Compare commits

...

292 Commits

Author SHA1 Message Date
0856a231c0 Merge pull request #287 from huggingface/gpt2
Gpt2
2019-02-18 11:38:05 +01:00
ab7f5d2943 simple 2019-02-18 11:33:54 +01:00
b450a7faf2 clean up tokenization - fix python 2 tests 2019-02-18 11:27:18 +01:00
d44db1145c update readme 2019-02-18 11:12:09 +01:00
690a0dbf36 fix example - masking 2019-02-18 10:50:30 +01:00
fbb248a2e4 examples testing 2019-02-18 01:28:18 +01:00
5ff0c60505 language update 2019-02-18 00:55:47 +01:00
210d407245 updating init 2019-02-18 00:55:39 +01:00
b65f07d8c0 adding examples 2019-02-18 00:55:33 +01:00
009ee86a19 fix tests - bump up version 2019-02-17 23:57:23 +01:00
ffd623823d adding gpt2 2019-02-17 23:38:51 +01:00
3a2f97db6f Merge pull request #286 from hendrycks/patch-1
Update activation function docstring
2019-02-17 15:30:46 +01:00
434d15da8e Update activation function docstring 2019-02-16 12:17:52 -08:00
5faf386652 Merge pull request #282 from wlhgtc/master
Fix some bug about SQuAD code
2019-02-15 10:06:51 +01:00
8efaf8f176 fix 'best_non_null_entry' is None error 2019-02-15 15:57:25 +08:00
0e774e57a6 Update readme
Adding details on how to extract a full list of hidden states for the Transformer-XL
2019-02-14 08:39:58 +01:00
c35d9d48d9 Merge pull request #275 from davidefiocco/patch-1
--do_lower_case is duplicated in parser args
2019-02-13 16:32:21 +01:00
65df0d78ed --do_lower_case is duplicated in parser args
Deleting one repetition (please review!)
2019-02-13 15:30:05 +01:00
4e56da38d9 Merge pull request #268 from wangxiaodiu/master
fixed a minor bug in README.md
2019-02-13 10:19:25 +01:00
cdcb206e10 Merge pull request #273 from huggingface/update_to_fifth_release
Update to fifth release
2019-02-13 10:19:08 +01:00
321d70a7a9 bump up to 0.5.1 2019-02-13 10:11:20 +01:00
67376c02e2 update readme for tokenizers 2019-02-13 10:11:11 +01:00
c6bea08448 OpenAI GPT Tokenizer can fallback on using BERT BasicTokenizer 2019-02-13 10:11:00 +01:00
e7cfc46fc1 fix TransfoXLModel loading 2019-02-13 09:32:46 +01:00
e1b3cfb504 fixed a minor bug in README.md 2019-02-12 15:54:23 +04:00
3c33499f87 fix typo in readme 2019-02-12 10:22:54 +01:00
03cdb2a390 Merge pull request #254 from huggingface/python_2
Adding OpenAI GPT and Transformer-XL models, compatibility with Python 2
2019-02-11 14:19:26 +01:00
1e71f11dec Release: 0.5.0 2019-02-11 14:16:27 +01:00
d38caba169 typo in run_squad 2019-02-11 14:10:27 +01:00
af62cc5f20 fix run_squad example 2019-02-11 14:06:32 +01:00
eebc8abbe2 clarify and unify model saving logic in examples 2019-02-11 14:04:19 +01:00
81c7e3ec9f fix typo in readme 2019-02-11 13:37:12 +01:00
e8fe6b7140 adapting transfo tokenizer to transposed inputs 2019-02-11 13:30:04 +01:00
884ca81d87 transposing the inputs of Transformer-XL to have a unified interface 2019-02-11 13:19:59 +01:00
32fea876bb add distant debugging to run_transfo_xl 2019-02-11 12:53:32 +01:00
b31ba23913 cuda on in the examples by default 2019-02-11 12:15:43 +01:00
0a9860daa7 tests pass on python 2 and 3 2019-02-11 10:47:52 +01:00
2071a9b86e fix python 2.7 imports 2019-02-11 10:35:36 +01:00
8197eb9f10 update Circle CI config 2019-02-11 10:22:10 +01:00
525eba68ab update Circle CI 2019-02-11 10:19:25 +01:00
b514a60c36 added tests for OpenAI GPT and Transformer-XL tokenizers 2019-02-11 10:17:16 +01:00
9bdcba53fd fix tests 2019-02-09 17:07:12 +01:00
f0bf81e141 back compatibility with Path inputs in fle_utils 2019-02-09 17:05:23 +01:00
9f9909ea2f update readme 2019-02-09 16:59:21 +01:00
6cd769957e update transfo xl example 2019-02-09 16:59:17 +01:00
1320e4ec0c mc_token_mask => mc_token_ids 2019-02-09 16:58:53 +01:00
f4a07a392c mems not splitted 2019-02-09 16:14:31 +01:00
43b9af0cac mems initialized to None in run_transfo 2019-02-09 16:12:19 +01:00
cfcb95417c fix hasattr 2019-02-08 23:08:53 +01:00
0c1a6f9b1d update readme 2019-02-08 22:32:25 +01:00
1756b5e956 fix loading from Transfo-XL LM model 2019-02-08 22:32:17 +01:00
dadd0c1b13 updating __main__ 2019-02-08 22:31:57 +01:00
102c6b238c adding file cache to __init__ 2019-02-08 22:31:46 +01:00
b80684b23f fixing run openai gpt example 2019-02-08 22:31:32 +01:00
80607874c1 fix layer norm epsilon in OpenAI GPT 2019-02-08 21:49:05 +01:00
7b4b0cf966 logging 2019-02-08 11:16:29 +01:00
4bbb9f2d68 log loss - helpers 2019-02-08 11:14:29 +01:00
5d7e845712 fix model on cuda 2019-02-08 11:08:43 +01:00
eccb2f0163 hot fix 2019-02-08 11:05:20 +01:00
5adc20723b add distant debugging 2019-02-08 11:03:59 +01:00
5ee4f17234 adding option to load on cpu 2019-02-08 10:37:40 +01:00
2dfaf2f227 Merge pull request #261 from deepset-ai/rm_arg_lm_finetuning
removing unused argument eval_batch_size from LM finetuning #256
2019-02-08 10:36:03 +01:00
777459b471 run openai example running 2019-02-08 10:33:14 +01:00
edcb56fd96 more explicit variable name 2019-02-08 09:54:49 +01:00
6bc082da0a updating examples 2019-02-08 00:02:26 +01:00
eb8fda51f4 update docstrings 2019-02-07 23:15:20 +01:00
e77721e4fe renamed examples 2019-02-07 23:15:15 +01:00
009b581316 updated readme 2019-02-07 23:15:05 +01:00
f99f2fb661 docstrings 2019-02-07 17:07:22 +01:00
438db43d46 update adaptive softmax head 2019-02-07 17:07:15 +01:00
c306869ea2 add two transformer xl models 2019-02-07 17:07:03 +01:00
d482e3d79d adding examples for openai and transformer-xl 2019-02-07 17:06:41 +01:00
9c3c24800b split saved model in config & weights 2019-02-07 17:06:17 +01:00
2df41663f1 added test 2019-02-07 17:05:49 +01:00
9aebc711c9 adjust error message related to args.do_eval 2019-02-07 11:49:38 +01:00
4a450b25d5 removing unused argument eval_batch_size from LM finetuning #256 2019-02-07 10:06:38 +01:00
58f0a2745c Merge pull request #258 from BoeingX/master
Fix the undefined variable in squad example
2019-02-06 20:33:18 +01:00
7ac3311e48 Fix the undefined variable in squad example 2019-02-06 19:36:08 +01:00
ed47cb6cba fixing transfo eval script 2019-02-06 16:22:17 +01:00
973926431e fix differencies with tensorflow version (mem cells and adaptive sofmax clusters) 2019-02-06 15:42:29 +01:00
ba9e4eb354 fix unicode in tokenization tests 2019-02-06 00:28:00 +01:00
34bdb7f9cb update circle-ci for python 2.7 and 3.5 2019-02-06 00:25:12 +01:00
848aae49e1 Merge branch 'master' into python_2 2019-02-06 00:13:20 +01:00
448937c00d python 2 compatibility 2019-02-06 00:07:46 +01:00
ba37ddc5ce fix run_lm_modeling example command line 2019-02-06 00:07:08 +01:00
822915142b fix docstring 2019-02-05 16:34:32 +01:00
bd74632687 Merge pull request #251 from Iwontbecreative/active_loss_tok_classif
Only keep the active part mof the loss for token classification
2019-02-05 16:33:45 +01:00
fd223374f0 Merge pull request #208 from Liangtaiwan/mergesquad
Merge run_squad.py and run_squad2.py
2019-02-05 16:15:03 +01:00
d609ba24cb resolving merge conflicts 2019-02-05 16:14:25 +01:00
bde1eeebe0 rename 2019-02-05 16:11:22 +01:00
3ea3b00e59 merge squad example in single example 2019-02-05 16:10:27 +01:00
d8e3bdbb4c moved up to current master 2019-02-05 16:09:39 +01:00
64ce900974 Merge pull request #248 from JoeDumoulin/squad1.1-fix
fix prediction on run-squad.py example
2019-02-05 16:00:51 +01:00
0ad9b239a1 gitignore 2019-02-05 15:43:11 +01:00
e9e77cd3c4 Merge pull request #218 from matej-svejda/master
Fix learning rate problems in run_classifier.py
2019-02-05 15:40:44 +01:00
1579c53635 more explicit notation: num_train_step => num_train_optimization_steps 2019-02-05 15:36:33 +01:00
f3bda2352a Only keep the active part mof the loss for token classification 2019-02-04 11:46:36 -05:00
6179f537a3 clean up tokenization spaces 2019-02-04 17:41:22 +01:00
850da1cc36 strip decoded outputs 2019-02-04 17:35:05 +01:00
01a3966bc6 more options on special tokens 2019-02-04 17:26:25 +01:00
05f961840b logging 2019-02-04 13:06:19 +01:00
aa90e0c36a fix prediction on run-squad.py example 2019-02-01 10:15:44 -08:00
8f8bbd4a4c Merge pull request #244 from deepset-ai/prettify_lm_masking
Avoid confusion of inplace LM masking
2019-02-01 12:17:50 +01:00
e2d53d95b0 Merge pull request #242 from ksurya/argparse
Fix argparse type error
2019-02-01 12:14:55 +01:00
7e0b415ab4 Merge pull request #240 from girishponkiya/patch-1
Minor update in README
2019-02-01 12:14:05 +01:00
ce75b169bd avoid confusion of inplace masking of tokens_a / tokens_b 2019-01-31 11:42:06 +01:00
9bf528877e Update run_squad.py 2019-01-30 15:09:31 -05:00
af2b78601b Update run_squad2.py 2019-01-30 15:08:56 -05:00
0dd2b750ca Minor update in README
Update links to classes in `modeling.py`
2019-01-30 23:49:15 +05:30
5169069997 make examples consistent, revert error in num_train_steps calculation 2019-01-30 11:47:25 +01:00
3a848111e6 update config, docstrings and readme to switch to seperated tokens and position embeddings 2019-01-29 11:00:11 +01:00
98c96fb1a7 splitting position and tokens embeddings in OpenAI GPT - updating tf imports - tests 2019-01-29 10:31:42 +01:00
5456d82311 more versatile model loading 2019-01-29 09:54:18 +01:00
9b2540b5a7 update __init__ 2019-01-29 09:54:08 +01:00
bd3b3aee9c update 2019-01-28 17:47:29 +01:00
a45a9cc0e1 update tests 2019-01-28 17:16:02 +01:00
b12616fd8e updating code organization to fix imports 2019-01-28 17:03:39 +01:00
d77dd62ff8 directly load from TF checkpoints + code cleanup 2019-01-28 16:50:23 +01:00
9c6a48c8c3 fix learning rate/fp16 and warmup problem for all examples 2019-01-27 14:07:24 +01:00
01ff4f82ba learning rate problems in run_classifier.py 2019-01-22 23:40:06 +01:00
4eb2a49d41 Merge run_squad.py and run_squad2.py 2019-01-19 10:18:10 +08:00
0a9d7c7edb Merge pull request #201 from Liangtaiwan/squad2_save_bug
run_squad2 Don't save model if do not train
2019-01-18 09:28:11 +01:00
be9fa192f0 don't save if do not train 2019-01-18 00:41:55 +08:00
9c35c132fa apex LayerNorm 2019-01-17 09:19:19 +01:00
b9c77b98d5 fix transposition in model conversion and memory initialization 2019-01-17 00:33:21 +01:00
f040a43cb3 Merge pull request #199 from davidefiocco/patch-1
(very) minor update to README
2019-01-16 23:51:52 +01:00
35115eaf93 (very) minor update to README 2019-01-16 21:05:24 +01:00
009101de12 fix loading bug and check full conversion of model 2019-01-16 12:16:20 +01:00
fea15cc9f5 update model conversion 2019-01-16 11:54:54 +01:00
a28dfc8659 fix eval for wt103 2019-01-16 11:18:19 +01:00
c03c12687f fix __main__ entry script 2019-01-16 10:55:22 +01:00
8831c68803 fixing various parts of model conversion, loading and weights sharing 2019-01-16 10:31:16 +01:00
bcd4aa8fe0 update evaluation example 2019-01-15 23:32:34 +01:00
a69ec2c722 improved corpus and tokenization conversion - added evaluation script 2019-01-15 23:17:46 +01:00
7d03c53718 conversion working 2019-01-15 16:07:25 +01:00
3a9c88377f adding Transformer XL 2019-01-15 12:59:38 +01:00
647c983530 Merge pull request #193 from nhatchan/20190113_global_step
Fix importing unofficial TF models
2019-01-14 09:44:01 +01:00
4e0cba1053 Merge pull request #191 from nhatchan/20190113_py35_finetune
lm_finetuning compatibility with Python 3.5
2019-01-14 09:40:07 +01:00
c94455651e Merge pull request #190 from nhatchan/20190113_finetune_doc
Fix documentation (missing backslashes)
2019-01-14 09:39:03 +01:00
25eae7b0ae Merge pull request #189 from donglixp/patch-1
[bug fix] args.do_lower_case is always True
2019-01-14 09:38:37 +01:00
cd30565aed Fix importing unofficial TF models
Importing unofficial TF models seems to be working well, at least for me.
This PR resolves #50.
2019-01-14 13:35:40 +09:00
8edc898f63 Fix documentation (missing backslashes)
This PR adds missing backslashes in LM Fine-tuning subsection in README.md.
2019-01-13 21:23:19 +09:00
6c65cb2492 lm_finetuning compatibility with Python 3.5
dicts are not ordered in Python 3.5 or prior, which is a cause of #175.
This PR replaces one with a list, to keep its order.
2019-01-13 21:09:13 +09:00
a2da2b4109 [bug fix] args.do_lower_case is always True
The "default=True" makes args.do_lower_case always True.

```python
parser.add_argument("--do_lower_case",
                        default=True,
                        action='store_true')
```
2019-01-13 19:51:11 +08:00
35becc6d84 Merge pull request #182 from deepset-ai/fix_lowercase_and_saving
add do_lower_case arg and adjust model saving for lm finetuning.
2019-01-11 08:50:13 +01:00
506e5bb0c8 add do_lower_case arg and adjust model saving for lm finetuning. 2019-01-11 08:32:46 +01:00
e485829a41 Merge pull request #174 from abeljim/master
Added Squad 2.0
2019-01-10 23:40:45 +01:00
7e60205bd3 Merge pull request #179 from likejazz/patch-2
Fix it to run properly even if without `--do_train` param.
2019-01-10 23:39:10 +01:00
64326dccfb Fix it to run properly even if without --do_train param.
It was modified similar to `run_classifier.py`, and Fixed to run properly even if without `--do_train` param.
2019-01-10 21:51:39 +09:00
e5c78c6684 update readme and few typos 2019-01-10 01:40:00 +01:00
fa5222c296 update readme 2019-01-10 01:25:28 +01:00
0dd5f55ac8 Merge pull request #172 from WrRan/never_split
Never split some texts.
2019-01-09 13:44:09 +01:00
b3628f117e Added Squad 2.0 2019-01-08 15:13:13 -08:00
ab90d4cddd adding docs and example for OpenAI GPT 2019-01-09 00:12:43 +01:00
dc5df92fa8 added LM head for OpenAI 2019-01-08 17:18:47 +01:00
3cf12b235a added tests + fixed losses 2019-01-08 16:24:23 +01:00
eed51c5bdf add OpenAI GPT 2019-01-08 12:26:58 +01:00
3f60a60eed text in never_split should not lowercase 2019-01-08 13:33:57 +08:00
751beb9e73 never split some text 2019-01-08 10:54:51 +08:00
793dcd236b Merge branch 'master' of https://github.com/huggingface/pytorch-pretrained-BERT into fifth-release 2019-01-07 13:37:55 +01:00
2e4db64cab add do_lower_case tokenizer loading optino in run_squad and ine_tuning examples 2019-01-07 13:06:42 +01:00
c9fd350567 remove default when action is store_true in arguments 2019-01-07 13:01:54 +01:00
93f563b8a8 adding OpenAI GPT 2019-01-07 12:55:36 +01:00
e048c7f1c8 Merge pull request #171 from donglixp/patch-1
LayerNorm initialization
2019-01-07 12:44:46 +01:00
d3d56f9a0b Merge pull request #166 from likejazz/patch-1
Fix error when `bert_model` param is path or url.
2019-01-07 12:40:55 +01:00
766c6b2ce3 Merge pull request #159 from jaderabbit/master
Allow do_eval to be used without do_train and to use the pretrained model in the output folder
2019-01-07 12:31:06 +01:00
77966a43a4 Merge pull request #156 from rodgzilla/cl_args_doc
Adding new pretrained model to the help of the `bert_model` argument.
2019-01-07 12:27:16 +01:00
bcd607542c Merge pull request #145 from wlhgtc/master
Correct the  wrong note
2019-01-07 12:23:05 +01:00
2e8c5c00ec Merge pull request #141 from SinghJasdeep/patch-1
loading saved model when n_classes != 2
2019-01-07 12:21:13 +01:00
2860377021 Merge pull request #134 from rodgzilla/update_doc_pretrained_models
Fixing various class documentations.
2019-01-07 12:06:06 +01:00
c18bdb4433 Merge pull request #124 from deepset-ai/master
Add example for fine tuning BERT language model
2019-01-07 12:03:51 +01:00
d0d9b384f2 LayerNorm initialization
The LayerNorm gamma and beta should be initialized by .fill_(1.0) and .zero_().

reference links:

989e78c412/tensorflow/contrib/layers/python/layers/layers.py (L2298)

989e78c412/tensorflow/contrib/layers/python/layers/layers.py (L2308)
2019-01-07 15:51:33 +08:00
ca4e7aaa72 Fix error when bert_model param is path or url.
Error occurs when `bert_model` param is path or url. Therefore, if it is path, specify the last path to prevent error.
2019-01-05 11:42:54 +09:00
193e2df8ba Remove rogue comment 2019-01-03 13:13:06 +02:00
c64de50ea4 nb_tr_steps is not initialized 2019-01-03 12:34:57 +02:00
b96149a19b Training loss is not initialized if only do_eval is specified 2019-01-03 10:32:10 +02:00
be3b9bcf4d Allow one to use the pretrained model in evaluation when do_train is not selected 2019-01-03 09:02:33 +02:00
186f75342e Adding new pretrained model to the help of the bert_model argument. 2019-01-02 14:00:59 +01:00
e626eecc25 Update modeling.py 2018-12-22 20:26:05 +08:00
99709ee61d loading saved model when n_classes != 2
Required to for: Assertion `t >= 0 && t < n_classes` failed,  if your default number of classes is not 2.
2018-12-20 13:55:47 -08:00
8da280ebbe Setup CI 2018-12-20 16:33:39 -05:00
e5fc98c542 add exemplary training data. update to nvidia apex. refactor 'item -> line in doc' mapping. add warning for unknown word. 2018-12-20 18:30:52 +01:00
7176674849 Fixing various class documentations. 2018-12-20 13:11:17 +01:00
7fb94ab934 Merge pull request #127 from patrick-s-h-lewis/tokenizer-error-on-long-seqs
raises value error for bert tokenizer for long sequences
2018-12-19 10:29:17 +01:00
2feb29c0ff Merge pull request #130 from sodre/use-entry-points
Use entry-points instead of scripts
2018-12-19 10:18:24 +01:00
2c9991496b Merge pull request #128 from sodre/add-license
Add license to source distribution
2018-12-19 10:15:53 +01:00
17595ef2de Merge branch 'master' of https://github.com/deepset-ai/pytorch-pretrained-BERT 2018-12-19 09:22:53 +01:00
67f4dd56a3 update readme for run_lm_finetuning 2018-12-19 09:22:37 +01:00
ecf3ea197e Remove original script 2018-12-19 02:26:08 +00:00
87c1244c7d Convert scripts into entry_points
The recommended approach to create launch scripts is to use entry_points
and console_scripts.

xref: https://packaging.python.org/guides/distributing-packages-using-setuptools/#scripts
2018-12-19 02:26:08 +00:00
b3d86162b0 Add license to source distribution 2018-12-19 01:41:18 +00:00
d57763f582 Fix typos 2018-12-18 19:23:22 -05:00
78cf7b4ab4 added code to raise value error for bert tokenizer for covert_tokens_to_indices 2018-12-18 14:41:30 +00:00
a58361f197 Add example for fine tuning BERT language model (#1)
Adds an example for loading a pre-trained BERT model and fine tune it as a language model (masked tokens & nextSentence) on your target corpus.
2018-12-18 10:32:25 +01:00
786cc41299 Typos in readme 2018-12-17 09:22:18 +01:00
ecc0b54bec Merge pull request #119 from danyaljj/patch-1
Minor README fix
2018-12-14 23:29:47 +01:00
8b1b93947f Minor fix. 2018-12-14 14:10:36 -05:00
8809eb6c93 update readme with information on NVIDIA's apex 2018-12-14 16:59:39 +01:00
e1bfad4846 Merge pull request #112 from huggingface/fourth-release
Fourth release
2018-12-14 15:15:47 +01:00
d821358884 update readme 2018-12-14 15:15:17 +01:00
37378898a2 adding DockerFile 2018-12-14 15:02:32 +01:00
4a4b0e5783 remove logging. basicConfig from library code 2018-12-14 14:46:25 +01:00
ae88eb88a4 set encoding to 'utf-8' in calls to open 2018-12-14 13:48:58 +01:00
e1eab59aac no fp16 on evaluation 2018-12-13 14:54:02 +01:00
087798b7fa fix reloading model for evaluation in examples 2018-12-13 14:48:12 +01:00
0f544625f4 fix swag example for work with apex 2018-12-13 13:35:59 +01:00
0cf88ff084 make examples work without apex 2018-12-13 13:28:00 +01:00
52c53f39d0 clean up apex integration 2018-12-13 13:02:17 +01:00
4946c2c500 run_swag example in readme 2018-12-13 13:02:07 +01:00
d23eed85bb model loading apex modification 2018-12-13 12:53:17 +01:00
1cbb32a542 include version number + comment in setup.py 2018-12-13 12:50:44 +01:00
ce52177638 added version in __init__.py 2018-12-13 12:50:44 +01:00
d3fcec1a3e add saving and loading model in examples 2018-12-13 12:50:44 +01:00
93f335ef86 add pretrained loading from state_dict 2018-12-13 12:48:13 +01:00
b3caec5a56 adding save checkpoint and loading in examples 2018-12-13 12:48:13 +01:00
85fff78c2d compatibility PT 1.0 and 0.4.1 2018-12-13 12:48:13 +01:00
13bf0d4659 fixing Adam weights skip in TF convert script 2018-12-13 12:48:13 +01:00
91aab2a6d3 Merge pull request #116 from FDecaYed/deyuf/fp16_with_apex
Change to use apex for better fp16 and multi-gpu support
2018-12-13 12:32:37 +01:00
32a227f507 Merge pull request #113 from hzhwcmhf/master
fix compatibility with python 3.5.2
2018-12-13 12:15:15 +01:00
ffe9075f48 Merge pull request #96 from rodgzilla/multiple-choice-code
BertForMultipleChoice and Swag dataset example.
2018-12-13 12:05:11 +01:00
3b0a14b761 add fallback path for apex used in modeling.py 2018-12-12 15:05:45 -08:00
dcb50eaa4b Swag example readme section update with gradient accumulation run. 2018-12-12 18:17:46 +01:00
c8ea286048 change to apex for better fp16 and multi-gpu support 2018-12-11 17:13:58 -08:00
485adde742 add pathlib support for file_utils.py on python 3.5 2018-12-11 22:49:19 +08:00
bc659f86ad fix compatibility with python 3.5.2; convert path to str 2018-12-11 20:18:56 +08:00
1df6f26214 Merge branch 'fourth-release' of https://github.com/huggingface/pytorch-pretrained-BERT into fourth-release 2018-12-11 12:20:31 +01:00
770f805ae5 include version number + comment in setup.py 2018-12-11 12:20:22 +01:00
ed3b62cd3b added version in __init__.py 2018-12-11 12:12:08 +01:00
632f2d2df9 Merge branch 'master' into fourth-release 2018-12-11 06:00:53 -05:00
b13abfa9fe add saving and loading model in examples 2018-12-11 11:58:07 +01:00
270fa2f20b add pretrained loading from state_dict 2018-12-11 11:50:38 +01:00
a3a3180c86 Bump up requirements to Python 3.6 2018-12-11 11:29:45 +01:00
e7c0a8ddce Merge pull request #107 from lliimsft/master
Fix optimizer to work with horovod
2018-12-11 05:18:00 -05:00
e622790a93 Merge pull request #91 from rodgzilla/convert-examples-code-improvement
run_classifier.py improvements
2018-12-11 05:12:04 -05:00
df34f22854 Removing the dependency to pandas and using the csv module to load data. 2018-12-10 17:45:23 +01:00
0876b77f7f Change to the README file to add SWAG results. 2018-12-10 15:34:19 +01:00
81e1e2489f Fix optimizer to work with horovod 2018-12-10 02:08:38 -08:00
174cdbccde adding save checkpoint and loading in examples 2018-12-09 17:04:23 -05:00
1db916b5be compatibility PT 1.0 and 0.4.1 2018-12-09 16:57:51 -05:00
68f77303b2 fixing Adam weights skip in TF convert script 2018-12-09 16:17:11 -05:00
a2b6918a11 Merge pull request #101 from davidefiocco/patch-1
Adding --do_lower_case for all uncased BERTs examples
2018-12-09 15:29:31 -05:00
5c858448d3 Merge pull request #94 from rodgzilla/fixing-squad-commentary
Fixing the commentary of the `SquadExample` class.
2018-12-09 15:27:30 -05:00
c9f67e037c Adding --do_lower_case for all uncased BERTs
I had missed those, it should make sense to use them
2018-12-07 20:40:56 +01:00
150f3cd9fa Few typos in README.md 2018-12-06 19:22:07 +01:00
d429c15f25 Removing old code from copy-paste. 2018-12-06 19:19:21 +01:00
4fa7892d64 Wrong line number link to modeling file. 2018-12-06 19:18:29 +01:00
6a26e19ea3 Updating README.md with SWAG example informations. 2018-12-06 19:15:08 +01:00
63c45056aa Finishing the code for the Swag task. 2018-12-06 18:53:05 +01:00
fc5a38ac92 Adding the BertForMultipleChoiceClass. 2018-12-06 18:42:23 +01:00
c45d8ac554 Storing the feature of each choice as a dict for readability. 2018-12-06 16:01:28 +01:00
0812aee2c3 Fixing problems in convert_examples_to_features. 2018-12-06 15:53:07 +01:00
f2b873e995 convert_examples_to_features code and small improvements. 2018-12-06 15:40:47 +01:00
83fdbd6043 Adding read_swag_examples to load the dataset. 2018-12-06 14:02:46 +01:00
7183cded4e SwagExample class. 2018-12-06 13:39:44 +01:00
fa7daa247d Fixing the commentary of the SquadExample class. 2018-12-06 13:14:33 +01:00
a994bf4076 Fixing related to issue #83. 2018-12-05 18:16:30 +01:00
c6d9d5394e Simplifying code for easier understanding. 2018-12-05 17:53:09 +01:00
793262e8ec Removing trailing whitespaces. 2018-12-05 17:52:39 +01:00
3ba5470eb8 Merge pull request #87 from rodgzilla/readme-file-links
Readme file links
2018-12-05 10:41:05 -05:00
0a7c8bdcac Fixing badly formatted links. 2018-12-04 13:43:56 +01:00
3113e967db Adding links to examples files. 2018-12-04 13:40:38 +01:00
04826b0f2c Merge pull request #77 from davidefiocco/patch-1
Correct assignement for logits in classifier example
2018-12-02 13:01:04 +01:00
e60e8a6068 Correct assignement for logits in classifier example
I tried to address https://github.com/huggingface/pytorch-pretrained-BERT/issues/76
should be correct, but there's likely a more efficient way.
2018-12-02 12:38:26 +01:00
063be09b71 Merge pull request #75 from davidefiocco/patch-2
Point typo fix
2018-12-01 01:15:43 +01:00
4450f5ef6b Merge pull request #74 from davidefiocco/patch-1
Update finetuning example in README adding --do_lower_case
2018-12-01 01:15:31 +01:00
dc13e276ee Point typo fix 2018-12-01 01:02:16 +01:00
8a8aa59d8c Update finetuning example adding --do_lower_case
Should be consistent with the fact that an uncased model is used
2018-12-01 01:00:05 +01:00
836b40be82 Merge pull request #72 from NirantK/patch-1
Fix internal hyperlink typo
2018-11-30 23:33:53 +01:00
66d50ca6ae Merge pull request #73 from huggingface/third-release
Third release
2018-11-30 23:10:30 +01:00
f9f3bdd60b update readme 2018-11-30 23:05:18 +01:00
52ff0590ff tup => tpu 2018-11-30 23:01:10 +01:00
511bce58bd update new token classification model 2018-11-30 22:56:02 +01:00
258eb50086 bump up version 2018-11-30 22:55:33 +01:00
d787c6be8c improve docstrings and fix new token classification model 2018-11-30 22:55:26 +01:00
ed302a73f4 add new token classification model 2018-11-30 22:55:03 +01:00
89d47230d7 clean up classification model output 2018-11-30 22:54:53 +01:00
7f7c41b0c1 tests for all model classes with and without labels 2018-11-30 22:54:33 +01:00
be57c8eeef Fix internal hyperlink typo 2018-12-01 02:43:25 +05:30
8c7267f1cf Merge pull request #70 from deepset-ai/fix_lm_loss
fix typo in input for masked lm loss function
2018-11-30 18:23:46 +01:00
7b3bb8c00f fix typo in input for masked lm loss function 2018-11-30 16:52:50 +01:00
257a35134a fix pickle dump in run_squad example 2018-11-30 14:23:09 +01:00
c588453a0f fix run_squad 2018-11-30 14:22:40 +01:00
d6f06c03f4 fixed loading pre-trained tokenizer from directory 2018-11-30 14:09:06 +01:00
532a81d3d6 fixed doc_strings 2018-11-30 13:57:01 +01:00
296f006132 added BertForTokenClassification model 2018-11-30 13:56:53 +01:00
298107fed7 Added new bert models 2018-11-30 13:56:02 +01:00
0541442558 add do_lower_case in examples 2018-11-30 13:47:33 +01:00
3951c2c189 Merge pull request #60 from davidefiocco/patch-1
Updated quick-start example with `BertForMaskedLM`
2018-11-28 14:59:08 +01:00
ec2c339b53 Updated quick-start example with BertForMaskedLM
As `convert_ids_to_tokens` returns a list, the code in the README currently throws an `AssertionError`, so I propose I quick fix.
2018-11-28 14:53:46 +01:00
21f0196412 Merge pull request #58 from lliimsft/master
Bug fix in examples;correct t_total for distributed training;run pred…
2018-11-28 12:39:45 +01:00
0aaedcc02f Bug fix in examples;correct t_total for distributed training;run prediction for full dataset 2018-11-27 01:08:37 -08:00
32167cdf4b remove convert_to_unicode and printable_text from examples 2018-11-26 23:33:22 +01:00
44 changed files with 9551 additions and 712 deletions

