Compare commits

..

971 Commits

Author SHA1 Message Date
1d646badbb Merge branch 'master' of https://github.com/huggingface/pytorch-transformers 2019-09-26 13:48:00 +02:00
9676d1a2a8 update readme and setup.py 2019-09-26 13:47:58 +02:00
8349d75773 Various small doc fixes 2019-09-26 07:45:40 -04:00
fb056494e5 Example usage 2019-09-26 07:45:40 -04:00
36f592cc82 Updated doc for InputExample and InputFeatures 2019-09-26 07:45:40 -04:00
ad4a393e2e Changed processor documentation architecture. Added documentation for GLUE 2019-09-26 07:45:40 -04:00
c4ac7a76db GLUE processors 2019-09-26 07:45:40 -04:00
4acd87ff4e TF models added to documentation 2019-09-26 07:45:40 -04:00
cf5c5c9e1c Documentation 2019-09-26 07:43:13 -04:00
4dde31cb76 update readme 2019-09-26 12:18:26 +02:00
17ea43cf98 Merge pull request #1203 from huggingface/tf2
[2.0] TF 2.0 support
2019-09-26 12:11:03 +02:00
80bf868a26 Merge branch 'master' into tf2 2019-09-26 12:04:47 +02:00
481d9c4fb5 Merge branch 'master' into tf2 2019-09-26 12:02:54 +02:00
4ddc31ff40 update readme with migration change 2019-09-26 12:00:38 +02:00
f47f7f4611 add logo 2019-09-26 11:28:44 +02:00
9fabc0b6a9 wip readme 2019-09-26 11:21:34 +02:00
31c23bd5ee [BIG] pytorch-transformers => transformers 2019-09-26 10:15:53 +02:00
2f071fcb02 clean up TFConv1D API 2019-09-26 10:09:45 +02:00
5705333441 add initialization for everybody 2019-09-26 10:06:20 +02:00
f2a337b3ed fix tokenization tests for gpt2 roberta 2019-09-26 09:02:43 +02:00
4a233e5b2c Merge pull request #1315 from bryant1410/patch-1
Remove unnecessary use of FusedLayerNorm
2019-09-26 08:50:02 +02:00
7a99e4b196 fix #1196 and fix #1285 2019-09-26 08:41:02 +02:00
7c9f8f93f9 fix tests 2019-09-26 01:59:53 +02:00
d6dde438ea add batch dimension in encode 2019-09-26 01:45:55 +02:00
4a21c4d88d add warning if neither pt nor tf are found 2019-09-26 01:30:06 +02:00
2967de06f4 adding intialization to bert 2019-09-25 22:08:38 +02:00
a6bcfb8015 fix tests 2019-09-25 21:14:12 +02:00
78863f6b36 fix tokenizer to tensors 2019-09-25 21:09:46 +02:00
8a618e0af5 clean up __init__ 2019-09-25 21:04:52 +02:00
3b7fb48c3b fix loading from tf/pt 2019-09-25 17:46:16 +02:00
a049c8043b push fix to training 2019-09-25 17:33:16 +02:00
5def3302f4 update run_glue 2019-09-25 12:38:08 +02:00
f71758f7a4 update internal glue processors 2019-09-25 12:00:50 +02:00
0f091062d4 Merge branch 'glue-example' into tf2 2019-09-25 10:21:52 +02:00
c4acc3a8e9 let encode accept tensor inputs 2019-09-25 10:19:14 +02:00
e8e956dbb2 Merge pull request #1327 from huggingface/tf2-determinism
Pytorch/TF2 determinism
2019-09-24 22:49:57 +02:00
e4022d96f7 Merge pull request #1325 from huggingface/glue-included
[Proposal] GLUE processors included in library
2019-09-24 21:40:10 +02:00
1761d2091a Check to see if the models have the same results when in eval mode (pt) or when training=False (tf) 2019-09-24 14:59:10 -04:00
789ea72037 fix output_token_type in glue 2019-09-24 17:32:01 +02:00
1cbd566c63 Merge branch 'glue-example' into glue-included 2019-09-24 17:24:52 +02:00
743e383d4b py2 fix 2019-09-24 17:21:54 +02:00
99a90e43d4 update data processors __init__ 2019-09-24 17:16:46 +02:00
b5ec526f85 updated data processor and metrics 2019-09-24 17:10:50 +02:00
a6981076ec various updates 2019-09-24 16:46:26 +02:00
0b82e3d0d9 Relative imports 2019-09-24 09:52:25 -04:00
f09e5ecef0 [Proposal] GLUE processors included in library 2019-09-24 09:47:34 -04:00
128bdd4c35 fix tests pt/tf 2019-09-24 15:43:39 +02:00
72402d1acd Fixed DistilBERT tokenizer 2019-09-24 09:41:14 -04:00
28a30af6d1 fix auto models 2019-09-24 15:33:39 +02:00
de203853cc docstring for xlnet 2019-09-24 15:30:55 +02:00
559790f9e4 docstring for xlm 2019-09-24 15:26:57 +02:00
b3087ddde8 docstring t-xl 2019-09-24 15:21:51 +02:00
4761a39781 doctring roberta 2019-09-24 15:19:09 +02:00
45a6f2edd9 docstring for GPT 2019-09-24 15:15:47 +02:00
e7ba5bc85b docstring for GPT2 2019-09-24 15:12:36 +02:00
d340e2329e create_mask_from_sequences -> create_token_type_ids_from_sequences 2019-09-24 09:09:28 -04:00
b94f73bab7 distilbert docstring 2019-09-24 15:06:51 +02:00
9678c49419 docstrings for bert 2019-09-24 14:57:05 +02:00
f3d1511b5b fix imports 2019-09-24 14:42:09 +02:00
dd2d90f344 update automodels 2019-09-24 14:39:41 +02:00
ee261439a9 add save_pretrained 2019-09-24 14:30:28 +02:00
29bb3e4eb0 double loading ok 2019-09-24 14:23:46 +02:00
f5397ffc3b update loading logics 2019-09-24 14:03:58 +02:00
271f213621 updating to load tf model in pt - fixing headmasking test 2019-09-24 13:51:28 +02:00
cf9c1cbb60 fix tests chen only using tf 2019-09-24 13:32:47 +02:00
2167e366ba update circleCi 2019-09-24 13:27:45 +02:00
e9a103c17a bidirectional conversion TF <=> PT - extended tests 2019-09-24 13:25:50 +02:00
c832f43a4d output_token_type -> token_type_ids 2019-09-24 07:21:38 -04:00
3927d7756c Updated the GLUE pre-processing method 2019-09-24 07:15:11 -04:00
0ea82b246f Updated tests 2019-09-24 07:10:09 -04:00
9d44236f70 Updated DistilBERT 2019-09-24 07:03:24 -04:00
a7e01a248b converting distilled/fine-tuned models 2019-09-24 10:58:52 +02:00
8ba44ced95 fix roberta conversion script 2019-09-24 09:48:23 +02:00
2b11fa5174 update __init__ and conversion script 2019-09-23 22:35:45 +02:00
6448396d54 fix roberta test 2019-09-23 22:27:13 +02:00
1e47dee24c Merge branch 'tf2' of https://github.com/huggingface/pytorch-transformers into tf2 2019-09-23 22:08:10 +02:00
c9591f6fac updated models input format + tests 2019-09-23 22:08:08 +02:00
798da627eb Fix TFBert tests in Python 3.5 2019-09-23 12:06:10 -04:00
c014d1f0c6 fix the skipping 2019-09-23 16:39:57 +02:00
0b22e47a40 skipping pretrained TF model tests for now 2019-09-23 16:38:03 +02:00
830d212be7 test circleCI h5py version 2019-09-23 16:26:06 +02:00
7c0f2d0a6a Merge pull request #1294 from sshleifer/delete-n-special-doc
Delete n_special reference in docstring
2019-09-23 14:54:55 +01:00
a31e591d27 fix XLM tests 2019-09-23 15:54:10 +02:00
447de34dde tests for distilbert and roberta 2019-09-23 15:38:29 +02:00
98dd19b96b Remove unnecessary use of FusedLayerNorm 2019-09-22 20:31:36 -04:00
68a3e0223a roberta and distilbert 2019-09-20 23:14:51 +02:00
a2d4950f5c fix annotation 2019-09-20 10:59:35 -04:00
9f995b99d4 minor fixes 2019-09-19 21:36:06 +00:00
3fe5c8e8a8 update bert-base-uncased rslts 2019-09-19 19:34:22 +00:00
354944e607 [distillation] big update w/ new weights 2019-09-19 19:25:21 +00:00
ab984a8b72 Python 2 compatibility 2019-09-19 15:01:33 +02:00
3df208c93a Tokenizer accepts token list as well as string 2019-09-19 14:47:52 +02:00
66ea76b8a9 prepare_for_model and prepare_pair_for_model methods. Added an option to select which sequence will be truncated. 2019-09-19 13:50:51 +02:00
60414f31a9 GLUE updated with new methods 2019-09-19 10:55:06 +02:00
baa74326ab Stride + tests + small fixes 2019-09-19 10:55:06 +02:00
c10c7d59e7 Mask computing in standalone method. Tests. 2019-09-19 10:55:06 +02:00
bf503158c5 Sentence -> Sequence. Removed output_mask from the special token addition methods. 2019-09-19 10:55:06 +02:00
8cba057260 Doc + remove artefacts 2019-09-19 10:55:06 +02:00
6393261e41 encode + encode_plus tests modified 2019-09-19 10:55:06 +02:00
dcc9bb3252 Modified encode to return only lists. Added a more complete encode_plus method 2019-09-19 10:55:06 +02:00
af23b626c8 Max encoding length + corresponding tests 2019-09-19 10:55:06 +02:00
c4d4f3ec8c Updated DistilBERT test to reflect the sequence encoding 2019-09-19 10:55:06 +02:00
d572d7027b Number of added tokens calculator 2019-09-19 10:55:06 +02:00
de8e14b6c0 Added DistilBERT to run_squad script 2019-09-19 10:55:06 +02:00
88368c2a16 Added DistilBERT to run_lm_finetuning 2019-09-19 10:55:06 +02:00
2d8ec5a684 Changed warning to be more explicit
Co-authored by: julien_c <chaumond@gmail.com>
2019-09-19 10:55:06 +02:00
75635072e1 Updated GLUE script to add DistilBERT. Cleaned up unused args in the utils file. 2019-09-19 10:55:06 +02:00
92a9976e91 Distilbert sequence builder w/ mask 2019-09-19 10:55:06 +02:00
59057abe52 typo 2019-09-19 10:55:06 +02:00
bac332fec0 Updated the GLUE data processor. Corrections to RoBERTa and XLNet. 2019-09-19 10:55:06 +02:00
c3df2136e1 Added binary masking tests 2019-09-19 10:55:06 +02:00
e391d4735e Tokenizers' encode function can output binary masks 2019-09-19 10:55:06 +02:00
119610b5c5 Merge branch 'master' into delete-n-special-doc 2019-09-19 01:35:01 -07:00
08e4ad5eea Remove documentation for unused kwarg 2019-09-18 16:35:01 -07:00
0d1dad6d53 Merge pull request #1004 from erenup/master
Refactoring old run_swag.py
2019-09-18 21:42:51 +02:00
8960988f35 fixed to find best dev acc 2019-09-19 01:10:05 +08:00
b57bfb5fa0 Merge pull request #3 from erenup/run_multiple_choice_merge
Run multiple choice merge
2019-09-18 21:45:04 +08:00
46ffc28329 Merge branch 'master' into run_multiple_choice_merge
# Please enter a commit message to explain why this merge is necessary,
# especially if it merges an updated upstream into a topic branch.
#
# Lines starting with '#' will be ignored, and an empty message aborts
# the commit.
2019-09-18 21:43:46 +08:00
15143fbad6 move run_multiple_choice.py and utils_multiple_choice.py to examples 2019-09-18 21:18:46 +08:00
3cd6289758 Merge remote-tracking branch 'huggingface/master' into run_multiple_choice_merge
# Conflicts:
#	examples/contrib/run_swag.py
2019-09-18 21:16:59 +08:00
36362cf086 move schedule.step after optimizer.step 2019-09-18 21:13:40 +08:00
3a527fa820 OpenAI GPT tests ok 2019-09-18 14:15:48 +02:00
556442afb3 hot fix 2019-09-18 14:12:41 +02:00
160b5d6080 fix xlm lang_embeddings loading 2019-09-18 14:10:20 +02:00
26497d1199 fix tests 2019-09-18 12:17:21 +02:00
6a083fd447 update pt-tf conversion script 2019-09-18 12:11:32 +02:00
f6969cc12b upgrade max model difference to 2e-2 (for transfo-xl adaptive softmax + inputs) 2019-09-18 11:12:02 +02:00
e768f2322a update run_openai_gpt to fix #1264 2019-09-18 10:07:47 +02:00
8334993915 clean up examples - updated to new keyword inputs - #1246 2019-09-18 10:01:27 +02:00
62760baf46 tiny fixes 2019-09-17 18:29:15 -04:00
45de034bf8 fix #1223 2019-09-17 10:25:06 +02:00
5a81e79e25 Merge pull request #2 from erenup/run_multiple_choice_add_doc
Run multiple choice add doc
2019-09-16 22:39:54 +08:00
5882c442e5 add example usage 2019-09-16 22:38:08 +08:00
a9debaca3d fixed init_weight 2019-09-16 19:55:24 +08:00
c88f05163d fix typo in XLM models 2019-09-16 13:42:20 +02:00
982f181aa7 Merge remote-tracking branch 'origin/master' into run_multiple_choice_add_doc 2019-09-16 19:12:00 +08:00
84b9d1c423 Merge remote-tracking branch 'huggingface/master'
# Conflicts:
#	pytorch_transformers/__init__.py
2019-09-16 19:06:12 +08:00
603b470a3d add warnning info 2019-09-16 18:53:37 +08:00
4812a5a767 add doc string 2019-09-16 11:50:18 +08:00
4b956b2a6b add layer_norm_epsilon configuration for transformer xl 2019-09-13 17:09:20 +02:00
b97af8cce9 skip finetuned checkpoints 2019-09-13 16:43:49 +02:00
65c49bb27e adding TF 2.0 adaptive softmax with logits + loss outputs 2019-09-13 15:50:51 +02:00
39c38b2ea0 fix 2019-09-12 16:47:11 +02:00
dcddf498c8 fix bert layernorm 2019-09-12 16:46:32 +02:00
d3a3a0353c clean up cache after conversion 2019-09-12 16:42:52 +02:00
a84adddd1b convert all models 2019-09-12 13:14:07 +02:00
32e1332acf [distil] fix once for all general logger for scripts 2019-09-11 14:19:07 +00:00
b62abe87c9 Merge pull request #1249 from ziliwang/master
fixed: hard coding for max and min number will out of range in fp16, which will cause nan.
2019-09-11 15:53:28 +02:00
969d3ae95e XLMWithLMHead fixed - standardize conversion 2019-09-11 15:47:33 +02:00
646711e1e2 standardize scopes names - add conversion methods 2019-09-11 15:34:17 +02:00
4356f791a2 XLM passing tests 2019-09-11 11:49:54 +02:00
11ac4b9555 [CI] Symbolic link for documentation 2019-09-11 10:13:44 +02:00
8bdee1cb73 fixed: hard coding for max and min number will out of range in fp16, which will cause nan. 2019-09-11 15:41:53 +08:00
7424b2848f Merge pull request #1 from huggingface/master
merege from original repo
2019-09-11 11:02:23 +08:00
364920e216 fix small bug/typo 2019-09-10 21:45:01 +00:00
23c23f5399 Merge pull request #1229 from SKRohit/master
changes in evaluate function in run_lm_finetuning.py
2019-09-10 22:16:45 +02:00
99a54ac51c Merge pull request #1233 from searchivarius/master
Fix to prevent crashing on assert len(tokens_b)>=1
2019-09-10 22:15:47 +02:00
439b37b474 Merge pull request #1241 from mattolson93/patch-1
Fixing typo in gpt2 for doc site's class link
2019-09-10 22:14:18 +02:00
f2cf6ce4a9 Fixing typo in gpt2 for doc site's class link 2019-09-10 09:12:01 -07:00
465870c33f Xlnet working - also added simple question answering model for XLNet 2019-09-10 16:44:41 +02:00
16b6361792 xlnet paassing first test 2019-09-10 12:39:27 +02:00
32aabe8c33 WIP XLNet 2019-09-10 12:17:18 +02:00
2c177a87eb Merge pull request #1228 from huggingface/head-masking-test
Trying to fix the head masking test
2019-09-10 11:55:27 +02:00
f851fb55ca fixing error message 2019-09-10 09:24:08 +02:00
eab980fd68 Fix to prevent crashing on assert len(tokens_b)>=1 2019-09-09 19:58:08 -04:00
a95ced6260 [Distillation] save last chkpt as pytorch_model.bin 2019-09-09 19:53:35 +00:00
50c6bc4195 fix tf bert model 2019-09-09 17:46:01 +02:00
4b082bd4d8 Merge pull request #1 from SKRohit/SKRohit-patch-1
changes in return statement of evaluate function
2019-09-09 19:59:27 +05:30
e5df36397b changes in return statement of evaluate function
changed `results` to `result` and removed `results` dict defined previously
2019-09-09 19:55:57 +05:30
0537139b2b removing tf.function 2019-09-09 14:47:31 +02:00
84d346b687 Merge pull request #1195 from huggingface/reorder_arguments
[2.0] Reodering arguments for torch jit #1010 and future TF2.0 compatibility
2019-09-09 15:42:51 +03:00
3f05de6dde Merge branch 'master' into reorder_arguments 2019-09-09 15:42:25 +03:00
33cb00f41a add GPT2 to init - fix weights loading - remove tf.function 2019-09-09 14:29:24 +02:00
78b2a53f10 debug file download in tests error 2019-09-09 13:38:10 +02:00
6b3438df21 fixing GPT2 double head model and updating the torch version tests 2019-09-09 12:48:36 +02:00
e360037236 Merge branch 'tf2' of https://github.com/huggingface/pytorch-transformers into tf2 2019-09-09 11:08:49 +02:00
b7175a2701 fixed imports in tests and gpt2 config test 2019-09-09 11:04:03 +02:00
995e38b7af Merge pull request #1214 from huggingface/new-examples
Better examples
2019-09-09 10:26:36 +03:00
3401980fc4 fix #1208 2019-09-09 10:22:12 +03:00
728637356c WIP GPT2 2019-09-09 10:18:55 +03:00
34f28b2a13 WIP GPT2 2019-09-08 15:02:06 +03:00
ad88563bda WIP GPT-2 2019-09-08 15:02:06 +03:00
64d83c7ae0 WIP 2019-09-08 15:02:06 +03:00
01597e5b90 add tf auto models + tests 2019-09-08 15:02:06 +03:00
f5c698b21a add weights tying, attention and hidden states output tests 2019-09-08 15:02:06 +03:00
6dc4b6f34c skip transfo-xl tokenizer tests with tf for now 2019-09-08 15:02:06 +03:00
e30579f764 no pytest version checking 2019-09-08 15:02:06 +03:00
518307dfcd test suite independent of framework 2019-09-08 15:02:06 +03:00
9d0a11a68c update dependencies and circle-ci 2019-09-08 15:02:06 +03:00
24a20483f5 update conversion script names 2019-09-08 15:02:06 +03:00
6f152572cd add conversion script, rename conversion scripts 2019-09-08 15:02:06 +03:00
a4704b1263 skipping tf tests if tf is not installed 2019-09-08 15:02:06 +03:00
ad0ab9afe9 fix test when tf is not here 2019-09-08 15:02:06 +03:00
59fe641b8b also gathering file names in file_utils 2019-09-08 15:02:06 +03:00
d68a8fe462 add tf bert files 2019-09-08 15:02:06 +03:00
7ae642b72d update conversion scripts 2019-09-08 15:02:06 +03:00
69bff89935 clean ups 2019-09-08 15:02:06 +03:00
1efb1f1660 split configuration and modeling files 2019-09-08 15:02:06 +03:00
1eb125fb95 be sure we have uint8 2019-09-08 15:02:06 +03:00
3f91338be9 Patched a few outdated parameters 2019-09-06 17:48:06 -04:00
f47f9a5874 Updated outdated examples 2019-09-06 17:10:33 -04:00
ee027c89f2 fix #1165 2019-09-06 23:40:05 +03:00
e52737d5ad Updated docs README to feature the examples symlink 2019-09-06 12:13:31 -04:00
5e151f5e77 Table of contents 2019-09-06 12:08:36 -04:00
593c070435 Better examples 2019-09-06 12:00:12 -04:00
5ac8b62265 Merge pull request #1205 from maru0kun/patch-2
Fix typo
2019-09-05 21:44:16 +02:00
5c6cac102b adding test for common properties and cleaning up a bit base class 2019-09-05 21:31:29 +02:00
ed717635ff Merge pull request #1201 from huggingface/configuration_refactoring
[2.0] - Split configuration and modeling files
2019-09-05 21:16:58 +02:00
04b50cabf6 gitignore 2019-09-05 18:49:28 +00:00
dddd6b9927 Update DistilBERT training code 2019-09-05 18:26:14 +00:00
f9453d15e5 Fix broken link 2019-09-05 12:35:22 -04:00
f7ee2e5d20 [README] link to Write With Transformer 2019-09-05 12:33:46 -04:00
d737947725 Fix typo 2019-09-05 19:24:57 +09:00
705237b4ec add tf auto models + tests 2019-09-05 12:21:08 +02:00
600a42329b add weights tying, attention and hidden states output tests 2019-09-05 12:02:14 +02:00
04d2006f28 skip transfo-xl tokenizer tests with tf for now 2019-09-05 11:22:13 +02:00
7f6a0c0d69 no pytest version checking 2019-09-05 11:20:56 +02:00
7c0baf9521 test suite independent of framework 2019-09-05 11:18:55 +02:00
7775a3d2ed update dependencies and circle-ci 2019-09-05 10:23:04 +02:00
33dd59e971 update conversion script names 2019-09-05 03:13:26 +02:00
5951d86024 add conversion script, rename conversion scripts 2019-09-05 03:10:11 +02:00
aa4c8804f2 skipping tf tests if tf is not installed 2019-09-05 03:06:09 +02:00
134847db81 fix test when tf is not here 2019-09-05 02:53:52 +02:00
981f7f5253 Merge branch 'tf2' of https://github.com/huggingface/pytorch-transformers into tf2 2019-09-05 02:34:52 +02:00
bffd17a43d add tf bert files 2019-09-05 02:34:44 +02:00
85df4f7cca also gathering file names in file_utils 2019-09-05 02:34:09 +02:00
11fae9e636 add tf bert files 2019-09-05 02:27:39 +02:00
121f88cae3 update conversion scripts 2019-09-05 02:17:50 +02:00
d77abd4d08 clean ups 2019-09-05 00:41:24 +02:00
2a667b1eb9 split configuration and modeling files 2019-09-05 00:27:11 +02:00
0be6a2a624 be sure we have uint8 2019-09-04 22:47:38 +02:00
7fba47b7d9 WIP reordering 2019-09-04 22:39:23 +02:00
e25cba78cf WIP reodering arguments for torchscript and TF 2019-09-04 22:39:23 +02:00
38b79b5a63 Fixing this TransformerXL bool issue 2019-09-04 22:36:30 +02:00
0b52642d37 1.2.0 in docs 2019-09-04 11:03:32 -04:00
89fd3450a6 Release: 1.2.0 2019-09-04 13:32:18 +02:00
9fd6e7ab9f Merge pull request #1190 from shijie-wu/xlm-tokenization
Fix reference of import in XLM tokenization
2019-09-04 12:50:49 +02:00
a15562e170 Fix reference of import when called for the second time 2019-09-03 18:27:29 -07:00
0287d264e9 Merge pull request #1162 from huggingface/xlnet-bias
XLNet bias fix on resize embeddings (cf #1124)
2019-09-02 23:14:04 +02:00
7f522437bc Updated documentation for LM finetuning script 2019-09-02 13:40:25 -04:00
3fbf301bba [CI] Updated resource size for python 3 tests 2019-09-02 12:35:14 -04:00
2dcc5a1629 [doc] Add blurb about large-scale model downloads
cc @n1t0 @lysandrejik @thomwolf
2019-09-02 12:27:11 -04:00
7b0c99add9 Merge pull request #1174 from huggingface/fix_byte_level_added_tokens
Fix byte-level BPE decoding error when using added tokens
2019-09-02 09:01:16 +02:00
31d3373bc9 Appends space before special token 2019-09-01 21:07:00 -04:00
fede4ef45d fixing #1133 2019-09-02 02:27:39 +02:00
b6cd856b08 Merge pull request #1164 from stefan-it/master
distillation: fix ModuleNotFoundError error in token counts script
2019-09-02 02:00:07 +02:00
ff7368eb6b Merge pull request #1077 from huggingface/pruning-save-and-load
Pruning changes so that deleted heads are kept on save/load
2019-09-01 09:42:15 +02:00
6ae0bb5291 XLM 100 different URLs 2019-08-31 14:46:31 -04:00
819b468f70 Fixed XLM model url 2019-08-31 14:40:51 -04:00
58b59a0c31 Random seed is accessible anywhere within the common tests 2019-08-31 13:17:08 -04:00
a1c34bd286 distillation: fix ModuleNotFoundError error in token counts script 2019-08-31 12:21:38 +02:00
ea86bef545 Check for None 2019-08-31 00:56:22 -04:00
e0f867a9ba XLNet bias fix on resize embeddings (cf #1124) 2019-08-31 00:50:59 -04:00
11600edc6e Rebase on master + DistilBERT head pruning patch 2019-08-31 00:37:41 -04:00
b6992b7b47 Applied patch to OpenAI GPT, RoBERTa, TransfoL, XLM and XLNet 2019-08-31 00:33:50 -04:00
bdb4409ed8 updated pruning logic with sets - Bert and GPT-2 2019-08-31 00:33:50 -04:00
0c8e823b03 Added patch to remaining models 2019-08-31 00:33:50 -04:00
0cd283522a Attempt to fix head index 2019-08-31 00:33:50 -04:00
c85b5db61a Conditional append/init + fixed warning 2019-08-31 00:33:50 -04:00
5c2b94c82a Changed string so that Circle CI accepts the warning 2019-08-31 00:33:50 -04:00
87747518e9 Blocks deletion from already deleted heads. Necessary integration test.
Now raises a warning when a head to be deleted already has been deleted. An integration test verifying the total pipeline (-> from config -> save model -> load model -> additional head pruning) has been added.
2019-08-31 00:33:50 -04:00
719cb3738d Pruning for GPT and GPT-2 2019-08-31 00:33:50 -04:00
fc1fbae45d XLM can be pruned 2019-08-31 00:33:50 -04:00
42e00cf9e1 Pruning saved to configuration first try 2019-08-31 00:33:50 -04:00
d7a4c3252e Fixed filename 2019-08-31 00:08:56 -04:00
7f006cdd87 Set seed for head_masking test 2019-08-30 23:58:49 -04:00
0fd0b674e6 [ci] legible output [skip ci] 2019-08-30 20:36:26 -04:00
b65a994f59 [ci] decrease parallelism to increase success prob 2019-08-30 20:33:16 -04:00
1d438f15b3 [XLNet] Use pytorch's layernorm like in BERT
See #1089

cc @thomwolf @lysandrejik

Also @dhpollack
2019-08-30 20:20:15 -04:00
574c5b3a72 [RoBERTa] LayerNorm's eps is not a nn.Parameter so there's no point setting it on the model
Instead we correctly store it on the config

(regenerating the hosted config files)

cc @lysandrejik
2019-08-30 20:09:24 -04:00
09363f2a8b Fix documentation index 2019-08-30 19:48:32 -04:00
51e980ce36 Merge pull request #1155 from anhnt170489/apex_fp16
Update apex fp16 implementation
2019-08-30 23:29:11 +02:00
206c35e9a4 Merge pull request #1154 from ziliwang/master
fix: hard coding for max number
2019-08-30 23:23:08 +02:00
f3d18c71ec Merge pull request #1152 from epwalsh/fix-special-tokens
fix adding special tokens
2019-08-30 23:21:59 +02:00
d483cd8e46 Merge pull request #1074 from huggingface/improved_testing
Shortcut to special tokens' ids - fix GPT2 & RoBERTa tokenizers - improved testing for GPT/GPT-2
2019-08-30 23:18:58 +02:00
d2f21f08f5 Merge pull request #1092 from shijie-wu/xlm-tokenization
Added cleaned configuration properties for tokenizer with serialization - improve tokenization of XLM
2019-08-30 23:15:40 +02:00
12b9cc9e26 Merge pull request #1110 from huggingface/automodels
Torch.hub now based on AutoModels - Updating AutoModels with AutoModelWithLMHead, Sequence Classification and Question Answering
2019-08-30 23:08:57 +02:00
bfe93a5a21 fix distilbert in auto tokenizer 2019-08-30 22:43:26 +02:00
256086bc69 clean up and simplify hubconf 2019-08-30 22:34:23 +02:00
80aa87d9a3 fix distilbert tokenizer 2019-08-30 22:24:23 +02:00
455a4c842c add distilbert tokenizer 2019-08-30 22:20:51 +02:00
7a1f174a9d update names of torch.hub to simpler names - update docstring 2019-08-30 22:20:44 +02:00
c665e0fcfe Merge branch 'automodels' of https://github.com/huggingface/pytorch-transformers into automodels 2019-08-30 21:53:36 +02:00
9b6e3b34d9 Docstrings 2019-08-30 14:09:02 -04:00
dec8f4d6fd Added DistilBERT models to all other AutoModels. 2019-08-30 13:52:18 -04:00
bc29aa67a9 HubConf configuration 2019-08-30 12:48:55 -04:00
f35f612280 updating docstring for AutoModel 2019-08-30 12:48:55 -04:00
7ca9653852 Pytorch Hub & AutoModels 2019-08-30 12:48:55 -04:00
25e8389439 Tests for added AutoModels 2019-08-30 12:48:55 -04:00
dc43215c01 Added multiple AutoModel classes: AutoModelWithLMHead, AutoModelForQuestionAnswering and AutoModelForSequenceClassification 2019-08-30 12:48:55 -04:00
282c276e09 typos + file name coherence in distillation README 2019-08-30 12:02:29 -04:00
803c1cc4ea fix relative import bug cf Issue #1140 2019-08-30 12:01:27 -04:00
7044ed6b05 fix tokenizers serialization 2019-08-30 17:36:11 +02:00
cd65c41a83 Merge branch 'master' into xlm-tokenization 2019-08-30 17:15:16 +02:00
69da972ace added test and debug tokenizer configuration serialization 2019-08-30 17:09:36 +02:00
88111de07c saving and reloading tokenizer configurations 2019-08-30 16:55:48 +02:00
b66e9b4433 Merge pull request #1158 from rabeehk/master
regarding #1026 pull request
2019-08-30 16:30:33 +02:00
0a2fecdf90 Merge branch 'master' into master 2019-08-30 16:30:08 +02:00
3871b8a107 adding xlm 17 and 100 models and config on aws 2019-08-30 16:28:42 +02:00
8678ff8df5 adding 17 and 100 xlm models 2019-08-30 16:26:04 +02:00
e0caab0cf0 fix link 2019-08-30 10:09:17 -04:00
a600b30cc3 Fix index number in documentation 2019-08-30 10:08:14 -04:00
20c06fa37d Added DistilBERT to documentation index 2019-08-30 10:06:51 -04:00
39eb31e11e remove reloading tokenizer in the training, adding it to the evaluation part 2019-08-30 15:44:41 +02:00
350bb6bffa updated tokenizer loading for addressing reproducibility issues 2019-08-30 15:34:28 +02:00
82462c5cba Added option to setup pretrained tokenizer arguments 2019-08-30 15:30:41 +02:00
41f35d0b3d Merge pull request #1089 from dhpollack/dhp/use_pytorch_layernorm
change layernorm code to pytorch's native layer norm
2019-08-30 14:49:08 +02:00
01ad55f8cf Merge pull request #1026 from rabeehk/master
loads the tokenizer for each checkpoint, to solve the reproducability…
2019-08-30 14:15:36 +02:00
50e615f43d Merge branch 'master' into improved_testing 2019-08-30 13:40:35 +02:00
f8aace6bcd update tokenizers to use self.XX_token_id instead of converting self.XX_token 2019-08-30 13:39:52 +02:00
8faf2e086b more doc on special tokens 2019-08-30 13:36:22 +02:00
f7978490b2 Merge pull request #1148 from huggingface/circleci
Documentation auto-deploy
2019-08-30 13:28:16 +02:00
ce5ef4b35d python2 doesn't spark joy 2019-08-30 13:22:43 +02:00
5dd7b677ad clean up all byte-level bpe tests 2019-08-30 12:43:08 +02:00
ca1a00a302 fix for python2 2019-08-30 12:29:31 +02:00
4e6a3172ce update roberta docstring as well 2019-08-30 12:23:37 +02:00
fd10d79b55 update GPT2 docstring 2019-08-30 12:23:12 +02:00
abe734ca1f fix GPT-2 and RoBERTa tests to be clean now 2019-08-30 12:20:18 +02:00
0f5a799456 fix GPT2DoubleHeadModel docstring 2019-08-30 11:49:23 +02:00
d51f72d5de adding shortcut to the ids of all the special tokens 2019-08-30 11:41:11 +02:00
306af132d7 update readme to mention add_special_tokens more clearly in example 2019-08-30 11:30:51 +02:00
50e6daf83a fix Roberta tokenizer __init__ 2019-08-30 11:27:43 +02:00
0517e7a1cb Fix GPT2 and RoBERTa tokenizer to beging with a space - update Roberta tokenizer 2019-08-30 11:23:49 +02:00
6e1ac34e2b Merge remote-tracking branch 'huggingface/master' 2019-08-30 15:50:11 +08:00
2fb9a934b4 re-format 2019-08-30 14:05:28 +09:00
c8731b9583 update apex fp16 implementation 2019-08-30 13:54:00 +09:00
6060b2f89b fix: hard coding for max number
fp16 max number is 65504, the original 1e30 will cause Nan in fp16
2019-08-30 12:13:47 +08:00
07e21307b6 fix adding special tokens 2019-08-29 13:44:50 -07:00
caf1d116a6 Closing bracket in DistilBERT's token count. 2019-08-29 15:30:10 -04:00
e7fba4bef5 Documentation auto-deploy 2019-08-29 12:14:29 -04:00
fe8fb10b44 Small modification of comment in the run_glue.py example
Add RoBERTa to the comment as it was not explicit that RoBERTa don't use token_type_ids.
2019-08-29 14:43:30 +02:00
2a2832ce73 Merge pull request #1 from erenup/run_multiple_choice
roberta, xlnet for multiple choice
2019-08-29 16:27:44 +08:00
942d3f4b20 modifiy code of arc label insurance 2019-08-29 10:21:17 +08:00
bf3dc778b8 Changed learning rate for run_squad test 2019-08-28 18:24:43 -04:00
0a74c88ac6 fix #1131 2019-08-28 22:41:42 +02:00
5f297c7be3 Merge pull request #1087 from huggingface/fix-warnings
Decode now calls private property instead of public method
2019-08-28 22:22:11 +02:00
d9847678b3 Merge pull request #1136 from adai183/update_SQuAD_script
swap order of optimizer.step() and scheduler.step()
2019-08-28 22:00:52 +02:00
0f8ad89206 Merge pull request #1135 from stefan-it/master
distilbert: fix number of hidden_size
2019-08-28 22:00:12 +02:00
9ce42dc540 Pretrained models table fix 2019-08-28 13:56:28 -04:00
1d15a7f278 swap order of optimizer.step() and scheduler.step() 2019-08-28 19:18:27 +02:00
ed2ab1c220 distilbert: fix number of hidden_size 2019-08-28 18:08:16 +02:00
0ecfd17f49 Merge pull request #987 from huggingface/generative-finetuning
Generative finetuning
2019-08-28 16:51:50 +02:00
50792dbdcc Merge pull request #1127 from huggingface/dilbert
DilBERT
2019-08-28 16:43:09 +02:00
e7706f514b update again 2019-08-28 16:37:22 +02:00
b5eb283aaa update credits 2019-08-28 16:36:55 +02:00
f753d4e32b Removed typings for Python 2 2019-08-28 10:15:02 -04:00
75bc2a03cc Updated article link 2019-08-28 10:05:15 -04:00
1dc43e56c9 Documentation additions 2019-08-28 09:37:27 -04:00
912a377e90 dilbert -> distilbert 2019-08-28 13:59:42 +02:00
c9bce1811c fixing model to add torchscript, embedding resizing, head pruning and masking + tests 2019-08-28 13:22:45 +02:00
62df4ba59a add dilbert tokenizer and tests 2019-08-28 12:22:56 +02:00
4ce5f36f78 update readmes 2019-08-28 12:14:31 +02:00
ec4b1c659f logging truth error 2019-08-28 16:50:40 +08:00
df52abe373 add sep_toekn between question and choice 2019-08-28 16:36:21 +08:00
43c243254a avoid invalid labels of truth 2019-08-28 16:03:17 +08:00
3c7e676f8b add test related code: test the best dev acc model when model is training 2019-08-28 15:57:29 +08:00
a5fe16687b fix typo 2019-08-28 07:22:54 +00:00
497f73c964 add DilBERT to master REAME 2019-08-28 07:16:30 +00:00
93e82ab424 Write README for DilBERT 2019-08-28 06:26:09 +00:00
19b7c9b0b7 add DilBert model for squad 2019-08-28 06:25:44 +00:00
fea921d382 add licensing 2019-08-28 04:45:39 +00:00
da1e4e53fc some fixes in train.py for loading previous checkpoint 2019-08-28 04:01:03 +00:00
0d8f8848d5 add scripts/extract_for_distil.py 2019-08-28 04:00:19 +00:00
7f2c384c80 add scripts/token_counts.py 2019-08-28 04:00:03 +00:00
4d16b279e5 add scripts/binarized_data.py 2019-08-28 03:59:48 +00:00
c513415b19 Dilbert tests from CommonTests 2019-08-27 23:59:00 -04:00
778a263f09 GilBert added to AutoModels 2019-08-27 23:14:00 -04:00
74d78beeb4 fix: add qa_dropout and seq_classif_dropout 2019-08-28 03:13:11 +00:00
7f5d85347e fix small typo 2019-08-28 02:44:51 +00:00
906581ae3c add s3 links for dilbert (+fix small typo) 2019-08-28 02:43:33 +00:00
b247b0d880 add train.py for distillation 2019-08-28 02:12:47 +00:00
780f183e55 add requirements 2019-08-28 01:39:52 +00:00
e424d2e45d add README 2019-08-28 01:10:10 +00:00
1ae81e4aa1 add dataset. distiller, utils 2019-08-28 01:10:05 +00:00
5d29f8e99b fix bugs 2019-08-28 00:57:16 +00:00
a8ad83040d fix bugs 2019-08-28 00:45:33 +00:00
ca4baf8ca1 Match order of casing in OSS XLM; Improve document; Clean up dependency 2019-08-27 20:03:18 -04:00
60c984da6c fix bugs 2019-08-27 22:25:55 +00:00
42968138c8 wip wouf 2019-08-27 22:00:38 +00:00
1d23240068 wip 2019-08-27 14:27:47 +00:00
d06c5a2a0a Merge pull request #1120 from CrafterKolyan/patch-3
Change attention mask dtype to be bool. Fix #1119
2019-08-27 15:01:01 +02:00
edc5222fc3 Merge pull request #1118 from CrafterKolyan/patch-2
Documentation fix #1117
2019-08-27 14:58:50 +02:00
9cf298dfc1 Merge pull request #1116 from CrafterKolyan/patch-1
Delete nonexistent parameter from documentation fix #1115
2019-08-27 14:56:43 +02:00
0d288727b8 fix #1106 2019-08-27 14:50:22 +02:00
447afe9cdf updating docstring for AutoModel 2019-08-27 14:42:03 +02:00
a175a9dc01 add kwargs to base encode function 2019-08-27 14:05:59 +02:00
53282b5bd0 Change attention mask dtype to be bool. Fix #1119 2019-08-27 14:19:03 +03:00
26bda77225 Fix documentation #1117
Rename parameter in documentation + Delete its second occurrence.
2019-08-27 12:22:42 +03:00
c8933bb2d9 Delete nonexistent parameter from documentation
Changed documentation of GPT2Model, GPT2LMHeadModel and GPT2DoubleHeadsModel
2019-08-27 12:10:36 +03:00
e08c01aa1a fix #1102 2019-08-26 18:13:06 -04:00
84a3a9689d Pytorch Hub & AutoModels 2019-08-26 16:08:43 -04:00
f68339639a Tests for added AutoModels 2019-08-26 16:02:23 -04:00
cb60ce59dd Added multiple AutoModel classes: AutoModelWithLMHead, AutoModelForQuestionAnswering and AutoModelForSequenceClassification 2019-08-26 15:44:30 -04:00
529a16dec6 Generic encoding implementation. 2019-08-26 15:00:43 -04:00
f1b018740c Add use_lang_emb to config 2019-08-23 20:33:01 -04:00
e85123d398 Add custom tokenizer for zh and ja 2019-08-23 20:27:52 -04:00
06510ccb53 typo 2019-08-23 22:08:10 +02:00
3bcbebd440 max_len_single_sentence & max_len_sentences_pair as attributes so they can be modified 2019-08-23 22:07:26 +02:00
436ce07218 Tokenization behave the same as original XLM proprocessing for most languages except zh, ja and th; Change API to allow specifying language in tokenize 2019-08-23 14:40:17 -04:00
ab7bd5ef98 fixing tokenization and training 2019-08-23 17:31:21 +02:00
47d6853439 adding max_lengths for single sentences and sentences pairs 2019-08-23 17:31:11 +02:00
df9d6effae Merge pull request #1081 from huggingface/fix_distributed_barrier_hang
Fix distributed barrier hang
2019-08-23 16:53:53 +02:00
3f20dd7186 Merge pull request #1075 from abhishekraok/modeling_utils_config_None
reraise EnvironmentError in modeling_utils.py
2019-08-23 12:42:39 +02:00
e13465fb8b change layernorm code to pytorch's native layer norm 2019-08-23 12:12:12 +02:00
c603d099aa reraise EnvironmentError in from_pretrained functions of Model and Tokenizer 2019-08-22 15:25:40 -07:00
2ba1a14fb0 Decode now calls private property instead of public method 2019-08-22 17:25:55 -04:00
90dcd8c05d Merge branch 'master' into generative-finetuning 2019-08-22 10:43:30 +02:00
57272d5ddf fix for glue 2019-08-22 00:25:49 -04:00
b006a7a12f fix for squad 2019-08-22 00:25:42 -04:00
14eef67eb2 Fix at config rather than model 2019-08-21 15:48:43 -07:00
296df2b18c reraise exception 2019-08-21 15:29:30 -07:00
55f69a11b6 OpenAI GPT tests now extend CommonTests 2019-08-21 18:09:25 -04:00
47267ba556 OpenAI GPT-2 now depends on CommonTests. 2019-08-21 17:50:16 -04:00
034aa0c2d7 Fixed GPT2DoubleHeadsModel example and weight tying 2019-08-21 17:27:38 -04:00
e00b4ff1de fix #1017 2019-08-21 22:22:17 +02:00
814a3f4e01 Removed attention_mask from GPT-2 and GPT documentation. Corrected multiple_choice_labels to actual name mc_labels 2019-08-21 14:11:14 -04:00
2f9397139d Added GPT-2 LARGE to Pre-trained Models documentation 2019-08-21 11:29:37 -04:00
d6bbcbc4cf Added finetuning example to documentation 2019-08-21 11:22:05 -04:00
6f877d9daf Update dev results on GLUE (bert-base-uncased) w/ median on 5 runs 2019-08-21 03:43:29 +00:00
07681b6b58 Merge pull request #1064 from huggingface/gpt-2-large
Adding gpt-2 large (774M parameters) model
2019-08-21 03:05:56 +02:00
fdc487d8b3 Add max length 2019-08-21 02:35:01 +02:00
aa05dc8935 adding gpt-2 large 2019-08-21 02:29:34 +02:00
e4515faf54 Merge pull request #1057 from huggingface/fixes
Add a few of typos corrections, bugs fixes and small improvements
2019-08-21 01:54:05 +02:00
41789c6c3d Merge pull request #1059 from GuillemGSubies/master
Better use of spacy tokenizer in open ai and xlm tokenizers
2019-08-21 01:53:48 +02:00
260c86082d Merge pull request #1027 from samvelyan/iterative_split_on_token
Re-implemented tokenize() iteratively in PreTrainedTokenizer.
2019-08-21 01:46:03 +02:00
d30cbaf5dc Merge branch 'master' into iterative_split_on_token 2019-08-21 01:33:02 +02:00
9beaa85b07 Merge pull request #1055 from qipeng/run_squad_fix
Fix #1015 (tokenizer defaults to use_lower_case=True when loading from trained models)
2019-08-21 01:20:46 +02:00
e753f249e1 Merge pull request #806 from wschin/fix-a-path
Fix a path so that a test can run on Windows
2019-08-21 01:14:40 +02:00
2d042274ac Sequence special token handling for BERT and RoBERTa 2019-08-20 14:15:28 -04:00
3bffd2e8e5 more fixes 2019-08-20 10:59:28 -07:00
c3619f5536 Merge pull request #1060 from CrafterKolyan/patch-1
Fix typo. configuratoin -> configuration
2019-08-20 17:39:06 +02:00
3b56427a1e Merge pull request #1040 from FeiWang96/multi_gpu
Fix bug of multi-gpu training in lm finetuning
2019-08-20 17:13:44 +02:00
43489756ad adding proxies options for the from_pretrained methods 2019-08-20 16:59:11 +02:00
a690edab17 various fix and clean up on run_lm_finetuning 2019-08-20 15:52:12 +02:00
ad6e62cd82 Fix typo. configuratoin -> configuration 2019-08-20 15:43:06 +03:00
388e3251fa Update tokenization_xlm.py 2019-08-20 14:19:39 +02:00
f5e2ed0fd8 Update tokenization_openai.py 2019-08-20 14:19:25 +02:00
562b998366 Update tokenization_openai.py 2019-08-20 14:10:19 +02:00
bb04446285 Update tokenization_openai.py 2019-08-20 14:07:40 +02:00
bfd75056b0 Update tokenization_xlm.py 2019-08-20 14:06:17 +02:00
fc74132598 add best steps to train 2019-08-20 19:06:41 +08:00
933841d903 Merge pull request #1056 from Morizeyao/master
Swap of optimizer.step and scheduler.step for lm finetuning examples
2019-08-20 12:42:24 +02:00
6d0aa73981 fix #1034 2019-08-20 12:20:21 +02:00
b0b9b8091b minor typo 2019-08-20 11:33:46 +02:00
53c8f700f4 fix #808 2019-08-20 11:29:26 +02:00
901dde0e45 fix #1014 2019-08-20 11:05:51 +02:00
e239a4a20f close #984 2019-08-20 11:02:00 +02:00
fecaed0ed4 add force_download option to from_pretrained methods 2019-08-20 10:56:12 +02:00
d86b49ac86 swap optimizer.step and scheduler.step 2019-08-20 16:46:34 +08:00
45ab8bf60e Revert "Update finetune_on_pregenerated.py"
This reverts commit a1359b970cb4bfa41008a45b44dd2a25e579bff3.
2019-08-20 16:40:39 +08:00
97c30b73d5 add test related code 2019-08-20 16:31:04 +08:00
d5e60e5b7a add test related code 2019-08-20 16:25:50 +08:00
a1359b970c Update finetune_on_pregenerated.py 2019-08-20 16:00:07 +08:00
28f7ca1f80 swap optimizer.step and scheduler.step 2019-08-20 15:58:42 +08:00
a368b87791 Fix #1015 2019-08-19 13:07:00 -07:00
f94f1c6016 Distributed training + tokenizer agnostic mask token 2019-08-19 14:58:50 -04:00
c589862b78 Doc: loading from config alone does not load the model weights 2019-08-19 10:17:47 -04:00
5a49b793d9 Merge pull request #1023 from tuvuumass/patch-1
fix issue #824
2019-08-19 15:31:46 +02:00
4270d3da1b fix a bug of evaluating 2019-08-19 16:38:52 +08:00
b8fde43868 a coding bug 2019-08-19 16:36:43 +08:00
40acf6b52a don't save model without training 2019-08-18 05:02:25 -04:00
47e9aea0fe add args info to evaluate_result.txt 2019-08-18 17:00:53 +08:00
5582bc4b23 add multiple choice to robreta and xlnet, test on swag, roberta=0.82.28
, xlnet=0.80
2019-08-18 16:01:48 +08:00
856a63da4d Fix: save model/model.module 2019-08-18 11:03:47 +08:00
1ef41b8337 Revert "Fix: save model/model.module"
This reverts commit 00e9c4cc9616cab1666cab0a331b5d7e68946928.
2019-08-18 11:03:12 +08:00
00e9c4cc96 Fix: save model/model.module 2019-08-18 11:02:02 +08:00
189ff9b664 Update README after RoBERTa addition 2019-08-17 13:18:37 -04:00
e384ae2b9d Merge remote-tracking branch 'huggingface/master'
merge huggingface/master to update
2019-08-17 12:05:57 +08:00
d8923270e6 Correct truncation for RoBERTa in 2-input GLUE 2019-08-16 16:30:38 -04:00
5652f54ac2 Simplified data generator + better perplexity calculator
GPT-2 now obtains ~20 perplexity on WikiText-2
2019-08-16 13:49:56 -04:00
7e7fc53da5 Fixing run_glue example with RoBERTa 2019-08-16 11:53:10 -04:00
715534800a BERT + RoBERTa masking tokens handling + GPU device update. 2019-08-16 10:10:21 -04:00
339e556feb CLM for BERT, beginning of CLM fot RoBERTa; still needs a better masking token mechanism. 2019-08-16 10:10:20 -04:00
5c18825a18 Removed dataset limit 2019-08-16 10:10:20 -04:00
3e3e145497 Added GPT to the generative fine-tuning. 2019-08-16 10:10:20 -04:00
47975ed53e Language Modeling fine-tuning using GPT-2. 2019-08-16 10:10:20 -04:00
ab05280666 Order of strings in AutoModel/AutoTokenizer updated. 2019-08-16 09:53:26 -04:00
b8ff56896c Fix bug of multi-gpu training in lm finetuning 2019-08-16 12:11:05 +08:00
9d0029e215 Added RoBERTa example to README 2019-08-15 17:17:35 -04:00
83dba0b67b Added RoBERTa tokenizer to AutoTokenizer 2019-08-15 17:07:07 -04:00
e24e19ce3b Added RoBERTa to AutoModel/AutoConfig 2019-08-15 14:02:11 -04:00
fe02e45e48 Release: 1.1.0 2019-08-15 11:15:08 -04:00
88efc65bac Merge pull request #964 from huggingface/RoBERTa
RoBERTa: model conversion, inference, tests 🔥
2019-08-15 11:11:10 -04:00
8308170156 Warning for RoBERTa sequences encoded without special tokens. 2019-08-15 10:29:04 -04:00
572dcfd1db Doc 2019-08-14 14:56:14 -04:00
c4ef103447 [RoBERTa] First 4 authors
cf. https://github.com/huggingface/pytorch-transformers/pull/964#discussion_r313574354

