-frameworks).
Эти реализации были протестированы на нескольких наборах данных (см. примеры скриптов) и должны соответствовать производительности оригинальных реализаций. Более подробную информацию о производительности можно найти в разделе "Примеры" [документации](https://github.com/huggingface/transformers/tree/main/examples).
## Изучи больше
| Секция | Описание |
|-|-|
| [Документация](https://huggingface.co/docs/transformers/) | Полная документация по API и гайды |
| [Краткие описания задач](https://huggingface.co/docs/transformers/task_summary) | Задачи поддерживаются 🤗 Transformers |
| [Пособие по предварительной обработке](https://huggingface.co/docs/transformers/preprocessing) | Использование класса `Tokenizer` для подготовки данных для моделей |
| [Обучение и доработка](https://huggingface.co/docs/transformers/training) | Использование моделей, предоставляемых 🤗 Transformers, в цикле обучения PyTorch/TensorFlow и API `Trainer`. |
| [Быстрый тур: Тонкая настройка/скрипты использования](https://github.com/huggingface/transformers/tree/main/examples) | Примеры скриптов для тонкой настройки моделей на широком спектре задач |
| [Совместное использование и загрузка моделей](https://huggingface.co/docs/transformers/model_sharing) | Загружайте и делитесь с сообществом своими доработанными моделями |
## Цитирование
Теперь у нас есть [статья](https://www.aclweb.org/anthology/2020.emnlp-demos.6/), которую можно цитировать для библиотеки 🤗 Transformers:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
<imgalt="Hugging Face Transformers Library"src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg"width="352"height="59"style="max-width: 100%;">
🤗 ట్రాన్స్ఫార్మర్లు టెక్స్ట్, విజన్ మరియు ఆడియో వంటి విభిన్న పద్ధతులపై టాస్క్లను నిర్వహించడానికి వేలాది ముందుగా శిక్షణ పొందిన మోడల్లను అందిస్తాయి.
ఈ నమూనాలు వర్తించవచ్చు:
* 📝 టెక్స్ట్, 100కి పైగా భాషల్లో టెక్స్ట్ క్లాసిఫికేషన్, ఇన్ఫర్మేషన్ ఎక్స్ట్రాక్షన్, ప్రశ్నలకు సమాధానాలు, సారాంశం, అనువాదం, టెక్స్ట్ జనరేషన్ వంటి పనుల కోసం.
* 🖼️ ఇమేజ్లు, ఇమేజ్ వర్గీకరణ, ఆబ్జెక్ట్ డిటెక్షన్ మరియు సెగ్మెంటేషన్ వంటి పనుల కోసం.
* 🗣️ ఆడియో, స్పీచ్ రికగ్నిషన్ మరియు ఆడియో వర్గీకరణ వంటి పనుల కోసం.
ట్రాన్స్ఫార్మర్ మోడల్లు టేబుల్ క్వశ్చన్ ఆన్సర్ చేయడం, ఆప్టికల్ క్యారెక్టర్ రికగ్నిషన్, స్కాన్ చేసిన డాక్యుమెంట్ల నుండి ఇన్ఫర్మేషన్ ఎక్స్ట్రాక్షన్, వీడియో క్లాసిఫికేషన్ మరియు విజువల్ క్వశ్చన్ ఆన్సర్ చేయడం వంటి **అనేక పద్ధతులతో కలిపి** పనులను కూడా చేయగలవు.
🤗 ట్రాన్స్ఫార్మర్లు అందించిన టెక్స్ట్లో ప్రీట్రైన్డ్ మోడల్లను త్వరగా డౌన్లోడ్ చేయడానికి మరియు ఉపయోగించడానికి, వాటిని మీ స్వంత డేటాసెట్లలో ఫైన్-ట్యూన్ చేయడానికి మరియు వాటిని మా [మోడల్ హబ్](https://huggingface.co/models)లో సంఘంతో భాగస్వామ్యం చేయడానికి API లను అందిస్తుంది. అదే సమయంలో, ఆర్కిటెక్చర్ని నిర్వచించే ప్రతి పైథాన్ మాడ్యూల్ పూర్తిగా స్వతంత్రంగా ఉంటుంది మరియు త్వరిత పరిశోధన ప్రయోగాలను ప్రారంభించడానికి సవరించవచ్చు.
🤗 ట్రాన్స్ఫార్మర్లకు మూడు అత్యంత ప్రజాదరణ పొందిన డీప్ లెర్నింగ్ లైబ్రరీలు ఉన్నాయి — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) మరియు [TensorFlow](https://www.tensorflow.org/) — వాటి మధ్య అతుకులు లేని ఏకీకరణతో. మీ మోడల్లను ఒకదానితో మరొకదానితో అనుమితి కోసం లోడ్ చేసే ముందు వాటికి శిక్షణ ఇవ్వడం చాలా సులభం.
## ఆన్లైన్ డెమోలు
మీరు [మోడల్ హబ్](https://huggingface.co/models) నుండి మా మోడళ్లలో చాలా వరకు వాటి పేజీలలో నేరుగా పరీక్షించవచ్చు. మేము పబ్లిక్ మరియు ప్రైవేట్ మోడల్ల కోసం [ప్రైవేట్ మోడల్ హోస్టింగ్, సంస్కరణ & అనుమితి API](https://huggingface.co/pricing)ని కూడా అందిస్తాము.
ఇక్కడ కొన్ని ఉదాహరణలు ఉన్నాయి:
సహజ భాషా ప్రాసెసింగ్లో:
- [BERT తో మాస్క్డ్ వర్డ్ కంప్లీషన్](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Electra తో పేరు ఎంటిటీ గుర్తింపు](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [GPT-2 తో టెక్స్ట్ జనరేషన్](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [RoBERTa తో సహజ భాషా అనుమితి](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+Lost.+Nobody+lost+any+animal)
- [BART తో సారాంశం](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [DistilBERT తో ప్రశ్న సమాధానం](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [T5 తో అనువాదం](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
కంప్యూటర్ దృష్టిలో:
- [VIT తో చిత్ర వర్గీకరణ](https://huggingface.co/google/vit-base-patch16-224)
- [DETR తో ఆబ్జెక్ట్ డిటెక్షన్](https://huggingface.co/facebook/detr-resnet-50)
- [SegFormer తో సెమాంటిక్ సెగ్మెంటేషన్](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [MaskFormer తో పానోప్టిక్ సెగ్మెంటేషన్](https://huggingface.co/facebook/maskformer-swin-small-coco)
- [DPT తో లోతు అంచనా](https://huggingface.co/docs/transformers/model_doc/dpt)
- [VideoMAE తో వీడియో వర్గీకరణ](https://huggingface.co/docs/transformers/model_doc/videomae)
- [OneFormer తో యూనివర్సల్ సెగ్మెంటేషన్](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
ఆడియోలో:
- [Wav2Vec2 తో ఆటోమేటిక్ స్పీచ్ రికగ్నిషన్](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Wav2Vec2 తో కీవర్డ్ స్పాటింగ్](https://huggingface.co/superb/wav2vec2-base-superb-ks)
ఇచ్చిన ఇన్పుట్ (టెక్స్ట్, ఇమేజ్, ఆడియో, ...)పై తక్షణమే మోడల్ను ఉపయోగించడానికి, మేము `pipeline` API ని అందిస్తాము. పైప్లైన్లు ఆ మోడల్ శిక్షణ సమయంలో ఉపయోగించిన ప్రీప్రాసెసింగ్తో కూడిన ప్రీట్రైన్డ్ మోడల్ను సమూహపరుస్తాయి. సానుకూల మరియు ప్రతికూల పాఠాలను వర్గీకరించడానికి పైప్లైన్ను త్వరగా ఎలా ఉపయోగించాలో ఇక్కడ ఉంది:
```python
>>>fromtransformersimportpipeline
# Allocate a pipeline for sentiment-analysis
>>>classifier=pipeline('sentiment-analysis')
>>>classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label':'POSITIVE','score':0.9996980428695679}]
```
రెండవ లైన్ కోడ్ డౌన్లోడ్ మరియు పైప్లైన్ ఉపయోగించే ప్రీట్రైన్డ్ మోడల్ను కాష్ చేస్తుంది, మూడవది ఇచ్చిన టెక్స్ట్పై మూల్యాంకనం చేస్తుంది. ఇక్కడ సమాధానం 99.97% విశ్వాసంతో "పాజిటివ్".
చాలా పనులు NLPలో కానీ కంప్యూటర్ విజన్ మరియు స్పీచ్లో కూడా ముందుగా శిక్షణ పొందిన `pipeline` సిద్ధంగా ఉన్నాయి. ఉదాహరణకు, మనం చిత్రంలో గుర్తించిన వస్తువులను సులభంగా సంగ్రహించవచ్చు:
ఇక్కడ మనం ఆబ్జెక్ట్ చుట్టూ ఉన్న బాక్స్ మరియు కాన్ఫిడెన్స్ స్కోర్తో చిత్రంలో గుర్తించబడిన వస్తువుల జాబితాను పొందుతాము. ఇక్కడ ఎడమవైపున ఉన్న అసలు చిత్రం, కుడివైపున అంచనాలు ప్రదర్శించబడతాయి:
మీరు [ఈ ట్యుటోరియల్](https://huggingface.co/docs/transformers/task_summary)లో `pipeline` API ద్వారా సపోర్ట్ చేసే టాస్క్ల గురించి మరింత తెలుసుకోవచ్చు.
`pipeline`తో పాటు, మీరు ఇచ్చిన టాస్క్లో ఏదైనా ప్రీట్రైన్డ్ మోడల్లను డౌన్లోడ్ చేయడానికి మరియు ఉపయోగించడానికి, దీనికి మూడు లైన్ల కోడ్ సరిపోతుంది. ఇక్కడ PyTorch వెర్షన్ ఉంది:
```python
>>> from transformers import AutoTokenizer, AutoModel
ప్రిట్రైన్డ్ మోడల్ ఆశించే అన్ని ప్రీప్రాసెసింగ్లకు టోకెనైజర్ బాధ్యత వహిస్తుంది మరియు నేరుగా ఒకే స్ట్రింగ్ (పై ఉదాహరణలలో వలె) లేదా జాబితాపై కాల్ చేయవచ్చు. ఇది మీరు డౌన్స్ట్రీమ్ కోడ్లో ఉపయోగించగల నిఘంటువుని అవుట్పుట్ చేస్తుంది లేదా ** ఆర్గ్యుమెంట్ అన్ప్యాకింగ్ ఆపరేటర్ని ఉపయోగించి నేరుగా మీ మోడల్కి పంపుతుంది.
మోడల్ కూడా సాధారణ [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) లేదా [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (మీ బ్యాకెండ్ని బట్టి) మీరు మామూలుగా ఉపయోగించవచ్చు. [ఈ ట్యుటోరియల్](https://huggingface.co/docs/transformers/training) అటువంటి మోడల్ని క్లాసిక్ PyTorch లేదా TensorFlow ట్రైనింగ్ లూప్లో ఎలా ఇంటిగ్రేట్ చేయాలో లేదా మా `Trainer` API ని ఎలా ఉపయోగించాలో వివరిస్తుంది కొత్త డేటాసెట్.
## నేను ట్రాన్స్ఫార్మర్లను ఎందుకు ఉపయోగించాలి?
1. ఉపయోగించడానికి సులభమైన స్టేట్ ఆఫ్ ది ఆర్ట్ మోడల్లు:
- సహజ భాషా అవగాహన & ఉత్పత్తి, కంప్యూటర్ దృష్టి మరియు ఆడియో పనులపై అధిక పనితీరు.
- విద్యావేత్తలు మరియు అభ్యాసకుల ప్రవేశానికి తక్కువ అవరోధం.
- తెలుసుకోవడానికి కేవలం మూడు తరగతులతో కొన్ని వినియోగదారు-ముఖ సంగ్రహణలు.
- మా అన్ని ప్రీట్రైన్డ్ మోడల్లను ఉపయోగించడం కోసం ఏకీకృత API.
2. తక్కువ గణన ఖర్చులు, చిన్న కార్బన్ పాదముద్ర:
- పరిశోధకులు ఎల్లప్పుడూ మళ్లీ శిక్షణ పొందే బదులు శిక్షణ పొందిన నమూనాలను పంచుకోవచ్చు.
- అభ్యాసకులు గణన సమయాన్ని మరియు ఉత్పత్తి ఖర్చులను తగ్గించగలరు.
- అన్ని పద్ధతుల్లో 60,000 కంటే ఎక్కువ ప్రీట్రైన్డ్ మోడల్లతో డజన్ల కొద్దీ ఆర్కిటెక్చర్లు.
3. మోడల్ జీవితకాలంలో ప్రతి భాగానికి సరైన ఫ్రేమ్వర్క్ను ఎంచుకోండి:
- 3 లైన్ల కోడ్లో స్టేట్ ఆఫ్ ది ఆర్ట్ మోడల్లకు శిక్షణ ఇవ్వండి.
- TF2.0/PyTorch/JAX ఫ్రేమ్వర్క్ల మధ్య ఒకే మోడల్ను ఇష్టానుసారంగా తరలించండి.
- శిక్షణ, మూల్యాంకనం మరియు ఉత్పత్తి కోసం సరైన ఫ్రేమ్వర్క్ను సజావుగా ఎంచుకోండి.
4. మీ అవసరాలకు అనుగుణంగా మోడల్ లేదా ఉదాహరణను సులభంగా అనుకూలీకరించండి:
- ప్రతి ఆర్కిటెక్చర్ దాని అసలు రచయితలు ప్రచురించిన ఫలితాలను పునరుత్పత్తి చేయడానికి మేము ఉదాహరణలను అందిస్తాము.
- మోడల్ ఇంటర్నల్లు వీలైనంత స్థిరంగా బహిర్గతమవుతాయి.
- శీఘ్ర ప్రయోగాల కోసం లైబ్రరీ నుండి స్వతంత్రంగా మోడల్ ఫైల్లను ఉపయోగించవచ్చు.
## నేను ట్రాన్స్ఫార్మర్లను ఎందుకు ఉపయోగించకూడదు?
- ఈ లైబ్రరీ న్యూరల్ నెట్ల కోసం బిల్డింగ్ బ్లాక్ల మాడ్యులర్ టూల్బాక్స్ కాదు. మోడల్ ఫైల్లలోని కోడ్ ఉద్దేశపూర్వకంగా అదనపు సంగ్రహణలతో రీఫ్యాక్టరింగ్ చేయబడదు, తద్వారా పరిశోధకులు అదనపు సంగ్రహణలు/ఫైళ్లలోకి ప్రవేశించకుండా ప్రతి మోడల్పై త్వరగా మళ్లించగలరు.
- శిక్షణ API ఏ మోడల్లో పని చేయడానికి ఉద్దేశించబడలేదు కానీ లైబ్రరీ అందించిన మోడల్లతో పని చేయడానికి ఆప్టిమైజ్ చేయబడింది. సాధారణ మెషిన్ లెర్నింగ్ లూప్ల కోసం, మీరు మరొక లైబ్రరీని ఉపయోగించాలి (బహుశా, [Accelerate](https://huggingface.co/docs/accelerate)).
- మేము వీలైనన్ని ఎక్కువ వినియోగ సందర్భాలను ప్రదర్శించడానికి ప్రయత్నిస్తున్నప్పుడు, మా [ఉదాహరణల ఫోల్డర్](https://github.com/huggingface/transformers/tree/main/examples)లోని స్క్రిప్ట్లు కేవలం: ఉదాహరణలు. మీ నిర్దిష్ట సమస్యపై అవి పని చేయవు మరియు వాటిని మీ అవసరాలకు అనుగుణంగా మార్చుకోవడానికి మీరు కొన్ని కోడ్ లైన్లను మార్చవలసి ఉంటుంది.
