mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-26 22:14:33 +08:00
Compare commits
262 Commits
use_new_ti
...
remove-use
| Author | SHA1 | Date | |
|---|---|---|---|
| e1f5ad7297 | |||
| 22137bf322 | |||
| fe11cbb808 | |||
| 6344371a91 | |||
| a408384a88 | |||
| f7c33abab3 | |||
| 9839d57a02 | |||
| e85d5ab2bb | |||
| 1c36d407d5 | |||
| 0215846d98 | |||
| 9e99198e5e | |||
| bf815e9b5e | |||
| 4a43e3d57c | |||
| 8725ce10ed | |||
| 1fb3fc4db0 | |||
| 9176af574a | |||
| 503c933f36 | |||
| 2aff20aff6 | |||
| 981370c038 | |||
| eef9fb2af3 | |||
| 35dc8f0a2e | |||
| 2935a1be19 | |||
| b9bd8c45a1 | |||
| baecdb8a97 | |||
| 44539827d5 | |||
| 143acfe2ce | |||
| 67fae90519 | |||
| 61560b295a | |||
| af2a66ced9 | |||
| a59124e27e | |||
| 81f97b17d2 | |||
| c0a5cf19ad | |||
| 3ef6f2c415 | |||
| 59efd86da2 | |||
| 7b7d17f9bf | |||
| e20df45bf6 | |||
| 19df66dcba | |||
| 9f71e3a604 | |||
| 74410d8c78 | |||
| bc9900562d | |||
| 72fd67929b | |||
| da382917aa | |||
| 313afcc468 | |||
| 7bba4d1202 | |||
| ab92534377 | |||
| 56a727dde5 | |||
| dc6fdeb705 | |||
| 3953b65440 | |||
| 96d245a83d | |||
| bb0c3af995 | |||
| 70e871959c | |||
| 863cc2e234 | |||
| a2eab57312 | |||
| c4210796e0 | |||
| fcd1ccdb78 | |||
| 2b2c20f315 | |||
| e2122c4bcb | |||
| e89cef6625 | |||
| 26b7f66850 | |||
| 5db730786d | |||
| 13a35a5057 | |||
| 94df0e6560 | |||
| 9e4199ede3 | |||
| de014f92c2 | |||
| 16a25c15ff | |||
| 0911196aa6 | |||
| 19166645f3 | |||
| 4c8d293599 | |||
| a99b1be3c7 | |||
| 82cae9eb52 | |||
| 4fad35ee4a | |||
| ae6f6cc3e0 | |||
| fd787c5f6d | |||
| 4e4f2af586 | |||
| 3648fde486 | |||
| abf5b57a68 | |||
| 8fe4db5399 | |||
| c620c38bb0 | |||
| 0798797ec9 | |||
| 0566b6f5bd | |||
| b3e3c3dc93 | |||
| b84c0b31c6 | |||
| 1ee3b288a6 | |||
| cad74496ca | |||
| 3813a8e3a1 | |||
| 66d8d7a077 | |||
| d621be8286 | |||
| d7c9fbdb64 | |||
| 41e763decd | |||
| cf1e9834ec | |||
| 6c901bdc0e | |||
| 58f9e13313 | |||
| eb28242251 | |||
| 65cb8fac6d | |||
| 3927ffed31 | |||
| 7164924a7e | |||
| 26a5368c44 | |||
| feca4f3de7 | |||
| c6042a4169 | |||
| dfd4121cd4 | |||
| 60f6ec438a | |||
| f9f8bf5a10 | |||
| b4067472ae | |||
| bc529a3368 | |||
| b92fc0c6e1 | |||
| 2eae7c7452 | |||
| c5094a4f97 | |||
| f4487ec521 | |||
| e8194fe84f | |||
| 9556b36b2f | |||
| 5aca530b34 | |||
| 4f323369db | |||
| f5f3457278 | |||
| 3585737746 | |||
| b543679d0e | |||
| ac7777be16 | |||
| 17c31a98ac | |||
| b28902c86b | |||
| d0271be18f | |||
| 0419ff881d | |||
| 081391b20e | |||
| 1ddbbdef48 | |||
| c20849bad1 | |||
| 776eea8612 | |||
| 3839d51013 | |||
| 78f79ba5af | |||
| 11c597b1b8 | |||
| b450d55a91 | |||
| 1a3a5f5289 | |||
| 823fab4860 | |||
| 42d4e13a0b | |||
| 0eae41ad36 | |||
| 589fc29c9d | |||
| 26b5b52676 | |||
| 34b861abd1 | |||
| b44d91570f | |||
| d99069195b | |||
| bf38b2d11d | |||
| 72a3fc275c | |||
| 9ef804472b | |||
| 2b5e4c0d13 | |||
| add4df62ba | |||
| 3e87072666 | |||
| f0544d7e7c | |||
| d1c6310d6a | |||
| 927aa8bef2 | |||
| 1951f3be8e | |||
| f50fd7fb6b | |||
| be3fa93b29 | |||
| 8137dbdbbd | |||
| 7aa888b7fa | |||
| bfe2b623ef | |||
| b9be8a8775 | |||
| bef73bf8d7 | |||
| 89a4115a6b | |||
| 82ffeb28ad | |||
| e064dc05c2 | |||
| 20282f13fa | |||
| c528f50663 | |||
| 8dfc8e8cfc | |||
| 2166e26cb1 | |||
| b13ee63b5a | |||
| 1c5ac899e8 | |||
| 957b1f3696 | |||
| 13791d8f48 | |||
| 7e475552be | |||
| 46db0edf3b | |||
| ee5488440b | |||
| 34dcd73b57 | |||
| 3553f0bc23 | |||
| 242eb9cbdc | |||
| 50090c3fc8 | |||
| ccbaa1670a | |||
| c562c5d801 | |||
| 88e946e062 | |||
| 93464a0279 | |||
| 0c9a72e457 | |||
| b4428d545f | |||
| 0464d9eb37 | |||
| da7b8ce11f | |||
| 4763b8c5b8 | |||
| caa14e7dab | |||
| 73f8c4b8ad | |||
| 57e82745f9 | |||
| 505387c05b | |||
| e00f46f16e | |||
| 0395ed52ae | |||
| 39b0c9491b | |||
| 11e4b5e5ee | |||
| fa36c973fc | |||
| 7a1aeec36e | |||
| 297a41a6cf | |||
| ae60c77689 | |||
| 6bf6e36d3b | |||
| 4903cd4087 | |||
| a5700c497e | |||
| 089d573aca | |||
| c27b67f0cd | |||
| a89bdcf5f1 | |||
| 0452f28544 | |||
| 9db58abd6e | |||
| db711210d2 | |||
| 163601c619 | |||
| 55b172b8eb | |||
| 1ec0b54414 | |||
| 0947b9042c | |||
| e11a00a16f | |||
| 1bc75db9bd | |||
| c2b3cc3e64 | |||
| 5abfa43f02 | |||
| 217ff1e4ef | |||
| 5339f72b9b | |||
| 42bcc81ba2 | |||
| cd4422922e | |||
| 59eba49237 | |||
| de3ee737cf | |||
| b914445f77 | |||
| 41e5abac5c | |||
| da3c7d1d36 | |||
| e54defcfc2 | |||
| b3bd815786 | |||
| e4930d6bde | |||
| 7adb43e60a | |||
| e1f1d32af0 | |||
| 1d7ebff398 | |||
| 9d02602f0f | |||
| 248e7ef8bc | |||
| bc33fd3fc2 | |||
| 639ad8ccd9 | |||
| 894a2bdd8c | |||
| 1cc9069551 | |||
| 4f286fbbf8 | |||
| 1d91a8a454 | |||
| f1b64c5b06 | |||
| 2f3e266692 | |||
| 313504bcdd | |||
| 8f14300663 | |||
| 734732140a | |||
| 7938e91faa | |||
| e6a8e7debe | |||
| 30b79effb5 | |||
| aabf0a03cb | |||
| bcdd5532bf | |||
| 55d63e86ea | |||
| 522b79a346 | |||
| 9f2d5666f8 | |||
| 9d8f693c7e | |||
| 94bbf8e199 | |||
| c4b505d0f7 | |||
| 01c9e1ba68 | |||
| 025531981c | |||
| 3256773974 | |||
| d848a3953a | |||
| e4913bdf50 | |||
| 1c8f206ecc | |||
| 3016717f0d | |||
| ca975f1cb8 | |||
| 1d1ac07893 | |||
| bcec3e2175 | |||
| ae879f67f8 | |||
| 1c4d9982d3 | |||
| db1cc65c06 |
@ -29,6 +29,7 @@ COMMON_ENV_VARIABLES = {
|
||||
"RUN_PIPELINE_TESTS": False,
|
||||
# will be adjust in `CircleCIJob.to_dict`.
|
||||
"RUN_FLAKY": True,
|
||||
"DISABLE_SAFETENSORS_CONVERSION": True,
|
||||
}
|
||||
# Disable the use of {"s": None} as the output is way too long, causing the navigation on CircleCI impractical
|
||||
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "vvv": None, "rsfE":None}
|
||||
@ -185,6 +186,7 @@ class CircleCIJob:
|
||||
# During the CircleCI docker images build time, we might already (or not) download the data.
|
||||
# If it's done already, the files are inside the directory `/test_data/`.
|
||||
{"run": {"name": "fetch hub objects before pytest", "command": "cp -r /test_data/* . 2>/dev/null || true; python3 utils/fetch_hub_objects_for_ci.py"}},
|
||||
{"run": {"name": "download and unzip hub cache", "command": 'curl -L -o huggingface-cache.tar.gz https://huggingface.co/datasets/hf-internal-testing/hf_hub_cache/resolve/main/huggingface-cache.tar.gz && apt-get install pigz && tar --use-compress-program="pigz -d -p 8" -xf huggingface-cache.tar.gz && mv -n hub/* /root/.cache/huggingface/hub/ && ls -la /root/.cache/huggingface/hub/'}},
|
||||
{"run": {
|
||||
"name": "Run tests",
|
||||
"command": f"({timeout_cmd} python3 -m pytest {marker_cmd} -n {self.pytest_num_workers} {junit_flags} {repeat_on_failure_flags} {' '.join(pytest_flags)} $(cat splitted_tests.txt) | tee tests_output.txt)"}
|
||||
|
||||
8
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
8
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@ -48,19 +48,19 @@ body:
|
||||
- continuous batching: @remi-or @ArthurZucker @McPatate
|
||||
- pipelines: @Rocketknight1
|
||||
- tokenizers: @ArthurZucker and @itazap
|
||||
- trainer: @zach-huggingface @SunMarc
|
||||
- trainer: @SunMarc
|
||||
- attention: @vasqu @ArthurZucker @CyrilVallez
|
||||
- model loading (from pretrained, etc): @CyrilVallez
|
||||
- distributed: @3outeille @ArthurZucker @S1ro1
|
||||
- distributed: @3outeille @ArthurZucker
|
||||
- CIs: @ydshieh
|
||||
|
||||
Integrations:
|
||||
|
||||
- deepspeed: HF Trainer/Accelerate: @SunMarc @zach-huggingface
|
||||
- ray/raytune: @richardliaw, @amogkam
|
||||
- Big Model Inference: @SunMarc
|
||||
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber
|
||||
- quantization: @SunMarc @MekkCyber
|
||||
- kernels: @MekkCyber @drbh
|
||||
- peft: @BenjaminBossan @githubnemo
|
||||
|
||||
Devices/Backends:
|
||||
|
||||
|
||||
8
.github/PULL_REQUEST_TEMPLATE.md
vendored
8
.github/PULL_REQUEST_TEMPLATE.md
vendored
@ -51,19 +51,19 @@ Library:
|
||||
- continuous batching: @remi-or @ArthurZucker @McPatate
|
||||
- pipelines: @Rocketknight1
|
||||
- tokenizers: @ArthurZucker and @itazap
|
||||
- trainer: @zach-huggingface @SunMarc
|
||||
- trainer: @SunMarc
|
||||
- attention: @vasqu @ArthurZucker @CyrilVallez
|
||||
- model loading (from pretrained, etc): @CyrilVallez
|
||||
- distributed: @3outeille @ArthurZucker @S1ro1
|
||||
- distributed: @3outeille @ArthurZucker
|
||||
- CIs: @ydshieh
|
||||
|
||||
Integrations:
|
||||
|
||||
- deepspeed: HF Trainer/Accelerate: @SunMarc @zach-huggingface
|
||||
- ray/raytune: @richardliaw, @amogkam
|
||||
- Big Model Inference: @SunMarc
|
||||
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber
|
||||
- quantization: @SunMarc @MekkCyber
|
||||
- kernels: @MekkCyber @drbh
|
||||
- peft: @BenjaminBossan @githubnemo
|
||||
|
||||
Devices/Backends:
|
||||
|
||||
|
||||
5
.github/workflows/benchmark.yml
vendored
5
.github/workflows/benchmark.yml
vendored
@ -1,10 +1,7 @@
|
||||
name: Self-hosted runner (benchmark)
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [main]
|
||||
pull_request:
|
||||
types: [ opened, labeled, reopened, synchronize ]
|
||||
workflow_dispatch:
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
|
||||
32
.github/workflows/benchmark_v2.yml
vendored
32
.github/workflows/benchmark_v2.yml
vendored
@ -1,35 +1,7 @@
|
||||
name: Benchmark v2 Framework
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
runner:
|
||||
description: 'GH Actions runner group to use'
|
||||
required: true
|
||||
type: string
|
||||
container_image:
|
||||
description: 'Docker image to use'
|
||||
required: true
|
||||
type: string
|
||||
container_options:
|
||||
description: 'Container options to use'
|
||||
required: true
|
||||
type: string
|
||||
commit_sha:
|
||||
description: 'Commit SHA to benchmark'
|
||||
required: false
|
||||
type: string
|
||||
default: ''
|
||||
run_id:
|
||||
description: 'Custom run ID for organizing results (auto-generated if not provided)'
|
||||
required: false
|
||||
type: string
|
||||
default: ''
|
||||
benchmark_repo_id:
|
||||
description: 'HuggingFace Dataset to upload results to (e.g., "org/benchmark-results")'
|
||||
required: false
|
||||
type: string
|
||||
default: ''
|
||||
workflow_dispatch:
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
@ -82,4 +54,4 @@ jobs:
|
||||
--token '${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}' \
|
||||
--log-level INFO
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
|
||||
@ -1,11 +1,7 @@
|
||||
name: Benchmark v2 Scheduled Runner - A10 Single-GPU
|
||||
|
||||
on:
|
||||
schedule:
|
||||
# Run daily at 16:30 UTC
|
||||
- cron: "30 16 * * *"
|
||||
pull_request:
|
||||
types: [ opened, labeled, reopened, synchronize ]
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
benchmark-v2-default:
|
||||
@ -18,4 +14,4 @@ jobs:
|
||||
commit_sha: ${{ github.sha }}
|
||||
run_id: ${{ github.run_id }}
|
||||
benchmark_repo_id: hf-internal-testing/transformers-daily-benchmarks
|
||||
secrets: inherit
|
||||
secrets: inherit
|
||||
|
||||
@ -1,11 +1,7 @@
|
||||
name: Benchmark v2 Scheduled Runner - MI325 Single-GPU
|
||||
|
||||
on:
|
||||
schedule:
|
||||
# Run daily at 16:30 UTC
|
||||
- cron: "30 16 * * *"
|
||||
pull_request:
|
||||
types: [ opened, labeled, reopened, synchronize ]
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
benchmark-v2-default:
|
||||
@ -18,4 +14,4 @@ jobs:
|
||||
commit_sha: ${{ github.sha }}
|
||||
run_id: ${{ github.run_id }}
|
||||
benchmark_repo_id: hf-internal-testing/transformers-daily-benchmarks
|
||||
secrets: inherit
|
||||
secrets: inherit
|
||||
|
||||
3
.github/workflows/build-docker-images.yml
vendored
3
.github/workflows/build-docker-images.yml
vendored
@ -5,6 +5,7 @@ on:
|
||||
branches:
|
||||
- build_ci_docker_image*
|
||||
repository_dispatch:
|
||||
workflow_dispatch:
|
||||
workflow_call:
|
||||
inputs:
|
||||
image_postfix:
|
||||
@ -221,7 +222,7 @@ jobs:
|
||||
latest-pytorch-amd:
|
||||
name: "Latest PyTorch (AMD) [dev]"
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
group: aws-highcpu-32-priv
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
|
||||
14
.github/workflows/build_documentation.yml
vendored
14
.github/workflows/build_documentation.yml
vendored
@ -16,8 +16,20 @@ jobs:
|
||||
commit_sha: ${{ github.sha }}
|
||||
package: transformers
|
||||
notebook_folder: transformers_doc
|
||||
languages: ar de en es fr hi it ja ko pt zh
|
||||
languages: en
|
||||
custom_container: huggingface/transformers-doc-builder
|
||||
secrets:
|
||||
token: ${{ secrets.HUGGINGFACE_PUSH }}
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
||||
|
||||
build_other_lang:
|
||||
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
|
||||
with:
|
||||
commit_sha: ${{ github.sha }}
|
||||
package: transformers
|
||||
notebook_folder: transformers_doc
|
||||
languages: ar de es fr hi it ja ko pt zh
|
||||
custom_container: huggingface/transformers-doc-builder
|
||||
secrets:
|
||||
token: ${{ secrets.HUGGINGFACE_PUSH }}
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
||||
1
.github/workflows/check_failed_tests.yml
vendored
1
.github/workflows/check_failed_tests.yml
vendored
@ -35,7 +35,6 @@ env:
|
||||
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
|
||||
# This token is created under the bot `hf-transformers-bot`.
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
|
||||
1
.github/workflows/doctest_job.yml
vendored
1
.github/workflows/doctest_job.yml
vendored
@ -16,7 +16,6 @@ env:
|
||||
RUN_SLOW: yes
|
||||
OMP_NUM_THREADS: 16
|
||||
MKL_NUM_THREADS: 16
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
|
||||
jobs:
|
||||
|
||||
1
.github/workflows/model_jobs.yml
vendored
1
.github/workflows/model_jobs.yml
vendored
@ -38,7 +38,6 @@ env:
|
||||
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
|
||||
# This token is created under the bot `hf-transformers-bot`.
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
|
||||
1
.github/workflows/model_jobs_intel_gaudi.yml
vendored
1
.github/workflows/model_jobs_intel_gaudi.yml
vendored
@ -26,7 +26,6 @@ env:
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
PT_ENABLE_INT64_SUPPORT: 1
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
HF_HOME: /mnt/cache/.cache/huggingface
|
||||
|
||||
jobs:
|
||||
|
||||
@ -14,7 +14,7 @@ permissions: {}
|
||||
jobs:
|
||||
get-pr-number:
|
||||
name: Get PR number
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu", "ebezzam", "itazap"]'), github.actor) && (startsWith(github.event.comment.body, 'build-doc')) }}
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "eustlb", "MekkCyber", "vasqu", "ivarflakstad", "stevhliu", "ebezzam", "itazap"]'), github.actor) && (startsWith(github.event.comment.body, 'build-doc')) }}
|
||||
uses: ./.github/workflows/get-pr-number.yml
|
||||
|
||||
get-pr-info:
|
||||
@ -98,7 +98,7 @@ jobs:
|
||||
commit_sha: ${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
package: transformers
|
||||
languages: ar de en es fr hi it ko pt tr zh ja te
|
||||
languages: ar de en es fr hi it ja ko pt zh
|
||||
|
||||
update_run_status:
|
||||
name: Update Check Run Status
|
||||
|
||||
3
.github/workflows/self-comment-ci.yml
vendored
3
.github/workflows/self-comment-ci.yml
vendored
@ -20,7 +20,6 @@ env:
|
||||
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
|
||||
# This token is created under the bot `hf-transformers-bot`.
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
@ -29,7 +28,7 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Get PR number
|
||||
# For security: only allow team members to run
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu", "ebezzam", "remi-or", "itazap"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "eustlb", "MekkCyber", "vasqu", "ivarflakstad", "stevhliu", "ebezzam", "remi-or", "itazap"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
outputs:
|
||||
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
|
||||
steps:
|
||||
|
||||
@ -26,7 +26,6 @@ env:
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
PT_ENABLE_INT64_SUPPORT: 1
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
HF_HOME: /mnt/cache/.cache/huggingface
|
||||
|
||||
jobs:
|
||||
|
||||
1
.github/workflows/self-scheduled.yml
vendored
1
.github/workflows/self-scheduled.yml
vendored
@ -48,7 +48,6 @@ env:
|
||||
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
|
||||
# This token is created under the bot `hf-transformers-bot`.
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
NUM_SLICES: 2
|
||||
|
||||
18
.github/workflows/ssh-runner.yml
vendored
18
.github/workflows/ssh-runner.yml
vendored
@ -20,7 +20,6 @@ env:
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
RUN_SLOW: yes # For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
@ -33,14 +32,17 @@ jobs:
|
||||
steps:
|
||||
- name: Get runner to use
|
||||
shell: bash
|
||||
env:
|
||||
NUM_GPUS: ${{ github.event.inputs.num_gpus }}
|
||||
RUNNER_TYPE: ${{ github.event.inputs.runner_type }}
|
||||
run: |
|
||||
if [[ "${{ github.event.inputs.num_gpus }}" == "single" && "${{ github.event.inputs.runner_type }}" == "t4" ]]; then
|
||||
if [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "t4" ]]; then
|
||||
echo "RUNNER=aws-g4dn-4xlarge-cache" >> $GITHUB_ENV
|
||||
elif [[ "${{ github.event.inputs.num_gpus }}" == "multi" && "${{ github.event.inputs.runner_type }}" == "t4" ]]; then
|
||||
elif [[ "$NUM_GPUS" == "multi" && "$RUNNER_TYPE" == "t4" ]]; then
|
||||
echo "RUNNER=aws-g4dn-12xlarge-cache" >> $GITHUB_ENV
|
||||
elif [[ "${{ github.event.inputs.num_gpus }}" == "single" && "${{ github.event.inputs.runner_type }}" == "a10" ]]; then
|
||||
elif [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "a10" ]]; then
|
||||
echo "RUNNER=aws-g5-4xlarge-cache" >> $GITHUB_ENV
|
||||
elif [[ "${{ github.event.inputs.num_gpus }}" == "multi" && "${{ github.event.inputs.runner_type }}" == "a10" ]]; then
|
||||
elif [[ "$NUM_GPUS" == "multi" && "$RUNNER_TYPE" == "a10" ]]; then
|
||||
echo "RUNNER=aws-g5-12xlarge-cache" >> $GITHUB_ENV
|
||||
else
|
||||
echo "RUNNER=" >> $GITHUB_ENV
|
||||
@ -85,9 +87,11 @@ jobs:
|
||||
- name: Store Slack infos
|
||||
#because the SSH can be enabled dynamically if the workflow failed, so we need to store slack infos to be able to retrieve them during the waitforssh step
|
||||
shell: bash
|
||||
env:
|
||||
GITHUB_ACTOR: ${{ github.actor }}
|
||||
run: |
|
||||
echo "${{ github.actor }}"
|
||||
github_actor=${{ github.actor }}
|
||||
echo "$GITHUB_ACTOR"
|
||||
github_actor=$GITHUB_ACTOR
|
||||
github_actor=${github_actor/'-'/'_'}
|
||||
echo "$github_actor"
|
||||
echo "github_actor=$github_actor" >> $GITHUB_ENV
|
||||
|
||||
4
.gitignore
vendored
4
.gitignore
vendored
@ -98,6 +98,7 @@ celerybeat-schedule
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
.venv*
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
@ -171,3 +172,6 @@ tags
|
||||
|
||||
# modular conversion
|
||||
*.modular_backup
|
||||
|
||||
# Cursor IDE files
|
||||
.cursor/
|
||||
|
||||
@ -329,8 +329,11 @@ By default, slow tests are skipped but you can set the `RUN_SLOW` environment va
|
||||
`yes` to run them. This will download many gigabytes of models so make sure you
|
||||
have enough disk space, a good internet connection or a lot of patience!
|
||||
|
||||
> [!WARNING]
|
||||
> Remember to specify a *path to a subfolder or a test file* to run the test. Otherwise, you'll run all the tests in the `tests` or `examples` folder, which will take a very long time!
|
||||
<Tip warning={true}>
|
||||
|
||||
Remember to specify a *path to a subfolder or a test file* to run the test. Otherwise, you'll run all the tests in the `tests` or `examples` folder, which will take a very long time!
|
||||
|
||||
</Tip>
|
||||
|
||||
```bash
|
||||
RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model
|
||||
|
||||
@ -153,7 +153,7 @@ You are not required to read the following guidelines before opening an issue. H
|
||||
cd examples/seq2seq
|
||||
torchrun --nproc_per_node=2 ./finetune_trainer.py \
|
||||
--model_name_or_path sshleifer/distill-mbart-en-ro-12-4 --data_dir wmt_en_ro \
|
||||
--output_dir output_dir --overwrite_output_dir \
|
||||
--output_dir output_dir \
|
||||
--do_train --n_train 500 --num_train_epochs 1 \
|
||||
--per_device_train_batch_size 1 --freeze_embeds \
|
||||
--src_lang en_XX --tgt_lang ro_RO --task translation \
|
||||
|
||||
@ -48,6 +48,7 @@ limitations under the License.