29
.circleci/config.yml Normal file
View File

@ -0,0 +1,29 @@
version: 2
jobs:
build_py3:
working_directory: ~/pytorch-pretrained-BERT
docker:
- image: circleci/python:3.5
steps:
- checkout
- run: sudo pip install --progress-bar off .
- run: sudo pip install pytest ftfy spacy
- run: sudo python -m spacy download en
- run: python -m pytest -sv tests/
build_py2:
working_directory: ~/pytorch-pretrained-BERT
docker:
- image: circleci/python:2.7
steps:
- checkout
- run: sudo pip install --progress-bar off .
- run: sudo pip install pytest spacy
- run: sudo pip install ftfy==4.4.3
- run: sudo python -m spacy download en
- run: python -m pytest -sv tests/
workflows:
version: 2
build_and_test:
jobs:
- build_py3
- build_py2

5
.gitignore vendored
View File

@ -119,4 +119,7 @@ dmypy.json
.vscode
# TF code
tensorflow_code
tensorflow_code
# Models
models

1
MANIFEST.in Normal file
View File

@ -0,0 +1 @@
include LICENSE

875
README.md

File diff suppressed because it is too large Load Diff

View File

@ -1,2 +0,0 @@
#!/bin/sh
python -m pytorch_pretrained_bert "$@"

7
docker/Dockerfile Normal file
View File

@ -0,0 +1,7 @@
FROM pytorch/pytorch:latest
RUN git clone https://github.com/NVIDIA/apex.git && cd apex && python setup.py install --cuda_ext --cpp_ext
RUN pip install pytorch-pretrained-bert
WORKDIR /workspace

View File

@ -28,7 +28,7 @@ import torch
from torch.utils.data import TensorDataset, DataLoader, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from pytorch_pretrained_bert.tokenization import convert_to_unicode, BertTokenizer
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.modeling import BertModel
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
@ -80,10 +80,10 @@ def convert_examples_to_features(examples, seq_length, tokenizer):
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
@ -168,9 +168,9 @@ def read_examples(input_file):
"""Read a list of `InputExample`s from an input file."""
examples = []
unique_id = 0
with open(input_file, "r") as reader:
with open(input_file, "r", encoding='utf-8') as reader:
while True:
line = convert_to_unicode(reader.readline())
line = reader.readline()
if not line:
break
line = line.strip()
@ -199,6 +199,7 @@ def main():
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
## Other parameters
parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.")
parser.add_argument("--layers", default="-1,-2,-3,-4", type=str)
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences longer "
@ -209,7 +210,6 @@ def main():
default=-1,
help = "local_rank for distributed training on gpus")
parser.add_argument("--no_cuda",
default=False,
action='store_true',
help="Whether not to use CUDA when available")
@ -227,7 +227,7 @@ def main():
layer_indexes = [int(x) for x in args.layers.split(",")]
tokenizer = BertTokenizer.from_pretrained(args.bert_model)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
examples = read_examples(args.input_file)

View File

@ -1,5 +1,6 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -14,27 +15,28 @@
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import, division, print_function
import csv
import os
import logging
import argparse
import csv
import logging
import os
import random
from tqdm import tqdm, trange
import sys
import numpy as np
import torch
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from pytorch_pretrained_bert.tokenization import printable_text, convert_to_unicode, BertTokenizer
from pytorch_pretrained_bert.modeling import BertForSequenceClassification
from pytorch_pretrained_bert.optimization import BertAdam
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from pytorch_pretrained_bert.modeling import BertForSequenceClassification, BertConfig, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
@ -93,6 +95,8 @@ class DataProcessor(object):
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
if sys.version_info[0] == 2:
line = list(unicode(cell, 'utf-8') for cell in line)
lines.append(line)
return lines
@ -122,9 +126,9 @@ class MrpcProcessor(DataProcessor):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
text_a = convert_to_unicode(line[3])
text_b = convert_to_unicode(line[4])
label = convert_to_unicode(line[0])
text_a = line[3]
text_b = line[4]
label = line[0]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
@ -154,10 +158,10 @@ class MnliProcessor(DataProcessor):
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, convert_to_unicode(line[0]))
text_a = convert_to_unicode(line[8])
text_b = convert_to_unicode(line[9])
label = convert_to_unicode(line[-1])
guid = "%s-%s" % (set_type, line[0])
text_a = line[8]
text_b = line[9]
label = line[-1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
@ -185,8 +189,8 @@ class ColaProcessor(DataProcessor):
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = convert_to_unicode(line[3])
label = convert_to_unicode(line[1])
text_a = line[3]
label = line[1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
@ -195,9 +199,7 @@ class ColaProcessor(DataProcessor):
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer):
"""Loads a data file into a list of `InputBatch`s."""
label_map = {}
for (i, label) in enumerate(label_list):
label_map[label] = i
label_map = {label : i for i, label in enumerate(label_list)}
features = []
for (ex_index, example) in enumerate(examples):
@ -206,8 +208,6 @@ def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
@ -215,7 +215,7 @@ def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
tokens_a = tokens_a[:(max_seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
@ -235,22 +235,12 @@ def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
segment_ids = [0] * len(tokens)
if tokens_b:
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
tokens += tokens_b + ["[SEP]"]
segment_ids += [1] * (len(tokens_b) + 1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
@ -259,10 +249,10 @@ def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
@ -273,7 +263,7 @@ def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("tokens: %s" % " ".join(
[printable_text(x) for x in tokens]))
[str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
@ -308,35 +298,6 @@ def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def copy_optimizer_params_to_model(named_params_model, named_params_optimizer):
""" Utility function for optimize_on_cpu and 16-bits training.
Copy the parameters optimized on CPU/RAM back to the model on GPU
"""
for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model):
if name_opti != name_model:
logger.error("name_opti != name_model: {} {}".format(name_opti, name_model))
raise ValueError
param_model.data.copy_(param_opti.data)
def set_optimizer_params_grad(named_params_optimizer, named_params_model, test_nan=False):
""" Utility function for optimize_on_cpu and 16-bits training.
Copy the gradient of the GPU parameters to the CPU/RAMM copy of the model
"""
is_nan = False
for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model):
if name_opti != name_model:
logger.error("name_opti != name_model: {} {}".format(name_opti, name_model))
raise ValueError
if param_model.grad is not None:
if test_nan and torch.isnan(param_model.grad).sum() > 0:
is_nan = True
if param_opti.grad is None:
param_opti.grad = torch.nn.Parameter(param_opti.data.new().resize_(*param_opti.data.size()))
param_opti.grad.data.copy_(param_model.grad.data)
else:
param_opti.grad = None
return is_nan
def main():
parser = argparse.ArgumentParser()
@ -348,7 +309,8 @@ def main():
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
"bert-base-multilingual-cased, bert-base-chinese.")
parser.add_argument("--task_name",
default=None,
type=str,
@ -358,9 +320,13 @@ def main():
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length",
default=128,
type=int,
@ -368,13 +334,14 @@ def main():
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
default=False,
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
default=False,
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case",
action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
@ -397,59 +364,68 @@ def main():
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
default=False,
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumualte before performing a backward/update pass.")
parser.add_argument('--optimize_on_cpu',
default=False,
action='store_true',
help="Whether to perform optimization and keep the optimizer averages on CPU")
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--fp16',
default=False,
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=128,
help='Loss scaling, positive power of 2 values can improve fp16 convergence.')
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
processors = {
"cola": ColaProcessor,
"mnli": MnliProcessor,
"mrpc": MrpcProcessor,
}
num_labels_task = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
}
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
if args.fp16:
logger.info("16-bits training currently not supported in distributed training")
args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496)
logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
@ -460,9 +436,10 @@ def main():
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
os.makedirs(args.output_dir, exist_ok=True)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
task_name = args.task_name.lower()
@ -470,56 +447,77 @@ def main():
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
num_labels = num_labels_task[task_name]
label_list = processor.get_labels()
tokenizer = BertTokenizer.from_pretrained(args.bert_model)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
train_examples = None
num_train_steps = None
num_train_optimization_steps = None
if args.do_train:
train_examples = processor.get_train_examples(args.data_dir)
num_train_steps = int(
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
num_train_optimization_steps = int(
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
# Prepare model
model = BertForSequenceClassification.from_pretrained(args.bert_model, len(label_list),
cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank))
cache_dir = args.cache_dir if args.cache_dir else os.path.join(PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(args.local_rank))
model = BertForSequenceClassification.from_pretrained(args.bert_model,
cache_dir=cache_dir,
num_labels = num_labels)
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank)
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
if args.fp16:
param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \
for n, param in model.named_parameters()]
elif args.optimize_on_cpu:
param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \
for n, param in model.named_parameters()]
else:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_steps)
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
nb_tr_steps = 0
tr_loss = 0
if args.do_train:
train_features = convert_examples_to_features(
train_examples, label_list, args.max_seq_length, tokenizer)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_steps)
logger.info(" Num steps = %d", num_train_optimization_steps)
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
@ -538,40 +536,49 @@ def main():
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
loss, _ = model(input_ids, segment_ids, input_mask, label_ids)
loss = model(input_ids, segment_ids, input_mask, label_ids)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.fp16 and args.loss_scale != 1.0:
# rescale loss for fp16 training
# see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
loss = loss * args.loss_scale
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16 or args.optimize_on_cpu:
if args.fp16 and args.loss_scale != 1.0:
# scale down gradients for fp16 training
for param in model.parameters():
if param.grad is not None:
param.grad.data = param.grad.data / args.loss_scale
is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True)
if is_nan:
logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling")
args.loss_scale = args.loss_scale / 2
model.zero_grad()
continue
optimizer.step()
copy_optimizer_params_to_model(model.named_parameters(), param_optimizer)
else:
optimizer.step()
model.zero_grad()
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
if args.do_eval:
if args.do_train:
# Save a trained model and the associated configuration
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
with open(output_config_file, 'w') as f:
f.write(model_to_save.config.to_json_string())
# Load a trained model and config that you have fine-tuned
config = BertConfig(output_config_file)
model = BertForSequenceClassification(config, num_labels=num_labels)
model.load_state_dict(torch.load(output_model_file))
else:
model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
model.to(device)
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
eval_examples = processor.get_dev_examples(args.data_dir)
eval_features = convert_examples_to_features(
eval_examples, label_list, args.max_seq_length, tokenizer)
@ -583,23 +590,23 @@ def main():
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
if args.local_rank == -1:
eval_sampler = SequentialSampler(eval_data)
else:
eval_sampler = DistributedSampler(eval_data)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids)
tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
logits = model(input_ids, segment_ids, input_mask)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
@ -613,11 +620,11 @@ def main():
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
loss = tr_loss/nb_tr_steps if args.do_train else None
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'global_step': global_step,
'loss': tr_loss/nb_tr_steps}
'loss': loss}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:

105
examples/run_gpt2.py Normal file
View File

@ -0,0 +1,105 @@
#!/usr/bin/env python3
import argparse
import logging
from tqdm import trange
import torch
import torch.nn.functional as F
import numpy as np
from pytorch_pretrained_bert import GPT2LMHeadModel, GPT2Tokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def top_k_logits(logits, k):
if k == 0:
return logits
values, _ = torch.topk(logits, k)
min_values = values[:, -1]
return torch.where(logits < min_values, torch.ones_like(logits, dtype=logits.dtype) * -1e10, logits)
def sample_sequence(model, length, start_token=None, batch_size=None, context=None, temperature=1, top_k=0, device='cuda', sample=True):
if start_token is None:
assert context is not None, 'Specify exactly one of start_token and context!'
context = torch.tensor(context, device=device, dtype=torch.long).unsqueeze(0).repeat(batch_size, 1)
else:
assert context is None, 'Specify exactly one of start_token and context!'
context = torch.full((batch_size, 1), start_token, device=device, dtype=torch.long)
prev = context
output = context
past = None
with torch.no_grad():
for i in trange(length):
logits, past = model(prev, past=past)
logits = logits[:, -1, :] / temperature
logits = top_k_logits(logits, k=top_k)
log_probs = F.softmax(logits, dim=-1)
if sample:
prev = torch.multinomial(log_probs, num_samples=1)
else:
_, prev = torch.topk(log_probs, k=1, dim=-1)
output = torch.cat((output, prev), dim=1)
return output
def run_model():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, default='gpt2', help='pretrained model name or path to local checkpoint')
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--nsamples", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=-1)
parser.add_argument("--length", type=int, default=-1)
parser.add_argument("--temperature", type=int, default=1)
parser.add_argument("--top_k", type=int, default=0)
parser.add_argument('--unconditional', action='store_true', help='If true, unconditional generation.')
args = parser.parse_args()
print(args)
if args.batch_size == -1:
args.batch_size = 1
assert args.nsamples % args.batch_size == 0
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
enc = GPT2Tokenizer.from_pretrained(args.model_name_or_path)
model = GPT2LMHeadModel.from_pretrained(args.model_name_or_path)
model.to(device)
model.eval()
if args.length == -1:
args.length = model.config.n_ctx // 2
elif args.length > model.config.n_ctx:
raise ValueError("Can't get samples longer than window size: %s" % model.config.n_ctx)
while not args.unconditional:
if not args.unconditional:
raw_text = input("Model prompt >>> ")
while not raw_text:
print('Prompt should not be empty!')
raw_text = input("Model prompt >>> ")
context_tokens = enc.encode(raw_text)
generated = 0
for _ in range(args.nsamples // args.batch_size):
out = sample_sequence(
model=model, length=args.length,
context=context_tokens if not args.unconditional else None,
start_token=enc.encoder['<|endoftext|>'] if args.unconditional else None,
batch_size=args.batch_size,
temperature=args.temperature, top_k=args.top_k, device=device
)
out = out[:, len(context_tokens):].tolist()
for i in range(args.batch_size):
generated += 1
text = enc.decode(out[i])
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
print(text)
print("=" * 80)
if __name__ == '__main__':
run_model()

View File

@ -0,0 +1,88 @@
#!/usr/bin/env python3
import argparse
import logging
import torch
import torch.nn.functional as F
import numpy as np
from tqdm import trange
from pytorch_pretrained_bert import GPT2LMHeadModel, GPT2Tokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def top_k_logits(logits, k):
if k == 0:
return logits
values, _ = torch.topk(logits, k)
min_values = values[:, -1]
return torch.where(logits < min_values, torch.ones_like(logits, dtype=logits.dtype) * -1e10, logits)
def sample_sequence(model, length, start_token=None, batch_size=None, context=None, temperature=1, top_k=0, device='cuda'):
if start_token is None:
assert context is not None, 'Specify exactly one of start_token and context!'
context = torch.tensor(context, device=device, dtype=torch.long)
else:
assert context is None, 'Specify exactly one of start_token and context!'
context = torch.full((batch_size, 1), start_token, device=device, dtype=torch.long)
prev = context
output = context
past = None
with torch.no_grad():
for i in trange(length):
logits, past = model(prev, past=past)
logits = logits[:, -1, :] / temperature
logits = top_k_logits(logits, k=top_k)
log_probs = F.softmax(logits, dim=-1)
prev = torch.multinomial(log_probs, num_samples=1)
output = torch.cat((output, prev), dim=1)
return output
def sample_model():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, default='gpt2', help='pretrained model name or path to local checkpoint')
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--nsamples", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--length", type=int, default=-1)
parser.add_argument("--temperature", type=int, default=1)
parser.add_argument("--top_k", type=int, default=0)
args = parser.parse_args()
print(args)
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
enc = GPT2Tokenizer.from_pretrained(args.model_name_or_path)
model = GPT2LMHeadModel.from_pretrained(args.model_name_or_path)
model.to(device)
model.eval()
if args.length == -1:
args.length = model.config.n_ctx
elif args.length > model.config.n_ctx:
raise ValueError("Can't get samples longer than window size: %s" % model.config.n_ctx)
generated = 0
while args.nsamples == 0 or generated < args.nsamples:
out = sample_sequence(
model=model, length=args.length,
start_token=enc.encoder['<|endoftext|>'],
batch_size=args.batch_size,
temperature=args.temperature, top_k=args.top_k, device=device
)
out = out.tolist()
for i in range(args.batch_size):
generated += args.batch_size
text = enc.decode(out[i])
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
print(text)
if __name__ == '__main__':
sample_model()

View File

@ -0,0 +1,645 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import, division, print_function, unicode_literals
import argparse
import logging
import os
import random
from io import open
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from pytorch_pretrained_bert.modeling import BertForPreTraining
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from torch.utils.data import Dataset
import random
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
class BERTDataset(Dataset):
def __init__(self, corpus_path, tokenizer, seq_len, encoding="utf-8", corpus_lines=None, on_memory=True):
self.vocab = tokenizer.vocab
self.tokenizer = tokenizer
self.seq_len = seq_len
self.on_memory = on_memory
self.corpus_lines = corpus_lines # number of non-empty lines in input corpus
self.corpus_path = corpus_path
self.encoding = encoding
self.current_doc = 0 # to avoid random sentence from same doc
# for loading samples directly from file
self.sample_counter = 0 # used to keep track of full epochs on file
self.line_buffer = None # keep second sentence of a pair in memory and use as first sentence in next pair
# for loading samples in memory
self.current_random_doc = 0
self.num_docs = 0
self.sample_to_doc = [] # map sample index to doc and line
# load samples into memory
if on_memory:
self.all_docs = []
doc = []
self.corpus_lines = 0
with open(corpus_path, "r", encoding=encoding) as f:
for line in tqdm(f, desc="Loading Dataset", total=corpus_lines):
line = line.strip()
if line == "":
self.all_docs.append(doc)
doc = []
#remove last added sample because there won't be a subsequent line anymore in the doc
self.sample_to_doc.pop()
else:
#store as one sample
sample = {"doc_id": len(self.all_docs),
"line": len(doc)}
self.sample_to_doc.append(sample)
doc.append(line)
self.corpus_lines = self.corpus_lines + 1
# if last row in file is not empty
if self.all_docs[-1] != doc:
self.all_docs.append(doc)
self.sample_to_doc.pop()
self.num_docs = len(self.all_docs)
# load samples later lazily from disk
else:
if self.corpus_lines is None:
with open(corpus_path, "r", encoding=encoding) as f:
self.corpus_lines = 0
for line in tqdm(f, desc="Loading Dataset", total=corpus_lines):
if line.strip() == "":
self.num_docs += 1
else:
self.corpus_lines += 1
# if doc does not end with empty line
if line.strip() != "":
self.num_docs += 1
self.file = open(corpus_path, "r", encoding=encoding)
self.random_file = open(corpus_path, "r", encoding=encoding)
def __len__(self):
# last line of doc won't be used, because there's no "nextSentence". Additionally, we start counting at 0.
return self.corpus_lines - self.num_docs - 1
def __getitem__(self, item):
cur_id = self.sample_counter
self.sample_counter += 1
if not self.on_memory:
# after one epoch we start again from beginning of file
if cur_id != 0 and (cur_id % len(self) == 0):
self.file.close()
self.file = open(self.corpus_path, "r", encoding=self.encoding)
t1, t2, is_next_label = self.random_sent(item)
# tokenize
tokens_a = self.tokenizer.tokenize(t1)
tokens_b = self.tokenizer.tokenize(t2)
# combine to one sample
cur_example = InputExample(guid=cur_id, tokens_a=tokens_a, tokens_b=tokens_b, is_next=is_next_label)
# transform sample to features
cur_features = convert_example_to_features(cur_example, self.seq_len, self.tokenizer)
cur_tensors = (torch.tensor(cur_features.input_ids),
torch.tensor(cur_features.input_mask),
torch.tensor(cur_features.segment_ids),
torch.tensor(cur_features.lm_label_ids),
torch.tensor(cur_features.is_next))
return cur_tensors
def random_sent(self, index):
"""
Get one sample from corpus consisting of two sentences. With prob. 50% these are two subsequent sentences
from one doc. With 50% the second sentence will be a random one from another doc.
:param index: int, index of sample.
:return: (str, str, int), sentence 1, sentence 2, isNextSentence Label
"""
t1, t2 = self.get_corpus_line(index)
if random.random() > 0.5:
label = 0
else:
t2 = self.get_random_line()
label = 1
assert len(t1) > 0
assert len(t2) > 0
return t1, t2, label
def get_corpus_line(self, item):
"""
Get one sample from corpus consisting of a pair of two subsequent lines from the same doc.
:param item: int, index of sample.
:return: (str, str), two subsequent sentences from corpus
"""
t1 = ""
t2 = ""
assert item < self.corpus_lines
if self.on_memory:
sample = self.sample_to_doc[item]
t1 = self.all_docs[sample["doc_id"]][sample["line"]]
t2 = self.all_docs[sample["doc_id"]][sample["line"]+1]
# used later to avoid random nextSentence from same doc
self.current_doc = sample["doc_id"]
return t1, t2
else:
if self.line_buffer is None:
# read first non-empty line of file
while t1 == "" :
t1 = next(self.file).strip()
t2 = next(self.file).strip()
else:
# use t2 from previous iteration as new t1
t1 = self.line_buffer
t2 = next(self.file).strip()
# skip empty rows that are used for separating documents and keep track of current doc id
while t2 == "" or t1 == "":
t1 = next(self.file).strip()
t2 = next(self.file).strip()
self.current_doc = self.current_doc+1
self.line_buffer = t2
assert t1 != ""
assert t2 != ""
return t1, t2
def get_random_line(self):
"""
Get random line from another document for nextSentence task.
:return: str, content of one line
"""
# Similar to original tf repo: This outer loop should rarely go for more than one iteration for large
# corpora. However, just to be careful, we try to make sure that
# the random document is not the same as the document we're processing.
for _ in range(10):
if self.on_memory:
rand_doc_idx = random.randint(0, len(self.all_docs)-1)
rand_doc = self.all_docs[rand_doc_idx]
line = rand_doc[random.randrange(len(rand_doc))]
else:
rand_index = random.randint(1, self.corpus_lines if self.corpus_lines < 1000 else 1000)
#pick random line
for _ in range(rand_index):
line = self.get_next_line()
#check if our picked random line is really from another doc like we want it to be
if self.current_random_doc != self.current_doc:
break
return line
def get_next_line(self):
""" Gets next line of random_file and starts over when reaching end of file"""
try:
line = next(self.random_file).strip()
#keep track of which document we are currently looking at to later avoid having the same doc as t1
if line == "":
self.current_random_doc = self.current_random_doc + 1
line = next(self.random_file).strip()
except StopIteration:
self.random_file.close()
self.random_file = open(self.corpus_path, "r", encoding=self.encoding)
line = next(self.random_file).strip()
return line
class InputExample(object):
"""A single training/test example for the language model."""
def __init__(self, guid, tokens_a, tokens_b=None, is_next=None, lm_labels=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
tokens_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
tokens_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.tokens_a = tokens_a
self.tokens_b = tokens_b
self.is_next = is_next # nextSentence
self.lm_labels = lm_labels # masked words for language model
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, is_next, lm_label_ids):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.is_next = is_next
self.lm_label_ids = lm_label_ids
def random_word(tokens, tokenizer):
"""
Masking some random tokens for Language Model task with probabilities as in the original BERT paper.
:param tokens: list of str, tokenized sentence.
:param tokenizer: Tokenizer, object used for tokenization (we need it's vocab here)
:return: (list of str, list of int), masked tokens and related labels for LM prediction
"""
output_label = []
for i, token in enumerate(tokens):
prob = random.random()
# mask token with 15% probability
if prob < 0.15:
prob /= 0.15
# 80% randomly change token to mask token
if prob < 0.8:
tokens[i] = "[MASK]"
# 10% randomly change token to random token
elif prob < 0.9:
tokens[i] = random.choice(list(tokenizer.vocab.items()))[0]
# -> rest 10% randomly keep current token
# append current token to output (we will predict these later)
try:
output_label.append(tokenizer.vocab[token])
except KeyError:
# For unknown words (should not occur with BPE vocab)
output_label.append(tokenizer.vocab["[UNK]"])
logger.warning("Cannot find token '{}' in vocab. Using [UNK] insetad".format(token))
else:
# no masking token (will be ignored by loss function later)
output_label.append(-1)
return tokens, output_label
def convert_example_to_features(example, max_seq_length, tokenizer):
"""
Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample with
IDs, LM labels, input_mask, CLS and SEP tokens etc.
:param example: InputExample, containing sentence input as strings and is_next label
:param max_seq_length: int, maximum length of sequence.
:param tokenizer: Tokenizer
:return: InputFeatures, containing all inputs and labels of one sample as IDs (as used for model training)
"""
tokens_a = example.tokens_a
tokens_b = example.tokens_b
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
tokens_a, t1_label = random_word(tokens_a, tokenizer)
tokens_b, t2_label = random_word(tokens_b, tokenizer)
# concatenate lm labels and account for CLS, SEP, SEP
lm_label_ids = ([-1] + t1_label + [-1] + t2_label + [-1])
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambigiously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
assert len(tokens_b) > 0
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
lm_label_ids.append(-1)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(lm_label_ids) == max_seq_length
if example.guid < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("LM label: %s " % (lm_label_ids))
logger.info("Is next sentence label: %s " % (example.is_next))
features = InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
lm_label_ids=lm_label_ids,
is_next=example.is_next)
return features
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--train_file",
default=None,
type=str,
required=True,
help="The input train corpus.")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
## Other parameters
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--learning_rate",
default=3e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--on_memory",
action='store_true',
help="Whether to load train samples into memory or use disk")
parser.add_argument("--do_lower_case",
action='store_true',
help="Whether to lower case the input text. True for uncased models, False for cased models.")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumualte before performing a backward/update pass.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type = float, default = 0,
help = "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
args = parser.parse_args()
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train:
raise ValueError("Training is currently the only implemented execution option. Please set `do_train`.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
#train_examples = None
num_train_optimization_steps = None
if args.do_train:
print("Loading Train Dataset", args.train_file)
train_dataset = BERTDataset(args.train_file, tokenizer, seq_len=args.max_seq_length,
corpus_lines=None, on_memory=args.on_memory)
num_train_optimization_steps = int(
len(train_dataset) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
# Prepare model
model = BertForPreTraining.from_pretrained(args.bert_model)
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
if args.do_train:
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
if args.local_rank == -1:
train_sampler = RandomSampler(train_dataset)
else:
#TODO: check if this works with current data generator from disk that relies on next(file)
# (it doesn't return item back by index)
train_sampler = DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
model.train()
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
loss = model(input_ids, segment_ids, input_mask, lm_label_ids, is_next)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
# Save a trained model
logger.info("** ** * Saving fine - tuned model ** ** * ")
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
if args.do_train:
torch.save(model_to_save.state_dict(), output_model_file)
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
if __name__ == "__main__":
main()