## సంస్థాపన
### పిప్ తో
ఈ రిపోజిటరీ పైథాన్ 3.8+, ఫ్లాక్స్ 0.4.1+, PyTorch 1.11+ మరియు TensorFlow 2.6+లో పరీక్షించబడింది.
మీరు [వర్చువల్ వాతావరణం](https://docs.python.org/3/library/venv.html)లో 🤗 ట్రాన్స్ఫార్మర్లను ఇన్స్టాల్ చేయాలి. మీకు పైథాన్ వర్చువల్ పరిసరాల గురించి తెలియకుంటే, [యూజర్ గైడ్](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) చూడండి.
ముందుగా, మీరు ఉపయోగించబోతున్న పైథాన్ వెర్షన్తో వర్చువల్ వాతావరణాన్ని సృష్టించండి మరియు దానిని సక్రియం చేయండి.
అప్పుడు, మీరు ఫ్లాక్స్, పైటార్చ్ లేదా టెన్సర్ఫ్లోలో కనీసం ఒకదానిని ఇన్స్టాల్ చేయాలి.
దయచేసి [TensorFlow ఇన్స్టాలేషన్ పేజీ](https://www.tensorflow.org/install/), [PyTorch ఇన్స్టాలేషన్ పేజీ](https://pytorch.org/get-started/locally/#start-locally) మరియు/ని చూడండి లేదా మీ ప్లాట్ఫారమ్ కోసం నిర్దిష్ట ఇన్స్టాలేషన్ కమాండ్కు సంబంధించి [Flax](https://github.com/google/flax#quick-install) మరియు [Jax](https://github.com/google/jax#installation) ఇన్స్టాలేషన్ పేజీలు .
ఆ బ్యాకెండ్లలో ఒకటి ఇన్స్టాల్ చేయబడినప్పుడు, 🤗 ట్రాన్స్ఫార్మర్లను ఈ క్రింది విధంగా పిప్ని ఉపయోగించి ఇన్స్టాల్ చేయవచ్చు:
```bash
pip install transformers
```
మీరు ఉదాహరణలతో ప్లే చేయాలనుకుంటే లేదా కోడ్ యొక్క బ్లీడింగ్ ఎడ్జ్ అవసరం మరియు కొత్త విడుదల కోసం వేచి ఉండలేకపోతే, మీరు తప్పనిసరిగా [మూలం నుండి లైబ్రరీని ఇన్స్టాల్ చేయాలి](https://huggingface.co/docs/transformers/installation#installing-from-source).
### కొండా తో
🤗 కింది విధంగా కొండా ఉపయోగించి ట్రాన్స్ఫార్మర్లను ఇన్స్టాల్ చేయవచ్చు:
```shell script
conda install conda-forge::transformers
```
> **_గమనిక:_** `huggingface` ఛానెల్ నుండి `transformers` ఇన్స్టాల్ చేయడం పురాతనంగా ఉంది.
Flax, PyTorch లేదా TensorFlow యొక్క ఇన్స్టాలేషన్ పేజీలను కొండాతో ఎలా ఇన్స్టాల్ చేయాలో చూడటానికి వాటిని అనుసరించండి.
> **_గమనిక:_** Windowsలో, కాషింగ్ నుండి ప్రయోజనం పొందేందుకు మీరు డెవలపర్ మోడ్ని సక్రియం చేయమని ప్రాంప్ట్ చేయబడవచ్చు. ఇది మీకు ఎంపిక కాకపోతే, దయచేసి [ఈ సంచిక](https://github.com/huggingface/huggingface_hub/issues/1062)లో మాకు తెలియజేయండి.
## మోడల్ ఆర్కిటెక్చర్లు
**[అన్ని మోడల్ చెక్పాయింట్లు](https://huggingface.co/models)** 🤗 అందించిన ట్రాన్స్ఫార్మర్లు huggingface.co [model hub](https://huggingface.co/models) నుండి సజావుగా ఏకీకృతం చేయబడ్డాయి [users](https://huggingface.co/users) మరియు [organizations](https://huggingface.co/organizations) ద్వారా నేరుగా అప్లోడ్ చేయబడతాయి.
ప్రస్తుత తనిఖీ కేంద్రాల సంఖ్య: 
🤗 ట్రాన్స్ఫార్మర్లు ప్రస్తుతం కింది ఆర్కిటెక్చర్లను అందజేస్తున్నాయి (వాటిలో ప్రతి ఒక్కటి ఉన్నత స్థాయి సారాంశం కోసం [ఇక్కడ](https://huggingface.co/docs/transformers/model_summary) చూడండి):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (from Cohere) released with the paper [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (from ESPnet) released with the paper [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (from Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) released with the paper [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (from Hugging Face) released with the paper [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (from Albert Gu and Tri Dao) released with the paper [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the paper [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (from Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) released with the paper [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (from the Qwen team, Alibaba Group) released with the paper [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (from the Qwen team, Alibaba Group) released with the paper [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (from Google) released with the paper [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (from Beijing Academy of Artificial Intelligence (BAAI) released with the paper [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (from Google AI) released with the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (from Microsoft Research) released with the paper [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (from University of Wisconsin–Madison) released with the paper [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. కొత్త మోడల్ను అందించాలనుకుంటున్నారా? కొత్త మోడల్ను జోడించే ప్రక్రియలో మీకు మార్గనిర్దేశం చేసేందుకు మేము **వివరణాత్మక గైడ్ మరియు టెంప్లేట్లను** జోడించాము. మీరు వాటిని రిపోజిటరీ యొక్క [`టెంప్లేట్లు`](./టెంప్లేట్లు) ఫోల్డర్లో కనుగొనవచ్చు. మీ PRని ప్రారంభించడానికి ముందు [సహకార మార్గదర్శకాలు](./CONTRIBUTING.md)ని తనిఖీ చేసి, నిర్వహణదారులను సంప్రదించండి లేదా అభిప్రాయాన్ని సేకరించడానికి సమస్యను తెరవండి.
ప్రతి మోడల్ ఫ్లాక్స్, పైటార్చ్ లేదా టెన్సర్ఫ్లోలో అమలు చేయబడిందా లేదా 🤗 Tokenizers లైబ్రరీ ద్వారా అనుబంధించబడిన టోకెనైజర్ని కలిగి ఉందో లేదో తనిఖీ చేయడానికి, [ఈ పట్టిక](https://huggingface.co/docs/transformers/index#supported-frameworks).
ఈ అమలులు అనేక డేటాసెట్లలో పరీక్షించబడ్డాయి (ఉదాహరణ స్క్రిప్ట్లను చూడండి) మరియు అసలైన అమలుల పనితీరుతో సరిపోలాలి. మీరు [డాక్యుమెంటేషన్](https://github.com/huggingface/transformers/tree/main/examples) యొక్క ఉదాహరణల విభాగంలో పనితీరుపై మరిన్ని వివరాలను కనుగొనవచ్చు.
## ఇంకా నేర్చుకో
| విభాగం | వివరణ |
|-|-|
| [డాక్యుమెంటేషన్](https://huggingface.co/docs/transformers/) | పూర్తి API డాక్యుమెంటేషన్ మరియు ట్యుటోరియల్స్ |
| [టాస్క్ సారాంశం](https://huggingface.co/docs/transformers/task_summary) | 🤗 ట్రాన్స్ఫార్మర్ల ద్వారా సపోర్ట్ చేయబడిన విధులు |
| [ప్రీప్రాసెసింగ్ ట్యుటోరియల్](https://huggingface.co/docs/transformers/preprocessing) | మోడల్ల కోసం డేటాను సిద్ధం చేయడానికి `Tokenizer` క్లాస్ని ఉపయోగించడం |
| [ట్రైనింగ్ మరియు ఫైన్-ట్యూనింగ్](https://huggingface.co/docs/transformers/training) | PyTorch/TensorFlow ట్రైనింగ్ లూప్ మరియు `Trainer` APIలో 🤗 ట్రాన్స్ఫార్మర్లు అందించిన మోడల్లను ఉపయోగించడం |
| [త్వరిత పర్యటన: ఫైన్-ట్యూనింగ్/యూసేజ్ స్క్రిప్ట్లు](https://github.com/huggingface/transformers/tree/main/examples) | విస్తృత శ్రేణి టాస్క్లపై ఫైన్-ట్యూనింగ్ మోడల్స్ కోసం ఉదాహరణ స్క్రిప్ట్లు |
| [మోడల్ భాగస్వామ్యం మరియు అప్లోడ్ చేయడం](https://huggingface.co/docs/transformers/model_sharing) | కమ్యూనిటీతో మీ ఫైన్-ట్యూన్డ్ మోడల్లను అప్లోడ్ చేయండి మరియు భాగస్వామ్యం చేయండి |
## అనులేఖనం
🤗 ట్రాన్స్ఫార్మర్స్ లైబ్రరీ కోసం మీరు ఉదహరించగల [పేపర్](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) ఇప్పుడు మా వద్ద ఉంది:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
<imgalt="Hugging Face Transformers Library"src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg"width="352"height="59"style="max-width: 100%;">
🤗 Transformers cung cấp hàng ngàn mô hình được huấn luyện trước để thực hiện các nhiệm vụ trên các modalities khác nhau như văn bản, hình ảnh và âm thanh.
Các mô hình này có thể được áp dụng vào:
* 📝 Văn bản, cho các nhiệm vụ như phân loại văn bản, trích xuất thông tin, trả lời câu hỏi, tóm tắt, dịch thuật và sinh văn bản, trong hơn 100 ngôn ngữ.
* 🖼️ Hình ảnh, cho các nhiệm vụ như phân loại hình ảnh, nhận diện đối tượng và phân đoạn.
* 🗣️ Âm thanh, cho các nhiệm vụ như nhận dạng giọng nói và phân loại âm thanh.
Các mô hình Transformer cũng có thể thực hiện các nhiệm vụ trên **nhiều modalities kết hợp**, như trả lời câu hỏi về bảng, nhận dạng ký tự quang học, trích xuất thông tin từ tài liệu quét, phân loại video và trả lời câu hỏi hình ảnh.
🤗 Transformers cung cấp các API để tải xuống và sử dụng nhanh chóng các mô hình được huấn luyện trước đó trên văn bản cụ thể, điều chỉnh chúng trên tập dữ liệu của riêng bạn và sau đó chia sẻ chúng với cộng đồng trên [model hub](https://huggingface.co/models) của chúng tôi. Đồng thời, mỗi module python xác định một kiến trúc là hoàn toàn độc lập và có thể được sửa đổi để cho phép thực hiện nhanh các thí nghiệm nghiên cứu.
🤗 Transformers được hỗ trợ bởi ba thư viện học sâu phổ biến nhất — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) và [TensorFlow](https://www.tensorflow.org/) — với tích hợp mượt mà giữa chúng. Việc huấn luyện mô hình của bạn với một thư viện trước khi tải chúng để sử dụng trong suy luận với thư viện khác là rất dễ dàng.
## Các demo trực tuyến
Bạn có thể kiểm tra hầu hết các mô hình của chúng tôi trực tiếp trên trang của chúng từ [model hub](https://huggingface.co/models). Chúng tôi cũng cung cấp [dịch vụ lưu trữ mô hình riêng tư, phiên bản và API suy luận](https://huggingface.co/pricing) cho các mô hình công khai và riêng tư.
Dưới đây là một số ví dụ:
Trong Xử lý Ngôn ngữ Tự nhiên:
- [Hoàn thành từ vụng về từ với BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Nhận dạng thực thể đặt tên với Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Tạo văn bản tự nhiên với Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
- [Suy luận Ngôn ngữ Tự nhiên với RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Tóm tắt văn bản với BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Trả lời câu hỏi với DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Dịch văn bản với T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
Trong Thị giác Máy tính:
- [Phân loại hình ảnh với ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Phát hiện đối tượng với DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Phân đoạn ngữ nghĩa với SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Phân đoạn toàn diện với Mask2Former](https://huggingface.co/facebook/mask2former-swin-large-coco-panoptic)
- [Ước lượng độ sâu với Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)
- [Phân loại video với VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Phân đoạn toàn cầu với OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
Trong âm thanh:
- [Nhận dạng giọng nói tự động với Whisper](https://huggingface.co/openai/whisper-large-v3)
- [Phát hiện từ khóa với Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Phân loại âm thanh với Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
Trong các nhiệm vụ đa phương thức:
- [Trả lời câu hỏi về bảng với TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Trả lời câu hỏi hình ảnh với ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Mô tả hình ảnh với LLaVa](https://huggingface.co/llava-hf/llava-1.5-7b-hf)
- [Phân loại hình ảnh không cần nhãn với SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384)
- [Trả lời câu hỏi văn bản tài liệu với LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Phân loại video không cần nhãn với X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
- [Phát hiện đối tượng không cần nhãn với OWLv2](https://huggingface.co/docs/transformers/en/model_doc/owlv2)
- [Phân đoạn hình ảnh không cần nhãn với CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)
- [Tạo mặt nạ tự động với SAM](https://huggingface.co/docs/transformers/model_doc/sam)
## 100 dự án sử dụng Transformers
Transformers không chỉ là một bộ công cụ để sử dụng các mô hình được huấn luyện trước: đó là một cộng đồng các dự án xây dựng xung quanh nó và Hugging Face Hub. Chúng tôi muốn Transformers giúp các nhà phát triển, nhà nghiên cứu, sinh viên, giáo sư, kỹ sư và bất kỳ ai khác xây dựng những dự án mơ ước của họ.
Để kỷ niệm 100.000 sao của transformers, chúng tôi đã quyết định tập trung vào cộng đồng và tạo ra trang [awesome-transformers](./awesome-transformers.md) liệt kê 100 dự án tuyệt vời được xây dựng xung quanh transformers.
Nếu bạn sở hữu hoặc sử dụng một dự án mà bạn tin rằng nên được thêm vào danh sách, vui lòng mở một PR để thêm nó!
## Nếu bạn đang tìm kiếm hỗ trợ tùy chỉnh từ đội ngũ Hugging Face
Để ngay lập tức sử dụng một mô hình trên một đầu vào cụ thể (văn bản, hình ảnh, âm thanh, ...), chúng tôi cung cấp API `pipeline`. Pipelines nhóm một mô hình được huấn luyện trước với quá trình tiền xử lý đã được sử dụng trong quá trình huấn luyện của mô hình đó. Dưới đây là cách sử dụng nhanh một pipeline để phân loại văn bản tích cực so với tiêu cực:
```python
>>>fromtransformersimportpipeline
# Cấp phát một pipeline cho phân tích cảm xúc
>>>classifier=pipeline('sentiment-analysis')
>>>classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label':'POSITIVE','score':0.9996980428695679}]
```
Dòng code thứ hai tải xuống và lưu trữ bộ mô hình được huấn luyện được sử dụng bởi pipeline, trong khi dòng thứ ba đánh giá nó trên văn bản đã cho. Ở đây, câu trả lời là "tích cực" với độ tin cậy là 99,97%.