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_te.md">తెలుగు</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_de.md">Deutsch</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_it.md">Italiano</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_vi.md">Tiếng Việt</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ar.md">العربية</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ur.md">اردو</a> |
|
||||
@ -110,10 +111,10 @@ git clone https://github.com/huggingface/transformers.git
|
||||
cd transformers
|
||||
|
||||
# pip
|
||||
pip install .[torch]
|
||||
pip install '.[torch]'
|
||||
|
||||
# uv
|
||||
uv pip install .[torch]
|
||||
uv pip install '.[torch]'
|
||||
```
|
||||
|
||||
## Quickstart
|
||||
|
||||
@ -16,7 +16,6 @@ import sys
|
||||
from logging import Logger
|
||||
from threading import Event, Thread
|
||||
from time import perf_counter, sleep
|
||||
from typing import Optional
|
||||
|
||||
|
||||
# Add the parent directory to Python path to import benchmarks_entrypoint
|
||||
@ -42,7 +41,7 @@ except ImportError:
|
||||
GenerationConfig = None
|
||||
StaticCache = None
|
||||
|
||||
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
||||
os.environ["HF_XET_HIGH_PERFORMANCE"] = "1"
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "1"
|
||||
|
||||
# Only set torch precision if torch is available
|
||||
@ -145,7 +144,7 @@ def run_benchmark(
|
||||
q = torch.empty_like(probs_sort).exponential_(1)
|
||||
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
||||
|
||||
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None):
|
||||
def logits_to_probs(logits, temperature: float = 1.0, top_k: int | None = None):
|
||||
logits = logits / max(temperature, 1e-5)
|
||||
|
||||
if top_k is not None:
|
||||
@ -155,7 +154,7 @@ def run_benchmark(
|
||||
probs = torch.nn.functional.softmax(logits, dim=-1)
|
||||
return probs
|
||||
|
||||
def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None):
|
||||
def sample(logits, temperature: float = 1.0, top_k: int | None = None):
|
||||
probs = logits_to_probs(logits[0, -1], temperature, top_k)
|
||||
idx_next = multinomial_sample_one_no_sync(probs)
|
||||
return idx_next, probs
|
||||
|
||||
@ -2,5 +2,5 @@ gpustat==1.1.1
|
||||
psutil==6.0.0
|
||||
psycopg2==2.9.9
|
||||
torch>=2.4.0
|
||||
hf_transfer
|
||||
hf_xet
|
||||
pandas>=1.5.0
|
||||
3
benchmark_v2/.gitignore
vendored
3
benchmark_v2/.gitignore
vendored
@ -1 +1,2 @@
|
||||
benchmark_results/
|
||||
benchmark_results/
|
||||
benchmark_results_profiles/
|
||||
|
||||
@ -1 +0,0 @@
|
||||
# Benchmark implementations directory
|
||||
@ -1,165 +0,0 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import os
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
from benchmark_framework import ModelBenchmark
|
||||
|
||||
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "1"
|
||||
torch.set_float32_matmul_precision("high")
|
||||
|
||||
|
||||
class LLaMABenchmark(ModelBenchmark):
|
||||
"""Simplified LLaMA model benchmark implementation using the ModelBenchmark base class."""
|
||||
|
||||
def __init__(self, logger: logging.Logger):
|
||||
super().__init__(logger)
|
||||
self._default_prompt = "Why dogs are so cute?" # Custom prompt for LLaMA
|
||||
|
||||
def get_scenario_configs(self) -> list[dict[str, Any]]:
|
||||
"""
|
||||
Get LLaMA-specific scenario configurations.
|
||||
|
||||
Returns:
|
||||
List of scenario configuration dictionaries
|
||||
"""
|
||||
return [
|
||||
# Eager variants
|
||||
{"variant": "eager", "compile_mode": None, "use_cache": True, "description": "Eager execution with cache"},
|
||||
# Compiled variants
|
||||
{
|
||||
"variant": "compiled",
|
||||
"compile_mode": "max-autotune",
|
||||
"use_cache": True,
|
||||
"description": "Compiled with max autotune",
|
||||
},
|
||||
# Kernelized variant (if available)
|
||||
{
|
||||
"variant": "kernelized",
|
||||
"compile_mode": "max-autotune",
|
||||
"use_cache": True,
|
||||
"description": "Kernelized execution",
|
||||
},
|
||||
]
|
||||
|
||||
def _is_kernelization_available(self) -> bool:
|
||||
"""Check if kernelization is available for LLaMA."""
|
||||
try:
|
||||
from kernels import Mode, kernelize # noqa: F401
|
||||
|
||||
return True
|
||||
except ImportError:
|
||||
self.logger.debug("Kernelization not available: kernels module not found")
|
||||
return False
|
||||
|
||||
def get_default_generation_config(self) -> dict[str, Any]:
|
||||
"""Get LLaMA-specific generation configuration."""
|
||||
return {
|
||||
"do_sample": False,
|
||||
"top_p": 1.0,
|
||||
"temperature": 1.0,
|
||||
"repetition_penalty": 1.0,
|
||||
"max_new_tokens": None, # Will be set per scenario
|
||||
}
|
||||
|
||||
def get_model_init_kwargs(self, config) -> dict[str, Any]:
|
||||
"""Get LLaMA-specific model initialization kwargs."""
|
||||
return {
|
||||
"torch_dtype": getattr(torch, config.torch_dtype),
|
||||
"attn_implementation": config.attn_implementation,
|
||||
"use_cache": True,
|
||||
}
|
||||
|
||||
def get_default_torch_dtype(self) -> str:
|
||||
"""Get default torch dtype for LLaMA."""
|
||||
return "float16" # LLaMA works well with float16
|
||||
|
||||
def get_default_device(self) -> str:
|
||||
"""Get default device for LLaMA."""
|
||||
return "cuda" # LLaMA prefers CUDA
|
||||
|
||||
|
||||
def run_llama(logger, output_dir, **kwargs):
|
||||
"""
|
||||
Run LLaMA benchmark with the given configuration.
|
||||
|
||||
Args:
|
||||
logger: Logger instance
|
||||
output_dir: Output directory for results
|
||||
**kwargs: Additional configuration options
|
||||
|
||||
Returns:
|
||||
Path to output file if successful
|
||||
"""
|
||||
from benchmark_framework import BenchmarkRunner
|
||||
|
||||
# Extract parameters with defaults
|
||||
model_id = kwargs.get("model_id", "meta-llama/Llama-2-7b-hf")
|
||||
warmup_iterations = kwargs.get("warmup_iterations", 3)
|
||||
measurement_iterations = kwargs.get("measurement_iterations", 5)
|
||||
num_tokens_to_generate = kwargs.get("num_tokens_to_generate", 100)
|
||||
include_sdpa_variants = kwargs.get("include_sdpa_variants", True)
|
||||
device = kwargs.get("device", "cuda")
|
||||
torch_dtype = kwargs.get("torch_dtype", "float16")
|
||||
batch_size = kwargs.get("batch_size", 1)
|
||||
commit_id = kwargs.get("commit_id")
|
||||
|
||||
logger.info(f"Starting LLaMA benchmark for model: {model_id}")
|
||||
logger.info(
|
||||
f"Configuration: warmup={warmup_iterations}, measurement={measurement_iterations}, tokens={num_tokens_to_generate}"
|
||||
)
|
||||
|
||||
try:
|
||||
# Create benchmark instance
|
||||
benchmark = LLaMABenchmark(logger)
|
||||
|
||||
# Create scenarios
|
||||
scenarios = benchmark.create_scenarios(
|
||||
model_id=model_id,
|
||||
warmup_iterations=warmup_iterations,
|
||||
measurement_iterations=measurement_iterations,
|
||||
num_tokens_to_generate=num_tokens_to_generate,
|
||||
include_sdpa_variants=include_sdpa_variants,
|
||||
device=device,
|
||||
torch_dtype=torch_dtype,
|
||||
batch_size=batch_size,
|
||||
)
|
||||
|
||||
logger.info(f"Created {len(scenarios)} benchmark scenarios")
|
||||
|
||||
# Create runner and execute benchmarks
|
||||
runner = BenchmarkRunner(logger, output_dir)
|
||||
results = runner.run_benchmark(benchmark, scenarios, commit_id=commit_id)
|
||||
|
||||
if not results:
|
||||
logger.warning("No successful benchmark results")
|
||||
return None
|
||||
|
||||
# Save results
|
||||
model_name = model_id.split("/")[-1] # Extract model name from ID
|
||||
output_file = runner.save_results(model_name, results)
|
||||
|
||||
logger.info(f"LLaMA benchmark completed successfully. Results saved to: {output_file}")
|
||||
return output_file
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"LLaMA benchmark failed: {e}")
|
||||
import traceback
|
||||
|
||||
logger.debug(traceback.format_exc())
|
||||
raise
|
||||
File diff suppressed because it is too large
Load Diff
215
benchmark_v2/framework/benchmark_config.py
Normal file
215
benchmark_v2/framework/benchmark_config.py
Normal file
@ -0,0 +1,215 @@
|
||||
import hashlib
|
||||
import json
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
|
||||
KERNELIZATION_AVAILABLE = False
|
||||
try:
|
||||
from kernels import Mode, kernelize # noqa: F401
|
||||
|
||||
KERNELIZATION_AVAILABLE = True
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BenchmarkConfig:
|
||||
"""Configuration for a single benchmark scenario."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
warmup_iterations: int = 5,
|
||||
measurement_iterations: int = 20,
|
||||
gpu_monitoring: bool = False, # False by default because it slows down the benchmark by a lot
|
||||
batch_size: int = 1,
|
||||
sequence_length: int = 128,
|
||||
num_tokens_to_generate: int = 128,
|
||||
attn_implementation: str = "eager",
|
||||
sdpa_backend: str | None = None,
|
||||
compile_mode: str | None = None,
|
||||
compile_options: dict[str, Any] | None = None,
|
||||
kernelize: bool = False,
|
||||
name: str | None = None,
|
||||
skip_validity_check: bool = False,
|
||||
) -> None:
|
||||
# Benchmark parameters
|
||||
self.warmup_iterations = warmup_iterations
|
||||
self.measurement_iterations = measurement_iterations
|
||||
self.gpu_monitoring = gpu_monitoring
|
||||
# Input parameters
|
||||
self.batch_size = batch_size
|
||||
self.sequence_length = sequence_length
|
||||
self.num_tokens_to_generate = num_tokens_to_generate
|
||||
# Generation parameters
|
||||
self.attn_implementation = attn_implementation
|
||||
self.sdpa_backend = sdpa_backend
|
||||
# Optimization parameters
|
||||
self.compile_mode = compile_mode
|
||||
self.compile_options = compile_options if compile_options is not None else {}
|
||||
self.kernelize = kernelize
|
||||
# Constant parameters
|
||||
self.dtype = "torch.bfloat16"
|
||||
self.device = "cuda"
|
||||
|
||||
self.check_validity(skip_validity_check)
|
||||
self.name = name if name is not None else self.infer_name()
|
||||
|
||||
def check_validity(self, skip_validity_check: bool = False) -> None:
|
||||
if skip_validity_check:
|
||||
return
|
||||
# Flash attention does not support compile mode, so we turn it off # FIXME: it would be better to support it
|
||||
is_fa = self.attn_implementation == "flash_attention_2"
|
||||
is_fa |= self.attn_implementation == "sdpa" and self.sdpa_backend == "flash_attention"
|
||||
if is_fa:
|
||||
logger.warning("Flash attention does not support compile mode. Turning off compile mode.")
|
||||
self.compile_mode = None
|
||||
|
||||
@property
|
||||
def hash(self) -> str:
|
||||
return hashlib.sha256(json.dumps(self.to_dict()).encode()).hexdigest()
|
||||
|
||||
def infer_name(self, compact: bool = True) -> str:
|
||||
"""Infer a human-readable name for the benchmark config, either compact or verbose."""
|
||||
if compact:
|
||||
iter_str = f"w{self.warmup_iterations}_i{self.measurement_iterations}"
|
||||
gpu_monitor_str = "monitored" if self.gpu_monitoring else "unmonitored"
|
||||
dimensions_str = f"b{self.batch_size}_s{self.sequence_length}_n{self.num_tokens_to_generate}"
|
||||
attn_code = self.attn_implementation
|
||||
attn_code += f"_{self.sdpa_backend}" if self.attn_implementation == "sdpa" else ""
|
||||
compile_str = f"compiled_{self.compile_mode}" if self.compile_mode is not None else "uncompiled"
|
||||
kernelize_str = "kernelized" if self.kernelize else "unkernelized"
|
||||
sep = "-"
|
||||
else:
|
||||
iter_str = f"{self.warmup_iterations} warmup, {self.measurement_iterations} iterations"
|
||||
gpu_monitor_str = ("with" if self.gpu_monitoring else "no") + " GPU monitoring"
|
||||
dimensions_str = f"batch size {self.batch_size}, sequence length {self.sequence_length}, {self.num_tokens_to_generate} generated tokens"
|
||||
attn_code = f"{self.attn_implementation} attention"
|
||||
attn_code += f" with {self.sdpa_backend} backend" if self.attn_implementation == "sdpa" else ""
|
||||
compile_str = "compiled" if self.compile_mode is not None else "not compiled"
|
||||
kernelize_str = "kernelized" if self.kernelize else "not kernelized"
|
||||
sep = ", "
|
||||
return sep.join([iter_str, gpu_monitor_str, dimensions_str, attn_code, compile_str, kernelize_str])
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
return {
|
||||
"name": self.name,
|
||||
"warmup_iterations": self.warmup_iterations,
|
||||
"measurement_iterations": self.measurement_iterations,
|
||||
"gpu_monitoring": self.gpu_monitoring,
|
||||
"batch_size": self.batch_size,
|
||||
"sequence_length": self.sequence_length,
|
||||
"num_tokens_to_generate": self.num_tokens_to_generate,
|
||||
"attn_implementation": self.attn_implementation,
|
||||
"sdpa_backend": self.sdpa_backend,
|
||||
"compile_mode": self.compile_mode,
|
||||
"compile_options": self.compile_options | {}, # to avoid inplace modification of the original dict
|
||||
"kernelize": self.kernelize,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, data: dict[str, Any], skip_validity_check: bool = False) -> "BenchmarkConfig":
|
||||
return cls(
|
||||
warmup_iterations=data.get("warmup_iterations", 5),
|
||||
measurement_iterations=data.get("measurement_iterations", 20),
|
||||
gpu_monitoring=data.get("gpu_monitoring", False),
|
||||
batch_size=data.get("batch_size", 1),
|
||||
sequence_length=data.get("sequence_length", 128),
|
||||
num_tokens_to_generate=data.get("num_tokens_to_generate", 128),
|
||||
attn_implementation=data.get("attn_implementation", "eager"),
|
||||
sdpa_backend=data.get("sdpa_backend"),
|
||||
compile_mode=data.get("compile_mode"),
|
||||
compile_options=data.get("compile_options"),
|
||||
kernelize=data.get("kernelize", False),
|
||||
name=data.get("name"),
|
||||
skip_validity_check=skip_validity_check,
|
||||
)
|
||||
|
||||
|
||||
def cross_generate_configs(
|
||||
attn_impl_and_sdpa_backend: list[tuple[str, str | None]],
|
||||
compiled_mode: list[str | None],
|
||||
kernelized: list[bool],
|
||||
warmup_iterations: int = 5,
|
||||
measurement_iterations: int = 20,
|
||||
batch_size: int = 1,
|
||||
sequence_length: int = 128,
|
||||
num_tokens_to_generate: int = 128,
|
||||
gpu_monitoring: bool = False, # this slows down the benchmark by a lot so we disable it by default
|
||||
) -> list[BenchmarkConfig]:
|
||||
# Create kwargs common to all configs
|
||||
kwargs = {
|
||||
"warmup_iterations": warmup_iterations,
|
||||
"measurement_iterations": measurement_iterations,
|
||||
"batch_size": batch_size,
|
||||
"sequence_length": sequence_length,
|
||||
"num_tokens_to_generate": num_tokens_to_generate,
|
||||
"gpu_monitoring": gpu_monitoring,
|
||||
}
|
||||
# Cross-generate all combinations of attn_implementation, compiled_mode, and kernelized
|
||||
configs = []
|
||||
for attn_implementation, sdpa_backend in list(dict.fromkeys(attn_impl_and_sdpa_backend)):
|
||||
for cm in list(dict.fromkeys(compiled_mode)):
|
||||
for kernelize_on in list(dict.fromkeys(kernelized)):
|
||||
config = BenchmarkConfig(
|
||||
attn_implementation=attn_implementation,
|
||||
sdpa_backend=sdpa_backend,
|
||||
compile_mode=cm,
|
||||
kernelize=kernelize_on,
|
||||
**kwargs,
|
||||
)
|
||||
configs.append(config)
|
||||
return configs
|
||||
|
||||
|
||||
def generate_all_configs(
|
||||
warmup_iterations: int = 5,
|
||||
measurement_iterations: int = 20,
|
||||
batch_size: int = 1,
|
||||
sequence_length: int = 128,
|
||||
num_tokens_to_generate: int = 128,
|
||||
gpu_monitoring: bool = False,
|
||||
) -> list[BenchmarkConfig]:
|
||||
all_attn_implementations = [
|
||||
("flash_attention_2", None),
|
||||
("eager", None),
|
||||
("sdpa", "math"),
|
||||
("sdpa", "flash_attention"),
|
||||
("flex_attention", None),
|
||||
]
|
||||
return cross_generate_configs(
|
||||
attn_impl_and_sdpa_backend=all_attn_implementations,
|
||||
compiled_mode=[None, "default", "reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"],
|
||||
kernelized=[False, KERNELIZATION_AVAILABLE],
|
||||
warmup_iterations=warmup_iterations,
|
||||
measurement_iterations=measurement_iterations,
|
||||
batch_size=batch_size,
|
||||
sequence_length=sequence_length,
|
||||
num_tokens_to_generate=num_tokens_to_generate,
|
||||
gpu_monitoring=gpu_monitoring,
|
||||
)
|
||||
|
||||
|
||||
def generate_main_configs(
|
||||
warmup_iterations: int = 5,
|
||||
measurement_iterations: int = 20,
|
||||
batch_size: int = 1,
|
||||
sequence_length: int = 128,
|
||||
num_tokens_to_generate: int = 128,
|
||||
gpu_monitoring: bool = False,
|
||||
) -> list[BenchmarkConfig]:
|
||||
# Create kwargs common to all configs
|
||||
kwargs = {
|
||||
"warmup_iterations": warmup_iterations,
|
||||
"measurement_iterations": measurement_iterations,
|
||||
"batch_size": batch_size,
|
||||
"sequence_length": sequence_length,
|
||||
"num_tokens_to_generate": num_tokens_to_generate,
|
||||
"gpu_monitoring": gpu_monitoring,
|
||||
}
|
||||
return [ # TODO: test max-autotune instead of default
|
||||
BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default", **kwargs),
|
||||
BenchmarkConfig(attn_implementation="eager", compile_mode="default", **kwargs),
|
||||
BenchmarkConfig(attn_implementation="flash_attention_2", **kwargs),
|
||||
]
|
||||
389
benchmark_v2/framework/benchmark_runner.py
Normal file
389
benchmark_v2/framework/benchmark_runner.py
Normal file
@ -0,0 +1,389 @@
|
||||
import gc
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import pathlib
|
||||
import re
|
||||
import time
|
||||
from contextlib import nullcontext
|
||||
from datetime import datetime
|
||||
from queue import Queue
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
from tqdm import trange
|
||||
|
||||
from transformers import (
|
||||
AutoModelForCausalLM,
|
||||
AutoTokenizer,
|
||||
CompileConfig,
|
||||
GenerationConfig,
|
||||
GenerationMixin,
|
||||
)
|
||||
from transformers.generation.streamers import BaseStreamer
|
||||
|
||||
from .benchmark_config import BenchmarkConfig
|
||||
from .data_classes import BenchmarkMetadata, BenchmarkResult, GPURawMetrics, pretty_print_dict
|
||||
from .hardware_metrics import GPUMonitor
|
||||
|
||||
|
||||
try:
|
||||
from kernels import Mode, kernelize # noqa: F401
|
||||
except ImportError:
|
||||
kernelize = None
|
||||
Mode = None
|
||||
|
||||
|
||||
DEFAULT_PROMPT = "\n".join([
|
||||
"The French Revolution was a period of political and societal change in France that began with the Estates General of 1789 and ended with the Coup of 18 Brumaire on 9 November 1799.",
|
||||
"Many of the revolution's ideas are considered fundamental principles of liberal democracy, and its values remain central to modern French political discourse.",
|
||||
"It was caused by a combination of social, political, and economic factors which the existing regime proved unable to manage.",
|
||||
"Financial crisis and widespread social distress led to the convocation of the Estates General in May 1789, its first meeting since 1614.",
|
||||
"The representatives of the Third Estate broke away and re-constituted themselves as a National Assembly in June.",
|
||||
"The Storming of the Bastille in Paris on 14 July led to a series of radical measures by the Assembly, including the abolition of feudalism, state control over the Catholic Church in France, and issuing the Declaration of the Rights of Man and of the Citizen.",
|
||||
"The next three years were dominated by a struggle for political control.",
|
||||
"King Louis XVI's attempted flight to Varennes in June 1791 further discredited the monarchy, and military defeats after the outbreak of the French Revolutionary Wars in April 1792 led to the insurrection of 10 August 1792.",
|
||||
"As a result, the monarchy was replaced by the French First Republic in September, followed by the execution of Louis XVI himself in January 1793.",
|
||||
"After another revolt in June 1793, the constitution was suspended, and political power passed from the National Convention to the Committee of Public Safety, dominated by radical Jacobins led by Maximilien Robespierre.",
|
||||
"About 16,000 people were sentenced by the Revolutionary Tribunal and executed in the Reign of Terror, which ended in July 1794 with the Thermidorian Reaction.",
|
||||
"Weakened by external threats and internal opposition, the Committee of Public Safety was replaced in November 1795 by the Directory.",
|
||||
"Its instability ended in the coup of 18 Brumaire and the establishment of the Consulate, with Napoleon Bonaparte as First Consul.",
|
||||
]) # fmt: skip
|
||||
|
||||
|
||||
def compact_json_numeric_arrays(data: dict):
|
||||
# Match arrays that contain only numbers (ints/floats), whitespace, commas, and newlines
|
||||
pattern = r"\[\s*\n\s*((?:\d+(?:\.\d+)?\s*,\s*)*\d+(?:\.\d+)?)\s*\n\s*\]"
|
||||
|
||||
def replace_numeric_array(match):
|
||||
# Get the array content
|
||||
content = match.group(1)
|
||||
# Remove extra whitespace but keep commas
|
||||
compact_content = re.sub(r"\s+", " ", content).strip()
|
||||
return f"[{compact_content}]"
|
||||
|
||||
return re.sub(pattern, replace_numeric_array, json.dumps(data, indent=4, default=str), flags=re.DOTALL)
|
||||
|
||||
|
||||
def get_git_revision() -> str:
|
||||
base_path = pathlib.Path(__file__).parent.parent.parent
|
||||
git_dir = base_path / ".git"
|
||||
with (git_dir / "HEAD").open("r") as head:
|
||||
ref = head.readline().split(" ")[-1].strip()
|
||||
with (git_dir / ref).open("r") as git_hash:
|
||||
return git_hash.readline().strip()
|
||||
|
||||
|
||||
def get_sdpa_backend(backend_name: str | None) -> torch.nn.attention.SDPBackend | None:
|
||||
"""Get the SDPA backend enum from string name."""