259
examples/run_openai_gpt.py Normal file
View File

@ -0,0 +1,259 @@
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OpenAI GPT model fine-tuning script.
Adapted from https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/train.py
It self adapted from https://github.com/openai/finetune-transformer-lm/blob/master/train.py
This script with default values fine-tunes and evaluate a pretrained OpenAI GPT on the RocStories dataset
"""
import argparse
import os
import csv
import random
import logging
from tqdm import tqdm, trange
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from pytorch_pretrained_bert import OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, OpenAIAdam, cached_path
ROCSTORIES_URL = "https://s3.amazonaws.com/datasets.huggingface.co/ROCStories.tar.gz"
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def load_rocstories_dataset(dataset_path):
""" Output a list of tuples(story, 1st continuation, 2nd continuation, label) """
with open(dataset_path, encoding='utf_8') as f:
f = csv.reader(f)
output = []
next(f) # skip the first line
for line in tqdm(f):
output.append((' '.join(line[1:5]), line[5], line[6], int(line[-1])-1))
return output
def pre_process_datasets(encoded_datasets, input_len, cap_length, start_token, delimiter_token, clf_token):
""" Pre-process datasets containing lists of tuples(story, 1st continuation, 2nd continuation, label)
To Transformer inputs of shape (n_batch, n_alternative, length) comprising for each batch, continuation:
input_ids[batch, alternative, :] = [start_token] + story[:cap_length] + [delimiter_token] + cont1[:cap_length] + [clf_token]
"""
tensor_datasets = []
for dataset in encoded_datasets:
n_batch = len(dataset)
input_ids = np.zeros((n_batch, 2, input_len), dtype=np.int64)
mc_token_ids = np.zeros((n_batch, 2), dtype=np.int64)
lm_labels = np.full((n_batch, 2, input_len), fill_value=-1, dtype=np.int64)
mc_labels = np.zeros((n_batch,), dtype=np.int64)
for i, (story, cont1, cont2, mc_label), in enumerate(dataset):
with_cont1 = [start_token] + story[:cap_length] + [delimiter_token] + cont1[:cap_length] + [clf_token]
with_cont2 = [start_token] + story[:cap_length] + [delimiter_token] + cont2[:cap_length] + [clf_token]
input_ids[i, 0, :len(with_cont1)] = with_cont1
input_ids[i, 1, :len(with_cont2)] = with_cont2
mc_token_ids[i, 0] = len(with_cont1) - 1
mc_token_ids[i, 1] = len(with_cont2) - 1
lm_labels[i, 0, :len(with_cont1)-1] = with_cont1[1:]
lm_labels[i, 1, :len(with_cont2)-1] = with_cont2[1:]
mc_labels[i] = mc_label
all_inputs = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(t) for t in all_inputs))
return tensor_datasets
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='openai-gpt',
help='pretrained model name')
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument('--train_dataset', type=str, default='')
parser.add_argument('--eval_dataset', type=str, default='')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--num_train_epochs', type=int, default=3)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--eval_batch_size', type=int, default=16)
parser.add_argument('--max_grad_norm', type=int, default=1)
parser.add_argument('--learning_rate', type=float, default=6.25e-5)
parser.add_argument('--warmup_proportion', type=float, default=0.002)
parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
parser.add_argument('--weight_decay', type=float, default=0.01)
parser.add_argument('--lm_coef', type=float, default=0.9)
parser.add_argument('--n_valid', type=int, default=374)
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args()
print(args)
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
logger.info("device: {}, n_gpu {}".format(device, n_gpu))
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
special_tokens = ['_start_', '_delimiter_', '_classify_']
tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name, special_tokens=special_tokens)
special_tokens_ids = list(tokenizer.convert_tokens_to_ids(token) for token in special_tokens)
model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name, num_special_tokens=len(special_tokens))
model.to(device)
# Load and encode the datasets
if not args.train_dataset and not args.eval_dataset:
roc_stories = cached_path(ROCSTORIES_URL)
def tokenize_and_encode(obj):
""" Tokenize and encode a nested object """
if isinstance(obj, str):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj))
elif isinstance(obj, int):
return obj
return list(tokenize_and_encode(o) for o in obj)
logger.info("Encoding dataset...")
train_dataset = load_rocstories_dataset(args.train_dataset)
eval_dataset = load_rocstories_dataset(args.eval_dataset)
datasets = (train_dataset, eval_dataset)
encoded_datasets = tokenize_and_encode(datasets)
# Compute the mex input length for the Transformer
max_length = model.config.n_positions // 2 - 2
input_length = max(len(story[:max_length]) + max(len(cont1[:max_length]), len(cont2[:max_length])) + 3 \
for dataset in encoded_datasets for story, cont1, cont2, _ in dataset)
input_length = min(input_length, model.config.n_positions) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
tensor_datasets = pre_process_datasets(encoded_datasets, input_length, max_length, *special_tokens_ids)
train_tensor_dataset, eval_tensor_dataset = tensor_datasets[0], tensor_datasets[1]
train_data = TensorDataset(*train_tensor_dataset)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
eval_data = TensorDataset(*eval_tensor_dataset)
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
num_train_optimization_steps = len(train_data) * args.num_train_epochs // args.train_batch_size
optimizer = OpenAIAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
max_grad_norm=args.max_grad_norm,
weight_decay=args.weight_decay,
t_total=num_train_optimization_steps)
if args.do_train:
nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
tr_loss = 0
nb_tr_steps = 0
tqdm_bar = tqdm(train_dataloader, desc="Training")
for step, batch in enumerate(tqdm_bar):
batch = tuple(t.to(device) for t in batch)
input_ids, mc_token_ids, lm_labels, mc_labels = batch
losses = model(input_ids, mc_token_ids, lm_labels, mc_labels)
loss = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
tr_loss += loss.item()
exp_average_loss = loss.item() if exp_average_loss is None else 0.7*exp_average_loss+0.3*loss.item()
nb_tr_steps += 1
tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(exp_average_loss, optimizer.get_lr()[0])
# Save a trained model
if args.do_train:
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
config = model.config
torch.save(model_to_save.state_dict(), output_model_file)
# Load a trained model that you have fine-tuned
model_state_dict = torch.load(output_model_file)
model = OpenAIGPTDoubleHeadsModel(config)
model.load_state_dict(model_state_dict)
model.to(device)
if args.do_eval:
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for batch in tqdm(eval_dataloader, desc="Evaluating"):
batch = tuple(t.to(device) for t in batch)
input_ids, mc_token_ids, lm_labels, mc_labels = batch
with torch.no_grad():
_, mc_loss = model(input_ids, mc_token_ids, lm_labels, mc_labels)
_, mc_logits = model(input_ids, mc_token_ids)
mc_logits = mc_logits.detach().cpu().numpy()
mc_labels = mc_labels.to('cpu').numpy()
tmp_eval_accuracy = accuracy(mc_logits, mc_labels)
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
train_loss = tr_loss/nb_tr_steps if args.do_train else None
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'train_loss': train_loss}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if __name__ == '__main__':
main()

View File

@ -1,5 +1,6 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -14,36 +15,48 @@
# limitations under the License.
"""Run BERT on SQuAD."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import, division, print_function
import argparse
import collections
import logging
import json
import logging
import math
import os
import random
from tqdm import tqdm, trange
import sys
from io import open
import numpy as np
import torch
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from pytorch_pretrained_bert.tokenization import printable_text, whitespace_tokenize, BasicTokenizer, BertTokenizer
from pytorch_pretrained_bert.modeling import BertForQuestionAnswering
from pytorch_pretrained_bert.optimization import BertAdam
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from pytorch_pretrained_bert.modeling import BertForQuestionAnswering, BertConfig, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from pytorch_pretrained_bert.tokenization import (BasicTokenizer,
BertTokenizer,
whitespace_tokenize)
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
class SquadExample(object):
"""A single training/test example for simple sequence classification."""
"""
A single training/test example for the Squad dataset.
For examples without an answer, the start and end position are -1.
"""
def __init__(self,
qas_id,
@ -51,27 +64,31 @@ class SquadExample(object):
doc_tokens,
orig_answer_text=None,
start_position=None,
end_position=None):
end_position=None,
is_impossible=None):
self.qas_id = qas_id
self.question_text = question_text
self.doc_tokens = doc_tokens
self.orig_answer_text = orig_answer_text
self.start_position = start_position
self.end_position = end_position
self.is_impossible = is_impossible
def __str__(self):
return self.__repr__()
def __repr__(self):
s = ""
s += "qas_id: %s" % (printable_text(self.qas_id))
s += "qas_id: %s" % (self.qas_id)
s += ", question_text: %s" % (
printable_text(self.question_text))
self.question_text)
s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
if self.start_position:
s += ", start_position: %d" % (self.start_position)
if self.start_position:
s += ", end_position: %d" % (self.end_position)
if self.start_position:
s += ", is_impossible: %r" % (self.is_impossible)
return s
@ -89,7 +106,8 @@ class InputFeatures(object):
input_mask,
segment_ids,
start_position=None,
end_position=None):
end_position=None,
is_impossible=None):
self.unique_id = unique_id
self.example_index = example_index
self.doc_span_index = doc_span_index
@ -101,11 +119,12 @@ class InputFeatures(object):
self.segment_ids = segment_ids
self.start_position = start_position
self.end_position = end_position
self.is_impossible = is_impossible
def read_squad_examples(input_file, is_training):
def read_squad_examples(input_file, is_training, version_2_with_negative):
"""Read a SQuAD json file into a list of SquadExample."""
with open(input_file, "r") as reader:
with open(input_file, "r", encoding='utf-8') as reader:
input_data = json.load(reader)["data"]
def is_whitespace(c):
@ -137,29 +156,37 @@ def read_squad_examples(input_file, is_training):
start_position = None
end_position = None
orig_answer_text = None
is_impossible = False
if is_training:
if len(qa["answers"]) != 1:
if version_2_with_negative:
is_impossible = qa["is_impossible"]
if (len(qa["answers"]) != 1) and (not is_impossible):
raise ValueError(
"For training, each question should have exactly 1 answer.")
answer = qa["answers"][0]
orig_answer_text = answer["text"]
answer_offset = answer["answer_start"]
answer_length = len(orig_answer_text)
start_position = char_to_word_offset[answer_offset]
end_position = char_to_word_offset[answer_offset + answer_length - 1]
# Only add answers where the text can be exactly recovered from the
# document. If this CAN'T happen it's likely due to weird Unicode
# stuff so we will just skip the example.
#
# Note that this means for training mode, every example is NOT
# guaranteed to be preserved.
actual_text = " ".join(doc_tokens[start_position:(end_position + 1)])
cleaned_answer_text = " ".join(
whitespace_tokenize(orig_answer_text))
if actual_text.find(cleaned_answer_text) == -1:
logger.warning("Could not find answer: '%s' vs. '%s'",
if not is_impossible:
answer = qa["answers"][0]
orig_answer_text = answer["text"]
answer_offset = answer["answer_start"]
answer_length = len(orig_answer_text)
start_position = char_to_word_offset[answer_offset]
end_position = char_to_word_offset[answer_offset + answer_length - 1]
# Only add answers where the text can be exactly recovered from the
# document. If this CAN'T happen it's likely due to weird Unicode
# stuff so we will just skip the example.
#
# Note that this means for training mode, every example is NOT
# guaranteed to be preserved.
actual_text = " ".join(doc_tokens[start_position:(end_position + 1)])
cleaned_answer_text = " ".join(
whitespace_tokenize(orig_answer_text))
if actual_text.find(cleaned_answer_text) == -1:
logger.warning("Could not find answer: '%s' vs. '%s'",
actual_text, cleaned_answer_text)
continue
continue
else:
start_position = -1
end_position = -1
orig_answer_text = ""
example = SquadExample(
qas_id=qas_id,
@ -167,7 +194,8 @@ def read_squad_examples(input_file, is_training):
doc_tokens=doc_tokens,
orig_answer_text=orig_answer_text,
start_position=start_position,
end_position=end_position)
end_position=end_position,
is_impossible=is_impossible)
examples.append(example)
return examples
@ -197,7 +225,10 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length,
tok_start_position = None
tok_end_position = None
if is_training:
if is_training and example.is_impossible:
tok_start_position = -1
tok_end_position = -1
if is_training and not example.is_impossible:
tok_start_position = orig_to_tok_index[example.start_position]
if example.end_position < len(example.doc_tokens) - 1:
tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
@ -269,27 +300,31 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length,
start_position = None
end_position = None
if is_training:
if is_training and not example.is_impossible:
# For training, if our document chunk does not contain an annotation
# we throw it out, since there is nothing to predict.
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
if (example.start_position < doc_start or
example.end_position < doc_start or
example.start_position > doc_end or example.end_position > doc_end):
continue
doc_offset = len(query_tokens) + 2
start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset
out_of_span = False
if not (tok_start_position >= doc_start and
tok_end_position <= doc_end):
out_of_span = True
if out_of_span:
start_position = 0
end_position = 0
else:
doc_offset = len(query_tokens) + 2
start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset
if is_training and example.is_impossible:
start_position = 0
end_position = 0
if example_index < 20:
logger.info("*** Example ***")
logger.info("unique_id: %s" % (unique_id))
logger.info("example_index: %s" % (example_index))
logger.info("doc_span_index: %s" % (doc_span_index))
logger.info("tokens: %s" % " ".join(
[printable_text(x) for x in tokens]))
logger.info("tokens: %s" % " ".join(tokens))
logger.info("token_to_orig_map: %s" % " ".join([
"%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()]))
logger.info("token_is_max_context: %s" % " ".join([
@ -300,12 +335,14 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length,
"input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
if is_training:
if is_training and example.is_impossible:
logger.info("impossible example")
if is_training and not example.is_impossible:
answer_text = " ".join(tokens[start_position:(end_position + 1)])
logger.info("start_position: %d" % (start_position))
logger.info("end_position: %d" % (end_position))
logger.info(
"answer: %s" % (printable_text(answer_text)))
"answer: %s" % (answer_text))
features.append(
InputFeatures(
@ -319,7 +356,8 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length,
input_mask=input_mask,
segment_ids=segment_ids,
start_position=start_position,
end_position=end_position))
end_position=end_position,
is_impossible=example.is_impossible))
unique_id += 1
return features
@ -399,15 +437,15 @@ def _check_is_max_context(doc_spans, cur_span_index, position):
return cur_span_index == best_span_index
RawResult = collections.namedtuple("RawResult",
["unique_id", "start_logits", "end_logits"])
def write_predictions(all_examples, all_features, all_results, n_best_size,
max_answer_length, do_lower_case, output_prediction_file,
output_nbest_file, verbose_logging):
"""Write final predictions to the json file."""
output_nbest_file, output_null_log_odds_file, verbose_logging,
version_2_with_negative, null_score_diff_threshold):
"""Write final predictions to the json file and log-odds of null if needed."""
logger.info("Writing predictions to: %s" % (output_prediction_file))
logger.info("Writing nbest to: %s" % (output_nbest_file))
@ -425,15 +463,29 @@ def write_predictions(all_examples, all_features, all_results, n_best_size,
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
scores_diff_json = collections.OrderedDict()
for (example_index, example) in enumerate(all_examples):
features = example_index_to_features[example_index]
prelim_predictions = []
# keep track of the minimum score of null start+end of position 0
score_null = 1000000 # large and positive
min_null_feature_index = 0 # the paragraph slice with min mull score
null_start_logit = 0 # the start logit at the slice with min null score
null_end_logit = 0 # the end logit at the slice with min null score
for (feature_index, feature) in enumerate(features):
result = unique_id_to_result[feature.unique_id]
start_indexes = _get_best_indexes(result.start_logits, n_best_size)
end_indexes = _get_best_indexes(result.end_logits, n_best_size)
# if we could have irrelevant answers, get the min score of irrelevant
if version_2_with_negative:
feature_null_score = result.start_logits[0] + result.end_logits[0]
if feature_null_score < score_null:
score_null = feature_null_score
min_null_feature_index = feature_index
null_start_logit = result.start_logits[0]
null_end_logit = result.end_logits[0]
for start_index in start_indexes:
for end_index in end_indexes:
# We could hypothetically create invalid predictions, e.g., predict
@ -461,7 +513,14 @@ def write_predictions(all_examples, all_features, all_results, n_best_size,
end_index=end_index,
start_logit=result.start_logits[start_index],
end_logit=result.end_logits[end_index]))
if version_2_with_negative:
prelim_predictions.append(
_PrelimPrediction(
feature_index=min_null_feature_index,
start_index=0,
end_index=0,
start_logit=null_start_logit,
end_logit=null_end_logit))
prelim_predictions = sorted(
prelim_predictions,
key=lambda x: (x.start_logit + x.end_logit),
@ -476,33 +535,51 @@ def write_predictions(all_examples, all_features, all_results, n_best_size,
if len(nbest) >= n_best_size:
break
feature = features[pred.feature_index]
if pred.start_index > 0: # this is a non-null prediction
tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
orig_doc_start = feature.token_to_orig_map[pred.start_index]
orig_doc_end = feature.token_to_orig_map[pred.end_index]
orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
tok_text = " ".join(tok_tokens)
tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
orig_doc_start = feature.token_to_orig_map[pred.start_index]
orig_doc_end = feature.token_to_orig_map[pred.end_index]
orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
tok_text = " ".join(tok_tokens)
# De-tokenize WordPieces that have been split off.
tok_text = tok_text.replace(" ##", "")
tok_text = tok_text.replace("##", "")
# De-tokenize WordPieces that have been split off.
tok_text = tok_text.replace(" ##", "")
tok_text = tok_text.replace("##", "")
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
if final_text in seen_predictions:
continue
final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
if final_text in seen_predictions:
continue
seen_predictions[final_text] = True
else:
final_text = ""
seen_predictions[final_text] = True
seen_predictions[final_text] = True
nbest.append(
_NbestPrediction(
text=final_text,
start_logit=pred.start_logit,
end_logit=pred.end_logit))
# if we didn't include the empty option in the n-best, include it
if version_2_with_negative:
if "" not in seen_predictions:
nbest.append(
_NbestPrediction(
text="",
start_logit=null_start_logit,
end_logit=null_end_logit))
# In very rare edge cases we could only have single null prediction.
# So we just create a nonce prediction in this case to avoid failure.
if len(nbest)==1:
nbest.insert(0,
_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
# In very rare edge cases we could have no valid predictions. So we
# just create a nonce prediction in this case to avoid failure.
if not nbest:
@ -512,8 +589,12 @@ def write_predictions(all_examples, all_features, all_results, n_best_size,
assert len(nbest) >= 1
total_scores = []
best_non_null_entry = None
for entry in nbest:
total_scores.append(entry.start_logit + entry.end_logit)
if not best_non_null_entry:
if entry.text:
best_non_null_entry = entry
probs = _compute_softmax(total_scores)
@ -528,8 +609,18 @@ def write_predictions(all_examples, all_features, all_results, n_best_size,
assert len(nbest_json) >= 1
all_predictions[example.qas_id] = nbest_json[0]["text"]
all_nbest_json[example.qas_id] = nbest_json
if not version_2_with_negative:
all_predictions[example.qas_id] = nbest_json[0]["text"]
else:
# predict "" iff the null score - the score of best non-null > threshold
score_diff = score_null - best_non_null_entry.start_logit - (
best_non_null_entry.end_logit)
scores_diff_json[example.qas_id] = score_diff
if score_diff > null_score_diff_threshold:
all_predictions[example.qas_id] = ""
else:
all_predictions[example.qas_id] = best_non_null_entry.text
all_nbest_json[example.qas_id] = nbest_json
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(all_predictions, indent=4) + "\n")
@ -537,6 +628,10 @@ def write_predictions(all_examples, all_features, all_results, n_best_size,
with open(output_nbest_file, "w") as writer:
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
if version_2_with_negative:
with open(output_null_log_odds_file, "w") as writer:
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
"""Project the tokenized prediction back to the original text."""
@ -599,7 +694,7 @@ def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
if len(orig_ns_text) != len(tok_ns_text):
if verbose_logging:
logger.info("Length not equal after stripping spaces: '%s' vs '%s'",
orig_ns_text, tok_ns_text)
orig_ns_text, tok_ns_text)
return orig_text
# We then project the characters in `pred_text` back to `orig_text` using
@ -668,44 +763,16 @@ def _compute_softmax(scores):
probs.append(score / total_sum)
return probs
def copy_optimizer_params_to_model(named_params_model, named_params_optimizer):
""" Utility function for optimize_on_cpu and 16-bits training.
Copy the parameters optimized on CPU/RAM back to the model on GPU
"""
for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model):
if name_opti != name_model:
logger.error("name_opti != name_model: {} {}".format(name_opti, name_model))
raise ValueError
param_model.data.copy_(param_opti.data)
def set_optimizer_params_grad(named_params_optimizer, named_params_model, test_nan=False):
""" Utility function for optimize_on_cpu and 16-bits training.
Copy the gradient of the GPU parameters to the CPU/RAMM copy of the model
"""
is_nan = False
for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model):
if name_opti != name_model:
logger.error("name_opti != name_model: {} {}".format(name_opti, name_model))
raise ValueError
if param_model.grad is not None:
if test_nan and torch.isnan(param_model.grad).sum() > 0:
is_nan = True
if param_opti.grad is None:
param_opti.grad = torch.nn.Parameter(param_opti.data.new().resize_(*param_opti.data.size()))
param_opti.grad.data.copy_(param_model.grad.data)
else:
param_opti.grad = None
return is_nan
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
"bert-base-multilingual-cased, bert-base-chinese.")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model checkpoints will be written.")
help="The output directory where the model checkpoints and predictions will be written.")
## Other parameters
parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
@ -719,15 +786,15 @@ def main():
parser.add_argument("--max_query_length", default=64, type=int,
help="The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length.")
parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.")
parser.add_argument("--do_predict", default=False, action='store_true', help="Whether to run eval on the dev set.")
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.")
parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion", default=0.1, type=float,
help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% "
help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
"of training.")
parser.add_argument("--n_best_size", default=20, type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json "
@ -735,58 +802,60 @@ def main():
parser.add_argument("--max_answer_length", default=30, type=int,
help="The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another.")
parser.add_argument("--verbose_logging", default=False, action='store_true',
parser.add_argument("--verbose_logging", action='store_true',
help="If true, all of the warnings related to data processing will be printed. "
"A number of warnings are expected for a normal SQuAD evaluation.")
parser.add_argument("--no_cuda",
default=False,
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--seed',
type=int,
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--do_lower_case",
action='store_true',
help="Whether to lower case the input text. True for uncased models, False for cased models.")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--optimize_on_cpu',
default=False,
action='store_true',
help="Whether to perform optimization and keep the optimizer averages on CPU")
parser.add_argument('--fp16',
default=False,
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=128,
help='Loss scaling, positive power of 2 values can improve fp16 convergence.')
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument('--version_2_with_negative',
action='store_true',
help='If true, the SQuAD examples contain some that do not have an answer.')
parser.add_argument('--null_score_diff_threshold',
type=float, default=0.0,
help="If null_score - best_non_null is greater than the threshold predict null.")
args = parser.parse_args()
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
if args.fp16:
logger.info("16-bits training currently not supported in distributed training")
args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496)
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits trainiing: {}".format(
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
@ -806,65 +875,99 @@ def main():
raise ValueError(
"If `do_predict` is True, then `predict_file` must be specified.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
raise ValueError("Output directory () already exists and is not empty.")
os.makedirs(args.output_dir, exist_ok=True)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
tokenizer = BertTokenizer.from_pretrained(args.bert_model)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
train_examples = None
num_train_steps = None
num_train_optimization_steps = None
if args.do_train:
train_examples = read_squad_examples(
input_file=args.train_file, is_training=True)
num_train_steps = int(
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
num_train_optimization_steps = int(
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
# Prepare model
model = BertForQuestionAnswering.from_pretrained(args.bert_model,
cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank))
cache_dir=os.path.join(PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(args.local_rank)))
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank)
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
if args.fp16:
param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \
for n, param in model.named_parameters()]
elif args.optimize_on_cpu:
param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \
for n, param in model.named_parameters()]
else:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
param_optimizer = list(model.named_parameters())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_steps)
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
if args.do_train:
train_features = convert_examples_to_features(
examples=train_examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=True)
cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format(
list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length))
train_features = None
try:
with open(cached_train_features_file, "rb") as reader:
train_features = pickle.load(reader)
except:
train_features = convert_examples_to_features(
examples=train_examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=True)
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
logger.info(" Saving train features into cached file %s", cached_train_features_file)
with open(cached_train_features_file, "wb") as writer:
pickle.dump(train_features, writer)
logger.info("***** Running training *****")
logger.info(" Num orig examples = %d", len(train_examples))
logger.info(" Num split examples = %d", len(train_features))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_steps)
logger.info(" Num steps = %d", num_train_optimization_steps)
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
@ -887,36 +990,45 @@ def main():
loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.fp16 and args.loss_scale != 1.0:
# rescale loss for fp16 training
# see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
loss = loss * args.loss_scale
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16 or args.optimize_on_cpu:
if args.fp16 and args.loss_scale != 1.0:
# scale down gradients for fp16 training
for param in model.parameters():
if param.grad is not None:
param.grad.data = param.grad.data / args.loss_scale
is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True)
if is_nan:
logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling")
args.loss_scale = args.loss_scale / 2
model.zero_grad()
continue
optimizer.step()
copy_optimizer_params_to_model(model.named_parameters(), param_optimizer)
else:
optimizer.step()
model.zero_grad()
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used and handles this automatically
lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
if args.do_predict:
if args.do_train:
# Save a trained model and the associated configuration
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
with open(output_config_file, 'w') as f:
f.write(model_to_save.config.to_json_string())
# Load a trained model and config that you have fine-tuned
config = BertConfig(output_config_file)
model = BertForQuestionAnswering(config)
model.load_state_dict(torch.load(output_model_file))
else:
model = BertForQuestionAnswering.from_pretrained(args.bert_model)
model.to(device)
if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
eval_examples = read_squad_examples(
input_file=args.predict_file, is_training=False)
input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative)
eval_features = convert_examples_to_features(
examples=eval_examples,
tokenizer=tokenizer,
@ -935,10 +1047,8 @@ def main():
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
if args.local_rank == -1:
eval_sampler = SequentialSampler(eval_data)
else:
eval_sampler = DistributedSampler(eval_data)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)
model.eval()
@ -962,10 +1072,12 @@ def main():
end_logits=end_logits))
output_prediction_file = os.path.join(args.output_dir, "predictions.json")
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json")
write_predictions(eval_examples, eval_features, all_results,
args.n_best_size, args.max_answer_length,
args.do_lower_case, output_prediction_file,
output_nbest_file, args.verbose_logging)
output_nbest_file, output_null_log_odds_file, args.verbose_logging,
args.version_2_with_negative, args.null_score_diff_threshold)
if __name__ == "__main__":