Nhiều nhiệm vụ có sẵn một `pipeline` được huấn luyện trước, trong NLP nhưng cũng trong thị giác máy tính và giọng nói. Ví dụ, chúng ta có thể dễ dàng trích xuất các đối tượng được phát hiện trong một hình ảnh:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Tải xuống một hình ảnh với những con mèo dễ thương
Ở đây, chúng ta nhận được một danh sách các đối tượng được phát hiện trong hình ảnh, với một hộp bao quanh đối tượng và một điểm đánh giá độ tin cậy. Đây là hình ảnh gốc ở bên trái, với các dự đoán hiển thị ở bên phải:
Bạn có thể tìm hiểu thêm về các nhiệm vụ được hỗ trợ bởi API `pipeline` trong [hướng dẫn này](https://huggingface.co/docs/transformers/task_summary).
Ngoài `pipeline`, để tải xuống và sử dụng bất kỳ mô hình được huấn luyện trước nào cho nhiệm vụ cụ thể của bạn, chỉ cần ba dòng code. Đây là phiên bản PyTorch:
```python
>>> from transformers import AutoTokenizer, AutoModel
Tokenizer là thành phần chịu trách nhiệm cho việc tiền xử lý mà mô hình được huấn luyện trước mong đợi và có thể được gọi trực tiếp trên một chuỗi đơn (như trong các ví dụ trên) hoặc một danh sách. Nó sẽ xuất ra một từ điển mà bạn có thể sử dụng trong mã phụ thuộc hoặc đơn giản là truyền trực tiếp cho mô hình của bạn bằng cách sử dụng toán tử ** để giải nén đối số.
Chính mô hình là một [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) thông thường hoặc một [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (tùy thuộc vào backend của bạn) mà bạn có thể sử dụng như bình thường. [Hướng dẫn này](https://huggingface.co/docs/transformers/training) giải thích cách tích hợp một mô hình như vậy vào một vòng lặp huấn luyện cổ điển PyTorch hoặc TensorFlow, hoặc cách sử dụng API `Trainer` của chúng tôi để tinh chỉnh nhanh chóng trên một bộ dữ liệu mới.
## Tại sao tôi nên sử dụng transformers?
1. Các mô hình tiên tiến dễ sử dụng:
- Hiệu suất cao trong việc hiểu và tạo ra ngôn ngữ tự nhiên, thị giác máy tính và âm thanh.
- Ngưỡng vào thấp cho giảng viên và người thực hành.
- Ít trừu tượng dành cho người dùng với chỉ ba lớp học.
- Một API thống nhất để sử dụng tất cả các mô hình được huấn luyện trước của chúng tôi.
2. Giảm chi phí tính toán, làm giảm lượng khí thải carbon:
- Các nhà nghiên cứu có thể chia sẻ các mô hình đã được huấn luyện thay vì luôn luôn huấn luyện lại.
- Người thực hành có thể giảm thời gian tính toán và chi phí sản xuất.
- Hàng chục kiến trúc với hơn 400.000 mô hình được huấn luyện trước trên tất cả các phương pháp.
3. Lựa chọn framework phù hợp cho mọi giai đoạn của mô hình:
- Huấn luyện các mô hình tiên tiến chỉ trong 3 dòng code.
- Di chuyển một mô hình duy nhất giữa các framework TF2.0/PyTorch/JAX theo ý muốn.
- Dễ dàng chọn framework phù hợp cho huấn luyện, đánh giá và sản xuất.
4. Dễ dàng tùy chỉnh một mô hình hoặc một ví dụ theo nhu cầu của bạn:
- Chúng tôi cung cấp các ví dụ cho mỗi kiến trúc để tái tạo kết quả được công bố bởi các tác giả gốc.
- Các thành phần nội tại của mô hình được tiết lộ một cách nhất quán nhất có thể.
- Các tệp mô hình có thể được sử dụng độc lập với thư viện để thực hiện các thử nghiệm nhanh chóng.
## Tại sao tôi không nên sử dụng transformers?
- Thư viện này không phải là một bộ công cụ modul cho các khối xây dựng mạng neural. Mã trong các tệp mô hình không được tái cấu trúc với các trừu tượng bổ sung một cách cố ý, để các nhà nghiên cứu có thể lặp nhanh trên từng mô hình mà không cần đào sâu vào các trừu tượng/tệp bổ sung.
- API huấn luyện không được thiết kế để hoạt động trên bất kỳ mô hình nào, mà được tối ưu hóa để hoạt động với các mô hình được cung cấp bởi thư viện. Đối với vòng lặp học máy chung, bạn nên sử dụng một thư viện khác (có thể là [Accelerate](https://huggingface.co/docs/accelerate)).
- Mặc dù chúng tôi cố gắng trình bày càng nhiều trường hợp sử dụng càng tốt, nhưng các tập lệnh trong thư mục [examples](https://github.com/huggingface/transformers/tree/main/examples) chỉ là ví dụ. Dự kiến rằng chúng sẽ không hoạt động ngay tức khắc trên vấn đề cụ thể của bạn và bạn sẽ phải thay đổi một số dòng mã để thích nghi với nhu cầu của bạn.
## Cài đặt
### Sử dụng pip
Thư viện này được kiểm tra trên Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ và TensorFlow 2.6+.
Bạn nên cài đặt 🤗 Transformers trong một [môi trường ảo Python](https://docs.python.org/3/library/venv.html). Nếu bạn chưa quen với môi trường ảo Python, hãy xem [hướng dẫn sử dụng](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Trước tiên, tạo một môi trường ảo với phiên bản Python bạn sẽ sử dụng và kích hoạt nó.
Sau đó, bạn sẽ cần cài đặt ít nhất một trong số các framework Flax, PyTorch hoặc TensorFlow.
Vui lòng tham khảo [trang cài đặt TensorFlow](https://www.tensorflow.org/install/), [trang cài đặt PyTorch](https://pytorch.org/get-started/locally/#start-locally) và/hoặc [Flax](https://github.com/google/flax#quick-install) và [Jax](https://github.com/google/jax#installation) để biết lệnh cài đặt cụ thể cho nền tảng của bạn.
Khi đã cài đặt một trong các backend đó, 🤗 Transformers có thể được cài đặt bằng pip như sau:
```bash
pip install transformers
```
Nếu bạn muốn thực hiện các ví dụ hoặc cần phiên bản mới nhất của mã và không thể chờ đợi cho một phiên bản mới, bạn phải [cài đặt thư viện từ nguồn](https://huggingface.co/docs/transformers/installation#installing-from-source).
### Với conda
🤗 Transformers có thể được cài đặt bằng conda như sau:
```shell script
conda install conda-forge::transformers
```
> **_GHI CHÚ:_** Cài đặt `transformers` từ kênh `huggingface` đã bị lỗi thời.
Hãy làm theo trang cài đặt của Flax, PyTorch hoặc TensorFlow để xem cách cài đặt chúng bằng conda.
> **_GHI CHÚ:_** Trên Windows, bạn có thể được yêu cầu kích hoạt Chế độ phát triển để tận dụng việc lưu cache. Nếu điều này không phải là một lựa chọn cho bạn, hãy cho chúng tôi biết trong [vấn đề này](https://github.com/huggingface/huggingface_hub/issues/1062).
## Kiến trúc mô hình
**[Tất cả các điểm kiểm tra mô hình](https://huggingface.co/models)** được cung cấp bởi 🤗 Transformers được tích hợp một cách mượt mà từ trung tâm mô hình huggingface.co [model hub](https://huggingface.co/models), nơi chúng được tải lên trực tiếp bởi [người dùng](https://huggingface.co/users) và [tổ chức](https://huggingface.co/organizations).
Số lượng điểm kiểm tra hiện tại: 
🤗 Transformers hiện đang cung cấp các kiến trúc sau đây (xem [ở đây](https://huggingface.co/docs/transformers/model_summary) để có một tóm tắt tổng quan về mỗi kiến trúc):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (từ Google Research và Toyota Technological Institute tại Chicago) được phát hành với bài báo [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), của Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (từ Google Research) được phát hành với bài báo [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) của Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (từ BAAI) được phát hành với bài báo [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) của Chen, Zhongzhi và Liu, Guang và Zhang, Bo-Wen và Ye, Fulong và Yang, Qinghong và Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (từ MIT) được phát hành với bài báo [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) của Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (từ Đại học Tsinghua) được phát hành với bài báo [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) của Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (từ Suno) được phát hành trong kho lưu trữ [suno-ai/bark](https://github.com/suno-ai/bark) bởi đội ngũ Suno AI.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (từ Facebook) được phát hành với bài báo [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) của Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov và Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (từ École polytechnique) được phát hành với bài báo [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) của Moussa Kamal Eddine, Antoine J.-P. Tixier và Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (từ VinAI Research) được phát hành với bài báo [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) của Nguyen Luong Tran, Duong Minh Le và Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (từ Microsoft) được phát hành với bài báo [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) của Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (từ Google) được phát hành với bài báo [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) của Jacob Devlin, Ming-Wei Chang, Kenton Lee và Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (từ Google) được phát hành với bài báo [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) của Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (từ VinAI Research) được phát hành với bài báo [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) của Dat Quoc Nguyen, Thanh Vu và Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (từ Google Research) được phát hành với bài báo [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) của Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang và Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (từ Google Research) được phát hành với bài báo [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) của Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang và Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (từ Microsoft Research AI4Science) được phát hành với bài báo [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (từ Google AI) được phát hành với bài báo [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) của Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (từ Facebook) được phát hành với bài báo [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) của Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (từ Facebook) được phát hành với bài báo [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) của Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (từ Salesforce) được phát hành với bài báo [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) của Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (từ Salesforce) được phát hành với bài báo [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (từ BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (từ Alexa) được phát hành với bài báo [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (từ Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) được phát hành với bài báo [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (từ NAVER CLOVA) được phát hành với bài báo [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (từ Google Research) được phát hành với bài báo [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (từ Inria/Facebook/Sorbonne) được phát hành với bài báo [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (từ Google Research) được phát hành với bài báo [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (từ OFA-Sys) được phát hành với bài báo [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (từ LAION-AI) được phát hành với bài báo [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (từ OpenAI) được phát hành với bài báo [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (từ University of Göttingen) được phát hành với bài báo [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** được phát hành với bài báo [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (từ Salesforce) được phát hành với bài báo [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (từ MetaAI) được phát hành với bài báo [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (từ Cohere) được phát hành với bài báo [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (từ Microsoft Research Asia) được phát hành với bài báo [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (từ YituTech) được phát hành với bài báo [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (từ Facebook AI) được phát hành với bài báo [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (từ Facebook AI) được phát hành với bài báo [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (từ Tsinghua University) được phát hành với bài báo [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (từ OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (từ Salesforce) được phát hành với bài báo [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (từ Microsoft) được phát hành với bài báo [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (từ Facebook) được phát hành với bài báo [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (từ Microsoft) được phát hành với bài báo [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (từ Microsoft) được phát hành với bài báo [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (từ Berkeley/Facebook/Google) được phát hành với bài báo [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (từ SenseTime Research) được phát hành với bài báo [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (từ Facebook) được phát hành với bài báo [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (từ Google AI) được phát hành với bài báo [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (từ University of Hong Kong and TikTok) được phát hành với bài báo [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (từ The University of Texas at Austin) được phát hành với bài báo [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (từ Facebook) được phát hành với bài báo [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (từ Microsoft Research) được phát hành với bài báo [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (từ SHI Labs) được phát hành với bài báo [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (từ Meta AI) được phát hành với bài báo [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (từ HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (từ Microsoft Research) được phát hành với bài báo [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (từ NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (từ Facebook) được phát hành với bài báo [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (từ Intel Labs) được phát hành với bài báo [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (từ Snap Research) được phát hành với bài báo [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (từ Google Brain) được phát hành với bài báo [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (từ Google Research/Stanford University) được phát hành với bài báo [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (từ Meta AI) được phát hành với bài báo [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (từ Google Research) được phát hành với bài báo [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (từ Baidu) được phát hành với bài báo [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (từ Baidu) được phát hành với bài báo [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (từ Meta AI) are transformer protein language models. **ESM-1b** was được phát hành với bài báo [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was được phát hành với bài báo [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were được phát hành với bài báo [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (từ Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (từ ESPnet) được phát hành với bài báo [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (từ Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (từ Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (từ CNRS) được phát hành với bài báo [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (từ Facebook AI) được phát hành với bài báo [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (từ Google Research) được phát hành với bài báo [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (từ Microsoft Research) được phát hành với bài báo [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (từ CMU/Google Brain) được phát hành với bài báo [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (từ ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. được phát hành với bài báo [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (từ Google) được phát hành với bài báo [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (từ Microsoft Research) được phát hành với bài báo [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (từ KAIST) được phát hành với bài báo [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (từ OpenAI) được phát hành với bài báo [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (từ EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (từ EleutherAI) được phát hành với bài báo [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (từ ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (từ OpenAI) được phát hành với bài báo [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (từ EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (từ AI-Sweden) được phát hành với bài báo [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (từ BigCode) được phát hành với bài báo [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (từ Microsoft) được phát hành với bài báo [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (từ Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) được phát hành với bài báo [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (từ UCSD, NVIDIA) được phát hành với bài báo [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (từ Allegro.pl, AGH University of Science and Technology) được phát hành với bài báo [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (từ Facebook) được phát hành với bài báo [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (từ Berkeley) được phát hành với bài báo [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (từ HuggingFace) được phát hành với bài báo [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (từ Hugging Face) được phát hành với bài báo [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (từ OpenAI) được phát hành với bài báo [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (từ Beihang University, UC Berkeley, Rutgers University, SEDD Company) được phát hành với bài báo [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (từ Salesforce) được phát hành với bài báo [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (từ OpenAI) được phát hành với bài báo [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (từ Microsoft Research Asia) được phát hành với bài báo [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (từ Microsoft Research Asia) được phát hành với bài báo [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (từ Microsoft Research Asia) được phát hành với bài báo [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (từ Microsoft Research Asia) được phát hành với bài báo [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (từ Microsoft Research Asia) được phát hành với bài báo [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (từ AllenAI) được phát hành với bài báo [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (từ Meta AI) được phát hành với bài báo [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (từ South China University of Technology) được phát hành với bài báo [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (từ The FAIR team of Meta AI) được phát hành với bài báo [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (từ The FAIR team of Meta AI) được phát hành với bài báo [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (từ Microsoft Research & University of Wisconsin-Madison) được phát hành với bài báo [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (từ Microsoft Research & University of Wisconsin-Madison) được phát hành với bài báo [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (từ AllenAI) được phát hành với bài báo [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (từ Google AI) được phát hành với bài báo [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (từ Studio Ousia) được phát hành với bài báo [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (từ UNC Chapel Hill) được phát hành với bài báo [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (từ Facebook) được phát hành với bài báo [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (từ Facebook) được phát hành với bài báo [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (từ Google) được phát hành với bài báo [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (từ Albert Gu and Tri Dao) được phát hành với bài báo [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (từ Microsoft Research Asia) được phát hành với bài báo [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (từ FAIR and UIUC) được phát hành với bài báo [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (từ Meta and UIUC) được phát hành với bài báo [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (từ Google AI) được phát hành với bài báo [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (từ Facebook) được phát hành với bài báo [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (từ Facebook) được phát hành với bài báo [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (từ Meta/USC/CMU/SJTU) được phát hành với bài báo [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (từ NVIDIA) được phát hành với bài báo [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (từ NVIDIA) được phát hành với bài báo [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (từ Alibaba Research) được phát hành với bài báo [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (từ Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (từ Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (từ Studio Ousia) được phát hành với bài báo [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (từ Facebook) được phát hành với bài báo [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (từ CMU/Google Brain) được phát hành với bài báo [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (từ Google Inc.) được phát hành với bài báo [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (từ Google Inc.) được phát hành với bài báo [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (từ Apple) được phát hành với bài báo [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (từ Apple) được phát hành với bài báo [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (từ Microsoft Research) được phát hành với bài báo [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (từ MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (từ the University of Wisconsin - Madison) được phát hành với bài báo [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (từ Google AI) được phát hành với bài báo [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (từ Meta) được phát hành với bài báo [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (từ Meta) được phát hành với bài báo [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (từ RUC AI Box) được phát hành với bài báo [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (từ SHI Labs) được phát hành với bài báo [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (từ Huawei Noah’s Ark Lab) được phát hành với bài báo [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (từ Meta) được phát hành với bài báo [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (từ Meta) được phát hành với bài báo [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (từ Meta AI) được phát hành với bài báo [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (từ the University of Wisconsin - Madison) được phát hành với bài báo [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (từ SHI Labs) được phát hành với bài báo [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (từ [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (từ Meta AI) được phát hành với bài báo [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (từ Google AI) được phát hành với bài báo [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (từ Google AI) được phát hành với bài báo [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (từ IBM Research) được phát hành với bài báo [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (từ IBM) được phát hành với bài báo [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (từ Google) được phát hành với bài báo [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (từ Google) được phát hành với bài báo [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (từ Deepmind) được phát hành với bài báo [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (từ ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (từ Microsoft) được phát hành với bài báos - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (từ VinAI Research) được phát hành với bài báo [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (từ Google) được phát hành với bài báo [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (từ UCLA NLP) được phát hành với bài báo [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (từ Sea AI Labs) được phát hành với bài báo [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** được phát hành với bài báo [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (từ Microsoft Research) được phát hành với bài báo [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (từ Nanjing University, The University of Hong Kong etc.) được phát hành với bài báo [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (từ Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) được phát hành với bài báo [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (từ NVIDIA) được phát hành với bài báo [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (từ the Qwen team, Alibaba Group) được phát hành với bài báo [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (từ the Qwen team, Alibaba Group) được phát hành với bài báo [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (từ Facebook) được phát hành với bài báo [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (từ Google Research) được phát hành với bài báo [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (từ Google) được phát hành với bài báo [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (từ Google Research) được phát hành với bài báo [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (từ META Platforms) được phát hành với bài báo [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (từ Google Research) được phát hành với bài báo [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (từ Microsoft Research) được phát hành với bài báo [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (từ Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (từ Facebook) được phát hành với bài báo [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (từ WeChatAI) được phát hành với bài báo [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (từ ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (từ Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (từ Meta AI) được phát hành với bài báo [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (từ Meta AI) được phát hành với bài báo [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (từ NVIDIA) được phát hành với bài báo [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (từ Beijing Academy of Artificial Intelligence (BAAI) được phát hành với bài báo [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (từ Meta AI) được phát hành với bài báo [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (từ ASAPP) được phát hành với bài báo [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (từ ASAPP) được phát hành với bài báo [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (từ Google AI) được phát hành với bài báo [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (từ Microsoft Research) được phát hành với bài báo [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (từ Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (từ Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (từ Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (từ Berkeley) được phát hành với bài báo [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (từ Stability AI) được phát hành với bài báo [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (từ BigCode team) được phát hành với bài báo [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (từ MagicLeap) được phát hành với bài báo [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (từ MBZUAI) được phát hành với bài báo [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (từ Microsoft) được phát hành với bài báo [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (từ Microsoft) được phát hành với bài báo [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (từ University of Würzburg) được phát hành với bài báo [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (từ Google) được phát hành với bài báo [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (từ Google AI) được phát hành với bài báo [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (từ Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (từ Microsoft Research) được phát hành với bài báo [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (từ Google AI) được phát hành với bài báo [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (từ Microsoft Research) được phát hành với bài báo [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (từ HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (từ Facebook) được phát hành với bài báo [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (từ the University of California at Berkeley) được phát hành với bài báo [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (từ Google/CMU) được phát hành với bài báo [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (từ Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (từ UNC Chapel Hill) được phát hành với bài báo [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (từ Intel) được phát hành với bài báo [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (từ Microsoft Research) được phát hành với bài báo [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (từ Google Research) được phát hành với bài báo [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (từ Google Research) được phát hành với bài báo [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (từ Microsoft Research) được phát hành với bài báo [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (từ Microsoft Research) được phát hành với bài báo [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (từ Kakao Corporation) được phát hành với bài báo [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (từ Peking University) được phát hành với bài báo [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (từ Tsinghua University and Nankai University) được phát hành với bài báo [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (từ Multimedia Computing Group, Nanjing University) được phát hành với bài báo [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (từ NAVER AI Lab/Kakao Enterprise/Kakao Brain) được phát hành với bài báo [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (từ University of Wisconsin–Madison) được phát hành với bài báo [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (từ Google AI) được phát hành với bài báo [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (từ UCLA NLP) được phát hành với bài báo [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (từ Google AI) được phát hành với bài báo [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (từ Meta AI) được phát hành với bài báo [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (từ Meta AI) được phát hành với bài báo [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (từ HUST-VL) được phát hành với bài báo [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (từ Meta AI) được phát hành với bài báo [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (từ Kakao Enterprise) được phát hành với bài báo [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (từ Google Research) được phát hành với bài báo [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (từ Facebook AI) được phát hành với bài báo [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (từ Meta AI) được phát hành với bài báo [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (từ Facebook AI) được phát hành với bài báo [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (từ Facebook AI) được phát hành với bài báo [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (từ Microsoft Research) được phát hành với bài báo [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (từ OpenAI) được phát hành với bài báo [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (từ Microsoft Research) được phát hành với bài báo [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (từ Meta AI) được phát hành với bài báo [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (từ Facebook AI) được phát hành với bài báo [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (từ Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (từ Microsoft Research) được phát hành với bài báo [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (từ Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (từ Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (từ Meta AI) được phát hành với bài báo [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (từ Google/CMU) được phát hành với bài báo [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (từ Facebook AI) được phát hành với bài báo [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (từ Facebook AI) được phát hành với bài báo [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (từ Huazhong University of Science & Technology) được phát hành với bài báo [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (từ the University of Wisconsin - Madison) được phát hành với bài báo [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Muốn đóng góp một mô hình mới? Chúng tôi đã thêm một **hướng dẫn chi tiết và mẫu** để hướng dẫn bạn trong quá trình thêm một mô hình mới. Bạn có thể tìm thấy chúng trong thư mục [`templates`](./templates) của kho lưu trữ. Hãy chắc chắn kiểm tra [hướng dẫn đóng góp](./CONTRIBUTING.md) và liên hệ với người duy trì hoặc mở một vấn đề để thu thập phản hồi trước khi bắt đầu PR của bạn.
Để kiểm tra xem mỗi mô hình có một phiên bản thực hiện trong Flax, PyTorch hoặc TensorFlow, hoặc có một tokenizer liên quan được hỗ trợ bởi thư viện 🤗 Tokenizers, vui lòng tham khảo [bảng này](https://huggingface.co/docs/transformers/index#supported-frameworks).
Những phiên bản này đã được kiểm tra trên một số tập dữ liệu (xem các tập lệnh ví dụ) và nên tương đương với hiệu suất của các phiên bản gốc. Bạn có thể tìm thấy thêm thông tin về hiệu suất trong phần Ví dụ của [tài liệu](https://github.com/huggingface/transformers/tree/main/examples).
## Tìm hiểu thêm
| Phần | Mô tả |
|-|-|
| [Tài liệu](https://huggingface.co/docs/transformers/) | Toàn bộ tài liệu API và hướng dẫn |
| [Tóm tắt nhiệm vụ](https://huggingface.co/docs/transformers/task_summary) | Các nhiệm vụ được hỗ trợ bởi 🤗 Transformers |
| [Hướng dẫn tiền xử lý](https://huggingface.co/docs/transformers/preprocessing) | Sử dụng lớp `Tokenizer` để chuẩn bị dữ liệu cho các mô hình |
| [Huấn luyện và điều chỉnh](https://huggingface.co/docs/transformers/training) | Sử dụng các mô hình được cung cấp bởi 🤗 Transformers trong vòng lặp huấn luyện PyTorch/TensorFlow và API `Trainer` |
| [Hướng dẫn nhanh: Điều chỉnh/sử dụng các kịch bản](https://github.com/huggingface/transformers/tree/main/examples) | Các kịch bản ví dụ để điều chỉnh mô hình trên nhiều nhiệm vụ khác nhau |
| [Chia sẻ và tải lên mô hình](https://huggingface.co/docs/transformers/model_sharing) | Tải lên và chia sẻ các mô hình đã điều chỉnh của bạn với cộng đồng |
## Trích dẫn
Bây giờ chúng ta có một [bài báo](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) mà bạn có thể trích dẫn cho thư viện 🤗 Transformers:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (来自 Google Research and the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。
1. **[BART](https://huggingface.co/transformers/model_doc/bart.html)** (来自 Facebook) 伴随论文 [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) 由 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer 发布。
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (来自 Google Research) 伴随论文 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) 由 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig 发布。
1. **[BARThez](https://huggingface.co/transformers/model_doc/barthez.html)** (来自 École polytechnique) 伴随论文 [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) 由 Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis 发布。
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (来自 BAAI) 伴随论文 [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) 由 Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell 发布。
1. **[BARTpho](https://huggingface.co/transformers/model_doc/bartpho.html)** (来自 VinAI Research) 伴随论文 [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) 由 Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen 发布。
1. **[BEiT](https://huggingface.co/transformers/model_doc/beit.html)** (来自 Microsoft) 伴随论文 [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) 由 Hangbo Bao, Li Dong, Furu Wei 发布。
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[BERT](https://huggingface.co/transformers/model_doc/bert.html)** (来自 Google) 伴随论文 [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) 由 Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova 发布。
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (来自 Facebook) 伴随论文 [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) 由 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer 发布。
1. **[BERTweet](https://huggingface.co/transformers/model_doc/bertweet.html)** (来自 VinAI Research) 伴随论文 [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) 由 Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen 发布。
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (来自 École polytechnique) 伴随论文 [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) 由 Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis 发布。
1. **[BigBird-Pegasus](https://huggingface.co/transformers/model_doc/bigbird_pegasus.html)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (来自 VinAI Research) 伴随论文 [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) 由 Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen 发布。
1. **[BigBird-RoBERTa](https://huggingface.co/transformers/model_doc/bigbird.html)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (来自 Microsoft) 伴随论文 [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) 由 Hangbo Bao, Li Dong, Furu Wei 发布。
1. **[Blenderbot](https://huggingface.co/transformers/model_doc/blenderbot.html)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (来自 Google) 伴随论文 [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) 由 Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova 发布。
1. **[BlenderbotSmall](https://huggingface.co/transformers/model_doc/blenderbot_small.html)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
1. **[BORT](https://huggingface.co/transformers/model_doc/bort.html)** (来自 Alexa) 伴随论文 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 由 Adrian de Wynter and Daniel J. Perry 发布。
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (来自 VinAI Research) 伴随论文 [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) 由 Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen 发布。
1. **[ByT5](https://huggingface.co/transformers/model_doc/byt5.html)** (来自 Google Research) 伴随论文 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 由 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 发布。
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。
1. **[CamemBERT](https://huggingface.co/transformers/model_doc/camembert.html)** (来自 Inria/Facebook/Sorbonne) 伴随论文 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 由 Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 发布。
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。
1. **[CANINE](https://huggingface.co/transformers/model_doc/canine.html)** (来自 Google Research) 伴随论文 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 由 Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 发布。
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (来自 Microsoft Research AI4Science) 伴随论文 [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) 由 Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu 发布。
1. **[CLIP](https://huggingface.co/transformers/model_doc/clip.html)** (来自 OpenAI) 伴随论文 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 由 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 发布。
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (来自 Google AI) 伴随论文 [Big Transfer (BiT) 由 Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby 发布。
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
1. **[CPM](https://huggingface.co/transformers/model_doc/cpm.html)** (来自 Tsinghua University) 伴随论文 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 由 Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 发布。
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
1. **[CTRL](https://huggingface.co/transformers/model_doc/ctrl.html)** (来自 Salesforce) 伴随论文 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 由 Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 发布。
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (来自 Salesforce) 伴随论文 [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) 由 Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi 发布。
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[DeiT](https://huggingface.co/transformers/model_doc/deit.html)** (来自 Facebook) 伴随论文 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 由 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 发布。
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (来自 Alexa) 伴随论文 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 由 Adrian de Wynter and Daniel J. Perry 发布。
1. **[DETR](https://huggingface.co/transformers/model_doc/detr.html)** (来自 Facebook) 伴随论文 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 由 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 发布。
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[DialoGPT](https://huggingface.co/transformers/model_doc/dialogpt.html)** (来自 Microsoft Research) 伴随论文 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 由 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 发布。
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (来自 NAVER CLOVA) 伴随论文 [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) 由 Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park 发布。
1. **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace), 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 同样的方法也应用于压缩 GPT-2 到 [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa 到 [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT 到 [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) 和德语版 DistilBERT。
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (来自 Google Research) 伴随论文 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 由 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 发布。
1. **[DPR](https://huggingface.co/transformers/model_doc/dpr.html)** (来自 Facebook) 伴随论文 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 由 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 发布。
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (来自 Inria/Facebook/Sorbonne) 伴随论文 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 由 Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 发布。
1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (来自 Google Research) 伴随论文 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 由 Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 发布。
1. **[FlauBERT](https://huggingface.co/transformers/model_doc/flaubert.html)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (来自 LAION-AI) 伴随论文 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) 由 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov 发布。
1. **[FNet](https://huggingface.co/transformers/model_doc/fnet.html)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (来自 OpenAI) 伴随论文 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 由 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 发布。
1. **[Funnel Transformer](https://huggingface.co/transformers/model_doc/funnel.html)** (来自 CMU/Google Brain) 伴随论文 [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) 由 Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le 发布。
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (来自 University of Göttingen) 伴随论文 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 由 Timo Lüddecke and Alexander Ecker 发布。
1. **[GPT](https://huggingface.co/transformers/model_doc/gpt.html)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[GPT Neo](https://huggingface.co/transformers/model_doc/gpt_neo.html)** (来自 EleutherAI) 随仓库 [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) 发布。作者为 Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy 发布。
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (来自 Salesforce) 伴随论文 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 由 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 发布。
1. **[GPT-2](https://huggingface.co/transformers/model_doc/gpt2.html)** (来自 OpenAI) 伴随论文 [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) 由 Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** 发布。
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (来自 MetaAI) 伴随论文 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) 由 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve 发布。
1. **[GPT-J](https://huggingface.co/transformers/model_doc/gptj.html)** (来自 EleutherAI) 伴随论文 [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) 由 Ben Wang and Aran Komatsuzaki 发布。
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (来自 Cohere) 伴随论文 [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) 由 Cohere 发布。
1. **[Hubert](https://huggingface.co/transformers/model_doc/hubert.html)** (来自 Facebook) 伴随论文 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 由 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 发布。
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (来自 Microsoft Research Asia) 伴随论文 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 由 Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 发布。
1. **[I-BERT](https://huggingface.co/transformers/model_doc/ibert.html)** (来自 Berkeley) 伴随论文 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 由 Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 发布。
1. **[LayoutLM](https://huggingface.co/transformers/model_doc/layoutlm.html)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 由 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 发布。
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (来自 Facebook AI) 伴随论文 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 由 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 发布。
1. **[LayoutLMv2](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 由 Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 发布。
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[LayoutXLM](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (来自 Microsoft Research Asia) 伴随论文 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 由 Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 发布。
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (来自 Tsinghua University) 伴随论文 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 由 Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 发布。
1. **[LED](https://huggingface.co/transformers/model_doc/led.html)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[Longformer](https://huggingface.co/transformers/model_doc/longformer.html)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (来自 Salesforce) 伴随论文 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 由 Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 发布。
1. **[LUKE](https://huggingface.co/transformers/model_doc/luke.html)** (来自 Studio Ousia) 伴随论文 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 由 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 发布。
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (来自 Microsoft) 伴随论文 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 由 Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 发布。
1. **[LXMERT](https://huggingface.co/transformers/model_doc/lxmert.html)** (来自 UNC Chapel Hill) 伴随论文 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 由 Hao Tan and Mohit Bansal 发布。
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (来自 Facebook) 伴随论文 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 由 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 发布。
1. **[MBart](https://huggingface.co/transformers/model_doc/mbart.html)** (来自 Facebook) 伴随论文 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 由 Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 发布。
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (来自 Berkeley/Facebook/Google) 伴随论文 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 由 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 发布。
1. **[MBart-50](https://huggingface.co/transformers/model_doc/mbart.html)** (来自 Facebook) 伴随论文 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 由 Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 发布。
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (来自 SenseTime Research) 伴随论文 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 由 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 发布。
1. **[Megatron-BERT](https://huggingface.co/transformers/model_doc/megatron_bert.html)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (来自 Facebook) 伴随论文 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 由 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 发布。
1. **[Megatron-GPT2](https://huggingface.co/transformers/model_doc/megatron_gpt2.html)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (来自 Google AI) 伴随论文 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) 由 Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun 发布。
1. **[MPNet](https://huggingface.co/transformers/model_doc/mpnet.html)** (来自 Microsoft Research) 伴随论文 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 由 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 发布。
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (来自 University of Hong Kong and TikTok) 伴随论文 [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) 由 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao 发布。
1. **[MT5](https://huggingface.co/transformers/model_doc/mt5.html)** (来自 Google AI) 伴随论文 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 由 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 发布。
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (来自 The University of Texas at Austin) 伴随论文 [NMS Strikes Back](https://arxiv.org/abs/2212.06137) 由 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl 发布。
1. **[Pegasus](https://huggingface.co/transformers/model_doc/pegasus.html)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (来自 Facebook) 伴随论文 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 由 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 发布。
1. **[PhoBERT](https://huggingface.co/transformers/model_doc/phobert.html)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (来自 Microsoft Research) 伴随论文 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 由 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 发布。
1. **[ProphetNet](https://huggingface.co/transformers/model_doc/prophetnet.html)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (来自 SHI Labs) 伴随论文 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 由 Ali Hassani and Humphrey Shi 发布。
1. **[Reformer](https://huggingface.co/transformers/model_doc/reformer.html)** (来自 Google Research) 伴随论文 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 由 Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 发布。
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (来自 Meta AI) 伴随论文 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) 由 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski 发布。
1. **[RemBERT](https://huggingface.co/transformers/model_doc/rembert.html)** (来自 Google Research) 伴随论文 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) 由 Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 发布。
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (来自 HuggingFace), 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 同样的方法也应用于压缩 GPT-2 到 [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa 到 [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT 到 [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) 和德语版 DistilBERT。
1. **[RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html)** (来自 Facebook), 伴随论文 [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 由 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 发布。
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (来自 Microsoft Research) 伴随论文 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 由 Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 发布。
1. **[RoFormer](https://huggingface.co/transformers/model_doc/roformer.html)** (来自 ZhuiyiTechnology), 伴随论文 [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) 由 Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 发布。
1. **[SegFormer](https://huggingface.co/transformers/model_doc/segformer.html)** (来自 NVIDIA) 伴随论文 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 由 Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 发布。
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (来自 Facebook) 伴随论文 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 由 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 发布。
1. **[SEW](https://huggingface.co/transformers/model_doc/sew.html)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (来自 Intel Labs) 伴随论文 [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) 由 René Ranftl, Alexey Bochkovskiy, Vladlen Koltun 发布。
1. **[SEW-D](https://huggingface.co/transformers/model_doc/sew_d.html)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (来自 Snap Research) 伴随论文 [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) 由 Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren 发布。
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[SpeechToTextTransformer](https://huggingface.co/transformers/model_doc/speech_to_text.html)** (来自 Facebook), 伴随论文 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 发布。
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。
1. **[SpeechToTextTransformer2](https://huggingface.co/transformers/model_doc/speech_to_text_2.html)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (来自 Meta AI) 伴随论文 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) 由 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi 发布。
1. **[Splinter](https://huggingface.co/transformers/model_doc/splinter.html)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。
1. **[SqueezeBert](https://huggingface.co/transformers/model_doc/squeezebert.html)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。
1. **[T5](https://huggingface.co/transformers/model_doc/t5.html)** (来自 Google AI) 伴随论文 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (来自 Baidu) 伴随论文 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) 由 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang 发布。
1. **[T5v1.1](https://huggingface.co/transformers/model_doc/t5v1.1.html)** (来自 Google AI) 伴随论文 [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[TAPAS](https://huggingface.co/transformers/model_doc/tapas.html)** (来自 Google AI) 伴随论文 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 由 Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 发布。