Co-Authored-By: Myle Ott <myleott@fb.com>
2019-08-14 12:31:09 -04:00
3d47a7f8ab loads the tokenizer for each checkpoint, to solve the reproducability issue 2019-08-14 10:58:26 +02:00
9ce36e3e4b Re-implemented tokenize() iteratively in PreTrainedTokenizer. 2019-08-14 08:57:09 +00:00
39f426be65 Added special tokens <pad> and <mask> to RoBERTa. 2019-08-13 15:19:50 -04:00
baf08ca1d4 [RoBERTa] run_glue: correct pad_token + reorder labels 2019-08-13 12:51:15 -04:00
3d87991f60 Fixed error with encoding 2019-08-13 12:00:24 -04:00
ba4bce2581 fix issue #824 2019-08-13 11:26:27 -04:00
634a3172d8 Added integration tests for sequence builders. 2019-08-12 15:14:15 -04:00
22ac004a7c Added documentation and changed parameters for special_tokens_sentences_pair. 2019-08-12 15:13:53 -04:00
912fdff899 [RoBERTa] Update run_glue for RoBERTa 2019-08-12 13:49:50 -04:00
b3d83d68db Fixup 9d0603148bc34255fad0cad73ce438ecd7306322 2019-08-12 12:28:55 -04:00
a7b4cfe919 Update README.md
I assume that it should test the `re-load` functionality after testing the `save` functionality, however I'm also surprised that nobody points this out after such a long time, so maybe I've misunderstood the purpose. This PR is just in case :)
2019-08-12 09:53:05 -04:00
b219029c45 refactoring old run_swag. This script is mainly refatored from run_squad in pytorch_transformers 2019-08-11 15:20:37 +08:00
aaedfc35a8 Merge branch 'master' of https://github.com/huggingface/pytorch-transformers 2019-08-10 20:04:37 +02:00
c683c3d5a5 fix #993 2019-08-10 20:04:35 +02:00
7060766490 Corrected logger.error info
Signed-off-by: Kevin Trebing <Kevin.Trebing@gmx.net>
2019-08-09 19:36:44 -04:00
75d5f98fd2 Roberta tokenization + fixed tests (py3 + py2). 2019-08-09 15:02:13 -04:00
14e970c271 Tokenization encode/decode class-based sequence handling 2019-08-09 15:01:38 -04:00
3566d27919 Clarified PreTrainedModel.from_pretrained warning messages in documentation. 2019-08-08 19:04:34 -04:00
fbd746bd06 Updated test architecture 2019-08-08 18:21:34 -04:00
6c41a8f5dc Encode and Decode are back in the superclass. They now handle sentence pairs special tokens. 2019-08-08 18:20:32 -04:00
e367ac469c [RoBERTa] Re-apply 39d72bcc7b2c99c04b6f483f0d8e7bdff547d37c
cc @lysandrejik
2019-08-08 11:26:11 -04:00
9d0603148b [RoBERTa] RobertaForSequenceClassification + conversion 2019-08-08 11:24:54 -04:00
f2b300df6b fix #976 2019-08-08 10:38:57 -04:00
7df303f5ad fix #971 2019-08-08 10:36:26 -04:00
d2cc6b101e Merge branch 'master' into RoBERTa 2019-08-08 09:42:05 -04:00
39d72bcc7b Fixed the RoBERTa checkpoint conversion script according to the LM head refactoring. 2019-08-07 14:21:57 -04:00
770043eea2 Sentence-pair tasks handling. Using common tests on RoBERTa. Forced push to fix indentation. 2019-08-07 12:53:19 -04:00
7729ef7381 Merge pull request #955 from FeiWang96/master
Fix comment typo
2019-08-07 10:11:25 +02:00
5c6ecf37e7 Merge pull request #958 from saket404/typo-fix
Fixed small typo
2019-08-07 10:10:20 +02:00
b4f9464f90 Merge pull request #960 from ethanjperez/patch-1
Fixing unused weight_decay argument
2019-08-07 10:09:55 +02:00
822d6768eb Merge pull request #962 from guotong1988/patch-1
Update modeling_xlnet.py
2019-08-07 10:09:20 +02:00
7e6102ce74 Merge pull request #963 from guotong1988/patch-2
Update modeling_bert.py
2019-08-07 10:09:04 +02:00
3773ba44f0 Merge pull request #977 from chrisgzf/master
Fixed typo in migration guide
2019-08-07 10:08:45 +02:00
a80aa03bda Merge pull request #973 from FeiWang96/bert_config
Fix examples of loading pretrained models in docstring
2019-08-07 10:08:22 +02:00
a6f412da01 Fixed typo in migration guide 2019-08-07 02:19:14 +08:00
6ec1ee9ec2 Fix examples in docstring 2019-08-06 11:32:54 +08:00
72622926e5 Fix examples in docstring 2019-08-06 11:32:41 +08:00
f889e77b9c Fix examples of loading pretrained models in docstring 2019-08-06 11:30:35 +08:00
beb03ec6c5 Fix examples of loading pretrained models in docstring 2019-08-06 11:24:46 +08:00
4fc9f9ef54 Merge pull request #910 from huggingface/auto_models
Adding AutoTokenizer and AutoModel classes that automatically detect architecture - Clean up tokenizers
2019-08-05 19:17:47 +02:00
d43dc48b34 Merge branch 'master' into auto_models 2019-08-05 19:17:35 +02:00
0b524b0848 remove derived classes for now 2019-08-05 19:08:19 +02:00
13936a9621 update doc and tests 2019-08-05 18:48:16 +02:00
ed4e542260 adding tests 2019-08-05 18:14:07 +02:00
3a126e73dd fix #950 2019-08-05 17:26:29 +02:00
7223886dc9 fix #944 2019-08-05 17:16:56 +02:00
70c10caa06 add option mentioned in #940 2019-08-05 17:09:37 +02:00
077ad693e9 tweak issue templates wordings 2019-08-05 16:46:29 +02:00
02d4087cb8 Merge branch 'master' of https://github.com/huggingface/pytorch-pretrained-BERT 2019-08-05 16:26:01 +02:00
7c524d631e add issue templates 2019-08-05 16:25:54 +02:00
6f05ad72b4 Merge pull request #791 from huggingface/doc
RestructuredText table for pretrained models.
2019-08-05 10:18:00 -04:00
b90e29d52c working on automodels 2019-08-05 16:06:34 +02:00
58830807d1 inidicate we only support pytorch 1.0.0+ now 2019-08-05 14:38:59 +02:00
328afb7097 cleaning up tokenizer tests structure (at last) - last remaining ppb refs 2019-08-05 14:08:56 +02:00
0e918707dc Merge pull request #907 from dhpollack/fix_convert_to_tf
Fix convert to tf
2019-08-05 12:55:04 +02:00
cb9db101c7 Python 2 must DIE 2019-08-04 22:04:15 -04:00
05c083520a [RoBERTa] model conversion, inference, tests 🔥 2019-08-04 21:39:21 -04:00
d7fd10568c Update modeling_bert.py 2019-08-05 08:58:19 +08:00
84eb699082 Update modeling_xlnet.py 2019-08-05 08:57:09 +08:00
00132b7a7a updating docs - adding few tests to tokenizers 2019-08-04 22:42:55 +02:00
28ba345ecc Fixing unused weight_decay argument
Currently the L2 regularization is hard-coded to "0.01", even though there is a --weight_decay flag implemented (that is unused). I'm making this flag control the weight decay used for fine-tuning in this script.
2019-08-04 12:31:46 -04:00
009273dbdd big doc update [WIP] 2019-08-04 12:14:57 +02:00
836e513698 Fixed small typo 2019-08-04 16:05:10 +10:00
a24f830604 Fix comment typo 2019-08-03 12:17:06 +08:00
44dd941efb link to swift-coreml-transformers 2019-08-01 09:50:30 -04:00
f2a3eb987e Fix small typos 2019-07-31 11:05:06 -04:00
97091acb8c Small spelling fix 2019-07-31 10:37:56 -04:00
769bb643ce Fixing a broken link. 2019-07-31 10:22:41 -04:00
c90119e543 spelling mistake 2019-07-29 16:56:02 +02:00
bfbe52ec39 cleaning up example docstrings 2019-07-27 20:25:39 +02:00
4cc1bf81ee typos 2019-07-27 12:08:21 +02:00
ac27548b25 fix unk_token test 2019-07-27 11:50:47 +02:00
c717d38573 dictionnary => dictionary 2019-07-26 23:30:48 +02:00
6b763d04a9 Merge pull request #911 from huggingface/small_fixes
Small fixes
2019-07-26 21:36:21 +02:00
7b6e474c9a fix #901 2019-07-26 21:26:44 +02:00
632d711411 fix #908 2019-07-26 21:14:37 +02:00
c054b5ee64 Merge pull request #896 from zijunsun/master
fix multi-gpu training bug when using fp16
2019-07-26 19:31:02 +02:00
27b0f86d36 clean up pretrained 2019-07-26 17:09:21 +02:00
57e54ec070 add unk_token to gpt2 2019-07-26 17:09:07 +02:00
ac42049c08 add auto models and auto tokenizer 2019-07-26 17:08:59 +02:00
09ecf225e9 fixed the fix. tf session madness. 2019-07-26 15:20:44 +02:00
edfd965ac8 fix convert_to_tf 2019-07-26 14:13:46 +02:00
f0aeb7a814 multi-gpu training also should be after apex fp16(squad) 2019-07-26 15:23:29 +08:00
46cc9dd2b5 Merge pull request #899 from sukuya/master
Fixed import to use torchscript flag.
2019-07-25 15:03:21 +02:00
6219ad7216 Merge pull request #888 from rococode/patch-1
Update docs for parameter rename
2019-07-25 15:01:22 +02:00
0b6122e96a Merge pull request #882 from Liangtaiwan/squad_v1_bug
fix squad v1 error (na_prob_file should be None)
2019-07-25 14:59:59 +02:00
c244562cae Merge pull request #893 from joelgrus/patch-2
make save_pretrained do the right thing with added tokens
2019-07-25 14:58:48 +02:00
e1e2ab3482 Merge pull request #1 from sukuya/sukuya-patch-1
Update torchscript.rst
2019-07-25 16:53:11 +08:00
35c52f2f3c Update torchscript.rst
Import fixed to pytorch_transformers else torchscript flag can't be used.
2019-07-25 16:51:11 +08:00
adb3ef6368 multi-gpu training also should be after apex fp16 2019-07-25 13:09:10 +08:00
ae152cec09 make save_pretrained work with added tokens
right now it's dumping the *decoder* when it should be dumping the *encoder*. this fixes that.
2019-07-24 16:54:48 -07:00
66b15f73f0 Update docs for parameter rename
OpenAIGPTLMHeadModel now accepts `labels` instead of `lm_labels`
2019-07-24 11:27:08 -07:00
a7fce6d917 fix squad v1 error (na_prob_file should be None) 2019-07-24 16:11:36 +08:00
067923d326 Merge pull request #873 from huggingface/identity_replacement
Add nn.Identity replacement for old PyTorch
2019-07-23 18:16:35 +02:00
368670ac31 Merge pull request #866 from xanlsh/master
Rework how PreTrainedModel.from_pretrained handles its arguments
2019-07-23 18:05:30 +02:00
1383c7b87a Fix #869 2019-07-23 17:52:20 +02:00
6070b55443 fix #868 2019-07-23 17:46:01 +02:00
2c9a3115b7 fix #858 2019-07-23 16:45:55 +02:00
4fb56c7729 Remove unused *args parameter from PreTrainedConfig.from_pretrained 2019-07-23 10:43:01 -04:00
e179c55490 Add docs for from_pretrained functions, rename return_unused_args 2019-07-23 10:43:01 -04:00
fec76a481d Update readme 2019-07-23 16:05:29 +02:00
859c441776 Merge pull request #872 from huggingface/saving_schedules
Updating schedules for state_dict saving/loading
2019-07-23 16:03:06 +02:00
0740e63e49 updating schedules for state_dict saving 2019-07-23 15:57:18 +02:00
268c6cc160 Merge pull request #845 from rabeehk/master
fixed version issues in run_openai_gpt
2019-07-23 15:29:31 +02:00
1d7d01c080 Merge pull request #847 from lpq29743/master
typos
2019-07-23 15:28:31 +02:00
c4bc66886d Merge pull request #860 from Yiqing-Zhou/patch-1
read().splitlines() -> readlines()
2019-07-23 15:24:25 +02:00
ba52fe69d5 update breaking change section regarding from_pretrained keyword arguments 2019-07-23 15:10:02 +02:00
b1019d2a8e token[-1] -> token.rstrip('\n') 2019-07-23 20:41:26 +08:00
0227b4a940 fix #827 2019-07-23 14:06:43 +02:00
490ebbdcf7 Fix PretrainedModel.from_pretrained not passing cache_dir forward 2019-07-22 18:03:08 -04:00
b8009cb0da Make PreTrainedModel.from_pretrained pass unused arguments to model 2019-07-22 18:03:08 -04:00
bef0c629ca fix
Remove '\n' before adding token into vocab
2019-07-22 22:30:49 +08:00
897d0841be read().splitlines() -> readlines()
splitlines() does not work as what we expect here for bert-base-chinese because there is a '\u2028' (unicode line seperator) token in vocab file. Value of '\u2028'.splitlines() is ['', ''].
Perhaps we should use readlines() instead.
2019-07-22 20:49:09 +08:00
2f869dc665 Fixed typo 2019-07-21 11:05:36 -04:00
76be189b08 typos 2019-07-21 20:39:42 +08:00
f63ff536ad fixed version issues in run_openai_gpt 2019-07-20 12:43:07 +02:00
a615499076 Merge pull request #797 from yzy5630/fix-examples
fix some errors for distributed lm_finetuning
2019-07-18 23:32:33 +02:00
dbecfcf321 Merge pull request #815 from praateekmahajan/update-readme-link
Update Readme link for Fine Tune/Usage section
2019-07-18 18:30:32 +02:00
acc48a0cc9 typos 2019-07-18 09:54:04 -04:00
a1fe4ba9c9 use new API for save and load 2019-07-18 15:45:23 +08:00
0d46b17553 Update Readme
Incorrect link for `Quick tour: Fine-tuning/usage scripts`
2019-07-17 22:50:10 -07:00
a7ba27b1b4 add parser for adam 2019-07-18 08:52:51 +08:00
c4e9615691 Fix a path so that test can run on Windows 2019-07-17 09:08:40 -07:00
9d381e7be9 Fixed incorrect links in the PretrainedModel 2019-07-17 09:25:38 -04:00
d6522e2873 change loss and optimizer to new API 2019-07-17 21:22:34 +08:00
71d597dad0 fix #800 2019-07-17 13:51:09 +02:00
4bcddf6fc8 Merge pull request #801 from bzantium/master
import sys twice
2019-07-17 12:31:26 +02:00
506ab34d0e Merge pull request #796 from stefan-it/minor-doc-updates
Minor documentation updates
2019-07-17 12:26:34 +02:00
cd8980e1f4 import sys twice 2019-07-17 18:12:01 +09:00
123da5a2fa fix errors for lm_finetuning examples 2019-07-17 09:56:07 +08:00
60a1bdcdac fix some errors for distributed lm_finetuning 2019-07-17 09:16:20 +08:00
e6cc6d237f docs: fix link to various notebooks 2019-07-16 23:42:28 +02:00
5b78400e21 docs: fix link to modeling example source (bert) 2019-07-16 23:41:57 +02:00
61cc3ee350 docs: fix link to tf checkpoint to pytorch script 2019-07-16 23:41:04 +02:00
dbbd94cb7a docs: fix link to bertology example and update dataset description 2019-07-16 23:40:04 +02:00
5fe0b378d8 adding missing docstring fix #793 2019-07-16 21:35:53 +02:00
e848b54730 fix #792 2019-07-16 21:22:19 +02:00
c5b3d86a91 Merge branch 'master' of https://github.com/huggingface/pytorch-pretrained-BERT 2019-07-16 21:21:05 +02:00
6b70760204 typos 2019-07-16 21:21:03 +02:00
117ed92992 RestructuredText table for pretrained models. 2019-07-16 11:58:47 -04:00
b33a385091 update readme 2019-07-16 16:18:37 +02:00
ed7549bb1a release version 1.0 2019-07-16 16:10:58 +02:00
6a72d9aa52 updated examples in readme 2019-07-16 16:09:29 +02:00
b59043bf8f update readme 2019-07-16 16:03:48 +02:00
edc79acb3b simpler quick tour 2019-07-16 16:02:32 +02:00
5c82d3488f indicate default evaluation in breaking changes 2019-07-16 15:45:58 +02:00
4acaa65068 model in evaluation mode by default after from_pretrained 2019-07-16 15:41:57 +02:00
f289e6cfe4 fix docstrings 2019-07-16 15:31:21 +02:00
9726b229cf model name typo 2019-07-16 15:17:45 +02:00
1849aa7d39 update readme and pretrained model weight files 2019-07-16 15:11:29 +02:00
43e0e8fa04 updates to readme and doc 2019-07-16 13:56:47 +02:00
f31154cb9d Merge branch 'xlnet' 2019-07-16 11:51:13 +02:00
1b35d05d4b update conversion scripts and __main__ 2019-07-16 09:41:55 +02:00
352e3ff998 added migration guide to readme 2019-07-16 09:03:49 +02:00
8ad7e5b4f2 indeed 2019-07-16 00:29:15 +02:00
064d0a0b76 update readme 2019-07-16 00:21:33 +02:00
3b8b0e01bb update readme 2019-07-16 00:12:55 +02:00
76da9765b6 fix run_generation test 2019-07-15 17:52:35 +02:00
e691fc0963 update QA models tests + run_generation 2019-07-15 17:45:24 +02:00
15d8b1266c update tokenizer - update squad example for xlnet 2019-07-15 17:30:42 +02:00
3b469cb422 updating squad for compatibility with XLNet 2019-07-15 15:28:37 +02:00
8ca767f13c clean up optimization 2019-07-15 13:49:07 +02:00
74a24f0fe9 clean up file_utils 2019-07-15 13:49:01 +02:00
ab49fafc04 update tokenization docstrings for #328 2019-07-15 12:51:23 +02:00
a9ab15174c fix #328 2019-07-15 12:42:12 +02:00
f7cd7392fd fixed tests 2019-07-15 12:32:19 +02:00
e28d8bde0d doc on base classes 2019-07-15 12:08:06 +02:00
44c985facd update doc for XLM and XLNet 2019-07-15 11:36:50 +02:00
0201d86015 added doc for transformer-xl 2019-07-15 10:11:09 +02:00
4cb489457f added doc for openai GPT 2019-07-15 09:58:01 +02:00
62b8eb43c1 fix add_start_docstrings on python 2 (removed) 2019-07-15 09:49:02 +02:00
5bc3d0cc5b added gpt2 doc 2019-07-15 09:40:05 +02:00
183fedfed5 fix doc on python2 2019-07-15 09:00:09 +02:00
0e9825e252 small fix to run_glue 2019-07-14 23:43:28 +02:00
2397f958f9 updating examples and doc 2019-07-14 23:20:10 +02:00
c490f5ce87 added generation examples in tests 2019-07-13 15:26:58 +02:00
8bb02c27e2 Merge branch 'xlnet' of https://github.com/huggingface/pytorch-pretrained-BERT into xlnet 2019-07-13 15:25:06 +02:00
7d4b200e40 good quality generation example for GPT, GPT-2, Transfo-XL, XLNet 2019-07-13 15:25:03 +02:00
69dc010936 Merge pull request #786 from huggingface/doc-sphinx
New documentation for pytorch-transformers
2019-07-13 12:08:57 +02:00
7322c314a6 remove python2 testing for examples 2019-07-12 14:24:08 +02:00
936e813c84 clean up examples - added squad example and test 2019-07-12 14:16:06 +02:00
699bc7e86e fix gpt-2 unk token test 2019-07-12 11:46:57 +02:00
762ded9b1c wip examples 2019-07-12 11:28:52 +02:00
7442956361 save config file 2019-07-12 11:26:16 +02:00
292140b921 Merge pull request #781 from huggingface/embeddings
Clean up input embeddings resizing and weights tying
2019-07-12 11:10:25 +02:00
c57e9d946f Merge branch 'xlnet' into embeddings 2019-07-12 11:10:14 +02:00
2918b7d2a0 updating tests 2019-07-12 10:57:58 +02:00
3fbceed8d2 Fix layer reference loss + previous attempted fix 2019-07-11 22:29:55 -04:00
6c2ee16c04 Test suite testing the tie_weights function as well as the resize_token_embeddings function.
Patched an issue relating to the tied weights I had introduced with the TorchScript addition.
Byte order mark management in TSV glue reading.
2019-07-11 22:09:16 -04:00
3821ecbf4a Byte order mark management in TSV glue reading. 2019-07-11 20:16:28 -04:00
e3fb4310d6 From pretrained correct initialization. Unknown token handling for gpt2. 2019-07-11 18:44:29 -04:00
bd404735a7 embeddings resizing + tie_weights 2019-07-12 00:02:49 +02:00
50e62a4cb4 fix gpt/gpt-2 from pretrained 2019-07-11 16:50:21 -04:00
273617b86d update config - fix gpt/gpt-2 from pretrained 2019-07-11 22:45:03 +02:00
6b13f4cb3a update circle-ci 2019-07-11 22:36:35 +02:00
2b644785f0 add tests on examples and large circle ci config 2019-07-11 22:31:50 +02:00
c6bf1a400d fix test examples et model pretrained 2019-07-11 22:29:08 +02:00
92a782b108 fix run_glue test 2019-07-11 22:20:10 +02:00
6491575fd5 Added TorchScript disclaimer. CSS modifications. 2019-07-11 12:38:21 -04:00
ccb6947dc1 optimization tests 2019-07-11 17:39:47 +02:00
e4f9dca018 Merge pull request #773 from huggingface/doc-sphinx
Sphinx doc, XLM Checkpoints
2019-07-11 15:46:39 +02:00
b87eb82b4f Merge branch 'xlnet' into doc-sphinx 2019-07-11 15:46:27 +02:00
d216e798af Merge pull request #777 from huggingface/examples
Working GLUE Example for XLNet (STS-B)
2019-07-11 15:43:47 +02:00
6135de2fa3 readme update 2019-07-11 15:39:49 +02:00
b21d84b027 update examples 2019-07-11 15:37:34 +02:00
ec07cf5a66 rewamp optimization 2019-07-11 14:48:22 +02:00
4fef5919a5 updating examples 2019-07-11 12:03:08 +02:00
7fdbc47822 Added the two CLM XLM pretrained checkpoints.
Fixed file extensions for config/vocab/merges of XLM models.
2019-07-10 19:37:24 -04:00
dee3e45b93 Fixed XLM weights conversion script. Added 5 new checkpoints for XLM. 2019-07-10 19:04:21 -04:00
c82b74b996 Fixed Sphinx errors and warnings 2019-07-10 15:30:19 -04:00
5288913bdd All TODOs to be checked by Thom have been added. 2019-07-10 15:16:40 -04:00
f773faa258 Fixed all links. Removed TPU. Changed CLI to Converting TF models. Many minor formatting adjustments. Added "TODO Lysandre filled" where necessary. 2019-07-10 14:45:56 -04:00
50b7e52a7f WIP examples 2019-07-10 15:33:34 +02:00
3f56ad5aff Updated CircleCI's config.yml to use a large resource class. 2019-07-09 18:50:59 -04:00
c4bab2dc85 Added footer with social links. 2019-07-09 18:03:01 -04:00
331db8cc02 Added viewcode plugin for source code visualization within the static website. 2019-07-09 17:01:56 -04:00
83fb311ef7 Patched warnings + Refactored XLNet's Docstrings 2019-07-09 16:38:30 -04:00
8fe2c9d98e Refactored Docstrings of BERT, GPT2, GPT, TransfoXL, XLM and XLNet. 2019-07-09 15:55:31 -04:00
ed6c8d37f4 fix merge 2019-07-09 17:14:52 +02:00
e468192e2f Merge branch 'pytorch-transformers' into xlnet 2019-07-09 17:05:37 +02:00
4ce237c880 update run_glue 2019-07-09 17:00:32 +02:00
9dd2c86033 Merge pull request #767 from huggingface/doc
Documentation
2019-07-09 16:56:34 +02:00
e0e5c7faf5 Added requirements.txt file. 2019-07-09 10:16:09 -04:00
3b7cb7bf44 small update to run_glue 2019-07-09 16:12:15 +02:00
269e73b601 Adding example detailing how to add a new file to the documentation + adding fonts. 2019-07-09 10:11:29 -04:00
d743f2f34e updating test 2019-07-09 15:58:58 +02:00
d0efbd3cd1 update sequencesummary module 2019-07-09 15:46:43 +02:00
d5481cbe1b adding tests to examples - updating summary module - coverage update 2019-07-09 15:29:42 +02:00
c079d7ddff fix python 2 tests 2019-07-09 10:40:59 +02:00
b19786985d unified tokenizer api and serialization + tests 2019-07-09 10:25:18 +02:00
6847e30e1c New page detailing the use of TorchScript. 2019-07-08 17:34:24 -04:00
ab30651802 Hugging Face theme. 2019-07-08 16:05:26 -04:00
a60ae1a505 Docstrings best practice shown in the BERT documentation. 2019-07-08 11:50:32 -04:00
64fd986376 Tokenizers and Config classes are referenced. 2019-07-05 17:44:59 -04:00
df759114c9 Single file documentation for each model, accompanied by the Documentation overview. 2019-07-05 17:35:26 -04:00
03de9686a7 Initial folder structure for the documentation. A draft of documentation change has been made in the BertModel class. 2019-07-05 17:11:13 -04:00
3d5f291386 updates to run_glue 2019-07-05 17:22:15 +02:00
99b90edab1 cleaning up run_glue example 2019-07-05 17:09:35 +02:00
1113f97f33 clean up glue example 2019-07-05 16:31:13 +02:00
162ba383b0 fix model loading 2019-07-05 15:57:14 +02:00
6dacc79d39 fix python2 tests 2019-07-05 15:11:59 +02:00
36bca545ff tokenization abstract class - tests for examples 2019-07-05 15:02:59 +02:00
a4f980547f remove circle ci parallelism 2019-07-05 12:31:34 +02:00
eb91f6437e update readme and setup 2019-07-05 12:30:15 +02:00
78462aad61 Merge pull request #733 from ceremonious/parallel-generation
Added option to use multiple workers to create training data
2019-07-05 12:04:30 +02:00
781124b0d1 Merge pull request #620 from chrislarson1/convert-back-to-tf
Convert pytorch models back to tensorflow
2019-07-05 12:01:17 +02:00
e5fe2bb5e8 Merge pull request #745 from leimao/leimao
fix evaluation bug
2019-07-05 12:00:04 +02:00
0231ba291e circle-ci 2019-07-05 11:59:04 +02:00
0bab55d5d5 [BIG] name change 2019-07-05 11:55:36 +02:00
9113b50c96 hubs [WIP] 2019-07-05 11:31:51 +02:00
175fce0a55 Merge pull request #758 from huggingface/doc
Release 0.7 - Add tokenizer API + tests
2019-07-05 11:22:03 +02:00
e75c3f70aa standardizing tokenizers API and adding tests 2019-07-05 11:20:27 +02:00
c0239e09e6 first commit 2019-07-04 17:06:30 +02:00
cf86d23eff parallelism in circlci 2019-07-04 17:02:21 +02:00
15b70338ba adding squad model to xlnet and xlm 2019-07-04 16:50:42 +02:00
fbe04423b6 Common SequenceSummary class 2019-07-04 00:25:30 +02:00
c22545aa40 fix xlm torchscript 2019-07-03 23:03:57 +02:00
3b23a846b6 Merge branch 'xlnet' of https://github.com/huggingface/pytorch-pretrained-BERT into xlnet 2019-07-03 22:54:58 +02:00
8fa3a1f0d8 updating tests 2019-07-03 22:54:53 +02:00
c41f2bad69 WIP XLM + refactoring 2019-07-03 22:54:39 +02:00
64ce4dbd86 Merge pull request #748 from huggingface/torchscript
Release 0.7 - Add Torchscript capabilities
2019-07-03 22:52:03 +02:00
b43b130f35 TorchScript flag in config; Tied weights when not running TorchScript; tuple concatenation clean-up. 2019-07-03 16:21:17 -04:00
4703148f0c TransformerXL can't be exported to TorchScript because of control-flow. Exception added to tests. 2019-07-03 14:50:23 -04:00
971c24687f XLNET can be exported to TorchScript 2019-07-03 11:03:09 -04:00
be54b16960 GPT can be exported to TorchScript 2019-07-02 18:09:45 -04:00
d8e83de792 GPT2 can be exported to TorchScript 2019-07-02 18:01:09 -04:00
288be7b7ea xlm 2019-07-02 23:42:31 +02:00
e891bb43d5 BERT can be exported to TorchScript 2019-07-02 17:23:18 -04:00
6ce1ee04fc TorchScript testing with output_attentions and output_hidden_state 2019-07-02 17:22:59 -04:00
7ed5bf706f add tests 2019-07-02 16:42:22 +02:00
708877958a updating tests and models, adding weights initialization test 2019-07-02 16:35:29 +02:00
99ae5ab883 update config tests and circle-ci 2019-07-02 12:40:39 +02:00
1484d67de9 [LARGE] updating all tests and API 2019-07-02 12:13:17 +02:00
64b2a828c0 fix evaluation bug 2019-07-01 14:56:24 -07:00
4f8b5f687c add fix for serialization of tokenizer 2019-06-29 23:35:21 +02:00
d9184620f9 fix tests and new API 2019-06-29 23:10:40 +02:00
dad3c7a485 Merge pull request #723 from tonianelope/master
Update Adam optimizer to follow pytorch convention for betas parameter (#510)
2019-06-28 17:28:25 +02:00
e296d5bef1 Merge pull request #704 from deepset-ai/master
Adjust s3 german Bert file storage
2019-06-28 17:10:58 +02:00
c68b4eceed Merge pull request #718 from Rocketknight1/master
Incorrect docstring for BertForMaskedLM
2019-06-28 17:08:51 +02:00
213981d8cb updating bert API 2019-06-28 16:45:24 +02:00
2b56e98892 standardizing API across models - XLNetForSeqClass working 2019-06-28 16:35:09 +02:00
3a00674cbf fix imports 2019-06-27 17:18:46 +02:00
d939d6fd02 fix hidden-state extraction 2019-06-27 09:39:44 +02:00
0c2ff34815 extracting double hidden-state from xlnet 2019-06-27 09:27:50 +02:00
08ff056c43 Added option to use multiple workers to create training data for lm fine tuning 2019-06-26 16:16:12 -07:00
3deea56c07 fixing loading fucntion 2019-06-26 13:41:12 +02:00
f56b8033f0 more versatile loading 2019-06-26 13:13:15 +02:00
4d47f4985d slight refactoring, add abstract class for model loading 2019-06-26 12:52:44 +02:00
59cefd4f98 fix #726 - get_lr in examples 2019-06-26 11:28:27 +02:00
ddc2cc61a6 fix python2 tests 2019-06-26 11:17:42 +02:00
7e3070ae4f add from_pretrained method to all configuration classes 2019-06-26 11:12:00 +02:00
93e9971c54 fix tests 2019-06-26 10:02:45 +02:00
092dacfd62 changing is_regression to unified API 2019-06-26 09:54:05 +02:00
e55d4c4ede various updates to conversion, models and examples 2019-06-26 00:57:53 +02:00
603c513b35 update main conversion script and readme 2019-06-25 10:45:07 +02:00
7de1740490 add ability to restore fine-tuned TF mdoel 2019-06-25 10:27:58 +02:00
c9885903a1 update betas to follow pytorch convention 2019-06-25 09:23:12 +01:00
7334bf6c21 pad on left for xlnet 2019-06-24 15:05:11 +02:00
c888663f18 overwrite output directories if needed 2019-06-24 14:38:24 +02:00
62d78aa37e updating GLUE utils for compatibility with XLNet 2019-06-24 14:36:11 +02:00
24ed0b9346 updating run_xlnet_classifier 2019-06-24 12:00:09 +02:00
f6081f2255 add xlnetforsequence classif and run_classifier example for xlnet 2019-06-24 10:01:07 +02:00
8d6a118aee Incorrect docstring for the head_mask argument to BertForMaskedLM 2019-06-23 18:47:05 +01:00
06716d7536 Merge pull request #3 from huggingface/master
Catch up with main repo
2019-06-23 18:46:03 +01:00
c946bb51a6 fix xlnet tokenizer and python2 2019-06-22 22:28:49 +02:00
98dc30b21e Merge pull request #714 from papower1/master
Correct a broken link on README
2019-06-22 21:29:41 +02:00
eae5d3819d Merge pull request #715 from Rocketknight1/master
Include a reference for LM finetuning
2019-06-22 21:29:19 +02:00
c7b2808ed7 Update LM finetuning README to include a literature reference 2019-06-22 15:04:01 +01:00
7c59e32d47 Merge pull request #2 from huggingface/master
Updating my fork to the latest version
2019-06-22 14:59:47 +01:00
ada0d8fec7 Merge pull request #1 from papower1/papower1-patch-1
Correct a broken link and its context.
2019-06-22 20:34:45 +09:00
fcc706343f Correct a broken link and its context.
Correct a broken link(run_lm_finetuning.py) and its context.
2019-06-22 20:33:48 +09:00
181075635d updating model loading and adding special tokens ids 2019-06-21 23:23:37 +02:00
ebd2cb8d74 update from_pretrained to load XLNetModel as well 2019-06-21 21:08:44 +02:00
483cbc36a9 test deviation with tf model: max ~1e-3 should be ok 2019-06-21 16:38:01 +02:00
24d8068982 weights loading script ok 2019-06-21 12:33:44 +02:00
32da75486b add tokenizer and tests 2019-06-21 11:09:51 +02:00
45709d7532 model running with simple inputs 2019-06-21 00:28:42 +02:00
b407972e27 update gitignore 2019-06-20 13:52:56 +02:00
c2ea5aef77 work in progress on xlnet 2019-06-20 13:52:21 +02:00
de713fa9b4 starting 2019-06-20 10:54:19 +02:00
c304593d8f BERTology details in readme 2019-06-20 10:05:06 +02:00
12e892e174 Merge pull request #697 from huggingface/updating_examples
Updating examples
2019-06-20 09:58:24 +02:00
411981a080 remove slow circle-ci 2019-06-20 08:54:18 +02:00
716cc1c4d9 added main() for programmatic call to convert pytorch->tf 2019-06-19 23:18:57 -04:00
a8e071c690 added notebook to check correctness of the pytorch->tensorflow conversion 2019-06-19 23:08:08 -04:00
0a4fb0da57 Merge remote-tracking branch 'upstream/master' into convert-back-to-tf
merging in latest changes from upstream
2019-06-19 22:56:20 -04:00
edfe91c36e first version bertology ok 2019-06-19 23:43:04 +02:00
7766ce66dd update bertology 2019-06-19 22:29:51 +02:00
7f00a36e27 pruning should keep on device 2019-06-19 22:23:12 +02:00
e4b46d86ce update head pruning 2019-06-19 22:16:30 +02:00
939cf29157 Adjust s3 german Bert file storage 2019-06-19 18:38:42 +02:00
0f40e8d6a6 debugger 2019-06-19 15:38:46 +02:00
0e1e8128bf more logging 2019-06-19 15:35:49 +02:00
909d4f1af2 cuda again 2019-06-19 15:32:10 +02:00
14f0e8e557 fix cuda 2019-06-19 15:29:28 +02:00
34d706a0e1 pruning in bertology 2019-06-19 15:25:49 +02:00
dc8e0019b7 updating examples 2019-06-19 13:23:20 +02:00
68ab9599ce small fix and updates to readme 2019-06-19 09:38:38 +02:00
f7e2ac01ea update barrier 2019-06-18 22:43:35 +02:00
4d8c4337ae test barrier in distrib training 2019-06-18 22:41:28 +02:00
3359955622 updating run_classif 2019-06-18 22:23:10 +02:00
29b7b30eaa updating evaluation on a single gpu 2019-06-18 22:20:21 +02:00
7d2001aa44 overwrite_output_dir 2019-06-18 22:13:30 +02:00
16a1f338c4 fixing 2019-06-18 17:06:31 +02:00
92e0ad5aba no numpy 2019-06-18 17:00:52 +02:00
4e6edc3274 hop 2019-06-18 16:57:15 +02:00
f55b60b9ee fixing again 2019-06-18 16:56:52 +02:00
8bd9118294 quick fix 2019-06-18 16:54:41 +02:00
3e847449ad fix out_label_ids 2019-06-18 16:53:31 +02:00
aad3a54e9c fix paths 2019-06-18 16:48:04 +02:00
40dbda6871 updating classification example 2019-06-18 16:45:52 +02:00
7388c83b60 update run_classifier for distributed eval 2019-06-18 16:32:49 +02:00
9727723243 fix pickle 2019-06-18 16:02:42 +02:00
9710b68dbc fix pickles 2019-06-18 16:01:15 +02:00
15ebd67d4e cache in run_classifier + various fixes to the examples 2019-06-18 15:58:22 +02:00
e6e5f19257 fix 2019-06-18 14:45:14 +02:00
a432b3d466 distributed traing t_total 2019-06-18 14:39:09 +02:00
c5407f343f split squad example in two 2019-06-18 14:29:03 +02:00
335f57baf8 only on main process 2019-06-18 14:03:46 +02:00
326944d627 add tensorboard to run_squad 2019-06-18 14:02:42 +02:00
d82e5deeb1 set find_unused_parameters=True in DDP 2019-06-18 12:13:14 +02:00
a59abedfb5 DDP update 2019-06-18 12:06:26 +02:00
2ef5e0de87 switch to pytorch DistributedDataParallel 2019-06-18 12:03:13 +02:00
9ce37af99b oups 2019-06-18 11:47:54 +02:00
a40955f071 no need to duplicate models anymore 2019-06-18 11:46:14 +02:00
3763f8944d Merge pull request #696 from huggingface/split_config_weights
Split config weights
2019-06-18 11:42:57 +02:00
f964753090 explanation on the current location of the caching folder 2019-06-18 11:36:28 +02:00
868de8d1d7 updating weights loading 2019-06-18 10:58:20 +02:00
64e0adda81 better error message 2019-06-18 10:51:31 +02:00
382e2d1e50 spliting config and weight files for bert also 2019-06-18 10:37:16 +02:00
a6f2511811 Merge pull request #694 from huggingface/release_0.6.3
Release 0.6.3
2019-06-17 16:27:25 +02:00
4447f270b2 updating hub 2019-06-17 16:21:28 +02:00
33d3db5c43 updating head masking, readme and docstrings 2019-06-17 15:51:28 +02:00
965f172de6 output all hidden layers states in GPT/GPT-2 2019-06-17 14:34:12 +02:00
f12007e421 add head masking and pruning to openai GPT 2019-06-17 14:19:40 +02:00
b860e47cf5 add head masking and pruning to gpt-2 2019-06-17 14:12:10 +02:00
7220d47a1c adding head pruning and tests 2019-06-17 13:20:45 +02:00
8415a38b23 better error messages 2019-06-17 13:03:48 +02:00
96c4d3d988 add head masking tests 2019-06-17 12:17:26 +02:00
34858ae1d9 adding bert whole words, bertgerman and gpt-2 medium models, head masking 2019-06-17 11:02:39 +02:00
80684f6f86 Merge pull request #690 from shashwath94/projadpsftmax_fix
Transformer XL ProjectedAdaptiveLogSoftmax output fix
2019-06-15 23:14:10 +02:00
9e363703d6 Merge pull request #688 from deepset-ai/german_bert
Add German Bert model to code, update readme
2019-06-15 23:13:41 +02:00
cc6cd430f7 Merge pull request #691 from vanche/master
import class "GPT2MultipleChoiceHead"
2019-06-15 23:12:55 +02:00
8289646d4e import class "GPT2MultipleChoiceHead" 2019-06-15 22:19:30 +09:00
5076a5daa7 Fix proj adp softmax output return when n_clusters=0 2019-06-14 22:03:21 -04:00
16af9ff7b0 Add German Bert model to code, update readme 2019-06-14 17:42:46 +02:00
b3f9e9451b Merge pull request #687 from huggingface/tests_and_doc
Updating tests and doc
2019-06-14 17:23:45 +02:00
44e9ddd7fe fix num_special_tokens in GPT 2 test 2019-06-14 17:17:43 +02:00
cad88e19de Merge pull request #672 from oliverguhr/master
Add vocabulary and model config to the finetune output
2019-06-14 17:02:47 +02:00
c6de625229 Merge pull request #655 from huggingface/finish_torchhub_interfaces
Finish torchhub interfaces
2019-06-14 17:02:08 +02:00
ff276fc00c Merge branch 'master' into finish_torchhub_interfaces 2019-06-14 16:59:07 +02:00
a64736dc23 Merge pull request #646 from Colanim/patch-1
Fix link in README
2019-06-14 16:57:45 +02:00
460d9afd45 Merge pull request #640 from Barqawiz/master
Support latest multi language bert fine tune
2019-06-14 16:57:02 +02:00
277c77f1c5 Merge pull request #630 from tguens/master
Update run_squad.py
2019-06-14 16:56:26 +02:00
659af2cbd0 Merge pull request #604 from samuelbroscheit/master
Fixing issue "Training beyond specified 't_total' steps with schedule 'warmup_linear'" reported in #556
2019-06-14 16:49:24 +02:00
2d6a53490d Merge pull request #597 from huggingface/attention
GPT-2 (medium size model, special_tokens, fine-tuning, attention) + repo code coverage metric
2019-06-14 16:47:32 +02:00
35e6baab37 Merge branch 'master' into attention 2019-06-14 16:41:56 +02:00
5e1207b8ad add attention to all bert models and add test 2019-06-14 16:28:25 +02:00
bcc9e93e6f fix test 2019-06-14 15:38:20 +02:00
f9cde97b31 Merge pull request #675 from meetshah1995/patch-1
[hotfix] Fix frozen pooler parameters in SWAG example.
2019-06-12 10:01:21 +02:00
e02ce4dc79 [hotfix] Fix frozen pooler parameters in SWAG example. 2019-06-11 15:13:53 -07:00
5c08c8c273 adds the tokenizer + model config to the output 2019-06-11 13:46:33 +02:00
784c0ed89a Merge pull request #668 from jeonsworld/patch-2
apply Whole Word Masking technique
2019-06-11 11:29:10 +02:00
a3a604cefb Update pregenerate_training_data.py
apply Whole Word Masking technique.
referred to [create_pretraining_data.py](https://github.com/google-research/bert/blob/master/create_pretraining_data.py)
2019-06-10 12:17:23 +09:00
ee0308f79d fix typo 2019-06-06 17:30:49 +02:00
2d07f945ad fix error with torch.no_grad and loss computation 2019-06-06 17:10:24 +02:00
6b8d227092 some cleaning 2019-06-06 17:07:03 +02:00
122d5c52ac distinguish was is not trained 2019-06-06 17:02:51 +02:00
2647ac3294 forgot bertForPreTraining 2019-06-06 16:57:40 +02:00
cf44d98392 Add more examples to BERT models for torchhub 2019-06-06 16:36:02 +02:00
a3274ac40b adding attention outputs in bert 2019-06-03 16:11:45 -05:00
826496580b Revert "add output_attentions for BertModel"
This reverts commit de5e5682a12463465a9eda4d2b13efad9c50d0dd.
2019-06-03 17:10:25 -04:00
de5e5682a1 add output_attentions for BertModel 2019-06-03 17:05:24 -04:00
312fdd7752 fix doc error 2019-06-01 17:43:26 -04:00
cdf0f2fec3 fix typo/presentation 2019-06-01 17:42:00 -04:00
8f97f6c57f fix typo
cc @thomwolf
2019-06-01 17:29:07 -04:00
466a96543a fix bug/typos 2019-06-01 17:28:56 -04:00
c198ff5f1f fix typos/bugs 2019-06-01 16:28:42 -04:00
592d1e3aae fix typos 2019-06-01 16:19:32 -04:00
f836130bff update hubconf 2019-06-01 16:08:29 -04:00
c0c7ff5751 add transformer xl compatibility for torchhub 2019-06-01 16:08:24 -04:00
48a58646e8 small fix in doc 2019-06-01 16:06:50 -04:00
2576a5c6db update hubconf for gpt2 torchhub compatibility 2019-06-01 15:28:01 -04:00
a92b6dc3c1 add GPT2 torchhub compatibility 2019-06-01 15:27:43 -04:00
2a329c6186 Merge pull request #651 from huggingface/gpt_torchhub
Add GPT* compatibility to torchhub
2019-05-31 14:44:52 +02:00
45d21502f0 update doc 2019-05-31 01:04:16 -04:00
98f5c7864f decorelate dependencies + fix bug 2019-05-31 01:00:29 -04:00
c8bd026ef6 move dependecies list to hubconf 2019-05-31 00:36:58 -04:00
19ef2b0a66 Fix typo in hubconf 2019-05-31 00:33:33 -04:00
d0f591051c gpt_hubconf 2019-05-31 00:28:10 -04:00
4a210c9fc6 Move bert_hubconf to hubconfs 2019-05-31 00:28:00 -04:00
0c5a4fe9c9 modify from_pretrained for OpenAIGPT 2019-05-31 00:27:18 -04:00
372a5c1cee Hubconf doc - Specia case loading 2019-05-30 16:06:21 -04:00
96592b544b default in __init__s for classification BERT models (#650) 2019-05-30 15:53:13 -04:00
4cda86b08f Update hubconf for torchhub: paths+examples+doc 2019-05-30 18:38:00 +00:00
1eba8b9d96 Fix link in README 2019-05-30 14:01:46 +09:00
314bc6bb4e added transposes to attention.self.[query,key,value] 2019-05-27 09:47:59 -04:00
c4fe56dcc0 support latest multi language bert fine tune
fix issue of bert-base-multilingual and add support for uncased multilingual
2019-05-27 11:27:41 +02:00
8de1faea6f update to hf->tf args 2019-05-22 20:38:16 -04:00
d0adab2c39 fn change; pytorch_model_dir required=False 2019-05-22 20:24:04 -04:00
a309459b92 fn change; pytorch_model_dir required=False 2019-05-22 20:17:27 -04:00
9e7bc51b95 Update run_squad.py
Indentation change so that the output "nbest_predictions.json" is not empty.
2019-05-22 17:27:59 +08:00
69749f3fc3 update to hf->tf args 2019-05-18 17:16:01 -04:00
f1433db4f1 update to hf->tf args 2019-05-18 17:09:08 -04:00
077a5b0dc4 Merge remote-tracking branch 'upstream/master' into convert-back-to-tf
merging
2019-05-18 16:06:08 -04:00
2bcda8d00c update 2019-05-18 15:55:11 -04:00
94247ad6cb Make num_train_optimization_steps int 2019-05-13 12:38:22 +02:00
49a77ac16f Clean up a little bit 2019-05-12 00:31:10 +02:00
3bf3f9596f Fixing the issues reported in https://github.com/huggingface/pytorch-pretrained-BERT/issues/556
Reason for issue was that optimzation steps where computed from example size, which is different from actual size of dataloader when an example is chunked into multiple instances.

Solution in this pull request is to compute num_optimization_steps directly from len(data_loader).
2019-05-12 00:13:45 +02:00
3fc63f126d Merge pull request #598 from burcturkoglu/master
Updating learning rate with special warm up in examples
2019-05-10 13:48:12 +02:00
00c7fd2b79 Division to num_train_optimizer of global_step in lr_this_step is removed. 2019-05-09 10:57:03 +03:00
fa37b4da77 Merge branch 'master' of https://github.com/huggingface/pytorch-pretrained-BERT 2019-05-09 10:55:24 +03:00
5289b4b9e0 Division to num_train_optimizer of global_step in lr_this_step is removed. 2019-05-09 10:51:38 +03:00
275179a003 output attentions in GPT-2 2019-05-08 22:24:42 +02:00
366a3b0285 clean up in tokenization 2019-05-08 21:43:51 +02:00
701bd59b8b Merge pull request #585 from huntzhan/master
Make the epsilon of LayerNorm configurable.
2019-05-08 16:56:38 +02:00
303b5e2b92 Merge pull request #545 from ailzhang/cache_dir
move pytroch_pretrained_bert cache folder under same path as torch
2019-05-08 16:55:27 +02:00
0198399d84 Merge pull request #570 from MottoX/fix-1
Create optimizer only when args.do_train is True
2019-05-08 16:07:50 +02:00
50fa92c026 Merge pull request #571 from MottoX/patch-1
Fix documentation typo
2019-05-08 16:06:13 +02:00
0efc4ab632 adding dropout to GPT-2 and embedding dropout to GPT 2019-05-08 10:41:35 +02:00
ea9dbea9d5 update GPT2 loss computation for more flexbility 2019-05-07 23:27:18 +02:00
ce86336545 add predict_special_tokens option to GPT also 2019-05-07 16:47:22 +02:00
d1b6979aa5 GPT-2 option to avoid predicting special tokens 2019-05-07 16:25:53 +02:00
101ab4dd8e Make the epsilon of LayerNorm configurable. 2019-05-06 00:26:21 +08:00
41089bc7d3 added file to convert pytorch->tf 2019-05-02 13:26:22 -04:00
0a8b4d65be added file to convert pytorch->tf 2019-05-02 13:20:59 -04:00
968c1b44cb added file to convert pytorch->tf 2019-05-02 13:19:56 -04:00
96c2b77f0f added file to convert pytorch->tf 2019-05-02 13:14:25 -04:00
e211785ada extract attention weights from GPT 2019-05-02 18:31:26 +02:00
18c8aef9d3 Fix documentation typo 2019-05-02 19:23:36 +08:00
74dbba64bc Prepare optimizer only when args.do_train is True 2019-05-02 19:09:29 +08:00
db98a4a48b gpt-2 tokenizer 2019-05-01 11:40:48 +02:00
3ae8c8be1e Merge pull request #562 from apappu97/roc_stories_lmlabels_fix
Small fix to remove shifting of lm labels during pre process of RocStories.
2019-05-01 11:20:17 +02:00
e89520175d Merge pull request #564 from 8enmann/patch-2
Fix #537
2019-05-01 11:18:46 +02:00
74f7906db4 Fix #537 2019-04-30 19:48:22 -07:00
365fb34c6c small fix to remove shifting of lm labels during pre process of roc stories, as this shifting happens interanlly in the model 2019-04-30 13:53:04 -07:00
cd110835a0 coverage in circle-ci 2019-04-30 11:35:40 +02:00
2dee86319d Merge pull request #527 from Mathieu-Prouveur/fix_value_training_loss
Update example files so that tr_loss is not affected by args.gradient…
2019-04-30 11:12:55 +02:00
80f53f7380 gpt-2 from_pretrained can use special tokens 2019-04-30 11:10:22 +02:00
e79ceb1533 gpt-2 special tokens 2019-04-30 11:05:54 +02:00
1f5fc95b68 add code coverage 2019-04-30 11:05:26 +02:00
c30139a013 add special tokens to gpt-2 2019-04-30 10:45:26 +02:00
87b9ec3843 Fix tr_loss rescaling factor using global_step 2019-04-29 12:58:29 +02:00
3963d57c89 move pytroch_pretrained_bert cache folder under same path as torch 2019-04-27 11:09:11 -07:00
ed8fad7390 Update example files so that tr_loss is not affected by args.gradient_accumulation_step 2019-04-24 14:07:00 +02:00
210 changed files with 40118 additions and 12691 deletions

View File

@ -1,29 +1,100 @@
version: 2
jobs:
build_py3:
working_directory: ~/pytorch-pretrained-BERT
build_py3_torch_and_tf:
working_directory: ~/transformers
docker:
- image: circleci/python:3.5
resource_class: xlarge
parallelism: 1
steps:
- checkout
- run: sudo pip install torch
- run: sudo pip install tensorflow==2.0.0-rc0
- run: sudo pip install --progress-bar off .
- run: sudo pip install pytest ftfy spacy
- run: sudo python -m spacy download en
- run: python -m pytest -sv tests/ --runslow
build_py2:
working_directory: ~/pytorch-pretrained-BERT
- run: sudo pip install pytest codecov pytest-cov
- run: sudo pip install tensorboardX scikit-learn
- run: python -m pytest -sv ./transformers/tests/ --cov
- run: codecov
build_py3_torch:
working_directory: ~/transformers
docker:
- image: circleci/python:3.5
resource_class: xlarge
parallelism: 1
steps:
- checkout
- run: sudo pip install torch
- run: sudo pip install --progress-bar off .
- run: sudo pip install pytest codecov pytest-cov
- run: sudo pip install tensorboardX scikit-learn
- run: python -m pytest -sv ./transformers/tests/ --cov
- run: python -m pytest -sv ./examples/
- run: codecov
build_py3_tf:
working_directory: ~/transformers
docker:
- image: circleci/python:3.5
resource_class: xlarge
parallelism: 1
steps:
- checkout
- run: sudo pip install tensorflow==2.0.0-rc0
- run: sudo pip install --progress-bar off .
- run: sudo pip install pytest codecov pytest-cov
- run: sudo pip install tensorboardX scikit-learn
- run: python -m pytest -sv ./transformers/tests/ --cov
- run: codecov
build_py2_torch:
working_directory: ~/transformers
resource_class: large
parallelism: 1
docker:
- image: circleci/python:2.7
steps:
- checkout
- run: sudo pip install torch
- run: sudo pip install --progress-bar off .
- run: sudo pip install pytest spacy
- run: sudo pip install ftfy==4.4.3
- run: sudo python -m spacy download en
- run: python -m pytest -sv tests/ --runslow
- run: sudo pip install pytest codecov pytest-cov
- run: python -m pytest -sv ./transformers/tests/ --cov
- run: codecov
build_py2_tf:
working_directory: ~/transformers
resource_class: large
parallelism: 1
docker:
- image: circleci/python:2.7
steps:
- checkout
- run: sudo pip install tensorflow==2.0.0-rc0
- run: sudo pip install --progress-bar off .
- run: sudo pip install pytest codecov pytest-cov
- run: python -m pytest -sv ./transformers/tests/ --cov
- run: codecov
deploy_doc:
working_directory: ~/transformers
docker:
- image: circleci/python:3.5
steps:
- add_ssh_keys:
fingerprints:
- "5b:7a:95:18:07:8c:aa:76:4c:60:35:88:ad:60:56:71"
- checkout
- run: sudo pip install --progress-bar off -r docs/requirements.txt
- run: sudo pip install --progress-bar off -r requirements.txt
- run: cd docs/source && ln -s ../../examples/README.md examples.md && cd -
- run: cd docs && make clean && make html && scp -r -oStrictHostKeyChecking=no _build/html/* $doc:$dir
workflow_filters: &workflow_filters
filters:
branches:
only:
- master
workflows:
version: 2
build_and_test:
jobs:
- build_py3
- build_py2
version: 2
build_and_test:
jobs:
- build_py3_torch_and_tf
- build_py3_torch
- build_py3_tf
- build_py2_torch
- build_py2_tf
- deploy_doc: *workflow_filters

12
.coveragerc Normal file
View File

@ -0,0 +1,12 @@
[run]
source=transformers
omit =
# skip convertion scripts from testing for now
*/convert_*
*/__main__.py
[report]
exclude_lines =
pragma: no cover
raise
except
register_parameter

48
.github/ISSUE_TEMPLATE/bug-report.md vendored Normal file
View File

@ -0,0 +1,48 @@
---
name: "\U0001F41B Bug Report"
about: Submit a bug report to help us improve PyTorch Transformers
---
## 🐛 Bug
<!-- Important information -->
Model I am using (Bert, XLNet....):
Language I am using the model on (English, Chinese....):
The problem arise when using:
* [ ] the official example scripts: (give details)
* [ ] my own modified scripts: (give details)
The tasks I am working on is:
* [ ] an official GLUE/SQUaD task: (give the name)
* [ ] my own task or dataset: (give details)
## To Reproduce
Steps to reproduce the behavior:
1.
2.
3.
<!-- If you have a code sample, error messages, stack traces, please provide it here as well. -->
## Expected behavior
<!-- A clear and concise description of what you expected to happen. -->
## Environment
* OS:
* Python version:
* PyTorch version:
* PyTorch Transformers version (or branch):
* Using GPU ?
* Distributed of parallel setup ?
* Any other relevant information:
## Additional context
<!-- Add any other context about the problem here. -->

View File

@ -0,0 +1,16 @@
---
name: "\U0001F680 Feature Request"
about: Submit a proposal/request for a new PyTorch Transformers feature
---
## 🚀 Feature
<!-- A clear and concise description of the feature proposal. Please provide a link to the paper and code in case they exist. -->
## Motivation
<!-- Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too. -->
## Additional context
<!-- Add any other context or screenshots about the feature request here. -->

43
.github/ISSUE_TEMPLATE/migration.md vendored Normal file
View File

@ -0,0 +1,43 @@
---
name: "\U0001F4DA Migration from PyTorch-pretrained-Bert"
about: Report a problem when migrating from PyTorch-pretrained-Bert to Transformers
---
## 📚 Migration
<!-- Important information -->
Model I am using (Bert, XLNet....):
Language I am using the model on (English, Chinese....):
The problem arise when using:
* [ ] the official example scripts: (give details)
* [ ] my own modified scripts: (give details)
The tasks I am working on is:
* [ ] an official GLUE/SQUaD task: (give the name)
* [ ] my own task or dataset: (give details)
Details of the issue:
<!-- A clear and concise description of the migration issue. If you have code snippets, please provide it here as well. -->
## Environment
* OS:
* Python version:
* PyTorch version:
* PyTorch Transformers version (or branch):
* Using GPU ?
* Distributed of parallel setup ?
* Any other relevant information:
## Checklist
- [ ] I have read the migration guide in the readme.
- [ ] I checked if a related official extension example runs on my machine.
## Additional context
<!-- Add any other context about the problem here. -->

View File

@ -0,0 +1,8 @@
---
name: "❓Questions & Help"
about: Start a general discussion related to PyTorch Transformers
---
## ❓ Questions & Help
<!-- A clear and concise description of the question. -->

11
.gitignore vendored
View File

@ -122,4 +122,13 @@ dmypy.json
tensorflow_code
# Models
models
models
proc_data
# examples
runs
examples/runs
# data
/data
serialization_dir

1707
README.md

File diff suppressed because it is too large Load Diff

View File

@ -2,6 +2,6 @@ FROM pytorch/pytorch:latest
RUN git clone https://github.com/NVIDIA/apex.git && cd apex && python setup.py install --cuda_ext --cpp_ext
RUN pip install pytorch-pretrained-bert
RUN pip install transformers
WORKDIR /workspace

19
docs/Makefile Normal file
View File

@ -0,0 +1,19 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line.
SPHINXOPTS =
SPHINXBUILD = sphinx-build
SOURCEDIR = source
BUILDDIR = _build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

67
docs/README.md Normal file
View File

@ -0,0 +1,67 @@
# Generating the documentation
To generate the documentation, you first have to build it. Several packages are necessary to build the doc,
you can install them using:
```bash
pip install -r requirements.txt
```
## Packages installed
Here's an overview of all the packages installed. If you ran the previous command installing all packages from
`requirements.txt`, you do not need to run the following commands.
Building it requires the package `sphinx` that you can
install using:
```bash
pip install -U sphinx
```
You would also need the custom installed [theme](https://github.com/readthedocs/sphinx_rtd_theme) by
[Read The Docs](https://readthedocs.org/). You can install it using the following command:
```bash
pip install sphinx_rtd_theme
```
The third necessary package is the `recommonmark` package to accept Markdown as well as Restructured text:
```bash
pip install recommonmark
```
## Building the documentation
Make sure that there is a symlink from the `example` file (in /examples) inside the source folder. Run the followig
command to generate it:
```bash
ln -s ../../examples/README.md source/examples.md
```
Once you have setup `sphinx`, you can build the documentation by running the following command in the `/docs` folder:
```bash
make html
```
---
**NOTE**
If you are adding/removing elements from the toc-tree or from any strutural item, it is recommended to clean the build
directory before rebuilding. Run the following command to clean and build:
```bash
make clean && make html
```
---
It should build the static app that will be available under `/docs/_build/html`
## Adding a new element to the tree (toc-tree)
Accepted files are reStructuredText (.rst) and Markdown (.md). Create a file with its extension and put it
in the source directory. You can then link it to the toc-tree by putting the filename without the extension.