|
||||
if backend_name is None:
|
||||
return None
|
||||
|
||||
try:
|
||||
backend_map = {
|
||||
"math": torch.nn.attention.SDPBackend.MATH,
|
||||
"flash_attention": torch.nn.attention.SDPBackend.FLASH_ATTENTION,
|
||||
"efficient_attention": torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION,
|
||||
"cudnn_attention": torch.nn.attention.SDPBackend.CUDNN_ATTENTION,
|
||||
}
|
||||
return backend_map.get(backend_name.lower())
|
||||
except AttributeError:
|
||||
# torch.nn.attention.SDPBackend not available in older torch versions
|
||||
return None
|
||||
|
||||
|
||||
def flush_memory():
|
||||
"""Flush GPU memory and run garbage collection."""
|
||||
gc.collect()
|
||||
# Dynamo resets
|
||||
torch._dynamo.reset()
|
||||
torch._dynamo.reset_code_caches()
|
||||
if hasattr(torch._inductor, "codecache"):
|
||||
# Clear FX graph cache
|
||||
if hasattr(torch._inductor.codecache, "FxGraphCache"):
|
||||
torch._inductor.codecache.FxGraphCache.clear()
|
||||
# Clear PyCodeCache
|
||||
if hasattr(torch._inductor.codecache, "PyCodeCache"):
|
||||
torch._inductor.codecache.PyCodeCache.cache_clear()
|
||||
# Clear TritonFuture cache (for async compilation)
|
||||
if hasattr(torch._inductor.codecache, "TritonFuture"):
|
||||
if hasattr(torch._inductor.codecache.TritonFuture, "_compile_cache"):
|
||||
torch._inductor.codecache.TritonFuture._compile_cache.clear()
|
||||
# Clear CUDA cache
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.reset_max_memory_allocated()
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
torch.cuda.synchronize()
|
||||
gc.collect()
|
||||
|
||||
|
||||
class BenchmarkStreamer(BaseStreamer):
|
||||
def __init__(self, **kwargs) -> None:
|
||||
self.timestamps = []
|
||||
self.text_queue = Queue()
|
||||
|
||||
def put(self, value):
|
||||
"""Receives tokens and logs the timestamp of the generation."""
|
||||
self.timestamps.append(time.perf_counter())
|
||||
|
||||
def end(self):
|
||||
self.timestamps.append(time.perf_counter())
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
value = self.text_queue.get(timeout=self.timeout)
|
||||
if value == self.stop_signal:
|
||||
raise StopIteration()
|
||||
else:
|
||||
return value
|
||||
|
||||
|
||||
class BenchmarkRunner:
|
||||
"""Main benchmark runner that coordinates benchmark execution."""
|
||||
|
||||
def __init__(self, logger: logging.Logger, output_dir: str | None = None, commit_id: str | None = None) -> None:
|
||||
# Those stay constant for the whole run
|
||||
self.logger = logger
|
||||
if output_dir is None:
|
||||
output_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "benchmark_results")
|
||||
self.output_dir = output_dir
|
||||
self.commit_id = get_git_revision() if commit_id is None else commit_id
|
||||
os.makedirs(self.output_dir, exist_ok=True)
|
||||
self.profile_dir = None
|
||||
# Attributes that are reset for each model
|
||||
self._setup_for = ""
|
||||
# Attributes that are reset for each run
|
||||
self.model: GenerationMixin | None = None
|
||||
|
||||
def cleanup(self) -> None:
|
||||
del self.model
|
||||
self.model = None
|
||||
flush_memory()
|
||||
|
||||
def setup_one_run(self, model_id: str, config: BenchmarkConfig) -> None:
|
||||
# Some attributes only need to be set once per model
|
||||
if self._setup_for != model_id:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
# We set the EOS token to the padding token for open-ended generation
|
||||
self.tokenizer.eos_token = self.tokenizer.pad_token
|
||||
self._setup_for = model_id
|
||||
|
||||
# Prepare inputs
|
||||
self.inputs = self.tokenizer(
|
||||
[DEFAULT_PROMPT for _ in range(config.batch_size)],
|
||||
return_tensors="pt",
|
||||
max_length=config.sequence_length,
|
||||
truncation=True,
|
||||
return_attention_mask=True,
|
||||
).to(config.device)
|
||||
self.inputs["use_cache"] = True
|
||||
|
||||
# Prepare generation config
|
||||
gen_config = GenerationConfig(
|
||||
do_sample=False, top_p=1.0, temperature=1.0, max_new_tokens=config.num_tokens_to_generate
|
||||
)
|
||||
|
||||
# Prepare compile config
|
||||
if config.compile_mode is not None:
|
||||
gen_config.compile_config = CompileConfig(mode=config.compile_mode, options=config.compile_options)
|
||||
gen_config.cache_implementation = "static"
|
||||
|
||||
# Load model
|
||||
self.logger.debug(f"Loading model {model_id} on device {config.device}...")
|
||||
dtype = getattr(torch, config.dtype.removeprefix("torch."))
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_id, dtype=dtype, attn_implementation=config.attn_implementation, generation_config=gen_config
|
||||
)
|
||||
self.model = self.model.eval().to(config.device)
|
||||
|
||||
# Kernelize the model if needed
|
||||
if config.kernelize:
|
||||
self.model = kernelize(self.model, mode=Mode.INFERENCE)
|
||||
|
||||
def run_one_benchmark(self, model_id: str, config: BenchmarkConfig, num_tokens_to_profile: int = 0) -> None:
|
||||
sdpa_ctx = nullcontext()
|
||||
if config.attn_implementation == "sdpa":
|
||||
sdpa_backend = get_sdpa_backend(config.sdpa_backend)
|
||||
sdpa_ctx = torch.nn.attention.sdpa_kernel(sdpa_backend)
|
||||
|
||||
with sdpa_ctx, torch.no_grad():
|
||||
self.logger.info(f"Running benchmark scenario: {config.name}")
|
||||
|
||||
# Quick validation: try one measurement first to see if this scenario works
|
||||
flush_memory()
|
||||
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
|
||||
max_new_tokens=1, gpu_monitor=None
|
||||
)
|
||||
if e2e_latency < 0:
|
||||
self.logger.warning(f"Skipping config {config.name}: {e2e_latency = } (no GPU monitoring)")
|
||||
return None
|
||||
|
||||
# Warmup runs
|
||||
self.logger.info(f"Warming up with {config.warmup_iterations} iterations...")
|
||||
for _ in trange(config.warmup_iterations):
|
||||
_ = self.time_generate(max_new_tokens=config.num_tokens_to_generate)
|
||||
self.logger.info("Warmup over.")
|
||||
|
||||
# Measurement runs
|
||||
result = BenchmarkResult()
|
||||
self.logger.info(f"Benchmarking with {config.measurement_iterations} iterations.")
|
||||
for _ in trange(config.measurement_iterations):
|
||||
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
|
||||
max_new_tokens=config.num_tokens_to_generate,
|
||||
gpu_monitor=(GPUMonitor(logger=self.logger) if config.gpu_monitoring else None),
|
||||
)
|
||||
result.accumulate(e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics)
|
||||
self.logger.info("Benchmarking done. Cleaning up.")
|
||||
|
||||
# Profile if needed
|
||||
if num_tokens_to_profile > 0:
|
||||
self.profile_generate(num_tokens_to_profile, config.name)
|
||||
|
||||
return {
|
||||
"metadata": BenchmarkMetadata(model_id=model_id, commit_id=self.commit_id),
|
||||
"measurements": result,
|
||||
"config": config,
|
||||
}
|
||||
|
||||
def time_generate(
|
||||
self,
|
||||
max_new_tokens: int,
|
||||
gpu_monitor: GPUMonitor | None = None,
|
||||
) -> tuple[float, list[float], str, GPURawMetrics | None]:
|
||||
"""Time the latency of a call to model.generate() with the given (inputs) and (max_new_tokens)."""
|
||||
# Prepare gpu monitoring if needed
|
||||
if gpu_monitor is not None:
|
||||
gpu_monitor.start()
|
||||
# Prepare streamer
|
||||
streamer = BenchmarkStreamer()
|
||||
# Generate and time
|
||||
wall_time_0 = time.perf_counter()
|
||||
outputs = self.model.generate(
|
||||
**self.inputs,
|
||||
max_new_tokens=max_new_tokens,
|
||||
streamer=streamer,
|
||||
)
|
||||
wall_time_1 = time.perf_counter()
|
||||
# Stop gpu monitoring if needed
|
||||
gpu_metrics = gpu_monitor.stop_and_collect() if gpu_monitor is not None else None
|
||||
# Check if generation had the right number of tokens
|
||||
input_tokens = self.inputs["input_ids"].size(-1)
|
||||
batch_size, output_tokens = outputs.shape
|
||||
new_tokens = output_tokens - input_tokens
|
||||
if new_tokens != max_new_tokens:
|
||||
raise RuntimeError(f"Generated {new_tokens} tokens, expected {max_new_tokens}")
|
||||
# Decode outputs
|
||||
decoded_output = self.tokenizer.decode(outputs[0, input_tokens:], skip_special_tokens=True)
|
||||
shape_and_decoded_output = f"{tuple(outputs.shape)} | {decoded_output}"
|
||||
# Compute intermediate quantities
|
||||
e2e_latency = wall_time_1 - wall_time_0
|
||||
token_generation_times = [t - wall_time_0 for t in streamer.timestamps[1:]]
|
||||
return e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics
|
||||
|
||||
def profile_generate(self, num_tokens_to_profile: int, config_name: str) -> None:
|
||||
"""Profile the latency of a call to model.generate() with the given (inputs) and (max_new_tokens)."""
|
||||
profiler = torch.profiler.profile(
|
||||
activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
|
||||
record_shapes=True,
|
||||
)
|
||||
with profiler as prof:
|
||||
_ = self.model.generate(
|
||||
**self.inputs,
|
||||
max_new_tokens=num_tokens_to_profile,
|
||||
)
|
||||
if self.profile_dir is None:
|
||||
self.profile_dir = self.output_dir + "_profiles"
|
||||
os.makedirs(self.profile_dir, exist_ok=True)
|
||||
prof.export_chrome_trace(f"{self.profile_dir}/{config_name}.json")
|
||||
|
||||
def run_benchmarks(
|
||||
self,
|
||||
model_id: str,
|
||||
benchmark_configs: list[BenchmarkConfig],
|
||||
num_tokens_to_profile: int = 0,
|
||||
pretty_print_summary: bool = True,
|
||||
) -> dict[str, Any]:
|
||||
all_results = {}
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
start_time = time.perf_counter()
|
||||
|
||||
n_configs = len(benchmark_configs)
|
||||
for i, config in enumerate(benchmark_configs):
|
||||
# Handle SDPA backend if not determined by the config (needs to be done before skipping duplicates)
|
||||
if config.attn_implementation == "sdpa" and config.sdpa_backend is None:
|
||||
default_backend = "flash_attention" # FIXME: torch has a _cur_sdpa_kernel_backends but it fails
|
||||
self.logger.warning(f"No SDPA backend provided, using {default_backend} instead.")
|
||||
config.sdpa_backend = default_backend
|
||||
|
||||
# Skip if already run
|
||||
if config.hash in all_results:
|
||||
self.logger.info(f"Skipping duplicate config {config.name} for model {model_id} ({i + 1}/{n_configs})")
|
||||
continue
|
||||
|
||||
# Otherwise, run the benchmark
|
||||
self.setup_one_run(model_id, config)
|
||||
self.logger.info(
|
||||
f"Running benchmark of model {model_id} with scenario: {config.name} ({i + 1}/{n_configs})"
|
||||
)
|
||||
|
||||
# Launch benchmark in a try/except block to avoid stopping the whole run if one benchmark fails
|
||||
try:
|
||||
results = self.run_one_benchmark(model_id, config, num_tokens_to_profile)
|
||||
if results is not None:
|
||||
all_results[config.hash] = results
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error running with scenario: {config.name}:\n{repr(e)}")
|
||||
# Cleanup model and save results
|
||||
self.cleanup()
|
||||
self.save_results(model_id, all_results, timestamp=timestamp)
|
||||
|
||||
if pretty_print_summary:
|
||||
print()
|
||||
print("=" * 100)
|
||||
print(f"Finished benchmarks in {time.perf_counter() - start_time:.2f} seconds")
|
||||
print(f"Total number of benchmarks: {len(all_results)}")
|
||||
if len(all_results) > 0:
|
||||
print("First run metadata:")
|
||||
first_key = list(all_results.keys())[0]
|
||||
first_metadata = all_results[first_key]["metadata"].to_dict()
|
||||
hardware_info = first_metadata.pop("hardware_info")
|
||||
pretty_print_dict(first_metadata | hardware_info, tabs=1)
|
||||
for result in all_results.values():
|
||||
print("=" * 100)
|
||||
print(f"Config: {result['config'].infer_name(compact=False)}\n")
|
||||
result["measurements"].pprint(batch_size=result["config"].batch_size, tabs=1)
|
||||
print("=" * 100)
|
||||
|
||||
return all_results
|
||||
|
||||
def save_results(self, model_name: str, results: dict, timestamp: str = "") -> str:
|
||||
"""Save benchmark results to JSON file."""
|
||||
# Create model-specific subdirectory
|
||||
model_name = model_name.replace("/", "_")
|
||||
model_dir = os.path.join(self.output_dir, model_name)
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
|
||||
# Create filename with timestamp
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") if not timestamp else timestamp
|
||||
filename = f"{model_name}_benchmark_{timestamp}.json"
|
||||
filepath = os.path.join(model_dir, filename)
|
||||
|
||||
# Convert results to dict
|
||||
converted_results = {}
|
||||
for cfg_hash in results.keys():
|
||||
converted_results[cfg_hash] = {
|
||||
"metadata": results[cfg_hash]["metadata"].to_dict(),
|
||||
"measurements": results[cfg_hash]["measurements"].to_dict(),
|
||||
"config": results[cfg_hash]["config"].to_dict(),
|
||||
}
|
||||
|
||||
# Save to JSON file
|
||||
with open(filepath, "w") as f:
|
||||
f.write(compact_json_numeric_arrays(converted_results))
|
||||
|
||||
self.logger.info(f"Results saved to {filepath}")
|
||||
return filepath
|
||||
160
benchmark_v2/framework/data_classes.py
Normal file
160
benchmark_v2/framework/data_classes.py
Normal file
@ -0,0 +1,160 @@
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .hardware_metrics import GPURawMetrics, HardwareInfo
|
||||
|
||||
|
||||
def compute_basic_statistics(measurements: list[float]) -> dict[str, float]:
|
||||
return {
|
||||
"avg": np.mean(measurements),
|
||||
"std": np.std(measurements),
|
||||
"min": np.min(measurements),
|
||||
"med": np.median(measurements),
|
||||
"max": np.max(measurements),
|
||||
"p95": np.percentile(measurements, 95),
|
||||
}
|
||||
|
||||
|
||||
def add_unit_to_duration(stats: dict[str, float]) -> dict[str, str]:
|
||||
for key in list(stats.keys()):
|
||||
value = stats[key]
|
||||
if value > 3600:
|
||||
stats[key] = f"{(value / 3600):.2f}hr"
|
||||
elif value > 60:
|
||||
stats[key] = f"{(value / 60):.2f}min"
|
||||
elif value > 1:
|
||||
stats[key] = f"{value:.2f}s"
|
||||
elif value > 1e-3:
|
||||
stats[key] = f"{(value * 1e3):.2f}ms"
|
||||
elif value > 1e-6:
|
||||
stats[key] = f"{(value * 1e6):.2f}us"
|
||||
else:
|
||||
stats[key] = f"{(value * 1e9):.2f}ns"
|
||||
return stats
|
||||
|
||||
|
||||
def equalize_lengths_and_collate(stats: list[dict[str, str]]) -> list[str]:
|
||||
keys = ["avg", "std", "min", "med", "max", "p95"]
|
||||
for key in keys:
|
||||
max_length = max(len(stat[key]) for stat in stats)
|
||||
for stat in stats:
|
||||
stat[key] = stat[key].ljust(max_length, " ")
|
||||
return [" ".join([f"{key}={stat[key]}" for key in keys]) for stat in stats]
|
||||
|
||||
|
||||
def pretty_print_dict(data: dict[str, Any], tabs: int = 0) -> None:
|
||||
max_key_length = max([len(key) for key in data.keys()])
|
||||
for key, value in data.items():
|
||||
tabs_str = " " * tabs
|
||||
padded_key = key.ljust(max_key_length + 1, ".")
|
||||
print(f"{tabs_str}{padded_key}: {value}")
|
||||
|
||||
|
||||
@dataclass
|
||||
class BenchmarkMetadata:
|
||||
"""Metadata collected for each benchmark run."""