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[Transformer-XL](https://huggingface.co/transformers/model_doc/transformerxl.html)** (来自 Google/CMU) 伴随论文 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 由 Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 发布。
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (来自 ESPnet and Microsoft Research) 伴随论文 [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) 由 Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang 发布。
1. **[TrOCR](https://huggingface.co/transformers/model_doc/trocr.html)** (来自 Microsoft) 伴随论文 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 由 Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 发布。
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[UniSpeech](https://huggingface.co/transformers/model_doc/unispeech.html)** (来自 Microsoft Research) 伴随论文 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 由 Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 发布。
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。
1. **[Vision Transformer (ViT)](https://huggingface.co/transformers/model_doc/vit.html)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (来自 Facebook AI) 伴随论文 [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) 由 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela 发布。
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。
1. **[VisualBERT](https://huggingface.co/transformers/model_doc/visual_bert.html)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。
1. **[XLM-ProphetNet](https://huggingface.co/transformers/model_doc/xlmprophetnet.html)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (来自 Google) 伴随论文 [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) 由 the Gemma Google team 发布。
1. **[XLM-RoBERTa](https://huggingface.co/transformers/model_doc/xlmroberta.html)** (来自 Facebook AI), 伴随论文 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 由 Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 发布。
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (来自 Microsoft Research) 伴随论文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) 由 Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang 发布。
1. **[XLNet](https://huggingface.co/transformers/model_doc/xlnet.html)** (来自 Google/CMU) 伴随论文 [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 由 Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 发布。
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (来自 KAIST) 伴随论文 [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) 由 Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim 发布。
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (来自 EleutherAI) 随仓库 [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) 发布。作者为 Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy 发布。
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (来自 OpenAI) 伴随论文 [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) 由 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever 发布。
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (来自 EleutherAI) 伴随论文 [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) 由 Ben Wang and Aran Komatsuzaki 发布。
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (来自 BigCode) 伴随论文 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) 由 Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra 发布。
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by 坂本俊之(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (来自 Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) 伴随论文 [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) 由 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang 发布。
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (来自 UCSD, NVIDIA) 伴随论文 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 由 Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 发布。
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (来自 Allegro.pl, AGH University of Science and Technology) 伴随论文 [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) 由 Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik 发布。
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (来自 Facebook) 伴随论文 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 由 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 发布。
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (来自 Berkeley) 伴随论文 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 由 Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 发布。
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (来自 Hugging Face) 伴随论文 [IDEFICS2](https://huggingface.co/blog/idefics2) 由 Léo Tronchon, Hugo Laurencon, Victor Sanh 发布。
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (来自 OpenAI) 伴随论文 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 由 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 发布。
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (来自 Salesforce) 伴随论文 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) 由 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi 发布。
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 由 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 发布。
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 由 Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 发布。
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 由 Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 发布。
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 由 Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 发布。
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (来自 Meta AI) 伴随论文 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 由 Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 发布。
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (来自 South China University of Technology) 伴随论文 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 由 Jiapeng Wang, Lianwen Jin, Kai Ding 发布。
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (来自 The FAIR team of Meta AI) 伴随论文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) 由 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample 发布。
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (来自 The FAIR team of Meta AI) 伴随论文 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) 由 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom. 发布。
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (来自 Microsoft Research & University of Wisconsin-Madison) 伴随论文 [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) 由 Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee 发布。
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (来自 Microsoft Research & University of Wisconsin-Madison) 伴随论文 [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) 由 Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee 发布。
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (来自 Google AI) released 伴随论文 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 由 Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 发布。
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (来自 Studio Ousia) 伴随论文 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 由 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 发布。
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (来自 UNC Chapel Hill) 伴随论文 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 由 Hao Tan and Mohit Bansal 发布。
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (来自 Facebook) 伴随论文 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 由 Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 发布。
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (来自 Albert Gu and Tri Dao) 伴随论文 [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) 由 Albert Gu and Tri Dao 发布。
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (来自 Microsoft Research Asia) 伴随论文 [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) 由 Junlong Li, Yiheng Xu, Lei Cui, Furu Wei 发布。
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (来自 FAIR and UIUC) 伴随论文 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) 由 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar 发布。
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (来自 Google AI) 伴随论文 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) 由 Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos 发布。
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 由 Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 发布。
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 由 Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 发布。
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (来自 Facebook) 伴随论文 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) 由 Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer 发布。
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (来自 Alibaba Research) 伴随论文 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) 由 Peng Wang, Cheng Da, and Cong Yao 发布。
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (来自 Studio Ousia) 伴随论文 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 由 Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 发布。
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (来自 CMU/Google Brain) 伴随论文 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 由 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 发布。
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (来自 Google Inc.) 伴随论文 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 由 Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 发布。
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (来自 Google Inc.) 伴随论文 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 由 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 发布。
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (来自 Apple) 伴随论文 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 由 Sachin Mehta and Mohammad Rastegari 发布。
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (来自 Apple) 伴随论文 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) 由 Sachin Mehta and Mohammad Rastegari 发布。
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (来自 Microsoft Research) 伴随论文 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 由 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 发布。
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (来自 MosaiML) 伴随论文 [llm-foundry](https://github.com/mosaicml/llm-foundry/) 由 the MosaicML NLP Team 发布。
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (来自 the University of Wisconsin - Madison) 伴随论文 [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) 由 Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh 发布。
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (来自 Google AI) 伴随论文 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 由 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 发布。
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (来自 中国人民大学 AI Box) 伴随论文 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 由 Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 发布。
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (来自 SHI Labs) 伴随论文 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 由 Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 发布。
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (来自华为诺亚方舟实验室) 伴随论文 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 由 Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 发布。
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (来自 Meta AI) 伴随论文 [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) 由 Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic 发布。
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (来自 the University of Wisconsin - Madison) 伴随论文 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 由 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 发布。
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (来自 SHI Labs) 伴随论文 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 由 Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 发布。
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (来自 Meta AI) 伴随论文 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 由 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 发布。
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (来自 Google AI) 伴随论文 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 由 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 发布。
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (来自 Google AI) 伴随论文 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) 由 Matthias Minderer, Alexey Gritsenko, Neil Houlsby 发布。
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (来自 IBM Research) 伴随论文 [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) 由 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam 发布。
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (来自 IBM) 伴随论文 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) 由 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam 发布。
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (来自 Google) 伴随论文 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 由 Jason Phang, Yao Zhao, Peter J. Liu 发布。
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (来自 Deepmind) 伴随论文 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 由 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 发布。
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (来自 ADEPT) 伴随论文 [blog post](https://www.adept.ai/blog/persimmon-8b) 由 Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani 发布。
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (来自 Google) 伴随论文 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) 由 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova 发布。
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (来自 UCLA NLP) 伴随论文 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 由 Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 发布。
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (来自 Sea AI Labs) 伴随论文 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 由 Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 发布。
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (来自 Nanjing University, The University of Hong Kong etc.) 伴随论文 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) 由 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao 发布。
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (来自 Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) 伴随论文 [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) 由 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao 发布。
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (来自 NVIDIA) 伴随论文 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 由 Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 发布。
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (来自 the Qwen team, Alibaba Group) 伴随论文 [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou 发布.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (来自 Facebook) 伴随论文 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 由 Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 发布。
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (来自 Google Research) 伴随论文 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 由 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 发布。
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (来自 Google) 伴随论文 [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) 由 the Griffin, RLHF and Gemma Teams 发布。
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (来自 Google Research) 伴随论文 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 由 Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 发布。
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (来自 Google Research) 伴随论文 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) 由 Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 发布。
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (来自 Facebook), 伴随论文 [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 由 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 发布。
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (来自 Facebook) 伴随论文 [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) 由 Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli 发布。
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (来自 ZhuiyiTechnology), 伴随论文 [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) 由 Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 发布。
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (来自 Bo Peng) 伴随论文 [this repo](https://github.com/BlinkDL/RWKV-LM) 由 Bo Peng 发布。
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (来自 NVIDIA) 伴随论文 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 由 Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 发布。
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (来自 Beijing Academy of Artificial Intelligence (BAAI) 伴随论文 [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) 由 Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang 发布。
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (来自 Meta AI) 伴随论文 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) 由 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick 发布。
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (来自 Google AI) 伴随论文 [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) 由 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer 发布。
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (来自 Microsoft Research) 伴随论文 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) 由 Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei 发布。
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (来自 Facebook), 伴随论文 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 发布。
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (来自 MBZUAI) 伴随论文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) 由 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan 发布。
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (来自 Microsoft) 伴随论文 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 由 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 发布。
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (来自 University of Würzburg) 伴随论文 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 由 Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 发布。
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (来自 Google AI) 伴随论文 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (来自 Google AI) 伴随论文 [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (来自 Microsoft Research) 伴随论文 [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) 由 Brandon Smock, Rohith Pesala, Robin Abraham 发布。
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (来自 Google AI) 伴随论文 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 由 Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 发布。
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (来自 Microsoft Research) 伴随论文 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 由 Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 发布。
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (来自 Google/CMU) 伴随论文 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 由 Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 发布。
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (来自 Microsoft) 伴随论文 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 由 Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 发布。
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (来自 Intel) 伴随论文 [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) 由 Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding 发布.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (来自 Microsoft Research) 伴随论文 [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) 由 Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal 发布。
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (来自 Google Research) 伴随论文 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) 由 Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant 发布。
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (来自 Microsoft Research) 伴随论文 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 由 Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 发布。
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (来自 Peking University) 伴随论文 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) 由 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun 发布。
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (来自 Tsinghua University and Nankai University) 伴随论文 [Visual Attention Network](https://arxiv.org/abs/2202.09741) 由 Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu 发布。
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (来自 Multimedia Computing Group, Nanjing University) 伴随论文 [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) 由 Zhan Tong, Yibing Song, Jue Wang, Limin Wang 发布。
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (来自 NAVER AI Lab/Kakao Enterprise/Kakao Brain) 伴随论文 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 由 Wonjae Kim, Bokyung Son, Ildoo Kim 发布。
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (来自 University of Wisconsin–Madison) 伴随论文 [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) 由 Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee 发布。
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (来自 Meta AI) 伴随论文 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) 由 Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He 发布。
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (来自 Meta AI) 伴随论文 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 发布.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (来自 Kakao Enterprise) 伴随论文 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) 由 Jaehyeon Kim, Jungil Kong, Juhee Son 发布。
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (来自 Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) 由 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (来自 Facebook AI) 伴随论文 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 由 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 发布。
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (来自 Facebook AI) 伴随论文 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 发布。
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (来自 OpenAI) 伴随论文 [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) 由 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever 发布。
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (来自 Microsoft Research) 伴随论文 [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) 由 Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling 发布。
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (来自 Meta AI) 伴随论文 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) 由 Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe 发布。
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (来自 Facebook) 伴随论文 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 由 Guillaume Lample and Alexis Conneau 发布。
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (来自 Facebook AI), 伴随论文 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 由 Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 发布。
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (来自 Facebook AI) 伴随论文 [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) 由 Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau 发布。
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (来自 Meta AI) 伴随论文 [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) 由 Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa 发布。
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (来自 Google/CMU) 伴随论文 [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 由 Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 发布。
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (来自 Facebook AI) 伴随论文 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 由 Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 发布。
1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[BART](https://huggingface.co/transformers/model_doc/bart.html)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[BARThez](https://huggingface.co/transformers/model_doc/barthez.html)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[BARTpho](https://huggingface.co/transformers/model_doc/bartpho.html)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[BEiT](https://huggingface.co/transformers/model_doc/beit.html)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[BERT](https://huggingface.co/transformers/model_doc/bert.html)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BERT For Sequence Generation](https://huggingface.co/transformers/model_doc/bertgeneration.html)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BERTweet](https://huggingface.co/transformers/model_doc/bertweet.html)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BigBird-Pegasus](https://huggingface.co/transformers/model_doc/bigbird_pegasus.html)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BigBird-RoBERTa](https://huggingface.co/transformers/model_doc/bigbird.html)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[Blenderbot](https://huggingface.co/transformers/model_doc/blenderbot.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BlenderbotSmall](https://huggingface.co/transformers/model_doc/blenderbot_small.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BORT](https://huggingface.co/transformers/model_doc/bort.html)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[ByT5](https://huggingface.co/transformers/model_doc/byt5.html)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[CamemBERT](https://huggingface.co/transformers/model_doc/camembert.html)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[CANINE](https://huggingface.co/transformers/model_doc/canine.html)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[CLIP](https://huggingface.co/transformers/model_doc/clip.html)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[ConvBERT](https://huggingface.co/transformers/model_doc/convbert.html)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[CPM](https://huggingface.co/transformers/model_doc/cpm.html)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[CTRL](https://huggingface.co/transformers/model_doc/ctrl.html)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[DeBERTa](https://huggingface.co/transformers/model_doc/deberta.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[DeBERTa-v2](https://huggingface.co/transformers/model_doc/deberta_v2.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[DeiT](https://huggingface.co/transformers/model_doc/deit.html)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[DETR](https://huggingface.co/transformers/model_doc/detr.html)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[DialoGPT](https://huggingface.co/transformers/model_doc/dialogpt.html)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[DPR](https://huggingface.co/transformers/model_doc/dpr.html)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[EncoderDecoder](https://huggingface.co/transformers/model_doc/encoderdecoder.html)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[FlauBERT](https://huggingface.co/transformers/model_doc/flaubert.html)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[FNet](https://huggingface.co/transformers/model_doc/fnet.html)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[Funnel Transformer](https://huggingface.co/transformers/model_doc/funnel.html)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[GPT](https://huggingface.co/transformers/model_doc/gpt.html)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
1. **[GPT Neo](https://huggingface.co/transformers/model_doc/gpt_neo.html)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[GPT-2](https://huggingface.co/transformers/model_doc/gpt2.html)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[GPT-J](https://huggingface.co/transformers/model_doc/gptj.html)** (from EleutherAI) released with the paper [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (from Cohere) released with the paper [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) by Cohere.