547
examples/run_swag.py Normal file
View File

@ -0,0 +1,547 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
import argparse
import csv
import logging
import os
import random
import sys
from io import open
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from pytorch_pretrained_bert.modeling import BertForMultipleChoice
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from pytorch_pretrained_bert.tokenization import BertTokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
class SwagExample(object):
"""A single training/test example for the SWAG dataset."""
def __init__(self,
swag_id,
context_sentence,
start_ending,
ending_0,
ending_1,
ending_2,
ending_3,
label = None):
self.swag_id = swag_id
self.context_sentence = context_sentence
self.start_ending = start_ending
self.endings = [
ending_0,
ending_1,
ending_2,
ending_3,
]
self.label = label
def __str__(self):
return self.__repr__()
def __repr__(self):
l = [
"swag_id: {}".format(self.swag_id),
"context_sentence: {}".format(self.context_sentence),
"start_ending: {}".format(self.start_ending),
"ending_0: {}".format(self.endings[0]),
"ending_1: {}".format(self.endings[1]),
"ending_2: {}".format(self.endings[2]),
"ending_3: {}".format(self.endings[3]),
]
if self.label is not None:
l.append("label: {}".format(self.label))
return ", ".join(l)
class InputFeatures(object):
def __init__(self,
example_id,
choices_features,
label
):
self.example_id = example_id
self.choices_features = [
{
'input_ids': input_ids,
'input_mask': input_mask,
'segment_ids': segment_ids
}
for _, input_ids, input_mask, segment_ids in choices_features
]
self.label = label
def read_swag_examples(input_file, is_training):
with open(input_file, 'r', encoding='utf-8') as f:
reader = csv.reader(f)
lines = []
for line in reader:
if sys.version_info[0] == 2:
line = list(unicode(cell, 'utf-8') for cell in line)
lines.append(line)
if is_training and lines[0][-1] != 'label':
raise ValueError(
"For training, the input file must contain a label column."
)
examples = [
SwagExample(
swag_id = line[2],
context_sentence = line[4],
start_ending = line[5], # in the swag dataset, the
# common beginning of each
# choice is stored in "sent2".
ending_0 = line[7],
ending_1 = line[8],
ending_2 = line[9],
ending_3 = line[10],
label = int(line[11]) if is_training else None
) for line in lines[1:] # we skip the line with the column names
]
return examples
def convert_examples_to_features(examples, tokenizer, max_seq_length,
is_training):
"""Loads a data file into a list of `InputBatch`s."""
# Swag is a multiple choice task. To perform this task using Bert,
# we will use the formatting proposed in "Improving Language
# Understanding by Generative Pre-Training" and suggested by
# @jacobdevlin-google in this issue
# https://github.com/google-research/bert/issues/38.
#
# Each choice will correspond to a sample on which we run the
# inference. For a given Swag example, we will create the 4
# following inputs:
# - [CLS] context [SEP] choice_1 [SEP]
# - [CLS] context [SEP] choice_2 [SEP]
# - [CLS] context [SEP] choice_3 [SEP]
# - [CLS] context [SEP] choice_4 [SEP]
# The model will output a single value for each input. To get the
# final decision of the model, we will run a softmax over these 4
# outputs.
features = []
for example_index, example in enumerate(examples):
context_tokens = tokenizer.tokenize(example.context_sentence)
start_ending_tokens = tokenizer.tokenize(example.start_ending)
choices_features = []
for ending_index, ending in enumerate(example.endings):
# We create a copy of the context tokens in order to be
# able to shrink it according to ending_tokens
context_tokens_choice = context_tokens[:]
ending_tokens = start_ending_tokens + tokenizer.tokenize(ending)
# Modifies `context_tokens_choice` and `ending_tokens` in
# place so that the total length is less than the
# specified length. Account for [CLS], [SEP], [SEP] with
# "- 3"
_truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3)
tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"]
segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
choices_features.append((tokens, input_ids, input_mask, segment_ids))
label = example.label
if example_index < 5:
logger.info("*** Example ***")
logger.info("swag_id: {}".format(example.swag_id))
for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
logger.info("choice: {}".format(choice_idx))
logger.info("tokens: {}".format(' '.join(tokens)))
logger.info("input_ids: {}".format(' '.join(map(str, input_ids))))
logger.info("input_mask: {}".format(' '.join(map(str, input_mask))))
logger.info("segment_ids: {}".format(' '.join(map(str, segment_ids))))
if is_training:
logger.info("label: {}".format(label))
features.append(
InputFeatures(
example_id = example.swag_id,
choices_features = choices_features,
label = label
)
)
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def select_field(features, field):
return [
[
choice[field]
for choice in feature.choices_features
]
for feature in features
]
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .csv files (or other data files) for the task.")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
"bert-base-multilingual-cased, bert-base-chinese.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
## Other parameters
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case",
action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
args = parser.parse_args()
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
train_examples = None
num_train_optimization_steps = None
if args.do_train:
train_examples = read_swag_examples(os.path.join(args.data_dir, 'train.csv'), is_training = True)
num_train_optimization_steps = int(
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
# Prepare model
model = BertForMultipleChoice.from_pretrained(args.bert_model,
cache_dir=os.path.join(PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(args.local_rank)),
num_choices=4)
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
if args.do_train:
train_features = convert_examples_to_features(
train_examples, tokenizer, args.max_seq_length, True)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
all_input_ids = torch.tensor(select_field(train_features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(train_features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(train_features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
model.train()
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
loss = model(input_ids, segment_ids, input_mask, label_ids)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.fp16 and args.loss_scale != 1.0:
# rescale loss for fp16 training
# see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
loss = loss * args.loss_scale
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
if args.do_train:
# Save a trained model and the associated configuration
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
with open(output_config_file, 'w') as f:
f.write(model_to_save.config.to_json_string())
# Load a trained model and config that you have fine-tuned
config = BertConfig(output_config_file)
model = BertForMultipleChoice(config, num_choices=4)
model.load_state_dict(torch.load(output_model_file))
else:
model = BertForMultipleChoice.from_pretrained(args.bert_model, num_choices=4)
model.to(device)
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
eval_examples = read_swag_examples(os.path.join(args.data_dir, 'val.csv'), is_training = True)
eval_features = convert_examples_to_features(
eval_examples, tokenizer, args.max_seq_length, True)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
logits = model(input_ids, segment_ids, input_mask)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
eval_loss += tmp_eval_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'global_step': global_step,
'loss': tr_loss/nb_tr_steps}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if __name__ == "__main__":
main()

152
examples/run_transfo_xl.py Normal file
View File

@ -0,0 +1,152 @@
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Transformer XL model evaluation script.
Adapted from https://github.com/kimiyoung/transformer-xl.
In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py
This script with default values evaluates a pretrained Transformer-XL on WikiText 103
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import argparse
import logging
import time
import math
import torch
from pytorch_pretrained_bert import TransfoXLLMHeadModel, TransfoXLCorpus
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser(description='PyTorch Transformer Language Model')
parser.add_argument('--model_name', type=str, default='transfo-xl-wt103',
help='pretrained model name')
parser.add_argument('--split', type=str, default='test',
choices=['all', 'valid', 'test'],
help='which split to evaluate')
parser.add_argument('--batch_size', type=int, default=10,
help='batch size')
parser.add_argument('--tgt_len', type=int, default=128,
help='number of tokens to predict')
parser.add_argument('--ext_len', type=int, default=0,
help='length of the extended context')
parser.add_argument('--mem_len', type=int, default=1600,
help='length of the retained previous heads')
parser.add_argument('--clamp_len', type=int, default=1000,
help='max positional embedding index')
parser.add_argument('--no_cuda', action='store_true',
help='Do not use CUDA even though CUA is available')
parser.add_argument('--work_dir', type=str, required=True,
help='path to the work_dir')
parser.add_argument('--no_log', action='store_true',
help='do not log the eval result')
parser.add_argument('--same_length', action='store_true',
help='set same length attention with masking')
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args()
assert args.ext_len >= 0, 'extended context length must be non-negative'
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
logger.info("device: {}".format(device))
# Load a pre-processed dataset
# You can also build the corpus yourself using TransfoXLCorpus methods
# The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax
# and tokenizing the dataset
# The pre-processed corpus is a convertion (using the conversion script )
corpus = TransfoXLCorpus.from_pretrained(args.model_name)
ntokens = len(corpus.vocab)
va_iter = corpus.get_iterator('valid', args.batch_size, args.tgt_len,
device=device, ext_len=args.ext_len)
te_iter = corpus.get_iterator('test', args.batch_size, args.tgt_len,
device=device, ext_len=args.ext_len)
# Load a pre-trained model
model = TransfoXLLMHeadModel.from_pretrained(args.model_name)
model = model.to(device)
logger.info('Evaluating with bsz {} tgt_len {} ext_len {} mem_len {} clamp_len {}'.format(
args.batch_size, args.tgt_len, args.ext_len, args.mem_len, args.clamp_len))
model.reset_length(args.tgt_len, args.ext_len, args.mem_len)
if args.clamp_len > 0:
model.clamp_len = args.clamp_len
if args.same_length:
model.same_length = True
###############################################################################
# Evaluation code
###############################################################################
def evaluate(eval_iter):
# Turn on evaluation mode which disables dropout.
model.eval()
total_len, total_loss = 0, 0.
start_time = time.time()
with torch.no_grad():
mems = None
for idx, (data, target, seq_len) in enumerate(eval_iter):
ret = model(data, target, mems)
loss, mems = ret
loss = loss.mean()
total_loss += seq_len * loss.item()
total_len += seq_len
total_time = time.time() - start_time
logger.info('Time : {:.2f}s, {:.2f}ms/segment'.format(
total_time, 1000 * total_time / (idx+1)))
return total_loss / total_len
# Run on test data.
if args.split == 'all':
test_loss = evaluate(te_iter)
valid_loss = evaluate(va_iter)
elif args.split == 'valid':
valid_loss = evaluate(va_iter)
test_loss = None
elif args.split == 'test':
test_loss = evaluate(te_iter)
valid_loss = None
def format_log(loss, split):
log_str = '| {0} loss {1:5.2f} | {0} ppl {2:9.3f} '.format(
split, loss, math.exp(loss))
return log_str
log_str = ''
if valid_loss is not None:
log_str += format_log(valid_loss, 'valid')
if test_loss is not None:
log_str += format_log(test_loss, 'test')
logger.info('=' * 100)
logger.info(log_str)
logger.info('=' * 100)
if __name__ == '__main__':
main()

View File

@ -133,7 +133,7 @@
" unique_id = 0\n",
" with tf.gfile.GFile(input_file, \"r\") as reader:\n",
" while True:\n",
" line = reader.readline()#tokenization.convert_to_unicode(reader.readline())\n",
" line = reader.readline()\n",
" if not line:\n",
" break\n",
" line = line.strip()\n",

View File

@ -1,6 +1,24 @@
__version__ = "0.6.0"
from .tokenization import BertTokenizer, BasicTokenizer, WordpieceTokenizer
from .tokenization_openai import OpenAIGPTTokenizer
from .tokenization_transfo_xl import (TransfoXLTokenizer, TransfoXLCorpus)
from .tokenization_gpt2 import GPT2Tokenizer
from .modeling import (BertConfig, BertModel, BertForPreTraining,
BertForMaskedLM, BertForNextSentencePrediction,
BertForSequenceClassification, BertForQuestionAnswering)
BertForSequenceClassification, BertForMultipleChoice,
BertForTokenClassification, BertForQuestionAnswering,
load_tf_weights_in_bert)
from .modeling_openai import (OpenAIGPTConfig, OpenAIGPTModel,
OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel,
load_tf_weights_in_openai_gpt)
from .modeling_transfo_xl import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel,
load_tf_weights_in_transfo_xl)
from .modeling_gpt2 import (GPT2Config, GPT2Model,
GPT2LMHeadModel, GPT2DoubleHeadsModel,
load_tf_weights_in_gpt2)
from .optimization import BertAdam
from .file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from .optimization_openai import OpenAIAdam
from .file_utils import PYTORCH_PRETRAINED_BERT_CACHE, cached_path

View File

@ -1,19 +1,83 @@
# coding: utf8
if __name__ == '__main__':
def main():
import sys
try:
from .convert_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ModuleNotFoundError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) != 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_pretrained_bert convert_tf_checkpoint_to_pytorch TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`")
if (len(sys.argv) != 4 and len(sys.argv) != 5) or sys.argv[1] not in [
"convert_tf_checkpoint_to_pytorch",
"convert_openai_checkpoint",
"convert_transfo_xl_checkpoint",
"convert_gpt2_checkpoint",
]:
print(
"Should be used as one of: \n"
">> `pytorch_pretrained_bert convert_tf_checkpoint_to_pytorch TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`, \n"
">> `pytorch_pretrained_bert convert_openai_checkpoint OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG]`, \n"
">> `pytorch_pretrained_bert convert_transfo_xl_checkpoint TF_CHECKPOINT_OR_DATASET PYTORCH_DUMP_OUTPUT [TF_CONFIG]` or \n"
">> `pytorch_pretrained_bert convert_gpt2_checkpoint TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [GPT2_CONFIG]`")
else:
PYTORCH_DUMP_OUTPUT = sys.argv.pop()
TF_CONFIG = sys.argv.pop()
TF_CHECKPOINT = sys.argv.pop()
convert_tf_checkpoint_to_pytorch(TF_CHECKPOINT, TF_CONFIG, PYTORCH_DUMP_OUTPUT)
if sys.argv[1] == "convert_tf_checkpoint_to_pytorch":
try:
from .convert_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) != 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_pretrained_bert convert_tf_checkpoint_to_pytorch TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`")
else:
PYTORCH_DUMP_OUTPUT = sys.argv.pop()
TF_CONFIG = sys.argv.pop()
TF_CHECKPOINT = sys.argv.pop()
convert_tf_checkpoint_to_pytorch(TF_CHECKPOINT, TF_CONFIG, PYTORCH_DUMP_OUTPUT)
elif sys.argv[1] == "convert_openai_checkpoint":
from .convert_openai_checkpoint_to_pytorch import convert_openai_checkpoint_to_pytorch
OPENAI_GPT_CHECKPOINT_FOLDER_PATH = sys.argv[2]
PYTORCH_DUMP_OUTPUT = sys.argv[3]
if len(sys.argv) == 5:
OPENAI_GPT_CONFIG = sys.argv[4]
else:
OPENAI_GPT_CONFIG = ""
convert_openai_checkpoint_to_pytorch(OPENAI_GPT_CHECKPOINT_FOLDER_PATH,
OPENAI_GPT_CONFIG,
PYTORCH_DUMP_OUTPUT)
elif sys.argv[1] == "convert_transfo_xl_checkpoint":
try:
from .convert_transfo_xl_checkpoint_to_pytorch import convert_transfo_xl_checkpoint_to_pytorch
except ImportError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if 'ckpt' in sys.argv[2].lower():
TF_CHECKPOINT = sys.argv[2]
TF_DATASET_FILE = ""
else:
TF_DATASET_FILE = sys.argv[2]
TF_CHECKPOINT = ""
PYTORCH_DUMP_OUTPUT = sys.argv[3]
if len(sys.argv) == 5:
TF_CONFIG = sys.argv[4]
else:
TF_CONFIG = ""
convert_transfo_xl_checkpoint_to_pytorch(TF_CHECKPOINT, TF_CONFIG, PYTORCH_DUMP_OUTPUT, TF_DATASET_FILE)
else:
try:
from .convert_gpt2_checkpoint_to_pytorch import convert_gpt2_checkpoint_to_pytorch
except ImportError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
TF_CHECKPOINT = sys.argv[2]
PYTORCH_DUMP_OUTPUT = sys.argv[3]
if len(sys.argv) == 5:
TF_CONFIG = sys.argv[4]
else:
TF_CONFIG = ""
convert_gpt2_checkpoint_to_pytorch(TF_CHECKPOINT, TF_CONFIG, PYTORCH_DUMP_OUTPUT)
if __name__ == '__main__':
main()

View File

@ -0,0 +1,72 @@
# coding=utf-8
# Copyright 2018 The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert OpenAI GPT checkpoint."""
from __future__ import absolute_import, division, print_function
import argparse
from io import open
import torch
from pytorch_pretrained_bert.modeling_gpt2 import (CONFIG_NAME, WEIGHTS_NAME,
GPT2Config,
GPT2Model,
load_tf_weights_in_gpt2)
def convert_gpt2_checkpoint_to_pytorch(gpt2_checkpoint_path, gpt2_config_file, pytorch_dump_folder_path):
# Construct model
if gpt2_config_file == "":
config = GPT2Config()
else:
config = GPT2Config(gpt2_config_file)
model = GPT2Model(config)
# Load weights from numpy
load_tf_weights_in_gpt2(model, gpt2_checkpoint_path)
# Save pytorch-model
pytorch_weights_dump_path = pytorch_dump_folder_path + '/' + WEIGHTS_NAME
pytorch_config_dump_path = pytorch_dump_folder_path + '/' + CONFIG_NAME
print("Save PyTorch model to {}".format(pytorch_weights_dump_path))
torch.save(model.state_dict(), pytorch_weights_dump_path)
print("Save configuration file to {}".format(pytorch_config_dump_path))
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
f.write(config.to_json_string())
if __name__ == "__main__":
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--gpt2_checkpoint_path",
default = None,
type = str,
required = True,
help = "Path the TensorFlow checkpoint path.")
parser.add_argument("--pytorch_dump_folder_path",
default = None,
type = str,
required = True,
help = "Path to the output PyTorch model.")
parser.add_argument("--gpt2_config_file",
default = "",
type = str,
help = "An optional config json file corresponding to the pre-trained OpenAI model. \n"
"This specifies the model architecture.")
args = parser.parse_args()
convert_gpt2_checkpoint_to_pytorch(args.gpt2_checkpoint_path,
args.gpt2_config_file,
args.pytorch_dump_folder_path)

View File

@ -0,0 +1,72 @@
# coding=utf-8
# Copyright 2018 The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert OpenAI GPT checkpoint."""
from __future__ import absolute_import, division, print_function
import argparse
from io import open
import torch
from pytorch_pretrained_bert.modeling_openai import (CONFIG_NAME, WEIGHTS_NAME,
OpenAIGPTConfig,
OpenAIGPTModel,
load_tf_weights_in_openai_gpt)
def convert_openai_checkpoint_to_pytorch(openai_checkpoint_folder_path, openai_config_file, pytorch_dump_folder_path):
# Construct model
if openai_config_file == "":
config = OpenAIGPTConfig()
else:
config = OpenAIGPTConfig(openai_config_file)
model = OpenAIGPTModel(config)
# Load weights from numpy
load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path)
# Save pytorch-model
pytorch_weights_dump_path = pytorch_dump_folder_path + '/' + WEIGHTS_NAME
pytorch_config_dump_path = pytorch_dump_folder_path + '/' + CONFIG_NAME
print("Save PyTorch model to {}".format(pytorch_weights_dump_path))
torch.save(model.state_dict(), pytorch_weights_dump_path)
print("Save configuration file to {}".format(pytorch_config_dump_path))
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
f.write(config.to_json_string())
if __name__ == "__main__":
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--openai_checkpoint_folder_path",
default = None,
type = str,
required = True,
help = "Path the TensorFlow checkpoint path.")
parser.add_argument("--pytorch_dump_folder_path",
default = None,
type = str,
required = True,
help = "Path to the output PyTorch model.")
parser.add_argument("--openai_config_file",
default = "",
type = str,
help = "An optional config json file corresponding to the pre-trained OpenAI model. \n"
"This specifies the model architecture.")
args = parser.parse_args()
convert_openai_checkpoint_to_pytorch(args.openai_checkpoint_folder_path,
args.openai_config_file,
args.pytorch_dump_folder_path)

View File

@ -25,62 +25,16 @@ import tensorflow as tf
import torch
import numpy as np
from .modeling import BertConfig, BertForPreTraining
from pytorch_pretrained_bert.modeling import BertConfig, BertForPreTraining, load_tf_weights_in_bert
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
config_path = os.path.abspath(bert_config_file)
tf_path = os.path.abspath(tf_checkpoint_path)
print("Converting TensorFlow checkpoint from {} with config at {}".format(tf_path, config_path))
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
print("Loading TF weight {} with shape {}".format(name, shape))
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
# Initialise PyTorch model
config = BertConfig.from_json_file(bert_config_file)
print("Building PyTorch model from configuration: {}".format(str(config)))
model = BertForPreTraining(config)
for name, array in zip(names, arrays):
name = name.split('/')
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if name[-1] in ["adam_v", "adam_m"]:
print("Skipping {}".format("/".join(name)))
continue
pointer = model
for m_name in name:
if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
l = re.split(r'_(\d+)', m_name)
else:
l = [m_name]
if l[0] == 'kernel':
pointer = getattr(pointer, 'weight')
elif l[0] == 'output_bias':
pointer = getattr(pointer, 'bias')
elif l[0] == 'output_weights':
pointer = getattr(pointer, 'weight')
else:
pointer = getattr(pointer, l[0])
if len(l) >= 2:
num = int(l[1])
pointer = pointer[num]
if m_name[-11:] == '_embeddings':
pointer = getattr(pointer, 'weight')
elif m_name == 'kernel':
array = np.transpose(array)
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
print("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array)
# Load weights from tf checkpoint
load_tf_weights_in_bert(model, tf_checkpoint_path)
# Save pytorch-model
print("Save PyTorch model to {}".format(pytorch_dump_path))

View File

@ -0,0 +1,116 @@
# coding=utf-8
# Copyright 2018 The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Transformer XL checkpoint and datasets."""
from __future__ import absolute_import, division, print_function
import argparse
import os
import sys
from io import open
import torch
import pytorch_pretrained_bert.tokenization_transfo_xl as data_utils
from pytorch_pretrained_bert.modeling_transfo_xl import (CONFIG_NAME,
WEIGHTS_NAME,
TransfoXLConfig,
TransfoXLLMHeadModel,
load_tf_weights_in_transfo_xl)
from pytorch_pretrained_bert.tokenization_transfo_xl import (CORPUS_NAME,
VOCAB_NAME)
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
data_utils.Vocab = data_utils.TransfoXLTokenizer
data_utils.Corpus = data_utils.TransfoXLCorpus
sys.modules['data_utils'] = data_utils
sys.modules['vocabulary'] = data_utils
def convert_transfo_xl_checkpoint_to_pytorch(tf_checkpoint_path,
transfo_xl_config_file,
pytorch_dump_folder_path,
transfo_xl_dataset_file):
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(transfo_xl_dataset_file, "rb") as fp:
corpus = pickle.load(fp, encoding="latin1")
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
pytorch_vocab_dump_path = pytorch_dump_folder_path + '/' + VOCAB_NAME
print("Save vocabulary to {}".format(pytorch_vocab_dump_path))
corpus_vocab_dict = corpus.vocab.__dict__
torch.save(corpus_vocab_dict, pytorch_vocab_dump_path)
corpus_dict_no_vocab = corpus.__dict__
corpus_dict_no_vocab.pop('vocab', None)
pytorch_dataset_dump_path = pytorch_dump_folder_path + '/' + CORPUS_NAME
print("Save dataset to {}".format(pytorch_dataset_dump_path))
torch.save(corpus_dict_no_vocab, pytorch_dataset_dump_path)
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
config_path = os.path.abspath(transfo_xl_config_file)
tf_path = os.path.abspath(tf_checkpoint_path)
print("Converting Transformer XL checkpoint from {} with config at {}".format(tf_path, config_path))
# Initialise PyTorch model
if transfo_xl_config_file == "":
config = TransfoXLConfig()
else:
config = TransfoXLConfig(transfo_xl_config_file)
print("Building PyTorch model from configuration: {}".format(str(config)))
model = TransfoXLLMHeadModel(config)
model = load_tf_weights_in_transfo_xl(model, config, tf_path)
# Save pytorch-model
pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME)
pytorch_config_dump_path = os.path.join(pytorch_dump_folder_path, CONFIG_NAME)
print("Save PyTorch model to {}".format(os.path.abspath(pytorch_weights_dump_path)))
torch.save(model.state_dict(), pytorch_weights_dump_path)
print("Save configuration file to {}".format(os.path.abspath(pytorch_config_dump_path)))
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
f.write(config.to_json_string())
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path",
default = None,
type = str,
required = True,
help = "Path to the folder to store the PyTorch model or dataset/vocab.")
parser.add_argument("--tf_checkpoint_path",
default = "",
type = str,
help = "An optional path to a TensorFlow checkpoint path to be converted.")
parser.add_argument("--transfo_xl_config_file",
default = "",
type = str,
help = "An optional config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture.")
parser.add_argument("--transfo_xl_dataset_file",
default = "",
type = str,
help = "An optional dataset file to be converted in a vocabulary.")
args = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file)

View File

@ -3,31 +3,40 @@ Utilities for working with the local dataset cache.
This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp
Copyright by the AllenNLP authors.
"""
from __future__ import (absolute_import, division, print_function, unicode_literals)
import os
import json
import logging
import os
import shutil
import tempfile
import json
from urllib.parse import urlparse
from pathlib import Path
from typing import Optional, Tuple, Union, IO, Callable, Set
from hashlib import sha256
from functools import wraps
from tqdm import tqdm
from hashlib import sha256
import sys
from io import open
import boto3
from botocore.exceptions import ClientError
import requests
from botocore.exceptions import ClientError
from tqdm import tqdm
try:
from urllib.parse import urlparse
except ImportError:
from urlparse import urlparse
try:
from pathlib import Path
PYTORCH_PRETRAINED_BERT_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
Path.home() / '.pytorch_pretrained_bert'))
except AttributeError:
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
os.path.join(os.path.expanduser("~"), '.pytorch_pretrained_bert'))
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
PYTORCH_PRETRAINED_BERT_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
Path.home() / '.pytorch_pretrained_bert'))
def url_to_filename(url: str, etag: str = None) -> str:
def url_to_filename(url, etag=None):
"""
Convert `url` into a hashed filename in a repeatable way.
If `etag` is specified, append its hash to the url's, delimited
@ -45,23 +54,25 @@ def url_to_filename(url: str, etag: str = None) -> str:
return filename
def filename_to_url(filename: str, cache_dir: str = None) -> Tuple[str, str]:
def filename_to_url(filename, cache_dir=None):
"""
Return the url and etag (which may be ``None``) stored for `filename`.
Raise ``FileNotFoundError`` if `filename` or its stored metadata do not exist.
Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist.
"""
if cache_dir is None:
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
cache_path = os.path.join(cache_dir, filename)
if not os.path.exists(cache_path):
raise FileNotFoundError("file {} not found".format(cache_path))
raise EnvironmentError("file {} not found".format(cache_path))
meta_path = cache_path + '.json'
if not os.path.exists(meta_path):
raise FileNotFoundError("file {} not found".format(meta_path))
raise EnvironmentError("file {} not found".format(meta_path))
with open(meta_path) as meta_file:
with open(meta_path, encoding="utf-8") as meta_file:
metadata = json.load(meta_file)
url = metadata['url']
etag = metadata['etag']
@ -69,7 +80,7 @@ def filename_to_url(filename: str, cache_dir: str = None) -> Tuple[str, str]:
return url, etag
def cached_path(url_or_filename: Union[str, Path], cache_dir: str = None) -> str:
def cached_path(url_or_filename, cache_dir=None):
"""
Given something that might be a URL (or might be a local path),
determine which. If it's a URL, download the file and cache it, and
@ -78,8 +89,10 @@ def cached_path(url_or_filename: Union[str, Path], cache_dir: str = None) -> str
"""
if cache_dir is None:
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
if isinstance(url_or_filename, Path):
if sys.version_info[0] == 3 and isinstance(url_or_filename, Path):
url_or_filename = str(url_or_filename)
if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
parsed = urlparse(url_or_filename)
@ -91,13 +104,13 @@ def cached_path(url_or_filename: Union[str, Path], cache_dir: str = None) -> str
return url_or_filename
elif parsed.scheme == '':
# File, but it doesn't exist.
raise FileNotFoundError("file {} not found".format(url_or_filename))
raise EnvironmentError("file {} not found".format(url_or_filename))
else:
# Something unknown
raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
def split_s3_path(url: str) -> Tuple[str, str]:
def split_s3_path(url):
"""Split a full s3 path into the bucket name and path."""
parsed = urlparse(url)
if not parsed.netloc or not parsed.path:
@ -110,19 +123,19 @@ def split_s3_path(url: str) -> Tuple[str, str]:
return bucket_name, s3_path
def s3_request(func: Callable):
def s3_request(func):
"""
Wrapper function for s3 requests in order to create more helpful error
messages.
"""
@wraps(func)
def wrapper(url: str, *args, **kwargs):
def wrapper(url, *args, **kwargs):
try:
return func(url, *args, **kwargs)
except ClientError as exc:
if int(exc.response["Error"]["Code"]) == 404:
raise FileNotFoundError("file {} not found".format(url))
raise EnvironmentError("file {} not found".format(url))
else:
raise
@ -130,7 +143,7 @@ def s3_request(func: Callable):
@s3_request
def s3_etag(url: str) -> Optional[str]:
def s3_etag(url):
"""Check ETag on S3 object."""
s3_resource = boto3.resource("s3")
bucket_name, s3_path = split_s3_path(url)
@ -139,14 +152,14 @@ def s3_etag(url: str) -> Optional[str]:
@s3_request
def s3_get(url: str, temp_file: IO) -> None:
def s3_get(url, temp_file):
"""Pull a file directly from S3."""
s3_resource = boto3.resource("s3")
bucket_name, s3_path = split_s3_path(url)
s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file)
def http_get(url: str, temp_file: IO) -> None:
def http_get(url, temp_file):
req = requests.get(url, stream=True)
content_length = req.headers.get('Content-Length')
total = int(content_length) if content_length is not None else None
@ -158,15 +171,18 @@ def http_get(url: str, temp_file: IO) -> None:
progress.close()
def get_from_cache(url: str, cache_dir: str = None) -> str:
def get_from_cache(url, cache_dir=None):
"""
Given a URL, look for the corresponding dataset in the local cache.
If it's not there, download it. Then return the path to the cached file.
"""
if cache_dir is None:
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
os.makedirs(cache_dir, exist_ok=True)
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
# Get eTag to add to filename, if it exists.
if url.startswith("s3://"):
@ -207,7 +223,7 @@ def get_from_cache(url: str, cache_dir: str = None) -> str:
logger.info("creating metadata file for %s", cache_path)
meta = {'url': url, 'etag': etag}
meta_path = cache_path + '.json'
with open(meta_path, 'w') as meta_file:
with open(meta_path, 'w', encoding="utf-8") as meta_file:
json.dump(meta, meta_file)
logger.info("removing temp file %s", temp_file.name)
@ -215,19 +231,19 @@ def get_from_cache(url: str, cache_dir: str = None) -> str:
return cache_path
def read_set_from_file(filename: str) -> Set[str]:
def read_set_from_file(filename):
'''
Extract a de-duped collection (set) of text from a file.
Expected file format is one item per line.
'''
collection = set()
with open(filename, 'r') as file_:
with open(filename, 'r', encoding='utf-8') as file_:
for line in file_:
collection.add(line.rstrip())
return collection
def get_file_extension(path: str, dot=True, lower: bool = True):
def get_file_extension(path, dot=True, lower=True):
ext = os.path.splitext(path)[1]
ext = ext if dot else ext[1:]
return ext.lower() if lower else ext