29
docs/requirements.txt Normal file
View File

@ -0,0 +1,29 @@
alabaster==0.7.12
Babel==2.7.0
certifi==2019.6.16
chardet==3.0.4
commonmark==0.9.0
docutils==0.14
future==0.17.1
idna==2.8
imagesize==1.1.0
Jinja2==2.10.1
MarkupSafe==1.1.1
packaging==19.0
Pygments==2.4.2
pyparsing==2.4.0
pytz==2019.1
recommonmark==0.5.0
requests==2.22.0
six==1.12.0
snowballstemmer==1.9.0
Sphinx==2.1.2
sphinx-rtd-theme==0.4.3
sphinxcontrib-applehelp==1.0.1
sphinxcontrib-devhelp==1.0.1
sphinxcontrib-htmlhelp==1.0.2
sphinxcontrib-jsmath==1.0.1
sphinxcontrib-qthelp==1.0.2
sphinxcontrib-serializinghtml==1.1.3
urllib3==1.25.3
sphinx-markdown-tables==0.0.9

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,12 @@
.highlight .c1, .highlight .sd{
color: #999
}
.highlight .nn, .highlight .k, .highlight .s1, .highlight .nb, .highlight .bp, .highlight .kc {
color: #FB8D68;
}
.highlight .kn, .highlight .nv, .highlight .s2, .highlight .ow {
color: #6670FF;
}

View File

@ -0,0 +1,199 @@
huggingface.css
/* The literal code blocks */
.rst-content tt.literal, .rst-content tt.literal, .rst-content code.literal {
color: #6670FF;
}
/* To keep the logo centered */
.wy-side-scroll {
width: auto;
font-size: 20px;
}
/* The div that holds the Hugging Face logo */
.HuggingFaceDiv {
width: 100%
}
/* The research field on top of the toc tree */
.wy-side-nav-search{
background-color: #6670FF;
}
/* The toc tree */
.wy-nav-side{
background-color: #6670FF;
}
/* The selected items in the toc tree */
.wy-menu-vertical li.current{
background-color: #A6B0FF;
}
/* When a list item that does belong to the selected block from the toc tree is hovered */
.wy-menu-vertical li.current a:hover{
background-color: #B6C0FF;
}
/* When a list item that does NOT belong to the selected block from the toc tree is hovered. */
.wy-menu-vertical li a:hover{
background-color: #A7AFFB;
}
/* The text items on the toc tree */
.wy-menu-vertical a {
color: #FFFFDD;
font-family: Calibre-Light;
}
.wy-menu-vertical header, .wy-menu-vertical p.caption{
color: white;
font-family: Calibre-Light;
}
/* The color inside the selected toc tree block */
.wy-menu-vertical li.toctree-l2 a, .wy-menu-vertical li.toctree-l3 a, .wy-menu-vertical li.toctree-l4 a {
color: black;
}
/* Inside the depth-2 selected toc tree block */
.wy-menu-vertical li.toctree-l2.current>a {
background-color: #B6C0FF
}
.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a {
background-color: #C6D0FF
}
/* Inside the depth-3 selected toc tree block */
.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{
background-color: #D6E0FF
}
/* Inside code snippets */
.rst-content dl:not(.docutils) dt{
font-size: 15px;
}
/* Links */
a {
color: #6670FF;
}
/* Content bars */
.rst-content dl:not(.docutils) dt {
background-color: rgba(251, 141, 104, 0.1);
border-right: solid 2px #FB8D68;
border-left: solid 2px #FB8D68;
color: #FB8D68;
font-family: Calibre-Light;
border-top: none;
font-style: normal !important;
}
/* Expand button */
.wy-menu-vertical li.toctree-l2 span.toctree-expand,
.wy-menu-vertical li.on a span.toctree-expand, .wy-menu-vertical li.current>a span.toctree-expand,
.wy-menu-vertical li.toctree-l3 span.toctree-expand{
color: black;
}
/* Max window size */
.wy-nav-content{
max-width: 1200px;
}
/* Mobile header */
.wy-nav-top{
background-color: #6670FF;
}
/* Source spans */
.rst-content .viewcode-link, .rst-content .viewcode-back{
color: #6670FF;
font-size: 110%;
letter-spacing: 2px;
text-transform: uppercase;
}
/* It would be better for table to be visible without horizontal scrolling */
.wy-table-responsive table td, .wy-table-responsive table th{
white-space: normal;
}
.footer {
margin-top: 20px;
}
.footer__Social {
display: flex;
flex-direction: row;
}
.footer__CustomImage {
margin: 2px 5px 0 0;
}
/* class and method names in doc */
.rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) tt.descclassname, .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) code.descname, .rst-content dl:not(.docutils) tt.descclassname, .rst-content dl:not(.docutils) code.descclassname{
font-family: Calibre;
font-size: 20px !important;
}
/* class name in doc*/
.rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) code.descname{
margin-right: 10px;
font-family: Calibre-Medium;
}
/* Method and class parameters */
.sig-param{
line-height: 23px;
}
/* Class introduction "class" string at beginning */
.rst-content dl:not(.docutils) .property{
font-size: 18px;
color: black;
}
/* FONTS */
body{
font-family: Calibre;
font-size: 16px;
}
h1 {
font-family: Calibre-Thin;
font-size: 70px;
}
h2, .rst-content .toctree-wrapper p.caption, h3, h4, h5, h6, legend{
font-family: Calibre-Medium;
}
@font-face {
font-family: Calibre-Medium;
src: url(./Calibre-Medium.otf);
font-weight:400;
}
@font-face {
font-family: Calibre;
src: url(./Calibre-Regular.otf);
font-weight:400;
}
@font-face {
font-family: Calibre-Light;
src: url(./Calibre-Light.ttf);
font-weight:400;
}
@font-face {
font-family: Calibre-Thin;
src: url(./Calibre-Thin.otf);
font-weight:400;
}

View File

@ -0,0 +1,54 @@
function addIcon() {
const huggingFaceLogo = "http://lysand.re/huggingface_logo.svg";
const image = document.createElement("img");
image.setAttribute("src", huggingFaceLogo);
const div = document.createElement("div");
div.appendChild(image);
div.style.textAlign = 'center';
div.style.paddingTop = '30px';
div.style.backgroundColor = '#6670FF';
const scrollDiv = document.getElementsByClassName("wy-side-scroll")[0];
scrollDiv.prepend(div);
}
function addCustomFooter() {
const customFooter = document.createElement("div");
const questionOrIssue = document.createElement("div");
questionOrIssue.innerHTML = "Stuck? Read our <a href='https://medium.com/huggingface'>Blog posts</a> or <a href='https://github.com/huggingface/transformers'>Create an issue</a>";
customFooter.appendChild(questionOrIssue);
customFooter.classList.add("footer");
const social = document.createElement("div");
social.classList.add("footer__Social");
const imageDetails = [
{ link: "https://huggingface.co", imageLink: "http://lysand.re/icons/website.svg" },
{ link: "https://twitter.com/huggingface", imageLink: "http://lysand.re/icons/twitter.svg" },
{ link: "https://github.com/huggingface", imageLink: "http://lysand.re/icons/github.svg" },
{ link: "https://www.linkedin.com/company/huggingface/", imageLink: "http://lysand.re/icons/linkedin.svg" }
];
imageDetails.forEach(imageLinks => {
const link = document.createElement("a");
const image = document.createElement("img");
image.src = imageLinks.imageLink;
link.href = imageLinks.link;
image.style.width = "30px";
image.classList.add("footer__CustomImage");
link.appendChild(image);
social.appendChild(link);
});
customFooter.appendChild(social);
document.getElementsByTagName("footer")[0].appendChild(customFooter);
}
function onLoad() {
addIcon();
addCustomFooter();
}
window.addEventListener("load", onLoad);

View File

@ -0,0 +1,47 @@
<svg width="95px" height="88px" viewBox="0 0 95 88" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<!-- Generator: Sketch 43.2 (39069) - http://www.bohemiancoding.com/sketch -->
<title>icon</title>
<desc>Created with Sketch.</desc>
<defs>
<path d="M13,14.7890193 C22.8284801,14.7890193 26,6.02605902 26,1.5261751 C26,-0.812484109 24.4279133,-0.0763570998 21.9099482,1.17020987 C19.5830216,2.32219957 16.4482998,3.91011313 13,3.91011313 C5.82029825,3.91011313 0,-2.97370882 0,1.5261751 C0,6.02605902 3.17151989,14.7890193 13,14.7890193 Z" id="path-1"></path>
</defs>
<g id="Page-1" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
<g id="icon_desktop">
<g id="icon">
<g id="icon_desktop">
<g id="Group-2">
<g id="Group">
<path d="M93.7930402,70.08 C94.5430402,72.24 94.3630402,74.54 93.3630402,76.54 C92.6430402,78 91.6130402,79.13 90.3530402,80.14 C88.8330402,81.34 86.9430402,82.36 84.6630402,83.34 C81.9430402,84.5 78.6230402,85.59 77.1030402,85.99 C73.2130402,87 69.4730402,87.64 65.6830402,87.67 C60.2630402,87.72 55.5930402,86.44 52.2730402,83.17 C50.5530402,83.38 48.8130402,83.5 47.0630402,83.5 C45.4030402,83.5 43.7630402,83.4 42.1330402,83.2 C38.8030402,86.45 34.1530402,87.72 28.7530402,87.67 C24.9630402,87.64 21.2230402,87 17.3230402,85.99 C15.8130402,85.59 12.4930402,84.5 9.77304019,83.34 C7.49304019,82.36 5.60304019,81.34 4.09304019,80.14 C2.82304019,79.13 1.79304019,78 1.07304019,76.54 C0.0830401858,74.54 -0.106959814,72.24 0.653040186,70.08 C-0.0469598142,68.43 -0.226959814,66.54 0.323040186,64.45 C0.573040186,63.5 0.983040186,62.62 1.50304019,61.84 C1.39304019,61.43 1.30304019,61.01 1.24304019,60.55 C0.863040186,57.81 1.81304019,55.31 3.60304019,53.37 C4.48304019,52.4 5.43304019,51.73 6.42304019,51.3 C5.69304019,48.2 5.31304019,45.01 5.31304019,41.75 C5.31304019,18.69 24.0030402,0 47.0630402,0 C54.9830402,0 62.3930402,2.2 68.7130402,6.04 C69.8530402,6.74 70.9730402,7.49 72.0430402,8.29 C72.5730402,8.69 73.1030402,9.1 73.6130402,9.53 C74.1330402,9.95 74.6430402,10.39 75.1330402,10.84 C76.6130402,12.19 78.0030402,13.64 79.2730402,15.19 C79.7030402,15.7 80.1130402,16.23 80.5130402,16.77 C81.3230402,17.84 82.0730402,18.95 82.7630402,20.1 C83.8130402,21.82 84.7330402,23.62 85.5330402,25.49 C86.0630402,26.74 86.5230402,28.02 86.9330402,29.33 C87.5430402,31.29 88.0130402,33.31 88.3330402,35.39 C88.4330402,36.08 88.5230402,36.78 88.5930402,37.48 C88.7330402,38.88 88.8130402,40.3 88.8130402,41.75 C88.8130402,44.97 88.4330402,48.13 87.7230402,51.18 C88.8230402,51.61 89.8630402,52.31 90.8330402,53.37 C92.6230402,55.31 93.5730402,57.82 93.1930402,60.56 C93.1330402,61.01 93.0430402,61.43 92.9330402,61.84 C93.4530402,62.62 93.8630402,63.5 94.1130402,64.45 C94.6630402,66.54 94.4830402,68.43 93.7930402,70.08" id="Fill-1" fill="#FFFFFF" fill-rule="nonzero"></path>
<circle id="Oval" fill="#FFD21E" fill-rule="nonzero" cx="46.75" cy="41.75" r="34.75"></circle>
<path d="M81.5,41.75 C81.5,22.5581049 65.9418951,7 46.75,7 C27.5581049,7 12,22.5581049 12,41.75 C12,60.9418951 27.5581049,76.5 46.75,76.5 C65.9418951,76.5 81.5,60.9418951 81.5,41.75 Z M8,41.75 C8,20.3489659 25.3489659,3 46.75,3 C68.1510341,3 85.5,20.3489659 85.5,41.75 C85.5,63.1510341 68.1510341,80.5 46.75,80.5 C25.3489659,80.5 8,63.1510341 8,41.75 Z" id="Oval" fill="#FFAC03" fill-rule="nonzero"></path>
<path d="M57.1723547,31.7151181 C58.0863134,32.7107502 57.3040427,35.2620959 58.7620957,35.2620959 C61.5235194,35.2620959 63.7620957,33.0235196 63.7620957,30.2620959 C63.7620957,27.5006721 61.5235194,25.2620959 58.7620957,25.2620959 C56.0006719,25.2620959 53.7620957,27.5006721 53.7620957,30.2620959 C53.7620957,31.5654666 56.3553563,30.8251108 57.1723547,31.7151181 Z" id="Oval-2" fill="#3A3B45" fill-rule="nonzero" transform="translate(58.762096, 30.262096) rotate(-28.000000) translate(-58.762096, -30.262096) "></path>
<path d="M32.1723553,31.7151181 C33.086314,32.7107502 32.3040433,35.2620959 33.7620963,35.2620959 C36.52352,35.2620959 38.7620963,33.0235196 38.7620963,30.2620959 C38.7620963,27.5006721 36.52352,25.2620959 33.7620963,25.2620959 C31.0006725,25.2620959 28.7620963,27.5006721 28.7620963,30.2620959 C28.7620963,31.5654666 31.3553569,30.8251108 32.1723553,31.7151181 Z" id="Oval-2" fill="#3A3B45" fill-rule="nonzero" transform="translate(33.762096, 30.262096) scale(-1, 1) rotate(-28.000000) translate(-33.762096, -30.262096) "></path>
<g id="Oval-4" transform="translate(33.500000, 41.500000)">
<g id="Mask" fill-rule="nonzero" fill="#3A3B45">
<path d="M13,14.7890193 C22.8284801,14.7890193 26,6.02605902 26,1.5261751 C26,-0.812484109 24.4279133,-0.0763570998 21.9099482,1.17020987 C19.5830216,2.32219957 16.4482998,3.91011313 13,3.91011313 C5.82029825,3.91011313 0,-2.97370882 0,1.5261751 C0,6.02605902 3.17151989,14.7890193 13,14.7890193 Z" id="path-1"></path>
</g>
<g id="Clipped">
<mask id="mask-2" fill="white">
<use xlink:href="#path-1"></use>
</mask>
<g id="path-1"></g>
<path d="M13.25,25 C18.0399291,25 21.9229338,21.1169953 21.9229338,16.3270662 C21.9229338,12.5962324 19.5672252,9.41560375 16.2620987,8.19147116 C16.1404592,8.14641904 16.0175337,8.10401696 15.8933923,8.06433503 C15.0599892,7.79793679 14.1717882,10.6623144 13.25,10.6623144 C12.3886883,10.6623144 11.5567012,7.77968641 10.7713426,8.01349068 C7.18916268,9.07991937 4.57706621,12.3984489 4.57706621,16.3270662 C4.57706621,21.1169953 8.46007093,25 13.25,25 Z" id="Shape" fill="#EF4E4E" fill-rule="nonzero" mask="url(#mask-2)"></path>
</g>
</g>
<circle id="Oval-3" fill="#FFD21E" fill-rule="nonzero" style="mix-blend-mode: multiply;" cx="70.25" cy="33.75" r="3.25"></circle>
<circle id="Oval-3" fill="#FFD21E" fill-rule="nonzero" style="mix-blend-mode: multiply;" cx="23.75" cy="33.75" r="3.25"></circle>
</g>
</g>
</g>
<g id="Group-4" transform="translate(3.000000, 48.000000)" fill-rule="nonzero">
<path d="M14.0619453,0 L14.0619453,0 C12.4429453,0 10.9959453,0.665 9.98694534,1.871 C9.36294534,2.618 8.71094534,3.822 8.65794534,5.625 C7.97894534,5.43 7.32594534,5.321 6.71594534,5.321 C5.16594534,5.321 3.76594534,5.915 2.77594534,6.994 C1.50394534,8.379 0.938945345,10.081 1.18494534,11.784 C1.30194534,12.595 1.57294534,13.322 1.97794534,13.995 C1.12394534,14.686 0.494945345,15.648 0.190945345,16.805 C-0.0470546551,17.712 -0.291054655,19.601 0.982945345,21.547 C0.901945345,21.674 0.825945345,21.806 0.754945345,21.941 C-0.0110546551,23.395 -0.0600546551,25.038 0.615945345,26.568 C1.64094534,28.887 4.18794534,30.714 9.13394534,32.675 C12.2109453,33.895 15.0259453,34.675 15.0509453,34.682 C19.1189453,35.737 22.7979453,36.273 25.9829453,36.273 C31.8369453,36.273 36.0279453,34.48 38.4399453,30.944 C42.3219453,25.25 41.7669453,20.042 36.7439453,15.022 C33.9639453,12.244 32.1159453,8.148 31.7309453,7.249 C30.9549453,4.587 28.9029453,1.628 25.4919453,1.628 L25.4909453,1.628 C25.2039453,1.628 24.9139453,1.651 24.6279453,1.696 C23.1339453,1.931 21.8279453,2.791 20.8949453,4.085 C19.8879453,2.833 18.9099453,1.837 18.0249453,1.275 C16.6909453,0.429 15.3579453,0 14.0619453,0 M14.0619453,4 C14.5719453,4 15.1949453,4.217 15.8819453,4.653 C18.0149453,6.006 22.1309453,13.081 23.6379453,15.833 C24.1429453,16.755 25.0059453,17.145 25.7829453,17.145 C27.3249453,17.145 28.5289453,15.612 25.9239453,13.664 C22.0069453,10.733 23.3809453,5.942 25.2509453,5.647 C25.3329453,5.634 25.4139453,5.628 25.4919453,5.628 C27.1919453,5.628 27.9419453,8.558 27.9419453,8.558 C27.9419453,8.558 30.1399453,14.078 33.9159453,17.851 C37.6919453,21.625 37.8869453,24.654 35.1349453,28.69 C33.2579453,31.442 29.6649453,32.273 25.9829453,32.273 C22.1639453,32.273 18.2489453,31.379 16.0549453,30.81 C15.9469453,30.782 2.60394534,27.013 4.29394534,23.805 C4.57794534,23.266 5.04594534,23.05 5.63494534,23.05 C8.01494534,23.05 12.3439453,26.592 14.2049453,26.592 C14.6209453,26.592 14.9139453,26.415 15.0339453,25.983 C15.8269453,23.138 2.97694534,21.942 4.05994534,17.821 C4.25094534,17.092 4.76894534,16.796 5.49694534,16.797 C8.64194534,16.797 15.6979453,22.328 17.1769453,22.328 C17.2899453,22.328 17.3709453,22.295 17.4149453,22.225 C18.1559453,21.029 17.7499453,20.194 12.5269453,17.033 C7.30394534,13.871 3.63794534,11.969 5.72294534,9.699 C5.96294534,9.437 6.30294534,9.321 6.71594534,9.321 C9.88694534,9.322 17.3789453,16.14 17.3789453,16.14 C17.3789453,16.14 19.4009453,18.243 20.6239453,18.243 C20.9049453,18.243 21.1439453,18.132 21.3059453,17.858 C22.1729453,16.396 13.2529453,9.636 12.7499453,6.847 C12.4089453,4.957 12.9889453,4 14.0619453,4" id="Fill-1" fill="#FFAC03"></path>
<path d="M35.1348,28.6899 C37.8868,24.6539 37.6918,21.6249 33.9158,17.8509 C30.1398,14.0779 27.9418,8.5579 27.9418,8.5579 C27.9418,8.5579 27.1208,5.3519 25.2508,5.6469 C23.3808,5.9419 22.0078,10.7329 25.9248,13.6639 C29.8418,16.5939 25.1448,18.5849 23.6378,15.8329 C22.1308,13.0809 18.0158,6.0059 15.8818,4.6529 C13.7488,3.2999 12.2468,4.0579 12.7498,6.8469 C13.2528,9.6359 22.1738,16.3959 21.3058,17.8589 C20.4378,19.3209 17.3788,16.1399 17.3788,16.1399 C17.3788,16.1399 7.8068,7.4289 5.7228,9.6989 C3.6388,11.9689 7.3038,13.8709 12.5268,17.0329 C17.7508,20.1939 18.1558,21.0289 17.4148,22.2249 C16.6728,23.4209 5.1428,13.6999 4.0598,17.8209 C2.9778,21.9419 15.8268,23.1379 15.0338,25.9829 C14.2408,28.8289 5.9828,20.5979 4.2938,23.8049 C2.6038,27.0129 15.9468,30.7819 16.0548,30.8099 C20.3648,31.9279 31.3108,34.2969 35.1348,28.6899" id="Fill-4" fill="#FFD21E"></path>
</g>
<g id="Group-4" transform="translate(70.500000, 66.500000) scale(-1, 1) translate(-70.500000, -66.500000) translate(50.000000, 48.000000)" fill-rule="nonzero">
<path d="M14.0619453,0 L14.0619453,0 C12.4429453,0 10.9959453,0.665 9.98694534,1.871 C9.36294534,2.618 8.71094534,3.822 8.65794534,5.625 C7.97894534,5.43 7.32594534,5.321 6.71594534,5.321 C5.16594534,5.321 3.76594534,5.915 2.77594534,6.994 C1.50394534,8.379 0.938945345,10.081 1.18494534,11.784 C1.30194534,12.595 1.57294534,13.322 1.97794534,13.995 C1.12394534,14.686 0.494945345,15.648 0.190945345,16.805 C-0.0470546551,17.712 -0.291054655,19.601 0.982945345,21.547 C0.901945345,21.674 0.825945345,21.806 0.754945345,21.941 C-0.0110546551,23.395 -0.0600546551,25.038 0.615945345,26.568 C1.64094534,28.887 4.18794534,30.714 9.13394534,32.675 C12.2109453,33.895 15.0259453,34.675 15.0509453,34.682 C19.1189453,35.737 22.7979453,36.273 25.9829453,36.273 C31.8369453,36.273 36.0279453,34.48 38.4399453,30.944 C42.3219453,25.25 41.7669453,20.042 36.7439453,15.022 C33.9639453,12.244 32.1159453,8.148 31.7309453,7.249 C30.9549453,4.587 28.9029453,1.628 25.4919453,1.628 L25.4909453,1.628 C25.2039453,1.628 24.9139453,1.651 24.6279453,1.696 C23.1339453,1.931 21.8279453,2.791 20.8949453,4.085 C19.8879453,2.833 18.9099453,1.837 18.0249453,1.275 C16.6909453,0.429 15.3579453,0 14.0619453,0 M14.0619453,4 C14.5719453,4 15.1949453,4.217 15.8819453,4.653 C18.0149453,6.006 22.1309453,13.081 23.6379453,15.833 C24.1429453,16.755 25.0059453,17.145 25.7829453,17.145 C27.3249453,17.145 28.5289453,15.612 25.9239453,13.664 C22.0069453,10.733 23.3809453,5.942 25.2509453,5.647 C25.3329453,5.634 25.4139453,5.628 25.4919453,5.628 C27.1919453,5.628 27.9419453,8.558 27.9419453,8.558 C27.9419453,8.558 30.1399453,14.078 33.9159453,17.851 C37.6919453,21.625 37.8869453,24.654 35.1349453,28.69 C33.2579453,31.442 29.6649453,32.273 25.9829453,32.273 C22.1639453,32.273 18.2489453,31.379 16.0549453,30.81 C15.9469453,30.782 2.60394534,27.013 4.29394534,23.805 C4.57794534,23.266 5.04594534,23.05 5.63494534,23.05 C8.01494534,23.05 12.3439453,26.592 14.2049453,26.592 C14.6209453,26.592 14.9139453,26.415 15.0339453,25.983 C15.8269453,23.138 2.97694534,21.942 4.05994534,17.821 C4.25094534,17.092 4.76894534,16.796 5.49694534,16.797 C8.64194534,16.797 15.6979453,22.328 17.1769453,22.328 C17.2899453,22.328 17.3709453,22.295 17.4149453,22.225 C18.1559453,21.029 17.7499453,20.194 12.5269453,17.033 C7.30394534,13.871 3.63794534,11.969 5.72294534,9.699 C5.96294534,9.437 6.30294534,9.321 6.71594534,9.321 C9.88694534,9.322 17.3789453,16.14 17.3789453,16.14 C17.3789453,16.14 19.4009453,18.243 20.6239453,18.243 C20.9049453,18.243 21.1439453,18.132 21.3059453,17.858 C22.1729453,16.396 13.2529453,9.636 12.7499453,6.847 C12.4089453,4.957 12.9889453,4 14.0619453,4" id="Fill-1" fill="#FFAC03"></path>
<path d="M35.1348,28.6899 C37.8868,24.6539 37.6918,21.6249 33.9158,17.8509 C30.1398,14.0779 27.9418,8.5579 27.9418,8.5579 C27.9418,8.5579 27.1208,5.3519 25.2508,5.6469 C23.3808,5.9419 22.0078,10.7329 25.9248,13.6639 C29.8418,16.5939 25.1448,18.5849 23.6378,15.8329 C22.1308,13.0809 18.0158,6.0059 15.8818,4.6529 C13.7488,3.2999 12.2468,4.0579 12.7498,6.8469 C13.2528,9.6359 22.1738,16.3959 21.3058,17.8589 C20.4378,19.3209 17.3788,16.1399 17.3788,16.1399 C17.3788,16.1399 7.8068,7.4289 5.7228,9.6989 C3.6388,11.9689 7.3038,13.8709 12.5268,17.0329 C17.7508,20.1939 18.1558,21.0289 17.4148,22.2249 C16.6728,23.4209 5.1428,13.6999 4.0598,17.8209 C2.9778,21.9419 15.8268,23.1379 15.0338,25.9829 C14.2408,28.8289 5.9828,20.5979 4.2938,23.8049 C2.6038,27.0129 15.9468,30.7819 16.0548,30.8099 C20.3648,31.9279 31.3108,34.2969 35.1348,28.6899" id="Fill-4" fill="#FFD21E"></path>
</g>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 14 KiB

18
docs/source/bertology.rst Normal file
View File

@ -0,0 +1,18 @@
BERTology
---------
There is a growing field of study concerned with investigating the inner working of large-scale transformers like BERT (that some call "BERTology"). Some good examples of this field are:
* BERT Rediscovers the Classical NLP Pipeline by Ian Tenney, Dipanjan Das, Ellie Pavlick: https://arxiv.org/abs/1905.05950
* Are Sixteen Heads Really Better than One? by Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650
* What Does BERT Look At? An Analysis of BERT's Attention by Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D. Manning: https://arxiv.org/abs/1906.04341
In order to help this new field develop, we have included a few additional features in the BERT/GPT/GPT-2 models to help people access the inner representations, mainly adapted from the great work of Paul Michel (https://arxiv.org/abs/1905.10650):
* accessing all the hidden-states of BERT/GPT/GPT-2,
* accessing all the attention weights for each head of BERT/GPT/GPT-2,
* retrieving heads output values and gradients to be able to compute head importance score and prune head as explained in https://arxiv.org/abs/1905.10650.
To help you understand and use these features, we have added a specific example script: `bertology.py <https://github.com/huggingface/transformers/blob/master/examples/run_bertology.py>`_ while extract information and prune a model pre-trained on GLUE.

188
docs/source/conf.py Normal file
View File

@ -0,0 +1,188 @@
# -*- coding: utf-8 -*-
#
# Configuration file for the Sphinx documentation builder.
#
# This file does only contain a selection of the most common options. For a
# full list see the documentation:
# http://www.sphinx-doc.org/en/master/config
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
sys.path.insert(0, os.path.abspath('../..'))
# -- Project information -----------------------------------------------------
project = u'transformers'
copyright = u'2019, huggingface'
author = u'huggingface'
# The short X.Y version
version = u''
# The full version, including alpha/beta/rc tags
release = u'1.2.0'
# -- General configuration ---------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
#
# needs_sphinx = '1.0'
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
'sphinx.ext.autodoc',
'sphinx.ext.coverage',
'sphinx.ext.napoleon',
'recommonmark',
'sphinx.ext.viewcode',
'sphinx_markdown_tables'
]
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
#
source_suffix = ['.rst', '.md']
# source_suffix = '.rst'
# The master toctree document.
master_doc = 'index'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = [u'_build', 'Thumbs.db', '.DS_Store']
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = None
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'sphinx_rtd_theme'
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
#
html_theme_options = {
'analytics_id': 'UA-83738774-2'
}
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
# Custom sidebar templates, must be a dictionary that maps document names
# to template names.
#
# The default sidebars (for documents that don't match any pattern) are
# defined by theme itself. Builtin themes are using these templates by
# default: ``['localtoc.html', 'relations.html', 'sourcelink.html',
# 'searchbox.html']``.
#
# html_sidebars = {}
# -- Options for HTMLHelp output ---------------------------------------------
# Output file base name for HTML help builder.
htmlhelp_basename = 'transformersdoc'
# -- Options for LaTeX output ------------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
#
# 'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
#
# 'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
#
# 'preamble': '',
# Latex figure (float) alignment
#
# 'figure_align': 'htbp',
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
(master_doc, 'transformers.tex', u'transformers Documentation',
u'huggingface', 'manual'),
]
# -- Options for manual page output ------------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [
(master_doc, 'transformers', u'transformers Documentation',
[author], 1)
]
# -- Options for Texinfo output ----------------------------------------------
# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
(master_doc, 'transformers', u'transformers Documentation',
author, 'transformers', 'One line description of project.',
'Miscellaneous'),
]
# -- Options for Epub output -------------------------------------------------
# Bibliographic Dublin Core info.
epub_title = project
# The unique identifier of the text. This can be a ISBN number
# or the project homepage.
#
# epub_identifier = ''
# A unique identification for the text.
#
# epub_uid = ''
# A list of files that should not be packed into the epub file.
epub_exclude_files = ['search.html']
def setup(app):
app.add_stylesheet('css/huggingface.css')
app.add_stylesheet('css/code-snippets.css')
app.add_js_file('js/custom.js')
# -- Extension configuration -------------------------------------------------

View File

@ -0,0 +1,101 @@
Converting Tensorflow Checkpoints
================================================
A command-line interface is provided to convert original Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM checkpoints in models than be loaded using the ``from_pretrained`` methods of the library.
BERT
^^^^
You can convert any TensorFlow checkpoint for BERT (in particular `the pre-trained models released by Google <https://github.com/google-research/bert#pre-trained-models>`_\ ) in a PyTorch save file by using the `convert_tf_checkpoint_to_pytorch.py <https://github.com/huggingface/transformers/blob/master/transformers/convert_tf_checkpoint_to_pytorch.py>`_ script.
This CLI takes as input a TensorFlow checkpoint (three files starting with ``bert_model.ckpt``\ ) and the associated configuration file (\ ``bert_config.json``\ ), and creates a PyTorch model for this configuration, loads the weights from the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can be imported using ``torch.load()`` (see examples in `run_bert_extract_features.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/run_bert_extract_features.py>`_\ , `run_bert_classifier.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/run_bert_classifier.py>`_ and `run_bert_squad.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/run_bert_squad.py>`_\ ).
You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow checkpoint (the three files starting with ``bert_model.ckpt``\ ) but be sure to keep the configuration file (\ ``bert_config.json``\ ) and the vocabulary file (\ ``vocab.txt``\ ) as these are needed for the PyTorch model too.
To run this specific conversion script you will need to have TensorFlow and PyTorch installed (\ ``pip install tensorflow``\ ). The rest of the repository only requires PyTorch.
Here is an example of the conversion process for a pre-trained ``BERT-Base Uncased`` model:
.. code-block:: shell
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
transformers bert \
$BERT_BASE_DIR/bert_model.ckpt \
$BERT_BASE_DIR/bert_config.json \
$BERT_BASE_DIR/pytorch_model.bin
You can download Google's pre-trained models for the conversion `here <https://github.com/google-research/bert#pre-trained-models>`__.
OpenAI GPT
^^^^^^^^^^
Here is an example of the conversion process for a pre-trained OpenAI GPT model, assuming that your NumPy checkpoint save as the same format than OpenAI pretrained model (see `here <https://github.com/openai/finetune-transformer-lm>`__\ )
.. code-block:: shell
export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights
transformers gpt \
$OPENAI_GPT_CHECKPOINT_FOLDER_PATH \
$PYTORCH_DUMP_OUTPUT \
[OPENAI_GPT_CONFIG]
OpenAI GPT-2
^^^^^^^^^^^^
Here is an example of the conversion process for a pre-trained OpenAI GPT-2 model (see `here <https://github.com/openai/gpt-2>`__\ )
.. code-block:: shell
export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/gpt2/pretrained/weights
transformers gpt2 \
$OPENAI_GPT2_CHECKPOINT_PATH \
$PYTORCH_DUMP_OUTPUT \
[OPENAI_GPT2_CONFIG]
Transformer-XL
^^^^^^^^^^^^^^
Here is an example of the conversion process for a pre-trained Transformer-XL model (see `here <https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models>`__\ )
.. code-block:: shell
export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint
transformers transfo_xl \
$TRANSFO_XL_CHECKPOINT_FOLDER_PATH \
$PYTORCH_DUMP_OUTPUT \
[TRANSFO_XL_CONFIG]
XLNet
^^^^^
Here is an example of the conversion process for a pre-trained XLNet model, fine-tuned on STS-B using the TensorFlow script:
.. code-block:: shell
export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint
export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config
transformers xlnet \
$TRANSFO_XL_CHECKPOINT_PATH \
$TRANSFO_XL_CONFIG_PATH \
$PYTORCH_DUMP_OUTPUT \
STS-B \
XLM
^^^
Here is an example of the conversion process for a pre-trained XLM model:
.. code-block:: shell
export XLM_CHECKPOINT_PATH=/path/to/xlm/checkpoint
transformers xlm \
$XLM_CHECKPOINT_PATH \
$PYTORCH_DUMP_OUTPUT \

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.7 KiB

View File

Before

Width:  |  Height:  |  Size: 9.7 KiB

After

Width:  |  Height:  |  Size: 9.7 KiB

View File

Before

Width:  |  Height:  |  Size: 22 KiB

After

Width:  |  Height:  |  Size: 22 KiB

View File

Before

Width:  |  Height:  |  Size: 17 KiB

After

Width:  |  Height:  |  Size: 17 KiB

View File

Before

Width:  |  Height:  |  Size: 22 KiB

After

Width:  |  Height:  |  Size: 22 KiB

View File

Before

Width:  |  Height:  |  Size: 16 KiB

After

Width:  |  Height:  |  Size: 16 KiB

84
docs/source/index.rst Normal file
View File

@ -0,0 +1,84 @@
Transformers
================================================================================================================================================
🤗 Transformers (formerly known as `pytorch-transformers` and `pytorch-pretrained-bert`) provides general-purpose architectures
(BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural Language Understanding (NLU) and Natural Language Generation
(NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.
Features
---------------------------------------------------
- As easy to use as pytorch-transformers
- As powerful and concise as Keras
- High performance on NLU and NLG tasks
- Low barrier to entry for educators and practitioners
State-of-the-art NLP for everyone
- Deep learning researchers
- Hands-on practitioners
- AI/ML/NLP teachers and educators
Lower compute costs, smaller carbon footprint
- Researchers can share trained models instead of always retraining
- Practitioners can reduce compute time and production costs
- 8 architectures with over 30 pretrained models, some in more than 100 languages
Choose the right framework for every part of a model's lifetime
- Train state-of-the-art models in 3 lines of code
- Deep interoperability between TensorFlow 2.0 and PyTorch models
- Move a single model between TF2.0/PyTorch frameworks at will
- Seamlessly pick the right framework for training, evaluation, production
Contents
---------------------------------
The library currently contains PyTorch and Tensorflow implementations, pre-trained model weights, usage scripts and conversion utilities for the following models:
1. `BERT <https://github.com/google-research/bert>`_ (from Google) released with the paper `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding <https://arxiv.org/abs/1810.04805>`_ by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
2. `GPT <https://github.com/openai/finetune-transformer-lm>`_ (from OpenAI) released with the paper `Improving Language Understanding by Generative Pre-Training <https://blog.openai.com/language-unsupervised>`_ by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
3. `GPT-2 <https://blog.openai.com/better-language-models>`_ (from OpenAI) released with the paper `Language Models are Unsupervised Multitask Learners <https://blog.openai.com/better-language-models>`_ by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
4. `Transformer-XL <https://github.com/kimiyoung/transformer-xl>`_ (from Google/CMU) released with the paper `Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context <https://arxiv.org/abs/1901.02860>`_ by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
5. `XLNet <https://github.com/zihangdai/xlnet>`_ (from Google/CMU) released with the paper `XLNet: Generalized Autoregressive Pretraining for Language Understanding <https://arxiv.org/abs/1906.08237>`_ by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
6. `XLM <https://github.com/facebookresearch/XLM>`_ (from Facebook) released together with the paper `Cross-lingual Language Model Pretraining <https://arxiv.org/abs/1901.07291>`_ by Guillaume Lample and Alexis Conneau.
7. `RoBERTa <https://github.com/pytorch/fairseq/tree/master/examples/roberta>`_ (from Facebook), released together with the paper a `Robustly Optimized BERT Pretraining Approach <https://arxiv.org/abs/1907.11692>`_ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
8. `DistilBERT <https://huggingface.co/transformers/model_doc/distilbert.html>`_ (from HuggingFace) released together with the blog post `Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT <https://medium.com/huggingface/distilbert-8cf3380435b5>`_ by Victor Sanh, Lysandre Debut and Thomas Wolf.
.. toctree::
:maxdepth: 2
:caption: Notes
installation
quickstart
pretrained_models
examples
notebooks
serialization
converting_tensorflow_models
migration
bertology
torchscript
.. toctree::
:maxdepth: 2
:caption: Main classes
main_classes/configuration
main_classes/model
main_classes/tokenizer
main_classes/optimizer_schedules
main_classes/processors
.. toctree::
:maxdepth: 2
:caption: Package Reference
model_doc/auto
model_doc/bert
model_doc/gpt
model_doc/transformerxl
model_doc/gpt2
model_doc/xlm
model_doc/xlnet
model_doc/roberta
model_doc/distilbert

View File

@ -0,0 +1,71 @@
Installation
================================================
Transformers is tested on Python 2.7 and 3.5+ (examples are tested only on python 3.5+) and PyTorch 1.1.0
With pip
^^^^^^^^
PyTorch Transformers can be installed using pip as follows:
.. code-block:: bash
pip install transformers
From source
^^^^^^^^^^^
To install from source, clone the repository and install with:
.. code-block:: bash
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install [--editable] .
Tests
^^^^^
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in the `tests folder <https://github.com/huggingface/transformers/tree/master/transformers/tests>`_ and examples tests in the `examples folder <https://github.com/huggingface/transformers/tree/master/examples>`_.
Tests can be run using `pytest` (install pytest if needed with `pip install pytest`).
Run all the tests from the root of the cloned repository with the commands:
.. code-block:: bash
python -m pytest -sv ./transformers/tests/
python -m pytest -sv ./examples/
OpenAI GPT original tokenization workflow
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you want to reproduce the original tokenization process of the ``OpenAI GPT`` paper, you will need to install ``ftfy`` (use version 4.4.3 if you are using Python 2) and ``SpaCy`` :
.. code-block:: bash
pip install spacy ftfy==4.4.3
python -m spacy download en
If you don't install ``ftfy`` and ``SpaCy``\ , the ``OpenAI GPT`` tokenizer will default to tokenize using BERT's ``BasicTokenizer`` followed by Byte-Pair Encoding (which should be fine for most usage, don't worry).
Note on model downloads (Continuous Integration or large-scale deployments)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you expect to be downloading large volumes of models (more than 1,000) from our hosted bucket (for instance through your CI setup, or a large-scale production deployment), please cache the model files on your end. It will be way faster, and cheaper. Feel free to contact us privately if you need any help.
Do you want to run a Transformer model on a mobile device?
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You should check out our `swift-coreml-transformers <https://github.com/huggingface/swift-coreml-transformers>`_ repo.
It contains an example of a conversion script from a Pytorch trained Transformer model (here, ``GPT-2``) to a CoreML model that runs on iOS devices.
It also contains an implementation of BERT for Question answering.
At some point in the future, you'll be able to seamlessly move from pre-training or fine-tuning models in PyTorch to productizing them in CoreML,
or prototype a model or an app in CoreML then research its hyperparameters or architecture from PyTorch. Super exciting!

View File

@ -0,0 +1,10 @@
Configuration
----------------------------------------------------
The base class ``PretrainedConfig`` implements the common methods for loading/saving a configuration either from a local file or directory, or from a pretrained model configuration provided by the library (downloaded from HuggingFace's AWS S3 repository).
``PretrainedConfig``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.PretrainedConfig
:members:

View File

@ -0,0 +1,21 @@
Models
----------------------------------------------------
The base class ``PreTrainedModel`` implements the common methods for loading/saving a model either from a local file or directory, or from a pretrained model configuration provided by the library (downloaded from HuggingFace's AWS S3 repository).
``PreTrainedModel`` also implements a few methods which are common among all the models to:
- resize the input token embeddings when new tokens are added to the vocabulary
- prune the attention heads of the model.
``PreTrainedModel``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.PreTrainedModel
:members:
``TFPreTrainedModel``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFPreTrainedModel
:members:

View File

@ -0,0 +1,55 @@
Optimizer
----------------------------------------------------
The ``.optimization`` module provides:
- an optimizer with weight decay fixed that can be used to fine-tuned models, and
- several schedules in the form of schedule objects that inherit from ``_LRSchedule``:
``AdamW``
~~~~~~~~~~~~~~~~
.. autoclass:: transformers.AdamW
:members:
Schedules
----------------------------------------------------
Learning Rate Schedules
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: transformers.ConstantLRSchedule
:members:
.. autoclass:: transformers.WarmupConstantSchedule
:members:
.. image:: /imgs/warmup_constant_schedule.png
:target: /imgs/warmup_constant_schedule.png
:alt:
.. autoclass:: transformers.WarmupCosineSchedule
:members:
.. image:: /imgs/warmup_cosine_schedule.png
:target: /imgs/warmup_cosine_schedule.png
:alt:
.. autoclass:: transformers.WarmupCosineWithHardRestartsSchedule
:members:
.. image:: /imgs/warmup_cosine_hard_restarts_schedule.png
:target: /imgs/warmup_cosine_hard_restarts_schedule.png
:alt:
.. autoclass:: transformers.WarmupLinearSchedule
:members:
.. image:: /imgs/warmup_linear_schedule.png
:target: /imgs/warmup_linear_schedule.png
:alt:

View File

@ -0,0 +1,58 @@
Processors
----------------------------------------------------
This library includes processors for several traditional tasks. These processors can be used to process a dataset into
examples that can be fed to a model.
Processors
~~~~~~~~~~~~~~~~~~~~~
All processors follow the same architecture which is that of the
:class:`~pytorch_transformers.data.processors.utils.DataProcessor`. The processor returns a list
of :class:`~pytorch_transformers.data.processors.utils.InputExample`. These
:class:`~pytorch_transformers.data.processors.utils.InputExample` can be converted to
:class:`~pytorch_transformers.data.processors.utils.InputFeatures` in order to be fed to the model.
.. autoclass:: pytorch_transformers.data.processors.utils.DataProcessor
:members:
.. autoclass:: pytorch_transformers.data.processors.utils.InputExample
:members:
.. autoclass:: pytorch_transformers.data.processors.utils.InputFeatures
:members:
GLUE
~~~~~~~~~~~~~~~~~~~~~
`General Language Understanding Evaluation (GLUE) <https://gluebenchmark.com/>`__ is a benchmark that evaluates
the performance of models across a diverse set of existing NLU tasks. It was released together with the paper
`GLUE: A multi-task benchmark and analysis platform for natural language understanding <https://openreview.net/pdf?id=rJ4km2R5t7>`__
This library hosts a total of 10 processors for the following tasks: MRPC, MNLI, MNLI (mismatched),
CoLA, SST2, STSB, QQP, QNLI, RTE and WNLI.
Those processors are:
- :class:`~pytorch_transformers.data.processors.utils.MrpcProcessor`
- :class:`~pytorch_transformers.data.processors.utils.MnliProcessor`
- :class:`~pytorch_transformers.data.processors.utils.MnliMismatchedProcessor`
- :class:`~pytorch_transformers.data.processors.utils.Sst2Processor`
- :class:`~pytorch_transformers.data.processors.utils.StsbProcessor`
- :class:`~pytorch_transformers.data.processors.utils.QqpProcessor`
- :class:`~pytorch_transformers.data.processors.utils.QnliProcessor`
- :class:`~pytorch_transformers.data.processors.utils.RteProcessor`
- :class:`~pytorch_transformers.data.processors.utils.WnliProcessor`
Additionally, the following method can be used to load values from a data file and convert them to a list of
:class:`~pytorch_transformers.data.processors.utils.InputExample`.
.. automethod:: pytorch_transformers.data.processors.glue.glue_convert_examples_to_features
Example usage
^^^^^^^^^^^^^^^^^^^^^^^^^
An example using these processors is given in the
`run_glue.py <https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_glue.py>`__ script.

View File

@ -0,0 +1,16 @@
Tokenizer
----------------------------------------------------
The base class ``PreTrainedTokenizer`` implements the common methods for loading/saving a tokenizer either from a local file or directory, or from a pretrained tokenizer provided by the library (downloaded from HuggingFace's AWS S3 repository).
``PreTrainedTokenizer`` is the main entry point into tokenizers as it also implements the main methods for using all the tokenizers:
- tokenizing, converting tokens to ids and back and encoding/decoding,
- adding new tokens to the vocabulary in a way that is independant of the underlying structure (BPE, SentencePiece...),
- managing special tokens (adding them, assigning them to roles, making sure they are not split during tokenization)
``PreTrainedTokenizer``
~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.PreTrainedTokenizer
:members:

109
docs/source/migration.md Normal file
View File

@ -0,0 +1,109 @@
# Migrating from pytorch-pretrained-bert
Here is a quick summary of what you should take care of when migrating from `pytorch-pretrained-bert` to `transformers`
### Models always output `tuples`
The main breaking change when migrating from `pytorch-pretrained-bert` to `transformers` is that the models forward method always outputs a `tuple` with various elements depending on the model and the configuration parameters.
The exact content of the tuples for each model are detailled in the models' docstrings and the [documentation](https://huggingface.co/transformers/).
In pretty much every case, you will be fine by taking the first element of the output as the output you previously used in `pytorch-pretrained-bert`.
Here is a `pytorch-pretrained-bert` to `transformers` conversion example for a `BertForSequenceClassification` classification model:
```python
# Let's load our model
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
# If you used to have this line in pytorch-pretrained-bert:
loss = model(input_ids, labels=labels)
# Now just use this line in transformers to extract the loss from the output tuple:
outputs = model(input_ids, labels=labels)
loss = outputs[0]
# In transformers you can also have access to the logits:
loss, logits = outputs[:2]
# And even the attention weigths if you configure the model to output them (and other outputs too, see the docstrings and documentation)
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=True)
outputs = model(input_ids, labels=labels)
loss, logits, attentions = outputs
```
### Serialization
Breaking change in the `from_pretrained()`method:
1. Models are now set in evaluation mode by default when instantiated with the `from_pretrained()` method. To train them don't forget to set them back in training mode (`model.train()`) to activate the dropout modules.
2. The additional `*inputs` and `**kwargs` arguments supplied to the `from_pretrained()` method used to be directly passed to the underlying model's class `__init__()` method. They are now used to update the model configuration attribute first which can break derived model classes build based on the previous `BertForSequenceClassification` examples. More precisely, the positional arguments `*inputs` provided to `from_pretrained()` are directly forwarded the model `__init__()` method while the keyword arguments `**kwargs` (i) which match configuration class attributes are used to update said attributes (ii) which don't match any configuration class attributes are forwarded to the model `__init__()` method.
Also, while not a breaking change, the serialization methods have been standardized and you probably should switch to the new method `save_pretrained(save_directory)` if you were using any other serialization method before.
Here is an example:
```python
### Let's load a model and tokenizer
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
### Do some stuff to our model and tokenizer
# Ex: add new tokens to the vocabulary and embeddings of our model
tokenizer.add_tokens(['[SPECIAL_TOKEN_1]', '[SPECIAL_TOKEN_2]'])
model.resize_token_embeddings(len(tokenizer))
# Train our model
train(model)
### Now let's save our model and tokenizer to a directory
model.save_pretrained('./my_saved_model_directory/')
tokenizer.save_pretrained('./my_saved_model_directory/')
### Reload the model and the tokenizer
model = BertForSequenceClassification.from_pretrained('./my_saved_model_directory/')
tokenizer = BertTokenizer.from_pretrained('./my_saved_model_directory/')
```
### Optimizers: BertAdam & OpenAIAdam are now AdamW, schedules are standard PyTorch schedules
The two optimizers previously included, `BertAdam` and `OpenAIAdam`, have been replaced by a single `AdamW` optimizer which has a few differences:
- it only implements weights decay correction,
- schedules are now externals (see below),
- gradient clipping is now also external (see below).
The new optimizer `AdamW` matches PyTorch `Adam` optimizer API and let you use standard PyTorch or apex methods for the schedule and clipping.
The schedules are now standard [PyTorch learning rate schedulers](https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate) and not part of the optimizer anymore.
Here is a conversion examples from `BertAdam` with a linear warmup and decay schedule to `AdamW` and the same schedule:
```python
# Parameters:
lr = 1e-3
max_grad_norm = 1.0
num_total_steps = 1000
num_warmup_steps = 100
warmup_proportion = float(num_warmup_steps) / float(num_total_steps) # 0.1
### Previously BertAdam optimizer was instantiated like this:
optimizer = BertAdam(model.parameters(), lr=lr, schedule='warmup_linear', warmup=warmup_proportion, t_total=num_total_steps)
### and used like this:
for batch in train_data:
loss = model(batch)
loss.backward()
optimizer.step()
### In Transformers, optimizer and schedules are splitted and instantiated like this:
optimizer = AdamW(model.parameters(), lr=lr, correct_bias=False) # To reproduce BertAdam specific behavior set correct_bias=False
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=num_warmup_steps, t_total=num_total_steps) # PyTorch scheduler
### and used like this:
for batch in train_data:
loss = model(batch)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm) # Gradient clipping is not in AdamW anymore (so you can use amp without issue)
scheduler.step()
optimizer.step()
```

View File

@ -0,0 +1,29 @@
AutoModels
-----------
In many cases, the architecture you want to use can be guessed from the name or the path of the pretrained model you are supplying to the ``from_pretrained`` method.
AutoClasses are here to do this job for you so that you automatically retreive the relevant model given the name/path to the pretrained weights/config/vocabulary:
Instantiating one of ``AutoModel``, ``AutoConfig`` and ``AutoTokenizer`` will directly create a class of the relevant architecture (ex: ``model = AutoModel.from_pretrained('bert-base-cased')`` will create a instance of ``BertModel``).
``AutoConfig``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.AutoConfig
:members:
``AutoModel``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.AutoModel
:members:
``AutoTokenizer``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.AutoTokenizer
:members:

View File

@ -0,0 +1,128 @@
BERT
----------------------------------------------------
``BertConfig``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertConfig
:members:
``BertTokenizer``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertTokenizer
:members:
``BertModel``
~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertModel
:members:
``BertForPreTraining``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForPreTraining
:members:
``BertForMaskedLM``
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForMaskedLM
:members:
``BertForNextSentencePrediction``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForNextSentencePrediction
:members:
``BertForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForSequenceClassification
:members:
``BertForMultipleChoice``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForMultipleChoice
:members:
``BertForTokenClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForTokenClassification
:members:
``BertForQuestionAnswering``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertForQuestionAnswering
:members:
``TFBertModel``
~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFBertModel
:members:
``TFBertForPreTraining``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFBertForPreTraining
:members:
``TFBertForMaskedLM``
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFBertForMaskedLM
:members:
``TFBertForNextSentencePrediction``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFBertForNextSentencePrediction
:members:
``TFBertForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFBertForSequenceClassification
:members:
``TFBertForMultipleChoice``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFBertForMultipleChoice
:members:
``TFBertForTokenClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFBertForTokenClassification
:members:
``TFBertForQuestionAnswering``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFBertForQuestionAnswering
:members:

View File

@ -0,0 +1,70 @@
DistilBERT
----------------------------------------------------
``DistilBertConfig``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertConfig
:members:
``DistilBertTokenizer``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertTokenizer
:members:
``DistilBertModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertModel
:members:
``DistilBertForMaskedLM``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertForMaskedLM
:members:
``DistilBertForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertForSequenceClassification
:members:
``DistilBertForQuestionAnswering``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertForQuestionAnswering
:members:
``TFDistilBertModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFDistilBertModel
:members:
``TFDistilBertForMaskedLM``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFDistilBertForMaskedLM
:members:
``TFDistilBertForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFDistilBertForSequenceClassification
:members:
``TFDistilBertForQuestionAnswering``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFDistilBertForQuestionAnswering
:members:

View File

@ -0,0 +1,57 @@
OpenAI GPT
----------------------------------------------------
``OpenAIGPTConfig``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.OpenAIGPTConfig
:members:
``OpenAIGPTTokenizer``
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.OpenAIGPTTokenizer
:members:
``OpenAIGPTModel``
~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.OpenAIGPTModel
:members:
``OpenAIGPTLMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.OpenAIGPTLMHeadModel
:members:
``OpenAIGPTDoubleHeadsModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.OpenAIGPTDoubleHeadsModel
:members:
``TFOpenAIGPTModel``
~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFOpenAIGPTModel
:members:
``TFOpenAIGPTLMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFOpenAIGPTLMHeadModel
:members:
``TFOpenAIGPTDoubleHeadsModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFOpenAIGPTDoubleHeadsModel
:members:

View File

@ -0,0 +1,57 @@
OpenAI GPT2
----------------------------------------------------
``GPT2Config``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.GPT2Config
:members:
``GPT2Tokenizer``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.GPT2Tokenizer
:members:
``GPT2Model``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.GPT2Model
:members:
``GPT2LMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.GPT2LMHeadModel
:members:
``GPT2DoubleHeadsModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.GPT2DoubleHeadsModel
:members:
``TFGPT2Model``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFGPT2Model
:members:
``TFGPT2LMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFGPT2LMHeadModel
:members:
``TFGPT2DoubleHeadsModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFGPT2DoubleHeadsModel
:members:

View File

@ -0,0 +1,57 @@
RoBERTa
----------------------------------------------------
``RobertaConfig``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaConfig
:members:
``RobertaTokenizer``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaTokenizer
:members:
``RobertaModel``
~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaModel
:members:
``RobertaForMaskedLM``
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaForMaskedLM
:members:
``RobertaForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaForSequenceClassification
:members:
``TFRobertaModel``
~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFRobertaModel
:members:
``TFRobertaForMaskedLM``
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFRobertaForMaskedLM
:members:
``TFRobertaForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFRobertaForSequenceClassification
:members:

View File

@ -0,0 +1,44 @@
Transformer XL
----------------------------------------------------
``TransfoXLConfig``
~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TransfoXLConfig
:members:
``TransfoXLTokenizer``
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TransfoXLTokenizer
:members:
``TransfoXLModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TransfoXLModel
:members:
``TransfoXLLMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TransfoXLLMHeadModel
:members:
``TFTransfoXLModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFTransfoXLModel
:members:
``TFTransfoXLLMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFTransfoXLLMHeadModel
:members:

View File

@ -0,0 +1,69 @@
XLM
----------------------------------------------------
``XLMConfig``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMConfig
:members:
``XLMTokenizer``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMTokenizer
:members:
``XLMModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMModel
:members:
``XLMWithLMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMWithLMHeadModel
:members:
``XLMForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMForSequenceClassification
:members:
``XLMForQuestionAnswering``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMForQuestionAnswering
:members:
``TFXLMModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFXLMModel
:members:
``TFXLMWithLMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFXLMWithLMHeadModel
:members:
``TFXLMForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFXLMForSequenceClassification
:members:
``TFXLMForQuestionAnsweringSimple``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFXLMForQuestionAnsweringSimple
:members:

View File

@ -0,0 +1,71 @@
XLNet
----------------------------------------------------
``XLNetConfig``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetConfig
:members:
``XLNetTokenizer``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetTokenizer
:members:
``XLNetModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetModel
:members:
``XLNetLMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetLMHeadModel
:members:
``XLNetForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetForSequenceClassification
:members:
``XLNetForQuestionAnswering``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetForQuestionAnswering
:members:
``TFXLNetModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFXLNetModel
:members:
``TFXLNetLMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFXLNetLMHeadModel
:members:
``TFXLNetForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFXLNetForSequenceClassification
:members:
``TFXLNetForQuestionAnsweringSimple``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.TFXLNetForQuestionAnsweringSimple
:members:

16
docs/source/notebooks.rst Normal file
View File

@ -0,0 +1,16 @@
Notebooks
================================================
We include `three Jupyter Notebooks <https://github.com/huggingface/transformers/tree/master/notebooks>`_ that can be used to check that the predictions of the PyTorch model are identical to the predictions of the original TensorFlow model.
*
The first NoteBook (\ `Comparing-TF-and-PT-models.ipynb <https://github.com/huggingface/transformers/blob/master/notebooks/Comparing-TF-and-PT-models.ipynb>`_\ ) extracts the hidden states of a full sequence on each layers of the TensorFlow and the PyTorch models and computes the standard deviation between them. In the given example, we get a standard deviation of 1.5e-7 to 9e-7 on the various hidden state of the models.
*
The second NoteBook (\ `Comparing-TF-and-PT-models-SQuAD.ipynb <https://github.com/huggingface/transformers/blob/master/notebooks/Comparing-TF-and-PT-models-SQuAD.ipynb>`_\ ) compares the loss computed by the TensorFlow and the PyTorch models for identical initialization of the fine-tuning layer of the ``BertForQuestionAnswering`` and computes the standard deviation between them. In the given example, we get a standard deviation of 2.5e-7 between the models.
*
The third NoteBook (\ `Comparing-TF-and-PT-models-MLM-NSP.ipynb <https://github.com/huggingface/transformers/blob/master/notebooks/Comparing-TF-and-PT-models-MLM-NSP.ipynb>`_\ ) compares the predictions computed by the TensorFlow and the PyTorch models for masked token language modeling using the pre-trained masked language modeling model.
Please follow the instructions given in the notebooks to run and modify them.

View File

@ -0,0 +1,123 @@
Pretrained models
================================================
Here is the full list of the currently provided pretrained models together with a short presentation of each model.
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| Architecture | Shortcut name | Details of the model |
+===================+============================================================+=======================================================================================================================================+
| BERT | ``bert-base-uncased`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | Trained on lower-cased English text. |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-large-uncased`` | | 24-layer, 1024-hidden, 16-heads, 340M parameters. |
| | | | Trained on lower-cased English text. |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-base-cased`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | Trained on cased English text. |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-large-cased`` | | 24-layer, 1024-hidden, 16-heads, 340M parameters. |
| | | | Trained on cased English text. |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-base-multilingual-uncased`` | | (Original, not recommended) 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | Trained on lower-cased text in the top 102 languages with the largest Wikipedias |
| | | (see `details <https://github.com/google-research/bert/blob/master/multilingual.md>`__). |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-base-multilingual-cased`` | | (New, **recommended**) 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | Trained on cased text in the top 104 languages with the largest Wikipedias |
| | | (see `details <https://github.com/google-research/bert/blob/master/multilingual.md>`__). |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-base-chinese`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | Trained on cased Chinese Simplified and Traditional text. |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-base-german-cased`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | Trained on cased German text by Deepset.ai |
| | | (see `details on deepset.ai website <https://deepset.ai/german-bert>`__). |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-large-uncased-whole-word-masking`` | | 24-layer, 1024-hidden, 16-heads, 340M parameters. |
| | | | Trained on lower-cased English text using Whole-Word-Masking |
| | | (see `details <https://github.com/google-research/bert/#bert>`__). |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-large-cased-whole-word-masking`` | | 24-layer, 1024-hidden, 16-heads, 340M parameters. |
| | | | Trained on cased English text using Whole-Word-Masking |
| | | (see `details <https://github.com/google-research/bert/#bert>`__). |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-large-uncased-whole-word-masking-finetuned-squad`` | | 24-layer, 1024-hidden, 16-heads, 340M parameters. |
| | | | The ``bert-large-uncased-whole-word-masking`` model fine-tuned on SQuAD |
| | | (see details of fine-tuning in the `example section <https://github.com/huggingface/transformers/tree/master/examples>`__). |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-large-cased-whole-word-masking-finetuned-squad`` | | 24-layer, 1024-hidden, 16-heads, 340M parameters |
| | | | The ``bert-large-cased-whole-word-masking`` model fine-tuned on SQuAD |
| | | (see `details of fine-tuning in the example section <https://huggingface.co/transformers/examples.html>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-base-cased-finetuned-mrpc`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | The ``bert-base-cased`` model fine-tuned on MRPC |
| | | (see `details of fine-tuning in the example section <https://huggingface.co/transformers/examples.html>`__) |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| GPT | ``openai-gpt`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | OpenAI GPT English model |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| GPT-2 | ``gpt2`` | | 12-layer, 768-hidden, 12-heads, 117M parameters. |
| | | | OpenAI GPT-2 English model |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``gpt2-medium`` | | 24-layer, 1024-hidden, 16-heads, 345M parameters. |
| | | | OpenAI's Medium-sized GPT-2 English model |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``gpt2-large`` | | 36-layer, 1280-hidden, 20-heads, 774M parameters. |
| | | | OpenAI's Large-sized GPT-2 English model |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| Transformer-XL | ``transfo-xl-wt103`` | | 18-layer, 1024-hidden, 16-heads, 257M parameters. |
| | | | English model trained on wikitext-103 |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| XLNet | ``xlnet-base-cased`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | XLNet English model |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``xlnet-large-cased`` | | 24-layer, 1024-hidden, 16-heads, 340M parameters. |
| | | | XLNet Large English model |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| XLM | ``xlm-mlm-en-2048`` | | 12-layer, 2048-hidden, 16-heads |
| | | | XLM English model |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``xlm-mlm-ende-1024`` | | 6-layer, 1024-hidden, 8-heads |
| | | | XLM English-German model trained on the concatenation of English and German wikipedia |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``xlm-mlm-enfr-1024`` | | 6-layer, 1024-hidden, 8-heads |
| | | | XLM English-French model trained on the concatenation of English and French wikipedia |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``xlm-mlm-enro-1024`` | | 6-layer, 1024-hidden, 8-heads |
| | | | XLM English-Romanian Multi-language model |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``xlm-mlm-xnli15-1024`` | | 12-layer, 1024-hidden, 8-heads |
| | | | XLM Model pre-trained with MLM on the `15 XNLI languages <https://github.com/facebookresearch/XNLI>`__. |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``xlm-mlm-tlm-xnli15-1024`` | | 12-layer, 1024-hidden, 8-heads |
| | | | XLM Model pre-trained with MLM + TLM on the `15 XNLI languages <https://github.com/facebookresearch/XNLI>`__. |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``xlm-clm-enfr-1024`` | | 6-layer, 1024-hidden, 8-heads |
| | | | XLM English-French model trained with CLM (Causal Language Modeling) on the concatenation of English and French wikipedia |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``xlm-clm-ende-1024`` | | 6-layer, 1024-hidden, 8-heads |
| | | | XLM English-German model trained with CLM (Causal Language Modeling) on the concatenation of English and German wikipedia |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| RoBERTa | ``roberta-base`` | | 12-layer, 768-hidden, 12-heads, 125M parameters |
| | | | RoBERTa using the BERT-base architecture |
| | | (see `details <https://github.com/pytorch/fairseq/tree/master/examples/roberta>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``roberta-large`` | | 24-layer, 1024-hidden, 16-heads, 355M parameters |
| | | | RoBERTa using the BERT-large architecture |
| | | (see `details <https://github.com/pytorch/fairseq/tree/master/examples/roberta>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``roberta-large-mnli`` | | 24-layer, 1024-hidden, 16-heads, 355M parameters |
| | | | ``roberta-large`` fine-tuned on `MNLI <http://www.nyu.edu/projects/bowman/multinli/>`__. |
| | | (see `details <https://github.com/pytorch/fairseq/tree/master/examples/roberta>`__) |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| DistilBERT | ``distilbert-base-uncased`` | | 6-layer, 768-hidden, 12-heads, 66M parameters |
| | | | The DistilBERT model distilled from the BERT model `bert-base-uncased` checkpoint |
| | | (see `details <https://medium.com/huggingface/distilbert-8cf3380435b5>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``distilbert-base-uncased-distilled-squad`` | | 6-layer, 768-hidden, 12-heads, 66M parameters |
| | | | The DistilBERT model distilled from the BERT model `bert-base-uncased` checkpoint, with an additional linear layer. |
| | | (see `details <https://medium.com/huggingface/distilbert-8cf3380435b5>`__) |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
.. <https://huggingface.co/transformers/examples.html>`__

190
docs/source/quickstart.md Normal file
View File

@ -0,0 +1,190 @@
# Quickstart
## Philosophy
Transformers is an opinionated library built for NLP researchers seeking to use/study/extend large-scale transformers models.
The library was designed with two strong goals in mind:
- be as easy and fast to use as possible:
- we strongly limited the number of user-facing abstractions to learn, in fact there are almost no abstractions, just three standard classes required to use each model: configuration, models and tokenizer,
- all of these classes can be initialized in a simple and unified way from pretrained instances by using a common `from_pretrained()` instantiation method which will take care of downloading (if needed), caching and loading the related class from a pretrained instance supplied in the library or your own saved instance.
- as a consequence, this library is NOT a modular toolbox of building blocks for neural nets. If you want to extend/build-upon the library, just use regular Python/PyTorch modules and inherit from the base classes of the library to reuse functionalities like model loading/saving.
- provide state-of-the-art models with performances as close as possible to the original models:
- we provide at least one example for each architecture which reproduces a result provided by the official authors of said architecture,
- the code is usually as close to the original code base as possible which means some PyTorch code may be not as *pytorchic* as it could be as a result of being converted TensorFlow code.
A few other goals:
- expose the models internals as consistently as possible:
- we give access, using a single API to the full hidden-states and attention weights,
- tokenizer and base model's API are standardized to easily switch between models.
- incorporate a subjective selection of promising tools for fine-tuning/investiguating these models:
- a simple/consistent way to add new tokens to the vocabulary and embeddings for fine-tuning,
- simple ways to mask and prune transformer heads.
## Main concepts
The library is build around three type of classes for each models:
- **model classes** which are PyTorch models (`torch.nn.Modules`) of the 6 models architectures currently provided in the library, e.g. `BertModel`
- **configuration classes** which store all the parameters required to build a model, e.g. `BertConfig`. You don't always need to instantiate these your-self, in particular if you are using a pretrained model without any modification, creating the model will automatically take care of instantiating the configuration (which is part of the model)
- **tokenizer classes** which store the vocabulary for each model and provide methods for encoding/decoding strings in list of token embeddings indices to be fed to a model, e.g. `BertTokenizer`
All these classes can be instantiated from pretrained instances and saved locally using two methods:
- `from_pretrained()` let you instantiate a model/configuration/tokenizer from a pretrained version either provided by the library itself (currently 27 models are provided as listed [here](https://huggingface.co/transformers/pretrained_models.html)) or stored locally (or on a server) by the user,
- `save_pretrained()` let you save a model/configuration/tokenizer locally so that it can be reloaded using `from_pretrained()`.
We'll finish this quickstart tour by going through a few simple quick-start examples to see how we can instantiate and use these classes. The rest of the documentation is organized in two parts:
- the **MAIN CLASSES** section details the common functionalities/method/attributes of the three main type of classes (configuration, model, tokenizer) plus some optimization related classes provided as utilities for training,
- the **PACKAGE REFERENCE** section details all the variants of each class for each model architectures and in particular the input/output that you should expect when calling each of them.
## Quick tour: Usage
Here are two examples showcasing a few `Bert` and `GPT2` classes and pre-trained models.
See full API reference for examples for each model classe.
### BERT example
Let's start by preparing a tokenized input (a list of token embeddings indices to be fed to Bert) from a text string using `BertTokenizer`
```python
import torch
from transformers import BertTokenizer, BertModel, BertForMaskedLM
# OPTIONAL: if you want to have more information on what's happening under the hood, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# Tokenize input
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = tokenizer.tokenize(text)
# Mask a token that we will try to predict back with `BertForMaskedLM`
masked_index = 8
tokenized_text[masked_index] = '[MASK]'
assert tokenized_text == ['[CLS]', 'who', 'was', 'jim', 'henson', '?', '[SEP]', 'jim', '[MASK]', 'was', 'a', 'puppet', '##eer', '[SEP]']
# Convert token to vocabulary indices
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
# Define sentence A and B indices associated to 1st and 2nd sentences (see paper)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
# Convert inputs to PyTorch tensors
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
```
Let's see how we can use `BertModel` to encode our inputs in hidden-states:
```python
# Load pre-trained model (weights)
model = BertModel.from_pretrained('bert-base-uncased')
# Set the model in evaluation mode to desactivate the DropOut modules
# This is IMPORTANT to have reproductible results during evaluation!
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
segments_tensors = segments_tensors.to('cuda')
model.to('cuda')
# Predict hidden states features for each layer
with torch.no_grad():
# See the models docstrings for the detail of the inputs
outputs = model(tokens_tensor, token_type_ids=segments_tensors)
# Transformers models always output tuples.
# See the models docstrings for the detail of all the outputs
# In our case, the first element is the hidden state of the last layer of the Bert model
encoded_layers = outputs[0]
# We have encoded our input sequence in a FloatTensor of shape (batch size, sequence length, model hidden dimension)
assert tuple(encoded_layers.shape) == (1, len(indexed_tokens), model.config.hidden_size)
```
And how to use `BertForMaskedLM` to predict a masked token:
```python
# Load pre-trained model (weights)
model = BertForMaskedLM.from_pretrained('bert-base-uncased')
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
segments_tensors = segments_tensors.to('cuda')
model.to('cuda')
# Predict all tokens
with torch.no_grad():
outputs = model(tokens_tensor, token_type_ids=segments_tensors)
predictions = outputs[0]
# confirm we were able to predict 'henson'
predicted_index = torch.argmax(predictions[0, masked_index]).item()
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
assert predicted_token == 'henson'
```
### OpenAI GPT-2
Here is a quick-start example using `GPT2Tokenizer` and `GPT2LMHeadModel` class with OpenAI's pre-trained model to predict the next token from a text prompt.
First let's prepare a tokenized input from our text string using `GPT2Tokenizer`
```python
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary)
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# Encode a text inputs
text = "Who was Jim Henson ? Jim Henson was a"
indexed_tokens = tokenizer.encode(text)
# Convert indexed tokens in a PyTorch tensor
tokens_tensor = torch.tensor([indexed_tokens])
```
Let's see how to use `GPT2LMHeadModel` to generate the next token following our text:
```python
# Load pre-trained model (weights)
model = GPT2LMHeadModel.from_pretrained('gpt2')
# Set the model in evaluation mode to desactivate the DropOut modules
# This is IMPORTANT to have reproductible results during evaluation!
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
model.to('cuda')
# Predict all tokens
with torch.no_grad():
outputs = model(tokens_tensor)
predictions = outputs[0]
# get the predicted next sub-word (in our case, the word 'man')
predicted_index = torch.argmax(predictions[0, -1, :]).item()
predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])
assert predicted_text == 'Who was Jim Henson? Jim Henson was a man'
```
Examples for each model class of each model architecture (Bert, GPT, GPT-2, Transformer-XL, XLNet and XLM) can be found in the [documentation](#documentation).

View File

@ -0,0 +1,188 @@
Loading Google AI or OpenAI pre-trained weights or PyTorch dump
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``from_pretrained()`` method
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To load one of Google AI's, OpenAI's pre-trained models or a PyTorch saved model (an instance of ``BertForPreTraining`` saved with ``torch.save()``\ ), the PyTorch model classes and the tokenizer can be instantiated using the ``from_pretrained()`` method:
.. code-block:: python
model = BERT_CLASS.from_pretrained(PRE_TRAINED_MODEL_NAME_OR_PATH, cache_dir=None, from_tf=False, state_dict=None, *input, **kwargs)
where
* ``BERT_CLASS`` is either a tokenizer to load the vocabulary (\ ``BertTokenizer`` or ``OpenAIGPTTokenizer`` classes) or one of the eight BERT or three OpenAI GPT PyTorch model classes (to load the pre-trained weights): ``BertModel``\ , ``BertForMaskedLM``\ , ``BertForNextSentencePrediction``\ , ``BertForPreTraining``\ , ``BertForSequenceClassification``\ , ``BertForTokenClassification``\ , ``BertForMultipleChoice``\ , ``BertForQuestionAnswering``\ , ``OpenAIGPTModel``\ , ``OpenAIGPTLMHeadModel`` or ``OpenAIGPTDoubleHeadsModel``\ , and
*
``PRE_TRAINED_MODEL_NAME_OR_PATH`` is either:
*
the shortcut name of a Google AI's or OpenAI's pre-trained model selected in the list:
* ``bert-base-uncased``: 12-layer, 768-hidden, 12-heads, 110M parameters
* ``bert-large-uncased``: 24-layer, 1024-hidden, 16-heads, 340M parameters
* ``bert-base-cased``: 12-layer, 768-hidden, 12-heads , 110M parameters
* ``bert-large-cased``: 24-layer, 1024-hidden, 16-heads, 340M parameters
* ``bert-base-multilingual-uncased``: (Orig, not recommended) 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
* ``bert-base-multilingual-cased``: **(New, recommended)** 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
* ``bert-base-chinese``: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters
* ``bert-base-german-cased``: Trained on German data only, 12-layer, 768-hidden, 12-heads, 110M parameters `Performance Evaluation <https://deepset.ai/german-bert>`__
* ``bert-large-uncased-whole-word-masking``: 24-layer, 1024-hidden, 16-heads, 340M parameters - Trained with Whole Word Masking (mask all of the the tokens corresponding to a word at once)
* ``bert-large-cased-whole-word-masking``: 24-layer, 1024-hidden, 16-heads, 340M parameters - Trained with Whole Word Masking (mask all of the the tokens corresponding to a word at once)
* ``bert-large-uncased-whole-word-masking-finetuned-squad``: The ``bert-large-uncased-whole-word-masking`` model finetuned on SQuAD (using the ``run_bert_squad.py`` examples). Results: *exact_match: 86.91579943235573, f1: 93.1532499015869*
* ``openai-gpt``: OpenAI GPT English model, 12-layer, 768-hidden, 12-heads, 110M parameters
* ``gpt2``: OpenAI GPT-2 English model, 12-layer, 768-hidden, 12-heads, 117M parameters
* ``gpt2-medium``: OpenAI GPT-2 English model, 24-layer, 1024-hidden, 16-heads, 345M parameters
* ``transfo-xl-wt103``: Transformer-XL English model trained on wikitext-103, 18-layer, 1024-hidden, 16-heads, 257M parameters
*
a path or url to a pretrained model archive containing:
* ``bert_config.json`` or ``openai_gpt_config.json`` a configuration file for the model, and
* ``pytorch_model.bin`` a PyTorch dump of a pre-trained instance of ``BertForPreTraining``\ , ``OpenAIGPTModel``\ , ``TransfoXLModel``\ , ``GPT2LMHeadModel`` (saved with the usual ``torch.save()``\ )
If ``PRE_TRAINED_MODEL_NAME_OR_PATH`` is a shortcut name, the pre-trained weights will be downloaded from AWS S3 (see the links `here <https://github.com/huggingface/transformers/blob/master/transformers/modeling_bert.py>`__\ ) and stored in a cache folder to avoid future download (the cache folder can be found at ``~/.pytorch_pretrained_bert/``\ ).
*
``cache_dir`` can be an optional path to a specific directory to download and cache the pre-trained model weights. This option is useful in particular when you are using distributed training: to avoid concurrent access to the same weights you can set for example ``cache_dir='./pretrained_model_{}'.format(args.local_rank)`` (see the section on distributed training for more information).
* ``from_tf``\ : should we load the weights from a locally saved TensorFlow checkpoint
* ``state_dict``\ : an optional state dictionary (collections.OrderedDict object) to use instead of Google pre-trained models
* ``*inputs``\ , `**kwargs`: additional input for the specific Bert class (ex: num_labels for BertForSequenceClassification)
``Uncased`` means that the text has been lowercased before WordPiece tokenization, e.g., ``John Smith`` becomes ``john smith``. The Uncased model also strips out any accent markers. ``Cased`` means that the true case and accent markers are preserved. Typically, the Uncased model is better unless you know that case information is important for your task (e.g., Named Entity Recognition or Part-of-Speech tagging). For information about the Multilingual and Chinese model, see the `Multilingual README <https://github.com/google-research/bert/blob/master/multilingual.md>`__ or the original TensorFlow repository.
When using an ``uncased model``\ , make sure to pass ``--do_lower_case`` to the example training scripts (or pass ``do_lower_case=True`` to FullTokenizer if you're using your own script and loading the tokenizer your-self.).
Examples:
.. code-block:: python
# BERT
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True, do_basic_tokenize=True)
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
# OpenAI GPT
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTModel.from_pretrained('openai-gpt')
# Transformer-XL
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
# OpenAI GPT-2
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2Model.from_pretrained('gpt2')
Cache directory
~~~~~~~~~~~~~~~
``pytorch_pretrained_bert`` save the pretrained weights in a cache directory which is located at (in this order of priority):
* ``cache_dir`` optional arguments to the ``from_pretrained()`` method (see above),
* shell environment variable ``PYTORCH_PRETRAINED_BERT_CACHE``\ ,
* PyTorch cache home + ``/pytorch_pretrained_bert/``
where PyTorch cache home is defined by (in this order):
* shell environment variable ``ENV_TORCH_HOME``
* shell environment variable ``ENV_XDG_CACHE_HOME`` + ``/torch/``\ )
* default: ``~/.cache/torch/``
Usually, if you don't set any specific environment variable, ``pytorch_pretrained_bert`` cache will be at ``~/.cache/torch/pytorch_pretrained_bert/``.
You can alsways safely delete ``pytorch_pretrained_bert`` cache but the pretrained model weights and vocabulary files wil have to be re-downloaded from our S3.
Serialization best-practices
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This section explain how you can save and re-load a fine-tuned model (BERT, GPT, GPT-2 and Transformer-XL).
There are three types of files you need to save to be able to reload a fine-tuned model:
* the model it-self which should be saved following PyTorch serialization `best practices <https://pytorch.org/docs/stable/notes/serialization.html#best-practices>`__\ ,
* the configuration file of the model which is saved as a JSON file, and
* the vocabulary (and the merges for the BPE-based models GPT and GPT-2).
The *default filenames* of these files are as follow:
* the model weights file: ``pytorch_model.bin``\ ,
* the configuration file: ``config.json``\ ,
* the vocabulary file: ``vocab.txt`` for BERT and Transformer-XL, ``vocab.json`` for GPT/GPT-2 (BPE vocabulary),
* for GPT/GPT-2 (BPE vocabulary) the additional merges file: ``merges.txt``.
**If you save a model using these *default filenames*\ , you can then re-load the model and tokenizer using the ``from_pretrained()`` method.**
Here is the recommended way of saving the model, configuration and vocabulary to an ``output_dir`` directory and reloading the model and tokenizer afterwards:
.. code-block:: python
from transformers import WEIGHTS_NAME, CONFIG_NAME
output_dir = "./models/"
# Step 1: Save a model, configuration and vocabulary that you have fine-tuned
# If we have a distributed model, save only the encapsulated model
# (it was wrapped in PyTorch DistributedDataParallel or DataParallel)
model_to_save = model.module if hasattr(model, 'module') else model
# If we save using the predefined names, we can load using `from_pretrained`
output_model_file = os.path.join(output_dir, WEIGHTS_NAME)
output_config_file = os.path.join(output_dir, CONFIG_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(output_dir)
# Step 2: Re-load the saved model and vocabulary
# Example for a Bert model
model = BertForQuestionAnswering.from_pretrained(output_dir)
tokenizer = BertTokenizer.from_pretrained(output_dir, do_lower_case=args.do_lower_case) # Add specific options if needed
# Example for a GPT model
model = OpenAIGPTDoubleHeadsModel.from_pretrained(output_dir)
tokenizer = OpenAIGPTTokenizer.from_pretrained(output_dir)
Here is another way you can save and reload the model if you want to use specific paths for each type of files:
.. code-block:: python
output_model_file = "./models/my_own_model_file.bin"
output_config_file = "./models/my_own_config_file.bin"
output_vocab_file = "./models/my_own_vocab_file.bin"
# Step 1: Save a model, configuration and vocabulary that you have fine-tuned
# If we have a distributed model, save only the encapsulated model
# (it was wrapped in PyTorch DistributedDataParallel or DataParallel)
model_to_save = model.module if hasattr(model, 'module') else model
torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(output_vocab_file)
# Step 2: Re-load the saved model and vocabulary
# We didn't save using the predefined WEIGHTS_NAME, CONFIG_NAME names, we cannot load using `from_pretrained`.
# Here is how to do it in this situation:
# Example for a Bert model
config = BertConfig.from_json_file(output_config_file)
model = BertForQuestionAnswering(config)
state_dict = torch.load(output_model_file)
model.load_state_dict(state_dict)
tokenizer = BertTokenizer(output_vocab_file, do_lower_case=args.do_lower_case)
# Example for a GPT model
config = OpenAIGPTConfig.from_json_file(output_config_file)
model = OpenAIGPTDoubleHeadsModel(config)
state_dict = torch.load(output_model_file)
model.load_state_dict(state_dict)
tokenizer = OpenAIGPTTokenizer(output_vocab_file)

135
docs/source/torchscript.rst Normal file
View File

@ -0,0 +1,135 @@
TorchScript
================================================
.. note::
This is the very beginning of our experiments with TorchScript and we are still exploring its capabilities
with variable-input-size models. It is a focus of interest to us and we will deepen our analysis in upcoming
releases, with more code examples, a more flexible implementation, and benchmarks comparing python-based codes
with compiled TorchScript.
According to Pytorch's documentation: "TorchScript is a way to create serializable and optimizable models from PyTorch code".
Pytorch's two modules `JIT and TRACE <https://pytorch.org/docs/stable/jit.html>`_ allow the developer to export
their model to be re-used in other programs, such as efficiency-oriented C++ programs.
We have provided an interface that allows the export of `transformers` models to TorchScript so that they can
be reused in a different environment than a Pytorch-based python program. Here we explain how to use our models so that
they can be exported, and what to be mindful of when using these models with TorchScript.
Exporting a model needs two things:
* dummy inputs to execute a model forward pass.
* the model needs to be instantiated with the ``torchscript`` flag.
These necessities imply several things developers should be careful about. These are detailed below.
Implications
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TorchScript flag and tied weights
------------------------------------------------
This flag is necessary because most of the language models in this repository have tied weights between their
``Embedding`` layer and their ``Decoding`` layer. TorchScript does not allow the export of models that have tied weights,
it is therefore necessary to untie the weights beforehand.
This implies that models instantiated with the ``torchscript`` flag have their ``Embedding`` layer and ``Decoding`` layer
separate, which means that they should not be trained down the line. Training would de-synchronize the two layers,
leading to unexpected results.
This is not the case for models that do not have a Language Model head, as those do not have tied weights. These models
can be safely exported without the ``torchscript`` flag.
Dummy inputs and standard lengths
------------------------------------------------
The dummy inputs are used to do a model forward pass. While the inputs' values are propagating through the layers,
Pytorch keeps track of the different operations executed on each tensor. These recorded operations are then used
to create the "trace" of the model.
The trace is created relatively to the inputs' dimensions. It is therefore constrained by the dimensions of the dummy
input, and will not work for any other sequence length or batch size. When trying with a different size, an error such
as:
``The expanded size of the tensor (3) must match the existing size (7) at non-singleton dimension 2``
will be raised. It is therefore recommended to trace the model with a dummy input size at least as large as the largest
input that will be fed to the model during inference. Padding can be performed to fill the missing values. As the model
will have been traced with a large input size however, the dimensions of the different matrix will be large as well,
resulting in more calculations.
It is recommended to be careful of the total number of operations done on each input and to follow performance closely
when exporting varying sequence-length models.
Using TorchScript in Python
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Below are examples of using the Python to save, load models as well as how to use the trace for inference.
Saving a model
------------------------------------------------
This snippet shows how to use TorchScript to export a ``BertModel``. Here the ``BertModel`` is instantiated
according to a ``BertConfig`` class and then saved to disk under the filename ``traced_bert.pt``
.. code-block:: python
from transformers import BertModel, BertTokenizer, BertConfig
import torch
enc = BertTokenizer.from_pretrained("bert-base-uncased")
# Tokenizing input text
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = enc.tokenize(text)
# Masking one of the input tokens
masked_index = 8
tokenized_text[masked_index] = '[MASK]'
indexed_tokens = enc.convert_tokens_to_ids(tokenized_text)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
# Creating a dummy input
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
dummy_input = [tokens_tensor, segments_tensors]
# Initializing the model with the torchscript flag
# Flag set to True even though it is not necessary as this model does not have an LM Head.
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, torchscript=True)
# Instantiating the model
model = BertModel(config)
# The model needs to be in evaluation mode
model.eval()
# If you are instantiating the model with `from_pretrained` you can also easily set the TorchScript flag
model = BertModel.from_pretrained("bert-base-uncased", torchscript=True)
# Creating the trace
traced_model = torch.jit.trace(model, [tokens_tensor, segments_tensors])
torch.jit.save(traced_model, "traced_bert.pt")
Loading a model
------------------------------------------------
This snippet shows how to load the ``BertModel`` that was previously saved to disk under the name ``traced_bert.pt``.
We are re-using the previously initialised ``dummy_input``.
.. code-block:: python
loaded_model = torch.jit.load("traced_model.pt")
loaded_model.eval()
all_encoder_layers, pooled_output = loaded_model(dummy_input)
Using a traced model for inference
------------------------------------------------
Using the traced model for inference is as simple as using its ``__call__`` dunder method:
.. code-block:: python
traced_model(tokens_tensor, segments_tensors)

392
examples/README.md Normal file
View File

@ -0,0 +1,392 @@
# Examples
In this section a few examples are put together. All of these examples work for several models, making use of the very
similar API between the different models.
| Section | Description |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Language Model fine-tuning](#language-model-fine-tuning) | Fine-tuning the library models for language modeling on a text dataset. Causal language modeling for GPT/GPT-2, masked language modeling for BERT/RoBERTa. |
| [Language Generation](#language-generation) | Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL and XLNet. |
| [GLUE](#glue) | Examples running BERT/XLM/XLNet/RoBERTa on the 9 GLUE tasks. Examples feature distributed training as well as half-precision. |
| [SQuAD](#squad) | Using BERT for question answering, examples with distributed training. |
| [Multiple Choice](#multiple choice) | Examples running BERT/XLNet/RoBERTa on the SWAG/RACE/ARC tasks.
## Language model fine-tuning
Based on the script [`run_lm_finetuning.py`](https://github.com/huggingface/transformers/blob/master/examples/run_lm_finetuning.py).
Fine-tuning the library models for language modeling on a text dataset for GPT, GPT-2, BERT and RoBERTa (DistilBERT
to be added soon). GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa
are fine-tuned using a masked language modeling (MLM) loss.
Before running the following example, you should get a file that contains text on which the language model will be
fine-tuned. A good example of such text is the [WikiText-2 dataset](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/).
We will refer to two different files: `$TRAIN_FILE`, which contains text for training, and `$TEST_FILE`, which contains
text that will be used for evaluation.
### GPT-2/GPT and causal language modeling
The following example fine-tunes GPT-2 on WikiText-2. We're using the raw WikiText-2 (no tokens were replaced before
the tokenization). The loss here is that of causal language modeling.
```bash
export TRAIN_FILE=/path/to/dataset/wiki.train.raw
export TEST_FILE=/path/to/dataset/wiki.test.raw
python run_lm_finetuning.py \
--output_dir=output \
--model_type=gpt2 \
--model_name_or_path=gpt2 \
--do_train \
--train_data_file=$TRAIN_FILE \
--do_eval \
--eval_data_file=$TEST_FILE
```
This takes about half an hour to train on a single K80 GPU and about one minute for the evaluation to run. It reaches
a score of ~20 perplexity once fine-tuned on the dataset.
### RoBERTa/BERT and masked language modeling
The following example fine-tunes RoBERTa on WikiText-2. Here too, we're using the raw WikiText-2. The loss is different
as BERT/RoBERTa have a bidirectional mechanism; we're therefore using the same loss that was used during their
pre-training: masked language modeling.
In accordance to the RoBERTa paper, we use dynamic masking rather than static masking. The model may, therefore, converge
slightly slower (over-fitting takes more epochs).
We use the `--mlm` flag so that the script may change its loss function.
```bash
export TRAIN_FILE=/path/to/dataset/wiki.train.raw
export TEST_FILE=/path/to/dataset/wiki.test.raw
python run_lm_finetuning.py \
--output_dir=output \
--model_type=roberta \
--model_name_or_path=roberta-base \
--do_train \
--train_data_file=$TRAIN_FILE \
--do_eval \
--eval_data_file=$TEST_FILE \
--mlm
```
## Language generation
Based on the script [`run_generation.py`](https://github.com/huggingface/transformers/blob/master/examples/run_generation.py).
Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL and XLNet.
A similar script is used for our official demo [Write With Transfomer](https://transformer.huggingface.co), where you
can try out the different models available in the library.
Example usage:
```bash
python run_generation.py \
--model_type=gpt2 \
--model_name_or_path=gpt2
```
## GLUE
Based on the script [`run_glue.py`](https://github.com/huggingface/transformers/blob/master/examples/run_glue.py).
Fine-tuning the library models for sequence classification on the GLUE benchmark: [General Language Understanding
Evaluation](https://gluebenchmark.com/). This script can fine-tune the following models: BERT, XLM, XLNet and RoBERTa.
GLUE is made up of a total of 9 different tasks. We get the following results on the dev set of the benchmark with an
uncased BERT base model (the checkpoint `bert-base-uncased`). All experiments ran on 8 V100 GPUs with a total train
batch size of 24. Some of these tasks have a small dataset and training can lead to high variance in the results
between different runs. We report the median on 5 runs (with different seeds) for each of the metrics.
| Task | Metric | Result |
|-------|------------------------------|-------------|
| CoLA | Matthew's corr | 48.87 |
| SST-2 | Accuracy | 91.74 |
| MRPC | F1/Accuracy | 90.70/86.27 |
| STS-B | Person/Spearman corr. | 91.39/91.04 |
| QQP | Accuracy/F1 | 90.79/87.66 |
| MNLI | Matched acc./Mismatched acc. | 83.70/84.83 |
| QNLI | Accuracy | 89.31 |
| RTE | Accuracy | 71.43 |
| WNLI | Accuracy | 43.66 |
Some of these results are significantly different from the ones reported on the test set
of GLUE benchmark on the website. For QQP and WNLI, please refer to [FAQ #12](https://gluebenchmark.com/faq) on the webite.
Before running anyone of these GLUE tasks you should download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`.
```bash
export GLUE_DIR=/path/to/glue
export TASK_NAME=MRPC
python run_glue.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--task_name $TASK_NAME \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $GLUE_DIR/$TASK_NAME \
--max_seq_length 128 \
--per_gpu_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir /tmp/$TASK_NAME/
```
where task name can be one of CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, RTE, WNLI.
The dev set results will be present within the text file `eval_results.txt` in the specified output_dir.
In case of MNLI, since there are two separate dev sets (matched and mismatched), there will be a separate
output folder called `/tmp/MNLI-MM/` in addition to `/tmp/MNLI/`.
The code has not been tested with half-precision training with apex on any GLUE task apart from MRPC, MNLI,
CoLA, SST-2. The following section provides details on how to run half-precision training with MRPC. With that being
said, there shouldnt be any issues in running half-precision training with the remaining GLUE tasks as well,
since the data processor for each task inherits from the base class DataProcessor.
### MRPC
#### Fine-tuning example
The following examples fine-tune BERT on the Microsoft Research Paraphrase Corpus (MRPC) corpus and runs in less
than 10 minutes on a single K-80 and in 27 seconds (!) on single tesla V100 16GB with apex installed.
Before running anyone of these GLUE tasks you should download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`.
```bash
export GLUE_DIR=/path/to/glue
python run_glue.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--task_name MRPC \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $GLUE_DIR/MRPC/ \
--max_seq_length 128 \
--per_gpu_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir /tmp/mrpc_output/
```
Our test ran on a few seeds with [the original implementation hyper-
parameters](https://github.com/google-research/bert#sentence-and-sentence-pair-classification-tasks) gave evaluation
results between 84% and 88%.
#### Using Apex and mixed-precision
Using Apex and 16 bit precision, the fine-tuning on MRPC only takes 27 seconds. First install
[apex](https://github.com/NVIDIA/apex), then run the following example:
```bash
export GLUE_DIR=/path/to/glue
python run_glue.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--task_name MRPC \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $GLUE_DIR/MRPC/ \
--max_seq_length 128 \
--per_gpu_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir /tmp/mrpc_output/ \
--fp16
```
#### Distributed training
Here is an example using distributed training on 8 V100 GPUs. The model used is the BERT whole-word-masking and it
reaches F1 > 92 on MRPC.
```bash
export GLUE_DIR=/path/to/glue
python -m torch.distributed.launch \
--nproc_per_node 8 run_glue.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--task_name MRPC \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $GLUE_DIR/MRPC/ \
--max_seq_length 128 \
--per_gpu_train_batch_size 8 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir /tmp/mrpc_output/
```
Training with these hyper-parameters gave us the following results:
```bash
acc = 0.8823529411764706
acc_and_f1 = 0.901702786377709
eval_loss = 0.3418912578906332
f1 = 0.9210526315789473
global_step = 174
loss = 0.07231863956341798
```
### MNLI
The following example uses the BERT-large, uncased, whole-word-masking model and fine-tunes it on the MNLI task.
```bash
export GLUE_DIR=/path/to/glue
python -m torch.distributed.launch \
--nproc_per_node 8 run_glue.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--task_name mnli \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $GLUE_DIR/MNLI/ \
--max_seq_length 128 \
--per_gpu_train_batch_size 8 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir output_dir \
```
The results are the following:
```bash
***** Eval results *****
acc = 0.8679706601466992
eval_loss = 0.4911287787382479
global_step = 18408
loss = 0.04755385363816904
***** Eval results *****
acc = 0.8747965825874695
eval_loss = 0.45516540421714036
global_step = 18408
loss = 0.04755385363816904
```
##Multiple Choice
Based on the script [`run_multiple_choice.py`]().
#### Fine-tuning on SWAG
Download [swag](https://github.com/rowanz/swagaf/tree/master/data) data
```
#training on 4 tesla V100(16GB) GPUS
export SWAG_DIR=/path/to/swag_data_dir
python ./examples/single_model_scripts/run_multiple_choice.py \
--model_type roberta \
--task_name swag \
--model_name_or_path roberta-base \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $SWAG_DIR \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--max_seq_length 80 \
--output_dir models_bert/swag_base \
--per_gpu_eval_batch_size=16 \
--per_gpu_train_batch_size=16 \
--gradient_accumulation_steps 2 \
--overwrite_output
```
Training with the defined hyper-parameters yields the following results:
```
***** Eval results *****
eval_acc = 0.8338998300509847
eval_loss = 0.44457291918821606
```
## SQuAD
Based on the script [`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/run_squad.py).
#### Fine-tuning on SQuAD
This example code fine-tunes BERT on the SQuAD dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large)
on a single tesla V100 16GB. The data for SQuAD can be downloaded with the following links and should be saved in a
$SQUAD_DIR directory.
* [train-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json)
* [dev-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json)
* [evaluate-v1.1.py](https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py)
```bash
export SQUAD_DIR=/path/to/SQUAD
python run_squad.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--do_train \
--do_eval \
--do_lower_case \
--train_file $SQUAD_DIR/train-v1.1.json \
--predict_file $SQUAD_DIR/dev-v1.1.json \
--per_gpu_train_batch_size 12 \
--learning_rate 3e-5 \
--num_train_epochs 2.0 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir /tmp/debug_squad/
```
Training with the previously defined hyper-parameters yields the following results:
```bash
f1 = 88.52
exact_match = 81.22
```
#### Distributed training
Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD:
```bash
python -m torch.distributed.launch --nproc_per_node=8 run_squad.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--do_train \
--do_eval \
--do_lower_case \
--train_file $SQUAD_DIR/train-v1.1.json \
--predict_file $SQUAD_DIR/dev-v1.1.json \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ../models/wwm_uncased_finetuned_squad/ \
--per_gpu_train_batch_size 24 \
--gradient_accumulation_steps 12
```
Training with the previously defined hyper-parameters yields the following results:
```bash
f1 = 93.15
exact_match = 86.91
```
This fine-tuneds model is available as a checkpoint under the reference
`bert-large-uncased-whole-word-masking-finetuned-squad`.

View File

@ -0,0 +1,5 @@
# Community contributed examples
This folder contains examples which are not actively maintained (mostly contributed by the community).
Using these examples together with a recent version of the library usually requires to make small (sometimes big) adaptations to get the scripts working.

View File

@ -39,8 +39,9 @@ import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from pytorch_pretrained_bert import (OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer,
OpenAIAdam, cached_path, WEIGHTS_NAME, CONFIG_NAME)
from transformers import (OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer,
AdamW, cached_path, WEIGHTS_NAME, CONFIG_NAME,
WarmupLinearSchedule)
ROCSTORIES_URL = "https://s3.amazonaws.com/datasets.huggingface.co/ROCStories.tar.gz"
@ -83,8 +84,8 @@ def pre_process_datasets(encoded_datasets, input_len, cap_length, start_token, d
input_ids[i, 1, :len(with_cont2)] = with_cont2
mc_token_ids[i, 0] = len(with_cont1) - 1
mc_token_ids[i, 1] = len(with_cont2) - 1
lm_labels[i, 0, :len(with_cont1)-1] = with_cont1[1:]
lm_labels[i, 1, :len(with_cont2)-1] = with_cont2[1:]
lm_labels[i, 0, :len(with_cont1)] = with_cont1
lm_labels[i, 1, :len(with_cont2)] = with_cont2
mc_labels[i] = mc_label
all_inputs = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(t) for t in all_inputs))
@ -104,9 +105,18 @@ def main():
parser.add_argument('--num_train_epochs', type=int, default=3)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--eval_batch_size', type=int, default=16)
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument('--max_grad_norm', type=int, default=1)
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training \
steps to perform. Override num_train_epochs.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before\
performing a backward/update pass.")
parser.add_argument('--learning_rate', type=float, default=6.25e-5)
parser.add_argument('--warmup_proportion', type=float, default=0.002)
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
parser.add_argument('--weight_decay', type=float, default=0.01)
parser.add_argument('--lm_coef', type=float, default=0.9)
@ -143,9 +153,11 @@ def main():
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
special_tokens = ['_start_', '_delimiter_', '_classify_']
tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name, special_tokens=special_tokens)
special_tokens_ids = list(tokenizer.convert_tokens_to_ids(token) for token in special_tokens)
model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name, num_special_tokens=len(special_tokens))
tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name)
tokenizer.add_tokens(special_tokens)
special_tokens_ids = tokenizer.convert_tokens_to_ids(special_tokens)
model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name)
model.resize_token_embeddings(len(tokenizer))
model.to(device)
# Load and encode the datasets
@ -183,19 +195,23 @@ def main():
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
num_train_optimization_steps = len(train_data) * args.num_train_epochs // args.train_batch_size
optimizer = OpenAIAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
max_grad_norm=args.max_grad_norm,
weight_decay=args.weight_decay,
t_total=num_train_optimization_steps)
if args.do_train:
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps //\
(len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader)\
// args.gradient_accumulation_steps * args.num_train_epochs
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
if args.do_train:
nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
@ -207,15 +223,16 @@ def main():
for step, batch in enumerate(tqdm_bar):
batch = tuple(t.to(device) for t in batch)
input_ids, mc_token_ids, lm_labels, mc_labels = batch
losses = model(input_ids, mc_token_ids, lm_labels, mc_labels)
losses = model(input_ids, mc_token_ids=mc_token_ids, lm_labels=lm_labels, mc_labels=mc_labels)
loss = args.lm_coef * losses[0] + losses[1]
loss.backward()
scheduler.step()
optimizer.step()
optimizer.zero_grad()
tr_loss += loss.item()
exp_average_loss = loss.item() if exp_average_loss is None else 0.7*exp_average_loss+0.3*loss.item()
nb_tr_steps += 1
tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(exp_average_loss, optimizer.get_lr()[0])
tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(exp_average_loss, scheduler.get_lr()[0])
# Save a trained model
if args.do_train:
@ -243,8 +260,7 @@ def main():
batch = tuple(t.to(device) for t in batch)
input_ids, mc_token_ids, lm_labels, mc_labels = batch
with torch.no_grad():
_, mc_loss = model(input_ids, mc_token_ids, lm_labels, mc_labels)
_, mc_logits = model(input_ids, mc_token_ids)
_, mc_loss, _, mc_logits = model(input_ids, mc_token_ids=mc_token_ids, lm_labels=lm_labels, mc_labels=mc_labels)
mc_logits = mc_logits.detach().cpu().numpy()
mc_labels = mc_labels.to('cpu').numpy()

View File

@ -0,0 +1,673 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner.
Finetuning the library models for multiple choice on SWAG (Bert).
"""
from __future__ import absolute_import, division, print_function
import argparse
import logging
import csv
import os
import random
import sys
import glob
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from tensorboardX import SummaryWriter
from transformers import (WEIGHTS_NAME, BertConfig,
BertForMultipleChoice, BertTokenizer)
from transformers import AdamW, WarmupLinearSchedule
logger = logging.getLogger(__name__)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
for conf in [BertConfig]), ())
MODEL_CLASSES = {
'bert': (BertConfig, BertForMultipleChoice, BertTokenizer),
}
class SwagExample(object):
"""A single training/test example for the SWAG dataset."""
def __init__(self,
swag_id,
context_sentence,
start_ending,
ending_0,
ending_1,
ending_2,
ending_3,
label = None):
self.swag_id = swag_id
self.context_sentence = context_sentence
self.start_ending = start_ending
self.endings = [
ending_0,
ending_1,
ending_2,
ending_3,
]
self.label = label
def __str__(self):
return self.__repr__()
def __repr__(self):
l = [
"swag_id: {}".format(self.swag_id),
"context_sentence: {}".format(self.context_sentence),
"start_ending: {}".format(self.start_ending),
"ending_0: {}".format(self.endings[0]),
"ending_1: {}".format(self.endings[1]),
"ending_2: {}".format(self.endings[2]),
"ending_3: {}".format(self.endings[3]),
]
if self.label is not None:
l.append("label: {}".format(self.label))
return ", ".join(l)
class InputFeatures(object):
def __init__(self,
example_id,
choices_features,
label
):
self.example_id = example_id
self.choices_features = [
{
'input_ids': input_ids,
'input_mask': input_mask,
'segment_ids': segment_ids
}
for _, input_ids, input_mask, segment_ids in choices_features
]
self.label = label
def read_swag_examples(input_file, is_training=True):
with open(input_file, 'r', encoding='utf-8') as f:
reader = csv.reader(f)
lines = []
for line in reader:
if sys.version_info[0] == 2:
line = list(unicode(cell, 'utf-8') for cell in line)
lines.append(line)
if is_training and lines[0][-1] != 'label':
raise ValueError(
"For training, the input file must contain a label column."
)
examples = [
SwagExample(
swag_id = line[2],
context_sentence = line[4],
start_ending = line[5], # in the swag dataset, the
# common beginning of each
# choice is stored in "sent2".
ending_0 = line[7],
ending_1 = line[8],
ending_2 = line[9],
ending_3 = line[10],
label = int(line[11]) if is_training else None
) for line in lines[1:] # we skip the line with the column names
]
return examples
def convert_examples_to_features(examples, tokenizer, max_seq_length,
is_training):
"""Loads a data file into a list of `InputBatch`s."""
# Swag is a multiple choice task. To perform this task using Bert,
# we will use the formatting proposed in "Improving Language
# Understanding by Generative Pre-Training" and suggested by
# @jacobdevlin-google in this issue
# https://github.com/google-research/bert/issues/38.
#
# Each choice will correspond to a sample on which we run the
# inference. For a given Swag example, we will create the 4
# following inputs:
# - [CLS] context [SEP] choice_1 [SEP]
# - [CLS] context [SEP] choice_2 [SEP]
# - [CLS] context [SEP] choice_3 [SEP]
# - [CLS] context [SEP] choice_4 [SEP]
# The model will output a single value for each input. To get the
# final decision of the model, we will run a softmax over these 4
# outputs.
features = []
for example_index, example in tqdm(enumerate(examples)):
context_tokens = tokenizer.tokenize(example.context_sentence)
start_ending_tokens = tokenizer.tokenize(example.start_ending)
choices_features = []
for ending_index, ending in enumerate(example.endings):
# We create a copy of the context tokens in order to be
# able to shrink it according to ending_tokens
context_tokens_choice = context_tokens[:]
ending_tokens = start_ending_tokens + tokenizer.tokenize(ending)
# Modifies `context_tokens_choice` and `ending_tokens` in
# place so that the total length is less than the
# specified length. Account for [CLS], [SEP], [SEP] with
# "- 3"
_truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3)
tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"]
segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
choices_features.append((tokens, input_ids, input_mask, segment_ids))
label = example.label
if example_index < 5:
logger.info("*** Example ***")
logger.info("swag_id: {}".format(example.swag_id))
for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
logger.info("choice: {}".format(choice_idx))
logger.info("tokens: {}".format(' '.join(tokens)))
logger.info("input_ids: {}".format(' '.join(map(str, input_ids))))
logger.info("input_mask: {}".format(' '.join(map(str, input_mask))))
logger.info("segment_ids: {}".format(' '.join(map(str, segment_ids))))
if is_training:
logger.info("label: {}".format(label))
features.append(
InputFeatures(
example_id = example.swag_id,
choices_features = choices_features,
label = label
)
)
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def select_field(features, field):
return [
[
choice[field]
for choice in feature.choices_features
]
for feature in features
]
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Load data features from cache or dataset file
input_file = args.predict_file if evaluate else args.train_file
cached_features_file = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}'.format(
'dev' if evaluate else 'train',
list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length)))
if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", input_file)
examples = read_swag_examples(input_file)
features = convert_examples_to_features(
examples, tokenizer, args.max_seq_length, not evaluate)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor(select_field(features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in features], dtype=torch.long)
if evaluate:
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
all_label)
else:
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
all_label)
if output_examples:
return dataset, examples, features
return dataset
def train(args, train_dataset, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
#'token_type_ids': None if args.model_type == 'xlm' else batch[2],
'token_type_ids': batch[2],
'labels': batch[3]}
# if args.model_type in ['xlnet', 'xlm']:
# inputs.update({'cls_index': batch[5],
# 'p_mask': batch[6]})
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_vocabulary(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
# 'token_type_ids': None if args.model_type == 'xlm' else batch[2] # XLM don't use segment_ids
'token_type_ids': batch[2],
'labels': batch[3]}
# if args.model_type in ['xlnet', 'xlm']:
# inputs.update({'cls_index': batch[4],
# 'p_mask': batch[5]})
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
logits = logits.detach().cpu().numpy()
label_ids = inputs['labels'].to('cpu').numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
eval_accuracy += tmp_eval_accuracy
nb_eval_steps += 1
nb_eval_examples += inputs['input_ids'].size(0)
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info("%s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return result
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--train_file", default=None, type=str, required=True,
help="SWAG csv for training. E.g., train.csv")
parser.add_argument("--predict_file", default=None, type=str, required=True,
help="SWAG csv for predictions. E.g., val.csv or test.csv")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model checkpoints and predictions will be written.")
## Other parameters
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--max_seq_length", default=384, type=int,
help="The maximum total input sequence length after tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Rul evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument("--local_rank", type=int, default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args()
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Save the trained model and the tokenizer
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir)
model.to(args.device)
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
if args.do_train:
checkpoints = [args.output_dir]
else:
# if do_train is False and do_eval is true, load model directly from pretrained.
checkpoints = [args.model_name_or_path]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce model loading logs
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
# Reload the model
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
tokenizer = tokenizer_class.from_pretrained(checkpoint)
model.to(args.device)
# Evaluate
result = evaluate(args, model, tokenizer, prefix=global_step)
result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
results.update(result)
logger.info("Results: {}".format(results))
return results
if __name__ == "__main__":
main()

View File

@ -28,7 +28,7 @@ import math
import torch
from pytorch_pretrained_bert import TransfoXLLMHeadModel, TransfoXLCorpus, TransfoXLTokenizer
from transformers import TransfoXLLMHeadModel, TransfoXLCorpus, TransfoXLTokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
@ -113,8 +113,8 @@ def main():
with torch.no_grad():
mems = None
for idx, (data, target, seq_len) in enumerate(eval_iter):
ret = model(data, target, mems)
loss, mems = ret
ret = model(data, lm_labels=target, mems=mems)
loss, _, mems = ret
loss = loss.mean()
total_loss += seq_len * loss.item()
total_len += seq_len

View File

@ -0,0 +1,115 @@
# DistilBERT
This folder contains the original code used to train DistilBERT as well as examples showcasing how to use DistilBERT.
**2019, September 19th - Update:** We fixed bugs in the code and released an upadted version of the weights trained with a modification of the distillation loss. DistilBERT now reaches 97% of `BERT-base`'s performance on GLUE, and 86.9 F1 score on SQuAD v1.1 dev set (compared to 88.5 for `BERT-base`). We will publish a formal write-up of our approach in the near future!
## What is DistilBERT
DistilBERT stands for Distillated-BERT. DistilBERT is a small, fast, cheap and light Transformer model based on Bert architecture. It has 40% less parameters than `bert-base-uncased`, runs 60% faster while preserving 97% of BERT's performances as measured on the GLUE language understanding benchmark. DistilBERT is trained using knowledge distillation, a technique to compress a large model called the teacher into a smaller model called the student. By distillating Bert, we obtain a smaller Transformer model that bears a lot of similarities with the original BERT model while being lighter, smaller and faster to run. DistilBERT is thus an interesting option to put large-scaled trained Transformer model into production.
For more information on DistilBERT, please refer to our [detailed blog post](https://medium.com/huggingface/smaller-faster-cheaper-lighter-introducing-distilbert-a-distilled-version-of-bert-8cf3380435b5
). *Please note that we will publish a formal write-up with updated and more complete results in the near future (September 19th).*
Here's the updated results on the dev sets of GLUE:
| Model | Macro-score | CoLA | MNLI | MRPC | QNLI | QQP | RTE | SST-2 | STS-B | WNLI |
| :---: | :---: | :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---:|
| BERT-base | **77.6** | 48.9 | 84.3 | 88.6 | 89.3 | 89.5 | 71.3 | 91.7 | 91.2 | 43.7 |
| DistilBERT | **75.2** | 49.1 | 81.8 | 90.2 | 87.0 | 89.2 | 62.9 | 92.7 | 90.7 | 44.4 |
## Setup
This part of the library has only be tested with Python3.6+. There are few specific dependencies to install before launching a distillation, you can install them with the command `pip install -r requirements.txt`.
**Important note:** The training scripts have been updated to support PyTorch v1.2.0 (there are breakings changes compared to v1.1.0). It is important to note that there is a small internal bug in the current version of PyTorch available on pip that causes a memory leak in our training/distillation. It has been recently fixed and will likely be integrated into the next release. For the moment, we recommend to [compile PyTorch from source](https://github.com/pytorch/pytorch#from-source). Please refer to [issue 1179](https://github.com/huggingface/transformers/issues/1179) for more details.
## How to use DistilBERT
Transformers includes two pre-trained DistilBERT models, currently only provided for English (we are investigating the possibility to train and release a multilingual version of DistilBERT):
- `distilbert-base-uncased`: DistilBERT English language model pretrained on the same data used to pretrain Bert (concatenation of the Toronto Book Corpus and full English Wikipedia) using distillation with the supervision of the `bert-base-uncased` version of Bert. The model has 6 layers, 768 dimension and 12 heads, totalizing 66M parameters.
- `distilbert-base-uncased-distilled-squad`: A finetuned version of `distilbert-base-uncased` finetuned using (a second step of) knwoledge distillation on SQuAD 1.0. This model reaches a F1 score of 86.9 on the dev set (for comparison, Bert `bert-base-uncased` version reaches a 88.5 F1 score).
Using DistilBERT is very similar to using BERT. DistilBERT share the same tokenizer as BERT's `bert-base-uncased` even though we provide a link to this tokenizer under the `DistilBertTokenizer` name to have a consistent naming between the library models.
```python
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = DistilBertModel.from_pretrained('distilbert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
```
## How to train DistilBERT
In the following, we will explain how you can train your own compressed model.
### A. Preparing the data
The weights we release are trained using a concatenation of Toronto Book Corpus and English Wikipedia (same training data as the English version of BERT).
To avoid processing the data several time, we do it once and for all before the training. From now on, will suppose that you have a text file `dump.txt` which contains one sequence per line (a sequence being composed of one of several coherent sentences).
First, we will binarize the data, i.e. tokenize the data and convert each token in an index in our model's vocabulary.
```bash
python scripts/binarized_data.py \
--file_path data/dump.txt \
--bert_tokenizer bert-base-uncased \
--dump_file data/binarized_text
```
Our implementation of masked language modeling loss follows [XLM](https://github.com/facebookresearch/XLM)'s one and smoothes the probability of masking with a factor that put more emphasis on rare words. Thus we count the occurences of each tokens in the data:
```bash
python scripts/token_counts.py \
--data_file data/binarized_text.bert-base-uncased.pickle \
--token_counts_dump data/token_counts.bert-base-uncased.pickle
```
### B. Training
Training with distillation is really simple once you have pre-processed the data:
```bash
python train.py \
--dump_path serialization_dir/my_first_training \
--data_file data/binarized_text.bert-base-uncased.pickle \
--token_counts data/token_counts.bert-base-uncased.pickle \
--force # overwrites the `dump_path` if it already exists.
```
By default, this will launch a training on a single GPU (even if more are available on the cluster). Other parameters are available in the command line, please look in `train.py` or run `python train.py --help` to list them.
We highly encourage you to use distributed training for training DistilBert as the training corpus is quite large. Here's an example that runs a distributed training on a single node having 4 GPUs:
```bash
export NODE_RANK=0
export N_NODES=1
export N_GPU_NODE=4
export WORLD_SIZE=4
export MASTER_PORT=<AN_OPEN_PORT>
export MASTER_ADDR=<I.P.>
pkill -f 'python -u train.py'
python -m torch.distributed.launch \
--nproc_per_node=$N_GPU_NODE \
--nnodes=$N_NODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
train.py \
--force \
--n_gpu $WORLD_SIZE \
--data_file data/binarized_text.bert-base-uncased.pickle \
--token_counts data/token_counts.bert-base-uncased.pickle \
--dump_path serialization_dir/my_first_distillation
```
**Tips:** Starting distillated training with good initialization of the model weights is crucial to reach decent performance. In our experiments, we initialized our model from a few layers of the teacher (Bert) itself! Please refer to `scripts/extract_for_distil.py` to create a valid initialization checkpoint and use `--from_pretrained_weights` and `--from_pretrained_config` arguments to use this initialization for the distilled training!
Happy distillation!