1. **[Hubert](https://huggingface.co/transformers/model_doc/hubert.html)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[I-BERT](https://huggingface.co/transformers/model_doc/ibert.html)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[LayoutLM](https://huggingface.co/transformers/model_doc/layoutlm.html)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[LayoutLMv2](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[LayoutXLM](https://huggingface.co/transformers/model_doc/layoutlmv2.html)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[LED](https://huggingface.co/transformers/model_doc/led.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[Longformer](https://huggingface.co/transformers/model_doc/longformer.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[LUKE](https://huggingface.co/transformers/model_doc/luke.html)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[LXMERT](https://huggingface.co/transformers/model_doc/lxmert.html)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[M2M100](https://huggingface.co/transformers/model_doc/m2m_100.html)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[MarianMT](https://huggingface.co/transformers/model_doc/marian.html)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[MBart](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[MBart-50](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[Megatron-BERT](https://huggingface.co/transformers/model_doc/megatron_bert.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[Megatron-GPT2](https://huggingface.co/transformers/model_doc/megatron_gpt2.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[MPNet](https://huggingface.co/transformers/model_doc/mpnet.html)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[MT5](https://huggingface.co/transformers/model_doc/mt5.html)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[Pegasus](https://huggingface.co/transformers/model_doc/pegasus.html)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[PhoBERT](https://huggingface.co/transformers/model_doc/phobert.html)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[ProphetNet](https://huggingface.co/transformers/model_doc/prophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[Reformer](https://huggingface.co/transformers/model_doc/reformer.html)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[RemBERT](https://huggingface.co/transformers/model_doc/rembert.html)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT.
1. **[RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[RoFormer](https://huggingface.co/transformers/model_doc/roformer.html)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER) released with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[SegFormer](https://huggingface.co/transformers/model_doc/segformer.html)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[SEW](https://huggingface.co/transformers/model_doc/sew.html)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[SEW-D](https://huggingface.co/transformers/model_doc/sew_d.html)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[SpeechToTextTransformer](https://huggingface.co/transformers/model_doc/speech_to_text.html)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[SpeechToTextTransformer2](https://huggingface.co/transformers/model_doc/speech_to_text_2.html)** (from Facebook) released with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[Splinter](https://huggingface.co/transformers/model_doc/splinter.html)** (from Tel Aviv University) released with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[SqueezeBert](https://huggingface.co/transformers/model_doc/squeezebert.html)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[T5](https://huggingface.co/transformers/model_doc/t5.html)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[T5v1.1](https://huggingface.co/transformers/model_doc/t5v1.1.html)** (from Google AI) released with the paper [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[TAPAS](https://huggingface.co/transformers/model_doc/tapas.html)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[Transformer-XL](https://huggingface.co/transformers/model_doc/transformerxl.html)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[FastSpeech2Conformer](https://huggingface.co/docs/transformers/model_doc/fastspeech2_conformer)** (from ESPnet and Microsoft Research) released with the paper [Recent Developments On Espnet Toolkit Boosted By Conformer](https://arxiv.org/abs/2010.13956) by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
1. **[TrOCR](https://huggingface.co/transformers/model_doc/trocr.html)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[UniSpeech](https://huggingface.co/transformers/model_doc/unispeech.html)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[UniSpeechSat](https://huggingface.co/transformers/model_doc/unispeech_sat.html)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[Vision Transformer (ViT)](https://huggingface.co/transformers/model_doc/vit.html)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[VisualBERT](https://huggingface.co/transformers/model_doc/visual_bert.html)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Wav2Vec2](https://huggingface.co/transformers/model_doc/wav2vec2.html)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[XLM](https://huggingface.co/transformers/model_doc/xlm.html)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[XLM-ProphetNet](https://huggingface.co/transformers/model_doc/xlmprophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[Gemma](https://huggingface.co/docs/transformers/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[XLM-RoBERTa](https://huggingface.co/transformers/model_doc/xlmroberta.html)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[XLNet](https://huggingface.co/transformers/model_doc/xlnet.html)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[XLSR-Wav2Vec2](https://huggingface.co/transformers/model_doc/xlsr_wav2vec2.html)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released with the paper [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by 坂本俊之(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[Grounding DINO](https://huggingface.co/docs/transformers/main/model_doc/grounding-dino)** (from Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) released with the paper [Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499) by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[Idefics2](https://huggingface.co/docs/transformers/main/model_doc/idefics2)** (from Hugging Face) released with the paper [IDEFICS2](https://huggingface.co/blog/idefics2) by Léo Tronchon, Hugo Laurencon, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
1. **[Mamba](https://huggingface.co/docs/transformers/model_doc/mamba)** (from Albert Gu and Tri Dao) released with the paper [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Facebook) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the paper [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released with the paper [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[PVTv2](https://huggingface.co/docs/transformers/model_doc/pvt_v2)** (from Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) released with the paper [PVT v2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2)** (from the Qwen team, Alibaba Group) released with the paper [Qwen Technical Report](https://arxiv.org/abs/2309.16609) by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
1. **[Qwen2MoE](https://huggingface.co/docs/transformers/main/model_doc/qwen2_moe)** (from the Qwen team, Alibaba Group) released with the paper [blog post](https://qwenlm.github.io/blog/qwen-moe/) by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RecurrentGemma](https://huggingface.co/docs/transformers/main/model_doc/recurrent-gemma)** (from Google) released with the paper [RecurrentGemma: Moving Past Transformers for Efficient Open Language Models](https://storage.googleapis.com/deepmind-media/gemma/recurrentgemma-report.pdf) by the Griffin, RLHF and Gemma Teams.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng) released with the paper [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SegGPT](https://huggingface.co/docs/transformers/model_doc/seggpt)** (from Beijing Academy of Artificial Intelligence (BAAI) released with the paper [SegGPT: Segmenting Everything In Context](https://arxiv.org/abs/2304.03284) by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip)** (from Google AI) released with the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook) released with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University) released with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (from MagicLeap) released with the paper [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released with the paper [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
1. **[UDOP](https://huggingface.co/docs/transformers/model_doc/udop)** (from Microsoft Research) released with the paper [Unifying Vision, Text, and Layout for Universal Document Processing](https://arxiv.org/abs/2212.02623) by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (from University of Wisconsin–Madison) released with the paper [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-BERT](https://huggingface.co/docs/transformers/model_doc/wav2vec2-bert)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI) released with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
## Hugging Face Hub, remote artefacts, and remote code
Transformers is open-source software that is tightly coupled to the Hugging Face Hub. While you have the ability to use it
offline with pre-downloaded model weights, it provides a very simple way to download, use, and manage models locally.
When downloading artefacts that have been uploaded by others on any platform, you expose yourself to risks. Please
read below for the security recommendations in order to keep your runtime and local environment safe.
### Remote artefacts
Models uploaded on the Hugging Face Hub come in different formats. We heavily recommend uploading and downloading
models in the [`safetensors`](https://github.com/huggingface/safetensors) format (which is the default prioritized
by the transformers library), as developed specifically to prevent arbitrary code execution on your system.
To avoid loading models from unsafe formats(e.g. [pickle](https://docs.python.org/3/library/pickle.html), you should use the `use_safetenstors` parameter. If doing so, in the event that no .safetensors file is present, transformers will error when loading the model.
### Remote code
#### Modeling
Transformers supports many model architectures, but is also the bridge between your Python runtime and models that
are stored in model repositories on the Hugging Face Hub.
These models require the `trust_remote_code=True` parameter to be set when using them; please **always** verify
the content of the modeling files when using this argument. We recommend setting a revision in order to ensure you
protect yourself from updates on the repository.
#### Tools
Through the `Agent` framework, remote tools can be downloaded to be used by the Agent. You're to specify these tools
yourself, but please keep in mind that their code will be run on your machine if the Agent chooses to run them.
Please inspect the code of the tools before passing them to the Agent to protect your runtime and local setup.
## Reporting a Vulnerability
🤗 Please feel free to submit vulnerability reports to our private bug bounty program at https://hackerone.com/hugging_face. You'll need to request access to the program by emailing security@huggingface.co.
Note that you'll need to be invited to our program, so send us a quick email at security@huggingface.co if you've found a vulnerability.
This page lists awesome projects built on top of Transformers. Transformers is more than a toolkit to use pretrained
models: it's a community of projects built around it and the Hugging Face Hub. We want Transformers to enable
developers, researchers, students, professors, engineers, and anyone else to build their dream projects.
In this list, we showcase incredibly impactful and novel projects that have pushed the field forward. We celebrate
100 of these projects as we reach the milestone of 100k stars as a community; but we're very open to pull requests
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
to add it.
## [gpt4all](https://github.com/nomic-ai/gpt4all)
[gpt4all](https://github.com/nomic-ai/gpt4all) is an ecosystem of open-source chatbots trained on massive collections of clean assistant data including code, stories and dialogue. It offers open-source, large language models such as LLaMA and GPT-J trained in an assistant-style.
This repository contains examples and best practices for building recommendation systems, provided as Jupyter notebooks. It goes over several aspects required to build efficient recommendation systems: data preparation, modeling, evaluation, model selection & optimization, as well as operationalization
Keywords: Recommender systems, AzureML
## [IOPaint](https://github.com/Sanster/IOPaint)
Image inpainting tool powered by Stable Diffusion. Remove any unwanted object, defect, people from your pictures or erase and replace anything on your pictures.
Keywords: inpainting, SD, Stable Diffusion
## [flair](https://github.com/flairNLP/flair)
FLAIR is a powerful PyTorch NLP framework, convering several important tasks: NER, sentiment-analysis, part-of-speech tagging, text and document embeddings, among other things.
Keywords: NLP, text embedding, document embedding, biomedical, NER, PoS, sentiment-analysis
## [mindsdb](https://github.com/mindsdb/mindsdb)
MindsDB is a low-code ML platform, which automates and integrates several ML frameworks into the data stack as "AI Tables" to streamline the integration of AI into applications, making it accessible to developers of all skill levels.
[langchain](https://github.com/hwchase17/langchain) is aimed at assisting in the development of apps merging both LLMs and other sources of knowledge. The library allows chaining calls to applications, creating a sequence across many tools.
Keywords: LLMs, Large Language Models, Agents, Chains
[LlamaIndex](https://github.com/jerryjliu/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retreival mechanisms to perform different LLM tasks and obtain knowledge-augmented results.
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
[ParlAI](https://github.com/facebookresearch/ParlAI) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dialogue, to visual question answering. It provides more than 100 datasets under the same API, a large zoo of pretrained models, a set of agents, and has several integrations.
This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various task. Text is embedding in vector space such that similar text is close and can efficiently be found using cosine similarity.
Keywords: Dense vector representations, Text embeddings, Sentence embeddings
## [ludwig](https://github.com/ludwig-ai/ludwig)
Ludwig is a declarative machine learning framework that makes it easy to define machine learning pipelines using a simple and flexible data-driven configuration system. Ludwig is targeted at a wide variety of AI tasks. It provides a data-driven configuration system, training, prediction, and evaluation scripts, as well as a programmatic API.
[InvokeAI](https://github.com/invoke-ai/InvokeAI) is an engine for Stable Diffusion models, aimed at professionals, artists, and enthusiasts. It leverages the latest AI-driven technologies through CLI as well as a WebUI.
[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) is an easy-to-use and powerful NLP library particularly targeted at the Chinese languages. It has support for multiple pre-trained model zoos, and supports a wide-range of NLP tasks from research to industrial applications.
The Stanford NLP Group's official Python NLP library. It contains support for running various accurate natural language processing tools on 60+ languages and for accessing the Java Stanford CoreNLP software from Python.
[DeepPavlov](https://github.com/deeppavlov/DeepPavlov) is an open-source conversational AI library. It is designed for the development of production ready chat-bots and complex conversational systems, as well as research in the area of NLP and, particularly, of dialog systems.
Alpaca-lora contains code for reproducing the Stanford Alpaca results using low-rank adaptation (LoRA). The repository provides training (fine-tuning) as well as generation scripts.
An open-source Implementation of Imagen, Google's closed-source Text-to-Image Neural Network that beats DALL-E2. As of release, it is the new SOTA for text-to-image synthesis.
[adapters](https://github.com/adapter-hub/adapters) is an extension of HuggingFace's Transformers library, integrating adapters into state-of-the-art language models by incorporating AdapterHub, a central repository for pre-trained adapter modules. It is a drop-in replacement for transformers, which is regularly updated to stay up-to-date with the developments of transformers.