View File

@ -1,5 +1,6 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -14,18 +15,18 @@
# limitations under the License.
"""PyTorch BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import copy
import json
import math
import logging
import math
import os
import shutil
import tarfile
import tempfile
import shutil
import sys
from io import open
import torch
from torch import nn
@ -33,25 +34,87 @@ from torch.nn import CrossEntropyLoss
from .file_utils import cached_path
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz",
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz",
'bert-base-multilingual': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual.tar.gz",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz",
}
CONFIG_NAME = 'bert_config.json'
WEIGHTS_NAME = 'pytorch_model.bin'
TF_WEIGHTS_NAME = 'model.ckpt'
def load_tf_weights_in_bert(model, tf_checkpoint_path):
""" Load tf checkpoints in a pytorch model
"""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
tf_path = os.path.abspath(tf_checkpoint_path)
print("Converting TensorFlow checkpoint from {}".format(tf_path))
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
print("Loading TF weight {} with shape {}".format(name, shape))
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split('/')
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(n in ["adam_v", "adam_m"] for n in name):
print("Skipping {}".format("/".join(name)))
continue
pointer = model
for m_name in name:
if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
l = re.split(r'_(\d+)', m_name)
else:
l = [m_name]
if l[0] == 'kernel' or l[0] == 'gamma':
pointer = getattr(pointer, 'weight')
elif l[0] == 'output_bias' or l[0] == 'beta':
pointer = getattr(pointer, 'bias')
elif l[0] == 'output_weights':
pointer = getattr(pointer, 'weight')
else:
pointer = getattr(pointer, l[0])
if len(l) >= 2:
num = int(l[1])
pointer = pointer[num]
if m_name[-11:] == '_embeddings':
pointer = getattr(pointer, 'weight')
elif m_name == 'kernel':
array = np.transpose(array)
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
print("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array)
return model
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
@ -102,8 +165,9 @@ class BertConfig(object):
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
if isinstance(vocab_size_or_config_json_file, str):
with open(vocab_size_or_config_json_file, "r") as reader:
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
and isinstance(vocab_size_or_config_json_file, unicode)):
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
@ -134,7 +198,7 @@ class BertConfig(object):
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `BertConfig` from a json file of parameters."""
with open(json_file, "r") as reader:
with open(json_file, "r", encoding='utf-8') as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
@ -150,22 +214,24 @@ class BertConfig(object):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
try:
from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
except ImportError:
print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.")
class BertLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BertLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
class BertLayerNorm(nn.Module):
def __init__(self, config, variance_epsilon=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BertLayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(config.hidden_size))
self.beta = nn.Parameter(torch.zeros(config.hidden_size))
self.variance_epsilon = variance_epsilon
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.gamma * x + self.beta
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
@ -178,7 +244,7 @@ class BertEmbeddings(nn.Module):
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None):
@ -253,7 +319,7 @@ class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
@ -279,8 +345,10 @@ class BertIntermediate(nn.Module):
def __init__(self, config):
super(BertIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.intermediate_act_fn = ACT2FN[config.hidden_act] \
if isinstance(config.hidden_act, str) else config.hidden_act
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
@ -292,7 +360,7 @@ class BertOutput(nn.Module):
def __init__(self, config):
super(BertOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
@ -320,7 +388,7 @@ class BertEncoder(nn.Module):
def __init__(self, config):
super(BertEncoder, self).__init__()
layer = BertLayer(config)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
all_encoder_layers = []
@ -352,9 +420,11 @@ class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super(BertPredictionHeadTransform, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.transform_act_fn = ACT2FN[config.hidden_act] \
if isinstance(config.hidden_act, str) else config.hidden_act
self.LayerNorm = BertLayerNorm(config)
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
@ -414,12 +484,12 @@ class BertPreTrainingHeads(nn.Module):
return prediction_scores, seq_relationship_score
class PreTrainedBertModel(nn.Module):
class BertPreTrainedModel(nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super(PreTrainedBertModel, self).__init__()
super(BertPreTrainedModel, self).__init__()
if not isinstance(config, BertConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
@ -437,46 +507,55 @@ class PreTrainedBertModel(nn.Module):
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, BertLayerNorm):
module.beta.data.normal_(mean=0.0, std=self.config.initializer_range)
module.gamma.data.normal_(mean=0.0, std=self.config.initializer_range)
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@classmethod
def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwargs):
def from_pretrained(cls, pretrained_model_name_or_path, state_dict=None, cache_dir=None,
from_tf=False, *inputs, **kwargs):
"""
Instantiate a PreTrainedBertModel from a pre-trained model file.
Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
Params:
pretrained_model_name: either:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load selected in the list of:
. `bert-base-uncased`
. `bert-large-uncased`
. `bert-base-cased`
. `bert-base-multilingual`
. `bert-large-cased`
. `bert-base-multilingual-uncased`
. `bert-base-multilingual-cased`
. `bert-base-chinese`
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `model.chkpt` a TensorFlow checkpoint
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
if pretrained_model_name in PRETRAINED_MODEL_ARCHIVE_MAP:
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name]
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
archive_file = pretrained_model_name
archive_file = pretrained_model_name_or_path
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
except FileNotFoundError:
except EnvironmentError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find any file "
"associated to this path or url.".format(
pretrained_model_name,
pretrained_model_name_or_path,
', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
pretrained_model_name))
archive_file))
return None
if resolved_archive_file == archive_file:
logger.info("loading archive file {}".format(archive_file))
@ -484,7 +563,7 @@ class PreTrainedBertModel(nn.Module):
logger.info("loading archive file {} from cache at {}".format(
archive_file, resolved_archive_file))
tempdir = None
if os.path.isdir(resolved_archive_file):
if os.path.isdir(resolved_archive_file) or from_tf:
serialization_dir = resolved_archive_file
else:
# Extract archive to temp dir
@ -500,8 +579,30 @@ class PreTrainedBertModel(nn.Module):
logger.info("Model config {}".format(config))
# Instantiate model.
model = cls(config, *inputs, **kwargs)
weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
state_dict = torch.load(weights_path)
if state_dict is None and not from_tf:
weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
state_dict = torch.load(weights_path, map_location='cpu' if not torch.cuda.is_available() else None)
if tempdir:
# Clean up temp dir
shutil.rmtree(tempdir)
if from_tf:
# Directly load from a TensorFlow checkpoint
weights_path = os.path.join(serialization_dir, TF_WEIGHTS_NAME)
return load_tf_weights_in_bert(model, weights_path)
# Load from a PyTorch state_dict
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if 'gamma' in key:
new_key = key.replace('gamma', 'weight')
if 'beta' in key:
new_key = key.replace('beta', 'bias')
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
missing_keys = []
unexpected_keys = []
@ -519,20 +620,23 @@ class PreTrainedBertModel(nn.Module):
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
load(model, prefix='' if hasattr(model, 'bert') else 'bert.')
start_prefix = ''
if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()):
start_prefix = 'bert.'
load(model, prefix=start_prefix)
if len(missing_keys) > 0:
logger.info("Weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
logger.info("Weights from pretrained model not used in {}: {}".format(
model.__class__.__name__, unexpected_keys))
if tempdir:
# Clean up temp dir
shutil.rmtree(tempdir)
if len(error_msgs) > 0:
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
model.__class__.__name__, "\n\t".join(error_msgs)))
return model
class BertModel(PreTrainedBertModel):
class BertModel(BertPreTrainedModel):
"""BERT model ("Bidirectional Embedding Representations from a Transformer").
Params:
@ -557,20 +661,20 @@ class BertModel(PreTrainedBertModel):
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
to the last attention block,
to the last attention block of shape [batch_size, sequence_length, hidden_size],
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
classifier pretrained on top of the hidden state associated to the first character of the
input (`CLF`) to train on the Next-Sentence task (see BERT's paper).
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = modeling.BertModel(config=config)
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
@ -615,7 +719,7 @@ class BertModel(PreTrainedBertModel):
return encoded_layers, pooled_output
class BertForPreTraining(PreTrainedBertModel):
class BertForPreTraining(BertPreTrainedModel):
"""BERT model with pre-training heads.
This module comprises the BERT model followed by the two pre-training heads:
- the masked language modeling head, and
@ -635,10 +739,10 @@ class BertForPreTraining(PreTrainedBertModel):
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
`masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., vocab_size]
`next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
`next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size]
with indices selected in [0, 1].
0 => next sentence is the continuation, 1 => next sentence is a random sentence.
@ -648,18 +752,18 @@ class BertForPreTraining(PreTrainedBertModel):
sentence classification loss.
if `masked_lm_labels` or `next_sentence_label` is `None`:
Outputs a tuple comprising
- the masked language modeling logits, and
- the next sentence classification logits.
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
- the next sentence classification logits of shape [batch_size, 2].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertForPreTraining(config)
masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
@ -678,7 +782,7 @@ class BertForPreTraining(PreTrainedBertModel):
if masked_lm_labels is not None and next_sentence_label is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels(-1))
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
total_loss = masked_lm_loss + next_sentence_loss
return total_loss
@ -686,7 +790,7 @@ class BertForPreTraining(PreTrainedBertModel):
return prediction_scores, seq_relationship_score
class BertForMaskedLM(PreTrainedBertModel):
class BertForMaskedLM(BertPreTrainedModel):
"""BERT model with the masked language modeling head.
This module comprises the BERT model followed by the masked language modeling head.
@ -709,20 +813,20 @@ class BertForMaskedLM(PreTrainedBertModel):
is only computed for the labels set in [0, ..., vocab_size]
Outputs:
if `masked_lm_labels` is `None`:
if `masked_lm_labels` is not `None`:
Outputs the masked language modeling loss.
if `masked_lm_labels` is `None`:
Outputs the masked language modeling logits.
Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertForMaskedLM(config)
masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
@ -747,7 +851,7 @@ class BertForMaskedLM(PreTrainedBertModel):
return prediction_scores
class BertForNextSentencePrediction(PreTrainedBertModel):
class BertForNextSentencePrediction(BertPreTrainedModel):
"""BERT model with next sentence prediction head.
This module comprises the BERT model followed by the next sentence classification head.
@ -774,7 +878,7 @@ class BertForNextSentencePrediction(PreTrainedBertModel):
Outputs the total_loss which is the sum of the masked language modeling loss and the next
sentence classification loss.
if `next_sentence_label` is `None`:
Outputs the next sentence classification logits.
Outputs the next sentence classification logits of shape [batch_size, 2].
Example usage:
```python
@ -783,8 +887,8 @@ class BertForNextSentencePrediction(PreTrainedBertModel):
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertForNextSentencePrediction(config)
seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
@ -809,7 +913,7 @@ class BertForNextSentencePrediction(PreTrainedBertModel):
return seq_relationship_score
class BertForSequenceClassification(PreTrainedBertModel):
class BertForSequenceClassification(BertPreTrainedModel):
"""BERT model for classification.
This module is composed of the BERT model with a linear layer on top of
the pooled output.
@ -836,17 +940,17 @@ class BertForSequenceClassification(PreTrainedBertModel):
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits.
Outputs the classification logits of shape [batch_size, num_labels].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
num_labels = 2
@ -854,7 +958,7 @@ class BertForSequenceClassification(PreTrainedBertModel):
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_labels=2):
def __init__(self, config, num_labels):
super(BertForSequenceClassification, self).__init__(config)
self.num_labels = num_labels
self.bert = BertModel(config)
@ -870,26 +974,160 @@ class BertForSequenceClassification(PreTrainedBertModel):
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return loss, logits
return loss
else:
return logits
class BertForQuestionAnswering(PreTrainedBertModel):
class BertForMultipleChoice(BertPreTrainedModel):
"""BERT model for multiple choice tasks.
This module is composed of the BERT model with a linear layer on top of
the pooled output.
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
`num_choices`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_choices].
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, num_labels].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
num_choices = 2
model = BertForMultipleChoice(config, num_choices)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_choices):
super(BertForMultipleChoice, self).__init__(config)
self.num_choices = num_choices
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1))
_, pooled_output = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, output_all_encoded_layers=False)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, self.num_choices)
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
return loss
else:
return reshaped_logits
class BertForTokenClassification(BertPreTrainedModel):
"""BERT model for token-level classification.
This module is composed of the BERT model with a linear layer on top of
the full hidden state of the last layer.
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
`num_labels`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [0, ..., num_labels].
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, sequence_length, num_labels].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
num_labels = 2
model = BertForTokenClassification(config, num_labels)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_labels):
super(BertForTokenClassification, self).__init__(config)
self.num_labels = num_labels
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, num_labels)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)[active_loss]
active_labels = labels.view(-1)[active_loss]
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return loss
else:
return logits
class BertForQuestionAnswering(BertPreTrainedModel):
"""BERT model for Question Answering (span extraction).
This module is composed of the BERT model with a linear layer on top of
the sequence output that computes start_logits and end_logits
Params:
`config`: either
- a BertConfig class instance with the configuration to build a new model, or
- a str with the name of a pre-trained model to load selected in the list of:
. `bert-base-uncased`
. `bert-large-uncased`
. `bert-base-cased`
. `bert-base-multilingual`
. `bert-base-chinese`
The pre-trained model will be downloaded and cached if needed.
`config`: a BertConfig class instance with the configuration to build a new model.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
@ -914,17 +1152,17 @@ class BertForQuestionAnswering(PreTrainedBertModel):
Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
if `start_positions` or `end_positions` is `None`:
Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
position tokens.
position tokens of shape [batch_size, sequence_length].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertForQuestionAnswering(config)
start_logits, end_logits = model(input_ids, token_type_ids, input_mask)

View File

@ -0,0 +1,684 @@
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""
import collections
import copy
import json
import logging
import math
import os
import shutil
import tarfile
import tempfile
import sys
from io import open
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter
from .file_utils import cached_path
from .modeling import BertLayerNorm as LayerNorm
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin"}
PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json"}
CONFIG_NAME = "config.json"
WEIGHTS_NAME = "pytorch_model.bin"
def load_tf_weights_in_gpt2(model, gpt2_checkpoint_path):
""" Load tf checkpoints in a pytorch model
"""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
tf_path = os.path.abspath(gpt2_checkpoint_path)
print("Converting TensorFlow checkpoint from {}".format(tf_path))
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
print("Loading TF weight {} with shape {}".format(name, shape))
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array.squeeze())
for name, array in zip(names, arrays):
name = name[6:] # skip "model/"
name = name.split('/')
pointer = model
for m_name in name:
if re.fullmatch(r'[A-Za-z]+\d+', m_name):
l = re.split(r'(\d+)', m_name)
else:
l = [m_name]
if l[0] == 'w' or l[0] == 'g':
pointer = getattr(pointer, 'weight')
elif l[0] == 'b':
pointer = getattr(pointer, 'bias')
elif l[0] == 'wpe' or l[0] == 'wte':
pointer = getattr(pointer, l[0])
pointer = getattr(pointer, 'weight')
else:
pointer = getattr(pointer, l[0])
if len(l) >= 2:
num = int(l[1])
pointer = pointer[num]
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
print("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array)
return model
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
class GPT2Config(object):
"""Configuration class to store the configuration of a `GPT2Model`.
"""
def __init__(
self,
vocab_size_or_config_json_file=50257,
n_positions=1024,
n_ctx=1024,
n_embd=768,
n_layer=12,
n_head=12,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
):
"""Constructs GPT2Config.
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
n_positions: Number of positional embeddings.
n_ctx: Size of the causal mask (usually same as n_positions).
n_embd: Dimensionality of the embeddings and hidden states.
n_layer: Number of hidden layers in the Transformer encoder.
n_head: Number of attention heads for each attention layer in
the Transformer encoder.
layer_norm_epsilon: epsilon to use in the layer norm layers
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
and isinstance(vocab_size_or_config_json_file, unicode)):
with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.n_ctx = n_ctx
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
else:
raise ValueError(
"First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)"
)
@classmethod
def from_dict(cls, json_object):
"""Constructs a `GPT2Config` from a Python dictionary of parameters."""
config = GPT2Config(vocab_size_or_config_json_file=-1)
for key, value in json_object.items():
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `GPT2Config` from a json file of parameters."""
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class Conv1D(nn.Module):
def __init__(self, nf, nx):
super(Conv1D, self).__init__()
self.nf = nf
w = torch.empty(nx, nf)
nn.init.normal_(w, std=0.02)
self.weight = Parameter(w)
self.bias = Parameter(torch.zeros(nf))
def forward(self, x):
size_out = x.size()[:-1] + (self.nf,)
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
x = x.view(*size_out)
return x
class Attention(nn.Module):
def __init__(self, nx, n_ctx, config, scale=False):
super(Attention, self).__init__()
n_state = nx # in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
assert n_state % config.n_head == 0
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
self.n_head = config.n_head
self.split_size = n_state
self.scale = scale
self.c_attn = Conv1D(n_state * 3, nx)
self.c_proj = Conv1D(n_state, nx)
def _attn(self, q, k, v):
w = torch.matmul(q, k)
if self.scale:
w = w / math.sqrt(v.size(-1))
nd, ns = w.size(-2), w.size(-1)
b = self.bias[:, :, ns-nd:ns, :ns]
w = w * b - 1e10 * (1 - b)
w = nn.Softmax(dim=-1)(w)
return torch.matmul(w, v)
def merge_heads(self, x):
x = x.permute(0, 2, 1, 3).contiguous()
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
def split_heads(self, x, k=False):
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
if k:
return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length)
else:
return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
def forward(self, x, layer_past=None):
x = self.c_attn(x)
query, key, value = x.split(self.split_size, dim=2)
query = self.split_heads(query)
key = self.split_heads(key, k=True)
value = self.split_heads(value)
if layer_past is not None:
past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below
key = torch.cat((past_key, key), dim=-1)
value = torch.cat((past_value, value), dim=-2)
present = torch.stack((key.transpose(-2, -1), value)) # transpose to have same shapes for stacking
a = self._attn(query, key, value)
a = self.merge_heads(a)
a = self.c_proj(a)
return a, present
class MLP(nn.Module):
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
super(MLP, self).__init__()
nx = config.n_embd
self.c_fc = Conv1D(n_state, nx)
self.c_proj = Conv1D(nx, n_state)
self.act = gelu
def forward(self, x):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
return h2
class Block(nn.Module):
def __init__(self, n_ctx, config, scale=False):
super(Block, self).__init__()
nx = config.n_embd
self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
self.attn = Attention(nx, n_ctx, config, scale)
self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
self.mlp = MLP(4 * nx, config)
def forward(self, x, layer_past=None):
a, present = self.attn(self.ln_1(x), layer_past=layer_past)
x = x + a
m = self.mlp(self.ln_2(x))
x = x + m
return x, present
class GPT2LMHead(nn.Module):
""" Language Model Head for the transformer """
def __init__(self, model_embeddings_weights, config):
super(GPT2LMHead, self).__init__()
self.n_embd = config.n_embd
self.set_embeddings_weights(model_embeddings_weights)
def set_embeddings_weights(self, model_embeddings_weights):
embed_shape = model_embeddings_weights.shape
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
self.decoder.weight = model_embeddings_weights # Tied weights
def forward(self, hidden_state):
# Truncated Language modeling logits (we remove the last token)
# h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
lm_logits = self.decoder(hidden_state)
return lm_logits
class GPT2MultipleChoiceHead(nn.Module):
""" Classifier Head for the transformer """
def __init__(self, config):
super(GPT2MultipleChoiceHead, self).__init__()
self.n_embd = config.n_embd
self.linear = nn.Linear(config.n_embd, 1)
nn.init.normal_(self.linear.weight, std=0.02)
nn.init.normal_(self.linear.bias, 0)
def forward(self, hidden_states, mc_token_ids):
# Classification logits
# hidden_state (bsz, num_choices, seq_length, hidden_size)
# mc_token_ids (bsz, num_choices)
mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
# (bsz, num_choices, 1, hidden_size)
multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
# (bsz, num_choices, hidden_size)
multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
# (bsz, num_choices)
return multiple_choice_logits
class GPT2PreTrainedModel(nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super(GPT2PreTrainedModel, self).__init__()
if not isinstance(config, GPT2Config):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
"To create a model from a pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
)
)
self.config = config
def set_tied(self):
pass
def init_weights(self, module):
""" Initialize the weights.
"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
):
"""
Instantiate a GPT2PreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
Params:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load selected in the list of:
. `openai-gpt`
- a path or url to a pretrained model archive containing:
. `gpt2_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. a TensorFlow checkpoint with trained weights
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find files {} and {} "
"at this path or url.".format(
pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
archive_file, config_file
)
)
return None
if resolved_archive_file == archive_file and resolved_config_file == config_file:
logger.info("loading weights file {}".format(archive_file))
logger.info("loading configuration file {}".format(config_file))
else:
logger.info("loading weights file {} from cache at {}".format(
archive_file, resolved_archive_file))
logger.info("loading configuration file {} from cache at {}".format(
config_file, resolved_config_file))
# Load config
config = GPT2Config.from_json_file(resolved_config_file)
logger.info("Model config {}".format(config))
# Instantiate model.
model = cls(config, *inputs, **kwargs)
if state_dict is None and not from_tf:
state_dict = torch.load(resolved_archive_file, map_location='cpu' if not torch.cuda.is_available() else None)
if from_tf:
# Directly load from a TensorFlow checkpoint (stored as NumPy array)
return load_tf_weights_in_gpt2(model, resolved_archive_file)
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if key.endswith(".g"):
new_key = key[:-2] + ".weight"
elif key.endswith(".b"):
new_key = key[:-2] + ".bias"
elif key.endswith(".w"):
new_key = key[:-2] + ".weight"
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=""):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + ".")
start_model = model
if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
start_model = model.transformer
load(start_model, prefix="")
if len(missing_keys) > 0:
logger.info(
"Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
)
if len(unexpected_keys) > 0:
logger.info(
"Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
)
if len(error_msgs) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
)
# Make sure we are still sharing the output and input embeddings after loading weights
model.set_tied()
return model
class GPT2Model(GPT2PreTrainedModel):
"""OpenAI GPT-2 model ("Language Models are Unsupervised Multitask Learners").
Params:
config: a GPT2Config class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
Outputs:
`hidden_states`: the encoded-hidden-states at the top of the model
as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
(or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
config = modeling_gpt2.GPT2Config()
model = modeling_gpt2.GPT2Model(config)
hidden_states = model(input_ids)
```
"""
def __init__(self, config):
super(GPT2Model, self).__init__(config)
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
self.wpe = nn.Embedding(config.n_positions, config.n_embd)
block = Block(config.n_ctx, config, scale=True)
self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.apply(self.init_weights)
def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None):
if past is None:
past_length = 0
past = [None] * len(self.h)
else:
past_length = past[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_ids.size(-1))
position_ids = position_ids.view(-1, position_ids.size(-1))
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
token_type_embeds = self.wte(token_type_ids)
else:
token_type_embeds = 0
hidden_states = inputs_embeds + position_embeds + token_type_embeds
presents = []
for block, layer_past in zip(self.h, past):
hidden_states, present = block(hidden_states, layer_past)
presents.append(present)
hidden_states = self.ln_f(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
return hidden_states.view(*output_shape), presents
class GPT2LMHeadModel(GPT2PreTrainedModel):
"""OpenAI GPT-2 model with a Language Modeling head ("Language Models are Unsupervised Multitask Learners").
Params:
config: a GPT2Config class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., vocab_size]
Outputs:
if `lm_labels` is not `None`:
Outputs the language modeling loss.
else:
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, config.vocab_size]
(or more generally [d_1, ..., d_n, config.vocab_size] were d_1 ... d_n are the dimension of input_ids)
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
config = modeling_gpt2.GPT2Config()
model = modeling_gpt2.GPT2LMHeadModel(config)
lm_logits = model(input_ids)
```
"""
def __init__(self, config):
super(GPT2LMHeadModel, self).__init__(config)
self.transformer = GPT2Model(config)
self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
self.apply(self.init_weights)
def set_tied(self):
""" Make sure we are sharing the embeddings
"""
self.lm_head.set_embeddings_weights(self.transformer.wte.weight)
def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None):
hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past)
lm_logits = self.lm_head(hidden_states)
if lm_labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1))
return loss
return lm_logits, presents
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
"""OpenAI GPT-2 model with a Language Modeling and a Multiple Choice head ("Language Models are Unsupervised Multitask Learners").
Params:
config: a GPT2Config class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
indices selected in the range [0, config.vocab_size[
`mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with indices selected in [-1, 0, ..., config.vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., config.vocab_size]
`multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_choices].
Outputs:
if `lm_labels` and `multiple_choice_labels` are not `None`:
Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
else: a tuple with
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, config.vocab_size]
`multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]]) # (bsz, number of choice, seq length)
mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
config = modeling_gpt2.GPT2Config()
model = modeling_gpt2.GPT2LMHeadModel(config)
lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
```
"""
def __init__(self, config):
super(GPT2DoubleHeadsModel, self).__init__(config)
self.transformer = GPT2Model(config)
self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
self.multiple_choice_head = GPT2MultipleChoiceHead(config)
self.apply(self.init_weights)
def set_tied(self):
""" Make sure we are sharing the embeddings
"""
self.lm_head.set_embeddings_weights(self.transformer.wte.weight)
def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None, past=None):
hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past)
lm_logits = self.lm_head(hidden_states)
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
losses = []
if lm_labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
losses.append(loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1)))
if mc_labels is not None:
loss_fct = CrossEntropyLoss()
losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
if losses:
return losses
return lm_logits, mc_logits, presents