View File

@ -0,0 +1,201 @@
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Dataloaders to train DistilBERT
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
"""
from typing import List
import math
from itertools import chain
from collections import Counter
import numpy as np
import torch
from utils import logger
class Dataset:
def __init__(self,
params,
data):
self.params = params
self.tokens_per_batch = params.tokens_per_batch
self.batch_size = params.batch_size
self.shuffle = params.shuffle
self.group_by_size = params.group_by_size
self.token_ids = np.array(data)
self.lengths = np.uint16([len(t) for t in data])
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.check()
self.print_statistics()
def __len__(self):
return len(self.lengths)
def check(self):
"""
Some sanity checks
"""
assert len(self.token_ids) == len(self.lengths)
def remove_long_sequences(self):
"""
Sequences that are too long are splitted by chunk of max_position_embeddings.
"""
indices = self.lengths >= self.params.max_position_embeddings
logger.info(f'Splitting {sum(indices)} too long sequences.')
def divide_chunks(l, n):
return [l[i:i + n] for i in range(0, len(l), n)]
new_tok_ids = []
new_lengths = []
cls_id, sep_id = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
max_len = self.params.max_position_embeddings
for seq_, len_ in zip(self.token_ids, self.lengths):
if len_ <= max_len:
new_tok_ids.append(seq_)
new_lengths.append(len_)
else:
sub_seqs = []
for sub_s in divide_chunks(seq_, max_len-2):
if sub_s[0] != cls_id:
sub_s = np.insert(sub_s, 0, cls_id)
if sub_s[-1] != sep_id:
sub_s = np.insert(sub_s, len(sub_s), sep_id)
assert len(sub_s) <= max_len
sub_seqs.append(sub_s)
new_tok_ids.extend(sub_seqs)
new_lengths.extend([len(l) for l in sub_seqs])
self.token_ids = np.array(new_tok_ids)
self.lengths = np.array(new_lengths)
def remove_empty_sequences(self):
"""
Too short sequences are simply removed. This could be tunedd.
"""
init_size = len(self)
indices = self.lengths > 11
self.token_ids = self.token_ids[indices]
self.lengths = self.lengths[indices]
new_size = len(self)
logger.info(f'Remove {init_size - new_size} too short (<=11 tokens) sequences.')
def print_statistics(self):
"""
Print some statistics on the corpus. Only the master process.
"""
if not self.params.is_master:
return
logger.info(f'{len(self)} sequences')
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unkown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unkown} unknown tokens (covering {100*nb_unkown/data_len:.2f}% of the data)')
def select_data(self, a: int, b: int):
"""
Select a subportion of the data.
"""
n_sequences = len(self)
assert 0 <= a < b <= n_sequences, ValueError(f'`0 <= a < b <= n_sequences` is not met with a={a} and b={b}')
logger.info(f'Selecting sequences from {a} to {b} (excluded).')
self.token_ids = self.token_ids[a:b]
self.lengths = self.lengths[a:b]
self.check()
def split(self):
"""
Distributed training: split the data accross the processes.
"""
assert self.params.n_gpu > 1
logger.info('Splitting the data accross the processuses.')
n_seq = len(self)
n_seq_per_procesus = n_seq // self.params.world_size
a = n_seq_per_procesus * self.params.global_rank
b = a + n_seq_per_procesus
self.select_data(a=a, b=b)
def batch_sequences(self,
token_ids: List[List[int]],
lengths: List[int]):
"""
Do the padding and transform into torch.tensor.
"""
assert len(token_ids) == len(lengths)
# Max for paddings
max_seq_len_ = max(lengths)
# Pad token ids
pad_idx = self.params.special_tok_ids['pad_token']
tk_ = [list(t.astype(int)) + [pad_idx]*(max_seq_len_-len(t)) for t in token_ids]
assert len(tk_) == len(token_ids)
assert all(len(t) == max_seq_len_ for t in tk_)
tk_t = torch.tensor(tk_) # (bs, max_seq_len_)
lg_t = torch.tensor(lengths.astype(int)) # (bs)
return tk_t, lg_t
def get_batches_iterator(self,
batches):
"""
Return an iterator over batches.
"""
for sequences_ids in batches:
token_ids, lengths = self.batch_sequences(self.token_ids[sequences_ids],
self.lengths[sequences_ids])
yield (token_ids, lengths)
def get_iterator(self,
seed: int = None):
"""
Return a data iterator.
"""
rng = np.random.RandomState(seed)
n_sequences = len(self)
indices = np.arange(n_sequences)
if self.group_by_size:
indices = indices[np.argsort(self.lengths[indices], kind='mergesort')]
if self.tokens_per_batch == -1:
batches = np.array_split(indices, math.ceil(len(indices) * 1. / self.batch_size))
else:
assert self.tokens_per_batch > 0
batch_ids = np.cumsum(self.lengths[indices]) // self.tokens_per_batch
_, bounds = np.unique(batch_ids, return_index=True)
batches = [indices[bounds[i]:bounds[i + 1]] for i in range(len(bounds) - 1)]
if bounds[-1] < len(indices):
batches.append(indices[bounds[-1]:])
if self.shuffle:
rng.shuffle(batches)
assert n_sequences == sum([len(x) for x in batches])
assert self.lengths[indices].sum() == sum([self.lengths[x].sum() for x in batches])
return self.get_batches_iterator(batches=batches)

View File

@ -0,0 +1,490 @@
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" The distiller to distil DistilBERT
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
"""
import os
import math
import psutil
import time
from tensorboardX import SummaryWriter
from tqdm import trange, tqdm
import numpy as np
import psutil
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import AdamW
from transformers import WarmupLinearSchedule
from utils import logger
from dataset import Dataset
class Distiller:
def __init__(self,
params: dict,
dataloader: Dataset,
token_probs: torch.tensor,
student: nn.Module,
teacher: nn.Module):
logger.info('Initializing Distiller')
self.params = params
self.dump_path = params.dump_path
self.multi_gpu = params.multi_gpu
self.fp16 = params.fp16
self.student = student
self.teacher = teacher
self.dataloader = dataloader
if self.params.n_gpu > 1:
self.dataloader.split()
self.get_iterator(seed=params.seed)
self.temperature = params.temperature
assert self.temperature > 0.
self.alpha_ce = params.alpha_ce
self.alpha_mlm = params.alpha_mlm
self.alpha_mse = params.alpha_mse
self.alpha_cos = params.alpha_cos
assert self.alpha_ce >= 0.
assert self.alpha_mlm >= 0.
assert self.alpha_mse >= 0.
assert self.alpha_cos >= 0.
assert self.alpha_ce + self.alpha_mlm + self.alpha_mse + self.alpha_cos > 0.
self.mlm_mask_prop = params.mlm_mask_prop
assert 0.0 <= self.mlm_mask_prop <= 1.0
assert params.word_mask + params.word_keep + params.word_rand == 1.0
self.pred_probs = torch.FloatTensor([params.word_mask, params.word_keep, params.word_rand])
self.pred_probs = self.pred_probs.to(f'cuda:{params.local_rank}') if params.n_gpu > 0 else self.pred_probs
self.token_probs = token_probs.to(f'cuda:{params.local_rank}') if params.n_gpu > 0 else token_probs
if self.fp16:
self.pred_probs = self.pred_probs.half()
self.token_probs = self.token_probs.half()
self.epoch = 0
self.n_iter = 0
self.n_total_iter = 0
self.n_sequences_epoch = 0
self.total_loss_epoch = 0
self.last_loss = 0
self.last_loss_ce = 0
self.last_loss_mlm = 0
if self.alpha_mse > 0.: self.last_loss_mse = 0
if self.alpha_cos > 0.: self.last_loss_cos = 0
self.last_log = 0
self.ce_loss_fct = nn.KLDivLoss(reduction='batchmean')
self.mlm_loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
if self.alpha_mse > 0.:
self.mse_loss_fct = nn.MSELoss(reduction='sum')
if self.alpha_cos > 0.:
self.cosine_loss_fct = nn.CosineEmbeddingLoss(reduction='mean')
logger.info('--- Initializing model optimizer')
assert params.gradient_accumulation_steps >= 1
self.num_steps_epoch = int(len(self.dataloader) / params.batch_size) + 1
num_train_optimization_steps = int(self.num_steps_epoch / params.gradient_accumulation_steps * params.n_epoch) + 1
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in student.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad], 'weight_decay': params.weight_decay},
{'params': [p for n, p in student.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad], 'weight_decay': 0.0}
]
logger.info("------ Number of trainable parameters (student): %i" % sum([p.numel() for p in self.student.parameters() if p.requires_grad]))
logger.info("------ Number of parameters (student): %i" % sum([p.numel() for p in self.student.parameters()]))
self.optimizer = AdamW(optimizer_grouped_parameters,
lr=params.learning_rate,
eps=params.adam_epsilon,
betas=(0.9, 0.98))
warmup_steps = math.ceil(num_train_optimization_steps * params.warmup_prop)
self.scheduler = WarmupLinearSchedule(self.optimizer,
warmup_steps=warmup_steps,
t_total=num_train_optimization_steps)
if self.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
logger.info(f"Using fp16 training: {self.params.fp16_opt_level} level")
self.student, self.optimizer = amp.initialize(self.student,
self.optimizer,
opt_level=self.params.fp16_opt_level)
self.teacher = self.teacher.half()
if self.multi_gpu:
if self.fp16:
from apex.parallel import DistributedDataParallel
logger.info("Using apex.parallel.DistributedDataParallel for distributed training.")
self.student = DistributedDataParallel(self.student)
else:
from torch.nn.parallel import DistributedDataParallel
logger.info("Using nn.parallel.DistributedDataParallel for distributed training.")
self.student = DistributedDataParallel(self.student,
device_ids=[params.local_rank],
output_device=params.local_rank)
self.is_master = params.is_master
if self.is_master:
logger.info('--- Initializing Tensorboard')
self.tensorboard = SummaryWriter(log_dir=os.path.join(self.dump_path, 'log', 'train'))
self.tensorboard.add_text(tag='config', text_string=str(self.params), global_step=0)
def get_iterator(self,
seed: int = None):
"""
Initialize the data iterator.
Each process has its own data iterator (iterating on his own random portion of the dataset).
Input:
------
seed: `int` - The random seed.
"""
logger.info('--- Initializing Data Iterator')
self.data_iterator = self.dataloader.get_iterator(seed=seed)
def get_batch(self):
"""
Call the data iterator to output a new batch.
If the data iterator went through the whole dataset, create a new iterator.
"""
assert hasattr(self, 'data_iterator')
try:
x = next(self.data_iterator)
except StopIteration:
logger.warning('--- Went through the whole dataset. Creating new data iterator.')
self.data_iterator = self.dataloader.get_iterator()
x = next(self.data_iterator)
return x
def prepare_batch(self,
batch):
"""
Prepare the batch: from the token_ids and the lenghts, compute the attention mask and the masked label for MLM.
Input:
------
batch: `Tuple`
token_ids: `torch.tensor(bs, seq_length)` - The token ids for each of the sequence. It is padded.
lengths: `torch.tensor(bs)` - The lengths of each of the sequences in the batch.
Output:
-------
token_ids: `torch.tensor(bs, seq_length)` - The token ids after the modifications for MLM.
attn_mask: `torch.tensor(bs, seq_length)` - The attention mask for the self-attention.
mlm_labels: `torch.tensor(bs, seq_length)` - The masked languge modeling labels. There is a -1 where there is nothing to predict.
"""
token_ids, lengths = batch
token_ids, lengths = self.round_batch(x=token_ids, lengths=lengths)
assert token_ids.size(0) == lengths.size(0)
attn_mask = (torch.arange(token_ids.size(1), dtype=torch.long, device=lengths.device) < lengths[:, None])
bs, max_seq_len = token_ids.size()
mlm_labels = token_ids.new(token_ids.size()).copy_(token_ids)
x_prob = self.token_probs[token_ids.flatten()]
n_tgt = math.ceil(self.mlm_mask_prop * lengths.sum().item())
tgt_ids = torch.multinomial(x_prob / x_prob.sum(), n_tgt, replacement=False)
pred_mask = torch.zeros(bs * max_seq_len, dtype=torch.bool, device=token_ids.device) # previously `dtype=torch.uint8`, cf pytorch 1.2.0 compatibility
pred_mask[tgt_ids] = 1
pred_mask = pred_mask.view(bs, max_seq_len)
pred_mask[token_ids == self.params.special_tok_ids['pad_token']] = 0
# mask a number of words == 0 [8] (faster with fp16)
if self.fp16:
n1 = pred_mask.sum().item()
if n1 > 8:
pred_mask = pred_mask.view(-1)
n2 = max(n1 % 8, 8 * (n1 // 8))
if n2 != n1:
pred_mask[torch.nonzero(pred_mask).view(-1)[:n1-n2]] = 0
pred_mask = pred_mask.view(bs, max_seq_len)
assert pred_mask.sum().item() % 8 == 0, pred_mask.sum().item()
_token_ids_real = token_ids[pred_mask]
_token_ids_rand = _token_ids_real.clone().random_(self.params.vocab_size)
_token_ids_mask = _token_ids_real.clone().fill_(self.params.special_tok_ids['mask_token'])
probs = torch.multinomial(self.pred_probs, len(_token_ids_real), replacement=True)
_token_ids = _token_ids_mask * (probs == 0).long() + _token_ids_real * (probs == 1).long() + _token_ids_rand * (probs == 2).long()
token_ids = token_ids.masked_scatter(pred_mask, _token_ids)
mlm_labels[~pred_mask] = -1 # previously `mlm_labels[1-pred_mask] = -1`, cf pytorch 1.2.0 compatibility
return token_ids, attn_mask, mlm_labels
def round_batch(self,
x: torch.tensor,
lengths: torch.tensor):
"""
For float16 only.
Sub-sample sentences in a batch, and add padding, so that each dimension is a multiple of 8.
Input:
------
x: `torch.tensor(bs, seq_length)` - The token ids.
lengths: `torch.tensor(bs, seq_length)` - The lengths of each of the sequence in the batch.
Output:
-------
x: `torch.tensor(new_bs, new_seq_length)` - The updated token ids.
lengths: `torch.tensor(new_bs, new_seq_length)` - The updated lengths.
"""
if not self.fp16 or len(lengths) < 8:
return x, lengths
# number of sentences == 0 [8]
bs1 = len(lengths)
bs2 = 8 * (bs1 // 8)
assert bs2 > 0 and bs2 % 8 == 0
if bs1 != bs2:
idx = torch.randperm(bs1)[:bs2]
lengths = lengths[idx]
slen = lengths.max().item()
x = x[idx, :slen]
else:
idx = None
# sequence length == 0 [8]
ml1 = x.size(1)
if ml1 % 8 != 0:
pad = 8 - (ml1 % 8)
ml2 = ml1 + pad
pad_id = self.params.special_tok_ids['pad_token']
padding_tensor = torch.zeros(bs2, pad, dtype=torch.long, device=x.device).fill_(pad_id)
x = torch.cat([x, padding_tensor], 1)
assert x.size() == (bs2, ml2)
assert x.size(0) % 8 == 0
assert x.size(1) % 8 == 0
return x, lengths
def train(self):
"""
The real training loop.
"""
if self.is_master: logger.info('Starting training')
self.last_log = time.time()
self.student.train()
self.teacher.eval()
for _ in range(self.params.n_epoch):
if self.is_master: logger.info(f'--- Starting epoch {self.epoch}/{self.params.n_epoch-1}')
if self.multi_gpu:
torch.distributed.barrier()
iter_bar = trange(self.num_steps_epoch, desc="-Iter", disable=self.params.local_rank not in [-1, 0])
for __ in range(self.num_steps_epoch):
batch = self.get_batch()
if self.params.n_gpu > 0:
batch = tuple(t.to(f'cuda:{self.params.local_rank}') for t in batch)
token_ids, attn_mask, mlm_labels = self.prepare_batch(batch=batch)
self.step(input_ids=token_ids, attention_mask=attn_mask, mlm_labels=mlm_labels)
iter_bar.update()
iter_bar.set_postfix({'Last_loss': f'{self.last_loss:.2f}',
'Avg_cum_loss': f'{self.total_loss_epoch/self.n_iter:.2f}'})
iter_bar.close()
if self.is_master: logger.info(f'--- Ending epoch {self.epoch}/{self.params.n_epoch-1}')
self.end_epoch()
if self.is_master:
logger.info(f'Save very last checkpoint as `pytorch_model.bin`.')
self.save_checkpoint(checkpoint_name=f'pytorch_model.bin')
logger.info('Training is finished')
def step(self,
input_ids: torch.tensor,
attention_mask: torch.tensor,
mlm_labels: torch.tensor):
"""
One optimization step: forward of student AND teacher, backward on the loss (for gradient accumulation),
and possibly a parameter update (depending on the gradient accumulation).
Input:
------
input_ids: `torch.tensor(bs, seq_length)` - The token ids.
attention_mask: `torch.tensor(bs, seq_length)` - The attention mask for self attention.
mlm_labels: `torch.tensor(bs, seq_length)` - The masked language modeling labels.
"""
s_logits, s_hidden_states = self.student(input_ids=input_ids, attention_mask=attention_mask) # (bs, seq_length, voc_size)
with torch.no_grad():
t_logits, t_hidden_states = self.teacher(input_ids=input_ids, attention_mask=attention_mask) # (bs, seq_length, voc_size)
assert s_logits.size() == t_logits.size()
#https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100
#https://github.com/peterliht/knowledge-distillation-pytorch/issues/2
if self.params.restrict_ce_to_mask:
mask = (mlm_labels>-1).unsqueeze(-1).expand_as(s_logits) # (bs, seq_lenth, voc_size)
else:
mask = attention_mask.unsqueeze(-1).expand_as(s_logits) # (bs, seq_lenth, voc_size)
s_logits_slct = torch.masked_select(s_logits, mask) # (bs * seq_length * voc_size) modulo the 1s in mask
s_logits_slct = s_logits_slct.view(-1, s_logits.size(-1)) # (bs * seq_length, voc_size) modulo the 1s in mask
t_logits_slct = torch.masked_select(t_logits, mask) # (bs * seq_length * voc_size) modulo the 1s in mask
t_logits_slct = t_logits_slct.view(-1, s_logits.size(-1)) # (bs * seq_length, voc_size) modulo the 1s in mask
assert t_logits_slct.size() == s_logits_slct.size()
loss_ce = self.ce_loss_fct(F.log_softmax(s_logits_slct/self.temperature, dim=-1),
F.softmax(t_logits_slct/self.temperature, dim=-1)) * (self.temperature)**2
loss = self.alpha_ce*loss_ce
if self.alpha_mlm > 0.:
loss_mlm = self.mlm_loss_fct(s_logits.view(-1, s_logits.size(-1)), mlm_labels.view(-1))
loss += self.alpha_mlm * loss_mlm
if self.alpha_mse > 0.:
loss_mse = self.mse_loss_fct(s_logits_slct, t_logits_slct)/s_logits_slct.size(0) # Reproducing batchmean reduction
loss += self.alpha_mse * loss_mse
if self.alpha_cos > 0.:
s_hidden_states = s_hidden_states[-1] # (bs, seq_length, dim)
t_hidden_states = t_hidden_states[-1] # (bs, seq_length, dim)
mask = attention_mask.unsqueeze(-1).expand_as(s_hidden_states) # (bs, seq_length, dim)
assert s_hidden_states.size() == t_hidden_states.size()
dim = s_hidden_states.size(-1)
s_hidden_states_slct = torch.masked_select(s_hidden_states, mask) # (bs * seq_length * dim)
s_hidden_states_slct = s_hidden_states_slct.view(-1, dim) # (bs * seq_length, dim)
t_hidden_states_slct = torch.masked_select(t_hidden_states, mask) # (bs * seq_length * dim)
t_hidden_states_slct = t_hidden_states_slct.view(-1, dim) # (bs * seq_length, dim)
target = s_hidden_states_slct.new(s_hidden_states_slct.size(0)).fill_(1) # (bs * seq_length,)
loss_cos = self.cosine_loss_fct(s_hidden_states_slct, t_hidden_states_slct, target)
loss += self.alpha_cos * loss_cos
self.total_loss_epoch += loss.item()
self.last_loss = loss.item()
self.last_loss_ce = loss_ce.item()
if self.alpha_mlm > 0.:
self.last_loss_mlm = loss_mlm.item()
if self.alpha_mse > 0.:
self.last_loss_mse = loss_mse.item()
if self.alpha_cos > 0.:
self.last_loss_cos = loss_cos.item()
self.optimize(loss)
self.n_sequences_epoch += input_ids.size(0)
def optimize(self,
loss):
"""
Normalization on the loss (gradient accumulation or distributed training), followed by
backward pass on the loss, possibly followed by a parameter update (depending on the gradient accumulation).
Also update the metrics for tensorboard.
"""
# Check for NaN
if (loss != loss).data.any():
logger.error('NaN detected')
exit()
if self.multi_gpu:
loss = loss.mean()
if self.params.gradient_accumulation_steps > 1:
loss = loss / self.params.gradient_accumulation_steps
if self.fp16:
from apex import amp
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
self.iter()
if self.n_iter % self.params.gradient_accumulation_steps == 0:
if self.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), self.params.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(self.student.parameters(), self.params.max_grad_norm)
self.optimizer.step()
self.optimizer.zero_grad()
self.scheduler.step()
def iter(self):
"""
Update global counts, write to tensorboard and save checkpoint.
"""
self.n_iter += 1
self.n_total_iter += 1
if self.n_total_iter % self.params.log_interval == 0:
self.log_tensorboard()
self.last_log = time.time()
if self.n_total_iter % self.params.checkpoint_interval == 0:
self.save_checkpoint()
def log_tensorboard(self):
"""
Log into tensorboard. Only by the master process.
"""
if not self.is_master:
return
for param_name, param in self.student.named_parameters():
self.tensorboard.add_scalar(tag='parameter_mean/' + param_name, scalar_value=param.data.mean(), global_step=self.n_total_iter)
self.tensorboard.add_scalar(tag='parameter_std/' + param_name, scalar_value=param.data.std(), global_step=self.n_total_iter)
if param.grad is None:
continue
self.tensorboard.add_scalar(tag="grad_mean/" + param_name, scalar_value=param.grad.data.mean(),global_step=self.n_total_iter)
self.tensorboard.add_scalar(tag="grad_std/" + param_name, scalar_value=param.grad.data.std(), global_step=self.n_total_iter)
self.tensorboard.add_scalar(tag="losses/cum_avg_loss_epoch", scalar_value=self.total_loss_epoch/self.n_iter, global_step=self.n_total_iter)
self.tensorboard.add_scalar(tag="losses/loss", scalar_value=self.last_loss, global_step=self.n_total_iter)
self.tensorboard.add_scalar(tag="losses/loss_ce", scalar_value=self.last_loss_ce, global_step=self.n_total_iter)
if self.alpha_mlm > 0.:
self.tensorboard.add_scalar(tag="losses/loss_mlm", scalar_value=self.last_loss_mlm, global_step=self.n_total_iter)
if self.alpha_mse > 0.:
self.tensorboard.add_scalar(tag="losses/loss_mse", scalar_value=self.last_loss_mse, global_step=self.n_total_iter)
if self.alpha_cos > 0.:
self.tensorboard.add_scalar(tag="losses/loss_cos", scalar_value=self.last_loss_cos, global_step=self.n_total_iter)
self.tensorboard.add_scalar(tag="learning_rate/lr", scalar_value=self.scheduler.get_lr()[0], global_step=self.n_total_iter)
self.tensorboard.add_scalar(tag="global/memory_usage", scalar_value=psutil.virtual_memory()._asdict()['used']/1_000_000, global_step=self.n_total_iter)
self.tensorboard.add_scalar(tag="global/speed", scalar_value=time.time()-self.last_log, global_step=self.n_total_iter)
def end_epoch(self):
"""
Finally arrived at the end of epoch (full pass on dataset).
Do some tensorboard logging and checkpoint saving.
"""
logger.info(f'{self.n_sequences_epoch} sequences have been trained during this epoch.')
if self.is_master:
self.save_checkpoint(checkpoint_name=f'model_epoch_{self.epoch}.pth')
self.tensorboard.add_scalar(tag='epoch/loss', scalar_value=self.total_loss_epoch/self.n_iter, global_step=self.epoch)
self.epoch += 1
self.n_sequences_epoch = 0
self.n_iter = 0
self.total_loss_epoch = 0
def save_checkpoint(self,
checkpoint_name: str = 'checkpoint.pth'):
"""
Save the current state. Only by the master process.
"""
if not self.is_master:
return
mdl_to_save = self.student.module if hasattr(self.student, 'module') else self.student
mdl_to_save.config.save_pretrained(self.dump_path)
state_dict = mdl_to_save.state_dict()
torch.save(state_dict, os.path.join(self.dump_path, checkpoint_name))

View File

@ -0,0 +1,6 @@
gitpython==3.0.2
tensorboard>=1.14.0
tensorboardX==1.8
psutil==5.6.3
scipy==1.3.1
pytorch_transformers==1.2.0

View File

@ -0,0 +1,86 @@
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocessing script before training DistilBERT.
"""
import argparse
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, RobertaTokenizer
import logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser(description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).")
parser.add_argument('--file_path', type=str, default='data/dump.txt',
help='The path to the data.')
parser.add_argument('--tokenizer_type', type=str, default='bert', choices=['bert', 'roberta'])
parser.add_argument('--tokenizer_name', type=str, default='bert-base-uncased',
help="The tokenizer to use.")
parser.add_argument('--dump_file', type=str, default='data/dump',
help='The dump file prefix.')
args = parser.parse_args()
logger.info(f'Loading Tokenizer ({args.tokenizer_name})')
if args.tokenizer_type == 'bert':
tokenizer = BertTokenizer.from_pretrained(args.tokenizer_name)
elif args.tokenizer_type == 'roberta':
tokenizer = RobertaTokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map['bos_token'] # `[CLS]` for bert, `<s>` for roberta
sep = tokenizer.special_tokens_map['sep_token'] # `[SEP]` for bert, `</s>` for roberta
logger.info(f'Loading text from {args.file_path}')
with open(args.file_path, 'r', encoding='utf8') as fp:
data = fp.readlines()
logger.info(f'Start encoding')
logger.info(f'{len(data)} examples to process.')
rslt = []
iter = 0
interval = 10000
start = time.time()
for text in data:
text = f'{bos} {text.strip()} {sep}'
token_ids = tokenizer.encode(text)
rslt.append(token_ids)
iter += 1
if iter % interval == 0:
end = time.time()
logger.info(f'{iter} examples processed. - {(end-start)/interval:.2f}s/expl')
start = time.time()
logger.info('Finished binarization')
logger.info(f'{len(data)} examples processed.')
dp_file = f'{args.dump_file}.{args.tokenizer_name}.pickle'
rslt_ = [np.uint16(d) for d in rslt]
random.shuffle(rslt_)
logger.info(f'Dump to {dp_file}')
with open(dp_file, 'wb') as handle:
pickle.dump(rslt_, handle, protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,90 @@
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocessing script before training DistilBERT.
"""
from transformers import BertForMaskedLM, RobertaForMaskedLM
import torch
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned Distillation")
parser.add_argument("--model_type", default="bert", choices=["bert", "roberta"])
parser.add_argument("--model_name", default='bert-base-uncased', type=str)
parser.add_argument("--dump_checkpoint", default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument("--vocab_transform", action='store_true')
args = parser.parse_args()
if args.model_type == 'bert':
model = BertForMaskedLM.from_pretrained(args.model_name)
prefix = 'bert'
elif args.model_type == 'roberta':
model = RobertaForMaskedLM.from_pretrained(args.model_name)
prefix = 'roberta'
state_dict = model.state_dict()
compressed_sd = {}
for w in ['word_embeddings', 'position_embeddings']:
compressed_sd[f'distilbert.embeddings.{w}.weight'] = \
state_dict[f'{prefix}.embeddings.{w}.weight']
for w in ['weight', 'bias']:
compressed_sd[f'distilbert.embeddings.LayerNorm.{w}'] = \
state_dict[f'{prefix}.embeddings.LayerNorm.{w}']
std_idx = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ['weight', 'bias']:
compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.q_lin.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}']
compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.k_lin.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}']
compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.v_lin.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}']
compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.out_lin.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}']
compressed_sd[f'distilbert.transformer.layer.{std_idx}.sa_layer_norm.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}']
compressed_sd[f'distilbert.transformer.layer.{std_idx}.ffn.lin1.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}']
compressed_sd[f'distilbert.transformer.layer.{std_idx}.ffn.lin2.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}']
compressed_sd[f'distilbert.transformer.layer.{std_idx}.output_layer_norm.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}']
std_idx += 1
if args.model_type == 'bert':
compressed_sd[f'vocab_projector.weight'] = state_dict[f'cls.predictions.decoder.weight']
compressed_sd[f'vocab_projector.bias'] = state_dict[f'cls.predictions.bias']
if args.vocab_transform:
for w in ['weight', 'bias']:
compressed_sd[f'vocab_transform.{w}'] = state_dict[f'cls.predictions.transform.dense.{w}']
compressed_sd[f'vocab_layer_norm.{w}'] = state_dict[f'cls.predictions.transform.LayerNorm.{w}']
elif args.model_type == 'roberta':
compressed_sd[f'vocab_projector.weight'] = state_dict[f'lm_head.decoder.weight']
compressed_sd[f'vocab_projector.bias'] = state_dict[f'lm_head.bias']
if args.vocab_transform:
for w in ['weight', 'bias']:
compressed_sd[f'vocab_transform.{w}'] = state_dict[f'lm_head.dense.{w}']
compressed_sd[f'vocab_layer_norm.{w}'] = state_dict[f'lm_head.layer_norm.{w}']
print(f'N layers selected for distillation: {std_idx}')
print(f'Number of params transfered for distillation: {len(compressed_sd.keys())}')
print(f'Save transfered checkpoint to {args.dump_checkpoint}.')
torch.save(compressed_sd, args.dump_checkpoint)

View File

@ -0,0 +1,51 @@
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocessing script before training DistilBERT.
"""
from collections import Counter
import argparse
import pickle
import logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)")
parser.add_argument("--data_file", type=str, default="data/dump.bert-base-uncased.pickle",
help="The binarized dataset.")
parser.add_argument("--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle",
help="The dump file.")
parser.add_argument("--vocab_size", default=30522, type=int)
args = parser.parse_args()
logger.info(f'Loading data from {args.data_file}')
with open(args.data_file, 'rb') as fp:
data = pickle.load(fp)
logger.info('Counting occurences for MLM.')
counter = Counter()
for tk_ids in data:
counter.update(tk_ids)
counts = [0]*args.vocab_size
for k, v in counter.items():
counts[k] = v
logger.info(f'Dump to {args.token_counts_dump}')
with open(args.token_counts_dump, 'wb') as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)

View File

@ -0,0 +1,247 @@
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training DistilBERT.
"""
import os
import argparse
import pickle
import json
import shutil
import numpy as np
import torch
from transformers import BertTokenizer, BertForMaskedLM, RobertaTokenizer, RobertaForMaskedLM
from transformers import DistilBertForMaskedLM, DistilBertConfig
from distiller import Distiller
from utils import git_log, logger, init_gpu_params, set_seed
from dataset import Dataset
def main():
parser = argparse.ArgumentParser(description="Training")
parser.add_argument("--dump_path", type=str, required=True,
help="The output directory (log, checkpoints, parameters, etc.)")
parser.add_argument("--data_file", type=str, required=True,
help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence.")
parser.add_argument("--token_counts", type=str, required=True,
help="The token counts in the data_file for MLM.")
parser.add_argument("--force", action='store_true',
help="Overwrite dump_path if it already exists.")
parser.add_argument("--vocab_size", default=30522, type=int,
help="The vocabulary size.")
parser.add_argument("--max_position_embeddings", default=512, type=int,
help="Maximum sequence length we can model (including [CLS] and [SEP]).")
parser.add_argument("--sinusoidal_pos_embds", action='store_false',
help="If true, the position embeddings are simply fixed with sinusoidal embeddings.")
parser.add_argument("--n_layers", default=6, type=int,
help="Number of Transformer blocks.")
parser.add_argument("--n_heads", default=12, type=int,
help="Number of heads in the self-attention module.")
parser.add_argument("--dim", default=768, type=int,
help="Dimension through the network. Must be divisible by n_heads")
parser.add_argument("--hidden_dim", default=3072, type=int,
help="Intermediate dimension in the FFN.")
parser.add_argument("--dropout", default=0.1, type=float,
help="Dropout.")
parser.add_argument("--attention_dropout", default=0.1, type=float,
help="Dropout in self-attention.")
parser.add_argument("--activation", default='gelu', type=str,
help="Activation to use in self-attention")
parser.add_argument("--tie_weights_", action='store_false',
help="If true, we tie the embeddings matrix with the projection over the vocabulary matrix. Default is true.")
parser.add_argument("--from_pretrained_weights", default=None, type=str,
help="Load student initialization checkpoint.")
parser.add_argument("--from_pretrained_config", default=None, type=str,
help="Load student initialization architecture config.")
parser.add_argument("--teacher_type", default="bert", choices=["bert", "roberta"],
help="Teacher type (BERT, RoBERTa).")
parser.add_argument("--teacher_name", default="bert-base-uncased", type=str,
help="The teacher model.")
parser.add_argument("--temperature", default=2., type=float,
help="Temperature for the softmax temperature.")
parser.add_argument("--alpha_ce", default=0.5, type=float,
help="Linear weight for the distillation loss. Must be >=0.")
parser.add_argument("--alpha_mlm", default=0.5, type=float,
help="Linear weight for the MLM loss. Must be >=0.")
parser.add_argument("--alpha_mse", default=0.0, type=float,
help="Linear weight of the MSE loss. Must be >=0.")
parser.add_argument("--alpha_cos", default=0.0, type=float,
help="Linear weight of the cosine embedding loss. Must be >=0.")
parser.add_argument("--mlm_mask_prop", default=0.15, type=float,
help="Proportion of tokens for which we need to make a prediction.")
parser.add_argument("--word_mask", default=0.8, type=float,
help="Proportion of tokens to mask out.")
parser.add_argument("--word_keep", default=0.1, type=float,
help="Proportion of tokens to keep.")
parser.add_argument("--word_rand", default=0.1, type=float,
help="Proportion of tokens to randomly replace.")
parser.add_argument("--mlm_smoothing", default=0.7, type=float,
help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).")
parser.add_argument("--restrict_ce_to_mask", action='store_true',
help="If true, compute the distilation loss only the [MLM] prediction distribution.")
parser.add_argument("--n_epoch", type=int, default=3,
help="Number of pass on the whole dataset.")
parser.add_argument("--batch_size", type=int, default=5,
help="Batch size (for each process).")
parser.add_argument("--tokens_per_batch", type=int, default=-1,
help="If specified, modify the batches so that they have approximately this number of tokens.")
parser.add_argument("--shuffle", action='store_false',
help="If true, shuffle the sequence order. Default is true.")
parser.add_argument("--group_by_size", action='store_false',
help="If true, group sequences that have similar length into the same batch. Default is true.")
parser.add_argument("--gradient_accumulation_steps", type=int, default=50,
help="Gradient accumulation for larger training batches.")
parser.add_argument("--warmup_prop", default=0.05, type=float,
help="Linear warmup proportion.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--learning_rate", default=5e-4, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--adam_epsilon", default=1e-6, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=5.0, type=float,
help="Max gradient norm.")
parser.add_argument("--initializer_range", default=0.02, type=float,
help="Random initialization range.")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--n_gpu", type=int, default=1,
help="Number of GPUs in the node.")
parser.add_argument("--local_rank", type=int, default=-1,
help="Distributed training - Local rank")
parser.add_argument("--seed", type=int, default=56,
help="Random seed")
parser.add_argument("--log_interval", type=int, default=500,
help="Tensorboard logging interval.")
parser.add_argument("--checkpoint_interval", type=int, default=4000,
help="Checkpoint interval.")
args = parser.parse_args()
## ARGS ##
init_gpu_params(args)
set_seed(args)
if args.is_master:
if os.path.exists(args.dump_path):
if not args.force:
raise ValueError(f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite it'
'Use `--force` if you want to overwrite it')
else:
shutil.rmtree(args.dump_path)
if not os.path.exists(args.dump_path):
os.makedirs(args.dump_path)
logger.info(f'Experiment will be dumped and logged in {args.dump_path}')
### SAVE PARAMS ###
logger.info(f'Param: {args}')
with open(os.path.join(args.dump_path, 'parameters.json'), 'w') as f:
json.dump(vars(args), f, indent=4)
git_log(args.dump_path)
assert (args.from_pretrained_weights is None and args.from_pretrained_config is None) or \
(args.from_pretrained_weights is not None and args.from_pretrained_config is not None)
### TOKENIZER ###
if args.teacher_type == 'bert':
tokenizer = BertTokenizer.from_pretrained(args.teacher_name)
elif args.teacher_type == 'roberta':
tokenizer = RobertaTokenizer.from_pretrained(args.teacher_name)
special_tok_ids = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
idx = tokenizer.all_special_tokens.index(tok_symbol)
special_tok_ids[tok_name] = tokenizer.all_special_ids[idx]
logger.info(f'Special tokens {special_tok_ids}')
args.special_tok_ids = special_tok_ids
## DATA LOADER ##
logger.info(f'Loading data from {args.data_file}')
with open(args.data_file, 'rb') as fp:
data = pickle.load(fp)
assert os.path.isfile(args.token_counts)
logger.info(f'Loading token counts from {args.token_counts} (already pre-computed)')
with open(args.token_counts, 'rb') as fp:
counts = pickle.load(fp)
assert len(counts) == args.vocab_size
token_probs = np.maximum(counts, 1) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
token_probs[idx] = 0. # do not predict special tokens
token_probs = torch.from_numpy(token_probs)
train_dataloader = Dataset(params=args, data=data)
logger.info(f'Data loader created.')
## STUDENT ##
if args.from_pretrained_weights is not None:
assert os.path.isfile(args.from_pretrained_weights)
assert os.path.isfile(args.from_pretrained_config)
logger.info(f'Loading pretrained weights from {args.from_pretrained_weights}')
logger.info(f'Loading pretrained config from {args.from_pretrained_config}')
stu_architecture_config = DistilBertConfig.from_json_file(args.from_pretrained_config)
stu_architecture_config.output_hidden_states = True
student = DistilBertForMaskedLM.from_pretrained(args.from_pretrained_weights,
config=stu_architecture_config)
else:
args.vocab_size_or_config_json_file = args.vocab_size
stu_architecture_config = DistilBertConfig(**vars(args), output_hidden_states=True)
student = DistilBertForMaskedLM(stu_architecture_config)
if args.n_gpu > 0:
student.to(f'cuda:{args.local_rank}')
logger.info(f'Student loaded.')
## TEACHER ##
if args.teacher_type == 'bert':
teacher = BertForMaskedLM.from_pretrained(args.teacher_name, output_hidden_states=True)
elif args.teacher_type == 'roberta':
teacher = RobertaForMaskedLM.from_pretrained(args.teacher_name, output_hidden_states=True)
if args.n_gpu > 0:
teacher.to(f'cuda:{args.local_rank}')
logger.info(f'Teacher loaded from {args.teacher_name}.')
## DISTILLER ##
torch.cuda.empty_cache()
distiller = Distiller(params=args,
dataloader=train_dataloader,
token_probs=token_probs,
student=student,
teacher=teacher)
distiller.train()
logger.info("Let's go get some drinks.")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,129 @@
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Utils to train DistilBERT
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
"""
import git
import json
import os
import socket
import torch
import numpy as np
import logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def git_log(folder_path: str):
"""
Log commit info.
"""
repo = git.Repo(search_parent_directories=True)
repo_infos = {
'repo_id': str(repo),
'repo_sha': str(repo.head.object.hexsha),
'repo_branch': str(repo.active_branch)
}
with open(os.path.join(folder_path, 'git_log.json'), 'w') as f:
json.dump(repo_infos, f, indent=4)
def init_gpu_params(params):
"""
Handle single and multi-GPU / multi-node.
"""
if params.n_gpu <= 0:
params.local_rank = 0
params.master_port = -1
params.is_master = True
params.multi_gpu = False
return
assert torch.cuda.is_available()
logger.info('Initializing GPUs')
if params.n_gpu > 1:
assert params.local_rank != -1
params.world_size = int(os.environ['WORLD_SIZE'])
params.n_gpu_per_node = int(os.environ['N_GPU_NODE'])
params.global_rank = int(os.environ['RANK'])
# number of nodes / node ID
params.n_nodes = params.world_size // params.n_gpu_per_node
params.node_id = params.global_rank // params.n_gpu_per_node
params.multi_gpu = True
assert params.n_nodes == int(os.environ['N_NODES'])
assert params.node_id == int(os.environ['NODE_RANK'])
# local job (single GPU)
else:
assert params.local_rank == -1
params.n_nodes = 1
params.node_id = 0
params.local_rank = 0
params.global_rank = 0
params.world_size = 1
params.n_gpu_per_node = 1
params.multi_gpu = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
params.is_master = params.node_id == 0 and params.local_rank == 0
params.multi_node = params.n_nodes > 1
# summary
PREFIX = f"--- Global rank: {params.global_rank} - "
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes)
logger.info(PREFIX + "Node ID : %i" % params.node_id)
logger.info(PREFIX + "Local rank : %i" % params.local_rank)
logger.info(PREFIX + "World size : %i" % params.world_size)
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node)
logger.info(PREFIX + "Master : %s" % str(params.is_master))
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node))
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu))
logger.info(PREFIX + "Hostname : %s" % socket.gethostname())
# set GPU device
torch.cuda.set_device(params.local_rank)
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed")
torch.distributed.init_process_group(
init_method='env://',
backend='nccl',
)
def set_seed(args):
"""
Set the random seed.
"""
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)

View File

@ -1,297 +0,0 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Extract pre-computed feature vectors from a PyTorch BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import collections
import logging
import json
import re
import torch
from torch.utils.data import TensorDataset, DataLoader, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.modeling import BertModel
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
class InputExample(object):
def __init__(self, unique_id, text_a, text_b):
self.unique_id = unique_id
self.text_a = text_a
self.text_b = text_b
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids):
self.unique_id = unique_id
self.tokens = tokens
self.input_ids = input_ids
self.input_mask = input_mask
self.input_type_ids = input_type_ids
def convert_examples_to_features(examples, seq_length, tokenizer):
"""Loads a data file into a list of `InputFeature`s."""
features = []
for (ex_index, example) in enumerate(examples):
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > seq_length - 2:
tokens_a = tokens_a[0:(seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambigiously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
input_type_ids = []
tokens.append("[CLS]")
input_type_ids.append(0)
for token in tokens_a:
tokens.append(token)
input_type_ids.append(0)
tokens.append("[SEP]")
input_type_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
input_type_ids.append(1)
tokens.append("[SEP]")
input_type_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < seq_length:
input_ids.append(0)
input_mask.append(0)
input_type_ids.append(0)
assert len(input_ids) == seq_length
assert len(input_mask) == seq_length
assert len(input_type_ids) == seq_length
if ex_index < 5:
logger.info("*** Example ***")
logger.info("unique_id: %s" % (example.unique_id))
logger.info("tokens: %s" % " ".join([str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
"input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))
features.append(
InputFeatures(
unique_id=example.unique_id,
tokens=tokens,
input_ids=input_ids,
input_mask=input_mask,
input_type_ids=input_type_ids))
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def read_examples(input_file):
"""Read a list of `InputExample`s from an input file."""
examples = []
unique_id = 0
with open(input_file, "r", encoding='utf-8') as reader:
while True:
line = reader.readline()
if not line:
break
line = line.strip()
text_a = None
text_b = None
m = re.match(r"^(.*) \|\|\| (.*)$", line)
if m is None:
text_a = line
else:
text_a = m.group(1)
text_b = m.group(2)
examples.append(
InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))
unique_id += 1
return examples
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--input_file", default=None, type=str, required=True)
parser.add_argument("--output_file", default=None, type=str, required=True)
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
## Other parameters
parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.")
parser.add_argument("--layers", default="-1,-2,-3,-4", type=str)
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences longer "
"than this will be truncated, and sequences shorter than this will be padded.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size for predictions.")
parser.add_argument("--local_rank",
type=int,
default=-1,
help = "local_rank for distributed training on gpus")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
args = parser.parse_args()
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {} distributed training: {}".format(device, n_gpu, bool(args.local_rank != -1)))
layer_indexes = [int(x) for x in args.layers.split(",")]
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
examples = read_examples(args.input_file)
features = convert_examples_to_features(
examples=examples, seq_length=args.max_seq_length, tokenizer=tokenizer)
unique_id_to_feature = {}
for feature in features:
unique_id_to_feature[feature.unique_id] = feature
model = BertModel.from_pretrained(args.bert_model)
model.to(device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_example_index)
if args.local_rank == -1:
eval_sampler = SequentialSampler(eval_data)
else:
eval_sampler = DistributedSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size)
model.eval()
with open(args.output_file, "w", encoding='utf-8') as writer:
for input_ids, input_mask, example_indices in eval_dataloader:
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
all_encoder_layers, _ = model(input_ids, token_type_ids=None, attention_mask=input_mask)
all_encoder_layers = all_encoder_layers
for b, example_index in enumerate(example_indices):
feature = features[example_index.item()]
unique_id = int(feature.unique_id)
# feature = unique_id_to_feature[unique_id]
output_json = collections.OrderedDict()
output_json["linex_index"] = unique_id
all_out_features = []
for (i, token) in enumerate(feature.tokens):
all_layers = []
for (j, layer_index) in enumerate(layer_indexes):
layer_output = all_encoder_layers[int(layer_index)].detach().cpu().numpy()
layer_output = layer_output[b]
layers = collections.OrderedDict()
layers["index"] = layer_index
layers["values"] = [
round(x.item(), 6) for x in layer_output[i]
]
all_layers.append(layers)
out_features = collections.OrderedDict()
out_features["token"] = token
out_features["layers"] = all_layers
all_out_features.append(out_features)
output_json["features"] = all_out_features
writer.write(json.dumps(output_json) + "\n")
if __name__ == "__main__":
main()

View File

@ -1,64 +0,0 @@
# BERT Model Finetuning using Masked Language Modeling objective
## Introduction
The three example scripts in this folder can be used to **fine-tune** a pre-trained BERT model using the pretraining objective (combination of masked language modeling and next sentence prediction loss). In general, pretrained models like BERT are first trained with a pretraining objective (masked language modeling and next sentence prediction for BERT) on a large and general natural language corpus. A classifier head is then added on top of the pre-trained architecture and the model is quickly fine-tuned on a target task, while still (hopefully) retaining its general language understanding. This greatly reduces overfitting and yields state-of-the-art results, especially when training data for the target task are limited.
The [ULMFiT paper](https://arxiv.org/abs/1801.06146) took a slightly different approach, however, and added an intermediate step in which the model is fine-tuned on text **from the same domain as the target task and using the pretraining objective** before the final stage in which the classifier head is added and the model is trained on the target task itself. This paper reported significantly improved results from this step, and found that they could get high-quality classifications even with only tiny numbers (<1000) of labelled training examples, as long as they had a lot of unlabelled data from the target domain.
The BERT model has more capacity than the LSTM models used in the ULMFiT work, but the [BERT paper](https://arxiv.org/abs/1810.04805) did not test finetuning using the pretraining objective and at the present stage there aren't many examples of this approach being used for Transformer-based language models. As such, it's hard to predict what effect this step will have on final model performance, but it's reasonable to conjecture that this approach can improve the final classification performance, especially when a large unlabelled corpus from the target domain is available, labelled data is limited, or the target domain is very unusual and different from 'normal' English text. If you are aware of any literature on this subject, please feel free to add it in here, or open an issue and tag me (@Rocketknight1) and I'll include it.
## Input format
The scripts in this folder expect a single file as input, consisting of untokenized text, with one **sentence** per line, and one blank line between documents. The reason for the sentence splitting is that part of BERT's training involves a _next sentence_ objective in which the model must predict whether two sequences of text are contiguous text from the same document or not, and to avoid making the task _too easy_, the split point between the sequences is always at the end of a sentence. The linebreaks in the file are therefore necessary to mark the points where the text can be split.
## Usage
There are two ways to fine-tune a language model using these scripts. The first _quick_ approach is to use [`simple_lm_finetuning.py`](./simple_lm_finetuning.py). This script does everything in a single script, but generates training instances that consist of just two sentences. This is quite different from the BERT paper, where (confusingly) the NextSentence task concatenated sentences together from each document to form two long multi-sentences, which the paper just referred to as _sentences_. The difference between this simple approach and the original paper approach can have a significant effect for long sequences since two sentences will be much shorter than the max sequence length. In this case, most of each training example will just consist of blank padding characters, which wastes a lot of computation and results in a model that isn't really training on long sequences.
As such, the preferred approach (assuming you have documents containing multiple contiguous sentences from your target domain) is to use [`pregenerate_training_data.py`](./pregenerate_training_data.py) to pre-process your data into training examples following the methodology used for LM training in the original BERT paper and repository. Since there is a significant random component to training data generation for BERT, this script includes an option to generate multiple _epochs_ of pre-processed data, to avoid training on the same random splits each epoch. Generating an epoch of data for each training epoch should result a better final model, and so we recommend doing so.
You can then train on the pregenerated data using [`finetune_on_pregenerated.py`](./finetune_on_pregenerated.py), and pointing it to the folder created by [`pregenerate_training_data.py`](./pregenerate_training_data.py). Note that you should use the same `bert_model` and case options for both! Also note that `max_seq_len` does not need to be specified for the [`finetune_on_pregenerated.py`](./finetune_on_pregenerated.py) script, as it is inferred from the training examples.
There are various options that can be tweaked, but they are mostly set to the values from the BERT paper/repository and default values should make sense. The most relevant ones are:
- `--max_seq_len`: Controls the length of training examples (in wordpiece tokens) seen by the model. Defaults to 128 but can be set as high as 512. Higher values may yield stronger language models at the cost of slower and more memory-intensive training.
- `--fp16`: Enables fast half-precision training on recent GPUs.
In addition, if memory usage is an issue, especially when training on a single GPU, reducing `--train_batch_size` from the default 32 to a lower number (4-16) can be helpful, or leaving `--train_batch_size` at the default and increasing `--gradient_accumulation_steps` to 2-8. Changing `--gradient_accumulation_steps` may be preferable as alterations to the batch size may require corresponding changes in the learning rate to compensate. There is also a `--reduce_memory` option for both the `pregenerate_training_data.py` and `finetune_on_pregenerated.py` scripts that spills data to disc in shelf objects or numpy memmaps rather than retaining it in memory, which significantly reduces memory usage with little performance impact.
## Examples
### Simple fine-tuning
```
python3 simple_lm_finetuning.py
--train_corpus my_corpus.txt
--bert_model bert-base-uncased
--do_lower_case
--output_dir finetuned_lm/
--do_train
```
### Pregenerating training data
```
python3 pregenerate_training_data.py
--train_corpus my_corpus.txt
--bert_model bert-base-uncased
--do_lower_case
--output_dir training/
--epochs_to_generate 3
--max_seq_len 256
```
### Training on pregenerated data
```
python3 finetune_on_pregenerated.py
--pregenerated_data training/
--bert_model bert-base-uncased
--do_lower_case
--output_dir finetuned_lm/
--epochs 3
```