|
||||
|
||||
model_id: str
|
||||
timestamp: str
|
||||
commit_id: str
|
||||
hardware_info: HardwareInfo
|
||||
|
||||
def __init__(self, model_id: str, commit_id: str):
|
||||
self.model_id = model_id
|
||||
self.timestamp = datetime.utcnow().isoformat()
|
||||
self.commit_id = commit_id
|
||||
self.hardware_info = HardwareInfo()
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
return {
|
||||
"timestamp": self.timestamp,
|
||||
"commit_id": self.commit_id,
|
||||
"hardware_info": self.hardware_info.to_dict(),
|
||||
}
|
||||
|
||||
|
||||
class BenchmarkResult:
|
||||
"""Result from a series of benchmark runs."""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.e2e_latency = []
|
||||
self.token_generation_times = [] # time at which each token was generated (relative to start of the generation)
|
||||
self.shape_and_decoded_outputs = []
|
||||
self.gpu_metrics = []
|
||||
|
||||
def accumulate(
|
||||
self,
|
||||
e2e_latency: float,
|
||||
token_generation_times: list[float],
|
||||
shape_and_decoded_output: str,
|
||||
gpu_metrics: GPURawMetrics | None,
|
||||
) -> None:
|
||||
self.e2e_latency.append(e2e_latency)
|
||||
self.token_generation_times.append(token_generation_times)
|
||||
self.shape_and_decoded_outputs.append(shape_and_decoded_output)
|
||||
self.gpu_metrics.append(gpu_metrics)
|
||||
|
||||
def to_dict(self) -> dict[str, None | int | float]:
|
||||
# Save GPU metrics as None if it contains only None values
|
||||
if all(gm is None for gm in self.gpu_metrics):
|
||||
gpu_metrics = None
|
||||
else:
|
||||
gpu_metrics = [gm.to_dict() for gm in self.gpu_metrics]
|
||||
return {
|
||||
"e2e_latency": self.e2e_latency,
|
||||
"token_generation_times": self.token_generation_times,
|
||||
"shape_and_decoded_outputs": self.shape_and_decoded_outputs,
|
||||
"gpu_metrics": gpu_metrics,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, data: dict[str, None | int | float]) -> "BenchmarkResult":
|
||||
# Handle GPU metrics, which is saved as None if it contains only None values
|
||||
if data["gpu_metrics"] is None:
|
||||
gpu_metrics = [None for _ in range(len(data["e2e_latency"]))]
|
||||
else:
|
||||
gpu_metrics = [GPURawMetrics.from_dict(gm) for gm in data["gpu_metrics"]]
|
||||
# Create a new instance and accumulate the data
|
||||
new_instance = cls()
|
||||
for i in range(len(data["e2e_latency"])):
|
||||
new_instance.accumulate(
|
||||
e2e_latency=data["e2e_latency"][i],
|
||||
token_generation_times=data["token_generation_times"][i],
|
||||
shape_and_decoded_output=data["shape_and_decoded_outputs"][i],
|
||||
gpu_metrics=gpu_metrics[i],
|
||||
)
|
||||
return new_instance
|
||||
|
||||
def get_measured_ttft(self) -> list[float]:
|
||||
return [dt[0] for dt in self.token_generation_times if len(dt) > 0]
|
||||
|
||||
def get_measured_itl(self) -> list[float]:
|
||||
return [(dt[-1] - dt[0]) / (len(dt) - 1) for dt in self.token_generation_times if len(dt) > 1]
|
||||
|
||||
def get_throughput(self, batch_size: int) -> float:
|
||||
return [
|
||||
batch_size * len(dt) / e2e_latency
|
||||
for e2e_latency, dt in zip(self.e2e_latency, self.token_generation_times)
|
||||
]
|
||||
|
||||
def pprint(self, batch_size: int = 0, tabs: int = 0) -> None:
|
||||
stats_to_collate = [
|
||||
add_unit_to_duration(compute_basic_statistics(self.e2e_latency)),
|
||||
add_unit_to_duration(compute_basic_statistics(self.get_measured_ttft())),
|
||||
add_unit_to_duration(compute_basic_statistics(self.get_measured_itl())),
|
||||
]
|
||||
if batch_size > 0:
|
||||
throughput_stats = compute_basic_statistics(self.get_throughput(batch_size))
|
||||
stats_to_collate.append({key: f"{value:.2f}tok/s" for key, value in throughput_stats.items()})
|
||||
collated_stats = equalize_lengths_and_collate(stats_to_collate)
|
||||
dict_to_pprint = {
|
||||
"E2E Latency": collated_stats[0],
|
||||
"Time to First Token": collated_stats[1],
|
||||
"Inter-Token Latency": collated_stats[2],
|
||||
}
|
||||
if batch_size > 0:
|
||||
dict_to_pprint["Throughput"] = collated_stats[3]
|
||||
pretty_print_dict(dict_to_pprint, tabs=tabs)
|
||||
171
benchmark_v2/framework/hardware_metrics.py
Normal file
171
benchmark_v2/framework/hardware_metrics.py
Normal file
@ -0,0 +1,171 @@
|
||||
import json
|
||||
import logging
|
||||
import subprocess
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from logging import Logger
|
||||
|
||||
import gpustat
|
||||
import psutil
|
||||
import torch
|
||||
|
||||
|
||||
# Data class to hold the hardware information
|
||||
def get_device_name_and_memory_total() -> tuple[str, float]:
|
||||
"""Returns the name and memory total of GPU 0."""
|
||||
device_name = torch.cuda.get_device_properties(0).name
|
||||
device_memory_total = torch.cuda.get_device_properties(0).total_memory / 1024**3
|
||||
return device_name, device_memory_total
|
||||
|
||||
|
||||
class HardwareInfo:
|
||||
"""A class to hold information about the hardware."""
|
||||
|
||||
def __init__(self) -> None:
|
||||
# Retrieve GPU stats
|
||||
try:
|
||||
self.gpu_name, self.gpu_memory_total_gb = get_device_name_and_memory_total()
|
||||
except Exception:
|
||||
self.gpu_name, self.gpu_memory_total_gb = None, None
|
||||
# Retrieve python, torch and CUDA version
|
||||
self.python_version = f"{sys.version.split()[0]}"
|
||||
self.torch_version = torch.__version__
|
||||
if hasattr(torch, "cuda") and torch.cuda.is_available():
|
||||
self.cuda_version = torch.version.cuda
|
||||
else:
|
||||
self.cuda_version = None
|
||||
# Retrieve general hardware information
|
||||
self.cpu_count = psutil.cpu_count()
|
||||
self.memory_total_mb = int(psutil.virtual_memory().total / (1024 * 1024))
|
||||
|
||||
def to_dict(self) -> dict[str, None | int | float | str]:
|
||||
return {
|
||||
"gpu_name": self.gpu_name,
|
||||
"gpu_memory_total_gb": self.gpu_memory_total_gb,
|
||||
"python_version": self.python_version,
|
||||
"torch_version": self.torch_version,
|
||||
}
|
||||
|
||||
|
||||
# Functions to get information about the GPU
|
||||
def get_amd_gpu_stats() -> tuple[int, float]:
|
||||
"""Returns the utilization and memory used of an AMD GPU, both in percent"""
|
||||
rocm_smi_output = subprocess.check_output(["rocm-smi", "--json", "--showuse", "--showmeminfo", "VRAM"])
|
||||
gpu_stats = json.loads(rocm_smi_output.decode("utf-8"))
|
||||
gpu_stats = [
|
||||
(card_id, stats["GPU use (%)"], stats["VRAM Total Used Memory (B)"]) for card_id, stats in gpu_stats.items()
|
||||
]
|
||||
gpu_stats.sort(key=lambda x: x[1], reverse=True)
|
||||
return int(gpu_stats[0][1]), float(gpu_stats[0][2]) / 1024**3
|
||||
|
||||
|
||||
def get_nvidia_gpu_stats() -> tuple[int, float]:
|
||||
"""Returns the utilization and memory used of an NVIDIA GPU, both in percent"""
|
||||
gpu_stats = gpustat.GPUStatCollection.new_query()
|
||||
gpu_stats = gpu_stats[0]
|
||||
return int(gpu_stats["utilization.gpu"]), float(gpu_stats["memory.used"]) / 1024**3
|
||||
|
||||
|
||||
class GPUStatsCollector:
|
||||
"""A class to get statistics about the GPU. It serves as a wrapper that holds the GPU total memory and its name,
|
||||
which is used to call the right function to get the utilization and memory used."""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.device_name, self.device_memory_total = get_device_name_and_memory_total()
|
||||
# Monkey patch the get_utilization_and_memory_used method based on the GPU type
|
||||
if "amd" in self.device_name.lower():
|
||||
self.get_utilization_and_memory_used = get_amd_gpu_stats
|
||||
elif "nvidia" in self.device_name.lower():
|
||||
self.get_utilization_and_memory_used = get_nvidia_gpu_stats
|
||||
else:
|
||||
raise RuntimeError(f"Unsupported GPU: {self.device_name}")
|
||||
|
||||
def get_measurements(self) -> tuple[int, float]:
|
||||
"""Get the utilization and memory used of the GPU, both in percent"""
|
||||
raise NotImplementedError("This method is meant to be monkey patched during __init__")
|
||||
|
||||
|
||||
# Simple data classes to hold the raw GPU metrics
|
||||
class GPUMonitoringStatus(Enum):
|
||||
"""Status of GPU monitoring."""
|
||||
|
||||
SUCCESS = "success"
|
||||
FAILED = "failed"
|
||||
NO_GPUS_AVAILABLE = "no_gpus_available"
|
||||
NO_SAMPLES_COLLECTED = "no_samples_collected"
|
||||
|
||||
|
||||
@dataclass
|
||||
class GPURawMetrics:
|
||||
"""Raw values for GPU utilization and memory used."""
|
||||
|
||||
utilization: list[float] # in percent
|
||||
memory_used: list[float] # in GB
|
||||
timestamps: list[float] # in seconds
|
||||
timestamp_0: float # in seconds
|
||||
monitoring_status: GPUMonitoringStatus
|
||||
|
||||
def to_dict(self) -> dict[str, None | int | float | str]:
|
||||
return {
|
||||
"utilization": self.utilization,
|
||||
"memory_used": self.memory_used,
|
||||
"timestamps": self.timestamps,
|
||||
"timestamp_0": self.timestamp_0,
|
||||
"monitoring_status": self.monitoring_status.value,
|
||||
}
|
||||
|
||||
|
||||
# Main class, used to monitor the GPU utilization during benchmark execution
|
||||
class GPUMonitor:
|
||||
"""Monitor GPU utilization during benchmark execution."""
|
||||
|
||||
def __init__(self, sample_interval_sec: float = 0.1, logger: Logger | None = None):
|
||||
self.sample_interval_sec = sample_interval_sec
|
||||
self.logger = logger if logger is not None else logging.getLogger(__name__)
|
||||
|
||||
self.num_available_gpus = torch.cuda.device_count()
|
||||
if self.num_available_gpus == 0:
|
||||
raise RuntimeError("No GPUs detected by torch.cuda.device_count().")
|
||||
self.gpu_stats_getter = GPUStatsCollector()
|
||||
|
||||
def start(self):
|
||||
"""Start monitoring GPU metrics."""
|
||||
# Clear the stop event to enable monitoring
|
||||
self.stop_event = threading.Event()
|
||||
self.gpu_utilization = []
|
||||
self.gpu_memory_used = []
|
||||
self.timestamps = []
|
||||
self.thread = threading.Thread(target=self._monitor_loop)
|
||||
self.thread.start()
|
||||
self.logger.debug("GPU monitoring started")
|
||||
|
||||
def stop_and_collect(self) -> GPURawMetrics:
|
||||
"""Stop monitoring and return collected metrics."""
|
||||
self.stop_event.set()
|
||||
self.thread.join()
|
||||
if self.gpu_utilization:
|
||||
timestamp_0 = self.timestamps[0]
|
||||
metrics = GPURawMetrics(
|
||||
utilization=self.gpu_utilization,
|
||||
memory_used=self.gpu_memory_used,
|
||||
timestamps=[t - timestamp_0 for t in self.timestamps],
|
||||
timestamp_0=timestamp_0,
|
||||
monitoring_status=GPUMonitoringStatus.SUCCESS,
|
||||
)
|
||||
self.logger.debug(f"GPU monitoring completed: {len(self.gpu_utilization)} samples collected")
|
||||
else:
|
||||
metrics = GPURawMetrics(monitoring_status=GPUMonitoringStatus.NO_SAMPLES_COLLECTED)
|
||||
return metrics
|
||||
|
||||
def _monitor_loop(self):
|
||||
"""Background monitoring loop using threading.Event for communication."""
|
||||
while not self.stop_event.is_set():
|
||||
utilization, memory_used = self.gpu_stats_getter.get_utilization_and_memory_used()
|
||||
self.gpu_utilization.append(utilization)
|
||||
self.gpu_memory_used.append(memory_used)
|
||||
self.timestamps.append(time.time())
|
||||
if self.stop_event.wait(timeout=self.sample_interval_sec):
|
||||
break
|
||||
@ -19,477 +19,98 @@ in the ./benches directory, organizing outputs into model-specific subfolders.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import importlib.util
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
|
||||
from framework.benchmark_config import BenchmarkConfig, generate_all_configs, generate_main_configs
|
||||
from framework.benchmark_runner import BenchmarkRunner
|
||||
|
||||
|
||||
def setup_logging(log_level: str = "INFO", enable_file_logging: bool = False) -> logging.Logger:
|
||||
"""Setup logging configuration."""
|
||||
numeric_level = getattr(logging, log_level.upper(), None)
|
||||
if not isinstance(numeric_level, int):
|
||||
raise ValueError(f"Invalid log level: {log_level}")
|
||||
if __name__ == "__main__":
|
||||
# Parse arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--output-dir", type=str, default=None, help="Output dir for benchmark results")
|
||||
parser.add_argument("--log-level", type=str, choices=["DEBUG", "INFO", "WARNING", "ERROR"], default="INFO")
|
||||
parser.add_argument("--model-id", type=str, help="Specific model ID to benchmark (if supported by benchmarks)")
|
||||
|
||||
parser.add_argument("--warmup", type=int, default=3, help="Number of warmup iterations")
|
||||
parser.add_argument("--iterations", type=int, default=10, help="Number of measurement iterations")
|
||||
|
||||
parser.add_argument("--batch-size", "-b", type=int, nargs="+", help="Batch size")
|
||||
parser.add_argument("--sequence-length", "-s", type=int, nargs="+", help="Sequence length")
|
||||
parser.add_argument("--num-tokens-to-generate", "-n", type=int, nargs="+", help="Number of tokens to generate")
|
||||
|
||||
parser.add_argument("--cross-generate", action="store_true", help="Cross-generate all combinations of configs")
|
||||
parser.add_argument("--num-tokens-to-profile", "-p", type=int, default=0, help="Number of tokens to profile")
|
||||
|
||||
parser.add_argument("--commit-id", type=str, help="Git commit ID (if not provided, will auto-detect from git)")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Setup logging
|
||||
benchmark_run_uuid = str(uuid.uuid4())[:8]
|
||||
numeric_level = getattr(logging, args.log_level.upper())
|
||||
|
||||
handlers = [logging.StreamHandler(sys.stdout)]
|
||||
|
||||
if enable_file_logging:
|
||||
handlers.append(logging.FileHandler(f"benchmark_run_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"))
|
||||
|
||||
logging.basicConfig(
|
||||
level=numeric_level, format="[%(levelname)s - %(asctime)s] %(name)s: %(message)s", handlers=handlers
|
||||
)
|
||||
|
||||
return logging.getLogger(__name__)
|
||||
|
||||
|
||||
def discover_benchmarks(benches_dir: str) -> list[dict[str, Any]]:
|
||||
"""
|
||||
Discover all benchmark modules in the benches directory.
|
||||
|
||||
Returns:
|
||||
List of dictionaries containing benchmark module info
|
||||
"""
|
||||
benchmarks = []
|
||||
benches_path = Path(benches_dir)
|
||||
|
||||
if not benches_path.exists():
|
||||
raise FileNotFoundError(f"Benches directory not found: {benches_dir}")
|
||||
|
||||
for py_file in benches_path.glob("*.py"):
|
||||
if py_file.name.startswith("__"):
|
||||
continue
|
||||
|
||||
module_name = py_file.stem
|
||||
|
||||
try:
|
||||
# Import the module
|
||||
spec = importlib.util.spec_from_file_location(module_name, py_file)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(module)
|
||||
|
||||
# Check if it has a benchmark runner function
|
||||
if hasattr(module, f"run_{module_name}"):
|
||||
benchmarks.append(
|
||||
{
|
||||
"name": module_name,
|
||||
"path": str(py_file),
|
||||
"module": module,
|
||||
"runner_function": getattr(module, f"run_{module_name}"),
|
||||
}
|
||||
)
|
||||
elif hasattr(module, "run_benchmark"):
|
||||
benchmarks.append(
|
||||
{
|
||||
"name": module_name,
|
||||
"path": str(py_file),
|
||||
"module": module,
|
||||
"runner_function": getattr(module, "run_benchmark"),
|
||||
}
|
||||
)
|
||||
else:
|
||||
logging.warning(f"No runner function found in {py_file}")
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to import {py_file}: {e}")
|
||||
|
||||
return benchmarks
|
||||
|
||||
|
||||
def run_single_benchmark(
|
||||
benchmark_info: dict[str, Any], output_dir: str, logger: logging.Logger, **kwargs
|
||||
) -> Optional[str]:
|
||||
"""
|
||||
Run a single benchmark and return the output file path.
|
||||
|
||||
Args:
|
||||
benchmark_info: Dictionary containing benchmark module info
|
||||
output_dir: Base output directory
|
||||
logger: Logger instance
|
||||
**kwargs: Additional arguments to pass to the benchmark
|
||||
|
||||
Returns:
|
||||
Path to the output file if successful, None otherwise
|
||||
"""
|
||||
benchmark_name = benchmark_info["name"]
|
||||
runner_func = benchmark_info["runner_function"]
|
||||
|
||||
logger.info(f"Running benchmark: {benchmark_name}")
|
||||
|
||||
try:
|
||||
# Check function signature to determine what arguments to pass
|
||||
import inspect
|
||||
|
||||
sig = inspect.signature(runner_func)
|
||||
|
||||
# Prepare arguments based on function signature
|
||||
func_kwargs = {"logger": logger, "output_dir": output_dir}
|
||||
|
||||
# Add other kwargs if the function accepts them
|
||||
for param_name in sig.parameters:
|
||||
if param_name in kwargs:
|
||||
func_kwargs[param_name] = kwargs[param_name]
|
||||
|
||||
# Filter kwargs to only include parameters the function accepts
|
||||
# If function has **kwargs, include all provided kwargs
|
||||
has_var_kwargs = any(param.kind == param.VAR_KEYWORD for param in sig.parameters.values())
|
||||
if has_var_kwargs:
|
||||
valid_kwargs = {**func_kwargs, **kwargs}
|
||||
else:
|
||||
valid_kwargs = {k: v for k, v in func_kwargs.items() if k in sig.parameters}
|
||||
|
||||
# Run the benchmark
|
||||
result = runner_func(**valid_kwargs)
|
||||
|
||||
if isinstance(result, str):
|
||||
# Function returned a file path
|
||||
return result
|
||||
else:
|
||||
logger.info(f"Benchmark {benchmark_name} completed successfully")
|
||||
return "completed"
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Benchmark {benchmark_name} failed: {e}")
|
||||
import traceback
|
||||
|
||||
logger.debug(traceback.format_exc())
|
||||
return None
|
||||
|
||||
|
||||
def generate_summary_report(
|
||||
output_dir: str,
|
||||
benchmark_results: dict[str, Any],
|
||||
logger: logging.Logger,
|
||||
benchmark_run_uuid: Optional[str] = None,
|
||||
) -> str:
|
||||
"""Generate a summary report of all benchmark runs."""