View File

@ -0,0 +1,810 @@
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""
import collections
import copy
import json
import logging
import math
import os
import shutil
import tarfile
import tempfile
import sys
from io import open
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter
from .file_utils import cached_path
from .modeling import BertLayerNorm as LayerNorm
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
CONFIG_NAME = "config.json"
WEIGHTS_NAME = "pytorch_model.bin"
def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path):
""" Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
"""
import re
import numpy as np
print("Loading weights...")
names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
offsets = np.cumsum([np.prod(shape) for shape in shapes])
init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]
# This was used when we had a single embedding matrix for positions and tokens
# init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
# del init_params[1]
init_params = [arr.squeeze() for arr in init_params]
try:
assert model.tokens_embed.weight.shape == init_params[1].shape
assert model.positions_embed.weight.shape == init_params[0].shape
except AssertionError as e:
e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
e.args += (model.positions_embed.weight.shape, init_params[0].shape)
raise
model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
model.positions_embed.weight.data = torch.from_numpy(init_params[0])
names.pop(0)
# Pop position and token embedding arrays
init_params.pop(0)
init_params.pop(0)
for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
name = name[6:] # skip "model/"
assert name[-2:] == ":0"
name = name[:-2]
name = name.split('/')
pointer = model
for m_name in name:
if re.fullmatch(r'[A-Za-z]+\d+', m_name):
l = re.split(r'(\d+)', m_name)
else:
l = [m_name]
if l[0] == 'g':
pointer = getattr(pointer, 'weight')
elif l[0] == 'b':
pointer = getattr(pointer, 'bias')
elif l[0] == 'w':
pointer = getattr(pointer, 'weight')
else:
pointer = getattr(pointer, l[0])
if len(l) >= 2:
num = int(l[1])
pointer = pointer[num]
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
print("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array)
return model
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
def swish(x):
return x * torch.sigmoid(x)
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}
class OpenAIGPTConfig(object):
"""Configuration class to store the configuration of a `OpenAIGPTModel`.
"""
def __init__(
self,
vocab_size_or_config_json_file=40478,
n_special=0,
n_positions=512,
n_ctx=512,
n_embd=768,
n_layer=12,
n_head=12,
afn="gelu",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
):
"""Constructs OpenAIGPTConfig.
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
n_positions: Number of positional embeddings.
n_ctx: Size of the causal mask (usually same as n_positions).
n_embd: Dimensionality of the embeddings and hidden states.
n_layer: Number of hidden layers in the Transformer encoder.
n_head: Number of attention heads for each attention layer in
the Transformer encoder.
afn: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
resid_pdrop: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attn_pdrop: The dropout ratio for the attention
probabilities.
embd_pdrop: The dropout ratio for the embeddings.
layer_norm_epsilon: epsilon to use in the layer norm layers
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
and isinstance(vocab_size_or_config_json_file, unicode)):
with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.n_special = n_special
self.n_ctx = n_ctx
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.afn = afn
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
else:
raise ValueError(
"First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)"
)
@property
def total_tokens_embeddings(self):
return self.vocab_size + self.n_special
@classmethod
def from_dict(cls, json_object):
"""Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
for key, value in json_object.items():
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `OpenAIGPTConfig` from a json file of parameters."""
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class Conv1D(nn.Module):
def __init__(self, nf, rf, nx):
super(Conv1D, self).__init__()
self.rf = rf
self.nf = nf
if rf == 1: # faster 1x1 conv
w = torch.empty(nx, nf)
nn.init.normal_(w, std=0.02)
self.weight = Parameter(w)
self.bias = Parameter(torch.zeros(nf))
else: # was used to train LM
raise NotImplementedError
def forward(self, x):
if self.rf == 1:
size_out = x.size()[:-1] + (self.nf,)
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
x = x.view(*size_out)
else:
raise NotImplementedError
return x
class Attention(nn.Module):
def __init__(self, nx, n_ctx, config, scale=False):
super(Attention, self).__init__()
n_state = nx # in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
assert n_state % config.n_head == 0
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
self.n_head = config.n_head
self.split_size = n_state
self.scale = scale
self.c_attn = Conv1D(n_state * 3, 1, nx)
self.c_proj = Conv1D(n_state, 1, nx)
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
def _attn(self, q, k, v):
w = torch.matmul(q, k)
if self.scale:
w = w / math.sqrt(v.size(-1))
# w = w * self.bias + -1e9 * (1 - self.bias) # TF implem method: mask_attn_weights
# XD: self.b may be larger than w, so we need to crop it
b = self.bias[:, :, : w.size(-2), : w.size(-1)]
w = w * b + -1e9 * (1 - b)
w = nn.Softmax(dim=-1)(w)
w = self.attn_dropout(w)
return torch.matmul(w, v)
def merge_heads(self, x):
x = x.permute(0, 2, 1, 3).contiguous()
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
def split_heads(self, x, k=False):
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
if k:
return x.permute(0, 2, 3, 1)
else:
return x.permute(0, 2, 1, 3)
def forward(self, x):
x = self.c_attn(x)
query, key, value = x.split(self.split_size, dim=2)
query = self.split_heads(query)
key = self.split_heads(key, k=True)
value = self.split_heads(value)
a = self._attn(query, key, value)
a = self.merge_heads(a)
a = self.c_proj(a)
a = self.resid_dropout(a)
return a
class MLP(nn.Module):
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
super(MLP, self).__init__()
nx = config.n_embd
self.c_fc = Conv1D(n_state, 1, nx)
self.c_proj = Conv1D(nx, 1, n_state)
self.act = ACT_FNS[config.afn]
self.dropout = nn.Dropout(config.resid_pdrop)
def forward(self, x):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
return self.dropout(h2)
class Block(nn.Module):
def __init__(self, n_ctx, config, scale=False):
super(Block, self).__init__()
nx = config.n_embd
self.attn = Attention(nx, n_ctx, config, scale)
self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
self.mlp = MLP(4 * nx, config)
self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
def forward(self, x):
a = self.attn(x)
n = self.ln_1(x + a)
m = self.mlp(n)
h = self.ln_2(n + m)
return h
class OpenAIGPTLMHead(nn.Module):
""" Language Model Head for the transformer """
def __init__(self, model_embeddings_weights, config):
super(OpenAIGPTLMHead, self).__init__()
self.n_embd = config.n_embd
self.set_embeddings_weights(model_embeddings_weights)
def set_embeddings_weights(self, model_embeddings_weights):
embed_shape = model_embeddings_weights.shape
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
self.decoder.weight = model_embeddings_weights # Tied weights
def forward(self, hidden_state):
# Truncated Language modeling logits (we remove the last token)
# h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
lm_logits = self.decoder(hidden_state)
return lm_logits
class OpenAIGPTMultipleChoiceHead(nn.Module):
""" Classifier Head for the transformer """
def __init__(self, config):
super(OpenAIGPTMultipleChoiceHead, self).__init__()
self.n_embd = config.n_embd
# self.multiple_choice_token = multiple_choice_token
self.dropout = nn.Dropout2d(config.resid_pdrop) # To reproduce the noise_shape parameter of TF implementation
self.linear = nn.Linear(config.n_embd, 1)
nn.init.normal_(self.linear.weight, std=0.02)
nn.init.normal_(self.linear.bias, 0)
def forward(self, hidden_states, mc_token_ids):
# Classification logits
# hidden_state (bsz, num_choices, seq_length, hidden_size)
# mc_token_ids (bsz, num_choices)
mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
# (bsz, num_choices, 1, hidden_size)
multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
# (bsz, num_choices, hidden_size)
multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
# (bsz, num_choices)
return multiple_choice_logits
class OpenAIGPTPreTrainedModel(nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super(OpenAIGPTPreTrainedModel, self).__init__()
if not isinstance(config, OpenAIGPTConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
"To create a model from a pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
)
)
self.config = config
def init_weights(self, module):
""" Initialize the weights.
"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def set_num_special_tokens(self, num_special_tokens):
pass
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
):
"""
Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
Params:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load selected in the list of:
. `openai-gpt`
- a path or url to a pretrained model archive containing:
. `openai_gpt_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. a series of NumPy files containing OpenAI TensorFlow trained weights
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find files {} and {} "
"at this path or url.".format(
pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
archive_file, config_file
)
)
return None
if resolved_archive_file == archive_file and resolved_config_file == config_file:
logger.info("loading weights file {}".format(archive_file))
logger.info("loading configuration file {}".format(config_file))
else:
logger.info("loading weights file {} from cache at {}".format(
archive_file, resolved_archive_file))
logger.info("loading configuration file {} from cache at {}".format(
config_file, resolved_config_file))
# Load config
config = OpenAIGPTConfig.from_json_file(resolved_config_file)
logger.info("Model config {}".format(config))
# Instantiate model.
model = cls(config, *inputs, **kwargs)
if state_dict is None and not from_tf:
state_dict = torch.load(resolved_archive_file, map_location='cpu' if not torch.cuda.is_available() else None)
if from_tf:
# Directly load from a TensorFlow checkpoint (stored as NumPy array)
return load_tf_weights_in_openai_gpt(model, resolved_archive_file)
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if key.endswith(".g"):
new_key = key[:-2] + ".weight"
elif key.endswith(".b"):
new_key = key[:-2] + ".bias"
elif key.endswith(".w"):
new_key = key[:-2] + ".weight"
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=""):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + ".")
start_model = model
if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
start_model = model.transformer
load(start_model, prefix="")
if len(missing_keys) > 0:
logger.info(
"Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
)
if len(unexpected_keys) > 0:
logger.info(
"Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
)
if len(error_msgs) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
)
# Add additional embeddings for special tokens if needed
# This step also make sure we are still sharing the output and input embeddings after loading weights
model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special)
return model
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
"""OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").
OpenAI GPT use a single embedding matrix to store the word and special embeddings.
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
Special tokens need to be trained during the fine-tuning if you use them.
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.
The embeddings are ordered as follow in the token embeddings matrice:
[0, ----------------------
... -> word embeddings
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size + config.n_special - 1] ______________________
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
total_tokens_embeddings = config.vocab_size + config.n_special
You should use the associate indices to index the embeddings.
Params:
config: a OpenAIGPTConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
Outputs:
`hidden_states`: the encoded-hidden-states at the top of the model
as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
(or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
config = modeling_openai.OpenAIGPTConfig()
model = modeling_openai.OpenAIGPTModel(config)
hidden_states = model(input_ids)
```
"""
def __init__(self, config):
super(OpenAIGPTModel, self).__init__(config)
num_tokens = config.vocab_size + config.n_special
self.tokens_embed = nn.Embedding(num_tokens, config.n_embd)
self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
self.drop = nn.Dropout(config.embd_pdrop)
block = Block(config.n_ctx, config, scale=True)
self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
self.apply(self.init_weights)
# nn.init.normal_(self.embed.weight, std=0.02)
def set_num_special_tokens(self, num_special_tokens):
" Update input embeddings with new embedding matrice if needed "
if self.config.n_special == num_special_tokens:
return
# Update config
self.config.n_special = num_special_tokens
# # Build new embeddings and initialize
old_embed = self.tokens_embed
self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
# Initialize all new embeddings (in particular the special tokens)
self.init_weights(self.tokens_embed)
# Copy word and positional embeddings from the previous weights
self.tokens_embed.weight.data[: self.config.vocab_size, :] = old_embed.weight.data[: self.config.vocab_size, :]
self.tokens_embed.weight.data[-self.config.n_positions :, :] = old_embed.weight.data[-self.config.n_positions :, :]
def forward(self, input_ids, position_ids=None, token_type_ids=None):
if position_ids is None:
# This was used when we had a single embedding matrice from position and token embeddings
# start = self.config.vocab_size + self.config.n_special
# end = start + input_ids.size(-1)
# position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_ids.size(-1))
position_ids = position_ids.view(-1, position_ids.size(-1))
inputs_embeds = self.tokens_embed(input_ids)
position_embeds = self.positions_embed(position_ids)
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
token_type_embeds = self.tokens_embed(token_type_ids)
else:
token_type_embeds = 0
# Add the position information to the input embeddings
# h = e.sum(dim=2)
hidden_states = inputs_embeds + position_embeds + token_type_embeds
for block in self.h:
hidden_states = block(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
return hidden_states.view(*output_shape)
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
"""OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").
OpenAI GPT use a single embedding matrix to store the word and special embeddings.
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
Special tokens need to be trained during the fine-tuning if you use them.
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.
The embeddings are ordered as follow in the token embeddings matrice:
[0, ----------------------
... -> word embeddings
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size + config.n_special - 1] ______________________
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
total_tokens_embeddings = config.vocab_size + config.n_special
You should use the associate indices to index the embeddings.
Params:
config: a OpenAIGPTConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., vocab_size]
Outputs:
if `lm_labels` is not `None`:
Outputs the language modeling loss.
else:
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
(or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
config = modeling_openai.OpenAIGPTConfig()
model = modeling_openai.OpenAIGPTLMHeadModel(config)
lm_logits = model(input_ids)
```
"""
def __init__(self, config):
super(OpenAIGPTLMHeadModel, self).__init__(config)
self.transformer = OpenAIGPTModel(config)
self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
self.apply(self.init_weights)
def set_num_special_tokens(self, num_special_tokens):
""" Update input and output embeddings with new embedding matrice
Make sure we are sharing the embeddings
"""
self.transformer.set_num_special_tokens(num_special_tokens)
self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None):
hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
lm_logits = self.lm_head(hidden_states)
if lm_labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1))
return loss
return lm_logits
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
"""OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
OpenAI GPT use a single embedding matrix to store the word and special embeddings.
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
Special tokens need to be trained during the fine-tuning if you use them.
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.
The embeddings are ordered as follow in the token embeddings matrice:
[0, ----------------------
... -> word embeddings
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size + config.n_special - 1] ______________________
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
total_tokens_embeddings = config.vocab_size + config.n_special
You should use the associate indices to index the embeddings.
Params:
config: a OpenAIGPTConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
indices selected in the range [0, total_tokens_embeddings[
`mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., total_tokens_embeddings]
`multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_choices].
Outputs:
if `lm_labels` and `multiple_choice_labels` are not `None`:
Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
else: a tuple with
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
`multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]]) # (bsz, number of choice, seq length)
mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
config = modeling_openai.OpenAIGPTConfig()
model = modeling_openai.OpenAIGPTLMHeadModel(config)
lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
```
"""
def __init__(self, config):
super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
self.transformer = OpenAIGPTModel(config)
self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
self.apply(self.init_weights)
def set_num_special_tokens(self, num_special_tokens):
""" Update input and output embeddings with new embedding matrice
Make sure we are sharing the embeddings
"""
self.transformer.set_num_special_tokens(num_special_tokens)
self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None):
hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
lm_logits = self.lm_head(hidden_states)
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
losses = []
if lm_labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
losses.append(loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1)))
if mc_labels is not None:
loss_fct = CrossEntropyLoss()
losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
if losses:
return losses
return lm_logits, mc_logits

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,402 @@
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Utilities for PyTorch Transformer XL model.
Directly adapted from https://github.com/kimiyoung/transformer-xl.
"""
from collections import defaultdict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# CUDA_MAJOR = int(torch.version.cuda.split('.')[0])
# CUDA_MINOR = int(torch.version.cuda.split('.')[1])
class ProjectedAdaptiveLogSoftmax(nn.Module):
def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1,
keep_order=False):
super(ProjectedAdaptiveLogSoftmax, self).__init__()
self.n_token = n_token
self.d_embed = d_embed
self.d_proj = d_proj
self.cutoffs = cutoffs + [n_token]
self.cutoff_ends = [0] + self.cutoffs
self.div_val = div_val
self.shortlist_size = self.cutoffs[0]
self.n_clusters = len(self.cutoffs) - 1
self.head_size = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
self.cluster_weight = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed))
self.cluster_bias = nn.Parameter(torch.zeros(self.n_clusters))
self.out_layers = nn.ModuleList()
self.out_projs = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs)):
if d_proj != d_embed:
self.out_projs.append(
nn.Parameter(torch.Tensor(d_proj, d_embed))
)
else:
self.out_projs.append(None)
self.out_layers.append(nn.Linear(d_embed, n_token))
else:
for i in range(len(self.cutoffs)):
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1]
d_emb_i = d_embed // (div_val ** i)
self.out_projs.append(
nn.Parameter(torch.Tensor(d_proj, d_emb_i))
)
self.out_layers.append(nn.Linear(d_emb_i, r_idx-l_idx))
self.keep_order = keep_order
def _compute_logit(self, hidden, weight, bias, proj):
if proj is None:
logit = F.linear(hidden, weight, bias=bias)
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
proj_hid = F.linear(hidden, proj.t().contiguous())
logit = F.linear(proj_hid, weight, bias=bias)
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def forward(self, hidden, target=None, keep_order=False):
'''
Params:
hidden :: [len*bsz x d_proj]
target :: [len*bsz]
Return:
if target is None:
out :: [len*bsz] Negative log likelihood
else:
out :: [len*bsz x n_tokens] log probabilities of tokens over the vocabulary
We could replace this implementation by the native PyTorch one
if their's had an option to set bias on all clusters in the native one.
here: https://github.com/pytorch/pytorch/blob/dbe6a7a9ff1a364a8706bf5df58a1ca96d2fd9da/torch/nn/modules/adaptive.py#L138
'''
if target is not None:
target = target.view(-1)
if hidden.size(0) != target.size(0):
raise RuntimeError('Input and target should have the same size '
'in the batch dimension.')
if self.n_clusters == 0:
logit = self._compute_logit(hidden, self.out_layers[0].weight,
self.out_layers[0].bias, self.out_projs[0])
if target is not None:
output = -F.log_softmax(logit, dim=-1) \
.gather(1, target.unsqueeze(1)).squeeze(1)
else:
output = F.log_softmax(logit, dim=-1)
else:
# construct weights and biases
weights, biases = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
weight_i = self.out_layers[0].weight[l_idx:r_idx]
bias_i = self.out_layers[0].bias[l_idx:r_idx]
else:
weight_i = self.out_layers[i].weight
bias_i = self.out_layers[i].bias
if i == 0:
weight_i = torch.cat(
[weight_i, self.cluster_weight], dim=0)
bias_i = torch.cat(
[bias_i, self.cluster_bias], dim=0)
weights.append(weight_i)
biases.append(bias_i)
head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0]
head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj)
head_logprob = F.log_softmax(head_logit, dim=1)
if target is None:
out = hidden.new_empty((head_logit.size(0), self.n_token))
else:
out = torch.zeros_like(target, dtype=hidden.dtype, device=hidden.device)
offset = 0
cutoff_values = [0] + self.cutoffs
for i in range(len(cutoff_values) - 1):
l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1]
if target is not None:
mask_i = (target >= l_idx) & (target < r_idx)
indices_i = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
target_i = target.index_select(0, indices_i) - l_idx
head_logprob_i = head_logprob.index_select(0, indices_i)
hidden_i = hidden.index_select(0, indices_i)
else:
hidden_i = hidden
if i == 0:
if target is not None:
logprob_i = head_logprob_i.gather(1, target_i[:, None]).squeeze(1)
else:
out[:, :self.cutoffs[0]] = head_logprob[:, :self.cutoffs[0]]
else:
weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i]
tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i)
tail_logprob_i = F.log_softmax(tail_logit_i, dim=1)
cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster
if target is not None:
logprob_i = head_logprob_i[:, cluster_prob_idx] \
+ tail_logprob_i.gather(1, target_i[:, None]).squeeze(1)
else:
logprob_i = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
out[:, l_idx:r_idx] = logprob_i
if target is not None:
if (hasattr(self, 'keep_order') and self.keep_order) or keep_order:
out.index_copy_(0, indices_i, -logprob_i)
else:
out[offset:offset+logprob_i.size(0)].copy_(-logprob_i)
offset += logprob_i.size(0)
return out
def log_prob(self, hidden):
r""" Computes log probabilities for all :math:`n\_classes`
From: https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/adaptive.py
Args:
hidden (Tensor): a minibatch of examples
Returns:
log-probabilities of for each class :math:`c`
in range :math:`0 <= c <= n\_classes`, where :math:`n\_classes` is a
parameter passed to ``AdaptiveLogSoftmaxWithLoss`` constructor.
Shape:
- Input: :math:`(N, in\_features)`
- Output: :math:`(N, n\_classes)`
"""
if self.n_clusters == 0:
logit = self._compute_logit(hidden, self.out_layers[0].weight,
self.out_layers[0].bias, self.out_projs[0])
return F.log_softmax(logit, dim=-1)
else:
# construct weights and biases
weights, biases = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
weight_i = self.out_layers[0].weight[l_idx:r_idx]
bias_i = self.out_layers[0].bias[l_idx:r_idx]
else:
weight_i = self.out_layers[i].weight
bias_i = self.out_layers[i].bias
if i == 0:
weight_i = torch.cat(
[weight_i, self.cluster_weight], dim=0)
bias_i = torch.cat(
[bias_i, self.cluster_bias], dim=0)
weights.append(weight_i)
biases.append(bias_i)
head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0]
head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj)
out = hidden.new_empty((head_logit.size(0), self.n_token))
head_logprob = F.log_softmax(head_logit, dim=1)
cutoff_values = [0] + self.cutoffs
for i in range(len(cutoff_values) - 1):
start_idx, stop_idx = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
out[:, :self.cutoffs[0]] = head_logprob[:, :self.cutoffs[0]]
else:
weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i]
tail_logit_i = self._compute_logit(hidden, weight_i, bias_i, proj_i)
tail_logprob_i = F.log_softmax(tail_logit_i, dim=1)
logprob_i = head_logprob[:, -i] + tail_logprob_i
out[:, start_idx, stop_idx] = logprob_i
return out
class LogUniformSampler(object):
def __init__(self, range_max, n_sample):
"""
Reference : https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/python/ops/candidate_sampling_ops.py
`P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1)`
expected count can be approximated by 1 - (1 - p)^n
and we use a numerically stable version -expm1(num_tries * log1p(-p))
Our implementation fixes num_tries at 2 * n_sample, and the actual #samples will vary from run to run
"""
with torch.no_grad():
self.range_max = range_max
log_indices = torch.arange(1., range_max+2., 1.).log_()
self.dist = (log_indices[1:] - log_indices[:-1]) / log_indices[-1]
# print('P', self.dist.numpy().tolist()[-30:])
self.log_q = (- (-self.dist.double().log1p_() * 2 * n_sample).expm1_()).log_().float()
self.n_sample = n_sample
def sample(self, labels):
"""
labels: [b1, b2]
Return
true_log_probs: [b1, b2]
samp_log_probs: [n_sample]
neg_samples: [n_sample]
"""
# neg_samples = torch.empty(0).long()
n_sample = self.n_sample
n_tries = 2 * n_sample
with torch.no_grad():
neg_samples = torch.multinomial(self.dist, n_tries, replacement=True).unique()
device = labels.device
neg_samples = neg_samples.to(device)
true_log_probs = self.log_q[labels].to(device)
samp_log_probs = self.log_q[neg_samples].to(device)
return true_log_probs, samp_log_probs, neg_samples
def sample_logits(embedding, bias, labels, inputs, sampler):
"""
embedding: an nn.Embedding layer
bias: [n_vocab]
labels: [b1, b2]
inputs: [b1, b2, n_emb]
sampler: you may use a LogUniformSampler
Return
logits: [b1, b2, 1 + n_sample]
"""
true_log_probs, samp_log_probs, neg_samples = sampler.sample(labels)
n_sample = neg_samples.size(0)
b1, b2 = labels.size(0), labels.size(1)
all_ids = torch.cat([labels.view(-1), neg_samples])
all_w = embedding(all_ids)
true_w = all_w[: -n_sample].view(b1, b2, -1)
sample_w = all_w[- n_sample:].view(n_sample, -1)
all_b = bias[all_ids]
true_b = all_b[: -n_sample].view(b1, b2)
sample_b = all_b[- n_sample:]
hit = (labels[:, :, None] == neg_samples).detach()
true_logits = torch.einsum('ijk,ijk->ij',
[true_w, inputs]) + true_b - true_log_probs
sample_logits = torch.einsum('lk,ijk->ijl',
[sample_w, inputs]) + sample_b - samp_log_probs
sample_logits.masked_fill_(hit, -1e30)
logits = torch.cat([true_logits[:, :, None], sample_logits], -1)
return logits
# class LogUniformSampler(object):
# def __init__(self, range_max, unique=False):
# """
# Reference : https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/python/ops/candidate_sampling_ops.py
# `P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1)`
# """
# self.range_max = range_max
# log_indices = torch.arange(1., range_max+2., 1.).log_()
# self.dist = (log_indices[1:] - log_indices[:-1]) / log_indices[-1]
# self.unique = unique
# if self.unique:
# self.exclude_mask = torch.ByteTensor(range_max).fill_(0)
# def sample(self, n_sample, labels):
# pos_sample, new_labels = labels.unique(return_inverse=True)
# n_pos_sample = pos_sample.size(0)
# n_neg_sample = n_sample - n_pos_sample
# if self.unique:
# self.exclude_mask.index_fill_(0, pos_sample, 1)
# sample_dist = self.dist.clone().masked_fill_(self.exclude_mask, 0)
# self.exclude_mask.index_fill_(0, pos_sample, 0)
# else:
# sample_dist = self.dist
# neg_sample = torch.multinomial(sample_dist, n_neg_sample)
# sample = torch.cat([pos_sample, neg_sample])
# sample_prob = self.dist[sample]
# return new_labels, sample, sample_prob
if __name__ == '__main__':
S, B = 3, 4
n_vocab = 10000
n_sample = 5
H = 32
labels = torch.LongTensor(S, B).random_(0, n_vocab)
# sampler = LogUniformSampler(n_vocab, unique=False)
# new_labels, sample, sample_prob = sampler.sample(n_sample, labels)
sampler = LogUniformSampler(n_vocab, n_sample)#, unique=True)
# true_probs, samp_probs, neg_samples = sampler.sample(n_sample, labels)
# print('true_probs', true_probs.numpy().tolist())
# print('samp_probs', samp_probs.numpy().tolist())
# print('neg_samples', neg_samples.numpy().tolist())
# print('sum', torch.sum(sampler.dist).item())
# assert torch.all(torch.sort(sample.unique())[0].eq(torch.sort(sample)[0])).item()
embedding = nn.Embedding(n_vocab, H)
bias = torch.zeros(n_vocab)
inputs = torch.Tensor(S, B, H).normal_()
logits, out_labels = sample_logits(embedding, bias, labels, inputs, sampler, n_sample)
print('logits', logits.detach().numpy().tolist())
print('logits shape', logits.size())
print('out_labels', out_labels.detach().numpy().tolist())
print('out_labels shape', out_labels.size())

View File

@ -17,6 +17,7 @@
import math
import torch
from torch.optim import Optimizer
from torch.optim.optimizer import required
from torch.nn.utils import clip_grad_norm_
def warmup_cosine(x, warmup=0.002):
@ -52,13 +53,13 @@ class BertAdam(Optimizer):
b1: Adams b1. Default: 0.9
b2: Adams b2. Default: 0.999
e: Adams epsilon. Default: 1e-6
weight_decay_rate: Weight decay. Default: 0.01
weight_decay: Weight decay. Default: 0.01
max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0
"""
def __init__(self, params, lr, warmup=-1, t_total=-1, schedule='warmup_linear',
b1=0.9, b2=0.999, e=1e-6, weight_decay_rate=0.01,
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear',
b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01,
max_grad_norm=1.0):
if not lr >= 0.0:
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
if schedule not in SCHEDULES:
raise ValueError("Invalid schedule parameter: {}".format(schedule))
@ -71,7 +72,7 @@ class BertAdam(Optimizer):
if not e >= 0.0:
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
b1=b1, b2=b2, e=e, weight_decay_rate=weight_decay_rate,
b1=b1, b2=b2, e=e, weight_decay=weight_decay,
max_grad_norm=max_grad_norm)
super(BertAdam, self).__init__(params, defaults)
@ -139,8 +140,8 @@ class BertAdam(Optimizer):
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if group['weight_decay_rate'] > 0.0:
update += group['weight_decay_rate'] * p.data
if group['weight_decay'] > 0.0:
update += group['weight_decay'] * p.data
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]

View File

@ -0,0 +1,140 @@
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for OpenAI GPT model."""
import math
import torch
from torch.optim import Optimizer
from torch.optim.optimizer import required
from torch.nn.utils import clip_grad_norm_