View File

@ -1,334 +0,0 @@
from argparse import ArgumentParser
from pathlib import Path
import torch
import logging
import json
import random
import numpy as np
from collections import namedtuple
from tempfile import TemporaryDirectory
from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from pytorch_pretrained_bert.modeling import BertForPreTraining
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
InputFeatures = namedtuple("InputFeatures", "input_ids input_mask segment_ids lm_label_ids is_next")
log_format = '%(asctime)-10s: %(message)s'
logging.basicConfig(level=logging.INFO, format=log_format)
def convert_example_to_features(example, tokenizer, max_seq_length):
tokens = example["tokens"]
segment_ids = example["segment_ids"]
is_random_next = example["is_random_next"]
masked_lm_positions = example["masked_lm_positions"]
masked_lm_labels = example["masked_lm_labels"]
assert len(tokens) == len(segment_ids) <= max_seq_length # The preprocessed data should be already truncated
input_ids = tokenizer.convert_tokens_to_ids(tokens)
masked_label_ids = tokenizer.convert_tokens_to_ids(masked_lm_labels)
input_array = np.zeros(max_seq_length, dtype=np.int)
input_array[:len(input_ids)] = input_ids
mask_array = np.zeros(max_seq_length, dtype=np.bool)
mask_array[:len(input_ids)] = 1
segment_array = np.zeros(max_seq_length, dtype=np.bool)
segment_array[:len(segment_ids)] = segment_ids
lm_label_array = np.full(max_seq_length, dtype=np.int, fill_value=-1)
lm_label_array[masked_lm_positions] = masked_label_ids
features = InputFeatures(input_ids=input_array,
input_mask=mask_array,
segment_ids=segment_array,
lm_label_ids=lm_label_array,
is_next=is_random_next)
return features
class PregeneratedDataset(Dataset):
def __init__(self, training_path, epoch, tokenizer, num_data_epochs, reduce_memory=False):
self.vocab = tokenizer.vocab
self.tokenizer = tokenizer
self.epoch = epoch
self.data_epoch = epoch % num_data_epochs
data_file = training_path / f"epoch_{self.data_epoch}.json"
metrics_file = training_path / f"epoch_{self.data_epoch}_metrics.json"
assert data_file.is_file() and metrics_file.is_file()
metrics = json.loads(metrics_file.read_text())
num_samples = metrics['num_training_examples']
seq_len = metrics['max_seq_len']
self.temp_dir = None
self.working_dir = None
if reduce_memory:
self.temp_dir = TemporaryDirectory()
self.working_dir = Path(self.temp_dir.name)
input_ids = np.memmap(filename=self.working_dir/'input_ids.memmap',
mode='w+', dtype=np.int32, shape=(num_samples, seq_len))
input_masks = np.memmap(filename=self.working_dir/'input_masks.memmap',
shape=(num_samples, seq_len), mode='w+', dtype=np.bool)
segment_ids = np.memmap(filename=self.working_dir/'segment_ids.memmap',
shape=(num_samples, seq_len), mode='w+', dtype=np.bool)
lm_label_ids = np.memmap(filename=self.working_dir/'lm_label_ids.memmap',
shape=(num_samples, seq_len), mode='w+', dtype=np.int32)
lm_label_ids[:] = -1
is_nexts = np.memmap(filename=self.working_dir/'is_nexts.memmap',
shape=(num_samples,), mode='w+', dtype=np.bool)
else:
input_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.int32)
input_masks = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
segment_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
lm_label_ids = np.full(shape=(num_samples, seq_len), dtype=np.int32, fill_value=-1)
is_nexts = np.zeros(shape=(num_samples,), dtype=np.bool)
logging.info(f"Loading training examples for epoch {epoch}")
with data_file.open() as f:
for i, line in enumerate(tqdm(f, total=num_samples, desc="Training examples")):
line = line.strip()
example = json.loads(line)
features = convert_example_to_features(example, tokenizer, seq_len)
input_ids[i] = features.input_ids
segment_ids[i] = features.segment_ids
input_masks[i] = features.input_mask
lm_label_ids[i] = features.lm_label_ids
is_nexts[i] = features.is_next
assert i == num_samples - 1 # Assert that the sample count metric was true
logging.info("Loading complete!")
self.num_samples = num_samples
self.seq_len = seq_len
self.input_ids = input_ids
self.input_masks = input_masks
self.segment_ids = segment_ids
self.lm_label_ids = lm_label_ids
self.is_nexts = is_nexts
def __len__(self):
return self.num_samples
def __getitem__(self, item):
return (torch.tensor(self.input_ids[item].astype(np.int64)),
torch.tensor(self.input_masks[item].astype(np.int64)),
torch.tensor(self.segment_ids[item].astype(np.int64)),
torch.tensor(self.lm_label_ids[item].astype(np.int64)),
torch.tensor(self.is_nexts[item].astype(np.int64)))
def main():
parser = ArgumentParser()
parser.add_argument('--pregenerated_data', type=Path, required=True)
parser.add_argument('--output_dir', type=Path, required=True)
parser.add_argument("--bert_model", type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--do_lower_case", action="store_true")
parser.add_argument("--reduce_memory", action="store_true",
help="Store training data as on-disc memmaps to massively reduce memory usage")
parser.add_argument("--epochs", type=int, default=3, help="Number of epochs to train for")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--learning_rate",
default=3e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
args = parser.parse_args()
assert args.pregenerated_data.is_dir(), \
"--pregenerated_data should point to the folder of files made by pregenerate_training_data.py!"
samples_per_epoch = []
for i in range(args.epochs):
epoch_file = args.pregenerated_data / f"epoch_{i}.json"
metrics_file = args.pregenerated_data / f"epoch_{i}_metrics.json"
if epoch_file.is_file() and metrics_file.is_file():
metrics = json.loads(metrics_file.read_text())
samples_per_epoch.append(metrics['num_training_examples'])
else:
if i == 0:
exit("No training data was found!")
print(f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs}).")
print("This script will loop over the available data, but training diversity may be negatively impacted.")
num_data_epochs = i
break
else:
num_data_epochs = args.epochs
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logging.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if args.output_dir.is_dir() and list(args.output_dir.iterdir()):
logging.warning(f"Output directory ({args.output_dir}) already exists and is not empty!")
args.output_dir.mkdir(parents=True, exist_ok=True)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
total_train_examples = 0
for i in range(args.epochs):
# The modulo takes into account the fact that we may loop over limited epochs of data
total_train_examples += samples_per_epoch[i % len(samples_per_epoch)]
num_train_optimization_steps = int(
total_train_examples / args.train_batch_size / args.gradient_accumulation_steps)
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
# Prepare model
model = BertForPreTraining.from_pretrained(args.bert_model)
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
logging.info("***** Running training *****")
logging.info(f" Num examples = {total_train_examples}")
logging.info(" Batch size = %d", args.train_batch_size)
logging.info(" Num steps = %d", num_train_optimization_steps)
model.train()
for epoch in range(args.epochs):
epoch_dataset = PregeneratedDataset(epoch=epoch, training_path=args.pregenerated_data, tokenizer=tokenizer,
num_data_epochs=num_data_epochs, reduce_memory=args.reduce_memory)
if args.local_rank == -1:
train_sampler = RandomSampler(epoch_dataset)
else:
train_sampler = DistributedSampler(epoch_dataset)
train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
with tqdm(total=len(train_dataloader), desc=f"Epoch {epoch}") as pbar:
for step, batch in enumerate(train_dataloader):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
loss = model(input_ids, segment_ids, input_mask, lm_label_ids, is_next)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
pbar.update(1)
mean_loss = tr_loss * args.gradient_accumulation_steps / nb_tr_steps
pbar.set_postfix_str(f"Loss: {mean_loss:.5f}")
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step/num_train_optimization_steps,
args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
# Save a trained model
logging.info("** ** * Saving fine-tuned model ** ** * ")
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = args.output_dir / "pytorch_model.bin"
torch.save(model_to_save.state_dict(), str(output_model_file))
if __name__ == '__main__':
main()

View File

@ -1,302 +0,0 @@
from argparse import ArgumentParser
from pathlib import Path
from tqdm import tqdm, trange
from tempfile import TemporaryDirectory
import shelve
from random import random, randrange, randint, shuffle, choice, sample
from pytorch_pretrained_bert.tokenization import BertTokenizer
import numpy as np
import json
class DocumentDatabase:
def __init__(self, reduce_memory=False):
if reduce_memory:
self.temp_dir = TemporaryDirectory()
self.working_dir = Path(self.temp_dir.name)
self.document_shelf_filepath = self.working_dir / 'shelf.db'
self.document_shelf = shelve.open(str(self.document_shelf_filepath),
flag='n', protocol=-1)
self.documents = None
else:
self.documents = []
self.document_shelf = None
self.document_shelf_filepath = None
self.temp_dir = None
self.doc_lengths = []
self.doc_cumsum = None
self.cumsum_max = None
self.reduce_memory = reduce_memory
def add_document(self, document):
if not document:
return
if self.reduce_memory:
current_idx = len(self.doc_lengths)
self.document_shelf[str(current_idx)] = document
else:
self.documents.append(document)
self.doc_lengths.append(len(document))
def _precalculate_doc_weights(self):
self.doc_cumsum = np.cumsum(self.doc_lengths)
self.cumsum_max = self.doc_cumsum[-1]
def sample_doc(self, current_idx, sentence_weighted=True):
# Uses the current iteration counter to ensure we don't sample the same doc twice
if sentence_weighted:
# With sentence weighting, we sample docs proportionally to their sentence length
if self.doc_cumsum is None or len(self.doc_cumsum) != len(self.doc_lengths):
self._precalculate_doc_weights()
rand_start = self.doc_cumsum[current_idx]
rand_end = rand_start + self.cumsum_max - self.doc_lengths[current_idx]
sentence_index = randrange(rand_start, rand_end) % self.cumsum_max
sampled_doc_index = np.searchsorted(self.doc_cumsum, sentence_index, side='right')
else:
# If we don't use sentence weighting, then every doc has an equal chance to be chosen
sampled_doc_index = (current_idx + randrange(1, len(self.doc_lengths))) % len(self.doc_lengths)
assert sampled_doc_index != current_idx
if self.reduce_memory:
return self.document_shelf[str(sampled_doc_index)]
else:
return self.documents[sampled_doc_index]
def __len__(self):
return len(self.doc_lengths)
def __getitem__(self, item):
if self.reduce_memory:
return self.document_shelf[str(item)]
else:
return self.documents[item]
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, traceback):
if self.document_shelf is not None:
self.document_shelf.close()
if self.temp_dir is not None:
self.temp_dir.cleanup()
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
"""Truncates a pair of sequences to a maximum sequence length. Lifted from Google's BERT repo."""
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_num_tokens:
break
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
assert len(trunc_tokens) >= 1
# We want to sometimes truncate from the front and sometimes from the
# back to add more randomness and avoid biases.
if random() < 0.5:
del trunc_tokens[0]
else:
trunc_tokens.pop()
def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, vocab_list):
"""Creates the predictions for the masked LM objective. This is mostly copied from the Google BERT repo, but
with several refactors to clean it up and remove a lot of unnecessary variables."""
cand_indices = []
for (i, token) in enumerate(tokens):
if token == "[CLS]" or token == "[SEP]":
continue
cand_indices.append(i)
num_to_mask = min(max_predictions_per_seq,
max(1, int(round(len(tokens) * masked_lm_prob))))
shuffle(cand_indices)
mask_indices = sorted(sample(cand_indices, num_to_mask))
masked_token_labels = []
for index in mask_indices:
# 80% of the time, replace with [MASK]
if random() < 0.8:
masked_token = "[MASK]"
else:
# 10% of the time, keep original
if random() < 0.5:
masked_token = tokens[index]
# 10% of the time, replace with random word
else:
masked_token = choice(vocab_list)
masked_token_labels.append(tokens[index])
# Once we've saved the true label for that token, we can overwrite it with the masked version
tokens[index] = masked_token
return tokens, mask_indices, masked_token_labels
def create_instances_from_document(
doc_database, doc_idx, max_seq_length, short_seq_prob,
masked_lm_prob, max_predictions_per_seq, vocab_list):
"""This code is mostly a duplicate of the equivalent function from Google BERT's repo.
However, we make some changes and improvements. Sampling is improved and no longer requires a loop in this function.
Also, documents are sampled proportionally to the number of sentences they contain, which means each sentence
(rather than each document) has an equal chance of being sampled as a false example for the NextSentence task."""
document = doc_database[doc_idx]
# Account for [CLS], [SEP], [SEP]
max_num_tokens = max_seq_length - 3
# We *usually* want to fill up the entire sequence since we are padding
# to `max_seq_length` anyways, so short sequences are generally wasted
# computation. However, we *sometimes*
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
# sequences to minimize the mismatch between pre-training and fine-tuning.
# The `target_seq_length` is just a rough target however, whereas
# `max_seq_length` is a hard limit.
target_seq_length = max_num_tokens
if random() < short_seq_prob:
target_seq_length = randint(2, max_num_tokens)
# We DON'T just concatenate all of the tokens from a document into a long
# sequence and choose an arbitrary split point because this would make the
# next sentence prediction task too easy. Instead, we split the input into
# segments "A" and "B" based on the actual "sentences" provided by the user
# input.
instances = []
current_chunk = []
current_length = 0
i = 0
while i < len(document):
segment = document[i]
current_chunk.append(segment)
current_length += len(segment)
if i == len(document) - 1 or current_length >= target_seq_length:
if current_chunk:
# `a_end` is how many segments from `current_chunk` go into the `A`
# (first) sentence.
a_end = 1
if len(current_chunk) >= 2:
a_end = randrange(1, len(current_chunk))
tokens_a = []
for j in range(a_end):
tokens_a.extend(current_chunk[j])
tokens_b = []
# Random next
if len(current_chunk) == 1 or random() < 0.5:
is_random_next = True
target_b_length = target_seq_length - len(tokens_a)
# Sample a random document, with longer docs being sampled more frequently
random_document = doc_database.sample_doc(current_idx=doc_idx, sentence_weighted=True)
random_start = randrange(0, len(random_document))
for j in range(random_start, len(random_document)):
tokens_b.extend(random_document[j])
if len(tokens_b) >= target_b_length:
break
# We didn't actually use these segments so we "put them back" so
# they don't go to waste.
num_unused_segments = len(current_chunk) - a_end
i -= num_unused_segments
# Actual next
else:
is_random_next = False
for j in range(a_end, len(current_chunk)):
tokens_b.extend(current_chunk[j])
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens)
assert len(tokens_a) >= 1
assert len(tokens_b) >= 1
tokens = ["[CLS]"] + tokens_a + ["[SEP]"] + tokens_b + ["[SEP]"]
# The segment IDs are 0 for the [CLS] token, the A tokens and the first [SEP]
# They are 1 for the B tokens and the final [SEP]
segment_ids = [0 for _ in range(len(tokens_a) + 2)] + [1 for _ in range(len(tokens_b) + 1)]
tokens, masked_lm_positions, masked_lm_labels = create_masked_lm_predictions(
tokens, masked_lm_prob, max_predictions_per_seq, vocab_list)
instance = {
"tokens": tokens,
"segment_ids": segment_ids,
"is_random_next": is_random_next,
"masked_lm_positions": masked_lm_positions,
"masked_lm_labels": masked_lm_labels}
instances.append(instance)
current_chunk = []
current_length = 0
i += 1
return instances
def main():
parser = ArgumentParser()
parser.add_argument('--train_corpus', type=Path, required=True)
parser.add_argument("--output_dir", type=Path, required=True)
parser.add_argument("--bert_model", type=str, required=True,
choices=["bert-base-uncased", "bert-large-uncased", "bert-base-cased",
"bert-base-multilingual", "bert-base-chinese"])
parser.add_argument("--do_lower_case", action="store_true")
parser.add_argument("--reduce_memory", action="store_true",
help="Reduce memory usage for large datasets by keeping data on disc rather than in memory")
parser.add_argument("--epochs_to_generate", type=int, default=3,
help="Number of epochs of data to pregenerate")
parser.add_argument("--max_seq_len", type=int, default=128)
parser.add_argument("--short_seq_prob", type=float, default=0.1,
help="Probability of making a short sentence as a training example")
parser.add_argument("--masked_lm_prob", type=float, default=0.15,
help="Probability of masking each token for the LM task")
parser.add_argument("--max_predictions_per_seq", type=int, default=20,
help="Maximum number of tokens to mask in each sequence")
args = parser.parse_args()
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
vocab_list = list(tokenizer.vocab.keys())
with DocumentDatabase(reduce_memory=args.reduce_memory) as docs:
with args.train_corpus.open() as f:
doc = []
for line in tqdm(f, desc="Loading Dataset", unit=" lines"):
line = line.strip()
if line == "":
docs.add_document(doc)
doc = []
else:
tokens = tokenizer.tokenize(line)
doc.append(tokens)
if doc:
docs.add_document(doc) # If the last doc didn't end on a newline, make sure it still gets added
if len(docs) <= 1:
exit("ERROR: No document breaks were found in the input file! These are necessary to allow the script to "
"ensure that random NextSentences are not sampled from the same document. Please add blank lines to "
"indicate breaks between documents in your input file. If your dataset does not contain multiple "
"documents, blank lines can be inserted at any natural boundary, such as the ends of chapters, "
"sections or paragraphs.")
args.output_dir.mkdir(exist_ok=True)
for epoch in trange(args.epochs_to_generate, desc="Epoch"):
epoch_filename = args.output_dir / f"epoch_{epoch}.json"
num_instances = 0
with epoch_filename.open('w') as epoch_file:
for doc_idx in trange(len(docs), desc="Document"):
doc_instances = create_instances_from_document(
docs, doc_idx, max_seq_length=args.max_seq_len, short_seq_prob=args.short_seq_prob,
masked_lm_prob=args.masked_lm_prob, max_predictions_per_seq=args.max_predictions_per_seq,
vocab_list=vocab_list)
doc_instances = [json.dumps(instance) for instance in doc_instances]
for instance in doc_instances:
epoch_file.write(instance + '\n')
num_instances += 1
metrics_file = args.output_dir / f"epoch_{epoch}_metrics.json"
with metrics_file.open('w') as metrics_file:
metrics = {
"num_training_examples": num_instances,
"max_seq_len": args.max_seq_len
}
metrics_file.write(json.dumps(metrics))
if __name__ == '__main__':
main()

View File

@ -1,645 +0,0 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import, division, print_function, unicode_literals
import argparse
import logging
import os
import random
from io import open
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from pytorch_pretrained_bert.modeling import BertForPreTraining
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
class BERTDataset(Dataset):
def __init__(self, corpus_path, tokenizer, seq_len, encoding="utf-8", corpus_lines=None, on_memory=True):
self.vocab = tokenizer.vocab
self.tokenizer = tokenizer
self.seq_len = seq_len
self.on_memory = on_memory
self.corpus_lines = corpus_lines # number of non-empty lines in input corpus
self.corpus_path = corpus_path
self.encoding = encoding
self.current_doc = 0 # to avoid random sentence from same doc
# for loading samples directly from file
self.sample_counter = 0 # used to keep track of full epochs on file
self.line_buffer = None # keep second sentence of a pair in memory and use as first sentence in next pair
# for loading samples in memory
self.current_random_doc = 0
self.num_docs = 0
self.sample_to_doc = [] # map sample index to doc and line
# load samples into memory
if on_memory:
self.all_docs = []
doc = []
self.corpus_lines = 0
with open(corpus_path, "r", encoding=encoding) as f:
for line in tqdm(f, desc="Loading Dataset", total=corpus_lines):
line = line.strip()
if line == "":
self.all_docs.append(doc)
doc = []
#remove last added sample because there won't be a subsequent line anymore in the doc
self.sample_to_doc.pop()
else:
#store as one sample
sample = {"doc_id": len(self.all_docs),
"line": len(doc)}
self.sample_to_doc.append(sample)
doc.append(line)
self.corpus_lines = self.corpus_lines + 1
# if last row in file is not empty
if self.all_docs[-1] != doc:
self.all_docs.append(doc)
self.sample_to_doc.pop()
self.num_docs = len(self.all_docs)
# load samples later lazily from disk
else:
if self.corpus_lines is None:
with open(corpus_path, "r", encoding=encoding) as f:
self.corpus_lines = 0
for line in tqdm(f, desc="Loading Dataset", total=corpus_lines):
if line.strip() == "":
self.num_docs += 1
else:
self.corpus_lines += 1
# if doc does not end with empty line
if line.strip() != "":
self.num_docs += 1
self.file = open(corpus_path, "r", encoding=encoding)
self.random_file = open(corpus_path, "r", encoding=encoding)
def __len__(self):
# last line of doc won't be used, because there's no "nextSentence". Additionally, we start counting at 0.
return self.corpus_lines - self.num_docs - 1
def __getitem__(self, item):
cur_id = self.sample_counter
self.sample_counter += 1
if not self.on_memory:
# after one epoch we start again from beginning of file
if cur_id != 0 and (cur_id % len(self) == 0):
self.file.close()
self.file = open(self.corpus_path, "r", encoding=self.encoding)
t1, t2, is_next_label = self.random_sent(item)
# tokenize
tokens_a = self.tokenizer.tokenize(t1)
tokens_b = self.tokenizer.tokenize(t2)
# combine to one sample
cur_example = InputExample(guid=cur_id, tokens_a=tokens_a, tokens_b=tokens_b, is_next=is_next_label)
# transform sample to features
cur_features = convert_example_to_features(cur_example, self.seq_len, self.tokenizer)
cur_tensors = (torch.tensor(cur_features.input_ids),
torch.tensor(cur_features.input_mask),
torch.tensor(cur_features.segment_ids),
torch.tensor(cur_features.lm_label_ids),
torch.tensor(cur_features.is_next))
return cur_tensors
def random_sent(self, index):
"""
Get one sample from corpus consisting of two sentences. With prob. 50% these are two subsequent sentences
from one doc. With 50% the second sentence will be a random one from another doc.
:param index: int, index of sample.
:return: (str, str, int), sentence 1, sentence 2, isNextSentence Label
"""
t1, t2 = self.get_corpus_line(index)
if random.random() > 0.5:
label = 0
else:
t2 = self.get_random_line()
label = 1
assert len(t1) > 0
assert len(t2) > 0
return t1, t2, label
def get_corpus_line(self, item):
"""
Get one sample from corpus consisting of a pair of two subsequent lines from the same doc.
:param item: int, index of sample.
:return: (str, str), two subsequent sentences from corpus
"""
t1 = ""
t2 = ""
assert item < self.corpus_lines
if self.on_memory:
sample = self.sample_to_doc[item]
t1 = self.all_docs[sample["doc_id"]][sample["line"]]
t2 = self.all_docs[sample["doc_id"]][sample["line"]+1]
# used later to avoid random nextSentence from same doc
self.current_doc = sample["doc_id"]
return t1, t2
else:
if self.line_buffer is None:
# read first non-empty line of file
while t1 == "" :
t1 = next(self.file).strip()
t2 = next(self.file).strip()
else:
# use t2 from previous iteration as new t1
t1 = self.line_buffer
t2 = next(self.file).strip()
# skip empty rows that are used for separating documents and keep track of current doc id
while t2 == "" or t1 == "":
t1 = next(self.file).strip()
t2 = next(self.file).strip()
self.current_doc = self.current_doc+1
self.line_buffer = t2
assert t1 != ""
assert t2 != ""
return t1, t2
def get_random_line(self):
"""
Get random line from another document for nextSentence task.
:return: str, content of one line
"""
# Similar to original tf repo: This outer loop should rarely go for more than one iteration for large
# corpora. However, just to be careful, we try to make sure that
# the random document is not the same as the document we're processing.
for _ in range(10):
if self.on_memory:
rand_doc_idx = random.randint(0, len(self.all_docs)-1)
rand_doc = self.all_docs[rand_doc_idx]
line = rand_doc[random.randrange(len(rand_doc))]
else:
rand_index = random.randint(1, self.corpus_lines if self.corpus_lines < 1000 else 1000)
#pick random line
for _ in range(rand_index):
line = self.get_next_line()
#check if our picked random line is really from another doc like we want it to be
if self.current_random_doc != self.current_doc:
break
return line
def get_next_line(self):
""" Gets next line of random_file and starts over when reaching end of file"""
try:
line = next(self.random_file).strip()
#keep track of which document we are currently looking at to later avoid having the same doc as t1
if line == "":
self.current_random_doc = self.current_random_doc + 1
line = next(self.random_file).strip()
except StopIteration:
self.random_file.close()
self.random_file = open(self.corpus_path, "r", encoding=self.encoding)
line = next(self.random_file).strip()
return line
class InputExample(object):
"""A single training/test example for the language model."""
def __init__(self, guid, tokens_a, tokens_b=None, is_next=None, lm_labels=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
tokens_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
tokens_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.tokens_a = tokens_a
self.tokens_b = tokens_b
self.is_next = is_next # nextSentence
self.lm_labels = lm_labels # masked words for language model
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, is_next, lm_label_ids):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.is_next = is_next
self.lm_label_ids = lm_label_ids
def random_word(tokens, tokenizer):
"""
Masking some random tokens for Language Model task with probabilities as in the original BERT paper.
:param tokens: list of str, tokenized sentence.
:param tokenizer: Tokenizer, object used for tokenization (we need it's vocab here)
:return: (list of str, list of int), masked tokens and related labels for LM prediction
"""
output_label = []
for i, token in enumerate(tokens):
prob = random.random()
# mask token with 15% probability
if prob < 0.15:
prob /= 0.15
# 80% randomly change token to mask token
if prob < 0.8:
tokens[i] = "[MASK]"
# 10% randomly change token to random token
elif prob < 0.9:
tokens[i] = random.choice(list(tokenizer.vocab.items()))[0]
# -> rest 10% randomly keep current token
# append current token to output (we will predict these later)
try:
output_label.append(tokenizer.vocab[token])
except KeyError:
# For unknown words (should not occur with BPE vocab)
output_label.append(tokenizer.vocab["[UNK]"])
logger.warning("Cannot find token '{}' in vocab. Using [UNK] insetad".format(token))
else:
# no masking token (will be ignored by loss function later)
output_label.append(-1)
return tokens, output_label
def convert_example_to_features(example, max_seq_length, tokenizer):
"""
Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample with
IDs, LM labels, input_mask, CLS and SEP tokens etc.
:param example: InputExample, containing sentence input as strings and is_next label
:param max_seq_length: int, maximum length of sequence.
:param tokenizer: Tokenizer
:return: InputFeatures, containing all inputs and labels of one sample as IDs (as used for model training)
"""
tokens_a = example.tokens_a
tokens_b = example.tokens_b
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
tokens_a, t1_label = random_word(tokens_a, tokenizer)
tokens_b, t2_label = random_word(tokens_b, tokenizer)
# concatenate lm labels and account for CLS, SEP, SEP
lm_label_ids = ([-1] + t1_label + [-1] + t2_label + [-1])
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambigiously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
assert len(tokens_b) > 0
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
lm_label_ids.append(-1)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(lm_label_ids) == max_seq_length
if example.guid < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("LM label: %s " % (lm_label_ids))
logger.info("Is next sentence label: %s " % (example.is_next))
features = InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
lm_label_ids=lm_label_ids,
is_next=example.is_next)
return features
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--train_corpus",
default=None,
type=str,
required=True,
help="The input train corpus.")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
## Other parameters
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--learning_rate",
default=3e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--on_memory",
action='store_true',
help="Whether to load train samples into memory or use disk")
parser.add_argument("--do_lower_case",
action='store_true',
help="Whether to lower case the input text. True for uncased models, False for cased models.")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumualte before performing a backward/update pass.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type = float, default = 0,
help = "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
args = parser.parse_args()
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train:
raise ValueError("Training is currently the only implemented execution option. Please set `do_train`.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
#train_examples = None
num_train_optimization_steps = None
if args.do_train:
print("Loading Train Dataset", args.train_corpus)
train_dataset = BERTDataset(args.train_corpus, tokenizer, seq_len=args.max_seq_length,
corpus_lines=None, on_memory=args.on_memory)
num_train_optimization_steps = int(
len(train_dataset) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
# Prepare model
model = BertForPreTraining.from_pretrained(args.bert_model)
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
if args.do_train:
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
if args.local_rank == -1:
train_sampler = RandomSampler(train_dataset)
else:
#TODO: check if this works with current data generator from disk that relies on next(file)
# (it doesn't return item back by index)
train_sampler = DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
model.train()
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
loss = model(input_ids, segment_ids, input_mask, lm_label_ids, is_next)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step/num_train_optimization_steps,
args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
# Save a trained model
logger.info("** ** * Saving fine - tuned model ** ** * ")
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
if args.do_train:
torch.save(model_to_save.state_dict(), output_model_file)
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,2 @@
tensorboardX
scikit-learn

348
examples/run_bertology.py Normal file
View File

@ -0,0 +1,348 @@
#!/usr/bin/env python3
# Copyright 2018 CMU and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Bertology: this script shows how you can explore the internals of the models in the library to:
- compute the entropy of the head attentions
- compute the importance of each head
- prune (remove) the low importance head.
Some parts of this script are adapted from the code of Michel et al. (http://arxiv.org/abs/1905.10650)
which is available at https://github.com/pmichel31415/are-16-heads-really-better-than-1
"""
import os
import argparse
import logging
from datetime import timedelta, datetime
from tqdm import tqdm
import numpy as np
import torch
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset, Subset
from torch.utils.data.distributed import DistributedSampler
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import (WEIGHTS_NAME,
BertConfig, BertForSequenceClassification, BertTokenizer,
XLMConfig, XLMForSequenceClassification, XLMTokenizer,
XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer)
from run_glue import set_seed, load_and_cache_examples, ALL_MODELS, MODEL_CLASSES
from utils_glue import (compute_metrics, convert_examples_to_features,
output_modes, processors)
logger = logging.getLogger(__name__)
def entropy(p):
""" Compute the entropy of a probability distribution """
plogp = p * torch.log(p)
plogp[p == 0] = 0
return -plogp.sum(dim=-1)
def print_2d_tensor(tensor):
""" Print a 2D tensor """
logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor))))
for row in range(len(tensor)):
if tensor.dtype != torch.long:
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:.5f}" for x in tensor[row].cpu().data))
else:
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:d}" for x in tensor[row].cpu().data))
def compute_heads_importance(args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None):
""" This method shows how to compute:
- head attention entropy
- head importance scores according to http://arxiv.org/abs/1905.10650
"""
# Prepare our tensors
n_layers, n_heads = model.bert.config.num_hidden_layers, model.bert.config.num_attention_heads
head_importance = torch.zeros(n_layers, n_heads).to(args.device)
attn_entropy = torch.zeros(n_layers, n_heads).to(args.device)
if head_mask is None:
head_mask = torch.ones(n_layers, n_heads).to(args.device)
head_mask.requires_grad_(requires_grad=True)
preds = None
labels = None
tot_tokens = 0.0
for step, batch in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
batch = tuple(t.to(args.device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
outputs = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids, head_mask=head_mask)
loss, logits, all_attentions = outputs[0], outputs[1], outputs[-1] # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
if compute_entropy:
for layer, attn in enumerate(all_attentions):
masked_entropy = entropy(attn.detach()) * input_mask.float().unsqueeze(1)
attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
# Also store our logits/labels if we want to compute metrics afterwards
if preds is None:
preds = logits.detach().cpu().numpy()
labels = label_ids.detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
labels = np.append(labels, label_ids.detach().cpu().numpy(), axis=0)
tot_tokens += input_mask.float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
exponent = 2
norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1/exponent)
head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20
if not args.dont_normalize_global_importance:
head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print/save matrices
np.save(os.path.join(args.output_dir, 'attn_entropy.npy'), attn_entropy.detach().cpu().numpy())
np.save(os.path.join(args.output_dir, 'head_importance.npy'), head_importance.detach().cpu().numpy())
logger.info("Attention entropies")
print_2d_tensor(attn_entropy)
logger.info("Head importance scores")
print_2d_tensor(head_importance)
logger.info("Head ranked by importance scores")
head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device)
head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange(head_importance.numel(), device=args.device)
head_ranks = head_ranks.view_as(head_importance)
print_2d_tensor(head_ranks)
return attn_entropy, head_importance, preds, labels
def mask_heads(args, model, eval_dataloader):
""" This method shows how to mask head (set some heads to zero), to test the effect on the network,
based on the head importance scores, as described in Michel et al. (http://arxiv.org/abs/1905.10650)
"""
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
original_score = compute_metrics(args.task_name, preds, labels)[args.metric_name]
logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold)
new_head_mask = torch.ones_like(head_importance)
num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount))
current_score = original_score
while current_score >= original_score * args.masking_threshold:
head_mask = new_head_mask.clone() # save current head mask
# heads from least important to most - keep only not-masked heads
head_importance[head_mask == 0.0] = float('Inf')
current_heads_to_mask = head_importance.view(-1).sort()[1]
if len(current_heads_to_mask) <= num_to_mask:
break
# mask heads
current_heads_to_mask = current_heads_to_mask[:num_to_mask]
logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist()))
new_head_mask = new_head_mask.view(-1)
new_head_mask[current_heads_to_mask] = 0.0
new_head_mask = new_head_mask.view_as(head_mask)
print_2d_tensor(new_head_mask)
# Compute metric and head importance again
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
current_score = compute_metrics(args.task_name, preds, labels)[args.metric_name]
logger.info("Masking: current score: %f, remaning heads %d (%.1f percents)", current_score, new_head_mask.sum(), new_head_mask.sum()/new_head_mask.numel() * 100)
logger.info("Final head mask")
print_2d_tensor(head_mask)
np.save(os.path.join(args.output_dir, 'head_mask.npy'), head_mask.detach().cpu().numpy())
return head_mask
def prune_heads(args, model, eval_dataloader, head_mask):
""" This method shows how to prune head (remove heads weights) based on
the head importance scores as described in Michel et al. (http://arxiv.org/abs/1905.10650)
"""
# Try pruning and test time speedup
# Pruning is like masking but we actually remove the masked weights
before_time = datetime.now()
_, _, preds, labels = compute_heads_importance(args, model, eval_dataloader,
compute_entropy=False, compute_importance=False, head_mask=head_mask)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
score_masking = compute_metrics(args.task_name, preds, labels)[args.metric_name]
original_time = datetime.now() - before_time
original_num_params = sum(p.numel() for p in model.parameters())
heads_to_prune = dict((layer, (1 - head_mask[layer].long()).nonzero().tolist()) for layer in range(len(head_mask)))
assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item()
model.prune_heads(heads_to_prune)
pruned_num_params = sum(p.numel() for p in model.parameters())
before_time = datetime.now()
_, _, preds, labels = compute_heads_importance(args, model, eval_dataloader,
compute_entropy=False, compute_importance=False, head_mask=None)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
score_pruning = compute_metrics(args.task_name, preds, labels)[args.metric_name]
new_time = datetime.now() - before_time
logger.info("Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)", original_num_params, pruned_num_params, pruned_num_params/original_num_params * 100)
logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning)
logger.info("Pruning: speed ratio (new timing / original timing): %f percents", original_time/new_time * 100)
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(
ALL_MODELS))
parser.add_argument("--task_name", default=None, type=str, required=True,
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name_or_path")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name_or_path")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--data_subset", type=int, default=-1,
help="If > 0: limit the data to a subset of data_subset instances.")
parser.add_argument("--overwrite_output_dir", action='store_true',
help="Whether to overwrite data in output directory")
parser.add_argument("--dont_normalize_importance_by_layer", action='store_true',
help="Don't normalize importance score by layers")
parser.add_argument("--dont_normalize_global_importance", action='store_true',
help="Don't normalize all importance scores between 0 and 1")
parser.add_argument("--try_masking", action='store_true',
help="Whether to try to mask head until a threshold of accuracy.")
parser.add_argument("--masking_threshold", default=0.9, type=float,
help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value).")
parser.add_argument("--masking_amount", default=0.1, type=float,
help="Amount to heads to masking at each masking step.")
parser.add_argument("--metric_name", default="acc", type=str,
help="Metric to use for head masking.")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, sequences shorter padded.")
parser.add_argument("--batch_size", default=1, type=int, help="Batch size.")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available")
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
args.device = torch.device("cuda", args.local_rank)
args.n_gpu = 1
torch.distributed.init_process_group(backend='nccl') # Initializes the distributed backend
# Setup logging
logging.basicConfig(level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1)))
# Set seeds
set_seed(args)
# Prepare GLUE task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = ""
for key in MODEL_CLASSES:
if key in args.model_name_or_path.lower():
args.model_type = key # take the first match in model types
break
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels, finetuning_task=args.task_name,
output_attentions=True)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
# Distributed and parallel training
model.to(args.device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
elif args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Print/save training arguments
torch.save(args, os.path.join(args.output_dir, 'run_args.bin'))
logger.info("Training/evaluation parameters %s", args)
# Prepare dataset for the GLUE task
eval_data = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=True)
if args.data_subset > 0:
eval_data = Subset(eval_data, list(range(min(args.data_subset, len(eval_data)))))
eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size)
# Compute head entropy and importance score
compute_heads_importance(args, model, eval_dataloader)
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
head_mask = mask_heads(args, model, eval_dataloader)
prune_heads(args, model, eval_dataloader, head_mask)
if __name__ == '__main__':
main()

File diff suppressed because it is too large Load Diff

195
examples/run_generation.py Normal file
View File

@ -0,0 +1,195 @@
#!/usr/bin/env python3
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conditional text generation with the auto-regressive models of the library (GPT/GPT-2/Transformer-XL/XLNet)
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import argparse
import logging
from tqdm import trange
import torch
import torch.nn.functional as F
import numpy as np
from transformers import GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from transformers import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer
from transformers import XLNetLMHeadModel, XLNetTokenizer
from transformers import TransfoXLLMHeadModel, TransfoXLTokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
MAX_LENGTH = int(10000) # Hardcoded max length to avoid infinite loop
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig)), ())
MODEL_CLASSES = {
'gpt2': (GPT2LMHeadModel, GPT2Tokenizer),
'openai-gpt': (OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
'xlnet': (XLNetLMHeadModel, XLNetTokenizer),
'transfo-xl': (TransfoXLLMHeadModel, TransfoXLTokenizer),
}
# Padding text to help Transformer-XL and XLNet with short prompts as proposed by Aman Rusia
# in https://github.com/rusiaaman/XLNet-gen#methodology
# and https://medium.com/@amanrusia/xlnet-speaks-comparison-to-gpt-2-ea1a4e9ba39e
PADDING_TEXT = """ In 1991, the remains of Russian Tsar Nicholas II and his family
(except for Alexei and Maria) are discovered.
The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
remainder of the story. 1883 Western Siberia,
a young Grigori Rasputin is asked by his father and a group of men to perform magic.
Rasputin has a vision and denounces one of the men as a horse thief. Although his
father initially slaps him for making such an accusation, Rasputin watches as the
man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
with people, even a bishop, begging for his blessing. <eod> </s> <eos>"""
def set_seed(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = filter_value
return logits
def sample_sequence(model, length, context, num_samples=1, temperature=1, top_k=0, top_p=0.0, is_xlnet=False, device='cpu'):
context = torch.tensor(context, dtype=torch.long, device=device)
context = context.unsqueeze(0).repeat(num_samples, 1)
generated = context
with torch.no_grad():
for _ in trange(length):
inputs = {'input_ids': generated}
if is_xlnet:
# XLNet is a direct (predict same token, not next token) and bi-directional model by default
# => need one additional dummy token in the input (will be masked), attention mask and target mapping (see model docstring)
input_ids = torch.cat((generated, torch.zeros((1, 1), dtype=torch.long, device=device)), dim=1)
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float, device=device)
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float, device=device)
target_mapping[0, 0, -1] = 1.0 # predict last token
inputs = {'input_ids': input_ids, 'perm_mask': perm_mask, 'target_mapping': target_mapping}
outputs = model(**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
next_token_logits = outputs[0][0, -1, :] / temperature
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
return generated
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--prompt", type=str, default="")
parser.add_argument("--padding_text", type=str, default="")
parser.add_argument("--length", type=int, default=20)
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--top_k", type=int, default=0)
parser.add_argument("--top_p", type=float, default=0.9)
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
args = parser.parse_args()
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
set_seed(args)
args.model_type = args.model_type.lower()
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
model = model_class.from_pretrained(args.model_name_or_path)
model.to(args.device)
model.eval()
if args.length < 0 and model.config.max_position_embeddings > 0:
args.length = model.config.max_position_embeddings
elif 0 < model.config.max_position_embeddings < args.length:
args.length = model.config.max_position_embeddings # No generation bigger than model size
elif args.length < 0:
args.length = MAX_LENGTH # avoid infinite loop
print(args)
while True:
raw_text = args.prompt if args.prompt else input("Model prompt >>> ")
if args.model_type in ["transfo-xl", "xlnet"]:
# Models with memory likes to have a long prompt for short inputs.
raw_text = (args.padding_text if args.padding_text else PADDING_TEXT) + raw_text
context_tokens = tokenizer.encode(raw_text)
out = sample_sequence(
model=model,
context=context_tokens,
length=args.length,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
device=args.device,
is_xlnet=bool(args.model_type == "xlnet"),
)
out = out[0, len(context_tokens):].tolist()
text = tokenizer.decode(out, clean_up_tokenization_spaces=True)
print(text)
if args.prompt:
break
return text
if __name__ == '__main__':
main()

500
examples/run_glue.py Normal file
View File

@ -0,0 +1,500 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
from __future__ import absolute_import, division, print_function
import argparse
import glob
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from transformers import (WEIGHTS_NAME, BertConfig,
BertForSequenceClassification, BertTokenizer,
RobertaConfig,
RobertaForSequenceClassification,
RobertaTokenizer,
XLMConfig, XLMForSequenceClassification,
XLMTokenizer, XLNetConfig,
XLNetForSequenceClassification,
XLNetTokenizer,
DistilBertConfig,
DistilBertForSequenceClassification,
DistilBertTokenizer)
from transformers import AdamW, WarmupLinearSchedule
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
from transformers import glue_convert_examples_to_features as convert_examples_to_features
logger = logging.getLogger(__name__)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig)), ())
MODEL_CLASSES = {
'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer)
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_dataset, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM, DistilBERT and RoBERTa don't use segment_ids
'labels': batch[3]}
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM, DistilBERT and RoBERTa don't use segment_ids
'labels': batch[3]}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs['labels'].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
if args.output_mode == "classification":
preds = np.argmax(preds, axis=1)
elif args.output_mode == "regression":
preds = np.squeeze(preds)
result = compute_metrics(eval_task, preds, out_label_ids)
results.update(result)
output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
processor = processors[task]()
output_mode = output_modes[task]
# Load data features from cache or dataset file
cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
'dev' if evaluate else 'train',
list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length),
str(task)))
if os.path.exists(cached_features_file):
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels()
if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta']:
# HACK(label indices are swapped in RoBERTa pretrained model)
label_list[1], label_list[2] = label_list[2], label_list[1]
examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
features = convert_examples_to_features(examples,
tokenizer,
label_list=label_list,
max_length=args.max_seq_length,
output_mode=output_mode,
pad_on_left=bool(args.model_type in ['xlnet']), # pad on the left for xlnet
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
if output_mode == "classification":
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
elif output_mode == "regression":
all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
return dataset
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--task_name", default=None, type=str, required=True,
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Rul evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
args = parser.parse_args()
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Prepare GLUE task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=global_step)
result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
results.update(result)
return results
if __name__ == "__main__":
main()

View File

@ -1,131 +0,0 @@
#!/usr/bin/env python3
import argparse
import logging
from tqdm import trange
import torch
import torch.nn.functional as F
import numpy as np
from pytorch_pretrained_bert import GPT2LMHeadModel, GPT2Tokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def top_k_logits(logits, k):
"""
Masks everything but the k top entries as -infinity (1e10).
Used to mask logits such that e^-infinity -> 0 won't contribute to the
sum of the denominator.
"""
if k == 0:
return logits
else:
values = torch.topk(logits, k)[0]
batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
return torch.where(logits < batch_mins, torch.ones_like(logits) * -1e10, logits)
def sample_sequence(model, length, start_token=None, batch_size=None, context=None, temperature=1, top_k=0, device='cuda', sample=True):
if start_token is None:
assert context is not None, 'Specify exactly one of start_token and context!'
context = torch.tensor(context, device=device, dtype=torch.long).unsqueeze(0).repeat(batch_size, 1)
else:
assert context is None, 'Specify exactly one of start_token and context!'
context = torch.full((batch_size, 1), start_token, device=device, dtype=torch.long)
prev = context
output = context
past = None
with torch.no_grad():
for i in trange(length):
logits, past = model(prev, past=past)
logits = logits[:, -1, :] / temperature
logits = top_k_logits(logits, k=top_k)
log_probs = F.softmax(logits, dim=-1)
if sample:
prev = torch.multinomial(log_probs, num_samples=1)
else:
_, prev = torch.topk(log_probs, k=1, dim=-1)
output = torch.cat((output, prev), dim=1)
return output
def run_model():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, default='gpt2', help='pretrained model name or path to local checkpoint')
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--nsamples", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=-1)
parser.add_argument("--length", type=int, default=-1)
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--top_k", type=int, default=0)
parser.add_argument('--unconditional', action='store_true', help='If true, unconditional generation.')
args = parser.parse_args()
print(args)
if args.batch_size == -1:
args.batch_size = 1
assert args.nsamples % args.batch_size == 0
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
enc = GPT2Tokenizer.from_pretrained(args.model_name_or_path)
model = GPT2LMHeadModel.from_pretrained(args.model_name_or_path)
model.to(device)
model.eval()
if args.length == -1:
args.length = model.config.n_ctx // 2
elif args.length > model.config.n_ctx:
raise ValueError("Can't get samples longer than window size: %s" % model.config.n_ctx)
while True:
context_tokens = []
if not args.unconditional:
raw_text = input("Model prompt >>> ")
while not raw_text:
print('Prompt should not be empty!')
raw_text = input("Model prompt >>> ")
context_tokens = enc.encode(raw_text)
generated = 0
for _ in range(args.nsamples // args.batch_size):
out = sample_sequence(
model=model, length=args.length,
context=context_tokens,
start_token=None,
batch_size=args.batch_size,
temperature=args.temperature, top_k=args.top_k, device=device
)
out = out[:, len(context_tokens):].tolist()
for i in range(args.batch_size):
generated += 1
text = enc.decode(out[i])
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
print(text)
print("=" * 80)
else:
generated = 0
for _ in range(args.nsamples // args.batch_size):
out = sample_sequence(
model=model, length=args.length,
context=None,
start_token=enc.encoder['<|endoftext|>'],
batch_size=args.batch_size,
temperature=args.temperature, top_k=args.top_k, device=device
)
out = out[:,1:].tolist()
for i in range(args.batch_size):
generated += 1
text = enc.decode(out[i])
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
print(text)
print("=" * 80)
if __name__ == '__main__':
run_model()

View File

@ -0,0 +1,498 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
from __future__ import absolute_import, division, print_function
import argparse
import glob
import logging
import os
import pickle
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from transformers import (WEIGHTS_NAME, AdamW, WarmupLinearSchedule,
BertConfig, BertForMaskedLM, BertTokenizer,
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
RobertaConfig, RobertaForMaskedLM, RobertaTokenizer,
DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
}
class TextDataset(Dataset):
def __init__(self, tokenizer, file_path='train', block_size=512):
assert os.path.isfile(file_path)
directory, filename = os.path.split(file_path)
cached_features_file = os.path.join(directory, f'cached_lm_{block_size}_{filename}')
if os.path.exists(cached_features_file):
logger.info("Loading features from cached file %s", cached_features_file)
with open(cached_features_file, 'rb') as handle:
self.examples = pickle.load(handle)
else:
logger.info("Creating features from dataset file at %s", directory)
self.examples = []
with open(file_path, encoding="utf-8") as f:
text = f.read()
tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
while len(tokenized_text) >= block_size: # Truncate in block of block_size
self.examples.append(tokenizer.add_special_tokens_single_sequence(tokenized_text[:block_size]))
tokenized_text = tokenized_text[block_size:]
# Note that we are loosing the last truncated example here for the sake of simplicity (no padding)
# If your dataset is small, first you should loook for a bigger one :-) and second you
# can change this behavior by adding (model specific) padding.
logger.info("Saving features into cached file %s", cached_features_file)
with open(cached_features_file, 'wb') as handle:
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
def __len__(self):
return len(self.examples)
def __getitem__(self, item):
return torch.tensor(self.examples[item])
def load_and_cache_examples(args, tokenizer, evaluate=False):
dataset = TextDataset(tokenizer, file_path=args.eval_data_file if evaluate else args.train_data_file, block_size=args.block_size)
return dataset
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def mask_tokens(inputs, tokenizer, args):
""" Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
labels = inputs.clone()
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
masked_indices = torch.bernoulli(torch.full(labels.shape, args.mlm_probability)).bool()
labels[~masked_indices] = -1 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def train(args, train_dataset, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproducibility (even between python 2 and 3)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
inputs = inputs.to(args.device)
labels = labels.to(args.device)
model.train()
outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_output_dir = args.output_dir
eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
for batch in tqdm(eval_dataloader, desc="Evaluating"):
batch = batch.to(args.device)
with torch.no_grad():
outputs = model(batch, masked_lm_labels=batch) if args.mlm else model(batch, labels=batch)
lm_loss = outputs[0]
eval_loss += lm_loss.mean().item()
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
perplexity = torch.exp(torch.tensor(eval_loss))
result = {
"perplexity": perplexity
}
output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return result
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--train_data_file", default=None, type=str, required=True,
help="The input training data file (a text file).")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--eval_data_file", default=None, type=str,
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
parser.add_argument("--model_type", default="bert", type=str,
help="The model architecture to be fine-tuned.")
parser.add_argument("--model_name_or_path", default="bert-base-cased", type=str,
help="The model checkpoint for weights initialization.")
parser.add_argument("--mlm", action='store_true',
help="Train with masked-language modeling loss instead of language modeling.")
parser.add_argument("--mlm_probability", type=float, default=0.15,
help="Ratio of tokens to mask for masked language modeling loss")
parser.add_argument("--config_name", default="", type=str,
help="Optional pretrained config name or path if not the same as model_name_or_path")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
parser.add_argument("--cache_dir", default="", type=str,
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
parser.add_argument("--block_size", default=-1, type=int,
help="Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens).")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Run evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=1.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
args = parser.parse_args()
if args.model_type in ["bert", "roberta", "distilbert"] and not args.mlm:
raise ValueError("BERT and RoBERTa do not have LM heads but masked LM heads. They must be run using the --mlm "
"flag (masked language modeling).")
if args.eval_data_file is None and args.do_eval:
raise ValueError("Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
"or remove the --do_eval argument.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
if args.block_size <= 0:
args.block_size = tokenizer.max_len_single_sentence # Our input block size will be the max possible for the model
args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
model.to(args.device)
if args.local_rank == 0:
torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
if args.local_rank == 0:
torch.distributed.barrier()
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=global_step)
result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
results.update(result)
return results
if __name__ == "__main__":
main()

View File

@ -0,0 +1,542 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for multiple choice (Bert, Roberta, XLNet)."""
from __future__ import absolute_import, division, print_function
import argparse
import glob
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from transformers import (WEIGHTS_NAME, BertConfig,
BertForMultipleChoice, BertTokenizer,
XLNetConfig, XLNetForMultipleChoice,
XLNetTokenizer, RobertaConfig,
RobertaForMultipleChoice, RobertaTokenizer)
from transformers import AdamW, WarmupLinearSchedule
from utils_multiple_choice import (convert_examples_to_features, processors)
logger = logging.getLogger(__name__)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, RobertaConfig)), ())
MODEL_CLASSES = {
'bert': (BertConfig, BertForMultipleChoice, BertTokenizer),
'xlnet': (XLNetConfig, XLNetForMultipleChoice, XLNetTokenizer),
'roberta': (RobertaConfig, RobertaForMultipleChoice, RobertaTokenizer)
}
def select_field(features, field):
return [
[
choice[field]
for choice in feature.choices_features
]
for feature in features
]
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_dataset, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
best_dev_acc, best_dev_loss = 0.0, 99999999999.0
best_steps = 0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM don't use segment_ids
'labels': batch[3]}
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
if results["eval_acc"] > best_dev_acc:
best_dev_acc = results["eval_acc"]
best_dev_loss = results["eval_loss"]
best_steps = global_step
if args.do_test:
results_test = evaluate(args, model, tokenizer, test=True)
for key, value in results_test.items():
tb_writer.add_scalar('test_{}'.format(key), value, global_step)
logger.info("test acc: %s, loss: %s, global steps: %s", str(results_test['eval_acc']), str(results_test['eval_loss']), str(global_step))
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
logger.info("Average loss: %s at global step: %s", str((tr_loss - logging_loss)/args.logging_steps), str(global_step))
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_vocabulary(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step, best_steps
def evaluate(args, model, tokenizer, prefix="", test=False):
eval_task_names = (args.task_name,)
eval_outputs_dirs = (args.output_dir,)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=not test, test=test)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM don't use segment_ids
'labels': batch[3]}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs['labels'].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
preds = np.argmax(preds, axis=1)
acc = simple_accuracy(preds, out_label_ids)
result = {"eval_acc": acc, "eval_loss": eval_loss}
results.update(result)
output_eval_file = os.path.join(eval_output_dir, "is_test_" + str(test).lower() + "_eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(str(prefix) + " is test:" + str(test)))
writer.write("model =%s\n" % str(args.model_name_or_path))
writer.write("total batch size=%d\n" % (args.per_gpu_train_batch_size * args.gradient_accumulation_steps *
(torch.distributed.get_world_size() if args.local_rank != -1 else 1)))
writer.write("train num epochs=%d\n" % args.num_train_epochs)
writer.write("fp16 =%s\n" % args.fp16)
writer.write("max seq length =%d\n" % args.max_seq_length)
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
def load_and_cache_examples(args, task, tokenizer, evaluate=False, test=False):
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
processor = processors[task]()
# Load data features from cache or dataset file
if evaluate:
cached_mode = 'dev'
elif test:
cached_mode = 'test'
else:
cached_mode = 'train'
assert (evaluate == True and test == True) == False
cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
cached_mode,
list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length),
str(task)))
if os.path.exists(cached_features_file):
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels()
if evaluate:
examples = processor.get_dev_examples(args.data_dir)
elif test:
examples = processor.get_test_examples(args.data_dir)
else:
examples = processor.get_train_examples(args.data_dir)
logger.info("Training number: %s", str(len(examples)))
features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer,
cls_token_at_end=bool(args.model_type in ['xlnet']), # xlnet has a cls token at the end
cls_token=tokenizer.cls_token,
sep_token=tokenizer.sep_token,
sep_token_extra=bool(args.model_type in ['roberta']),
cls_token_segment_id=2 if args.model_type in ['xlnet'] else 0,
pad_on_left=bool(args.model_type in ['xlnet']), # pad on the left for xlnet
pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor(select_field(features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(features, 'segment_ids'), dtype=torch.long)
all_label_ids = torch.tensor([f.label for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
return dataset
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--task_name", default=None, type=str, required=True,
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_test", action='store_true', help='Whether to run test on the test set')
parser.add_argument("--evaluate_during_training", action='store_true',
help="Rul evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
args = parser.parse_args()
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Prepare GLUE task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
label_list = processor.get_labels()
num_labels = len(label_list)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
best_steps = 0
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
global_step, tr_loss, best_steps = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir)
model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
if not args.do_train:
args.output_dir = args.model_name_or_path
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=global_step)
result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
results.update(result)
if args.do_test and args.local_rank in [-1, 0]:
if not args.do_train:
args.output_dir = args.model_name_or_path
checkpoints = [args.output_dir]
# if args.eval_all_checkpoints: # can not use this to do test!!
# checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
# logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=global_step, test=True)
result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
results.update(result)
if best_steps:
logger.info("best steps of eval acc is the following checkpoints: %s", best_steps)
return results
if __name__ == "__main__":
main()