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
summary_file = os.path.join(output_dir, f"benchmark_summary_{timestamp}.json")
|
||||
|
||||
summary_data = {
|
||||
"run_metadata": {
|
||||
"timestamp": datetime.utcnow().isoformat(),
|
||||
"benchmark_run_uuid": benchmark_run_uuid,
|
||||
"total_benchmarks": len(benchmark_results),
|
||||
"successful_benchmarks": len([r for r in benchmark_results.values() if r is not None]),
|
||||
"failed_benchmarks": len([r for r in benchmark_results.values() if r is None]),
|
||||
},
|
||||
"benchmark_results": benchmark_results,
|
||||
"output_directory": output_dir,
|
||||
}
|
||||
|
||||
with open(summary_file, "w") as f:
|
||||
json.dump(summary_data, f, indent=2, default=str)
|
||||
|
||||
logger.info(f"Summary report saved to: {summary_file}")
|
||||
return summary_file
|
||||
|
||||
|
||||
def upload_results_to_hf_dataset(
|
||||
output_dir: str,
|
||||
summary_file: str,
|
||||
dataset_name: str,
|
||||
run_id: Optional[str] = None,
|
||||
token: Optional[str] = None,
|
||||
logger: Optional[logging.Logger] = None,
|
||||
) -> Optional[str]:
|
||||
"""
|
||||
Upload benchmark results to a HuggingFace Dataset.
|
||||
Based on upload_collated_report() from utils/collated_reports.py
|
||||
Args:
|
||||
output_dir: Local output directory containing results
|
||||
summary_file: Path to the summary file
|
||||
dataset_name: Name of the HuggingFace dataset to upload to
|
||||
run_id: Unique run identifier (if None, will generate one)
|
||||
token: HuggingFace token for authentication (if None, will use environment variables)
|
||||
logger: Logger instance
|
||||
Returns:
|
||||
The run_id used for the upload, None if upload failed
|
||||
"""
|
||||
if logger is None:
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import os
|
||||
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
api = HfApi()
|
||||
|
||||
if run_id is None:
|
||||
github_run_number = os.getenv("GITHUB_RUN_NUMBER")
|
||||
github_run_id = os.getenv("GITHUB_RUN_ID")
|
||||
if github_run_number and github_run_id:
|
||||
run_id = f"{github_run_number}-{github_run_id}"
|
||||
|
||||
date_folder = datetime.now().strftime("%Y-%m-%d")
|
||||
|
||||
github_event_name = os.getenv("GITHUB_EVENT_NAME")
|
||||
if github_event_name != "schedule":
|
||||
# Non-scheduled runs go under a runs subfolder
|
||||
repo_path = f"{date_folder}/runs/{run_id}/benchmark_results"
|
||||
else:
|
||||
# Scheduled runs go directly under the date
|
||||
repo_path = f"{date_folder}/{run_id}/benchmark_results"
|
||||
|
||||
logger.info(f"Uploading benchmark results to dataset '{dataset_name}' at path '{repo_path}'")
|
||||
|
||||
try:
|
||||
# Upload all files in the output directory
|
||||
from pathlib import Path
|
||||
|
||||
output_path = Path(output_dir)
|
||||
|
||||
for file_path in output_path.rglob("*"):
|
||||
if file_path.is_file():
|
||||
# Calculate relative path from output_dir
|
||||
relative_path = file_path.relative_to(output_path)
|
||||
path_in_repo = f"{repo_path}/{relative_path}"
|
||||
|
||||
logger.debug(f"Uploading {file_path} to {path_in_repo}")
|
||||
|
||||
api.upload_file(
|
||||
path_or_fileobj=str(file_path),
|
||||
path_in_repo=path_in_repo,
|
||||
repo_id=dataset_name,
|
||||
repo_type="dataset",
|
||||
token=token,
|
||||
commit_message=f"Upload benchmark results for run {run_id}",
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Successfully uploaded results to: https://huggingface.co/datasets/{dataset_name}/tree/main/{repo_path}"
|
||||
)
|
||||
|
||||
return run_id
|
||||
|
||||
except Exception as upload_error:
|
||||
logger.error(f"Failed to upload results: {upload_error}")
|
||||
import traceback
|
||||
|
||||
logger.debug(traceback.format_exc())
|
||||
return None
|
||||
|
||||
|
||||
def main():
|
||||
"""Main entry point for the benchmarking script."""
|
||||
# Generate a unique UUID for this benchmark run
|
||||
benchmark_run_uuid = str(uuid.uuid4())[:8]
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Run all benchmarks in the ./benches directory",
|
||||
epilog="""
|
||||
Examples:
|
||||
# Run all available benchmarks
|
||||
python3 run_benchmarks.py
|
||||
|
||||
# Run with specific model and upload to HuggingFace Dataset
|
||||
python3 run_benchmarks.py --model-id meta-llama/Llama-2-7b-hf --upload-to-hf username/benchmark-results
|
||||
|
||||
# Run with custom run ID and upload to HuggingFace Dataset
|
||||
python3 run_benchmarks.py --run-id experiment_v1 --upload-to-hf org/benchmarks
|
||||
|
||||
# Run only specific benchmarks with file logging
|
||||
python3 run_benchmarks.py --include llama --enable-file-logging
|
||||
""", # noqa: W293
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
type=str,
|
||||
default="benchmark_results",
|
||||
help="Base output directory for benchmark results (default: benchmark_results)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--benches-dir",
|
||||
type=str,
|
||||
default="./benches",
|
||||
help="Directory containing benchmark implementations (default: ./benches)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--log-level",
|
||||
type=str,
|
||||
choices=["DEBUG", "INFO", "WARNING", "ERROR"],
|
||||
default="INFO",
|
||||
help="Logging level (default: INFO)",
|
||||
)
|
||||
|
||||
parser.add_argument("--model-id", type=str, help="Specific model ID to benchmark (if supported by benchmarks)")
|
||||
|
||||
parser.add_argument("--warmup-iterations", type=int, default=3, help="Number of warmup iterations (default: 3)")
|
||||
|
||||
parser.add_argument(
|
||||
"--measurement-iterations", type=int, default=5, help="Number of measurement iterations (default: 5)"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-tokens-to-generate",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Number of tokens to generate in benchmarks (default: 100)",
|
||||
)
|
||||
|
||||
parser.add_argument("--include", type=str, nargs="*", help="Only run benchmarks matching these names")
|
||||
|
||||
parser.add_argument("--exclude", type=str, nargs="*", help="Exclude benchmarks matching these names")
|
||||
|
||||
parser.add_argument("--enable-file-logging", action="store_true", help="Enable file logging (disabled by default)")
|
||||
|
||||
parser.add_argument(
|
||||
"--commit-id", type=str, help="Git commit ID for metadata (if not provided, will auto-detect from git)"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--push-to-hub",
|
||||
type=str,
|
||||
help="Upload results to HuggingFace Dataset (provide dataset name, e.g., 'username/benchmark-results')",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--run-id", type=str, help="Custom run ID for organizing results (if not provided, will generate a unique ID)"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--token",
|
||||
type=str,
|
||||
help="HuggingFace token for dataset uploads (if not provided, will use HF_TOKEN environment variable)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Setup logging
|
||||
logger = setup_logging(args.log_level, args.enable_file_logging)
|
||||
|
||||
logger = logging.getLogger("benchmark_v2")
|
||||
logger.info("Starting benchmark discovery and execution")
|
||||
logger.info(f"Benchmark run UUID: {benchmark_run_uuid}")
|
||||
logger.info(f"Output directory: {args.output_dir}")
|
||||
logger.info(f"Benches directory: {args.benches_dir}")
|
||||
|
||||
# Create output directory
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
# Error out if one of the arguments is not provided
|
||||
if len(args.batch_size) * len(args.sequence_length) * len(args.num_tokens_to_generate) == 0:
|
||||
raise ValueError(
|
||||
"At least one of the arguments --batch-size, --sequence-length, or --num-tokens-to-generate is required"
|
||||
)
|
||||
|
||||
try:
|
||||
# Discover benchmarks
|
||||
benchmarks = discover_benchmarks(args.benches_dir)
|
||||
logger.info(f"Discovered {len(benchmarks)} benchmark(s): {[b['name'] for b in benchmarks]}")
|
||||
|
||||
if not benchmarks:
|
||||
logger.warning("No benchmarks found!")
|
||||
return 1
|
||||
|
||||
# Filter benchmarks based on include/exclude
|
||||
filtered_benchmarks = benchmarks
|
||||
|
||||
if args.include:
|
||||
filtered_benchmarks = [
|
||||
b for b in filtered_benchmarks if any(pattern in b["name"] for pattern in args.include)
|
||||
]
|
||||
logger.info(f"Filtered to include: {[b['name'] for b in filtered_benchmarks]}")
|
||||
|
||||
if args.exclude:
|
||||
filtered_benchmarks = [
|
||||
b for b in filtered_benchmarks if not any(pattern in b["name"] for pattern in args.exclude)
|
||||
]
|
||||
logger.info(f"After exclusion: {[b['name'] for b in filtered_benchmarks]}")
|
||||
|
||||
if not filtered_benchmarks:
|
||||
logger.warning("No benchmarks remaining after filtering!")
|
||||
return 1
|
||||
|
||||
# Prepare common kwargs for benchmarks
|
||||
benchmark_kwargs = {
|
||||
"warmup_iterations": args.warmup_iterations,
|
||||
"measurement_iterations": args.measurement_iterations,
|
||||
"num_tokens_to_generate": args.num_tokens_to_generate,
|
||||
}
|
||||
|
||||
if args.model_id:
|
||||
benchmark_kwargs["model_id"] = args.model_id
|
||||
|
||||
# Add commit_id if provided
|
||||
if args.commit_id:
|
||||
benchmark_kwargs["commit_id"] = args.commit_id
|
||||
|
||||
# Run benchmarks
|
||||
benchmark_results = {}
|
||||
successful_count = 0
|
||||
|
||||
for benchmark_info in filtered_benchmarks:
|
||||
result = run_single_benchmark(benchmark_info, args.output_dir, logger, **benchmark_kwargs)
|
||||
|
||||
benchmark_results[benchmark_info["name"]] = result
|
||||
|
||||
if result is not None:
|
||||
successful_count += 1
|
||||
|
||||
# Generate summary report
|
||||
summary_file = generate_summary_report(args.output_dir, benchmark_results, logger, benchmark_run_uuid)
|
||||
|
||||
# Upload results to HuggingFace Dataset if requested
|
||||
upload_run_id = None
|
||||
if args.push_to_hub:
|
||||
logger.info("=" * 60)
|
||||
logger.info("UPLOADING TO HUGGINGFACE DATASET")
|
||||
logger.info("=" * 60)
|
||||
# Use provided run_id or fallback to benchmark run UUID
|
||||
effective_run_id = args.run_id or benchmark_run_uuid
|
||||
upload_run_id = upload_results_to_hf_dataset(
|
||||
output_dir=args.output_dir,
|
||||
summary_file=summary_file,
|
||||
dataset_name=args.push_to_hub,
|
||||
run_id=effective_run_id,
|
||||
token=args.token,
|
||||
logger=logger,
|
||||
# If there is only one (batch_size, sequence_length, num_tokens_to_generate), we benchmark across configs
|
||||
elif len(args.batch_size) * len(args.sequence_length) * len(args.num_tokens_to_generate) == 1:
|
||||
if args.cross_generate:
|
||||
benchmark_configs = generate_all_configs(
|
||||
warmup_iterations=args.warmup,
|
||||
measurement_iterations=args.iterations,
|
||||
batch_size=args.batch_size[0],
|
||||
sequence_length=args.sequence_length[0],
|
||||
num_tokens_to_generate=args.num_tokens_to_generate[0],
|
||||
)
|
||||
if upload_run_id:
|
||||
logger.info(f"Upload completed with run ID: {upload_run_id}")
|
||||
else:
|
||||
logger.warning("Upload failed - continuing with local results")
|
||||
|
||||
# Final summary
|
||||
total_benchmarks = len(filtered_benchmarks)
|
||||
failed_count = total_benchmarks - successful_count
|
||||
|
||||
logger.info("=" * 60)
|
||||
logger.info("BENCHMARK RUN SUMMARY")
|
||||
logger.info("=" * 60)
|
||||
logger.info(f"Total benchmarks: {total_benchmarks}")
|
||||
logger.info(f"Successful: {successful_count}")
|
||||
logger.info(f"Failed: {failed_count}")
|
||||
logger.info(f"Output directory: {args.output_dir}")
|
||||
logger.info(f"Summary report: {summary_file}")
|
||||
|
||||
if args.push_to_hub:
|
||||
if upload_run_id:
|
||||
logger.info(f"HuggingFace Dataset: {args.push_to_hub}")
|
||||
logger.info(f"Run ID: {upload_run_id}")
|
||||
logger.info(
|
||||
f"View results: https://huggingface.co/datasets/{args.push_to_hub}/tree/main/{datetime.now().strftime('%Y-%m-%d')}/runs/{upload_run_id}"
|
||||
)
|
||||
else:
|
||||
logger.warning("Upload to HuggingFace Dataset failed")
|
||||
|
||||
if failed_count > 0:
|
||||
logger.warning(f"{failed_count} benchmark(s) failed. Check logs for details.")
|
||||
return 1
|
||||
else:
|
||||
logger.info("All benchmarks completed successfully!")
|
||||
return 0
|
||||
benchmark_configs = generate_main_configs(
|
||||
warmup_iterations=args.warmup,
|
||||
measurement_iterations=args.iterations,
|
||||
batch_size=args.batch_size[0],
|
||||
sequence_length=args.sequence_length[0],
|
||||
num_tokens_to_generate=args.num_tokens_to_generate[0],
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Benchmark run failed: {e}")
|
||||
import traceback
|
||||
# Otherwise, we benchmark across all combinations of dimensions
|
||||
else:
|
||||
main_config = generate_main_configs(
|
||||
warmup_iterations=args.warmup,
|
||||
measurement_iterations=args.iterations,
|
||||
batch_size=args.batch_size[0],
|
||||
sequence_length=args.sequence_length[0],
|
||||
num_tokens_to_generate=args.num_tokens_to_generate[0],
|
||||
)[0]
|
||||
benchmark_configs = []
|
||||
for num_tokens_to_generate in args.num_tokens_to_generate:
|
||||
for sequence_length in args.sequence_length:
|
||||
for batch_size in args.batch_size:
|
||||
cfg_dict = main_config.to_dict()
|
||||
cfg_dict["batch_size"] = batch_size
|
||||
cfg_dict["sequence_length"] = sequence_length
|
||||
cfg_dict["num_tokens_to_generate"] = num_tokens_to_generate
|
||||
cfg_dict.pop("name")
|
||||
benchmark_configs.append(BenchmarkConfig.from_dict(cfg_dict))
|
||||
|
||||
logger.debug(traceback.format_exc())
|
||||
return 1
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
sys.exit(main())
|
||||
runner = BenchmarkRunner(logger, args.output_dir, args.commit_id)
|
||||
results = runner.run_benchmarks(
|
||||
args.model_id,
|
||||
benchmark_configs,
|
||||
args.num_tokens_to_profile,
|
||||
pretty_print_summary=True,
|
||||
)
|
||||
# runner.save_results(args.model_id, results)
|
||||
|
||||
@ -54,7 +54,6 @@ NOT_DEVICE_TESTS = {
|
||||
"test_gradient_checkpointing_backward_compatibility",
|
||||
"test_gradient_checkpointing_enable_disable",
|
||||
"test_torch_save_load",
|
||||
"test_initialization",
|
||||
"test_forward_signature",
|
||||
"test_model_get_set_embeddings",
|
||||
"test_model_main_input_name",
|
||||
@ -90,6 +89,8 @@ def pytest_configure(config):
|
||||
config.addinivalue_line("markers", "torch_compile_test: mark test which tests torch compile functionality")
|
||||
config.addinivalue_line("markers", "torch_export_test: mark test which tests torch export functionality")
|
||||
|
||||
os.environ["DISABLE_SAFETENSORS_CONVERSION"] = "true"
|
||||
|
||||
|
||||
def pytest_collection_modifyitems(items):
|
||||
for item in items:
|
||||
|
||||
@ -5,7 +5,7 @@ ARG REF=main
|
||||
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip install uv && uv pip install --no-cache-dir -U pip setuptools GitPython
|
||||
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --upgrade 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir pypi-kenlm
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[quality,testing,torch-speech,vision]"
|
||||
RUN git lfs install
|
||||
|
||||
@ -17,7 +17,7 @@ RUN make install -j 10
|
||||
|
||||
WORKDIR /
|
||||
|
||||
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache --upgrade 'torch<2.9' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,spacy,ftfy,rjieba]" unidic unidic-lite
|
||||
# spacy is not used so not tested. Causes to failures. TODO fix later
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
|
||||
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1 g++ tesseract-ocr git-lfs curl
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --no-deps timm accelerate
|
||||
RUN uv pip install -U --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
|
||||
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg curl
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
|
||||
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"
|
||||
|
||||
|
||||
@ -12,8 +12,6 @@ SHELL ["sh", "-lc"]
|
||||
ARG PYTORCH='2.8.0'
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
ARG CUDA='cu126'
|
||||
# Disable kernel mapping for now until all tests pass
|
||||
ENV DISABLE_KERNEL_MAPPING=1
|
||||
|
||||
RUN apt update
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
|
||||
|
||||
@ -12,8 +12,6 @@ SHELL ["sh", "-lc"]
|
||||
ARG PYTORCH='2.8.0'
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
ARG CUDA='cu126'
|
||||
# Disable kernel mapping for quantization tests
|
||||
ENV DISABLE_KERNEL_MAPPING=1
|
||||
|
||||
RUN apt update
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
|
||||
@ -82,6 +80,9 @@ RUN python3 -m pip uninstall -y flash-attn
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
# Add fp-quant for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir "fp-quant>=0.2.0"
|
||||
|
||||
# Low usage or incompatible lib, will enable later on
|
||||
|
||||
# # Add aqlm for quantization testing
|
||||
@ -102,7 +103,3 @@ RUN cd transformers && python3 setup.py develop
|
||||
# # TODO: create a new workflow to test them
|
||||
# RUN python3 -m pip install --no-cache-dir flute-kernel==0.4.1
|
||||
# RUN python3 -m pip install --no-cache-dir git+https://github.com/Dao-AILab/fast-hadamard-transform.git
|
||||
|
||||
# Add fp-quant for quantization testing
|
||||
# Requires py3.11 but our CI runs on 3.9
|
||||
# RUN python3 -m pip install --no-cache-dir "fp-quant>=0.1.6"
|
||||
@ -52,7 +52,7 @@
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">الصورة توضح مخطط مراحل نموذج Swin.</figcaption>
|
||||
</div>
|
||||
|
||||
يسمح لك [`AutoBackbone`] باستخدام النماذج المُدربة مسبقًا كعمود فقري للحصول على خرائط ميزات من مراحل مختلفة من العمود الفقري. يجب عليك تحديد أحد المعلمات التالية في [`~PretrainedConfig.from_pretrained`]:
|
||||
يسمح لك [`AutoBackbone`] باستخدام النماذج المُدربة مسبقًا كعمود فقري للحصول على خرائط ميزات من مراحل مختلفة من العمود الفقري. يجب عليك تحديد أحد المعلمات التالية في [`~PreTrainedConfig.from_pretrained`]:
|
||||
|
||||
* `out_indices` هو فهرس الطبقة التي تريد الحصول على خريطة الميزات منها
|
||||
* `out_features` هو اسم الطبقة التي تريد الحصول على خريطة الميزات منها
|
||||
@ -131,10 +131,13 @@
|
||||
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
> [!WARNING]
|
||||
> بالنسبة لنماذج PyTorch، تستخدم طريقة `from_pretrained()` `torch.load()` التي تستخدم داخليًا `pickle` والتي يُعرف أنها غير آمنة. بشكل عام، لا تقم مطلقًا بتحميل نموذج قد يكون مصدره مصدرًا غير موثوق به، أو قد يكون تم العبث به. يتم تخفيف هذا الخطر الأمني جزئيًا للنماذج العامة المستضافة على Hub Hugging Face، والتي يتم [فحصها بحثًا عن البرامج الضارة](https://huggingface.co/docs/hub/security-malware) في كل ارتكاب. راجع [توثيق Hub](https://huggingface.co/docs/hub/security) للحصول على أفضل الممارسات مثل [التحقق من التوقيع](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) باستخدام GPG.
|
||||
>
|
||||
> لا تتأثر نقاط تفتيش TensorFlow و Flax، ويمكن تحميلها داخل بنيات PyTorch باستخدام `from_tf` و `from_flax` kwargs لطريقة `from_pretrained` للتحايل على هذه المشكلة.
|
||||
<Tip warning={true}>
|
||||
|
||||
بالنسبة لنماذج PyTorch، تستخدم طريقة `from_pretrained()` `torch.load()` التي تستخدم داخليًا `pickle` والتي يُعرف أنها غير آمنة. بشكل عام، لا تقم مطلقًا بتحميل نموذج قد يكون مصدره مصدرًا غير موثوق به، أو قد يكون تم العبث به. يتم تخفيف هذا الخطر الأمني جزئيًا للنماذج العامة المستضافة على Hub Hugging Face، والتي يتم [فحصها بحثًا عن البرامج الضارة](https://huggingface.co/docs/hub/security-malware) في كل ارتكاب. راجع [توثيق Hub](https://huggingface.co/docs/hub/security) للحصول على أفضل الممارسات مثل [التحقق من التوقيع](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) باستخدام GPG.
|
||||
|
||||
لا تتأثر نقاط تفتيش TensorFlow و Flax، ويمكن تحميلها داخل بنيات PyTorch باستخدام `from_tf` و `from_flax` kwargs لطريقة `from_pretrained` للتحايل على هذه المشكلة.
|
||||
|
||||
</Tip>
|
||||
|
||||
|
||||
بشكل عام، نوصي باستخدام فئة `AutoTokenizer` وفئة `AutoModelFor` لتحميل مثيلات مُدربة مسبقًا من النماذج. سيساعدك هذا في تحميل البنية الصحيحة في كل مرة. في البرنامج التعليمي التالي، تعرف على كيفية استخدام المحلل اللغوي ومعالج الصور ومستخرج الميزات والمعالج الذي تم تحميله حديثًا لمعالجة مجموعة بيانات للضبط الدقيق.
|
||||
|
||||
@ -230,10 +230,11 @@ The sun.</s>
|
||||
|
||||
من هنا، استمر في التدريب كما تفعل مع مهمة نمذجة اللغة القياسية، باستخدام عمود `formatted_chat`.
|
||||
|
||||
> [!TIP]
|
||||
> بشكل افتراضي ، تضيف بعض *tokenizers* رموزًا خاصة مثل `<bos>` و `<eos>` إلى النص الذي تقوم بتقسيمه إلى رموز. يجب أن تتضمن قوالب المحادثة بالفعل جميع الرموز الخاصة التي تحتاجها ، وبالتالي فإن الرموز الخاصة الإضافية ستكون غالبًا غير صحيحة أو مُكررة ، مما سيؤثر سلبًا على أداء النموذج .
|
||||
>
|
||||
> لذلك ، إذا قمت بتنسيق النص باستخدام `apply_chat_template(tokenize=False)` ، فيجب تعيين المعامل `add_special_tokens=False` عندما تقوم بتقسيم ذلك النص إلى رموز لاحقًا . إذا كنت تستخدم `apply_chat_template(tokenize=True)` ، فلن تحتاج إلى القلق بشأن ذلك !
|
||||
<Tip>
|
||||
بشكل افتراضي ، تضيف بعض *tokenizers* رموزًا خاصة مثل `<bos>` و `<eos>` إلى النص الذي تقوم بتقسيمه إلى رموز. يجب أن تتضمن قوالب المحادثة بالفعل جميع الرموز الخاصة التي تحتاجها ، وبالتالي فإن الرموز الخاصة الإضافية ستكون غالبًا غير صحيحة أو مُكررة ، مما سيؤثر سلبًا على أداء النموذج .
|
||||
|
||||
لذلك ، إذا قمت بتنسيق النص باستخدام `apply_chat_template(tokenize=False)` ، فيجب تعيين المعامل `add_special_tokens=False` عندما تقوم بتقسيم ذلك النص إلى رموز لاحقًا . إذا كنت تستخدم `apply_chat_template(tokenize=True)` ، فلن تحتاج إلى القلق بشأن ذلك !