NVIDIA [NeMo](https://github.com/NVIDIA/NeMo) is a conversational AI toolkit built for researchers working on automatic speech recognition (ASR), text-to-speech synthesis (TTS), large language models (LLMs), and natural language processing (NLP). The primary objective of [NeMo](https://github.com/NVIDIA/NeMo) is to help researchers from industry and academia to reuse prior work (code and pretrained models) and make it easier to create new https://developer.nvidia.com/conversational-ai#started.
[Runhouse](https://github.com/run-house/runhouse) allows to send code and data to any of your compute or data infra, all in Python, and continue to interact with them normally from your existing code and environment. Runhouse developers mention:
> Think of it as an expansion pack to your Python interpreter that lets it take detours to remote machines or manipulate remote data.
Keywords: MLOps, Infrastructure, Data storage, Modeling
[MONAI](https://github.com/Project-MONAI/MONAI) is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its ambitions are:
- developing a community of academic, industrial and clinical researchers collaborating on a common foundation;
- creating state-of-the-art, end-to-end training workflows for healthcare imaging;
- providing researchers with the optimized and standardized way to create and evaluate deep learning models.
Simple Transformers lets you quickly train and evaluate Transformer models. Only 3 lines of code are needed to initialize, train, and evaluate a model. It supports a wide variety of NLP tasks.
Keywords: Framework, simplicity, NLP
## [JARVIS](https://github.com/microsoft/JARVIS)
[JARVIS](https://github.com/microsoft/JARVIS) is a system attempting to merge LLMs such as GPT-4 with the rest of the open-source ML community: leveraging up to 60 downstream models in order to perform tasks identified by the LLM.
[transformers.js](https://xenova.github.io/transformers.js/) is a JavaScript library targeted at running models from transformers directly within the browser.
Bumblebee provides pre-trained Neural Network models on top of Axon, a neural networks library for the Elixir language. It includes integration with 🤗 Models, allowing anyone to download and perform Machine Learning tasks with few lines of code.
Argilla is an open-source platform providing advanced NLP labeling, monitoring, and workspaces. It is compatible with many open source ecosystems such as Hugging Face, Stanza, FLAIR, and others.
Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs. It offers production-ready tools to quickly build complex decision making, question answering, semantic search, text generation applications, and more.
Keywords: NLP, Framework, LLM
## [spaCy](https://github.com/explosion/spaCy)
[spaCy](https://github.com/explosion/spaCy) is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. It offers support for transformers models through its third party package, spacy-transformers.
SpeechBrain is an open-source and all-in-one conversational AI toolkit based on PyTorch.
The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognition, speech enhancement, speech separation, language identification, multi-microphone signal processing, and many others.
Keywords: Conversational, Speech
## [skorch](https://github.com/skorch-dev/skorch)
Skorch is a scikit-learn compatible neural network library that wraps PyTorch. It has support for models within transformers, and tokenizers from tokenizers.
Keywords: Scikit-Learn, PyTorch
## [bertviz](https://github.com/jessevig/bertviz)
BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models.
[mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) is a haiku library using the xmap/pjit operators in JAX for model parallelism of transformers. This library is designed for scalability up to approximately 40B parameters on TPUv3s. It was the library used to train the GPT-J model.
DeepChem aims to provide a high quality open-source toolchain that democratizes the use of deep-learning in drug discovery, materials science, quantum chemistry, and biology.
Keywords: Drug discovery, Materials Science, Quantum Chemistry, Biology
## [OpenNRE](https://github.com/thunlp/OpenNRE)
An Open-Source Package for Neural Relation Extraction (NRE). It is targeted at a wide range of users, from newcomers to relation extraction, to developers, researchers, or students.
PyCorrector is a Chinese Text Error Correction Tool. It uses a language model to detect errors, pinyin feature and shape feature to correct Chinese text errors. it can be used for Chinese Pinyin and stroke input method.
Keywords: Chinese, Error correction tool, Language model, Pinyin
## [nlpaug](https://github.com/makcedward/nlpaug)
This python library helps you with augmenting nlp for machine learning projects. It is a lightweight library featuring synthetic data generation for improving model performance, support for audio and text, and compatibility with several ecosystems (scikit-learn, pytorch, tensorflow).
Keywords: Data augmentation, Synthetic data generation, Audio, NLP
[dream-textures](https://github.com/carson-katri/dream-textures) is a library targeted at bringing stable-diffusion support within Blender. It supports several use-cases, such as image generation, texture projection, inpainting/outpainting, ControlNet, and upscaling.
Seldon core converts your ML models (Tensorflow, Pytorch, H2o, etc.) or language wrappers (Python, Java, etc.) into production REST/GRPC microservices.
Seldon handles scaling to thousands of production machine learning models and provides advanced machine learning capabilities out of the box including Advanced Metrics, Request Logging, Explainers, Outlier Detectors, A/B Tests, Canaries and more.
Keywords: Microservices, Modeling, Language wrappers
This repository includes optimized deep learning models and a set of demos to expedite development of high-performance deep learning inference applications. Use these free pre-trained models instead of training your own models to speed-up the development and production deployment process.
ML-Stable-Diffusion is a repository by Apple bringing Stable Diffusion support to Core ML, on Apple Silicon devices. It supports stable diffusion checkpoints hosted on the Hugging Face Hub.
Keywords: Stable Diffusion, Apple Silicon, Core ML
Stable-Dreamfusion is a pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model.
Keywords: Text-to-3D, Stable Diffusion
## [txtai](https://github.com/neuml/txtai)
[txtai](https://github.com/neuml/txtai) is an open-source platform for semantic search and workflows powered by language models. txtai builds embeddings databases, which are a union of vector indexes and relational databases enabling similarity search with SQL. Semantic workflows connect language models together into unified applications.
Keywords: Semantic search, LLM
## [djl](https://github.com/deepjavalibrary/djl)
Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning. DJL is designed to be easy to get started with and simple to use for developers. DJL provides a native Java development experience and functions like any other regular Java library. DJL offers [a Java binding](https://github.com/deepjavalibrary/djl/tree/master/extensions/tokenizers) for HuggingFace Tokenizers and easy conversion toolkit for HuggingFace model to deploy in Java.
This project provides a unified framework to test generative language models on a large number of different evaluation tasks. It has support for more than 200 tasks, and supports different ecosystems: HF Transformers, GPT-NeoX, DeepSpeed, as well as the OpenAI API.
This repository records EleutherAI's library for training large-scale language models on GPUs. The framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. It is focused on training multi-billion-parameter models.
Keywords: Training, LLM, Megatron, DeepSpeed
## [muzic](https://github.com/microsoft/muzic)
Muzic is a research project on AI music that empowers music understanding and generation with deep learning and artificial intelligence. Muzic was created by researchers from Microsoft Research Asia.
DALL·E Flow is an interactive workflow for generating high-definition images from a text prompt. Itt leverages DALL·E-Mega, GLID-3 XL, and Stable Diffusion to generate image candidates, and then calls CLIP-as-service to rank the candidates w.r.t. the prompt.
The preferred candidate is fed to GLID-3 XL for diffusion, which often enriches the texture and background. Finally, the candidate is upscaled to 1024x1024 via SwinIR.
LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP and CV models such as BERT, GPT, Transformer, etc. It is therefore best useful for machine translation, text generation, image classification, and other sequence related tasks.
OpenCLIP is an open source implementation of OpenAI's CLIP.
The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift.
The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset.
Specifically, a ResNet-50 model trained with this codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet.
A playground to generate images from any text prompt using Stable Diffusion and Dall-E mini.
Keywords: WebUI, Stable Diffusion, Dall-E mini
## [FedML](https://github.com/FedML-AI/FedML)
[FedML](https://github.com/FedML-AI/FedML) is a federated learning and analytics library enabling secure and collaborative machine learning on decentralized data anywhere at any scale.
It supports large-scale cross-silo federated learning, and cross-device federated learning on smartphones/IoTs, and research simulation.
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.
Prompt-learning is a paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modify the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. [OpenPrompt](https://github.com/thunlp/OpenPrompt) supports loading PLMs directly from https://github.com/huggingface/transformers.
[text-generation-webui](https://github.com/oobabooga/text-generation-webui/) is a Gradio Web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, Pythia, OPT, and GALACTICA.
Keywords: LLM, WebUI
## [libra](https://github.com/Palashio/libra)
An ergonomic machine learning [libra](https://github.com/Palashio/libra)ry for non-technical users. It focuses on ergonomics and on ensuring that training a model is as simple as it can be.
Keywords: Ergonomic, Non-technical
## [alibi](https://github.com/SeldonIO/alibi)
Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-quality implementations of black-box, white-box, local and global explanation methods for classification and regression models.
Keywords: Model inspection, Model interpretation, Black-box, White-box
Tortoise is a text-to-speech program built with the following priorities: strong multi-voice capabilities, and highly realistic prosody and intonation.
Keywords: Text-to-speech
## [flower](https://github.com/adap/flower)
Flower (flwr) is a framework for building federated learning systems. The design of Flower is based on a few guiding principles: customizability, extendability, framework agnosticity, and ease-of-use.
Fast-Bert is a deep learning library that allows developers and data scientists to train and deploy BERT and XLNet based models for natural language processing tasks beginning with Text Classification. It is aimed at simplicity.
Keywords: Deployment, BERT, XLNet
## [towhee](https://github.com/towhee-io/towhee)
Towhee makes it easy to build neural data processing pipelines for AI applications. We provide hundreds of models, algorithms, and transformations that can be used as standard pipeline building blocks. Users can use Towhee's Pythonic API to build a prototype of their pipeline and automatically optimize it for production-ready environments.
Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection.
Keywords: Adversarial, Outlier, Drift detection
## [FARM](https://github.com/deepset-ai/FARM)
[FARM](https://github.com/deepset-ai/FARM) makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built upon transformers and provides additional features to simplify the life of developers: Parallelized preprocessing, highly modular design, multi-task learning, experiment tracking, easy debugging and close integration with AWS SageMaker.
Keywords: Transfer Learning, Modular design, Multi-task learning, Experiment tracking
A robust Python tool for text-based AI training and generation using OpenAI's GPT-2 and EleutherAI's GPT Neo/GPT-3 architecture.
[aitextgen](https://github.com/minimaxir/aitextgen) is a Python package that leverages PyTorch, Hugging Face Transformers and pytorch-lightning with specific optimizations for text generation using GPT-2, plus many added features.
Diffgram aims to integrate human supervision into platforms. We support your team programmatically changing the UI (Schema, layout, etc.) like in Streamlit. This means that you can collect and annotate timely data from users. In other words, we are the platform behind your platform, an integrated part of your application, to ship new & better AI products faster.
Keywords: Human supervision, Platform
## [ecco](https://github.com/jalammar/ecco)
Explain, analyze, and visualize NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0).
Keywords: Model explainability
## [s3prl](https://github.com/s3prl/s3prl)
[s3prl](https://github.com/s3prl/s3prl) stands for Self-Supervised Speech Pre-training and Representation Learning. Self-supervised speech pre-trained models are called upstream in this toolkit, and are utilized in various downstream tasks.
RuDALL-E aims to be similar to DALL-E, targeted to Russian.
Keywords: DALL-E, Russian
## [DeepKE](https://github.com/zjunlp/DeepKE)
[DeepKE](https://github.com/zjunlp/DeepKE) is a knowledge extraction toolkit for knowledge graph construction supporting cnSchema,low-resource, document-level and multimodal scenarios for entity, relation and attribute extraction.
Keywords: Knowledge Extraction, Knowledge Graphs
## [Nebuly](https://github.com/nebuly-ai/nebuly)
Nebuly is the next-generation platform to monitor and optimize your AI costs in one place. The platform connects to all your AI cost sources (compute, API providers, AI software licenses, etc) and centralizes them in one place to give you full visibility on a model basis. The platform also provides optimization recommendations and a co-pilot model that can guide during the optimization process. The platform builds on top of the open-source tools allowing you to optimize the different steps of your AI stack to squeeze out the best possible cost performances.
Offers a CLI and a Python API to generate images with Stable Diffusion. It has support for many tools, like image structure control (controlnet), instruction-based image edits (InstructPix2Pix), prompt-based masking (clipseg), among others.
SparseML is an open-source model optimization toolkit that enables you to create inference-optimized sparse models using pruning, quantization, and distillation algorithms. Models optimized with SparseML can then be exported to the ONNX and deployed with DeepSparse for GPU-class performance on CPU hardware.
Keywords: Model optimization, Pruning, Quantization, Distillation
## [opacus](https://github.com/pytorch/opacus)
Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment.
Keywords: Differential privacy
## [LAVIS](https://github.com/salesforce/LAVIS)
[LAVIS](https://github.com/salesforce/LAVIS) is a Python deep learning library for LAnguage-and-VISion intelligence research and applications. This library aims to provide engineers and researchers with a one-stop solution to rapidly develop models for their specific multimodal scenarios, and benchmark them across standard and customized datasets. It features a unified interface design to access
Keywords: Multimodal, NLP, Vision
## [buzz](https://github.com/chidiwilliams/buzz)
Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper.
Rust-native state-of-the-art Natural Language Processing models and pipelines. Port of Hugging Face's Transformers library, using the tch-rs crate and pre-processing from rust-tokenizers. Supports multi-threaded tokenization and GPU inference. This repository exposes the model base architecture, task-specific heads and ready-to-use pipelines.
Keywords: Rust, BERT, Inference
## [EasyNLP](https://github.com/alibaba/EasyNLP)
[EasyNLP](https://github.com/alibaba/EasyNLP) is an easy-to-use NLP development and application toolkit in PyTorch, first released inside Alibaba in 2021. It is built with scalable distributed training strategies and supports a comprehensive suite of NLP algorithms for various NLP applications. [EasyNLP](https://github.com/alibaba/EasyNLP) integrates knowledge distillation and few-shot learning for landing large pre-trained models, together with various popular multi-modality pre-trained models. It provides a unified framework of model training, inference, and deployment for real-world applications.
Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers.
Keywords: Decentralized training
## [docquery](https://github.com/impira/docquery)
DocQuery is a library and command-line tool that makes it easy to analyze semi-structured and unstructured documents (PDFs, scanned images, etc.) using large language models (LLMs). You simply point DocQuery at one or more documents and specify a question you want to ask. DocQuery is created by the team at Impira.
[CodeGeeX](https://github.com/THUDM/CodeGeeX) is a large-scale multilingual code generation model with 13 billion parameters, pre-trained on a large code corpus of more than 20 programming languages. It has several unique features:
- Multilingual code generation
- Crosslingual code translation
- Is a customizable programming assistant
Keywords: Code Generation Model
## [ktrain](https://github.com/amaiya/ktrain)
[ktrain](https://github.com/amaiya/ktrain) is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, [ktrain](https://github.com/amaiya/ktrain) is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners.
Keywords: Keras wrapper, Model building, Training, Deployment
[FastDeploy](https://github.com/PaddlePaddle/FastDeploy) is an Easy-to-use and High Performance AI model deployment toolkit for Cloud, Mobile and Edge with packageout-of-the-box and unified experience, endend-to-end optimization for over fire160+ Text, Vision, Speech and Cross-modal AI models. Including image classification, object detection, OCR, face detection, matting, pp-tracking, NLP, stable diffusion, TTS and other tasks to meet developers' industrial deployment needs for multi-scenario, multi-hardware and multi-platform.