def warmup_cosine(x, warmup=0.002):
s = 1 if x <= warmup else 0
return s*(x/warmup) + (1-s)*(0.5 * (1 + torch.cos(math.pi * x)))
def warmup_constant(x, warmup=0.002):
s = 1 if x <= warmup else 0
return s*(x/warmup) + (1-s)*1
def warmup_linear(x, warmup=0.002):
s = 1 if x <= warmup else 0
return (s*(x/warmup) + (1-s))*(1-x)
SCHEDULES = {
'warmup_cosine':warmup_cosine,
'warmup_constant':warmup_constant,
'warmup_linear':warmup_linear,
}
class OpenAIAdam(Optimizer):
"""Implements Open AI version of Adam algorithm with weight decay fix.
"""
def __init__(self, params, lr=required, schedule='warmup_linear', warmup=-1, t_total=-1,
b1=0.9, b2=0.999, e=1e-8, weight_decay=0,
vector_l2=False, max_grad_norm=-1, **kwargs):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
if schedule not in SCHEDULES:
raise ValueError("Invalid schedule parameter: {}".format(schedule))
if not 0.0 <= warmup < 1.0 and not warmup == -1:
raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
if not 0.0 <= b1 < 1.0:
raise ValueError("Invalid b1 parameter: {}".format(b1))
if not 0.0 <= b2 < 1.0:
raise ValueError("Invalid b2 parameter: {}".format(b2))
if not e >= 0.0:
raise ValueError("Invalid epsilon value: {}".format(e))
defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
b1=b1, b2=b2, e=e, weight_decay=weight_decay, vector_l2=vector_l2,
max_grad_norm=max_grad_norm)
super(OpenAIAdam, self).__init__(params, defaults)
def get_lr(self):
lr = []
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
if len(state) == 0:
return [0]
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
lr.append(lr_scheduled)
return lr
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['b1'], group['b2']
state['step'] += 1
# Add grad clipping
if group['max_grad_norm'] > 0:
clip_grad_norm_(p, group['max_grad_norm'])
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
denom = exp_avg_sq.sqrt().add_(group['e'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
p.data.addcdiv_(-step_size, exp_avg, denom)
# Add weight decay at the end (fixed version)
if (len(p.size()) > 1 or group['vector_l2']) and group['weight_decay'] > 0:
p.data.add_(-lr_scheduled * group['weight_decay'], p.data)
return loss

View File

@ -14,41 +14,37 @@
# limitations under the License.
"""Tokenization classes."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import, division, print_function, unicode_literals
import collections
import unicodedata
import os
import logging
import os
import unicodedata
from io import open
from .file_utils import cached_path
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
PRETRAINED_VOCAB_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
'bert-base-multilingual': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-vocab.txt",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
}
def printable_text(text):
"""Returns text encoded in a way suitable for print or `tf.logging`."""
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
'bert-base-uncased': 512,
'bert-large-uncased': 512,
'bert-base-cased': 512,
'bert-large-cased': 512,
'bert-base-multilingual-uncased': 512,
'bert-base-multilingual-cased': 512,
'bert-base-chinese': 512,
}
VOCAB_NAME = 'vocab.txt'
def load_vocab(vocab_file):
@ -77,7 +73,9 @@ def whitespace_tokenize(text):
class BertTokenizer(object):
"""Runs end-to-end tokenization: punctuation splitting + wordpiece"""
def __init__(self, vocab_file, do_lower_case=True):
def __init__(self, vocab_file, do_lower_case=True, max_len=None,
never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
if not os.path.isfile(vocab_file):
raise ValueError(
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
@ -85,8 +83,10 @@ class BertTokenizer(object):
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict(
[(ids, tok) for tok, ids in self.vocab.items()])
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case,
never_split=never_split)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
self.max_len = max_len if max_len is not None else int(1e12)
def tokenize(self, text):
split_tokens = []
@ -100,6 +100,12 @@ class BertTokenizer(object):
ids = []
for token in tokens:
ids.append(self.vocab[token])
if len(ids) > self.max_len:
raise ValueError(
"Token indices sequence length is longer than the specified maximum "
" sequence length for this BERT model ({} > {}). Running this"
" sequence through BERT will result in indexing errors".format(len(ids), self.max_len)
)
return ids
def convert_ids_to_tokens(self, ids):
@ -110,47 +116,57 @@ class BertTokenizer(object):
return tokens
@classmethod
def from_pretrained(cls, pretrained_model_name, do_lower_case=True):
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
"""
Instantiate a PreTrainedBertModel from a pre-trained model file.
Download and cache the pre-trained model file if needed.
"""
if pretrained_model_name in PRETRAINED_VOCAB_ARCHIVE_MAP:
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name]
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
vocab_file = pretrained_model_name
vocab_file = pretrained_model_name_or_path
if os.path.isdir(vocab_file):
vocab_file = os.path.join(vocab_file, VOCAB_NAME)
# redirect to the cache, if necessary
try:
resolved_vocab_file = cached_path(vocab_file)
if resolved_vocab_file == vocab_file:
logger.info("loading vocabulary file {}".format(vocab_file))
else:
logger.info("loading vocabulary file {} from cache at {}".format(
vocab_file, resolved_vocab_file))
# Instantiate tokenizer.
tokenizer = cls(resolved_vocab_file, do_lower_case)
except FileNotFoundError:
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find any file "
"associated to this path or url.".format(
pretrained_model_name,
pretrained_model_name_or_path,
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
pretrained_model_name))
tokenizer = None
vocab_file))
return None
if resolved_vocab_file == vocab_file:
logger.info("loading vocabulary file {}".format(vocab_file))
else:
logger.info("loading vocabulary file {} from cache at {}".format(
vocab_file, resolved_vocab_file))
if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
# if we're using a pretrained model, ensure the tokenizer wont index sequences longer
# than the number of positional embeddings
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
# Instantiate tokenizer.
tokenizer = cls(resolved_vocab_file, *inputs, **kwargs)
return tokenizer
class BasicTokenizer(object):
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
def __init__(self, do_lower_case=True):
def __init__(self,
do_lower_case=True,
never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
"""Constructs a BasicTokenizer.
Args:
do_lower_case: Whether to lower case the input.
"""
self.do_lower_case = do_lower_case
self.never_split = never_split
def tokenize(self, text):
"""Tokenizes a piece of text."""
@ -165,7 +181,7 @@ class BasicTokenizer(object):
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if self.do_lower_case:
if self.do_lower_case and token not in self.never_split:
token = token.lower()
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token))
@ -186,6 +202,8 @@ class BasicTokenizer(object):
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
if text in self.never_split:
return [text]
chars = list(text)
i = 0
start_new_word = True
@ -203,7 +221,7 @@ class BasicTokenizer(object):
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
@ -228,17 +246,17 @@ class BasicTokenizer(object):
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
(cp >= 0x3400 and cp <= 0x4DBF) or #
(cp >= 0x20000 and cp <= 0x2A6DF) or #
(cp >= 0x2A700 and cp <= 0x2B73F) or #
(cp >= 0x2B740 and cp <= 0x2B81F) or #
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or #
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
(cp >= 0x3400 and cp <= 0x4DBF) or #
(cp >= 0x20000 and cp <= 0x2A6DF) or #
(cp >= 0x2A700 and cp <= 0x2B73F) or #
(cp >= 0x2B740 and cp <= 0x2B81F) or #
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or #
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
@ -273,7 +291,7 @@ class WordpieceTokenizer(object):
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer.
already been passed through `BasicTokenizer`.
Returns:
A list of wordpiece tokens.

View File

@ -0,0 +1,206 @@
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import json
import logging
import os
import regex as re
from io import open
try:
from functools import lru_cache
except ImportError:
# Just a dummy decorator to get the checks to run on python2
# because honestly I don't want to support a byte-level unicode BPE tokenizer on python 2 right now.
def lru_cache():
return lambda func: func
from .file_utils import cached_path
logger = logging.getLogger(__name__)
PRETRAINED_VOCAB_ARCHIVE_MAP = {
'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json",
}
PRETRAINED_MERGES_ARCHIVE_MAP = {
'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt",
}
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
'gpt2': 1024,
}
VOCAB_NAME = 'vocab.json'
MERGES_NAME = 'merges.txt'
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class GPT2Tokenizer(object):
"""
GPT-2 BPE tokenizer. Peculiarities:
- Byte-level BPE
"""
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
"""
Instantiate a PreTrainedBertModel from a pre-trained model file.
Download and cache the pre-trained model file if needed.
"""
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME)
# redirect to the cache, if necessary
try:
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find files {} and {} "
"at this path or url.".format(
pretrained_model_name_or_path,
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
pretrained_model_name_or_path,
vocab_file, merges_file))
return None
if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file:
logger.info("loading vocabulary file {}".format(vocab_file))
logger.info("loading merges file {}".format(merges_file))
else:
logger.info("loading vocabulary file {} from cache at {}".format(
vocab_file, resolved_vocab_file))
logger.info("loading merges file {} from cache at {}".format(
merges_file, resolved_merges_file))
if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
# if we're using a pretrained model, ensure the tokenizer wont index sequences longer
# than the number of positional embeddings
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
# Instantiate tokenizer.
tokenizer = cls(resolved_vocab_file, resolved_merges_file, *inputs, **kwargs)
return tokenizer
def __init__(self, vocab_file, merges_file, errors='replace', max_len=None):
self.max_len = max_len if max_len is not None else int(1e12)
self.encoder = json.load(open(vocab_file))
self.decoder = {v:k for k,v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_data]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
def __len__(self):
return len(self.encoder)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word)-1 and word[i+1] == second:
new_word.append(first+second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
if len(bpe_tokens) > self.max_len:
raise ValueError(
"Token indices sequence length is longer than the specified maximum "
" sequence length for this OpenAI GPT-2 model ({} > {}). Running this"
" sequence through the model will result in indexing errors".format(len(bpe_tokens), self.max_len)
)
return bpe_tokens
def decode(self, tokens):
text = ''.join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
return text

View File

@ -0,0 +1,263 @@
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import json
import logging
import os
import re
import sys
from io import open
from tqdm import tqdm
from .file_utils import cached_path
from .tokenization import BasicTokenizer
logger = logging.getLogger(__name__)
PRETRAINED_VOCAB_ARCHIVE_MAP = {
'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-vocab.json",
}
PRETRAINED_MERGES_ARCHIVE_MAP = {
'openai-gpt': "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-merges.txt",
}
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
'openai-gpt': 512,
}
VOCAB_NAME = 'vocab.json'
MERGES_NAME = 'merges.txt'
def get_pairs(word):
"""
Return set of symbol pairs in a word.
word is represented as tuple of symbols (symbols being variable-length strings)
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def text_standardize(text):
"""
fixes some issues the spacy tokenizer had on books corpus
also does some whitespace standardization
"""
text = text.replace('', '-')
text = text.replace('', '-')
text = text.replace('', '-')
text = text.replace('', '...')
text = text.replace('´', "'")
text = re.sub(r'''(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)''', r' \1 ', text)
text = re.sub(r'\s*\n\s*', ' \n ', text)
text = re.sub(r'[^\S\n]+', ' ', text)
return text.strip()
class OpenAIGPTTokenizer(object):
"""
BPE tokenizer. Peculiarities:
- lower case all inputs
- uses SpaCy tokenizer and ftfy for pre-BPE tokenization if they are installed, fallback to BERT's BasicTokenizer if not.
- argument special_tokens and function set_special_tokens:
can be used to add additional symbols (ex: "__classify__") to a vocabulary.
"""
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
"""
Instantiate a PreTrainedBertModel from a pre-trained model file.
Download and cache the pre-trained model file if needed.
"""
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME)
# redirect to the cache, if necessary
try:
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find files {} and {} "
"at this path or url.".format(
pretrained_model_name_or_path,
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
pretrained_model_name_or_path,
vocab_file, merges_file))
return None
if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file:
logger.info("loading vocabulary file {}".format(vocab_file))
logger.info("loading merges file {}".format(merges_file))
else:
logger.info("loading vocabulary file {} from cache at {}".format(
vocab_file, resolved_vocab_file))
logger.info("loading merges file {} from cache at {}".format(
merges_file, resolved_merges_file))
if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
# if we're using a pretrained model, ensure the tokenizer wont index sequences longer
# than the number of positional embeddings
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
# Instantiate tokenizer.
tokenizer = cls(resolved_vocab_file, resolved_merges_file, *inputs, **kwargs)
return tokenizer
def __init__(self, vocab_file, merges_file, special_tokens=None, max_len=None):
try:
import ftfy
import spacy
self.nlp = spacy.load('en', disable=['parser', 'tagger', 'ner', 'textcat'])
self.fix_text = ftfy.fix_text
except ImportError:
logger.warning("ftfy or spacy is not installed using BERT BasicTokenizer instead of SpaCy & ftfy.")
self.nlp = BasicTokenizer(do_lower_case=True,
never_split=special_tokens if special_tokens is not None else [])
self.fix_text = None
self.max_len = max_len if max_len is not None else int(1e12)
self.encoder = json.load(open(vocab_file, encoding="utf-8"))
self.decoder = {v:k for k,v in self.encoder.items()}
merges = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
merges = [tuple(merge.split()) for merge in merges]
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {}
self.set_special_tokens(special_tokens)
def __len__(self):
return len(self.encoder) + len(self.special_tokens)
def set_special_tokens(self, special_tokens):
""" Add a list of additional tokens to the encoder.
The additional tokens are indexed starting from the last index of the
current vocabulary in the order of the `special_tokens` list.
"""
if not special_tokens:
self.special_tokens = {}
self.special_tokens_decoder = {}
return
self.special_tokens = dict((tok, len(self.encoder) + i) for i, tok in enumerate(special_tokens))
self.special_tokens_decoder = {v:k for k, v in self.special_tokens.items()}
if self.fix_text is None:
# Using BERT's BasicTokenizer: we can update the tokenizer
self.nlp.never_split = special_tokens
logger.info("Special tokens {}".format(self.special_tokens))
def bpe(self, token):
word = tuple(token[:-1]) + (token[-1] + '</w>',)
if token in self.cache:
return self.cache[token]
pairs = get_pairs(word)
if not pairs:
return token+'</w>'
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word)-1 and word[i+1] == second:
new_word.append(first+second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
if word == '\n </w>':
word = '\n</w>'
self.cache[token] = word
return word
def tokenize(self, text):
""" Tokenize a string. """
split_tokens = []
if self.fix_text is None:
# Using BERT's BasicTokenizer
text = self.nlp.tokenize(text)
for token in text:
split_tokens.extend([t for t in self.bpe(token).split(' ')])
else:
# Using SpaCy & ftfy (original tokenization process of OpenAI GPT)
text = self.nlp(text_standardize(self.fix_text(text)))
for token in text:
split_tokens.extend([t for t in self.bpe(token.text.lower()).split(' ')])
return split_tokens
def convert_tokens_to_ids(self, tokens):
""" Converts a sequence of tokens into ids using the vocab. """
ids = []
if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)):
if tokens in self.special_tokens:
return self.special_tokens[tokens]
else:
return self.encoder.get(tokens, 0)
for token in tokens:
if token in self.special_tokens:
ids.append(self.special_tokens[token])
else:
ids.append(self.encoder.get(token, 0))
if len(ids) > self.max_len:
raise ValueError(
"Token indices sequence length is longer than the specified maximum "
" sequence length for this OpenAI GPT model ({} > {}). Running this"
" sequence through the model will result in indexing errors".format(len(ids), self.max_len)
)
return ids
def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
"""Converts a sequence of ids in BPE tokens using the vocab."""
tokens = []
for i in ids:
if i in self.special_tokens_decoder:
if not skip_special_tokens:
tokens.append(self.special_tokens_decoder[i])
else:
tokens.append(self.decoder[i])
return tokens
def decode(self, ids, skip_special_tokens=False, clean_up_tokenization_spaces=False):
"""Converts a sequence of ids in a string."""
tokens = self.convert_ids_to_tokens(ids, skip_special_tokens=skip_special_tokens)
out_string = ''.join(tokens).replace('</w>', ' ').strip()
if clean_up_tokenization_spaces:
out_string = out_string.replace('<unk>', '')
out_string = out_string.replace(' .', '.').replace(' ?', '?').replace(' !', '!').replace(' ,', ',').replace(' ,', ','
).replace(" n't", "n't").replace(" 'm", "'m").replace(" 're", "'re").replace(" do not", " don't"
).replace(" 's", "'s").replace(" t ", "'t ").replace(" s ", "'s ").replace(" m ", "'m "
).replace(" 've", "'ve")
return out_string

View File

@ -0,0 +1,672 @@
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for Transformer XL model.
Adapted from https://github.com/kimiyoung/transformer-xl.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import glob
import logging
import os
import sys
from collections import Counter, OrderedDict
from io import open
import unicodedata
import torch
import numpy as np
from .file_utils import cached_path
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
logger = logging.getLogger(__name__)
PRETRAINED_VOCAB_ARCHIVE_MAP = {
'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-vocab.bin",
}
VOCAB_NAME = 'vocab.bin'
PRETRAINED_CORPUS_ARCHIVE_MAP = {
'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-corpus.bin",
}
CORPUS_NAME = 'corpus.bin'
class TransfoXLTokenizer(object):
"""
Transformer-XL tokenizer adapted from Vocab class in https://github.com/kimiyoung/transformer-xl
"""
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
"""
Instantiate a TransfoXLTokenizer.
The TransfoXLTokenizer.
"""
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
# redirect to the cache, if necessary
try:
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find files {} "
"at this path or url.".format(
pretrained_model_name_or_path,
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
pretrained_model_name_or_path,
vocab_file))
return None
if resolved_vocab_file == vocab_file:
logger.info("loading vocabulary file {}".format(vocab_file))
else:
logger.info("loading vocabulary file {} from cache at {}".format(
vocab_file, resolved_vocab_file))
# Instantiate tokenizer.
tokenizer = cls(*inputs, **kwargs)
vocab_dict = torch.load(resolved_vocab_file)
for key, value in vocab_dict.items():
tokenizer.__dict__[key] = value
return tokenizer
def __init__(self, special=[], min_freq=0, max_size=None, lower_case=False,
delimiter=None, vocab_file=None, never_split=("<unk>", "<eos>", "<formula>")):
self.counter = Counter()
self.special = special
self.min_freq = min_freq
self.max_size = max_size
self.lower_case = lower_case
self.delimiter = delimiter
self.vocab_file = vocab_file
self.never_split = never_split
def count_file(self, path, verbose=False, add_eos=False):
if verbose: print('counting file {} ...'.format(path))
assert os.path.exists(path)
sents = []
with open(path, 'r', encoding='utf-8') as f:
for idx, line in enumerate(f):
if verbose and idx > 0 and idx % 500000 == 0:
print(' line {}'.format(idx))
symbols = self.tokenize(line, add_eos=add_eos)
self.counter.update(symbols)
sents.append(symbols)
return sents
def count_sents(self, sents, verbose=False):
"""
sents : a list of sentences, each a list of tokenized symbols
"""
if verbose: print('counting {} sents ...'.format(len(sents)))
for idx, symbols in enumerate(sents):
if verbose and idx > 0 and idx % 500000 == 0:
print(' line {}'.format(idx))
self.counter.update(symbols)
def _build_from_file(self, vocab_file):
self.idx2sym = []
self.sym2idx = OrderedDict()
with open(vocab_file, 'r', encoding='utf-8') as f:
for line in f:
symb = line.strip().split()[0]
self.add_symbol(symb)
if '<UNK>' in self.sym2idx:
self.unk_idx = self.sym2idx['<UNK>']
elif '<unk>' in self.sym2idx:
self.unk_idx = self.sym2idx['<unk>']
else:
raise ValueError('No <unkown> token in vocabulary')
def build_vocab(self):
if self.vocab_file:
print('building vocab from {}'.format(self.vocab_file))
self._build_from_file(self.vocab_file)
print('final vocab size {}'.format(len(self)))
else:
print('building vocab with min_freq={}, max_size={}'.format(
self.min_freq, self.max_size))
self.idx2sym = []
self.sym2idx = OrderedDict()
for sym in self.special:
self.add_special(sym)
for sym, cnt in self.counter.most_common(self.max_size):
if cnt < self.min_freq: break
self.add_symbol(sym)
print('final vocab size {} from {} unique tokens'.format(
len(self), len(self.counter)))
def encode_file(self, path, ordered=False, verbose=False, add_eos=True,
add_double_eos=False):
if verbose: print('encoding file {} ...'.format(path))
assert os.path.exists(path)
encoded = []
with open(path, 'r', encoding='utf-8') as f:
for idx, line in enumerate(f):
if verbose and idx > 0 and idx % 500000 == 0:
print(' line {}'.format(idx))
symbols = self.tokenize(line, add_eos=add_eos,
add_double_eos=add_double_eos)
encoded.append(self.convert_to_tensor(symbols))
if ordered:
encoded = torch.cat(encoded)
return encoded
def encode_sents(self, sents, ordered=False, verbose=False):
if verbose: print('encoding {} sents ...'.format(len(sents)))
encoded = []
for idx, symbols in enumerate(sents):
if verbose and idx > 0 and idx % 500000 == 0:
print(' line {}'.format(idx))
encoded.append(self.convert_to_tensor(symbols))
if ordered:
encoded = torch.cat(encoded)
return encoded
def add_special(self, sym):
if sym not in self.sym2idx:
self.idx2sym.append(sym)
self.sym2idx[sym] = len(self.idx2sym) - 1
setattr(self, '{}_idx'.format(sym.strip('<>')), self.sym2idx[sym])
def add_symbol(self, sym):
if sym not in self.sym2idx:
self.idx2sym.append(sym)
self.sym2idx[sym] = len(self.idx2sym) - 1
def get_sym(self, idx):
assert 0 <= idx < len(self), 'Index {} out of vocabulary range'.format(idx)
return self.idx2sym[idx]
def get_idx(self, sym):
if sym in self.sym2idx:
return self.sym2idx[sym]
else:
# print('encounter unk {}'.format(sym))
# assert '<eos>' not in sym
if hasattr(self, 'unk_idx'):
return self.sym2idx.get(sym, self.unk_idx)
# Backward compatibility with pre-trained models
elif '<unk>' in self.sym2idx:
return self.sym2idx['<unk>']
elif '<UNK>' in self.sym2idx:
return self.sym2idx['<UNK>']
else:
raise ValueError('Token not in vocabulary and no <unk> token in vocabulary for replacement')
def convert_ids_to_tokens(self, indices):
"""Converts a sequence of indices in symbols using the vocab."""
return [self.get_sym(idx) for idx in indices]
def convert_tokens_to_ids(self, symbols):
"""Converts a sequence of symbols into ids using the vocab."""
return [self.get_idx(sym) for sym in symbols]
def convert_to_tensor(self, symbols):
return torch.LongTensor(self.convert_tokens_to_ids(symbols))
def decode(self, indices, exclude=None):
"""Converts a sequence of indices in a string."""
if exclude is None:
return ' '.join([self.get_sym(idx) for idx in indices])
else:
return ' '.join([self.get_sym(idx) for idx in indices if idx not in exclude])
def __len__(self):
return len(self.idx2sym)
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
if text in self.never_split:
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xfffd or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
def whitespace_tokenize(self, text):
"""Runs basic whitespace cleaning and splitting on a peice of text."""
text = text.strip()
if not text:
return []
if self.delimiter == '':
tokens = text
else:
tokens = text.split(self.delimiter)
return tokens
def tokenize(self, line, add_eos=False, add_double_eos=False):
line = self._clean_text(line)
line = line.strip()
symbols = self.whitespace_tokenize(line)
split_symbols = []
for symbol in symbols:
if self.lower_case and symbol not in self.never_split:
symbol = symbol.lower()
symbol = self._run_strip_accents(symbol)
split_symbols.extend(self._run_split_on_punc(symbol))
if add_double_eos: # lm1b
return ['<S>'] + split_symbols + ['<S>']
elif add_eos:
return split_symbols + ['<eos>']
else:
return split_symbols
class LMOrderedIterator(object):
def __init__(self, data, bsz, bptt, device='cpu', ext_len=None):
"""
data -- LongTensor -- the LongTensor is strictly ordered
"""
self.bsz = bsz
self.bptt = bptt
self.ext_len = ext_len if ext_len is not None else 0
self.device = device
# Work out how cleanly we can divide the dataset into bsz parts.
self.n_step = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, self.n_step * bsz)
# Evenly divide the data across the bsz batches.
self.data = data.view(bsz, -1).t().contiguous().to(device)
# Number of mini-batches
self.n_batch = (self.n_step + self.bptt - 1) // self.bptt
def get_batch(self, i, bptt=None):
if bptt is None: bptt = self.bptt
seq_len = min(bptt, self.data.size(0) - 1 - i)
end_idx = i + seq_len
beg_idx = max(0, i - self.ext_len)
data = self.data[beg_idx:end_idx]
target = self.data[i+1:i+1+seq_len]
data_out = data.transpose(0, 1).contiguous().to(self.device)
target_out = target.transpose(0, 1).contiguous().to(self.device)
return data_out, target_out, seq_len
def get_fixlen_iter(self, start=0):
for i in range(start, self.data.size(0) - 1, self.bptt):
yield self.get_batch(i)
def get_varlen_iter(self, start=0, std=5, min_len=5, max_deviation=3):
max_len = self.bptt + max_deviation * std
i = start
while True:
bptt = self.bptt if np.random.random() < 0.95 else self.bptt / 2.
bptt = min(max_len, max(min_len, int(np.random.normal(bptt, std))))
data, target, seq_len = self.get_batch(i, bptt)
i += seq_len
yield data, target, seq_len
if i >= self.data.size(0) - 2:
break
def __iter__(self):
return self.get_fixlen_iter()
class LMShuffledIterator(object):
def __init__(self, data, bsz, bptt, device='cpu', ext_len=None, shuffle=False):
"""
data -- list[LongTensor] -- there is no order among the LongTensors
"""
self.data = data
self.bsz = bsz
self.bptt = bptt
self.ext_len = ext_len if ext_len is not None else 0
self.device = device
self.shuffle = shuffle
def get_sent_stream(self):
# index iterator
epoch_indices = np.random.permutation(len(self.data)) if self.shuffle \
else np.array(range(len(self.data)))
# sentence iterator
for idx in epoch_indices:
yield self.data[idx]
def stream_iterator(self, sent_stream):
# streams for each data in the batch
streams = [None] * self.bsz
data = torch.LongTensor(self.bptt, self.bsz)
target = torch.LongTensor(self.bptt, self.bsz)
n_retain = 0
while True:
# data : [n_retain+bptt x bsz]
# target : [bptt x bsz]
data[n_retain:].fill_(-1)
target.fill_(-1)
valid_batch = True
for i in range(self.bsz):
n_filled = 0
try:
while n_filled < self.bptt:
if streams[i] is None or len(streams[i]) <= 1:
streams[i] = next(sent_stream)
# number of new tokens to fill in
n_new = min(len(streams[i]) - 1, self.bptt - n_filled)
# first n_retain tokens are retained from last batch
data[n_retain+n_filled:n_retain+n_filled+n_new, i] = \
streams[i][:n_new]
target[n_filled:n_filled+n_new, i] = \
streams[i][1:n_new+1]
streams[i] = streams[i][n_new:]
n_filled += n_new
except StopIteration:
valid_batch = False
break
if not valid_batch:
return
data_out = data.transpose(0, 1).contiguous().to(self.device)
target_out = target.transpose(0, 1).contiguous().to(self.device)
yield data_out, target_out, self.bptt
n_retain = min(data.size(0), self.ext_len)
if n_retain > 0:
data[:n_retain] = data[-n_retain:]
data.resize_(n_retain + self.bptt, data.size(1))
def __iter__(self):
# sent_stream is an iterator
sent_stream = self.get_sent_stream()
for batch in self.stream_iterator(sent_stream):
yield batch
class LMMultiFileIterator(LMShuffledIterator):
def __init__(self, paths, vocab, bsz, bptt, device='cpu', ext_len=None,
shuffle=False):
self.paths = paths
self.vocab = vocab
self.bsz = bsz
self.bptt = bptt
self.ext_len = ext_len if ext_len is not None else 0
self.device = device
self.shuffle = shuffle
def get_sent_stream(self, path):
sents = self.vocab.encode_file(path, add_double_eos=True)
if self.shuffle:
np.random.shuffle(sents)
sent_stream = iter(sents)
return sent_stream
def __iter__(self):
if self.shuffle:
np.random.shuffle(self.paths)
for path in self.paths:
# sent_stream is an iterator
sent_stream = self.get_sent_stream(path)
for batch in self.stream_iterator(sent_stream):
yield batch
class TransfoXLCorpus(object):
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
"""
Instantiate a pre-processed corpus.
"""
vocab = TransfoXLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
if pretrained_model_name_or_path in PRETRAINED_CORPUS_ARCHIVE_MAP:
corpus_file = PRETRAINED_CORPUS_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
corpus_file = os.path.join(pretrained_model_name_or_path, CORPUS_NAME)
# redirect to the cache, if necessary
try:
resolved_corpus_file = cached_path(corpus_file, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
"Corpus '{}' was not found in corpus list ({}). "
"We assumed '{}' was a path or url but couldn't find files {} "
"at this path or url.".format(
pretrained_model_name_or_path,
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
pretrained_model_name_or_path,
corpus_file))
return None
if resolved_corpus_file == corpus_file:
logger.info("loading corpus file {}".format(corpus_file))
else:
logger.info("loading corpus file {} from cache at {}".format(
corpus_file, resolved_corpus_file))
# Instantiate tokenizer.
corpus = cls(*inputs, **kwargs)
corpus_dict = torch.load(resolved_corpus_file)
for key, value in corpus_dict.items():
corpus.__dict__[key] = value
corpus.vocab = vocab
if corpus.train is not None:
corpus.train = torch.tensor(corpus.train, dtype=torch.long)
if corpus.valid is not None:
corpus.valid = torch.tensor(corpus.valid, dtype=torch.long)
if corpus.test is not None:
corpus.test = torch.tensor(corpus.test, dtype=torch.long)
return corpus
def __init__(self, *args, **kwargs):
self.vocab = TransfoXLTokenizer(*args, **kwargs)
self.dataset = None
self.train = None
self.valid = None
self.test = None
def build_corpus(self, path, dataset):
self.dataset = dataset
if self.dataset in ['ptb', 'wt2', 'enwik8', 'text8']:
self.vocab.count_file(os.path.join(path, 'train.txt'))
self.vocab.count_file(os.path.join(path, 'valid.txt'))
self.vocab.count_file(os.path.join(path, 'test.txt'))
elif self.dataset == 'wt103':
self.vocab.count_file(os.path.join(path, 'train.txt'))
elif self.dataset == 'lm1b':
train_path_pattern = os.path.join(
path, '1-billion-word-language-modeling-benchmark-r13output',
'training-monolingual.tokenized.shuffled', 'news.en-*')
train_paths = glob.glob(train_path_pattern)
# the vocab will load from file when build_vocab() is called
self.vocab.build_vocab()
if self.dataset in ['ptb', 'wt2', 'wt103']:
self.train = self.vocab.encode_file(
os.path.join(path, 'train.txt'), ordered=True)