|
||||
</Tip>
|
||||
|
||||
## متقدّم: مدخلات إضافية لِقوالب الدردشة
|
||||
|
||||
@ -360,8 +361,9 @@ print(tokenizer.decode(out[0][len(inputs["input_ids"][0]):]))
|
||||
The current temperature in Paris, France is 22.0 ° Celsius.<|im_end|>
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> لا تستخدم جميع نماذج استخدام الأدوات جميع ميزات استدعاء الأدوات الموضحة أعلاه. يستخدم البعض معرفات استدعاء الأدوات، بينما يستخدم البعض الآخر ببساطة اسم الدالة ويقارن استدعاءات الأدوات بالنتائج باستخدام الترتيب، وهناك عدة نماذج لا تستخدم أيًا منهما ولا تصدر سوى استدعاء أداة واحد في كل مرة لتجنب الارتباك. إذا كنت تريد أن يكون رمزك متوافقًا مع أكبر عدد ممكن من النماذج، فإننا نوصي بهيكلة استدعاءات الأدوات الخاصة بك كما هو موضح هنا، وإعادة نتائج الأدوات بالترتيب الذي أصدرها النموذج. يجب أن تتعامل قوالب الدردشة على كل نموذج مع الباقي.
|
||||
<Tip>
|
||||
لا تستخدم جميع نماذج استخدام الأدوات جميع ميزات استدعاء الأدوات الموضحة أعلاه. يستخدم البعض معرفات استدعاء الأدوات، بينما يستخدم البعض الآخر ببساطة اسم الدالة ويقارن استدعاءات الأدوات بالنتائج باستخدام الترتيب، وهناك عدة نماذج لا تستخدم أيًا منهما ولا تصدر سوى استدعاء أداة واحد في كل مرة لتجنب الارتباك. إذا كنت تريد أن يكون رمزك متوافقًا مع أكبر عدد ممكن من النماذج، فإننا نوصي بهيكلة استدعاءات الأدوات الخاصة بك كما هو موضح هنا، وإعادة نتائج الأدوات بالترتيب الذي أصدرها النموذج. يجب أن تتعامل قوالب الدردشة على كل نموذج مع الباقي.
|
||||
</Tip>
|
||||
|
||||
### فهم مخططات الأدوات
|
||||
|
||||
@ -512,8 +514,9 @@ print(gen_text)
|
||||
إن مُدخل documents للتوليد القائم على الاسترجاع غير مدعوم على نطاق واسع، والعديد من النماذج لديها قوالب دردشة تتجاهل هذا المُدخل ببساطة.
|
||||
|
||||
للتحقق مما إذا كان النموذج يدعم مُدخل `documents`، يمكنك قراءة بطاقة النموذج الخاصة به، أو `print(tokenizer.chat_template)` لمعرفة ما إذا كان مفتاح `documents` مستخدمًا في أي مكان.
|
||||
> [!TIP]
|
||||
> ومع ذلك، فإن أحد فئات النماذج التي تدعمه هي [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-08-2024) و [Command-R+](https://huggingface.co/CohereForAI/c4ai-command-r-pluse-08-2024) من Cohere، من خلال قالب الدردشة rag الخاص بهم. يمكنك رؤية أمثلة إضافية على التوليد باستخدام هذه الميزة في بطاقات النموذج الخاصة بهم.
|
||||
<Tip>
|
||||
ومع ذلك، فإن أحد فئات النماذج التي تدعمه هي [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-08-2024) و [Command-R+](https://huggingface.co/CohereForAI/c4ai-command-r-pluse-08-2024) من Cohere، من خلال قالب الدردشة rag الخاص بهم. يمكنك رؤية أمثلة إضافية على التوليد باستخدام هذه الميزة في بطاقات النموذج الخاصة بهم.
|
||||
</Tip>
|
||||
|
||||
## متقدم: كيف تعمل قوالب الدردشة؟
|
||||
يتم تخزين قالب الدردشة للنموذج في الخاصية `tokenizer.chat_template`. إذا لم يتم تعيين قالب دردشة، فسيتم استخدام القالب الافتراضي لفئة النموذج هذه بدلاً من ذلك. دعونا نلقي نظرة على قالب دردشة `Zephyr`، ولكن لاحظ أن هذا القالب مُبسّط قليلاً عن القالب الفعلي!
|
||||
@ -584,8 +587,9 @@ tokenizer.push_to_hub("model_name") # تحميل القالب الجديد إل
|
||||
|
||||
يتم استدعاء الدالة [`~PreTrainedTokenizer.apply_chat_template`] الذي نستخدم قالب الدردشة الخاص بك بواسطة فئة [`TextGenerationPipeline`] لذلك بمجرد تعيين قالب الدردشة الصحيح، سيصبح نموذجك متوافقًا تلقائيًا مع [`TextGenerationPipeline`].
|
||||
|
||||
> [!TIP]
|
||||
> إذا كنت تُجري ضبطًا دقيقًا لنموذج للدردشة، بالإضافة إلى تعيين قالب دردشة، فربما يجب عليك إضافة أي رموز تحكم دردشة جديدة كرموز خاصة في المجزىء اللغوي. لا يتم تقسيم الرموز الخاصة أبدًا، مما يضمن معالجة رموز التحكم الخاصة بك دائمًا كرموز فردية بدلاً من تجزئتها إلى أجزاء. يجب عليك أيضًا تعيين خاصية `eos_token` للمجزىء اللغوي إلى الرمز الذي يُشير إلى نهاية توليدات المساعد في قالبك. سيضمن هذا أن أدوات توليد النصوص يمكنها تحديد وقت إيقاف توليد النص بشكل صحيح.
|
||||
<Tip>
|
||||
إذا كنت تُجري ضبطًا دقيقًا لنموذج للدردشة، بالإضافة إلى تعيين قالب دردشة، فربما يجب عليك إضافة أي رموز تحكم دردشة جديدة كرموز خاصة في المجزىء اللغوي. لا يتم تقسيم الرموز الخاصة أبدًا، مما يضمن معالجة رموز التحكم الخاصة بك دائمًا كرموز فردية بدلاً من تجزئتها إلى أجزاء. يجب عليك أيضًا تعيين خاصية `eos_token` للمجزىء اللغوي إلى الرمز الذي يُشير إلى نهاية توليدات المساعد في قالبك. سيضمن هذا أن أدوات توليد النصوص يمكنها تحديد وقت إيقاف توليد النص بشكل صحيح.
|
||||
</Tip>
|
||||
|
||||
### لماذا تحتوي بعض النماذج على قوالب متعددة؟
|
||||
تستخدم بعض النماذج قوالب مختلفة لحالات استخدام مختلفة. على سبيل المثال، قد تستخدم قالبًا واحدًا للدردشة العادية وآخر لاستخدام الأدوات، أو التوليد القائم على الاسترجاع. في هذه الحالات، تكون `tokenizer.chat_template` قاموسًا. يمكن أن يتسبب هذا في بعض الارتباك، وحيثما أمكن، نوصي باستخدام قالب واحد لجميع حالات الاستخدام. يمكنك استخدام عبارات Jinja مثل `if tools is defined` وتعريفات `{% macro %}` لتضمين مسارات تعليمات برمجية متعددة بسهولة في قالب واحد.
|
||||
@ -636,8 +640,10 @@ I'm doing great!<|im_end|>
|
||||
|
||||
## متقدم: نصائح لكتابة القوالب
|
||||
|
||||
> [!TIP]
|
||||
> أسهل طريقة للبدء في كتابة قوالب Jinja هي إلقاء نظرة على بعض القوالب الموجودة. يمكنك استخدام `print(tokenizer.chat_template)` لأي نموذج دردشة لمعرفة القالب الذي يستخدمه. بشكل عام، تحتوي النماذج التي تدعم استخدام الأدوات على قوالب أكثر تعقيدًا بكثير من النماذج الأخرى - لذلك عندما تبدأ للتو، فمن المحتمل أنها مثال سيئ للتعلم منه! يمكنك أيضًا إلقاء نظرة على [وثائق Jinja](https://jinja.palletsprojects.com/en/3.1.x/templates/#synopsis) للحصول على تفاصيل حول تنسيق Jinja العام وتركيبه.
|
||||
<Tip>
|
||||
أسهل طريقة للبدء في كتابة قوالب Jinja هي إلقاء نظرة على بعض القوالب الموجودة. يمكنك استخدام `print(tokenizer.chat_template)` لأي نموذج دردشة لمعرفة القالب الذي يستخدمه. بشكل عام، تحتوي النماذج التي تدعم استخدام الأدوات على قوالب أكثر تعقيدًا بكثير من النماذج الأخرى - لذلك عندما تبدأ للتو، فمن المحتمل أنها مثال سيئ للتعلم منه! يمكنك أيضًا إلقاء نظرة على [وثائق Jinja](https://jinja.palletsprojects.com/en/3.1.x/templates/#synopsis) للحصول على تفاصيل حول تنسيق Jinja العام وتركيبه.
|
||||
|
||||
</Tip>
|
||||
|
||||
تُطابق قوالب Jinja في `transformers` قوالب Jinja في أي مكان آخر. الشيء الرئيسي الذي يجب معرفته هو أن سجل الدردشة سيكون متاحًا داخل قالبك كمتغير يسمى `messages`. ستتمكن من الوصول إلى `messages` في قالبك تمامًا كما يمكنك في Python، مما يعني أنه يمكنك التكرار خلاله باستخدام `{% for message in messages %}` أو الوصول إلى رسائل فردية باستخدام `{{ messages[0] }}`، على سبيل المثال.
|
||||
|
||||
@ -674,8 +680,11 @@ I'm doing great!<|im_end|>
|
||||
- **الرموز الخاصة** مثل `bos_token` و `eos_token`. يتم استخراجها من `tokenizer.special_tokens_map`. ستختلف الرموز الدقيقة المتاحة داخل كل قالب اعتمادًا على المجزىء اللغوي الأصلي.
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> يمكنك في الواقع تمرير أي `kwarg` إلى `apply_chat_template`، وستكون متاحة داخل القالب كمتغير. بشكل عام، نوصي بمحاولة الالتزام بالمتغيرات الأساسية المذكورة أعلاه، لأن ذلك سيجعل نموذجك أكثر صعوبة في الاستخدام إذا كان على المستخدمين كتابة تعليمات برمجية مخصصة لتمرير `kwargs` خاصة بالنموذج. ومع ذلك، فنحن نُدرك أن هذا المجال يتحرك بسرعة، لذلك إذا كانت لديك حالة استخدام جديدة لا تتناسب مع واجهة برمجة التطبيقات الأساسية، فلا تتردد في استخدام `kwarg` معامل جديد لها! إذا أصبح `kwarg` المعامل الجديد شائعًا، فقد نقوم بترقيته إلى واجهة برمجة التطبيقات الأساسية وإنشاء وتوثيق الخاص به.
|
||||
<Tip>
|
||||
|
||||
يمكنك في الواقع تمرير أي `kwarg` إلى `apply_chat_template`، وستكون متاحة داخل القالب كمتغير. بشكل عام، نوصي بمحاولة الالتزام بالمتغيرات الأساسية المذكورة أعلاه، لأن ذلك سيجعل نموذجك أكثر صعوبة في الاستخدام إذا كان على المستخدمين كتابة تعليمات برمجية مخصصة لتمرير `kwargs` خاصة بالنموذج. ومع ذلك، فنحن نُدرك أن هذا المجال يتحرك بسرعة، لذلك إذا كانت لديك حالة استخدام جديدة لا تتناسب مع واجهة برمجة التطبيقات الأساسية، فلا تتردد في استخدام `kwarg` معامل جديد لها! إذا أصبح `kwarg` المعامل الجديد شائعًا، فقد نقوم بترقيته إلى واجهة برمجة التطبيقات الأساسية وإنشاء وتوثيق الخاص به.
|
||||
|
||||
</Tip>
|
||||
|
||||
### دوال قابلة للاستدعاء
|
||||
|
||||
|
||||
@ -188,8 +188,11 @@ pipe = pipeline("text-generation", "meta-llama/Meta-Llama-3-8B-Instruct", device
|
||||
|
||||
### اعتبارات الأداء
|
||||
|
||||
> [!TIP]
|
||||
> للحصول على دليل أكثر شمولاً حول أداء نموذج اللغة والتحسين، راجع [تحسين استدلال LLM](./llm_optims).
|
||||
<Tip>
|
||||
|
||||
للحصول على دليل أكثر شمولاً حول أداء نموذج اللغة والتحسين، راجع [تحسين استدلال LLM](./llm_optims).
|
||||
|
||||
</Tip>
|
||||
|
||||
|
||||
كقاعدة عامة، ستكون نماذج المحادثة الأكبر حجمًا أبطأ في توليد النصوص بالإضافة إلى احتياجها لذاكرة أكبرة. من الممكن أن تكون أكثر تحديدًا بشأن هذا: إن توليد النص من نموذج دردشة أمر غير عادي في أنه يخضع لقيود **سعة الذاكرة** بدلاً من قوة الحوسبة، لأن كل معلمة نشطة يجب قراءتها من الذاكرة لكل رمز ينشئه النموذج. وهذا يعني أن عدد الرموز في الثانية التي يمكنك توليدها من نموذج الدردشة يتناسب بشكل عام مع إجمالي حجم الذاكرة التي بوجد بها ا، مقسومًا على حجم النموذج.
|
||||
|
||||
@ -54,26 +54,27 @@ DistilBertConfig {
|
||||
|
||||
```
|
||||
|
||||
يمكن تعديل خصائص النموذج المدرب مسبقًا في دالة [`~PretrainedConfig.from_pretrained`] :
|
||||
يمكن تعديل خصائص النموذج المدرب مسبقًا في دالة [`~PreTrainedConfig.from_pretrained`] :
|
||||
|
||||
```py
|
||||
>>> my_config = DistilBertConfig.from_pretrained("distilbert/distilbert-base-uncased", activation="relu", attention_dropout=0.4)
|
||||
```
|
||||
|
||||
بمجرد أن تصبح راضيًا عن تكوين نموذجك، يمكنك حفظه باستخدام [`~PretrainedConfig.save_pretrained`]. يتم تخزين ملف التكوين الخاص بك على أنه ملف JSON في دليل الحفظ المحدد:
|
||||
بمجرد أن تصبح راضيًا عن تكوين نموذجك، يمكنك حفظه باستخدام [`~PreTrainedConfig.save_pretrained`]. يتم تخزين ملف التكوين الخاص بك على أنه ملف JSON في دليل الحفظ المحدد:
|
||||
|
||||
```py
|
||||
>>> my_config.save_pretrained(save_directory="./your_model_save_path")
|
||||
```
|
||||
|
||||
لإعادة استخدام ملف التكوين، قم بتحميله باستخدام [`~PretrainedConfig.from_pretrained`]:
|
||||
لإعادة استخدام ملف التكوين، قم بتحميله باستخدام [`~PreTrainedConfig.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> يمكنك أيضًا حفظ ملف التكوين كقاموس أو حتى كفرق بين خصائص التكوين المُعدّلة والخصائص التكوين الافتراضية! راجع وثائق [التكوين](main_classes/configuration) لمزيد من التفاصيل.
|
||||
<Tip>
|
||||
يمكنك أيضًا حفظ ملف التكوين كقاموس أو حتى كفرق بين خصائص التكوين المُعدّلة والخصائص التكوين الافتراضية! راجع وثائق [التكوين](main_classes/configuration) لمزيد من التفاصيل.
|
||||
</Tip>
|
||||
|
||||
|
||||
## النموذج
|
||||
@ -132,8 +133,11 @@ DistilBertConfig {
|
||||
|
||||
يدعم كلا النوعين من المجزئات طرقًا شائعة مثل الترميز وفك الترميز، وإضافة رموز جديدة، وإدارة الرموز الخاصة.
|
||||
|
||||
> [!WARNING]
|
||||
> لا يدعم كل نموذج مجزئ النصوص سريع. الق نظرة على هذا [جدول](index#supported-frameworks) للتحقق مما إذا كان النموذج يحتوي على دعم مجزئ النصوص سريع.
|
||||
<Tip warning={true}>
|
||||
|
||||
لا يدعم كل نموذج مجزئ النصوص سريع. الق نظرة على هذا [جدول](index#supported-frameworks) للتحقق مما إذا كان النموذج يحتوي على دعم مجزئ النصوص سريع.
|
||||
|
||||
</Tip>
|
||||
|
||||
إذا دربت مجزئ النصوص خاص بك، فيمكنك إنشاء واحد من *قاموسك*:```
|
||||
|
||||
@ -159,8 +163,9 @@ DistilBertConfig {
|
||||
>>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> افتراضيًا، سيحاول [`AutoTokenizer`] تحميل مجزئ نصوص سريع. يمكنك تعطيل هذا السلوك عن طريق تعيين `use_fast=False` في `from_pretrained`.
|
||||
<Tip>
|
||||
افتراضيًا، سيحاول [`AutoTokenizer`] تحميل مجزئ نصوص سريع. يمكنك تعطيل هذا السلوك عن طريق تعيين `use_fast=False` في `from_pretrained`.
|
||||
</Tip>
|
||||
|
||||
## معالج الصور
|
||||
|
||||
@ -192,8 +197,11 @@ ViTImageProcessor {
|
||||
}
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> إذا كنت لا تبحث عن أي تخصيص، فما عليك سوى استخدام طريقة `from_pretrained` لتحميل معلمات معالج الصور الافتراضية للنموذج.
|
||||
<Tip>
|
||||
|
||||
إذا كنت لا تبحث عن أي تخصيص، فما عليك سوى استخدام طريقة `from_pretrained` لتحميل معلمات معالج الصور الافتراضية للنموذج.
|
||||
|
||||
</Tip>
|
||||
|
||||
عدل أيًا من معلمات [`ViTImageProcessor`] لإنشاء معالج الصور المخصص الخاص بك:
|
||||
|
||||
@ -326,8 +334,9 @@ Wav2Vec2FeatureExtractor {
|
||||
}
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> إذا لم تكن بحاجة لأي تخصيص، فاستخدم فقط طريقة `from_pretrained` لتحميل معلمات مستخرج الميزات الافتراضية للنموذج.
|
||||
<Tip>
|
||||
إذا لم تكن بحاجة لأي تخصيص، فاستخدم فقط طريقة `from_pretrained` لتحميل معلمات مستخرج الميزات الافتراضية للنموذج.
|
||||
</Tip>
|
||||
|
||||
قم بتعديل أي من معلمات [`Wav2Vec2FeatureExtractor`] لإنشاء مستخرج ميزات مخصص:
|
||||
|
||||
|
||||
@ -11,17 +11,20 @@
|
||||
|
||||
لنبدأ بكتابة إعدادات النموذج. إعدادات النموذج هو كائنٌ يحتوي على جميع المعلومات اللازمة لبنائه. كما سنرى لاحقًا، يتطلب النموذج كائن `config` لتهيئته، لذا يجب أن يكون هذا الكائن كاملاً.
|
||||
|
||||
> [!TIP]
|
||||
> تتبع النماذج في مكتبة `transformers` اتفاقية قبول كائن `config` في دالة `__init__` الخاصة بها، ثم تمرر كائن `config` بالكامل إلى الطبقات الفرعية في النموذج، بدلاً من تقسيمه إلى معامﻻت متعددة. يؤدي كتابة نموذجك بهذا الأسلوب إلى كود أبسط مع "مصدر حقيقة" واضح لأي فرط معلمات، كما يسهل إعادة استخدام الكود من نماذج أخرى في `transformers`.
|
||||
<Tip>
|
||||
|
||||
تتبع النماذج في مكتبة `transformers` اتفاقية قبول كائن `config` في دالة `__init__` الخاصة بها، ثم تمرر كائن `config` بالكامل إلى الطبقات الفرعية في النموذج، بدلاً من تقسيمه إلى معامﻻت متعددة. يؤدي كتابة نموذجك بهذا الأسلوب إلى كود أبسط مع "مصدر حقيقة" واضح لأي فرط معلمات، كما يسهل إعادة استخدام الكود من نماذج أخرى في `transformers`.
|
||||
|
||||
</Tip>
|
||||
|
||||
في مثالنا، سنعدّل بعض الوسائط في فئة ResNet التي قد نرغب في ضبطها. ستعطينا التكوينات المختلفة أنواع ResNets المختلفة الممكنة. سنقوم بتخزين هذه الوسائط بعد التحقق من صحته.
|
||||
|
||||
```python
|
||||
from transformers import PretrainedConfig
|
||||
from transformers import PreTrainedConfig
|
||||
from typing import List
|
||||
|
||||
|
||||
class ResnetConfig(PretrainedConfig):
|
||||
class ResnetConfig(PreTrainedConfig):
|
||||
model_type = "resnet"
|
||||
|
||||
def __init__(
|
||||
@ -55,11 +58,11 @@ class ResnetConfig(PretrainedConfig):
|
||||
```
|
||||
الأشياء الثلاثة المهمة التي يجب تذكرها عند كتابة تكوينك الخاص هي:
|
||||
|
||||
- يجب أن ترث من `PretrainedConfig`،
|
||||
- يجب أن تقبل دالة `__init__` الخاصة بـ `PretrainedConfig` أي معامﻻت إضافية kwargs،
|
||||
- يجب أن ترث من `PreTrainedConfig`،
|
||||
- يجب أن تقبل دالة `__init__` الخاصة بـ `PreTrainedConfig` أي معامﻻت إضافية kwargs،
|
||||
- يجب تمرير هذه المعامﻻت الإضافية إلى دالة `__init__` فى الفئة الأساسية الاعلى.
|
||||
|
||||
يضمن الإرث حصولك على جميع الوظائف من مكتبة 🤗 Transformers، في حين أن القيدين التانى والثالث يأتيان من حقيقة أن `PretrainedConfig` لديه المزيد من الحقول أكثر من تلك التي تقوم بتعيينها. عند إعادة تحميل تكوين باستخدام طريقة `from_pretrained`، يجب أن يقبل تكوينك هذه الحقول ثم إرسالها إلى الفئة الأساسية الأعلى.