File diff suppressed because it is too large Load Diff

View File

@ -1,554 +0,0 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import
import argparse
import csv
import logging
import os
import random
import sys
from io import open
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForMultipleChoice, BertConfig
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
from pytorch_pretrained_bert.tokenization import BertTokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
class SwagExample(object):
"""A single training/test example for the SWAG dataset."""
def __init__(self,
swag_id,
context_sentence,
start_ending,
ending_0,
ending_1,
ending_2,
ending_3,
label = None):
self.swag_id = swag_id
self.context_sentence = context_sentence
self.start_ending = start_ending
self.endings = [
ending_0,
ending_1,
ending_2,
ending_3,
]
self.label = label
def __str__(self):
return self.__repr__()
def __repr__(self):
l = [
"swag_id: {}".format(self.swag_id),
"context_sentence: {}".format(self.context_sentence),
"start_ending: {}".format(self.start_ending),
"ending_0: {}".format(self.endings[0]),
"ending_1: {}".format(self.endings[1]),
"ending_2: {}".format(self.endings[2]),
"ending_3: {}".format(self.endings[3]),
]
if self.label is not None:
l.append("label: {}".format(self.label))
return ", ".join(l)
class InputFeatures(object):
def __init__(self,
example_id,
choices_features,
label
):
self.example_id = example_id
self.choices_features = [
{
'input_ids': input_ids,
'input_mask': input_mask,
'segment_ids': segment_ids
}
for _, input_ids, input_mask, segment_ids in choices_features
]
self.label = label
def read_swag_examples(input_file, is_training):
with open(input_file, 'r', encoding='utf-8') as f:
reader = csv.reader(f)
lines = []
for line in reader:
if sys.version_info[0] == 2:
line = list(unicode(cell, 'utf-8') for cell in line)
lines.append(line)
if is_training and lines[0][-1] != 'label':
raise ValueError(
"For training, the input file must contain a label column."
)
examples = [
SwagExample(
swag_id = line[2],
context_sentence = line[4],
start_ending = line[5], # in the swag dataset, the
# common beginning of each
# choice is stored in "sent2".
ending_0 = line[7],
ending_1 = line[8],
ending_2 = line[9],
ending_3 = line[10],
label = int(line[11]) if is_training else None
) for line in lines[1:] # we skip the line with the column names
]
return examples
def convert_examples_to_features(examples, tokenizer, max_seq_length,
is_training):
"""Loads a data file into a list of `InputBatch`s."""
# Swag is a multiple choice task. To perform this task using Bert,
# we will use the formatting proposed in "Improving Language
# Understanding by Generative Pre-Training" and suggested by
# @jacobdevlin-google in this issue
# https://github.com/google-research/bert/issues/38.
#
# Each choice will correspond to a sample on which we run the
# inference. For a given Swag example, we will create the 4
# following inputs:
# - [CLS] context [SEP] choice_1 [SEP]
# - [CLS] context [SEP] choice_2 [SEP]
# - [CLS] context [SEP] choice_3 [SEP]
# - [CLS] context [SEP] choice_4 [SEP]
# The model will output a single value for each input. To get the
# final decision of the model, we will run a softmax over these 4
# outputs.
features = []
for example_index, example in enumerate(examples):
context_tokens = tokenizer.tokenize(example.context_sentence)
start_ending_tokens = tokenizer.tokenize(example.start_ending)
choices_features = []
for ending_index, ending in enumerate(example.endings):
# We create a copy of the context tokens in order to be
# able to shrink it according to ending_tokens
context_tokens_choice = context_tokens[:]
ending_tokens = start_ending_tokens + tokenizer.tokenize(ending)
# Modifies `context_tokens_choice` and `ending_tokens` in
# place so that the total length is less than the
# specified length. Account for [CLS], [SEP], [SEP] with
# "- 3"
_truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3)
tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"]
segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
choices_features.append((tokens, input_ids, input_mask, segment_ids))
label = example.label
if example_index < 5:
logger.info("*** Example ***")
logger.info("swag_id: {}".format(example.swag_id))
for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
logger.info("choice: {}".format(choice_idx))
logger.info("tokens: {}".format(' '.join(tokens)))
logger.info("input_ids: {}".format(' '.join(map(str, input_ids))))
logger.info("input_mask: {}".format(' '.join(map(str, input_mask))))
logger.info("segment_ids: {}".format(' '.join(map(str, segment_ids))))
if is_training:
logger.info("label: {}".format(label))
features.append(
InputFeatures(
example_id = example.swag_id,
choices_features = choices_features,
label = label
)
)
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def select_field(features, field):
return [
[
choice[field]
for choice in feature.choices_features
]
for feature in features
]
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .csv files (or other data files) for the task.")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
"bert-base-multilingual-cased, bert-base-chinese.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
## Other parameters
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case",
action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
args = parser.parse_args()
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
train_examples = None
num_train_optimization_steps = None
if args.do_train:
train_examples = read_swag_examples(os.path.join(args.data_dir, 'train.csv'), is_training = True)
num_train_optimization_steps = int(
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
# Prepare model
model = BertForMultipleChoice.from_pretrained(args.bert_model,
cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank)),
num_choices=4)
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
if args.do_train:
train_features = convert_examples_to_features(
train_examples, tokenizer, args.max_seq_length, True)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
all_input_ids = torch.tensor(select_field(train_features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(train_features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(train_features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
model.train()
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
loss = model(input_ids, segment_ids, input_mask, label_ids)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.fp16 and args.loss_scale != 1.0:
# rescale loss for fp16 training
# see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
loss = loss * args.loss_scale
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step/num_train_optimization_steps,
args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
if args.do_train:
# Save a trained model, configuration and tokenizer
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
# If we save using the predefined names, we can load using `from_pretrained`
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(args.output_dir)
# Load a trained model and vocabulary that you have fine-tuned
model = BertForMultipleChoice.from_pretrained(args.output_dir, num_choices=4)
tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
else:
model = BertForMultipleChoice.from_pretrained(args.bert_model, num_choices=4)
model.to(device)
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
eval_examples = read_swag_examples(os.path.join(args.data_dir, 'val.csv'), is_training = True)
eval_features = convert_examples_to_features(
eval_examples, tokenizer, args.max_seq_length, True)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
logits = model(input_ids, segment_ids, input_mask)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
eval_loss += tmp_eval_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'global_step': global_step,
'loss': tr_loss/nb_tr_steps}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if __name__ == "__main__":
main()

48
examples/run_tf_glue.py Normal file
View File

@ -0,0 +1,48 @@
import tensorflow as tf
import tensorflow_datasets
from transformers import *
# Load dataset, tokenizer, model from pretrained model/vocabulary
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-cased')
data = tensorflow_datasets.load('glue/mrpc')
# Prepare dataset for GLUE as a tf.data.Dataset instance
train_dataset = glue_convert_examples_to_features(data['train'], tokenizer, 128, 'mrpc')
valid_dataset = glue_convert_examples_to_features(data['validation'], tokenizer, 128, 'mrpc')
train_dataset = train_dataset.shuffle(100).batch(32).repeat(2)
valid_dataset = valid_dataset.batch(64)
# Prepare training: Compile tf.keras model with optimizer, loss and learning rate schedule
optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')
model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
# Train and evaluate using tf.keras.Model.fit()
history = model.fit(train_dataset, epochs=2, steps_per_epoch=115,
validation_data=valid_dataset, validation_steps=7)
>>> Train for 115 steps, validate for 7 steps
>>> Epoch 1/2
>>> 115/115 [==============================] - 53s 459ms/step - loss: 0.6033 - accuracy: 0.6712 - val_loss: 0.4964 - val_accuracy: 0.7647
>>> Epoch 2/2
>>> 115/115 [==============================] - 33s 289ms/step - loss: 0.4141 - accuracy: 0.8160 - val_loss: 0.3914 - val_accuracy: 0.8382
# Load the TensorFlow model in PyTorch for inspection
model.save_pretrained('./save/')
pytorch_model = BertForSequenceClassification.from_pretrained('./save/', from_tf=True)
# Quickly test a few predictions - MRPC is a paraphrasing task, let's see if our model learned the task
sentence_0 = "This research was consistent with his findings."
sentence_1 = "His findings were compatible with this research."
sentence_2 = "His findings were not compatible with this research."
inputs_1 = tokenizer.encode_plus(sentence_0, sentence_1, add_special_tokens=True, return_tensors='pt')
inputs_2 = tokenizer.encode_plus(sentence_0, sentence_2, add_special_tokens=True, return_tensors='pt')
pred_1 = pytorch_model(**inputs_1)[0].argmax().item()
pred_2 = pytorch_model(**inputs_2)[0].argmax().item()
print("sentence_1 is", "a paraphrase" if pred_1 else "not a paraphrase", "of sentence_0")
print("sentence_2 is", "a paraphrase" if pred_2 else "not a paraphrase", "of sentence_0")
>>> sentence_1 is a paraphrase of sentence_0
>>> sentence_2 is not a paraphrase of sentence_0

111
examples/test_examples.py Normal file
View File

@ -0,0 +1,111 @@
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import unittest
import argparse
import logging
try:
# python 3.4+ can use builtin unittest.mock instead of mock package
from unittest.mock import patch
except ImportError:
from mock import patch
import run_glue
import run_squad
import run_generation
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
def get_setup_file():
parser = argparse.ArgumentParser()
parser.add_argument('-f')
args = parser.parse_args()
return args.f
class ExamplesTests(unittest.TestCase):
def test_run_glue(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
testargs = ["run_glue.py",
"--data_dir=./examples/tests_samples/MRPC/",
"--task_name=mrpc",
"--do_train",
"--do_eval",
"--output_dir=./examples/tests_samples/temp_dir",
"--per_gpu_train_batch_size=2",
"--per_gpu_eval_batch_size=1",
"--learning_rate=1e-4",
"--max_steps=10",
"--warmup_steps=2",
"--overwrite_output_dir",
"--seed=42"]
model_type, model_name = ("--model_type=bert",
"--model_name_or_path=bert-base-uncased")
with patch.object(sys, 'argv', testargs + [model_type, model_name]):
result = run_glue.main()
for value in result.values():
self.assertGreaterEqual(value, 0.75)
def test_run_squad(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
testargs = ["run_squad.py",
"--train_file=./examples/tests_samples/SQUAD/dev-v2.0-small.json",
"--predict_file=./examples/tests_samples/SQUAD/dev-v2.0-small.json",
"--model_name=bert-base-uncased",
"--output_dir=./examples/tests_samples/temp_dir",
"--max_steps=10",
"--warmup_steps=2",
"--do_train",
"--do_eval",
"--version_2_with_negative",
"--learning_rate=2e-4",
"--per_gpu_train_batch_size=2",
"--per_gpu_eval_batch_size=1",
"--overwrite_output_dir",
"--seed=42"]
model_type, model_name = ("--model_type=bert",
"--model_name_or_path=bert-base-uncased")
with patch.object(sys, 'argv', testargs + [model_type, model_name]):
result = run_squad.main()
self.assertGreaterEqual(result['f1'], 30)
self.assertGreaterEqual(result['exact'], 30)
def test_generation(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
testargs = ["run_generation.py",
"--prompt=Hello",
"--length=10",
"--seed=42"]
model_type, model_name = ("--model_type=openai-gpt",
"--model_name_or_path=openai-gpt")
with patch.object(sys, 'argv', testargs + [model_type, model_name]):
result = run_generation.main()
self.assertGreaterEqual(len(result), 10)
if __name__ == "__main__":
unittest.main()

6
examples/tests_samples/.gitignore vendored Normal file
View File

@ -0,0 +1,6 @@
*.*
cache*
temp*
!*.tsv
!*.json
!.gitignore

View File

@ -0,0 +1,7 @@
Quality #1 ID #2 ID #1 String #2 String
1 1355540 1355592 He said the foodservice pie business doesn 't fit the company 's long-term growth strategy . " The foodservice pie business does not fit our long-term growth strategy .
0 2029631 2029565 Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war . His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war .
0 487993 487952 The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat . The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .
1 1989515 1989458 The AFL-CIO is waiting until October to decide if it will endorse a candidate . The AFL-CIO announced Wednesday that it will decide in October whether to endorse a candidate before the primaries .
0 1783137 1782659 No dates have been set for the civil or the criminal trial . No dates have been set for the criminal or civil cases , but Shanley has pleaded not guilty .
1 3039165 3039036 Wal-Mart said it would check all of its million-plus domestic workers to ensure they were legally employed . It has also said it would review all of its domestic employees more than 1 million to ensure they have legal status .
Can't render this file because it contains an unexpected character in line 3 and column 155.

View File

@ -0,0 +1,7 @@
Quality #1 ID #2 ID #1 String #2 String
1 1355540 1355592 He said the foodservice pie business doesn 't fit the company 's long-term growth strategy . " The foodservice pie business does not fit our long-term growth strategy .
0 2029631 2029565 Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war . His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war .
0 487993 487952 The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat . The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .
1 1989515 1989458 The AFL-CIO is waiting until October to decide if it will endorse a candidate . The AFL-CIO announced Wednesday that it will decide in October whether to endorse a candidate before the primaries .
0 1783137 1782659 No dates have been set for the civil or the criminal trial . No dates have been set for the criminal or civil cases , but Shanley has pleaded not guilty .
1 3039165 3039036 Wal-Mart said it would check all of its million-plus domestic workers to ensure they were legally employed . It has also said it would review all of its domestic employees more than 1 million to ensure they have legal status .
Can't render this file because it contains an unexpected character in line 3 and column 155.

View File

@ -0,0 +1,140 @@
{
"version": "v2.0",
"data": [{
"title": "Normans",
"paragraphs": [{
"qas": [{
"question": "In what country is Normandy located?",
"id": "56ddde6b9a695914005b9628",
"answers": [{
"text": "France",
"answer_start": 159
}],
"is_impossible": false
}, {
"question": "When were the Normans in Normandy?",
"id": "56ddde6b9a695914005b9629",
"answers": [{
"text": "10th and 11th centuries",
"answer_start": 94
}],
"is_impossible": false
}, {
"question": "From which countries did the Norse originate?",
"id": "56ddde6b9a695914005b962a",
"answers": [{
"text": "Denmark, Iceland and Norway",
"answer_start": 256
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "Rollo",
"answer_start": 308
}],
"question": "Who did King Charles III swear fealty to?",
"id": "5ad39d53604f3c001a3fe8d3",
"answers": [],
"is_impossible": true
}, {
"plausible_answers": [{
"text": "10th century",
"answer_start": 671
}],
"question": "When did the Frankish identity emerge?",
"id": "5ad39d53604f3c001a3fe8d4",
"answers": [],
"is_impossible": true
}],
"context": "The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th centuries gave their name to Normandy, a region in France. They were descended from Norse (\"Norman\" comes from \"Norseman\") raiders and pirates from Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear fealty to King Charles III of West Francia. Through generations of assimilation and mixing with the native Frankish and Roman-Gaulish populations, their descendants would gradually merge with the Carolingian-based cultures of West Francia. The distinct cultural and ethnic identity of the Normans emerged initially in the first half of the 10th century, and it continued to evolve over the succeeding centuries."
}, {
"qas": [{
"question": "Who was the duke in the battle of Hastings?",
"id": "56dddf4066d3e219004dad5f",
"answers": [{
"text": "William the Conqueror",
"answer_start": 1022
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "Antioch",
"answer_start": 1295
}],
"question": "What principality did William the conquerer found?",
"id": "5ad3a266604f3c001a3fea2b",
"answers": [],
"is_impossible": true
}],
"context": "The Norman dynasty had a major political, cultural and military impact on medieval Europe and even the Near East. The Normans were famed for their martial spirit and eventually for their Christian piety, becoming exponents of the Catholic orthodoxy into which they assimilated. They adopted the Gallo-Romance language of the Frankish land they settled, their dialect becoming known as Norman, Normaund or Norman French, an important literary language. The Duchy of Normandy, which they formed by treaty with the French crown, was a great fief of medieval France, and under Richard I of Normandy was forged into a cohesive and formidable principality in feudal tenure. The Normans are noted both for their culture, such as their unique Romanesque architecture and musical traditions, and for their significant military accomplishments and innovations. Norman adventurers founded the Kingdom of Sicily under Roger II after conquering southern Italy on the Saracens and Byzantines, and an expedition on behalf of their duke, William the Conqueror, led to the Norman conquest of England at the Battle of Hastings in 1066. Norman cultural and military influence spread from these new European centres to the Crusader states of the Near East, where their prince Bohemond I founded the Principality of Antioch in the Levant, to Scotland and Wales in Great Britain, to Ireland, and to the coasts of north Africa and the Canary Islands."
}]
}, {
"title": "Computational_complexity_theory",
"paragraphs": [{
"qas": [{
"question": "What branch of theoretical computer science deals with broadly classifying computational problems by difficulty and class of relationship?",
"id": "56e16182e3433e1400422e28",
"answers": [{
"text": "Computational complexity theory",
"answer_start": 0
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "algorithm",
"answer_start": 472
}],
"question": "What is a manual application of mathematical steps?",
"id": "5ad5316b5b96ef001a10ab76",
"answers": [],
"is_impossible": true
}],
"context": "Computational complexity theory is a branch of the theory of computation in theoretical computer science that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. A computational problem is understood to be a task that is in principle amenable to being solved by a computer, which is equivalent to stating that the problem may be solved by mechanical application of mathematical steps, such as an algorithm."
}, {
"qas": [{
"question": "What measure of a computational problem broadly defines the inherent difficulty of the solution?",
"id": "56e16839cd28a01900c67887",
"answers": [{
"text": "if its solution requires significant resources",
"answer_start": 46
}],
"is_impossible": false
}, {
"question": "What method is used to intuitively assess or quantify the amount of resources required to solve a computational problem?",
"id": "56e16839cd28a01900c67888",
"answers": [{
"text": "mathematical models of computation",
"answer_start": 176
}],
"is_impossible": false
}, {
"question": "What are two basic primary resources used to guage complexity?",
"id": "56e16839cd28a01900c67889",
"answers": [{
"text": "time and storage",
"answer_start": 305
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "the number of gates in a circuit",
"answer_start": 436
}],
"question": "What unit is measured to determine circuit simplicity?",
"id": "5ad532575b96ef001a10ab7f",
"answers": [],
"is_impossible": true
}, {
"plausible_answers": [{
"text": "the number of processors",
"answer_start": 502
}],
"question": "What number is used in perpendicular computing?",
"id": "5ad532575b96ef001a10ab80",
"answers": [],
"is_impossible": true
}],
"context": "A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying the amount of resources needed to solve them, such as time and storage. Other complexity measures are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of computational complexity theory is to determine the practical limits on what computers can and cannot do."
}]
}]
}

View File

@ -0,0 +1,463 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BERT multiple choice fine-tuning: utilities to work with multiple choice tasks of reading comprehension """
from __future__ import absolute_import, division, print_function
import logging
import os
import sys
from io import open
import json
import csv
import glob
import tqdm
logger = logging.getLogger(__name__)
class InputExample(object):
"""A single training/test example for multiple choice"""
def __init__(self, example_id, question, contexts, endings, label=None):
"""Constructs a InputExample.
Args:
example_id: Unique id for the example.
contexts: list of str. The untokenized text of the first sequence (context of corresponding question).
question: string. The untokenized text of the second sequence (qustion).
endings: list of str. multiple choice's options. Its length must be equal to contexts' length.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.example_id = example_id
self.question = question
self.contexts = contexts
self.endings = endings
self.label = label
class InputFeatures(object):
def __init__(self,
example_id,
choices_features,
label
):
self.example_id = example_id
self.choices_features = [
{
'input_ids': input_ids,
'input_mask': input_mask,
'segment_ids': segment_ids
}
for _, input_ids, input_mask, segment_ids in choices_features
]
self.label = label
class DataProcessor(object):
"""Base class for data converters for multiple choice data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the test set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
class RaceProcessor(DataProcessor):
"""Processor for the RACE data set."""
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
high = os.path.join(data_dir, 'train/high')
middle = os.path.join(data_dir, 'train/middle')
high = self._read_txt(high)
middle = self._read_txt(middle)
return self._create_examples(high + middle, 'train')
def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
high = os.path.join(data_dir, 'dev/high')
middle = os.path.join(data_dir, 'dev/middle')
high = self._read_txt(high)
middle = self._read_txt(middle)
return self._create_examples(high + middle, 'dev')
def get_test_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} test".format(data_dir))
high = os.path.join(data_dir, 'test/high')
middle = os.path.join(data_dir, 'test/middle')
high = self._read_txt(high)
middle = self._read_txt(middle)
return self._create_examples(high + middle, 'test')
def get_labels(self):
"""See base class."""
return ["0", "1", "2", "3"]
def _read_txt(self, input_dir):
lines = []
files = glob.glob(input_dir + "/*txt")
for file in tqdm.tqdm(files, desc="read files"):
with open(file, 'r', encoding='utf-8') as fin:
data_raw = json.load(fin)
data_raw["race_id"] = file
lines.append(data_raw)
return lines
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (_, data_raw) in enumerate(lines):
race_id = "%s-%s" % (set_type, data_raw["race_id"])
article = data_raw["article"]
for i in range(len(data_raw["answers"])):
truth = str(ord(data_raw['answers'][i]) - ord('A'))
question = data_raw['questions'][i]
options = data_raw['options'][i]
examples.append(
InputExample(
example_id=race_id,
question=question,
contexts=[article, article, article, article], # this is not efficient but convenient
endings=[options[0], options[1], options[2], options[3]],
label=truth))
return examples
class SwagProcessor(DataProcessor):
"""Processor for the SWAG data set."""
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
return self._create_examples(self._read_csv(os.path.join(data_dir, "train.csv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
return self._create_examples(self._read_csv(os.path.join(data_dir, "val.csv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
raise ValueError(
"For swag testing, the input file does not contain a label column. It can not be tested in current code"
"setting!"
)
return self._create_examples(self._read_csv(os.path.join(data_dir, "test.csv")), "test")
def get_labels(self):
"""See base class."""
return ["0", "1", "2", "3"]
def _read_csv(self, input_file):
with open(input_file, 'r', encoding='utf-8') as f:
reader = csv.reader(f)
lines = []
for line in reader:
if sys.version_info[0] == 2:
line = list(unicode(cell, 'utf-8') for cell in line)
lines.append(line)
return lines
def _create_examples(self, lines, type):
"""Creates examples for the training and dev sets."""
if type == "train" and lines[0][-1] != 'label':
raise ValueError(
"For training, the input file must contain a label column."
)
examples = [
InputExample(
example_id=line[2],
question=line[5], # in the swag dataset, the
# common beginning of each
# choice is stored in "sent2".
contexts = [line[4], line[4], line[4], line[4]],
endings = [line[7], line[8], line[9], line[10]],
label=line[11]
) for line in lines[1:] # we skip the line with the column names
]
return examples
class ArcProcessor(DataProcessor):
"""Processor for the ARC data set (request from allennlp)."""
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
return self._create_examples(self._read_json(os.path.join(data_dir, "train.jsonl")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
return self._create_examples(self._read_json(os.path.join(data_dir, "dev.jsonl")), "dev")
def get_test_examples(self, data_dir):
logger.info("LOOKING AT {} test".format(data_dir))
return self._create_examples(self._read_json(os.path.join(data_dir, "test.jsonl")), "test")
def get_labels(self):
"""See base class."""
return ["0", "1", "2", "3"]
def _read_json(self, input_file):
with open(input_file, 'r', encoding='utf-8') as fin:
lines = fin.readlines()
return lines
def _create_examples(self, lines, type):
"""Creates examples for the training and dev sets."""
#There are two types of labels. They should be normalized
def normalize(truth):
if truth in "ABCD":
return ord(truth) - ord("A")
elif truth in "1234":
return int(truth) - 1
else:
logger.info("truth ERROR! %s", str(truth))
return None
examples = []
three_choice = 0
four_choice = 0
five_choice = 0
other_choices = 0
# we deleted example which has more than or less than four choices
for line in tqdm.tqdm(lines, desc="read arc data"):
data_raw = json.loads(line.strip("\n"))
if len(data_raw["question"]["choices"]) == 3:
three_choice += 1
continue
elif len(data_raw["question"]["choices"]) == 5:
five_choice += 1
continue
elif len(data_raw["question"]["choices"]) != 4:
other_choices += 1
continue
four_choice += 1
truth = str(normalize(data_raw["answerKey"]))
assert truth != "None"
question_choices = data_raw["question"]
question = question_choices["stem"]
id = data_raw["id"]
options = question_choices["choices"]
if len(options) == 4:
examples.append(
InputExample(
example_id = id,
question=question,
contexts=[options[0]["para"].replace("_", ""), options[1]["para"].replace("_", ""),
options[2]["para"].replace("_", ""), options[3]["para"].replace("_", "")],
endings=[options[0]["text"], options[1]["text"], options[2]["text"], options[3]["text"]],
label=truth))
if type == "train":
assert len(examples) > 1
assert examples[0].label is not None
logger.info("len examples: %s}", str(len(examples)))
logger.info("Three choices: %s", str(three_choice))
logger.info("Five choices: %s", str(five_choice))
logger.info("Other choices: %s", str(other_choices))
logger.info("four choices: %s", str(four_choice))
return examples
def convert_examples_to_features(examples, label_list, max_seq_length,
tokenizer,
cls_token_at_end=False,
cls_token='[CLS]',
cls_token_segment_id=1,
sep_token='[SEP]',
sequence_a_segment_id=0,
sequence_b_segment_id=1,
sep_token_extra=False,
pad_token_segment_id=0,
pad_on_left=False,
pad_token=0,
mask_padding_with_zero=True):
""" Loads a data file into a list of `InputBatch`s
`cls_token_at_end` define the location of the CLS token:
- False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP]
- True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS]
`cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet)
"""
label_map = {label : i for i, label in enumerate(label_list)}
features = []
for (ex_index, example) in tqdm.tqdm(enumerate(examples), desc="convert examples to features"):
if ex_index % 10000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
choices_features = []
for ending_idx, (context, ending) in enumerate(zip(example.contexts, example.endings)):
tokens_a = tokenizer.tokenize(context)
tokens_b = None
if example.question.find("_") != -1:
#this is for cloze question
tokens_b = tokenizer.tokenize(example.question.replace("_", ending))
else:
tokens_b = tokenizer.tokenize(example.question + " " + ending)
# you can add seq token between quesiotn and ending. This does not make too much difference.
# tokens_b = tokenizer.tokenize(example.question)
# tokens_b += [sep_token]
# if sep_token_extra:
# tokens_b += [sep_token]
# tokens_b += tokenizer.tokenize(ending)
special_tokens_count = 4 if sep_token_extra else 3
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - special_tokens_count)
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = tokens_a + [sep_token]
if sep_token_extra:
# roberta uses an extra separator b/w pairs of sentences
tokens += [sep_token]
segment_ids = [sequence_a_segment_id] * len(tokens)
if tokens_b:
tokens += tokens_b + [sep_token]
segment_ids += [sequence_b_segment_id] * (len(tokens_b) + 1)
if cls_token_at_end:
tokens = tokens + [cls_token]
segment_ids = segment_ids + [cls_token_segment_id]
else:
tokens = [cls_token] + tokens
segment_ids = [cls_token_segment_id] + segment_ids
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = max_seq_length - len(input_ids)
if pad_on_left:
input_ids = ([pad_token] * padding_length) + input_ids
input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids
else:
input_ids = input_ids + ([pad_token] * padding_length)
input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
segment_ids = segment_ids + ([pad_token_segment_id] * padding_length)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
choices_features.append((tokens, input_ids, input_mask, segment_ids))
label = label_map[example.label]
if ex_index < 2:
logger.info("*** Example ***")
logger.info("race_id: {}".format(example.example_id))
for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
logger.info("choice: {}".format(choice_idx))
logger.info("tokens: {}".format(' '.join(tokens)))
logger.info("input_ids: {}".format(' '.join(map(str, input_ids))))
logger.info("input_mask: {}".format(' '.join(map(str, input_mask))))
logger.info("segment_ids: {}".format(' '.join(map(str, segment_ids))))
logger.info("label: {}".format(label))
features.append(
InputFeatures(
example_id = example.example_id,
choices_features = choices_features,
label = label
)
)
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
# However, since we'd better not to remove tokens of options and questions, you can choose to use a bigger
# length or only pop from context
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
logger.info('Attention! you are removing from token_b (swag task is ok). '
'If you are training ARC and RACE (you are poping question + options), '
'you need to try to use a bigger max seq length!')
tokens_b.pop()
processors = {
"race": RaceProcessor,
"swag": SwagProcessor,
"arc": ArcProcessor
}
GLUE_TASKS_NUM_LABELS = {
"race", 4,
"swag", 4,
"arc", 4
}

996
examples/utils_squad.py Normal file
View File

@ -0,0 +1,996 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Load SQuAD dataset. """
from __future__ import absolute_import, division, print_function
import json
import logging
import math
import collections
from io import open
from transformers.tokenization_bert import BasicTokenizer, whitespace_tokenize
# Required by XLNet evaluation method to compute optimal threshold (see write_predictions_extended() method)
from utils_squad_evaluate import find_all_best_thresh_v2, make_qid_to_has_ans, get_raw_scores
logger = logging.getLogger(__name__)
class SquadExample(object):
"""
A single training/test example for the Squad dataset.
For examples without an answer, the start and end position are -1.
"""
def __init__(self,
qas_id,
question_text,
doc_tokens,
orig_answer_text=None,
start_position=None,
end_position=None,
is_impossible=None):
self.qas_id = qas_id
self.question_text = question_text
self.doc_tokens = doc_tokens
self.orig_answer_text = orig_answer_text
self.start_position = start_position
self.end_position = end_position
self.is_impossible = is_impossible
def __str__(self):
return self.__repr__()
def __repr__(self):
s = ""
s += "qas_id: %s" % (self.qas_id)
s += ", question_text: %s" % (
self.question_text)
s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
if self.start_position:
s += ", start_position: %d" % (self.start_position)
if self.end_position:
s += ", end_position: %d" % (self.end_position)
if self.is_impossible:
s += ", is_impossible: %r" % (self.is_impossible)
return s
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
unique_id,
example_index,
doc_span_index,
tokens,
token_to_orig_map,
token_is_max_context,
input_ids,
input_mask,
segment_ids,
cls_index,
p_mask,
paragraph_len,
start_position=None,
end_position=None,
is_impossible=None):
self.unique_id = unique_id
self.example_index = example_index
self.doc_span_index = doc_span_index
self.tokens = tokens
self.token_to_orig_map = token_to_orig_map
self.token_is_max_context = token_is_max_context
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.cls_index = cls_index
self.p_mask = p_mask
self.paragraph_len = paragraph_len
self.start_position = start_position
self.end_position = end_position
self.is_impossible = is_impossible
def read_squad_examples(input_file, is_training, version_2_with_negative):
"""Read a SQuAD json file into a list of SquadExample."""
with open(input_file, "r", encoding='utf-8') as reader:
input_data = json.load(reader)["data"]
def is_whitespace(c):
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
return True
return False
examples = []
for entry in input_data:
for paragraph in entry["paragraphs"]:
paragraph_text = paragraph["context"]
doc_tokens = []
char_to_word_offset = []
prev_is_whitespace = True
for c in paragraph_text:
if is_whitespace(c):
prev_is_whitespace = True
else:
if prev_is_whitespace:
doc_tokens.append(c)
else:
doc_tokens[-1] += c
prev_is_whitespace = False
char_to_word_offset.append(len(doc_tokens) - 1)
for qa in paragraph["qas"]:
qas_id = qa["id"]
question_text = qa["question"]
start_position = None
end_position = None
orig_answer_text = None
is_impossible = False
if is_training:
if version_2_with_negative:
is_impossible = qa["is_impossible"]
if (len(qa["answers"]) != 1) and (not is_impossible):
raise ValueError(
"For training, each question should have exactly 1 answer.")
if not is_impossible:
answer = qa["answers"][0]
orig_answer_text = answer["text"]
answer_offset = answer["answer_start"]
answer_length = len(orig_answer_text)
start_position = char_to_word_offset[answer_offset]
end_position = char_to_word_offset[answer_offset + answer_length - 1]
# Only add answers where the text can be exactly recovered from the
# document. If this CAN'T happen it's likely due to weird Unicode
# stuff so we will just skip the example.
#
# Note that this means for training mode, every example is NOT
# guaranteed to be preserved.
actual_text = " ".join(doc_tokens[start_position:(end_position + 1)])
cleaned_answer_text = " ".join(
whitespace_tokenize(orig_answer_text))
if actual_text.find(cleaned_answer_text) == -1:
logger.warning("Could not find answer: '%s' vs. '%s'",
actual_text, cleaned_answer_text)
continue
else:
start_position = -1
end_position = -1
orig_answer_text = ""
example = SquadExample(
qas_id=qas_id,
question_text=question_text,
doc_tokens=doc_tokens,
orig_answer_text=orig_answer_text,
start_position=start_position,
end_position=end_position,
is_impossible=is_impossible)
examples.append(example)
return examples
def convert_examples_to_features(examples, tokenizer, max_seq_length,
doc_stride, max_query_length, is_training,
cls_token_at_end=False,
cls_token='[CLS]', sep_token='[SEP]', pad_token=0,
sequence_a_segment_id=0, sequence_b_segment_id=1,
cls_token_segment_id=0, pad_token_segment_id=0,
mask_padding_with_zero=True):
"""Loads a data file into a list of `InputBatch`s."""
unique_id = 1000000000
# cnt_pos, cnt_neg = 0, 0
# max_N, max_M = 1024, 1024
# f = np.zeros((max_N, max_M), dtype=np.float32)
features = []
for (example_index, example) in enumerate(examples):
# if example_index % 100 == 0:
# logger.info('Converting %s/%s pos %s neg %s', example_index, len(examples), cnt_pos, cnt_neg)
query_tokens = tokenizer.tokenize(example.question_text)
if len(query_tokens) > max_query_length:
query_tokens = query_tokens[0:max_query_length]
tok_to_orig_index = []
orig_to_tok_index = []
all_doc_tokens = []
for (i, token) in enumerate(example.doc_tokens):
orig_to_tok_index.append(len(all_doc_tokens))
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
tok_to_orig_index.append(i)
all_doc_tokens.append(sub_token)
tok_start_position = None
tok_end_position = None
if is_training and example.is_impossible:
tok_start_position = -1
tok_end_position = -1
if is_training and not example.is_impossible:
tok_start_position = orig_to_tok_index[example.start_position]
if example.end_position < len(example.doc_tokens) - 1:
tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
else:
tok_end_position = len(all_doc_tokens) - 1
(tok_start_position, tok_end_position) = _improve_answer_span(
all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
example.orig_answer_text)
# The -3 accounts for [CLS], [SEP] and [SEP]
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
# We can have documents that are longer than the maximum sequence length.
# To deal with this we do a sliding window approach, where we take chunks
# of the up to our max length with a stride of `doc_stride`.
_DocSpan = collections.namedtuple( # pylint: disable=invalid-name
"DocSpan", ["start", "length"])
doc_spans = []
start_offset = 0
while start_offset < len(all_doc_tokens):
length = len(all_doc_tokens) - start_offset
if length > max_tokens_for_doc:
length = max_tokens_for_doc
doc_spans.append(_DocSpan(start=start_offset, length=length))
if start_offset + length == len(all_doc_tokens):
break
start_offset += min(length, doc_stride)
for (doc_span_index, doc_span) in enumerate(doc_spans):
tokens = []
token_to_orig_map = {}
token_is_max_context = {}
segment_ids = []
# p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
# Original TF implem also keep the classification token (set to 0) (not sure why...)
p_mask = []
# CLS token at the beginning
if not cls_token_at_end:
tokens.append(cls_token)
segment_ids.append(cls_token_segment_id)
p_mask.append(0)
cls_index = 0
# Query
for token in query_tokens:
tokens.append(token)
segment_ids.append(sequence_a_segment_id)
p_mask.append(1)
# SEP token
tokens.append(sep_token)
segment_ids.append(sequence_a_segment_id)
p_mask.append(1)
# Paragraph
for i in range(doc_span.length):
split_token_index = doc_span.start + i
token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]
is_max_context = _check_is_max_context(doc_spans, doc_span_index,
split_token_index)
token_is_max_context[len(tokens)] = is_max_context
tokens.append(all_doc_tokens[split_token_index])
segment_ids.append(sequence_b_segment_id)
p_mask.append(0)
paragraph_len = doc_span.length
# SEP token
tokens.append(sep_token)
segment_ids.append(sequence_b_segment_id)
p_mask.append(1)
# CLS token at the end
if cls_token_at_end:
tokens.append(cls_token)
segment_ids.append(cls_token_segment_id)
p_mask.append(0)
cls_index = len(tokens) - 1 # Index of classification token
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(pad_token)
input_mask.append(0 if mask_padding_with_zero else 1)
segment_ids.append(pad_token_segment_id)
p_mask.append(1)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
span_is_impossible = example.is_impossible
start_position = None
end_position = None
if is_training and not span_is_impossible:
# For training, if our document chunk does not contain an annotation
# we throw it out, since there is nothing to predict.
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
out_of_span = False
if not (tok_start_position >= doc_start and
tok_end_position <= doc_end):
out_of_span = True
if out_of_span:
start_position = 0
end_position = 0
span_is_impossible = True
else:
doc_offset = len(query_tokens) + 2
start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset
if is_training and span_is_impossible:
start_position = cls_index
end_position = cls_index
if example_index < 20:
logger.info("*** Example ***")
logger.info("unique_id: %s" % (unique_id))
logger.info("example_index: %s" % (example_index))
logger.info("doc_span_index: %s" % (doc_span_index))
logger.info("tokens: %s" % " ".join(tokens))
logger.info("token_to_orig_map: %s" % " ".join([
"%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()]))
logger.info("token_is_max_context: %s" % " ".join([
"%d:%s" % (x, y) for (x, y) in token_is_max_context.items()
]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info(
"input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
if is_training and span_is_impossible:
logger.info("impossible example")
if is_training and not span_is_impossible:
answer_text = " ".join(tokens[start_position:(end_position + 1)])
logger.info("start_position: %d" % (start_position))
logger.info("end_position: %d" % (end_position))
logger.info(
"answer: %s" % (answer_text))
features.append(
InputFeatures(
unique_id=unique_id,
example_index=example_index,
doc_span_index=doc_span_index,
tokens=tokens,
token_to_orig_map=token_to_orig_map,
token_is_max_context=token_is_max_context,
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
cls_index=cls_index,
p_mask=p_mask,
paragraph_len=paragraph_len,
start_position=start_position,
end_position=end_position,
is_impossible=span_is_impossible))
unique_id += 1
return features
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer,
orig_answer_text):
"""Returns tokenized answer spans that better match the annotated answer."""
# The SQuAD annotations are character based. We first project them to
# whitespace-tokenized words. But then after WordPiece tokenization, we can
# often find a "better match". For example:
#
# Question: What year was John Smith born?
# Context: The leader was John Smith (1895-1943).
# Answer: 1895
#
# The original whitespace-tokenized answer will be "(1895-1943).". However
# after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match
# the exact answer, 1895.
#
# However, this is not always possible. Consider the following:
#
# Question: What country is the top exporter of electornics?
# Context: The Japanese electronics industry is the lagest in the world.
# Answer: Japan
#
# In this case, the annotator chose "Japan" as a character sub-span of
# the word "Japanese". Since our WordPiece tokenizer does not split
# "Japanese", we just use "Japanese" as the annotation. This is fairly rare
# in SQuAD, but does happen.
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
for new_start in range(input_start, input_end + 1):
for new_end in range(input_end, new_start - 1, -1):
text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
if text_span == tok_answer_text:
return (new_start, new_end)
return (input_start, input_end)
def _check_is_max_context(doc_spans, cur_span_index, position):
"""Check if this is the 'max context' doc span for the token."""
# Because of the sliding window approach taken to scoring documents, a single
# token can appear in multiple documents. E.g.
# Doc: the man went to the store and bought a gallon of milk
# Span A: the man went to the
# Span B: to the store and bought
# Span C: and bought a gallon of
# ...
#
# Now the word 'bought' will have two scores from spans B and C. We only
# want to consider the score with "maximum context", which we define as
# the *minimum* of its left and right context (the *sum* of left and
# right context will always be the same, of course).
#
# In the example the maximum context for 'bought' would be span C since
# it has 1 left context and 3 right context, while span B has 4 left context
# and 0 right context.
best_score = None
best_span_index = None
for (span_index, doc_span) in enumerate(doc_spans):
end = doc_span.start + doc_span.length - 1
if position < doc_span.start:
continue
if position > end:
continue
num_left_context = position - doc_span.start
num_right_context = end - position
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
if best_score is None or score > best_score:
best_score = score
best_span_index = span_index
return cur_span_index == best_span_index
RawResult = collections.namedtuple("RawResult",
["unique_id", "start_logits", "end_logits"])
def write_predictions(all_examples, all_features, all_results, n_best_size,
max_answer_length, do_lower_case, output_prediction_file,
output_nbest_file, output_null_log_odds_file, verbose_logging,
version_2_with_negative, null_score_diff_threshold):
"""Write final predictions to the json file and log-odds of null if needed."""
logger.info("Writing predictions to: %s" % (output_prediction_file))
logger.info("Writing nbest to: %s" % (output_nbest_file))
example_index_to_features = collections.defaultdict(list)
for feature in all_features:
example_index_to_features[feature.example_index].append(feature)
unique_id_to_result = {}
for result in all_results:
unique_id_to_result[result.unique_id] = result
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
"PrelimPrediction",
["feature_index", "start_index", "end_index", "start_logit", "end_logit"])
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
scores_diff_json = collections.OrderedDict()
for (example_index, example) in enumerate(all_examples):
features = example_index_to_features[example_index]
prelim_predictions = []
# keep track of the minimum score of null start+end of position 0
score_null = 1000000 # large and positive
min_null_feature_index = 0 # the paragraph slice with min null score
null_start_logit = 0 # the start logit at the slice with min null score
null_end_logit = 0 # the end logit at the slice with min null score
for (feature_index, feature) in enumerate(features):
result = unique_id_to_result[feature.unique_id]
start_indexes = _get_best_indexes(result.start_logits, n_best_size)
end_indexes = _get_best_indexes(result.end_logits, n_best_size)
# if we could have irrelevant answers, get the min score of irrelevant
if version_2_with_negative:
feature_null_score = result.start_logits[0] + result.end_logits[0]
if feature_null_score < score_null:
score_null = feature_null_score
min_null_feature_index = feature_index
null_start_logit = result.start_logits[0]
null_end_logit = result.end_logits[0]
for start_index in start_indexes:
for end_index in end_indexes:
# We could hypothetically create invalid predictions, e.g., predict
# that the start of the span is in the question. We throw out all
# invalid predictions.
if start_index >= len(feature.tokens):
continue
if end_index >= len(feature.tokens):
continue
if start_index not in feature.token_to_orig_map:
continue
if end_index not in feature.token_to_orig_map:
continue
if not feature.token_is_max_context.get(start_index, False):
continue
if end_index < start_index:
continue
length = end_index - start_index + 1
if length > max_answer_length:
continue
prelim_predictions.append(
_PrelimPrediction(
feature_index=feature_index,
start_index=start_index,
end_index=end_index,
start_logit=result.start_logits[start_index],
end_logit=result.end_logits[end_index]))
if version_2_with_negative:
prelim_predictions.append(
_PrelimPrediction(
feature_index=min_null_feature_index,
start_index=0,
end_index=0,
start_logit=null_start_logit,
end_logit=null_end_logit))
prelim_predictions = sorted(
prelim_predictions,
key=lambda x: (x.start_logit + x.end_logit),
reverse=True)
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
"NbestPrediction", ["text", "start_logit", "end_logit"])
seen_predictions = {}
nbest = []
for pred in prelim_predictions:
if len(nbest) >= n_best_size:
break
feature = features[pred.feature_index]
if pred.start_index > 0: # this is a non-null prediction
tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
orig_doc_start = feature.token_to_orig_map[pred.start_index]
orig_doc_end = feature.token_to_orig_map[pred.end_index]
orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
tok_text = " ".join(tok_tokens)
# De-tokenize WordPieces that have been split off.
tok_text = tok_text.replace(" ##", "")
tok_text = tok_text.replace("##", "")
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
if final_text in seen_predictions:
continue
seen_predictions[final_text] = True
else:
final_text = ""
seen_predictions[final_text] = True
nbest.append(
_NbestPrediction(
text=final_text,
start_logit=pred.start_logit,
end_logit=pred.end_logit))
# if we didn't include the empty option in the n-best, include it
if version_2_with_negative:
if "" not in seen_predictions:
nbest.append(
_NbestPrediction(
text="",
start_logit=null_start_logit,
end_logit=null_end_logit))
# In very rare edge cases we could only have single null prediction.
# So we just create a nonce prediction in this case to avoid failure.
if len(nbest)==1:
nbest.insert(0,
_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
# In very rare edge cases we could have no valid predictions. So we
# just create a nonce prediction in this case to avoid failure.
if not nbest:
nbest.append(
_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
assert len(nbest) >= 1
total_scores = []
best_non_null_entry = None
for entry in nbest:
total_scores.append(entry.start_logit + entry.end_logit)
if not best_non_null_entry:
if entry.text:
best_non_null_entry = entry
probs = _compute_softmax(total_scores)
nbest_json = []
for (i, entry) in enumerate(nbest):
output = collections.OrderedDict()
output["text"] = entry.text
output["probability"] = probs[i]
output["start_logit"] = entry.start_logit
output["end_logit"] = entry.end_logit
nbest_json.append(output)
assert len(nbest_json) >= 1
if not version_2_with_negative:
all_predictions[example.qas_id] = nbest_json[0]["text"]
else:
# predict "" iff the null score - the score of best non-null > threshold
score_diff = score_null - best_non_null_entry.start_logit - (
best_non_null_entry.end_logit)
scores_diff_json[example.qas_id] = score_diff
if score_diff > null_score_diff_threshold:
all_predictions[example.qas_id] = ""
else:
all_predictions[example.qas_id] = best_non_null_entry.text
all_nbest_json[example.qas_id] = nbest_json
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(all_predictions, indent=4) + "\n")
with open(output_nbest_file, "w") as writer:
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
if version_2_with_negative:
with open(output_null_log_odds_file, "w") as writer:
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
return all_predictions
# For XLNet (and XLM which uses the same head)
RawResultExtended = collections.namedtuple("RawResultExtended",
["unique_id", "start_top_log_probs", "start_top_index",
"end_top_log_probs", "end_top_index", "cls_logits"])
def write_predictions_extended(all_examples, all_features, all_results, n_best_size,
max_answer_length, output_prediction_file,
output_nbest_file,
output_null_log_odds_file, orig_data_file,
start_n_top, end_n_top, version_2_with_negative,
tokenizer, verbose_logging):
""" XLNet write prediction logic (more complex than Bert's).
Write final predictions to the json file and log-odds of null if needed.
Requires utils_squad_evaluate.py
"""
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
"PrelimPrediction",
["feature_index", "start_index", "end_index",
"start_log_prob", "end_log_prob"])
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
"NbestPrediction", ["text", "start_log_prob", "end_log_prob"])
logger.info("Writing predictions to: %s", output_prediction_file)
# logger.info("Writing nbest to: %s" % (output_nbest_file))
example_index_to_features = collections.defaultdict(list)
for feature in all_features:
example_index_to_features[feature.example_index].append(feature)
unique_id_to_result = {}
for result in all_results:
unique_id_to_result[result.unique_id] = result
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
scores_diff_json = collections.OrderedDict()
for (example_index, example) in enumerate(all_examples):
features = example_index_to_features[example_index]
prelim_predictions = []
# keep track of the minimum score of null start+end of position 0
score_null = 1000000 # large and positive
for (feature_index, feature) in enumerate(features):
result = unique_id_to_result[feature.unique_id]
cur_null_score = result.cls_logits
# if we could have irrelevant answers, get the min score of irrelevant
score_null = min(score_null, cur_null_score)
for i in range(start_n_top):
for j in range(end_n_top):
start_log_prob = result.start_top_log_probs[i]
start_index = result.start_top_index[i]
j_index = i * end_n_top + j
end_log_prob = result.end_top_log_probs[j_index]
end_index = result.end_top_index[j_index]
# We could hypothetically create invalid predictions, e.g., predict
# that the start of the span is in the question. We throw out all
# invalid predictions.
if start_index >= feature.paragraph_len - 1:
continue
if end_index >= feature.paragraph_len - 1:
continue
if not feature.token_is_max_context.get(start_index, False):
continue
if end_index < start_index:
continue
length = end_index - start_index + 1
if length > max_answer_length:
continue
prelim_predictions.append(
_PrelimPrediction(
feature_index=feature_index,
start_index=start_index,
end_index=end_index,
start_log_prob=start_log_prob,
end_log_prob=end_log_prob))
prelim_predictions = sorted(
prelim_predictions,
key=lambda x: (x.start_log_prob + x.end_log_prob),
reverse=True)
seen_predictions = {}
nbest = []
for pred in prelim_predictions:
if len(nbest) >= n_best_size:
break
feature = features[pred.feature_index]
# XLNet un-tokenizer
# Let's keep it simple for now and see if we need all this later.
#
# tok_start_to_orig_index = feature.tok_start_to_orig_index
# tok_end_to_orig_index = feature.tok_end_to_orig_index
# start_orig_pos = tok_start_to_orig_index[pred.start_index]
# end_orig_pos = tok_end_to_orig_index[pred.end_index]
# paragraph_text = example.paragraph_text
# final_text = paragraph_text[start_orig_pos: end_orig_pos + 1].strip()
# Previously used Bert untokenizer
tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
orig_doc_start = feature.token_to_orig_map[pred.start_index]
orig_doc_end = feature.token_to_orig_map[pred.end_index]
orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
tok_text = tokenizer.convert_tokens_to_string(tok_tokens)
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
final_text = get_final_text(tok_text, orig_text, tokenizer.do_lower_case,
verbose_logging)
if final_text in seen_predictions:
continue
seen_predictions[final_text] = True
nbest.append(
_NbestPrediction(
text=final_text,
start_log_prob=pred.start_log_prob,
end_log_prob=pred.end_log_prob))
# In very rare edge cases we could have no valid predictions. So we
# just create a nonce prediction in this case to avoid failure.
if not nbest:
nbest.append(
_NbestPrediction(text="", start_log_prob=-1e6,
end_log_prob=-1e6))
total_scores = []
best_non_null_entry = None
for entry in nbest:
total_scores.append(entry.start_log_prob + entry.end_log_prob)
if not best_non_null_entry:
best_non_null_entry = entry
probs = _compute_softmax(total_scores)
nbest_json = []
for (i, entry) in enumerate(nbest):
output = collections.OrderedDict()
output["text"] = entry.text
output["probability"] = probs[i]
output["start_log_prob"] = entry.start_log_prob
output["end_log_prob"] = entry.end_log_prob
nbest_json.append(output)
assert len(nbest_json) >= 1
assert best_non_null_entry is not None
score_diff = score_null
scores_diff_json[example.qas_id] = score_diff
# note(zhiliny): always predict best_non_null_entry
# and the evaluation script will search for the best threshold
all_predictions[example.qas_id] = best_non_null_entry.text
all_nbest_json[example.qas_id] = nbest_json
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(all_predictions, indent=4) + "\n")
with open(output_nbest_file, "w") as writer:
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
if version_2_with_negative:
with open(output_null_log_odds_file, "w") as writer:
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
with open(orig_data_file, "r", encoding='utf-8') as reader:
orig_data = json.load(reader)["data"]
qid_to_has_ans = make_qid_to_has_ans(orig_data)
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
exact_raw, f1_raw = get_raw_scores(orig_data, all_predictions)
out_eval = {}
find_all_best_thresh_v2(out_eval, all_predictions, exact_raw, f1_raw, scores_diff_json, qid_to_has_ans)
return out_eval
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
"""Project the tokenized prediction back to the original text."""
# When we created the data, we kept track of the alignment between original
# (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
# now `orig_text` contains the span of our original text corresponding to the
# span that we predicted.
#
# However, `orig_text` may contain extra characters that we don't want in
# our prediction.
#
# For example, let's say:
# pred_text = steve smith
# orig_text = Steve Smith's
#
# We don't want to return `orig_text` because it contains the extra "'s".
#
# We don't want to return `pred_text` because it's already been normalized
# (the SQuAD eval script also does punctuation stripping/lower casing but
# our tokenizer does additional normalization like stripping accent
# characters).
#
# What we really want to return is "Steve Smith".
#
# Therefore, we have to apply a semi-complicated alignment heuristic between
# `pred_text` and `orig_text` to get a character-to-character alignment. This
# can fail in certain cases in which case we just return `orig_text`.
def _strip_spaces(text):
ns_chars = []
ns_to_s_map = collections.OrderedDict()
for (i, c) in enumerate(text):
if c == " ":
continue
ns_to_s_map[len(ns_chars)] = i
ns_chars.append(c)
ns_text = "".join(ns_chars)
return (ns_text, ns_to_s_map)
# We first tokenize `orig_text`, strip whitespace from the result
# and `pred_text`, and check if they are the same length. If they are
# NOT the same length, the heuristic has failed. If they are the same
# length, we assume the characters are one-to-one aligned.
tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
tok_text = " ".join(tokenizer.tokenize(orig_text))
start_position = tok_text.find(pred_text)
if start_position == -1:
if verbose_logging:
logger.info(
"Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
return orig_text
end_position = start_position + len(pred_text) - 1
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
if len(orig_ns_text) != len(tok_ns_text):
if verbose_logging:
logger.info("Length not equal after stripping spaces: '%s' vs '%s'",
orig_ns_text, tok_ns_text)
return orig_text
# We then project the characters in `pred_text` back to `orig_text` using
# the character-to-character alignment.
tok_s_to_ns_map = {}
for (i, tok_index) in tok_ns_to_s_map.items():
tok_s_to_ns_map[tok_index] = i
orig_start_position = None
if start_position in tok_s_to_ns_map:
ns_start_position = tok_s_to_ns_map[start_position]
if ns_start_position in orig_ns_to_s_map:
orig_start_position = orig_ns_to_s_map[ns_start_position]
if orig_start_position is None:
if verbose_logging:
logger.info("Couldn't map start position")
return orig_text
orig_end_position = None
if end_position in tok_s_to_ns_map:
ns_end_position = tok_s_to_ns_map[end_position]
if ns_end_position in orig_ns_to_s_map:
orig_end_position = orig_ns_to_s_map[ns_end_position]
if orig_end_position is None:
if verbose_logging:
logger.info("Couldn't map end position")
return orig_text
output_text = orig_text[orig_start_position:(orig_end_position + 1)]
return output_text
def _get_best_indexes(logits, n_best_size):
"""Get the n-best logits from a list."""
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
best_indexes = []
for i in range(len(index_and_score)):
if i >= n_best_size:
break
best_indexes.append(index_and_score[i][0])
return best_indexes
def _compute_softmax(scores):
"""Compute softmax probability over raw logits."""
if not scores:
return []
max_score = None
for score in scores:
if max_score is None or score > max_score:
max_score = score
exp_scores = []
total_sum = 0.0
for score in scores:
x = math.exp(score - max_score)
exp_scores.append(x)
total_sum += x
probs = []
for score in exp_scores:
probs.append(score / total_sum)
return probs