self.valid = self.vocab.encode_file(
os.path.join(path, 'valid.txt'), ordered=True)
self.test = self.vocab.encode_file(
os.path.join(path, 'test.txt'), ordered=True)
elif self.dataset in ['enwik8', 'text8']:
self.train = self.vocab.encode_file(
os.path.join(path, 'train.txt'), ordered=True, add_eos=False)
self.valid = self.vocab.encode_file(
os.path.join(path, 'valid.txt'), ordered=True, add_eos=False)
self.test = self.vocab.encode_file(
os.path.join(path, 'test.txt'), ordered=True, add_eos=False)
elif self.dataset == 'lm1b':
self.train = train_paths
self.valid = self.vocab.encode_file(
os.path.join(path, 'valid.txt'), ordered=False, add_double_eos=True)
self.test = self.vocab.encode_file(
os.path.join(path, 'test.txt'), ordered=False, add_double_eos=True)
def get_iterator(self, split, *args, **kwargs):
if split == 'train':
if self.dataset in ['ptb', 'wt2', 'wt103', 'enwik8', 'text8']:
data_iter = LMOrderedIterator(self.train, *args, **kwargs)
elif self.dataset == 'lm1b':
kwargs['shuffle'] = True
data_iter = LMMultiFileIterator(self.train, self.vocab, *args, **kwargs)
elif split in ['valid', 'test']:
data = self.valid if split == 'valid' else self.test
if self.dataset in ['ptb', 'wt2', 'wt103', 'enwik8', 'text8']:
data_iter = LMOrderedIterator(data, *args, **kwargs)
elif self.dataset == 'lm1b':
data_iter = LMShuffledIterator(data, *args, **kwargs)
return data_iter
def get_lm_corpus(datadir, dataset):
fn = os.path.join(datadir, 'cache.pt')
fn_pickle = os.path.join(datadir, 'cache.pkl')
if os.path.exists(fn):
print('Loading cached dataset...')
corpus = torch.load(fn_pickle)
elif os.path.exists(fn):
print('Loading cached dataset from pickle...')
with open(fn, "rb") as fp:
corpus = pickle.load(fp)
else:
print('Producing dataset {}...'.format(dataset))
kwargs = {}
if dataset in ['wt103', 'wt2']:
kwargs['special'] = ['<eos>']
kwargs['lower_case'] = False
elif dataset == 'ptb':
kwargs['special'] = ['<eos>']
kwargs['lower_case'] = True
elif dataset == 'lm1b':
kwargs['special'] = []
kwargs['lower_case'] = False
kwargs['vocab_file'] = os.path.join(datadir, '1b_word_vocab.txt')
elif dataset in ['enwik8', 'text8']:
pass
corpus = TransfoXLCorpus(datadir, dataset, **kwargs)
torch.save(corpus, fn)
return corpus
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically contorl characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False

View File

@ -1,6 +1,5 @@
# This installs Pytorch for CUDA 8 only. If you are using a newer version,
# please visit http://pytorch.org/ and install the relevant version.
torch>=0.4.1,<0.5.0
# PyTorch
torch>=0.4.1
# progress bars in model download and training scripts
tqdm
# Accessing files from S3 directly.

View File

@ -1,12 +1,48 @@
"""
Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py
To create the package for pypi.
1. Change the version in __init__.py and setup.py.
2. Commit these changes with the message: "Release: VERSION"
3. Add a tag in git to mark the release: "git tag VERSION -m'Adds tag VERSION for pypi' "
Push the tag to git: git push --tags origin master
4. Build both the sources and the wheel. Do not change anything in setup.py between
creating the wheel and the source distribution (obviously).
For the wheel, run: "python setup.py bdist_wheel" in the top level allennlp directory.
(this will build a wheel for the python version you use to build it - make sure you use python 3.x).
For the sources, run: "python setup.py sdist"
You should now have a /dist directory with both .whl and .tar.gz source versions of allennlp.
5. Check that everything looks correct by uploading the package to the pypi test server:
twine upload dist/* -r pypitest
(pypi suggest using twine as other methods upload files via plaintext.)
Check that you can install it in a virtualenv by running:
pip install -i https://testpypi.python.org/pypi allennlp
6. Upload the final version to actual pypi:
twine upload dist/* -r pypi
7. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory.
"""
from io import open
from setuptools import find_packages, setup
setup(
name="pytorch_pretrained_bert",
version="0.2.0",
author="Thomas Wolf, Victor Sanh, Tim Rault, Google AI Language Team Authors",
version="0.6.0",
author="Thomas Wolf, Victor Sanh, Tim Rault, Google AI Language Team Authors, Open AI team Authors",
author_email="thomas@huggingface.co",
description="PyTorch version of Google AI BERT model with script to load Google pre-trained models",
long_description=open("README.md", "r").read(),
long_description=open("README.md", "r", encoding='utf-8').read(),
long_description_content_type="text/markdown",
keywords='BERT NLP deep learning google',
license='Apache',
@ -18,8 +54,12 @@ setup(
'boto3',
'requests',
'tqdm'],
scripts=["bin/pytorch_pretrained_bert"],
python_requires='>=3.5.0',
entry_points={
'console_scripts': [
"pytorch_pretrained_bert=pytorch_pretrained_bert.__main__:main",
]
},
# python_requires='>=3.5.0',
tests_require=['pytest'],
classifiers=[
'Intended Audience :: Science/Research',

210
tests/modeling_gpt2_test.py Normal file
View File

@ -0,0 +1,210 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import json
import random
import torch
from pytorch_pretrained_bert import (GPT2Config, GPT2Model,
GPT2LMHeadModel, GPT2DoubleHeadsModel)
class GPT2ModelTest(unittest.TestCase):
class GPT2ModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_position_ids=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
n_positions=33,
n_embd=32,
n_layer=5,
n_head=4,
n_choices=3,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
scope=None):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_position_ids = use_position_ids
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_choices = n_choices
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = GPT2ModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.vocab_size)
position_ids = None
if self.use_position_ids:
position_ids = GPT2ModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.n_positions)
token_type_ids = None
if self.use_token_type_ids:
total_voc = self.vocab_size
token_type_ids = GPT2ModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_voc)
mc_labels = None
lm_labels = None
mc_token_ids = None
if self.use_labels:
mc_labels = GPT2ModelTest.ids_tensor([self.batch_size], self.type_sequence_label_size)
lm_labels = GPT2ModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.num_labels)
mc_token_ids = GPT2ModelTest.ids_tensor([self.batch_size, self.n_choices], self.seq_length)
config = GPT2Config(
vocab_size_or_config_json_file=self.vocab_size,
n_positions=self.n_positions,
n_embd=self.n_embd,
n_layer=self.n_layer,
n_head=self.n_head,
initializer_range=self.initializer_range)
return (config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids)
def create_gpt2_model(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
model = GPT2Model(config)
model.eval()
hidden_states, presents = model(input_ids, position_ids, token_type_ids)
outputs = {
"hidden_states": hidden_states,
"presents": presents,
}
return outputs
def check_gpt2_model_output(self, result):
self.parent.assertListEqual(
list(result["hidden_states"].size()),
[self.batch_size, self.n_choices, self.seq_length, self.n_embd])
def create_gpt2_lm_head(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
model = GPT2LMHeadModel(config)
model.eval()
loss = model(input_ids, position_ids, token_type_ids, lm_labels)
lm_logits, presents = model(input_ids, position_ids, token_type_ids)
outputs = {
"loss": loss,
"lm_logits": lm_logits,
"presents": presents,
}
return outputs
def check_gpt2_lm_head_output(self, result):
total_voc = self.vocab_size
self.parent.assertListEqual(
list(result["lm_logits"].size()),
[self.batch_size, self.n_choices, self.seq_length, total_voc])
def check_gpt2_lm_head_loss_output(self, result):
self.parent.assertListEqual(
list(result["loss"].size()),
[])
def create_gpt2_double_heads(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
model = GPT2DoubleHeadsModel(config)
model.eval()
loss = model(input_ids, mc_token_ids,
lm_labels=lm_labels, mc_labels=mc_labels,
token_type_ids=token_type_ids, position_ids=position_ids)
lm_logits, mc_logits, presents = model(input_ids, mc_token_ids, position_ids=position_ids, token_type_ids=token_type_ids)
outputs = {
"loss": loss,
"lm_logits": lm_logits,
"mc_logits": mc_logits,
"presents": presents,
}
return outputs
def check_gpt2_double_heads_output(self, result):
total_voc = self.vocab_size
self.parent.assertListEqual(
list(result["lm_logits"].size()),
[self.batch_size, self.n_choices, self.seq_length, total_voc])
self.parent.assertListEqual(
list(result["mc_logits"].size()),
[self.batch_size, self.n_choices])
def check_gpt2_double_heads_loss_output(self, result):
self.parent.assertListEqual(
[list(l.size()) for l in result["loss"]],
[[], []])
def test_default(self):
self.run_tester(GPT2ModelTest.GPT2ModelTester(self))
def test_config_to_json_string(self):
config = GPT2Config(vocab_size_or_config_json_file=99, n_embd=37)
obj = json.loads(config.to_json_string())
self.assertEqual(obj["vocab_size"], 99)
self.assertEqual(obj["n_embd"], 37)
def run_tester(self, tester):
config_and_inputs = tester.prepare_config_and_inputs()
output_result = tester.create_gpt2_model(*config_and_inputs)
tester.check_gpt2_model_output(output_result)
output_result = tester.create_gpt2_lm_head(*config_and_inputs)
tester.check_gpt2_lm_head_output(output_result)
tester.check_gpt2_lm_head_loss_output(output_result)
output_result = tester.create_gpt2_double_heads(*config_and_inputs)
tester.check_gpt2_double_heads_output(output_result)
tester.check_gpt2_double_heads_loss_output(output_result)
@classmethod
def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,222 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import json
import random
import torch
from pytorch_pretrained_bert import (OpenAIGPTConfig, OpenAIGPTModel,
OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel)
class OpenAIGPTModelTest(unittest.TestCase):
class OpenAIGPTModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_position_ids=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
n_special=1,
n_positions=33,
n_embd=32,
n_layer=5,
n_head=4,
n_choices=3,
afn="gelu",
resid_pdrop=0.1,
attn_pdrop=0.1,
embd_pdrop=0.1,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
scope=None):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_position_ids = use_position_ids
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.n_special = n_special
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.afn = afn
self.n_choices = n_choices
self.resid_pdrop = resid_pdrop
self.attn_pdrop = attn_pdrop
self.embd_pdrop = embd_pdrop
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.vocab_size)
position_ids = None
if self.use_position_ids:
position_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.n_positions)
token_type_ids = None
if self.use_token_type_ids:
total_voc = self.vocab_size + self.n_special
token_type_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_voc)
mc_labels = None
lm_labels = None
mc_token_ids = None
if self.use_labels:
mc_labels = OpenAIGPTModelTest.ids_tensor([self.batch_size], self.type_sequence_label_size)
lm_labels = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.num_labels)
mc_token_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices], self.seq_length)
config = OpenAIGPTConfig(
vocab_size_or_config_json_file=self.vocab_size,
n_positions=self.n_positions,
n_special=self.n_special,
n_embd=self.n_embd,
n_layer=self.n_layer,
n_head=self.n_head,
afn=self.afn,
resid_pdrop=self.resid_pdrop,
attn_pdrop=self.attn_pdrop,
embd_pdrop=self.embd_pdrop,
initializer_range=self.initializer_range)
return (config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids)
def create_openai_model(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
model = OpenAIGPTModel(config)
model.eval()
hidden_states = model(input_ids, position_ids, token_type_ids)
outputs = {
"hidden_states": hidden_states,
}
return outputs
def check_openai_model_output(self, result):
self.parent.assertListEqual(
list(result["hidden_states"].size()),
[self.batch_size, self.n_choices, self.seq_length, self.n_embd])
def create_openai_lm_head(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
model = OpenAIGPTLMHeadModel(config)
model.eval()
loss = model(input_ids, position_ids, token_type_ids, lm_labels)
lm_logits = model(input_ids, position_ids, token_type_ids)
outputs = {
"loss": loss,
"lm_logits": lm_logits,
}
return outputs
def check_openai_lm_head_output(self, result):
total_voc = self.n_special + self.vocab_size
self.parent.assertListEqual(
list(result["lm_logits"].size()),
[self.batch_size, self.n_choices, self.seq_length, total_voc])
def check_openai_lm_head_loss_output(self, result):
self.parent.assertListEqual(
list(result["loss"].size()),
[])
def create_openai_double_heads(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
model = OpenAIGPTDoubleHeadsModel(config)
model.eval()
loss = model(input_ids, mc_token_ids,
lm_labels=lm_labels, mc_labels=mc_labels,
token_type_ids=token_type_ids, position_ids=position_ids)
lm_logits, mc_logits = model(input_ids, mc_token_ids, position_ids=position_ids, token_type_ids=token_type_ids)
outputs = {
"loss": loss,
"lm_logits": lm_logits,
"mc_logits": mc_logits,
}
return outputs
def check_openai_double_heads_output(self, result):
total_voc = self.n_special + self.vocab_size
self.parent.assertListEqual(
list(result["lm_logits"].size()),
[self.batch_size, self.n_choices, self.seq_length, total_voc])
self.parent.assertListEqual(
list(result["mc_logits"].size()),
[self.batch_size, self.n_choices])
def check_openai_double_heads_loss_output(self, result):
self.parent.assertListEqual(
[list(l.size()) for l in result["loss"]],
[[], []])
def test_default(self):
self.run_tester(OpenAIGPTModelTest.OpenAIGPTModelTester(self))
def test_config_to_json_string(self):
config = OpenAIGPTConfig(vocab_size_or_config_json_file=99, n_embd=37)
obj = json.loads(config.to_json_string())
self.assertEqual(obj["vocab_size"], 99)
self.assertEqual(obj["n_embd"], 37)
def run_tester(self, tester):
config_and_inputs = tester.prepare_config_and_inputs()
output_result = tester.create_openai_model(*config_and_inputs)
tester.check_openai_model_output(output_result)
output_result = tester.create_openai_lm_head(*config_and_inputs)
tester.check_openai_lm_head_output(output_result)
tester.check_openai_lm_head_loss_output(output_result)
output_result = tester.create_openai_double_heads(*config_and_inputs)
tester.check_openai_double_heads_output(output_result)
tester.check_openai_double_heads_loss_output(output_result)
@classmethod
def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
if __name__ == "__main__":
unittest.main()

View File

@ -22,7 +22,10 @@ import random
import torch
from pytorch_pretrained_bert import BertConfig, BertModel
from pytorch_pretrained_bert import (BertConfig, BertModel, BertForMaskedLM,
BertForNextSentencePrediction, BertForPreTraining,
BertForQuestionAnswering, BertForSequenceClassification,
BertForTokenClassification)
class BertModelTest(unittest.TestCase):
@ -35,6 +38,7 @@ class BertModelTest(unittest.TestCase):
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
@ -45,7 +49,9 @@ class BertModelTest(unittest.TestCase):
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
scope=None):
self.parent = parent
self.batch_size = batch_size
@ -53,6 +59,7 @@ class BertModelTest(unittest.TestCase):
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
@ -63,10 +70,12 @@ class BertModelTest(unittest.TestCase):
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
def create_model(self):
def prepare_config_and_inputs(self):
input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
@ -77,6 +86,12 @@ class BertModelTest(unittest.TestCase):
if self.use_token_type_ids:
token_type_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
if self.use_labels:
sequence_labels = BertModelTest.ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.num_labels)
config = BertConfig(
vocab_size_or_config_json_file=self.vocab_size,
hidden_size=self.hidden_size,
@ -90,10 +105,17 @@ class BertModelTest(unittest.TestCase):
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels
def check_loss_output(self, result):
self.parent.assertListEqual(
list(result["loss"].size()),
[])
def create_bert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
model = BertModel(config=config)
model.eval()
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
outputs = {
"sequence_output": all_encoder_layers[-1],
"pooled_output": pooled_output,
@ -101,13 +123,125 @@ class BertModelTest(unittest.TestCase):
}
return outputs
def check_output(self, result):
def check_bert_model_output(self, result):
self.parent.assertListEqual(
[size for layer in result["all_encoder_layers"] for size in layer.size()],
[self.batch_size, self.seq_length, self.hidden_size] * self.num_hidden_layers)
self.parent.assertListEqual(
list(result["sequence_output"].size()),
[self.batch_size, self.seq_length, self.hidden_size])
self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
def create_bert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
model = BertForMaskedLM(config=config)
model.eval()
loss = model(input_ids, token_type_ids, input_mask, token_labels)
prediction_scores = model(input_ids, token_type_ids, input_mask)
outputs = {
"loss": loss,
"prediction_scores": prediction_scores,
}
return outputs
def check_bert_for_masked_lm_output(self, result):
self.parent.assertListEqual(
list(result["prediction_scores"].size()),
[self.batch_size, self.seq_length, self.vocab_size])
def create_bert_for_next_sequence_prediction(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
model = BertForNextSentencePrediction(config=config)
model.eval()
loss = model(input_ids, token_type_ids, input_mask, sequence_labels)
seq_relationship_score = model(input_ids, token_type_ids, input_mask)
outputs = {
"loss": loss,
"seq_relationship_score": seq_relationship_score,
}
return outputs
def check_bert_for_next_sequence_prediction_output(self, result):
self.parent.assertListEqual(
list(result["seq_relationship_score"].size()),
[self.batch_size, 2])
def create_bert_for_pretraining(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
model = BertForPreTraining(config=config)
model.eval()
loss = model(input_ids, token_type_ids, input_mask, token_labels, sequence_labels)
prediction_scores, seq_relationship_score = model(input_ids, token_type_ids, input_mask)
outputs = {
"loss": loss,
"prediction_scores": prediction_scores,
"seq_relationship_score": seq_relationship_score,
}
return outputs
def check_bert_for_pretraining_output(self, result):
self.parent.assertListEqual(
list(result["prediction_scores"].size()),
[self.batch_size, self.seq_length, self.vocab_size])
self.parent.assertListEqual(
list(result["seq_relationship_score"].size()),
[self.batch_size, 2])
def create_bert_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
model = BertForQuestionAnswering(config=config)
model.eval()
loss = model(input_ids, token_type_ids, input_mask, sequence_labels, sequence_labels)
start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
outputs = {
"loss": loss,
"start_logits": start_logits,
"end_logits": end_logits,
}
return outputs
def check_bert_for_question_answering_output(self, result):
self.parent.assertListEqual(
list(result["start_logits"].size()),
[self.batch_size, self.seq_length])
self.parent.assertListEqual(
list(result["end_logits"].size()),
[self.batch_size, self.seq_length])
def create_bert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
model = BertForSequenceClassification(config=config, num_labels=self.num_labels)
model.eval()
loss = model(input_ids, token_type_ids, input_mask, sequence_labels)
logits = model(input_ids, token_type_ids, input_mask)
outputs = {
"loss": loss,
"logits": logits,
}
return outputs
def check_bert_for_sequence_classification_output(self, result):
self.parent.assertListEqual(
list(result["logits"].size()),
[self.batch_size, self.num_labels])
def create_bert_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
model = BertForTokenClassification(config=config, num_labels=self.num_labels)
model.eval()
loss = model(input_ids, token_type_ids, input_mask, token_labels)
logits = model(input_ids, token_type_ids, input_mask)
outputs = {
"loss": loss,
"logits": logits,
}
return outputs
def check_bert_for_token_classification_output(self, result):
self.parent.assertListEqual(
list(result["logits"].size()),
[self.batch_size, self.seq_length, self.num_labels])
def test_default(self):
self.run_tester(BertModelTest.BertModelTester(self))
@ -118,8 +252,33 @@ class BertModelTest(unittest.TestCase):
self.assertEqual(obj["hidden_size"], 37)
def run_tester(self, tester):
output_result = tester.create_model()
tester.check_output(output_result)
config_and_inputs = tester.prepare_config_and_inputs()
output_result = tester.create_bert_model(*config_and_inputs)
tester.check_bert_model_output(output_result)
output_result = tester.create_bert_for_masked_lm(*config_and_inputs)
tester.check_bert_for_masked_lm_output(output_result)
tester.check_loss_output(output_result)
output_result = tester.create_bert_for_next_sequence_prediction(*config_and_inputs)
tester.check_bert_for_next_sequence_prediction_output(output_result)
tester.check_loss_output(output_result)
output_result = tester.create_bert_for_pretraining(*config_and_inputs)
tester.check_bert_for_pretraining_output(output_result)
tester.check_loss_output(output_result)
output_result = tester.create_bert_for_question_answering(*config_and_inputs)
tester.check_bert_for_question_answering_output(output_result)
tester.check_loss_output(output_result)
output_result = tester.create_bert_for_sequence_classification(*config_and_inputs)
tester.check_bert_for_sequence_classification_output(output_result)
tester.check_loss_output(output_result)
output_result = tester.create_bert_for_token_classification(*config_and_inputs)
tester.check_bert_for_token_classification_output(output_result)
tester.check_loss_output(output_result)
@classmethod
def ids_tensor(cls, shape, vocab_size, rng=None, name=None):

View File

@ -0,0 +1,218 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import json
import random
import torch
from pytorch_pretrained_bert import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel)
class TransfoXLModelTest(unittest.TestCase):
class TransfoXLModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
mem_len=30,
clamp_len=15,
is_training=True,
use_labels=True,
vocab_size=99,
cutoffs=[10, 50, 80],
d_model=32,
d_embed=32,
n_head=4,
d_head=8,
d_inner=128,
div_val=2,
n_layer=5,
scope=None,
seed=1):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.mem_len = mem_len
self.clamp_len = clamp_len
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.cutoffs = cutoffs
self.d_model = d_model
self.d_embed = d_embed
self.n_head = n_head
self.d_head = d_head
self.d_inner = d_inner
self.div_val = div_val
self.n_layer = n_layer
self.scope = scope
self.seed = seed
def prepare_config_and_inputs(self):
input_ids_1 = TransfoXLModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids_2 = TransfoXLModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
lm_labels = None
if self.use_labels:
lm_labels = TransfoXLModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = TransfoXLConfig(
vocab_size_or_config_json_file=self.vocab_size,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
cutoffs=self.cutoffs,
d_model=self.d_model,
d_embed=self.d_embed,
n_head=self.n_head,
d_head=self.d_head,
d_inner=self.d_inner,
div_val=self.div_val,
n_layer=self.n_layer)
return (config, input_ids_1, input_ids_2, lm_labels)
def set_seed(self):
random.seed(self.seed)
torch.manual_seed(self.seed)
def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLModel(config)
model.eval()
hidden_states_1, mems_1 = model(input_ids_1)
hidden_states_2, mems_2 = model(input_ids_2, mems_1)
outputs = {
"hidden_states_1": hidden_states_1,
"mems_1": mems_1,
"hidden_states_2": hidden_states_2,
"mems_2": mems_2,
}
return outputs
def check_transfo_xl_model_output(self, result):
self.parent.assertListEqual(
list(result["hidden_states_1"].size()),
[self.batch_size, self.seq_length, self.d_model])
self.parent.assertListEqual(
list(result["hidden_states_2"].size()),
[self.batch_size, self.seq_length, self.d_model])
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLLMHeadModel(config)
model.eval()
loss_1, mems_1a = model(input_ids_1, target=lm_labels)
lm_logits_1, mems_1b = model(input_ids_1)
loss_2, mems_2a = model(input_ids_2, target=lm_labels, mems=mems_1a)
lm_logits_2, mems_2b = model(input_ids_2, mems=mems_1b)
outputs = {
"loss_1": loss_1,
"mems_1a": mems_1a,
"lm_logits_1": lm_logits_1,
"mems_1b": mems_1b,
"loss_2": loss_2,
"mems_2a": mems_2a,
"lm_logits_2": lm_logits_2,
"mems_2b": mems_2b,
}
return outputs
def check_transfo_xl_lm_head_output(self, result):
self.parent.assertListEqual(
list(result["loss_1"].size()),
[self.batch_size, self.seq_length])
self.parent.assertListEqual(
list(result["lm_logits_1"].size()),
[self.batch_size, self.seq_length, self.vocab_size])
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1a"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1b"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
self.parent.assertListEqual(
list(mem[~torch.isnan(mem)].sum() for mem in result["mems_1a"]),
list(mem[~torch.isnan(mem)].sum() for mem in result["mems_1b"]))
self.parent.assertListEqual(
list(result["loss_2"].size()),
[self.batch_size, self.seq_length])
self.parent.assertListEqual(
list(result["lm_logits_2"].size()),
[self.batch_size, self.seq_length, self.vocab_size])
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2a"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2b"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
self.parent.assertListEqual(
list(mem[~torch.isnan(mem)].sum() for mem in result["mems_2a"]),
list(mem[~torch.isnan(mem)].sum() for mem in result["mems_2b"]))
def test_default(self):
self.run_tester(TransfoXLModelTest.TransfoXLModelTester(self))
def test_config_to_json_string(self):
config = TransfoXLConfig(vocab_size_or_config_json_file=96, d_embed=37)
obj = json.loads(config.to_json_string())
self.assertEqual(obj["n_token"], 96)
self.assertEqual(obj["d_embed"], 37)
def run_tester(self, tester):
config_and_inputs = tester.prepare_config_and_inputs()
tester.set_seed()
output_result = tester.create_transfo_xl_model(*config_and_inputs)
tester.check_transfo_xl_model_output(output_result)
tester.set_seed()
output_result = tester.create_transfo_xl_lm_head(*config_and_inputs)
tester.check_transfo_xl_lm_head_output(output_result)
@classmethod
def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
if __name__ == "__main__":
unittest.main()

View File

@ -32,10 +32,10 @@ class OptimizationTest(unittest.TestCase):
def test_adam(self):
w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
target = torch.tensor([0.4, 0.2, -0.5])
criterion = torch.nn.MSELoss(reduction='elementwise_mean')
criterion = torch.nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
optimizer = BertAdam(params=[w], lr=2e-1,
weight_decay_rate=0.0,
weight_decay=0.0,
max_grad_norm=-1)
for _ in range(100):
loss = criterion(w, target)

View File

@ -0,0 +1,56 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import unittest
import json
from pytorch_pretrained_bert.tokenization_openai import OpenAIGPTTokenizer
class OpenAIGPTTokenizationTest(unittest.TestCase):
def test_full_tokenizer(self):
""" Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt """
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n",
"w</w>", "r</w>", "t</w>",
"lo", "low", "er</w>",
"low</w>", "lowest</w>", "newer</w>", "wider</w>"]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "l o", "lo w", "e r</w>", ""]
with open("/tmp/openai_tokenizer_vocab_test.json", "w") as fp:
json.dump(vocab_tokens, fp)
vocab_file = fp.name
with open("/tmp/openai_tokenizer_merges_test.txt", "w") as fp:
fp.write("\n".join(merges))
merges_file = fp.name
tokenizer = OpenAIGPTTokenizer(vocab_file, merges_file, special_tokens=["<unk>"])
os.remove(vocab_file)
os.remove(merges_file)
text = "lower"
bpe_tokens = ["low", "er</w>"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + ["<unk>"]
input_bpe_tokens = [14, 15, 20]
self.assertListEqual(
tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
if __name__ == '__main__':
unittest.main()

View File

@ -12,15 +12,17 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import unittest
from io import open
from pytorch_pretrained_bert.tokenization import (BertTokenizer, BasicTokenizer, WordpieceTokenizer,
_is_whitespace, _is_control, _is_punctuation)
from pytorch_pretrained_bert.tokenization import (BasicTokenizer,
BertTokenizer,
WordpieceTokenizer,
_is_control, _is_punctuation,
_is_whitespace)
class TokenizationTest(unittest.TestCase):
@ -30,7 +32,7 @@ class TokenizationTest(unittest.TestCase):
"[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
"##ing", ","
]
with open("/tmp/bert_tokenizer_test.txt", "w") as vocab_writer:
with open("/tmp/bert_tokenizer_test.txt", "w", encoding='utf-8') as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
vocab_file = vocab_writer.name
@ -44,12 +46,30 @@ class TokenizationTest(unittest.TestCase):
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9])
def test_full_tokenizer_raises_error_for_long_sequences(self):
vocab_tokens = [
"[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
"##ing", ","
]
with open("/tmp/bert_tokenizer_test.txt", "w", encoding='utf-8') as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
vocab_file = vocab_writer.name
tokenizer = BertTokenizer(vocab_file, max_len=10)
os.remove(vocab_file)
tokens = tokenizer.tokenize(u"the cat sat on the mat in the summer time")
indices = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(indices, [0 for _ in range(10)])
tokens = tokenizer.tokenize(u"the cat sat on the mat in the summer time .")
self.assertRaises(ValueError, tokenizer.convert_tokens_to_ids, tokens)
def test_chinese(self):
tokenizer = BasicTokenizer()
self.assertListEqual(
tokenizer.tokenize(u"ah\u535A\u63A8zz"),
[u"ah", u"\u535A", u"\u63A8", u"zz"])
[u"ah", u"\u535A", u"\u63A8", u"zz"])
def test_basic_tokenizer_lower(self):
tokenizer = BasicTokenizer(do_lower_case=True)

View File

@ -0,0 +1,90 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import unittest
from io import open
from pytorch_pretrained_bert.tokenization_transfo_xl import (TransfoXLTokenizer,
_is_control, _is_punctuation,
_is_whitespace)
class TransfoXLTokenizationTest(unittest.TestCase):
def test_full_tokenizer(self):
vocab_tokens = [
"<unk>", "[CLS]", "[SEP]", "want", "unwanted", "wa", "un", "running", ","
]
with open("/tmp/transfo_xl_tokenizer_test.txt", "w", encoding='utf-8') as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
vocab_file = vocab_writer.name
tokenizer = TransfoXLTokenizer(vocab_file=vocab_file, lower_case=True)
tokenizer.build_vocab()
os.remove(vocab_file)
tokens = tokenizer.tokenize(u"<unk> UNwant\u00E9d,running")
self.assertListEqual(tokens, ["<unk>", "unwanted", ",", "running"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens), [0, 4, 8, 7])
def test_full_tokenizer_lower(self):
tokenizer = TransfoXLTokenizer(lower_case=True)
self.assertListEqual(
tokenizer.tokenize(u" \tHeLLo!how \n Are yoU? "),
["hello", "!", "how", "are", "you", "?"])
self.assertListEqual(tokenizer.tokenize(u"H\u00E9llo"), ["hello"])
def test_full_tokenizer_no_lower(self):
tokenizer = TransfoXLTokenizer(lower_case=False)
self.assertListEqual(
tokenizer.tokenize(u" \tHeLLo!how \n Are yoU? "),
["HeLLo", "!", "how", "Are", "yoU", "?"])
def test_is_whitespace(self):
self.assertTrue(_is_whitespace(u" "))
self.assertTrue(_is_whitespace(u"\t"))
self.assertTrue(_is_whitespace(u"\r"))
self.assertTrue(_is_whitespace(u"\n"))
self.assertTrue(_is_whitespace(u"\u00A0"))
self.assertFalse(_is_whitespace(u"A"))
self.assertFalse(_is_whitespace(u"-"))
def test_is_control(self):
self.assertTrue(_is_control(u"\u0005"))
self.assertFalse(_is_control(u"A"))
self.assertFalse(_is_control(u" "))
self.assertFalse(_is_control(u"\t"))
self.assertFalse(_is_control(u"\r"))
def test_is_punctuation(self):
self.assertTrue(_is_punctuation(u"-"))
self.assertTrue(_is_punctuation(u"$"))
self.assertTrue(_is_punctuation(u"`"))
self.assertTrue(_is_punctuation(u"."))
self.assertFalse(_is_punctuation(u"A"))
self.assertFalse(_is_punctuation(u" "))
if __name__ == '__main__':
unittest.main()