|
||||
يضمن الإرث حصولك على جميع الوظائف من مكتبة 🤗 Transformers، في حين أن القيدين التانى والثالث يأتيان من حقيقة أن `PreTrainedConfig` لديه المزيد من الحقول أكثر من تلك التي تقوم بتعيينها. عند إعادة تحميل تكوين باستخدام طريقة `from_pretrained`، يجب أن يقبل تكوينك هذه الحقول ثم إرسالها إلى الفئة الأساسية الأعلى.
|
||||
|
||||
تحديد `model_type` لتكوينك (هنا `model_type="resnet"`) ليس إلزاميًا، ما لم ترغب في
|
||||
تسجيل نموذجك باستخدام الفئات التلقائية (راجع القسم الأخير).
|
||||
@ -79,7 +82,7 @@ resnet50d_config.save_pretrained("custom-resnet")
|
||||
resnet50d_config = ResnetConfig.from_pretrained("custom-resnet")
|
||||
```
|
||||
|
||||
يمكنك أيضًا استخدام أي طريقة أخرى من فئة [`PretrainedConfig`]، مثل [`~PretrainedConfig.push_to_hub`] لتحميل تكوينك مباشرة إلى Hub.
|
||||
يمكنك أيضًا استخدام أي طريقة أخرى من فئة [`PreTrainedConfig`]، مثل [`~PreTrainedConfig.push_to_hub`] لتحميل تكوينك مباشرة إلى Hub.
|
||||
|
||||
## كتابة نموذج مخصص
|
||||
|
||||
@ -151,8 +154,11 @@ class ResnetModelForImageClassification(PreTrainedModel):
|
||||
```
|
||||
في كلتا الحالتين، لاحظ كيف نرث من `PreTrainedModel` ونستدعي مُهيئ الفئة الرئيسية باستخدام `config` (كما تفعل عند إنشاء وحدة `torch.nn.Module` عادية). ليس من الضروري تعريف `config_class` إلا إذا كنت ترغب في تسجيل نموذجك مع الفئات التلقائية (راجع القسم الأخير).
|
||||
|
||||
> [!TIP]
|
||||
> إذا كان نموذجك مشابهًا جدًا لنموذج داخل المكتبة، فيمكنك إعادة استخدام نفس التكوين مثل هذا النموذج.
|
||||
<Tip>
|
||||
|
||||
إذا كان نموذجك مشابهًا جدًا لنموذج داخل المكتبة، فيمكنك إعادة استخدام نفس التكوين مثل هذا النموذج.
|
||||
|
||||
</Tip>
|
||||
|
||||
يمكن لنموذجك أن يعيد أي شيء تريده، ولكن إعادة قاموس مثلما فعلنا لـ
|
||||
`ResnetModelForImageClassification`، مع تضمين الخسارة عند تمرير العلامات، سيجعل نموذجك قابلًا للاستخدام مباشرة داخل فئة [`Trainer`]. يعد استخدام تنسيق إخراج آخر أمرًا جيدًا طالما أنك تخطط لاستخدام حلقة تدريب خاصة بك أو مكتبة أخرى للتدريب.
|
||||
@ -198,8 +204,11 @@ AutoModelForImageClassification.register(ResnetConfig, ResnetModelForImageClassi
|
||||
|
||||
## إرسال الكود إلى Hub
|
||||
|
||||
> [!WARNING]
|
||||
> هذا API تجريبي وقد يكون له بعض التغييرات الطفيفة في الإصدارات القادمة.
|
||||
<Tip warning={true}>
|
||||
|
||||
هذا API تجريبي وقد يكون له بعض التغييرات الطفيفة في الإصدارات القادمة.
|
||||
|
||||
</Tip>
|
||||
|
||||
أولاً، تأكد من تعريف نموذجك بالكامل في ملف `.py`. يمكن أن يعتمد على الاستيراد النسبي لملفات أخرى طالما أن جميع الملفات موجودة في نفس الدليل (لا ندعم الوحدات الفرعية لهذه الميزة حتى الآن). في مثالنا، سنحدد ملف `modeling_resnet.py` وملف `configuration_resnet.py` في مجلد باسم "resnet_model" في دليل العمل الحالي. يحتوي ملف التكوين على كود لـ `ResnetConfig` ويحتوي ملف النمذجة على كود لـ `ResnetModel` و`ResnetModelForImageClassification`.
|
||||
|
||||
@ -213,9 +222,12 @@ AutoModelForImageClassification.register(ResnetConfig, ResnetModelForImageClassi
|
||||
|
||||
يمكن أن يكون ملف `__init__.py` فارغًا، فهو موجود فقط حتى يتمكن Python من اكتشاف أن `resnet_model` يمكن استخدامه كموديل.
|
||||
|
||||
> [!WARNING]
|
||||
> إذا كنت تقوم بنسخ ملفات النمذجة من المكتبة، فسوف تحتاج إلى استبدال جميع الواردات النسبية في أعلى الملف
|
||||
> لاستيرادها من حزمة `transformers`.
|
||||
<Tip warning={true}>
|
||||
|
||||
إذا كنت تقوم بنسخ ملفات النمذجة من المكتبة، فسوف تحتاج إلى استبدال جميع الواردات النسبية في أعلى الملف
|
||||
لاستيرادها من حزمة `transformers`.
|
||||
|
||||
</Tip>
|
||||
|
||||
لاحظ أنه يمكنك إعادة استخدام (أو توسيع) تكوين/نموذج موجود.
|
||||
|
||||
@ -239,18 +251,21 @@ ResnetModelForImageClassification.register_for_auto_class("AutoModelForImageClas
|
||||
[`AutoConfig`]) ولكن الأمر يختلف بالنسبة للنماذج. قد يكون نموذجك المخصص مناسبًا للعديد من المهام المختلفة، لذلك يجب
|
||||
تحديد أي من الفئات التلقائية هو الصحيح لنموذجك.
|
||||
|
||||
> [!TIP]
|
||||
> استخدم `register_for_auto_class()` إذا كنت تريد نسخ ملفات الكود. إذا كنت تفضل استخدام الكود على Hub من مستودع آخر،
|
||||
> فلا تحتاج إلى استدعائه. في الحالات التي يوجد فيها أكثر من فئة تلقائية واحدة، يمكنك تعديل ملف `config.json` مباشرة باستخدام
|
||||
> الهيكل التالي:
|
||||
>
|
||||
> ```json
|
||||
> "auto_map": {
|
||||
> "AutoConfig": "<your-repo-name>--<config-name>",
|
||||
> "AutoModel": "<your-repo-name>--<config-name>",
|
||||
> "AutoModelFor<Task>": "<your-repo-name>--<config-name>",
|
||||
> },
|
||||
> ```
|
||||
<Tip>
|
||||
|
||||
استخدم `register_for_auto_class()` إذا كنت تريد نسخ ملفات الكود. إذا كنت تفضل استخدام الكود على Hub من مستودع آخر،
|
||||
فلا تحتاج إلى استدعائه. في الحالات التي يوجد فيها أكثر من فئة تلقائية واحدة، يمكنك تعديل ملف `config.json` مباشرة باستخدام
|
||||
الهيكل التالي:
|
||||
|
||||
```json
|
||||
"auto_map": {
|
||||
"AutoConfig": "<your-repo-name>--<config-name>",
|
||||
"AutoModel": "<your-repo-name>--<config-name>",
|
||||
"AutoModelFor<Task>": "<your-repo-name>--<config-name>",
|
||||
},
|
||||
```
|
||||
|
||||
</Tip>
|
||||
|
||||
بعد ذلك، دعنا نقوم بإنشاء التكوين والنماذج كما فعلنا من قبل:
|
||||
|
||||
|
||||
@ -245,8 +245,11 @@
|
||||
نماذج اكتشاف الأجسام: ([DetrForObjectDetection]) يتوقع النموذج قائمة من القواميس تحتوي على مفتاح class_labels و boxes حيث تتوافق كل قيمة من المجموعة مع الملصق المتوقع وعدد المربعات المحيطة بكل صورة فردية.
|
||||
نماذج التعرف التلقائي على الكلام: ([Wav2Vec2ForCTC]) يتوقع النموذج مصفوفة ذات بعد (batch_size, target_length) حيث تتوافق كل قيمة مع الملصق المتوقع لكل رمز فردي.
|
||||
|
||||
> [!TIP]
|
||||
> قد تختلف تسميات كل نموذج، لذا تأكد دائمًا من مراجعة وثائق كل نموذج للحصول على معلومات حول التسميات الخاصة به.
|
||||
<Tip>
|
||||
|
||||
قد تختلف تسميات كل نموذج، لذا تأكد دائمًا من مراجعة وثائق كل نموذج للحصول على معلومات حول التسميات الخاصة به.
|
||||
|
||||
</Tip>
|
||||
لا تقبل النماذج الأساسية ([`BertModel`]) الملصقات ، لأنها نماذج المحول الأساسية، والتي تقوم ببساطة بإخراج الميزات.
|
||||
|
||||
### نماذج اللغة الكبيرة large language models (LLM)
|
||||
|
||||
@ -48,14 +48,17 @@ pip install 'transformers[torch]'
|
||||
pip install 'transformers[tf-cpu]'
|
||||
```
|
||||
|
||||
> [!WARNING]
|
||||
> لمستخدمي M1 / ARM
|
||||
>
|
||||
> ستحتاج إلى تثبيت ما يلي قبل تثبيت TensorFLow 2.0
|
||||
> ```bash
|
||||
> brew install cmake
|
||||
> brew install pkg-config
|
||||
> ```
|
||||
<Tip warning={true}>
|
||||
|
||||
لمستخدمي M1 / ARM
|
||||
|
||||
ستحتاج إلى تثبيت ما يلي قبل تثبيت TensorFLow 2.0
|
||||
```bash
|
||||
brew install cmake
|
||||
brew install pkg-config
|
||||
```
|
||||
|
||||
</Tip>
|
||||
|
||||
🤗 Transformers وFlax:
|
||||
|
||||
@ -114,8 +117,11 @@ pip install -e .
|
||||
|
||||
ستقوم هذه الأوامر بربط المجلد الذي قمت باستنساخ المستودع فيه بمسارات مكتبة Python. بمعنى آخر، سيبحث Python داخل المجلد الذي قمت باستنساخه بالإضافة إلى المسارات المعتادة للمكتبات. على سبيل المثال، إذا تم تثبيت حزم Python الخاصة بك عادةً في `~/anaconda3/envs/main/lib/python3.7/site-packages/`, فسيقوم Python أيضًا بالبحث في المجلد الذي قمت باستنساخه: `~/transformers/`.
|
||||
|
||||
> [!WARNING]
|
||||
> يجب عليك الاحتفاظ بمجلد `transformers` إذا كنت تريد الاستمرار في استخدام المكتبة.
|
||||
<Tip warning={true}>
|
||||
|
||||
يجب عليك الاحتفاظ بمجلد `transformers` إذا كنت تريد الاستمرار في استخدام المكتبة.
|
||||
|
||||
</Tip>
|
||||
|
||||
الآن يمكنك تحديث المستنسخ الخاص بك بسهولة إلى أحدث إصدار من 🤗 Transformers باستخدام الأمر التالي:
|
||||
|
||||
@ -142,15 +148,21 @@ conda install conda-forge::transformers
|
||||
2. متغير البيئة: `HF_HOME`.
|
||||
3. متغير البيئة: `XDG_CACHE_HOME` + `/huggingface`.
|
||||
|
||||
> [!TIP]
|
||||
> سيستخدم 🤗 Transformers متغيرات البيئة `PYTORCH_TRANSFORMERS_CACHE` أو `PYTORCH_PRETRAINED_BERT_CACHE` إذا كنت قادمًا من إصدار سابق من هذه المكتبة وقمت بتعيين متغيرات البيئة هذه، ما لم تحدد متغير البيئة `TRANSFORMERS_CACHE`.
|
||||
<Tip>
|
||||
|
||||
سيستخدم 🤗 Transformers متغيرات البيئة `PYTORCH_TRANSFORMERS_CACHE` أو `PYTORCH_PRETRAINED_BERT_CACHE` إذا كنت قادمًا من إصدار سابق من هذه المكتبة وقمت بتعيين متغيرات البيئة هذه، ما لم تحدد متغير البيئة `TRANSFORMERS_CACHE`.
|
||||
|
||||
</Tip>
|
||||
|
||||
## الوضع دون اتصال بالإنترنت
|
||||
|
||||
قم بتشغيل 🤗 Transformers في بيئة محمية بجدار حماية أو غير متصلة باستخدام الملفات المخزنة مؤقتًا محليًا عن طريق تعيين متغير البيئة `HF_HUB_OFFLINE=1`.
|
||||
|
||||
> [!TIP]
|
||||
> أضف [🤗 Datasets](https://huggingface.co/docs/datasets/) إلى سير عمل التدريب غير المتصل باستخدام متغير البيئة `HF_DATASETS_OFFLINE=1`.
|
||||
<Tip>
|
||||
|
||||
أضف [🤗 Datasets](https://huggingface.co/docs/datasets/) إلى سير عمل التدريب غير المتصل باستخدام متغير البيئة `HF_DATASETS_OFFLINE=1`.
|
||||
|
||||
</Tip>
|
||||
|
||||
```bash
|
||||
HF_DATASETS_OFFLINE=1 HF_HUB_OFFLINE=1 \
|
||||
@ -227,5 +239,8 @@ model = T5Model.from_pretrained("./path/to/local/directory", local_files_only=Tr
|
||||
>>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json")
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> راجع قسم [كيفية تنزيل الملفات من Hub](https://huggingface.co/docs/hub/how-to-downstream) لمزيد من التفاصيل حول تنزيل الملفات المخزنة على Hub.
|
||||
<Tip>
|
||||
|
||||
راجع قسم [كيفية تنزيل الملفات من Hub](https://huggingface.co/docs/hub/how-to-downstream) لمزيد من التفاصيل حول تنزيل الملفات المخزنة على Hub.
|
||||
|
||||
</Tip>
|
||||
|
||||
@ -51,16 +51,19 @@ pip install transformers bitsandbytes>=0.39.0 -q
|
||||
دعنا نتحدث عن الكود!
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> إذا كنت مهتمًا بالاستخدام الأساسي لـ LLM، فإن واجهة [`Pipeline`](pipeline_tutorial) عالية المستوى هي نقطة انطلاق رائعة. ومع ذلك، غالبًا ما تتطلب LLMs ميزات متقدمة مثل التكميم والتحكم الدقيق في خطوة اختيار الرمز، والتي يتم تنفيذها بشكل أفضل من خلال [`~generation.GenerationMixin.generate`]. التوليد التلقائي باستخدام LLMs يستهلك الكثير من المواردد ويجب تنفيذه على وحدة معالجة الرسومات للحصول على أداء كافٍ.
|
||||
<Tip>
|
||||
|
||||
إذا كنت مهتمًا بالاستخدام الأساسي لـ LLM، فإن واجهة [`Pipeline`](pipeline_tutorial) عالية المستوى هي نقطة انطلاق رائعة. ومع ذلك، غالبًا ما تتطلب LLMs ميزات متقدمة مثل التكميم والتحكم الدقيق في خطوة اختيار الرمز، والتي يتم تنفيذها بشكل أفضل من خلال [`~generation.GenerationMixin.generate`]. التوليد التلقائي باستخدام LLMs يستهلك الكثير من المواردد ويجب تنفيذه على وحدة معالجة الرسومات للحصول على أداء كافٍ.
|
||||
|
||||
</Tip>
|
||||
|
||||
أولاً، تحتاج إلى تحميل النموذج.
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForCausalLM
|
||||
>>> from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
||||
|
||||
>>> model = AutoModelForCausalLM.from_pretrained(
|
||||
... "mistralai/Mistral-7B-v0.1", device_map="auto", load_in_4bit=True
|
||||
... "mistralai/Mistral-7B-v0.1", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
|
||||
... )
|
||||
```
|
||||
|
||||
@ -110,12 +113,12 @@ pip install transformers bitsandbytes>=0.39.0 -q
|
||||
هناك العديد من [استراتيجيات التوليد](generation_strategies)، وفي بعض الأحيان قد لا تكون القيم الافتراضية مناسبة لحالتك الاستخدام. إذا لم تكن الإخراج الخاصة بك متوافقة مع ما تتوقعه، فقد قمنا بإنشاء قائمة بأكثر الأخطاء الشائعة وكيفية تجنبها.
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
||||
>>> tokenizer.pad_token = tokenizer.eos_token # Most LLMs don't have a pad token by default
|
||||
>>> model = AutoModelForCausalLM.from_pretrained(
|
||||
... "mistralai/Mistral-7B-v0.1", device_map="auto", load_in_4bit=True
|
||||
... "mistralai/Mistral-7B-v0.1", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
|
||||
... )
|
||||
```
|
||||
|
||||
@ -189,7 +192,7 @@ LLMs هي [معماريات فك التشفير فقط](https://huggingface.co/l
|
||||
```python
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-alpha")
|
||||
>>> model = AutoModelForCausalLM.from_pretrained(
|
||||
... "HuggingFaceH4/zephyr-7b-alpha", device_map="auto", load_in_4bit=True
|
||||
... "HuggingFaceH4/zephyr-7b-alpha", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
|
||||
... )
|
||||
>>> set_seed(0)
|
||||
>>> prompt = """How many helicopters can a human eat in one sitting? Reply as a thug."""
|
||||
|
||||
@ -231,7 +231,7 @@ flush()
|
||||
دعنا نرى ما هو استهلاك ذاكرة GPU الذروة الذي يوفره تكميم 4 بت. يمكن تكميم النموذج إلى 4 بت باستخدام نفس واجهة برمجة التطبيقات كما في السابق - هذه المرة عن طريق تمرير `load_in_4bit=True` بدلاً من `load_in_8bit=True`.
|
||||
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, pad_token_id=0)
|
||||
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", quantization_config=BitsAndBytesConfig(load_in_4bit=True), pad_token_id=0)
|
||||
|
||||
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
||||
|
||||
@ -329,174 +329,6 @@ $$ \textbf{O}_i \leftarrow s^a_{ij} * \textbf{O}_i + s^b_{ij} * \mathbf{V}_{j} \
|
||||
لنلقِ نظرة على مثال عملي.
|
||||
|
||||
|
||||
يحصل نموذج OctoCoder الخاص بنا الآن على موجه إدخال أطول بشكل كبير يتضمن ما يسمى *موجه النظام*. تُستخدم موجهات النظام لتوجيه LLM إلى مساعد أفضل مصمم لمهام المستخدمين.
|
||||
فيما يلي، نستخدم موجه النظام الذي سيجعل OctoCoder مساعد ترميز أفضل.
|
||||
|
||||
```python
|
||||
system_prompt = """Below are a series of dialogues between various people and an AI technical assistant.
|
||||
The assistant tries to be helpful, polite, honest, sophisticated, emotionally aware, and humble but knowledgeable.
|
||||
The assistant is happy to help with code questions and will do their best to understand exactly what is needed.
|
||||
It also tries to avoid giving false or misleading information, and it caveats when it isn't entirely sure about the right answer.
|
||||
That said, the assistant is practical really does its best, and doesn't let caution get too much in the way of being useful.
|
||||
|
||||
The Starcoder models are a series of 15.5B parameter models trained on 80+ programming languages from The Stack (v1.2) (excluding opt-out requests).
|
||||
The model uses Multi Query Attention, was trained using the Fill-in-the-Middle objective, and with 8,192 tokens context window for a trillion tokens of heavily deduplicated data.
|
||||
-----
|
||||
|
||||
Question: Write a function that takes two lists and returns a list that has alternating elements from each input list.
|
||||
|
||||
Answer: Sure. Here is a function that does that.
|
||||
|
||||
def alternating(list1, list2):
|
||||
results = []
|
||||
for i in range(len(list1)):
|
||||
results.append(list1[i])
|
||||
results.append(list2[i])
|
||||
return results
|
||||
|
||||
Question: Can you write some test cases for this function?
|
||||
|
||||
Answer: Sure, here are some tests.
|
||||
|
||||
assert alternating([10, 20, 30], [1, 2, 3]) == [10, 1, 20, 2, 30, 3]
|
||||
assert alternating([True, False], [4, 5]) == [True, 4, False, 5]
|
||||
assert alternating([], []) == []
|
||||
|
||||
Question: Modify the function so that it returns all input elements when the lists have uneven length. The elements from the longer list should be at the end.
|
||||
|
||||
Answer: Here is the modified function.
|
||||
|
||||
def alternating(list1, list2):
|
||||
results = []
|
||||
for i in range(min(len(list1), len(list2))):
|
||||
results.append(list1[i])
|
||||
results.append(list2[i])
|
||||
if len(list1) > len(list2):
|
||||
results.extend(list1[i+1:])
|
||||
else:
|
||||
results.extend(list2[i+1:])
|
||||
return results
|
||||
-----
|
||||
"""
|
||||
```
|
||||
لأغراض التوضيح، سنكرر موجه النظام عشر مرات بحيث يكون طول الإدخال طويلاً بما يكفي لملاحظة وفورات ذاكرة Flash Attention.
|
||||
نضيف موجه النص الأصلي "سؤال: يرجى كتابة وظيفة في Python تقوم بتحويل البايتات إلى جيجا بايت.
|
||||
|
||||
```python
|
||||
long_prompt = 10 * system_prompt + prompt
|
||||
```
|
||||
|
||||
نقوم بتنفيذ نموذجنا مرة أخرى بدقة bfloat16.
|
||||
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", dtype=torch.bfloat16, device_map="auto")
|
||||
tokenizer = AutoTokenizer.from_pretrained("bigcode/octocoder")
|
||||
|
||||
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
||||
```
|
||||
|
||||
دعنا الآن نقوم بتشغيل النموذج تمامًا مثلما كان من قبل *بدون اهتمام فلاشي* وقياس متطلبات ذاكرة GPU وقت الذروة ووقت الاستدلال.
|
||||
|
||||
```python
|
||||
import time
|
||||
|
||||
start_time = time.time()
|
||||
result = pipe(long_prompt, max_new_tokens=60)[0]["generated_text"][len(long_prompt):]
|
||||
|
||||
print(f"Generated in {time.time() - start_time} seconds.")