View File

@ -0,0 +1,330 @@
""" Official evaluation script for SQuAD version 2.0.
Modified by XLNet authors to update `find_best_threshold` scripts for SQuAD V2.0
In addition to basic functionality, we also compute additional statistics and
plot precision-recall curves if an additional na_prob.json file is provided.
This file is expected to map question ID's to the model's predicted probability
that a question is unanswerable.
"""
import argparse
import collections
import json
import numpy as np
import os
import re
import string
import sys
class EVAL_OPTS():
def __init__(self, data_file, pred_file, out_file="",
na_prob_file="na_prob.json", na_prob_thresh=1.0,
out_image_dir=None, verbose=False):
self.data_file = data_file
self.pred_file = pred_file
self.out_file = out_file
self.na_prob_file = na_prob_file
self.na_prob_thresh = na_prob_thresh
self.out_image_dir = out_image_dir
self.verbose = verbose
OPTS = None
def parse_args():
parser = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.')
parser.add_argument('data_file', metavar='data.json', help='Input data JSON file.')
parser.add_argument('pred_file', metavar='pred.json', help='Model predictions.')
parser.add_argument('--out-file', '-o', metavar='eval.json',
help='Write accuracy metrics to file (default is stdout).')
parser.add_argument('--na-prob-file', '-n', metavar='na_prob.json',
help='Model estimates of probability of no answer.')
parser.add_argument('--na-prob-thresh', '-t', type=float, default=1.0,
help='Predict "" if no-answer probability exceeds this (default = 1.0).')
parser.add_argument('--out-image-dir', '-p', metavar='out_images', default=None,
help='Save precision-recall curves to directory.')
parser.add_argument('--verbose', '-v', action='store_true')
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
return parser.parse_args()
def make_qid_to_has_ans(dataset):
qid_to_has_ans = {}
for article in dataset:
for p in article['paragraphs']:
for qa in p['qas']:
qid_to_has_ans[qa['id']] = bool(qa['answers'])
return qid_to_has_ans
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
return re.sub(regex, ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def get_tokens(s):
if not s: return []
return normalize_answer(s).split()
def compute_exact(a_gold, a_pred):
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
def compute_f1(a_gold, a_pred):
gold_toks = get_tokens(a_gold)
pred_toks = get_tokens(a_pred)
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def get_raw_scores(dataset, preds):
exact_scores = {}
f1_scores = {}
for article in dataset:
for p in article['paragraphs']:
for qa in p['qas']:
qid = qa['id']
gold_answers = [a['text'] for a in qa['answers']
if normalize_answer(a['text'])]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
gold_answers = ['']
if qid not in preds:
print('Missing prediction for %s' % qid)
continue
a_pred = preds[qid]
# Take max over all gold answers
exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers)
f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers)
return exact_scores, f1_scores
def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh):
new_scores = {}
for qid, s in scores.items():
pred_na = na_probs[qid] > na_prob_thresh
if pred_na:
new_scores[qid] = float(not qid_to_has_ans[qid])
else:
new_scores[qid] = s
return new_scores
def make_eval_dict(exact_scores, f1_scores, qid_list=None):
if not qid_list:
total = len(exact_scores)
return collections.OrderedDict([
('exact', 100.0 * sum(exact_scores.values()) / total),
('f1', 100.0 * sum(f1_scores.values()) / total),
('total', total),
])
else:
total = len(qid_list)
return collections.OrderedDict([
('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total),
('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total),
('total', total),
])
def merge_eval(main_eval, new_eval, prefix):
for k in new_eval:
main_eval['%s_%s' % (prefix, k)] = new_eval[k]
def plot_pr_curve(precisions, recalls, out_image, title):
plt.step(recalls, precisions, color='b', alpha=0.2, where='post')
plt.fill_between(recalls, precisions, step='post', alpha=0.2, color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.xlim([0.0, 1.05])
plt.ylim([0.0, 1.05])
plt.title(title)
plt.savefig(out_image)
plt.clf()
def make_precision_recall_eval(scores, na_probs, num_true_pos, qid_to_has_ans,
out_image=None, title=None):
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
true_pos = 0.0
cur_p = 1.0
cur_r = 0.0
precisions = [1.0]
recalls = [0.0]
avg_prec = 0.0
for i, qid in enumerate(qid_list):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
cur_p = true_pos / float(i+1)
cur_r = true_pos / float(num_true_pos)
if i == len(qid_list) - 1 or na_probs[qid] != na_probs[qid_list[i+1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(cur_p)
recalls.append(cur_r)
if out_image:
plot_pr_curve(precisions, recalls, out_image, title)
return {'ap': 100.0 * avg_prec}
def run_precision_recall_analysis(main_eval, exact_raw, f1_raw, na_probs,
qid_to_has_ans, out_image_dir):
if out_image_dir and not os.path.exists(out_image_dir):
os.makedirs(out_image_dir)
num_true_pos = sum(1 for v in qid_to_has_ans.values() if v)
if num_true_pos == 0:
return
pr_exact = make_precision_recall_eval(
exact_raw, na_probs, num_true_pos, qid_to_has_ans,
out_image=os.path.join(out_image_dir, 'pr_exact.png'),
title='Precision-Recall curve for Exact Match score')
pr_f1 = make_precision_recall_eval(
f1_raw, na_probs, num_true_pos, qid_to_has_ans,
out_image=os.path.join(out_image_dir, 'pr_f1.png'),
title='Precision-Recall curve for F1 score')
oracle_scores = {k: float(v) for k, v in qid_to_has_ans.items()}
pr_oracle = make_precision_recall_eval(
oracle_scores, na_probs, num_true_pos, qid_to_has_ans,
out_image=os.path.join(out_image_dir, 'pr_oracle.png'),
title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)')
merge_eval(main_eval, pr_exact, 'pr_exact')
merge_eval(main_eval, pr_f1, 'pr_f1')
merge_eval(main_eval, pr_oracle, 'pr_oracle')
def histogram_na_prob(na_probs, qid_list, image_dir, name):
if not qid_list:
return
x = [na_probs[k] for k in qid_list]
weights = np.ones_like(x) / float(len(x))
plt.hist(x, weights=weights, bins=20, range=(0.0, 1.0))
plt.xlabel('Model probability of no-answer')
plt.ylabel('Proportion of dataset')
plt.title('Histogram of no-answer probability: %s' % name)
plt.savefig(os.path.join(image_dir, 'na_prob_hist_%s.png' % name))
plt.clf()
def find_best_thresh(preds, scores, na_probs, qid_to_has_ans):
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
cur_score = num_no_ans
best_score = cur_score
best_thresh = 0.0
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
for i, qid in enumerate(qid_list):
if qid not in scores: continue
if qid_to_has_ans[qid]:
diff = scores[qid]
else:
if preds[qid]:
diff = -1
else:
diff = 0
cur_score += diff
if cur_score > best_score:
best_score = cur_score
best_thresh = na_probs[qid]
return 100.0 * best_score / len(scores), best_thresh
def find_best_thresh_v2(preds, scores, na_probs, qid_to_has_ans):
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
cur_score = num_no_ans
best_score = cur_score
best_thresh = 0.0
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
for i, qid in enumerate(qid_list):
if qid not in scores: continue
if qid_to_has_ans[qid]:
diff = scores[qid]
else:
if preds[qid]:
diff = -1
else:
diff = 0
cur_score += diff
if cur_score > best_score:
best_score = cur_score
best_thresh = na_probs[qid]
has_ans_score, has_ans_cnt = 0, 0
for qid in qid_list:
if not qid_to_has_ans[qid]: continue
has_ans_cnt += 1
if qid not in scores: continue
has_ans_score += scores[qid]
return 100.0 * best_score / len(scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt
def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans)
best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans)
main_eval['best_exact'] = best_exact
main_eval['best_exact_thresh'] = exact_thresh
main_eval['best_f1'] = best_f1
main_eval['best_f1_thresh'] = f1_thresh
def find_all_best_thresh_v2(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
best_exact, exact_thresh, has_ans_exact = find_best_thresh_v2(preds, exact_raw, na_probs, qid_to_has_ans)
best_f1, f1_thresh, has_ans_f1 = find_best_thresh_v2(preds, f1_raw, na_probs, qid_to_has_ans)
main_eval['best_exact'] = best_exact
main_eval['best_exact_thresh'] = exact_thresh
main_eval['best_f1'] = best_f1
main_eval['best_f1_thresh'] = f1_thresh
main_eval['has_ans_exact'] = has_ans_exact
main_eval['has_ans_f1'] = has_ans_f1
def main(OPTS):
with open(OPTS.data_file) as f:
dataset_json = json.load(f)
dataset = dataset_json['data']
with open(OPTS.pred_file) as f:
preds = json.load(f)
if OPTS.na_prob_file:
with open(OPTS.na_prob_file) as f:
na_probs = json.load(f)
else:
na_probs = {k: 0.0 for k in preds}
qid_to_has_ans = make_qid_to_has_ans(dataset) # maps qid to True/False
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
exact_raw, f1_raw = get_raw_scores(dataset, preds)
exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans,
OPTS.na_prob_thresh)
f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans,
OPTS.na_prob_thresh)
out_eval = make_eval_dict(exact_thresh, f1_thresh)
if has_ans_qids:
has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids)
merge_eval(out_eval, has_ans_eval, 'HasAns')
if no_ans_qids:
no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids)
merge_eval(out_eval, no_ans_eval, 'NoAns')
if OPTS.na_prob_file:
find_all_best_thresh(out_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans)
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(out_eval, exact_raw, f1_raw, na_probs,
qid_to_has_ans, OPTS.out_image_dir)
histogram_na_prob(na_probs, has_ans_qids, OPTS.out_image_dir, 'hasAns')
histogram_na_prob(na_probs, no_ans_qids, OPTS.out_image_dir, 'noAns')
if OPTS.out_file:
with open(OPTS.out_file, 'w') as f:
json.dump(out_eval, f)
else:
print(json.dumps(out_eval, indent=2))
return out_eval
if __name__ == '__main__':
OPTS = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
main(OPTS)

View File

@ -1,187 +1,112 @@
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.modeling import (
BertModel,
BertForNextSentencePrediction,
BertForMaskedLM,
BertForMultipleChoice,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
)
from transformers import (
AutoTokenizer, AutoConfig, AutoModel, AutoModelWithLMHead, AutoModelForSequenceClassification, AutoModelForQuestionAnswering
)
from transformers.file_utils import add_start_docstrings
dependencies = ['torch', 'tqdm', 'boto3', 'requests', 'regex']
dependencies = ['torch', 'tqdm', 'boto3', 'requests', 'regex', 'sentencepiece', 'sacremoses']
# A lot of models share the same param doc. Use a decorator
# to save typing
bert_docstring = """
Params:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load
. `bert-base-uncased`
. `bert-large-uncased`
. `bert-base-cased`
. `bert-large-cased`
. `bert-base-multilingual-uncased`
. `bert-base-multilingual-cased`
. `bert-base-chinese`
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a BertForPreTraining
instance
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `model.chkpt` a TensorFlow checkpoint
from_tf: should we load the weights from a locally saved TensorFlow
checkpoint
cache_dir: an optional path to a folder in which the pre-trained models
will be cached.
state_dict: an optional state dictionnary
(collections.OrderedDict object) to use instead of Google
pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
@add_start_docstrings(AutoConfig.__doc__)
def config(*args, **kwargs):
r"""
# Using torch.hub !
import torch
config = torch.hub.load('huggingface/transformers', 'config', 'bert-base-uncased') # Download configuration from S3 and cache.
config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/my_configuration.json')
config = torch.hub.load('huggingface/transformers', 'config', 'bert-base-uncased', output_attention=True, foo=False)
assert config.output_attention == True
config, unused_kwargs = torch.hub.load('huggingface/transformers', 'config', 'bert-base-uncased', output_attention=True, foo=False, return_unused_kwargs=True)
assert config.output_attention == True
assert unused_kwargs == {'foo': False}
"""
return AutoConfig.from_pretrained(*args, **kwargs)
def _append_from_pretrained_docstring(docstr):
def docstring_decorator(fn):
fn.__doc__ = fn.__doc__ + docstr
return fn
return docstring_decorator
@add_start_docstrings(AutoTokenizer.__doc__)
def tokenizer(*args, **kwargs):
r"""
# Using torch.hub !
import torch
tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', 'bert-base-uncased') # Download vocabulary from S3 and cache.
tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', './test/bert_saved_model/') # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`
def bertTokenizer(*args, **kwargs):
"""
Instantiate a BertTokenizer from a pre-trained/customized vocab file
Args:
pretrained_model_name_or_path: Path to pretrained model archive
or one of pre-trained vocab configs below.
* bert-base-uncased
* bert-large-uncased
* bert-base-cased
* bert-large-cased
* bert-base-multilingual-uncased
* bert-base-multilingual-cased
* bert-base-chinese
Keyword args:
cache_dir: an optional path to a specific directory to download and cache
the pre-trained model weights.
Default: None
do_lower_case: Whether to lower case the input.
Only has an effect when do_wordpiece_only=False
Default: True
do_basic_tokenize: Whether to do basic tokenization before wordpiece.
Default: True
max_len: An artificial maximum length to truncate tokenized sequences to;
Effective maximum length is always the minimum of this
value (if specified) and the underlying BERT model's
sequence length.
Default: None
never_split: List of tokens which will never be split during tokenization.
Only has an effect when do_wordpiece_only=False
Default: ["[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"]
Example:
>>> sentence = 'Hello, World!'
>>> tokenizer = torch.hub.load('ailzhang/pytorch-pretrained-BERT:hubconf', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False, force_reload=False)
>>> toks = tokenizer.tokenize(sentence)
['Hello', '##,', 'World', '##!']
>>> ids = tokenizer.convert_tokens_to_ids(toks)
[8667, 28136, 1291, 28125]
return AutoTokenizer.from_pretrained(*args, **kwargs)
@add_start_docstrings(AutoModel.__doc__)
def model(*args, **kwargs):
r"""
# Using torch.hub !
import torch
model = torch.hub.load('huggingface/transformers', 'model', 'bert-base-uncased') # Download model and configuration from S3 and cache.
model = torch.hub.load('huggingface/transformers', 'model', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/transformers', 'model', 'bert-base-uncased', output_attention=True) # Update configuration during loading
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = torch.hub.load('huggingface/transformers', 'model', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
return AutoModel.from_pretrained(*args, **kwargs)
@add_start_docstrings(AutoModelWithLMHead.__doc__)
def modelWithLMHead(*args, **kwargs):
r"""
# Using torch.hub !
import torch
model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', 'bert-base-uncased') # Download model and configuration from S3 and cache.
model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', 'bert-base-uncased', output_attention=True) # Update configuration during loading
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
tokenizer = BertTokenizer.from_pretrained(*args, **kwargs)
return tokenizer
return AutoModelWithLMHead.from_pretrained(*args, **kwargs)
@_append_from_pretrained_docstring(bert_docstring)
def bertModel(*args, **kwargs):
@add_start_docstrings(AutoModelForSequenceClassification.__doc__)
def modelForSequenceClassification(*args, **kwargs):
r"""
# Using torch.hub !
import torch
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'bert-base-uncased') # Download model and configuration from S3 and cache.
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'bert-base-uncased', output_attention=True) # Update configuration during loading
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
return AutoModelForSequenceClassification.from_pretrained(*args, **kwargs)
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__)
def modelForQuestionAnswering(*args, **kwargs):
r"""
# Using torch.hub !
import torch
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'bert-base-uncased') # Download model and configuration from S3 and cache.
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'bert-base-uncased', output_attention=True) # Update configuration during loading
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
BertModel is the basic BERT Transformer model with a layer of summed token,
position and sequence embeddings followed by a series of identical
self-attention blocks (12 for BERT-base, 24 for BERT-large).
"""
model = BertModel.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForNextSentencePrediction(*args, **kwargs):
"""
BERT model with next sentence prediction head.
This module comprises the BERT model followed by the next sentence
classification head.
"""
model = BertForNextSentencePrediction.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForPreTraining(*args, **kwargs):
"""
BERT model with pre-training heads.
This module comprises the BERT model followed by the two pre-training heads
- the masked language modeling head, and
- the next sentence classification head.
"""
model = BertForPreTraining.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForMaskedLM(*args, **kwargs):
"""
BertForMaskedLM includes the BertModel Transformer followed by the
(possibly) pre-trained masked language modeling head.
"""
model = BertForMaskedLM.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForSequenceClassification(*args, **kwargs):
"""
BertForSequenceClassification is a fine-tuning model that includes
BertModel and a sequence-level (sequence or pair of sequences) classifier
on top of the BertModel.
The sequence-level classifier is a linear layer that takes as input the
last hidden state of the first character in the input sequence
(see Figures 3a and 3b in the BERT paper).
"""
model = BertForSequenceClassification.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForMultipleChoice(*args, **kwargs):
"""
BertForMultipleChoice is a fine-tuning model that includes BertModel and a
linear layer on top of the BertModel.
"""
model = BertForMultipleChoice.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForQuestionAnswering(*args, **kwargs):
"""
BertForQuestionAnswering is a fine-tuning model that includes BertModel
with a token-level classifiers on top of the full sequence of last hidden
states.
"""
model = BertForQuestionAnswering.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForTokenClassification(*args, **kwargs):
"""
BertForTokenClassification is a fine-tuning model that includes BertModel
and a token-level classifier on top of the BertModel.
The token-level classifier is a linear layer that takes as input the last
hidden state of the sequence.
"""
model = BertForTokenClassification.from_pretrained(*args, **kwargs)
return model
return AutoModelForQuestionAnswering.from_pretrained(*args, **kwargs)

File diff suppressed because it is too large Load Diff

View File

@ -78,7 +78,7 @@
"import importlib.util\n",
"import sys\n",
"import tensorflow as tf\n",
"import pytorch_pretrained_bert as ppb\n",
"import pytorch_transformers as ppb\n",
"\n",
"def del_all_flags(FLAGS):\n",
" flags_dict = FLAGS._flags() \n",
@ -3997,9 +3997,9 @@
"name": "stderr",
"output_type": "stream",
"text": [
"11/16/2018 11:03:05 - INFO - pytorch_pretrained_bert.modeling - loading archive file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz from cache at /Users/thomaswolf/.pytorch_pretrained_bert/9c41111e2de84547a463fd39217199738d1e3deb72d4fec4399e6e241983c6f0.ae3cef932725ca7a30cdcb93fc6e09150a55e2a130ec7af63975a16c153ae2ba\n",
"11/16/2018 11:03:05 - INFO - pytorch_pretrained_bert.modeling - extracting archive file /Users/thomaswolf/.pytorch_pretrained_bert/9c41111e2de84547a463fd39217199738d1e3deb72d4fec4399e6e241983c6f0.ae3cef932725ca7a30cdcb93fc6e09150a55e2a130ec7af63975a16c153ae2ba to temp dir /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpaqgsm566\n",
"11/16/2018 11:03:08 - INFO - pytorch_pretrained_bert.modeling - Model config {\n",
"11/16/2018 11:03:05 - INFO - pytorch_transformers.modeling_bert - loading archive file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz from cache at /Users/thomaswolf/.pytorch_transformers/9c41111e2de84547a463fd39217199738d1e3deb72d4fec4399e6e241983c6f0.ae3cef932725ca7a30cdcb93fc6e09150a55e2a130ec7af63975a16c153ae2ba\n",
"11/16/2018 11:03:05 - INFO - pytorch_transformers.modeling_bert - extracting archive file /Users/thomaswolf/.pytorch_transformers/9c41111e2de84547a463fd39217199738d1e3deb72d4fec4399e6e241983c6f0.ae3cef932725ca7a30cdcb93fc6e09150a55e2a130ec7af63975a16c153ae2ba to temp dir /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpaqgsm566\n",
"11/16/2018 11:03:08 - INFO - pytorch_transformers.modeling_bert - Model config {\n",
" \"attention_probs_dropout_prob\": 0.1,\n",
" \"hidden_act\": \"gelu\",\n",
" \"hidden_dropout_prob\": 0.1,\n",

View File

@ -86,7 +86,7 @@
"spec.loader.exec_module(module)\n",
"sys.modules['modeling_tensorflow'] = module\n",
"\n",
"spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/run_squad.py')\n",
"spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/run_bert_squad.py')\n",
"module = importlib.util.module_from_spec(spec)\n",
"spec.loader.exec_module(module)\n",
"sys.modules['run_squad_tensorflow'] = module\n",

View File

@ -342,7 +342,7 @@
"outputs": [],
"source": [
"import extract_features\n",
"import pytorch_pretrained_bert as ppb\n",
"import pytorch_transformers as ppb\n",
"from extract_features import *"
]
},
@ -375,8 +375,8 @@
"name": "stderr",
"output_type": "stream",
"text": [
"11/15/2018 16:21:18 - INFO - pytorch_pretrained_bert.modeling - loading archive file ../../google_models/uncased_L-12_H-768_A-12/\n",
"11/15/2018 16:21:18 - INFO - pytorch_pretrained_bert.modeling - Model config {\n",
"11/15/2018 16:21:18 - INFO - pytorch_transformers.modeling_bert - loading archive file ../../google_models/uncased_L-12_H-768_A-12/\n",
"11/15/2018 16:21:18 - INFO - pytorch_transformers.modeling_bert - Model config {\n",
" \"attention_probs_dropout_prob\": 0.1,\n",
" \"hidden_act\": \"gelu\",\n",
" \"hidden_dropout_prob\": 0.1,\n",

View File

@ -1,24 +0,0 @@
__version__ = "0.6.2"
from .tokenization import BertTokenizer, BasicTokenizer, WordpieceTokenizer
from .tokenization_openai import OpenAIGPTTokenizer
from .tokenization_transfo_xl import (TransfoXLTokenizer, TransfoXLCorpus)
from .tokenization_gpt2 import GPT2Tokenizer
from .modeling import (BertConfig, BertModel, BertForPreTraining,
BertForMaskedLM, BertForNextSentencePrediction,
BertForSequenceClassification, BertForMultipleChoice,
BertForTokenClassification, BertForQuestionAnswering,
load_tf_weights_in_bert)
from .modeling_openai import (OpenAIGPTConfig, OpenAIGPTModel,
OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel,
load_tf_weights_in_openai_gpt)
from .modeling_transfo_xl import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel,
load_tf_weights_in_transfo_xl)
from .modeling_gpt2 import (GPT2Config, GPT2Model,
GPT2LMHeadModel, GPT2DoubleHeadsModel,
load_tf_weights_in_gpt2)
from .optimization import BertAdam
from .optimization_openai import OpenAIAdam
from .file_utils import PYTORCH_PRETRAINED_BERT_CACHE, cached_path, WEIGHTS_NAME, CONFIG_NAME

View File

@ -1,83 +0,0 @@
# coding: utf8
def main():
import sys
if (len(sys.argv) != 4 and len(sys.argv) != 5) or sys.argv[1] not in [
"convert_tf_checkpoint_to_pytorch",
"convert_openai_checkpoint",
"convert_transfo_xl_checkpoint",
"convert_gpt2_checkpoint",
]:
print(
"Should be used as one of: \n"
">> `pytorch_pretrained_bert convert_tf_checkpoint_to_pytorch TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`, \n"
">> `pytorch_pretrained_bert convert_openai_checkpoint OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG]`, \n"
">> `pytorch_pretrained_bert convert_transfo_xl_checkpoint TF_CHECKPOINT_OR_DATASET PYTORCH_DUMP_OUTPUT [TF_CONFIG]` or \n"
">> `pytorch_pretrained_bert convert_gpt2_checkpoint TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [GPT2_CONFIG]`")
else:
if sys.argv[1] == "convert_tf_checkpoint_to_pytorch":
try:
from .convert_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) != 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_pretrained_bert convert_tf_checkpoint_to_pytorch TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`")
else:
PYTORCH_DUMP_OUTPUT = sys.argv.pop()
TF_CONFIG = sys.argv.pop()
TF_CHECKPOINT = sys.argv.pop()
convert_tf_checkpoint_to_pytorch(TF_CHECKPOINT, TF_CONFIG, PYTORCH_DUMP_OUTPUT)
elif sys.argv[1] == "convert_openai_checkpoint":
from .convert_openai_checkpoint_to_pytorch import convert_openai_checkpoint_to_pytorch
OPENAI_GPT_CHECKPOINT_FOLDER_PATH = sys.argv[2]
PYTORCH_DUMP_OUTPUT = sys.argv[3]
if len(sys.argv) == 5:
OPENAI_GPT_CONFIG = sys.argv[4]
else:
OPENAI_GPT_CONFIG = ""
convert_openai_checkpoint_to_pytorch(OPENAI_GPT_CHECKPOINT_FOLDER_PATH,
OPENAI_GPT_CONFIG,
PYTORCH_DUMP_OUTPUT)
elif sys.argv[1] == "convert_transfo_xl_checkpoint":
try:
from .convert_transfo_xl_checkpoint_to_pytorch import convert_transfo_xl_checkpoint_to_pytorch
except ImportError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if 'ckpt' in sys.argv[2].lower():
TF_CHECKPOINT = sys.argv[2]
TF_DATASET_FILE = ""
else:
TF_DATASET_FILE = sys.argv[2]
TF_CHECKPOINT = ""
PYTORCH_DUMP_OUTPUT = sys.argv[3]
if len(sys.argv) == 5:
TF_CONFIG = sys.argv[4]
else:
TF_CONFIG = ""
convert_transfo_xl_checkpoint_to_pytorch(TF_CHECKPOINT, TF_CONFIG, PYTORCH_DUMP_OUTPUT, TF_DATASET_FILE)
else:
try:
from .convert_gpt2_checkpoint_to_pytorch import convert_gpt2_checkpoint_to_pytorch
except ImportError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
TF_CHECKPOINT = sys.argv[2]
PYTORCH_DUMP_OUTPUT = sys.argv[3]
if len(sys.argv) == 5:
TF_CONFIG = sys.argv[4]
else:
TF_CONFIG = ""
convert_gpt2_checkpoint_to_pytorch(TF_CHECKPOINT, TF_CONFIG, PYTORCH_DUMP_OUTPUT)
if __name__ == '__main__':
main()

File diff suppressed because it is too large Load Diff

View File

@ -1,711 +0,0 @@
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""
from __future__ import absolute_import, division, print_function, unicode_literals
import collections
import copy
import json
import logging
import math
import os
import shutil
import tarfile
import tempfile
import sys
from io import open
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter
from .file_utils import cached_path, CONFIG_NAME, WEIGHTS_NAME
from .modeling import BertLayerNorm as LayerNorm
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin"}
PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json"}
def load_tf_weights_in_gpt2(model, gpt2_checkpoint_path):
""" Load tf checkpoints in a pytorch model
"""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
tf_path = os.path.abspath(gpt2_checkpoint_path)
print("Converting TensorFlow checkpoint from {}".format(tf_path))
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
print("Loading TF weight {} with shape {}".format(name, shape))
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array.squeeze())
for name, array in zip(names, arrays):
name = name[6:] # skip "model/"
name = name.split('/')
pointer = model
for m_name in name:
if re.fullmatch(r'[A-Za-z]+\d+', m_name):
l = re.split(r'(\d+)', m_name)
else:
l = [m_name]
if l[0] == 'w' or l[0] == 'g':
pointer = getattr(pointer, 'weight')
elif l[0] == 'b':
pointer = getattr(pointer, 'bias')
elif l[0] == 'wpe' or l[0] == 'wte':
pointer = getattr(pointer, l[0])
pointer = getattr(pointer, 'weight')
else:
pointer = getattr(pointer, l[0])
if len(l) >= 2:
num = int(l[1])
pointer = pointer[num]
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
print("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array)
return model
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
class GPT2Config(object):
"""Configuration class to store the configuration of a `GPT2Model`.
"""
def __init__(
self,
vocab_size_or_config_json_file=50257,
n_positions=1024,
n_ctx=1024,
n_embd=768,
n_layer=12,
n_head=12,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
):
"""Constructs GPT2Config.
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
n_positions: Number of positional embeddings.
n_ctx: Size of the causal mask (usually same as n_positions).
n_embd: Dimensionality of the embeddings and hidden states.
n_layer: Number of hidden layers in the Transformer encoder.
n_head: Number of attention heads for each attention layer in
the Transformer encoder.
layer_norm_epsilon: epsilon to use in the layer norm layers
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
and isinstance(vocab_size_or_config_json_file, unicode)):
with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.n_ctx = n_ctx
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
else:
raise ValueError(
"First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)"
)
@classmethod
def from_dict(cls, json_object):
"""Constructs a `GPT2Config` from a Python dictionary of parameters."""
config = GPT2Config(vocab_size_or_config_json_file=-1)
for key, value in json_object.items():
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `GPT2Config` from a json file of parameters."""
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path):
""" Save this instance to a json file."""
with open(json_file_path, "w", encoding='utf-8') as writer:
writer.write(self.to_json_string())
class Conv1D(nn.Module):
def __init__(self, nf, nx):
super(Conv1D, self).__init__()
self.nf = nf
w = torch.empty(nx, nf)
nn.init.normal_(w, std=0.02)
self.weight = Parameter(w)
self.bias = Parameter(torch.zeros(nf))
def forward(self, x):
size_out = x.size()[:-1] + (self.nf,)
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
x = x.view(*size_out)
return x
class Attention(nn.Module):
def __init__(self, nx, n_ctx, config, scale=False):
super(Attention, self).__init__()
n_state = nx # in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
assert n_state % config.n_head == 0
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
self.n_head = config.n_head
self.split_size = n_state
self.scale = scale
self.c_attn = Conv1D(n_state * 3, nx)
self.c_proj = Conv1D(n_state, nx)
def _attn(self, q, k, v):
w = torch.matmul(q, k)
if self.scale:
w = w / math.sqrt(v.size(-1))
nd, ns = w.size(-2), w.size(-1)
b = self.bias[:, :, ns-nd:ns, :ns]
w = w * b - 1e4 * (1 - b)
w = nn.Softmax(dim=-1)(w)
return torch.matmul(w, v)
def merge_heads(self, x):
x = x.permute(0, 2, 1, 3).contiguous()
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
def split_heads(self, x, k=False):
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
if k:
return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length)
else:
return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
def forward(self, x, layer_past=None):
x = self.c_attn(x)
query, key, value = x.split(self.split_size, dim=2)
query = self.split_heads(query)
key = self.split_heads(key, k=True)
value = self.split_heads(value)
if layer_past is not None:
past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below
key = torch.cat((past_key, key), dim=-1)
value = torch.cat((past_value, value), dim=-2)
present = torch.stack((key.transpose(-2, -1), value)) # transpose to have same shapes for stacking
a = self._attn(query, key, value)
a = self.merge_heads(a)
a = self.c_proj(a)
return a, present
class MLP(nn.Module):
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
super(MLP, self).__init__()
nx = config.n_embd
self.c_fc = Conv1D(n_state, nx)
self.c_proj = Conv1D(nx, n_state)
self.act = gelu
def forward(self, x):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
return h2
class Block(nn.Module):
def __init__(self, n_ctx, config, scale=False):
super(Block, self).__init__()
nx = config.n_embd
self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
self.attn = Attention(nx, n_ctx, config, scale)
self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
self.mlp = MLP(4 * nx, config)
def forward(self, x, layer_past=None):
a, present = self.attn(self.ln_1(x), layer_past=layer_past)
x = x + a
m = self.mlp(self.ln_2(x))
x = x + m
return x, present
class GPT2LMHead(nn.Module):
""" Language Model Head for the transformer """
def __init__(self, model_embeddings_weights, config):
super(GPT2LMHead, self).__init__()
self.n_embd = config.n_embd
self.set_embeddings_weights(model_embeddings_weights)
def set_embeddings_weights(self, model_embeddings_weights):
embed_shape = model_embeddings_weights.shape
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
self.decoder.weight = model_embeddings_weights # Tied weights
def forward(self, hidden_state):
# Truncated Language modeling logits (we remove the last token)
# h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
lm_logits = self.decoder(hidden_state)
return lm_logits
class GPT2MultipleChoiceHead(nn.Module):
""" Classifier Head for the transformer """
def __init__(self, config):
super(GPT2MultipleChoiceHead, self).__init__()
self.n_embd = config.n_embd
self.linear = nn.Linear(config.n_embd, 1)
nn.init.normal_(self.linear.weight, std=0.02)
nn.init.normal_(self.linear.bias, 0)
def forward(self, hidden_states, mc_token_ids):
# Classification logits
# hidden_state (bsz, num_choices, seq_length, hidden_size)
# mc_token_ids (bsz, num_choices)
mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
# (bsz, num_choices, 1, hidden_size)
multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
# (bsz, num_choices, hidden_size)
multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
# (bsz, num_choices)
return multiple_choice_logits
class GPT2PreTrainedModel(nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super(GPT2PreTrainedModel, self).__init__()
if not isinstance(config, GPT2Config):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
"To create a model from a pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
)
)
self.config = config
def set_tied(self):
pass
def init_weights(self, module):
""" Initialize the weights.
"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
):
"""
Instantiate a GPT2PreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
Params:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load selected in the list of:
. `gpt2`
- a path or url to a pretrained model archive containing:
. `gpt2_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
- a path or url to a pretrained model archive containing:
. `gpt2_config.json` a configuration file for the model
. a TensorFlow checkpoint with trained weights
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific GPT class
"""
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find files {} and {} "
"at this path or url.".format(
pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
archive_file, config_file
)
)
return None
if resolved_archive_file == archive_file and resolved_config_file == config_file:
logger.info("loading weights file {}".format(archive_file))
logger.info("loading configuration file {}".format(config_file))
else:
logger.info("loading weights file {} from cache at {}".format(
archive_file, resolved_archive_file))
logger.info("loading configuration file {} from cache at {}".format(
config_file, resolved_config_file))
# Load config
config = GPT2Config.from_json_file(resolved_config_file)
logger.info("Model config {}".format(config))
# Instantiate model.
model = cls(config, *inputs, **kwargs)
if state_dict is None and not from_tf:
state_dict = torch.load(resolved_archive_file, map_location='cpu')
if from_tf:
# Directly load from a TensorFlow checkpoint (stored as NumPy array)
return load_tf_weights_in_gpt2(model, resolved_archive_file)
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if key.endswith(".g"):
new_key = key[:-2] + ".weight"
elif key.endswith(".b"):
new_key = key[:-2] + ".bias"
elif key.endswith(".w"):
new_key = key[:-2] + ".weight"
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=""):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + ".")
start_model = model
if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
start_model = model.transformer
load(start_model, prefix="")
if len(missing_keys) > 0:
logger.info(
"Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
)
if len(unexpected_keys) > 0:
logger.info(
"Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
)
if len(error_msgs) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
)
# Make sure we are still sharing the output and input embeddings after loading weights
model.set_tied()
return model
class GPT2Model(GPT2PreTrainedModel):
"""OpenAI GPT-2 model ("Language Models are Unsupervised Multitask Learners").
Params:
config: a GPT2Config class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
`past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
(key and values in the attention blocks) to speed up sequential decoding
(this is the presents output of the model, cf. below).
Outputs a tuple consisting of:
`hidden_states`: the encoded-hidden-states at the top of the model
as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
(or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
`presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
torch.FloatTensors. They can be reused to speed up sequential decoding.
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
config = modeling_gpt2.GPT2Config()
model = modeling_gpt2.GPT2Model(config)
hidden_states, presents = model(input_ids)
```
"""
def __init__(self, config):
super(GPT2Model, self).__init__(config)
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
self.wpe = nn.Embedding(config.n_positions, config.n_embd)
block = Block(config.n_ctx, config, scale=True)
self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.apply(self.init_weights)
def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None):
if past is None:
past_length = 0
past = [None] * len(self.h)
else:
past_length = past[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_ids.size(-1))
position_ids = position_ids.view(-1, position_ids.size(-1))
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
token_type_embeds = self.wte(token_type_ids)
else:
token_type_embeds = 0
hidden_states = inputs_embeds + position_embeds + token_type_embeds
presents = []
for block, layer_past in zip(self.h, past):
hidden_states, present = block(hidden_states, layer_past)
presents.append(present)
hidden_states = self.ln_f(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
return hidden_states.view(*output_shape), presents
class GPT2LMHeadModel(GPT2PreTrainedModel):
"""OpenAI GPT-2 model with a Language Modeling head ("Language Models are Unsupervised Multitask Learners").
Params:
config: a GPT2Config class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., vocab_size]
`past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
(key and values in the attention blocks) to speed up sequential decoding
(this is the presents output of the model, cf. below).
Outputs:
if `lm_labels` is not `None`:
Outputs the language modeling loss.
else a tuple:
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, config.vocab_size]
(or more generally [d_1, ..., d_n, config.vocab_size] were d_1 ... d_n are the dimension of input_ids)
`presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
torch.FloatTensors. They can be reused to speed up sequential decoding.
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
config = modeling_gpt2.GPT2Config()
model = modeling_gpt2.GPT2LMHeadModel(config)
lm_logits, presents = model(input_ids)
```
"""
def __init__(self, config):
super(GPT2LMHeadModel, self).__init__(config)
self.transformer = GPT2Model(config)
self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
self.apply(self.init_weights)
def set_tied(self):
""" Make sure we are sharing the embeddings
"""
self.lm_head.set_embeddings_weights(self.transformer.wte.weight)
def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None):
hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past)
lm_logits = self.lm_head(hidden_states)
if lm_labels is not None:
# Shift so that tokens < n predict n
shift_logits = lm_logits[:, :-1].contiguous()
shift_labels = lm_labels[:, 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1))
return loss
return lm_logits, presents
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
"""OpenAI GPT-2 model with a Language Modeling and a Multiple Choice head ("Language Models are Unsupervised Multitask Learners").
Params:
config: a GPT2Config class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
indices selected in the range [0, config.vocab_size[
`mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with indices selected in [-1, 0, ..., config.vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., config.vocab_size]
`multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_choices].
`past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
(key and values in the attention blocks) to speed up sequential decoding
(this is the presents output of the model, cf. below).
Outputs:
if `lm_labels` and `multiple_choice_labels` are not `None`:
Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
else: a tuple with
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, config.vocab_size]
`multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
`presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
torch.FloatTensors. They can be reused to speed up sequential decoding.
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]]) # (bsz, number of choice, seq length)
mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
config = modeling_gpt2.GPT2Config()
model = modeling_gpt2.GPT2LMHeadModel(config)
lm_logits, multiple_choice_logits, presents = model(input_ids, mc_token_ids)
```
"""
def __init__(self, config):
super(GPT2DoubleHeadsModel, self).__init__(config)
self.transformer = GPT2Model(config)
self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
self.multiple_choice_head = GPT2MultipleChoiceHead(config)
self.apply(self.init_weights)
def set_tied(self):
""" Make sure we are sharing the embeddings
"""
self.lm_head.set_embeddings_weights(self.transformer.wte.weight)
def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None, past=None):
hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past)
lm_logits = self.lm_head(hidden_states)
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
losses = []
if lm_labels is not None:
shift_logits = lm_logits[:, :-1].contiguous()
shift_labels = lm_labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss(ignore_index=-1)
losses.append(loss_fct(shift_logits.view(-1,
shift_logits.size(-1)), shift_labels.view(-1)))
if mc_labels is not None:
loss_fct = CrossEntropyLoss()
losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
if losses:
return losses
return lm_logits, mc_logits, presents

View File

@ -1,822 +0,0 @@
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""
from __future__ import absolute_import, division, print_function, unicode_literals
import collections
import copy
import json
import logging
import math
import os
import shutil
import tarfile
import tempfile
import sys
from io import open
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter
from .file_utils import cached_path, CONFIG_NAME, WEIGHTS_NAME
from .modeling import BertLayerNorm as LayerNorm
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path):
""" Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
"""
import re
import numpy as np
print("Loading weights...")
names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
offsets = np.cumsum([np.prod(shape) for shape in shapes])
init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]
# This was used when we had a single embedding matrix for positions and tokens
# init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
# del init_params[1]
init_params = [arr.squeeze() for arr in init_params]
try:
assert model.tokens_embed.weight.shape == init_params[1].shape
assert model.positions_embed.weight.shape == init_params[0].shape
except AssertionError as e:
e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
e.args += (model.positions_embed.weight.shape, init_params[0].shape)
raise
model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
model.positions_embed.weight.data = torch.from_numpy(init_params[0])
names.pop(0)
# Pop position and token embedding arrays
init_params.pop(0)
init_params.pop(0)
for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
name = name[6:] # skip "model/"
assert name[-2:] == ":0"
name = name[:-2]
name = name.split('/')
pointer = model
for m_name in name:
if re.fullmatch(r'[A-Za-z]+\d+', m_name):
l = re.split(r'(\d+)', m_name)
else:
l = [m_name]
if l[0] == 'g':
pointer = getattr(pointer, 'weight')
elif l[0] == 'b':
pointer = getattr(pointer, 'bias')
elif l[0] == 'w':
pointer = getattr(pointer, 'weight')
else:
pointer = getattr(pointer, l[0])
if len(l) >= 2:
num = int(l[1])
pointer = pointer[num]
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
print("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array)
return model
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
def swish(x):
return x * torch.sigmoid(x)
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}
class OpenAIGPTConfig(object):
"""Configuration class to store the configuration of a `OpenAIGPTModel`.
"""
def __init__(
self,
vocab_size_or_config_json_file=40478,
n_special=0,
n_positions=512,
n_ctx=512,
n_embd=768,
n_layer=12,
n_head=12,
afn="gelu",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
):
"""Constructs OpenAIGPTConfig.
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
n_positions: Number of positional embeddings.
n_ctx: Size of the causal mask (usually same as n_positions).
n_embd: Dimensionality of the embeddings and hidden states.
n_layer: Number of hidden layers in the Transformer encoder.
n_head: Number of attention heads for each attention layer in
the Transformer encoder.
afn: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
resid_pdrop: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attn_pdrop: The dropout ratio for the attention
probabilities.
embd_pdrop: The dropout ratio for the embeddings.
layer_norm_epsilon: epsilon to use in the layer norm layers
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
and isinstance(vocab_size_or_config_json_file, unicode)):
with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.n_special = n_special
self.n_ctx = n_ctx
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.afn = afn
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
else:
raise ValueError(
"First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)"
)
@property
def total_tokens_embeddings(self):
return self.vocab_size + self.n_special
@classmethod
def from_dict(cls, json_object):
"""Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
for key, value in json_object.items():
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `OpenAIGPTConfig` from a json file of parameters."""
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path):
""" Save this instance to a json file."""
with open(json_file_path, "w", encoding='utf-8') as writer:
writer.write(self.to_json_string())
class Conv1D(nn.Module):
def __init__(self, nf, rf, nx):
super(Conv1D, self).__init__()
self.rf = rf
self.nf = nf
if rf == 1: # faster 1x1 conv
w = torch.empty(nx, nf)
nn.init.normal_(w, std=0.02)
self.weight = Parameter(w)
self.bias = Parameter(torch.zeros(nf))
else: # was used to train LM
raise NotImplementedError
def forward(self, x):
if self.rf == 1:
size_out = x.size()[:-1] + (self.nf,)
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
x = x.view(*size_out)
else:
raise NotImplementedError
return x
class Attention(nn.Module):
def __init__(self, nx, n_ctx, config, scale=False):
super(Attention, self).__init__()
n_state = nx # in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
assert n_state % config.n_head == 0
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
self.n_head = config.n_head
self.split_size = n_state
self.scale = scale
self.c_attn = Conv1D(n_state * 3, 1, nx)
self.c_proj = Conv1D(n_state, 1, nx)
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
def _attn(self, q, k, v):
w = torch.matmul(q, k)
if self.scale:
w = w / math.sqrt(v.size(-1))
# w = w * self.bias + -1e9 * (1 - self.bias) # TF implem method: mask_attn_weights
# XD: self.b may be larger than w, so we need to crop it
b = self.bias[:, :, : w.size(-2), : w.size(-1)]
w = w * b + -1e9 * (1 - b)
w = nn.Softmax(dim=-1)(w)
w = self.attn_dropout(w)
return torch.matmul(w, v)
def merge_heads(self, x):
x = x.permute(0, 2, 1, 3).contiguous()
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
def split_heads(self, x, k=False):
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
if k:
return x.permute(0, 2, 3, 1)
else:
return x.permute(0, 2, 1, 3)
def forward(self, x):
x = self.c_attn(x)
query, key, value = x.split(self.split_size, dim=2)
query = self.split_heads(query)
key = self.split_heads(key, k=True)
value = self.split_heads(value)
a = self._attn(query, key, value)
a = self.merge_heads(a)
a = self.c_proj(a)
a = self.resid_dropout(a)
return a
class MLP(nn.Module):
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
super(MLP, self).__init__()
nx = config.n_embd
self.c_fc = Conv1D(n_state, 1, nx)
self.c_proj = Conv1D(nx, 1, n_state)
self.act = ACT_FNS[config.afn]
self.dropout = nn.Dropout(config.resid_pdrop)
def forward(self, x):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
return self.dropout(h2)
class Block(nn.Module):
def __init__(self, n_ctx, config, scale=False):
super(Block, self).__init__()
nx = config.n_embd
self.attn = Attention(nx, n_ctx, config, scale)
self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
self.mlp = MLP(4 * nx, config)
self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
def forward(self, x):
a = self.attn(x)
n = self.ln_1(x + a)
m = self.mlp(n)
h = self.ln_2(n + m)
return h
class OpenAIGPTLMHead(nn.Module):
""" Language Model Head for the transformer """
def __init__(self, model_embeddings_weights, config):
super(OpenAIGPTLMHead, self).__init__()
self.n_embd = config.n_embd
self.set_embeddings_weights(model_embeddings_weights)
def set_embeddings_weights(self, model_embeddings_weights):
embed_shape = model_embeddings_weights.shape
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
self.decoder.weight = model_embeddings_weights # Tied weights
def forward(self, hidden_state):
# Truncated Language modeling logits (we remove the last token)
# h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
lm_logits = self.decoder(hidden_state)
return lm_logits
class OpenAIGPTMultipleChoiceHead(nn.Module):
""" Classifier Head for the transformer """
def __init__(self, config):
super(OpenAIGPTMultipleChoiceHead, self).__init__()
self.n_embd = config.n_embd
# self.multiple_choice_token = multiple_choice_token
self.dropout = nn.Dropout2d(config.resid_pdrop) # To reproduce the noise_shape parameter of TF implementation
self.linear = nn.Linear(config.n_embd, 1)
nn.init.normal_(self.linear.weight, std=0.02)
nn.init.normal_(self.linear.bias, 0)
def forward(self, hidden_states, mc_token_ids):
# Classification logits
# hidden_state (bsz, num_choices, seq_length, hidden_size)
# mc_token_ids (bsz, num_choices)
mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
# (bsz, num_choices, 1, hidden_size)
multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
# (bsz, num_choices, hidden_size)
multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
# (bsz, num_choices)
return multiple_choice_logits
class OpenAIGPTPreTrainedModel(nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super(OpenAIGPTPreTrainedModel, self).__init__()
if not isinstance(config, OpenAIGPTConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
"To create a model from a pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
)
)
self.config = config
def init_weights(self, module):
""" Initialize the weights.
"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def set_num_special_tokens(self, num_special_tokens):
pass
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
):
"""
Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
Params:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load selected in the list of:
. `openai-gpt`
- a path or url to a pretrained model archive containing:
. `openai_gpt_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. a series of NumPy files containing OpenAI TensorFlow trained weights
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find files {} and {} "
"at this path or url.".format(
pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
archive_file, config_file
)
)
return None
if resolved_archive_file == archive_file and resolved_config_file == config_file:
logger.info("loading weights file {}".format(archive_file))
logger.info("loading configuration file {}".format(config_file))
else:
logger.info("loading weights file {} from cache at {}".format(
archive_file, resolved_archive_file))
logger.info("loading configuration file {} from cache at {}".format(
config_file, resolved_config_file))
# Load config
config = OpenAIGPTConfig.from_json_file(resolved_config_file)
logger.info("Model config {}".format(config))
# Instantiate model.
model = cls(config, *inputs, **kwargs)
if state_dict is None and not from_tf:
state_dict = torch.load(resolved_archive_file, map_location='cpu')
if from_tf:
# Directly load from a TensorFlow checkpoint (stored as NumPy array)
return load_tf_weights_in_openai_gpt(model, resolved_archive_file)
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if key.endswith(".g"):
new_key = key[:-2] + ".weight"
elif key.endswith(".b"):
new_key = key[:-2] + ".bias"
elif key.endswith(".w"):
new_key = key[:-2] + ".weight"
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=""):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + ".")
start_model = model
if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
start_model = model.transformer
load(start_model, prefix="")
if len(missing_keys) > 0:
logger.info(
"Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
)
if len(unexpected_keys) > 0:
logger.info(
"Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
)
if len(error_msgs) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
)
# Add additional embeddings for special tokens if needed
# This step also make sure we are still sharing the output and input embeddings after loading weights
model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special)
return model
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
"""OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").
OpenAI GPT use a single embedding matrix to store the word and special embeddings.
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
Special tokens need to be trained during the fine-tuning if you use them.
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.
The embeddings are ordered as follow in the token embeddings matrice:
[0, ----------------------
... -> word embeddings
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size + config.n_special - 1] ______________________
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
total_tokens_embeddings = config.vocab_size + config.n_special
You should use the associate indices to index the embeddings.
Params:
config: a OpenAIGPTConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
Outputs:
`hidden_states`: the encoded-hidden-states at the top of the model
as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
(or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
config = modeling_openai.OpenAIGPTConfig()
model = modeling_openai.OpenAIGPTModel(config)
hidden_states = model(input_ids)
```
"""
def __init__(self, config):
super(OpenAIGPTModel, self).__init__(config)
num_tokens = config.vocab_size + config.n_special
self.tokens_embed = nn.Embedding(num_tokens, config.n_embd)
self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
self.drop = nn.Dropout(config.embd_pdrop)
block = Block(config.n_ctx, config, scale=True)
self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
self.apply(self.init_weights)
# nn.init.normal_(self.embed.weight, std=0.02)
def set_num_special_tokens(self, num_special_tokens):
" Update input embeddings with new embedding matrice if needed "
if self.config.n_special == num_special_tokens:
return
# Update config
self.config.n_special = num_special_tokens
# Build new embeddings and initialize all new embeddings (in particular the special tokens)
old_embed = self.tokens_embed
self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
self.tokens_embed.to(old_embed.weight.device)
self.init_weights(self.tokens_embed)
# Copy word embeddings from the previous weights
self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
def forward(self, input_ids, position_ids=None, token_type_ids=None):
if position_ids is None:
# This was used when we had a single embedding matrice from position and token embeddings
# start = self.config.vocab_size + self.config.n_special
# end = start + input_ids.size(-1)
# position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_ids.size(-1))
position_ids = position_ids.view(-1, position_ids.size(-1))
inputs_embeds = self.tokens_embed(input_ids)
position_embeds = self.positions_embed(position_ids)
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
token_type_embeds = self.tokens_embed(token_type_ids)
else:
token_type_embeds = 0
# Add the position information to the input embeddings
# h = e.sum(dim=2)
hidden_states = inputs_embeds + position_embeds + token_type_embeds
for block in self.h:
hidden_states = block(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
return hidden_states.view(*output_shape)
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
"""OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").
OpenAI GPT use a single embedding matrix to store the word and special embeddings.
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
Special tokens need to be trained during the fine-tuning if you use them.
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.
The embeddings are ordered as follow in the token embeddings matrice:
[0, ----------------------
... -> word embeddings
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size + config.n_special - 1] ______________________
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
total_tokens_embeddings = config.vocab_size + config.n_special
You should use the associate indices to index the embeddings.
Params:
config: a OpenAIGPTConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., vocab_size]
Outputs:
if `lm_labels` is not `None`:
Outputs the language modeling loss.
else:
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
(or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
config = modeling_openai.OpenAIGPTConfig()
model = modeling_openai.OpenAIGPTLMHeadModel(config)
lm_logits = model(input_ids)
```
"""
def __init__(self, config):
super(OpenAIGPTLMHeadModel, self).__init__(config)
self.transformer = OpenAIGPTModel(config)
self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
self.apply(self.init_weights)
def set_num_special_tokens(self, num_special_tokens):
""" Update input and output embeddings with new embedding matrice
Make sure we are sharing the embeddings
"""
self.transformer.set_num_special_tokens(num_special_tokens)
self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None):
hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
lm_logits = self.lm_head(hidden_states)
if lm_labels is not None:
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = lm_labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1))
return loss
return lm_logits
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
"""OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
OpenAI GPT use a single embedding matrix to store the word and special embeddings.
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
Special tokens need to be trained during the fine-tuning if you use them.
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.
The embeddings are ordered as follow in the token embeddings matrice:
[0, ----------------------
... -> word embeddings
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size + config.n_special - 1] ______________________
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
total_tokens_embeddings = config.vocab_size + config.n_special
You should use the associate indices to index the embeddings.
Params:
config: a OpenAIGPTConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
indices selected in the range [0, total_tokens_embeddings[
`mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., total_tokens_embeddings]
`multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_choices].
Outputs:
if `lm_labels` and `multiple_choice_labels` are not `None`:
Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
else: a tuple with
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
`multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]]) # (bsz, number of choice, seq length)
mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
config = modeling_openai.OpenAIGPTConfig()
model = modeling_openai.OpenAIGPTLMHeadModel(config)
lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
```
"""
def __init__(self, config):
super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
self.transformer = OpenAIGPTModel(config)
self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
self.apply(self.init_weights)
def set_num_special_tokens(self, num_special_tokens):
""" Update input and output embeddings with new embedding matrice
Make sure we are sharing the embeddings
"""
self.transformer.set_num_special_tokens(num_special_tokens)
self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None):
hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
lm_logits = self.lm_head(hidden_states)
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
losses = []
if lm_labels is not None:
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = lm_labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss(ignore_index=-1)
losses.append(loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)))
if mc_labels is not None:
loss_fct = CrossEntropyLoss()
losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
if losses:
return losses
return lm_logits, mc_logits

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More