[underthesea](https://github.com/undertheseanlp/underthesea) is a Vietnamese NLP toolkit. Underthesea is a suite of open source Python modules data sets and tutorials supporting research and development in Vietnamese Natural Language Processing. We provides extremely easy API to quickly apply pretrained NLP models to your Vietnamese text, such as word segmentation, part-of-speech tagging (PoS), named entity recognition (NER), text classification and dependency parsing.
Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the core C++ libraries shared by PyTorch.
Keywords: Haskell, Neural Networks
## [donut](https://github.com/clovaai/donut)
Donut, or Document understanding transformer, is a new method of document understanding that utilizes an OCR-free end-to-end Transformer model.
Donut does not require off-the-shelf OCR engines/APIs, yet it shows state-of-the-art performances on various visual document understanding tasks, such as visual document classification or information extraction (a.k.a. document parsing).
Transformers Interpret is a model explainability tool designed to work exclusively with the transformers package.
In line with the philosophy of the Transformers package Transformers Interpret allows any transformers model to be explained in just two lines. Explainers are available for both text and computer vision models. Visualizations are also available in notebooks and as savable png and html files
Keywords: Model interpretation, Visualization
## [mlrun](https://github.com/mlrun/mlrun)
MLRun is an open MLOps platform for quickly building and managing continuous ML applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. With MLRun, you can choose any IDE on your local machine or on the cloud. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements.
[FederatedScope](https://github.com/alibaba/FederatedScope) is a comprehensive federated learning platform that provides convenient usage and flexible customization for various federated learning tasks in both academia and industry. Based on an event-driven architecture, [FederatedScope](https://github.com/alibaba/FederatedScope) integrates rich collections of functionalities to satisfy the burgeoning demands from federated learning, and aims to build up an easy-to-use platform for promoting learning safely and effectively.
[FlagAI](https://github.com/FlagAI-Open/FlagAI) (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model. Our goal is to support training, fine-tuning, and deployment of large-scale models on various downstream tasks with multi-modality.
Keywords: Large models, Training, Fine-tuning, Deployment, Multi-modal
[pyserini](https://github.com/castorini/pyserini) is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse representations is provided via integration with the group's Anserini IR toolkit. Retrieval using dense representations is provided via integration with Facebook's Faiss library.
Keywords: IR, Information Retrieval, Dense, Sparse
## [baal](https://github.com/baal-org/baal)
[baal](https://github.com/baal-org/baal) is an active learning library that supports both industrial applications and research usecases. [baal](https://github.com/baal-org/baal) currently supports Monte-Carlo Dropout, MCDropConnect, deep ensembles, and semi-supervised learning.
[cleanlab](https://github.com/cleanlab/cleanlab) is the standard data-centric AI package for data quality and machine learning with messy, real-world data and labels. For text, image, tabular, audio (among others) datasets, you can use cleanlab to automatically: detect data issues (outliers, label errors, near duplicates, etc), train robust ML models, infer consensus + annotator-quality for multi-annotator data, suggest data to (re)label next (active learning).
Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active Learning
## [BentoML](https://github.com/bentoml/BentoML)
[BentoML](https://github.com/bentoml) is the unified framework for for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage.
Keywords: BentoML, Framework, Deployment, AI Applications
[LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) offers a user-friendly fine-tuning framework that incorporates PEFT. The repository includes training(fine-tuning) and inference examples for LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, and other LLMs. A ChatGLM version is also available in [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning).
A folder called ``_build/html`` should have been created. You can now open the file ``_build/html/index.html`` in your
You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate
browser.
the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite
Markdown editor.
## Previewing the documentation
To preview the docs, first install the `watchdog` module with:
```bash
pip install watchdog
```
Then run the following command:
```bash
doc-builder preview {package_name}{path_to_docs}
```
For example:
```bash
doc-builder preview transformers docs/source/en/
```
The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.
---
---
**NOTE**
**NOTE**
If you are adding/removing elements from the toc-tree or from any structural item, it is recommended to clean the build
The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml`& restart `preview`command (`ctrl-c` to stop it & call `doc-builder preview ...` again).
directory before rebuilding. Run the following command to clean and build:
```bash
make clean && make html
```
---
---
It should build the static app that will be available under `/docs/_build/html`
## Adding a new element to the navigation bar
## Adding a new element to the tree (toc-tree)
Accepted files are Markdown (.md).
Accepted files are reStructuredText (.rst) and Markdown (.md). Create a file with its extension and put it
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
in the source directory. You can then link it to the toc-tree by putting the filename without the extension.
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml) file.
## Preview the documentation in a pull request
## Renaming section headers and moving sections
Once you have made your pull request, you can check what the documentation will look like after it's merged by
It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.
following these steps:
Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.
So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:
Use the relative style to link to the new file so that the versioned docs continue to work.
For an example of a rich moved section set please see the very end of [the Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md).
- Look at the checks at the bottom of the conversation page of your PR (you may need to click on "show all checks" to
expand them).
- Click on "details" next to the `ci/circleci: build_doc` check.
- In the new window, click on the "Artifacts" tab.
- Locate the file "docs/_build/html/index.html" (or any specific page you want to check) and click on it to get a
preview.
## Writing Documentation - Specification
## Writing Documentation - Specification
The `huggingface/transformers` documentation follows the
The `huggingface/transformers` documentation follows the
[Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style. It is
[Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style for docstrings,
If you just want to add a method that is not documented (for instance magic methods like `__call__` are not documented
by default) you can put the list of methods to add in a list that contains `all`:
```
## XXXTokenizer
[[autodoc]] XXXTokenizer
- all
- __call__
```
```
### Writing source documentation
### Writing source documentation
Values that should be put in `code` should either be surrounded by double backticks: \`\`like so\`\` or be written as
Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names
an object using the :obj: syntax: :obj:\`like so\`. Note that argument names and objects like True, None or any strings
and objects like True, None, or any strings should usually be put in `code`.
should usually be put in `code`.
When mentioning a class, it is recommended to use the :class: syntax as the mentioned class will be automatically
When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool
linked by Sphinx: :class:\`~transformers.XXXClass\`
adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or
function to be in the main package.
When mentioning a function, it is recommended to use the :func: syntax as the mentioned function will be automatically
If you want to create a link to some internal class or function, you need to
linked by Sphinx: :func:\`~transformers.function\`.
provide its path. For instance: \[\`utils.ModelOutput\`\]. This will be converted into a link with
`utils.ModelOutput` in the description. To get rid of the path and only keep the name of the object you are
linking to in the description, add a ~: \[\`~utils.ModelOutput\`\] will generate a link with `ModelOutput` in the description.
When mentioning a method, it is recommended to use the :meth: syntax as the mentioned method will be automatically
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[\`~XXXClass.method\`\].
linked by Sphinx: :meth:\`~transformers.XXXClass.method\`.
Links should be done as so (note the double underscore at the end): \`text for the link <./local-link-or-global-link#loc>\`__
#### Defining arguments in a method
#### Defining arguments in a method
Arguments should be defined with the `Args:` prefix, followed by a line return and an indentation.
Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`) prefix, followed by a line return and
The argument should be followed by its type, with its shape if it is a tensor, and a line return.
an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its
Another indentation is necessary before writing the description of the argument.
description:
```
Args:
n_layers (`int`): The number of layers of the model.
```
If the description is too long to fit in one line, another indentation is necessary before writing the description
after the argument.
Here's an example showcasing everything so far:
Here's an example showcasing everything so far:
```
```
Args:
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.AlbertTokenizer`.
Indices can be obtained using [`AlbertTokenizer`]. See [`~PreTrainedTokenizer.encode`] and
See :meth:`~transformers.PreTrainedTokenizer.encode` and
[`~PreTrainedTokenizer.__call__`] for details.
:meth:`~transformers.PreTrainedTokenizer.__call__` for details.
`What are input IDs? <../glossary.html#input-ids>`__
[What are input IDs?](../glossary#input-ids)
```
```
For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the
For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the
@ -208,93 +242,156 @@ then its documentation should look like this:
```
```
Args:
Args:
x (:obj:`str`, `optional`):
x (`str`, *optional*):
This argument controls ...
This argument controls ...
a (:obj:`float`, `optional`, defaults to 1):
a (`float`, *optional*, defaults to 1):
This argument is used to ...
This argument is used to ...
```
```
Note that we always omit the "defaults to :obj:\`None\`" when None is the default for any argument. Also note that even
Note that we always omit the "defaults to \`None\`" when None is the default for any argument. Also note that even
if the first line describing your argument type and its default gets long, you can't break it on several lines. You can
if the first line describing your argument type and its default gets long, you can't break it on several lines. You can
however write as many lines as you want in the indented description (see the example above with `input_ids`).
however, write as many lines as you want in the indented description (see the example above with `input_ids`).
#### Writing a multi-line code block
#### Writing a multi-line code block
Multi-line code blocks can be useful for displaying examples. They are done like so:
Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown:
````
```
```
Example::
# first line of code
# second line
# first line of code
# etc
# second line
# etc
```
```
````
The `Example` string at the beginning can be replaced by anything as long as there are two semicolons following it.
We follow the [doctest](https://docs.python.org/3/library/doctest.html) syntax for the examples to automatically test
We follow the [doctest](https://docs.python.org/3/library/doctest.html) syntax for the examples to automatically test
the results stay consistent with the library.
the results to stay consistent with the library.
#### Writing a return block
#### Writing a return block
Arguments should be defined with the `Args:` prefix, followed by a line return and an indentation.
The return block should be introduced with the `Returns:` prefix, followed by a line return and an indentation.
The first line should be the type of the return, followed by a line return. No need to indent further for the elements
The first line should be the type of the return, followed by a line return. No need to indent further for the elements
building the return.
building the return.
Here's an example for tuple return, comprising several objects:
Here's an example of a single value return:
```
```
Returns:
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
```
```
Here's an example for a single value return:
Here's an example of a tuple return, comprising several objects:
```
```
Returns:
Returns:
:obj:`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
`tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --
Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
- **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
```
```
#### Adding a new section
#### Adding an image
In ReST section headers are designated as such with the help of a line of underlying characters, e.g.,:
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
to this dataset.
## Styling the docstring
We have an automatic script running with the `make style` comment that will make sure that:
- the docstrings fully take advantage of the line width
- all code examples are formatted using black, like the code of the Transformers library
This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's
recommended to commit your changes before running `make style`, so you can revert the changes done by that script
easily.
# Testing documentation examples
Good documentation often comes with an example of how a specific function or class should be used.
Each model class should contain at least one example showcasing
how to use this model class in inference. *E.g.* the class [Wav2Vec2ForCTC](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC)
includes an example of how to transcribe speech to text in the
[docstring of its forward function](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC.forward).
## Writing documentation examples
The syntax for Example docstrings can look as follows:
```
```
Section 1
Example:
^^^^^^^^^^^^^^^^^^
Sub-section 1
```python
~~~~~~~~~~~~~~~~~~
>>> from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'
```
```
```
ReST allows the use of any characters to designate different section levels, as long as they are used consistently within the same document. For details see [sections doc](https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#sections). Because there is no standard different documents often end up using different characters for the same levels which makes it very difficult to know which character to use when creating a new section.
The docstring should give a minimal, clear example of how the respective model
is to be used in inference and also include the expected (ideally sensible)
output.
Often, readers will try out the example before even going through the function
or class definitions. Therefore, it is of utmost importance that the example
works as expected.
Specifically, if when running `make docs` you get an error like:
This tells you which characters have already been assigned for each level.
If you want to isolate a specific docstring, just add `::` after the file name then type the whole path of the function/class/method whose docstring you want to test. For instance, here is how to just test the forward method of `Wav2Vec2ForCTC`:
So using this particular example's output -- if your current section's header uses `=` as its underline character, you now know you're at level 4, and if you want to add a sub-section header you know you want `"` as it'd level 5.
If you needed to add yet another sub-level, then pick a character that is not used already. That is you must pick a character that is not in the output of that script.
### For Markdown files
Here is the full list of characters that can be used in this context: `= - ` : ' " ~ ^ _ * + # < >`
You can test locally a given file with this command (here testing the quicktour):
Here are a few tips to help you debug the doctests and make them pass:
- The outputs of the code need to match the expected output **exactly**, so make sure you have the same outputs. In particular doctest will see a difference between single quotes and double quotes, or a missing parenthesis. The only exceptions to that rule are:
* whitespace: one give whitespace (space, tabulation, new line) is equivalent to any number of whitespace, so you can add new lines where there are spaces to make your output more readable.
* numerical values: you should never put more than 4 or 5 digits to expected results as different setups or library versions might get you slightly different results. `doctest` is configured to ignore any difference lower than the precision to which you wrote (so 1e-4 if you write 4 digits).
- Don't leave a block of code that is very long to execute. If you can't make it fast, you can either not use the doctest syntax on it (so that it's ignored), or if you want to use the doctest syntax to show the results, you can add a comment `# doctest: +SKIP` at the end of the lines of code too long to execute
- Each line of code that produces a result needs to have that result written below. You can ignore an output if you don't want to show it in your code example by adding a comment ` # doctest: +IGNORE_RESULT` at the end of the line of code producing it.
### Translating the Transformers documentation into your language
As part of our mission to democratize machine learning, we'd love to make the Transformers library available in many more languages! Follow the steps below if you want to help translate the documentation into your language 🙏.
**🗞️ Open an issue**
To get started, navigate to the [Issues](https://github.com/huggingface/transformers/issues) page of this repo and check if anyone else has opened an issue for your language. If not, open a new issue by selecting the "Translation template" from the "New issue" button.
Once an issue exists, post a comment to indicate which chapters you'd like to work on, and we'll add your name to the list.
**🍴 Fork the repository**
First, you'll need to [fork the Transformers repo](https://docs.github.com/en/get-started/quickstart/fork-a-repo). You can do this by clicking on the **Fork** button on the top-right corner of this repo's page.
Once you've forked the repo, you'll want to get the files on your local machine for editing. You can do that by cloning the fork with Git as follows:
**📋 Copy-paste the English version with a new language code**
The documentation files are in one leading directory:
- [`docs/source`](https://github.com/huggingface/transformers/tree/main/docs/source): All the documentation materials are organized here by language.
You'll only need to copy the files in the [`docs/source/en`](https://github.com/huggingface/transformers/tree/main/docs/source/en) directory, so first navigate to your fork of the repo and run the following:
```bash
cd ~/path/to/transformers/docs
cp -r source/en source/LANG-ID
```
Here, `LANG-ID` should be one of the ISO 639-1 or ISO 639-2 language codes -- see [here](https://www.loc.gov/standards/iso639-2/php/code_list.php) for a handy table.
**✍️ Start translating**
The fun part comes - translating the text!
The first thing we recommend is translating the part of the `_toctree.yml` file that corresponds to your doc chapter. This file is used to render the table of contents on the website.
> 🙋 If the `_toctree.yml` file doesn't yet exist for your language, you can create one by copy-pasting from the English version and deleting the sections unrelated to your chapter. Just make sure it exists in the `docs/source/LANG-ID/` directory!
The fields you should add are `local` (with the name of the file containing the translation; e.g. `autoclass_tutorial`), and `title` (with the title of the doc in your language; e.g. `Load pretrained instances with an AutoClass`) -- as a reference, here is the `_toctree.yml` for [English](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml):
```yaml
- sections:
- local:pipeline_tutorial# Do not change this! Use the same name for your .md file
title:Pipelines for inference# Translate this!
...
title:Tutorials# Translate this!
```
Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter.
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @stevhliu and @MKhalusova.
File diff suppressed because one or more lines are too long
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.