|
||||
result
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
تم التوليد في 10.96854019165039 ثانية.
|
||||
بالتأكيد. إليك وظيفة للقيام بذلك.
|
||||
|
||||
def bytes_to_giga(bytes):
|
||||
return bytes / 1024 / 1024 / 1024
|
||||
|
||||
الإجابة: بالتأكيد. إليك وظيفة للقيام بذلك.
|
||||
|
||||
ديف
|
||||
```
|
||||
|
||||
نحصل على نفس الإخراج كما كان من قبل، ولكن هذه المرة، يقوم النموذج بتكرار الإجابة عدة مرات حتى يتم قطعها عند 60 رمزًا. ليس من المستغرب أننا كررنا موجه النظام عشر مرات لأغراض التوضيح وبالتالي قمنا بتشغيل النموذج لتكرار نفسه.
|
||||
|
||||
**ملاحظة** لا ينبغي تكرار موجه النظام عشر مرات في التطبيقات الواقعية - مرة واحدة كافية!
|
||||
|
||||
دعنا نقيس متطلبات ذاكرة GPU وقت الذروة.
|
||||
|
||||
```python
|
||||
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
37.668193340301514
|
||||
```
|
||||
|
||||
كما نرى، فإن متطلبات ذاكرة GPU وقت الذروة أعلى بكثير مما كانت عليه في البداية، وهو ما يرجع إلى حد كبير إلى تسلسل الإدخال الأطول. أيضًا، يستغرق التوليد أكثر من دقيقة بقليل الآن.
|
||||
|
||||
نستدعي `flush()` لتحرير ذاكرة GPU لتجربتنا التالية.
|
||||
|
||||
```python
|
||||
flush()
|
||||
```
|
||||
|
||||
لمقارنة، دعونا نقوم بتشغيل نفس الدالة، ولكن تمكين الاهتمام فلاش بدلا من ذلك.
|
||||
للقيام بذلك، نقوم بتحويل النموذج إلى [BetterTransformer](Https://huggingface.co/docs/optimum/bettertransformer/overview) ومن خلال القيام بذلك تمكين PyTorch's [SDPA self-attention](Https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention) والتي بدورها قادرة على استخدام الاهتمام فلاش.
|
||||
|
||||
```python
|
||||
model.to_bettertransformer()
|
||||
```
|
||||
|
||||
الآن نقوم بتشغيل نفس مقتطف التعليمات البرمجية بالضبط كما كان من قبل وتحت الغطاء سوف تستخدم المحولات الاهتمام فلاش.
|
||||
|
||||
```py
|
||||
start_time = time.time()
|
||||
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
||||
result = pipe(long_prompt, max_new_tokens=60)[0]["generated_text"][len(long_prompt):]
|
||||
|
||||
print(f"Generated in {time.time() - start_time} seconds.")
|
||||
result
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
تم التوليد في 3.0211617946624756 ثانية.
|
||||
بالتأكيد. إليك وظيفة للقيام بذلك.
|
||||
|
||||
def bytes_to_giga(bytes):
|
||||
return bytes / 1024 / 1024 / 1024
|
||||
|
||||
الإجابة: بالتأكيد. إليك وظيفة للقيام بذلك.
|
||||
|
||||
ديف
|
||||
```
|
||||
|
||||
نحصل على نفس النتيجة بالضبط كما كان من قبل، ولكن يمكننا ملاحظة تسريع كبير بفضل الاهتمام فلاش.
|
||||
|
||||
دعنا نقيس استهلاك الذاكرة لآخر مرة.
|
||||
|
||||
```python
|
||||
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
32.617331981658936
|
||||
```
|
||||
|
||||
ونحن تقريبا مرة أخرى إلى ذاكرة GPU الذروة الأصلية لدينا 29GB.
|
||||
|
||||
يمكننا أن نلاحظ أننا نستخدم فقط حوالي 100 ميجابايت إضافية من ذاكرة GPU عند تمرير تسلسل إدخال طويل جدًا مع الاهتمام فلاش مقارنة بتمرير تسلسل إدخال قصير كما فعلنا في البداية.
|
||||
|
||||
```py
|
||||
flush()
|
||||
```
|
||||
|
||||
لمزيد من المعلومات حول كيفية استخدام Flash Attention، يرجى الاطلاع على [صفحة doc هذه](Https://huggingface.co/docs/transformers/en/perf_infer_gpu_one#flashattention-2).
|
||||
|
||||
## 3. الابتكارات المعمارية
|
||||
|
||||
حتى الآن، نظرنا في تحسين الكفاءة الحسابية والذاكرة من خلال:
|
||||
@ -640,7 +472,7 @@ for _ in range(5):
|
||||
next_token_id = torch.argmax(next_logits, dim=-1)
|
||||
|
||||
print("shape of input_ids", next_token_id.shape)
|
||||
print("length of key-value cache", len(past_key_values[0][0])) # past_key_values are of shape [num_layers, 0 for k, 1 for v, batch_size, length, hidden_dim]
|
||||
print("length of key-value cache", past_key_values.get_seq_length()) # past_key_values are of shape [num_layers, 0 for k, 1 for v, batch_size, length, hidden_dim]
|
||||
generated_tokens.append(next_token_id.item())
|
||||
|
||||
generated_text = tokenizer.batch_decode(generated_tokens)
|
||||
@ -673,8 +505,11 @@ length of key-value cache 24
|
||||
> يجب *دائمًا* استخدام ذاكرة التخزين المؤقت للمفاتيح والقيم حيث يؤدي ذلك إلى نتائج متطابقة وزيادة كبيرة في السرعة لتسلسلات الإدخال الأطول. ذاكرة التخزين المؤقت للمفاتيح والقيم ممكّنة بشكل افتراضي في Transformers عند استخدام خط أنابيب النص أو طريقة [`generate`](https://huggingface.co/docs/transformers/main_classes/text_generation).
|
||||
|
||||
|
||||
> [!WARNING]
|
||||
> لاحظ أنه على الرغم من نصيحتنا باستخدام ذاكرة التخزين المؤقت للمفاتيح والقيم، فقد يكون إخراج نموذج اللغة الكبيرة مختلفًا قليلاً عند استخدامها. هذه خاصية نوى ضرب المصفوفة نفسها - يمكنك قراءة المزيد عنها [هنا](https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535).
|
||||
<Tip warning={true}>
|
||||
|
||||
لاحظ أنه على الرغم من نصيحتنا باستخدام ذاكرة التخزين المؤقت للمفاتيح والقيم، فقد يكون إخراج نموذج اللغة الكبيرة مختلفًا قليلاً عند استخدامها. هذه خاصية نوى ضرب المصفوفة نفسها - يمكنك قراءة المزيد عنها [هنا](https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535).
|
||||
|
||||
</Tip>
|
||||
|
||||
#### 3.2.1 محادثة متعددة الجولات
|
||||
|
||||
|
||||
@ -116,8 +116,11 @@ default_args = {
|
||||
}
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> إذا كنت تخطط لتشغيل عدة تجارب، من أجل مسح الذاكرة بشكل صحيح بين التجارب، قم بإعادة تشغيل نواة Python بين التجارب.
|
||||
<Tip>
|
||||
|
||||
إذا كنت تخطط لتشغيل عدة تجارب، من أجل مسح الذاكرة بشكل صحيح بين التجارب، قم بإعادة تشغيل نواة Python بين التجارب.
|
||||
|
||||
</Tip>
|
||||
|
||||
## استخدام الذاكرة في التدريب الأساسي
|
||||
|
||||
|
||||
@ -12,8 +12,11 @@
|
||||
frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope;
|
||||
picture-in-picture" allowfullscreen></iframe>
|
||||
|
||||
> [!TIP]
|
||||
> لمشاركة نموذج مع المجتمع، تحتاج إلى حساب على [huggingface.co](https://huggingface.co/join). يمكنك أيضًا الانضمام إلى منظمة موجودة أو إنشاء منظمة جديدة.
|
||||
<Tip>
|
||||
|
||||
لمشاركة نموذج مع المجتمع، تحتاج إلى حساب على [huggingface.co](https://huggingface.co/join). يمكنك أيضًا الانضمام إلى منظمة موجودة أو إنشاء منظمة جديدة.
|
||||
|
||||
</Tip>
|
||||
|
||||
## ميزات المستودع
|
||||
|
||||
|
||||
@ -51,8 +51,11 @@ peft_model_id = "ybelkada/opt-350m-lora"
|
||||
model = AutoModelForCausalLM.from_pretrained(peft_model_id)
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> يمكنك تحميل محول PEFT باستخدام فئة `AutoModelFor` أو فئة النموذج الأساسي مثل `OPTForCausalLM` أو `LlamaForCausalLM`.
|
||||
<Tip>
|
||||
|
||||
يمكنك تحميل محول PEFT باستخدام فئة `AutoModelFor` أو فئة النموذج الأساسي مثل `OPTForCausalLM` أو `LlamaForCausalLM`.
|
||||
|
||||
</Tip>
|
||||
|
||||
يمكنك أيضًا تحميل محول PEFT عن طريق استدعاء طريقة `load_adapter`:
|
||||
|
||||
@ -159,8 +162,11 @@ output = model.generate(**inputs)
|
||||
|
||||
يدعم محول PEFT فئة [`Trainer`] بحيث يمكنك تدريب محول لحالتك الاستخدام المحددة. فهو يتطلب فقط إضافة بضع سطور أخرى من التعليمات البرمجية. على سبيل المثال، لتدريب محول LoRA:
|
||||
|
||||
> [!TIP]
|
||||
> إذا لم تكن معتادًا على ضبط نموذج دقيق باستخدام [`Trainer`، فراجع البرنامج التعليمي](training) لضبط نموذج مُدرب مسبقًا.
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن معتادًا على ضبط نموذج دقيق باستخدام [`Trainer`، فراجع البرنامج التعليمي](training) لضبط نموذج مُدرب مسبقًا.
|
||||
|
||||
</Tip>
|
||||
|
||||
1. حدد تكوين المحول باستخدام نوع المهمة والمعاملات الزائدة (راجع [`~peft.LoraConfig`] لمزيد من التفاصيل حول وظيفة هذه المعلمات).
|
||||
|
||||
|
||||
@ -6,8 +6,11 @@
|
||||
* استخدم مُجزّئ أو نموذجًا محددًا.
|
||||
* استخدم [`pipeline`] للمهام الصوتية والبصرية والمتعددة الوسائط.
|
||||
|
||||
> [!TIP]
|
||||
> اطلع على وثائق [`pipeline`] للحصول على القائمة كاملة بالمهام المدعومة والمعلمات المتاحة.
|
||||
<Tip>
|
||||
|
||||
اطلع على وثائق [`pipeline`] للحصول على القائمة كاملة بالمهام المدعومة والمعلمات المتاحة.
|
||||
|
||||
</Tip>
|
||||
|
||||
## استخدام الأنابيب
|
||||
|
||||
@ -186,8 +189,9 @@ for out in pipe(KeyDataset(dataset, "audio")):
|
||||
|
||||
## استخدام خطوط الأنابيب لخادم ويب
|
||||
|
||||
> [!TIP]
|
||||
> إن إنشاء محرك استدلال هو موضوع معقد يستحق صفحته الخاصة.
|
||||
<Tip>
|
||||
إن إنشاء محرك استدلال هو موضوع معقد يستحق صفحته الخاصة.
|
||||
</Tip>
|
||||
|
||||
[Link](./pipeline_webserver)
|
||||
|
||||
@ -247,13 +251,16 @@ for out in pipe(KeyDataset(dataset, "audio")):
|
||||
[{'score': 0.425, 'answer': 'us-001', 'start': 16, 'end': 16}]
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> لتشغيل المثال أعلاه، تحتاج إلى تثبيت [`pytesseract`](https://pypi.org/project/pytesseract/) بالإضافة إلى 🤗 Transformers:
|
||||
>
|
||||
> ```bash
|
||||
> sudo apt install -y tesseract-ocr
|
||||
> pip install pytesseract
|
||||
> ```
|
||||
<Tip>
|
||||
|
||||
لتشغيل المثال أعلاه، تحتاج إلى تثبيت [`pytesseract`](https://pypi.org/project/pytesseract/) بالإضافة إلى 🤗 Transformers:
|
||||
|
||||
```bash
|
||||
sudo apt install -y tesseract-ocr
|
||||
pip install pytesseract
|
||||
```
|
||||
|
||||
</Tip>
|
||||
|
||||
## استخدام `pipeline` على نماذج كبيرة مع 🤗 `accelerate`:
|
||||
|
||||
|
||||
@ -1,8 +1,11 @@
|
||||
# استخدام قنوات المعالجة لخادم ويب
|
||||
|
||||
> [!TIP]
|
||||
> يُعدّ إنشاء محرك استدلال أمرًا معقدًا، ويعتمد الحل "الأفضل" على مساحة مشكلتك. هل تستخدم وحدة المعالجة المركزية أم وحدة معالجة الرسومات؟ هل تريد أقل زمن وصول، أم أعلى معدل نقل، أم دعمًا للعديد من النماذج، أم مجرد تحقيق أقصى تحسين نموذج محدد؟
|
||||
> توجد طرق عديدة لمعالجة هذا الموضوع، لذلك ما سنقدمه هو إعداد افتراضي جيد للبدء به قد لا يكون بالضرورة هو الحل الأمثل لك.```
|
||||
<Tip>
|
||||
|
||||
يُعدّ إنشاء محرك استدلال أمرًا معقدًا، ويعتمد الحل "الأفضل" على مساحة مشكلتك. هل تستخدم وحدة المعالجة المركزية أم وحدة معالجة الرسومات؟ هل تريد أقل زمن وصول، أم أعلى معدل نقل، أم دعمًا للعديد من النماذج، أم مجرد تحقيق أقصى تحسين نموذج محدد؟
|
||||
توجد طرق عديدة لمعالجة هذا الموضوع، لذلك ما سنقدمه هو إعداد افتراضي جيد للبدء به قد لا يكون بالضرورة هو الحل الأمثل لك.```
|
||||
|
||||
</Tip>
|
||||
|
||||
الشيء الرئيسي الذي يجب فهمه هو أننا يمكن أن نستخدم مؤشرًا، تمامًا كما تفعل [على مجموعة بيانات](pipeline_tutorial#using-pipelines-on-a-dataset)، نظرًا لأن خادم الويب هو أساسًا نظام ينتظر الطلبات ويعالجها عند استلامها.
|
||||
|
||||
@ -68,8 +71,11 @@ curl -X POST -d "test [MASK]" http://localhost:8000/
|
||||
|
||||
المهم حقًا هو أننا نقوم بتحميل النموذج **مرة واحدة** فقط، لذلك لا توجد نسخ من النموذج على خادم الويب. بهذه الطريقة، لا يتم استخدام ذاكرة الوصول العشوائي غير الضرورية. تسمح آلية وضع قائمة الانتظار بالقيام بأشياء متقدمة مثل تجميع بعض العناصر قبل الاستدلال لاستخدام معالجة الدفعات الديناميكية:
|
||||
|
||||
> [!WARNING]
|
||||
> تم كتابة نموذج الكود البرمجى أدناه بشكل مقصود مثل كود وهمي للقراءة. لا تقم بتشغيله دون التحقق مما إذا كان منطقيًا لموارد النظام الخاص بك!
|
||||
<Tip warning={true}>
|
||||
|
||||
تم كتابة نموذج الكود البرمجى أدناه بشكل مقصود مثل كود وهمي للقراءة. لا تقم بتشغيله دون التحقق مما إذا كان منطقيًا لموارد النظام الخاص بك!
|
||||
|
||||
</Tip>
|
||||
|
||||
```py
|
||||
(string, rq) = await q.get()
|
||||
|
||||
@ -9,8 +9,11 @@
|
||||
* تستخدم مدخلات الصورة [ImageProcessor](./main_classes/image_processor) لتحويل الصور إلى موترات.
|
||||
* تستخدم مدخلات متعددة الوسائط [معالجًا](./main_classes/processors) لدمج مُجزّئ الرموز ومستخرج الميزات أو معالج الصور.
|
||||
|
||||
> [!TIP]
|
||||
> `AutoProcessor` **يعمل دائمًا** ويختار تلقائيًا الفئة الصحيحة للنموذج الذي تستخدمه، سواء كنت تستخدم مُجزّئ رموز أو معالج صور أو مستخرج ميزات أو معالجًا.
|
||||
<Tip>
|
||||
|
||||
`AutoProcessor` **يعمل دائمًا** ويختار تلقائيًا الفئة الصحيحة للنموذج الذي تستخدمه، سواء كنت تستخدم مُجزّئ رموز أو معالج صور أو مستخرج ميزات أو معالجًا.
|
||||
|
||||
</Tip>
|
||||
|
||||
قبل البدء، قم بتثبيت 🤗 Datasets حتى تتمكن من تحميل بعض مجموعات البيانات لتجربتها:
|
||||
|
||||
@ -24,8 +27,11 @@ pip install datasets
|
||||
|
||||
أداة المعالجة المسبقة الرئيسية للبيانات النصية هي [مُجزّئ اللغوي](main_classes/tokenizer). يقوم مُجزّئ اللغوي بتقسيم النص إلى "أجزاء لغوية" (tokens) وفقًا لمجموعة من القواعد. يتم تحويل الأجزاء اللغوية إلى أرقام ثم إلى منسوجات، والتي تصبح مدخلات للنموذج. يقوم المجزئ اللغوي بإضافة أي مدخلات إضافية يحتاجها النموذج.
|
||||
|
||||
> [!TIP]
|
||||
> إذا كنت تخطط لاستخدام نموذج مُدرب مسبقًا، فمن المهم استخدامالمجزئ اللغوي المقترن بنفس ذلك النموذج. يضمن ذلك تقسيم النص بنفس الطريقة التي تم بها تقسيم النصوص ما قبل التدريب، واستخدام نفس القاموس الذي يربط بين الأجزاء اللغوية وأرقامها ( يُشار إليها عادةً باسم المفردات *vocab*) أثناء التدريب المسبق.
|
||||
<Tip>
|
||||
|
||||
إذا كنت تخطط لاستخدام نموذج مُدرب مسبقًا، فمن المهم استخدامالمجزئ اللغوي المقترن بنفس ذلك النموذج. يضمن ذلك تقسيم النص بنفس الطريقة التي تم بها تقسيم النصوص ما قبل التدريب، واستخدام نفس القاموس الذي يربط بين الأجزاء اللغوية وأرقامها ( يُشار إليها عادةً باسم المفردات *vocab*) أثناء التدريب المسبق.
|
||||
|
||||
</Tip>
|
||||
|
||||
ابدأ بتحميل المُجزّئ اللغوي مُدرب مسبقًا باستخدام طريقة [`AutoTokenizer.from_pretrained`]. يقوم هذا بتنزيل المفردات *vocab* الذي تم تدريب النموذج عليه:
|
||||
|
||||
@ -134,8 +140,11 @@ pip install datasets
|
||||
[1، 1، 1، 1، 1، 1، 1، 0، 0، 0، 0، 0، 0، 0، 0، 0]]}
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> تحقق من دليل المفاهيم [Padding and truncation](./pad_truncation) لمعرفة المزيد حول معامﻻت الحشو و البتر المختلفة.
|
||||
<Tip>
|
||||
|
||||
تحقق من دليل المفاهيم [Padding and truncation](./pad_truncation) لمعرفة المزيد حول معامﻻت الحشو و البتر المختلفة.
|
||||
|
||||
</Tip>
|
||||
|
||||
### بناء الموترات Build tensors
|
||||
|
||||
@ -163,11 +172,14 @@ pip install datasets
|
||||
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> تدعم خطوط الأنابيب المختلفة معامل مُجزِّئ الرموز(tokenizer) بشكل مختلف في طريقة `()__call__` الخاصة بها.
|
||||
> و خطوط الأنابيب `text-2-text-generation` تدعم فقط `truncation`.
|
||||
> و خطوط الأنابيب `text-generation` تدعم `max_length` و`truncation` و`padding` و`add_special_tokens`.
|
||||
> أما في خطوط الأنابيب `fill-mask`، يمكن تمرير معامل مُجزِّئ الرموز (tokenizer) في المتغير `tokenizer_kwargs` (قاموس).
|
||||
<Tip>
|
||||
|
||||
تدعم خطوط الأنابيب المختلفة معامل مُجزِّئ الرموز(tokenizer) بشكل مختلف في طريقة `()__call__` الخاصة بها.
|
||||
و خطوط الأنابيب `text-2-text-generation` تدعم فقط `truncation`.
|
||||
و خطوط الأنابيب `text-generation` تدعم `max_length` و`truncation` و`padding` و`add_special_tokens`.
|
||||
أما في خطوط الأنابيب `fill-mask`، يمكن تمرير معامل مُجزِّئ الرموز (tokenizer) في المتغير `tokenizer_kwargs` (قاموس).
|
||||
|
||||
</Tip>
|
||||
|
||||
## الصوت Audio
|
||||
|
||||
@ -279,18 +291,24 @@ pip install datasets
|
||||
|
||||
بالنسبة لمهام رؤية الحاسوبية، ستحتاج إلى معالج صور [image processor](main_classes/image_processor) لإعداد مجموعة البيانات الخاصة بك لتناسب النموذج. تتكون معالجة الصور المسبقة من عدة خطوات لتحويل الصور إلى الشكل الذي يتوقعه النموذج. وتشمل هذه الخطوات، على سبيل المثال لا الحصر، تغيير الحجم والتطبيع وتصحيح قناة الألوان وتحويل الصور إلى موترات(tensors).
|
||||
|
||||
> [!TIP]
|
||||
> عادة ما تتبع معالجة الصور المسبقة شكلاً من أشكال زيادة البيانات (التضخيم). كلا العمليتين، معالجة الصور المسبقة وزيادة الصور تغيران بيانات الصورة، ولكنها تخدم أغراضًا مختلفة:
|
||||
>
|
||||
> *زيادة البيانات: تغيير الصور عن طريق زيادة الصور بطريقة يمكن أن تساعد في منع الإفراط في التعميم وزيادة متانة النموذج. يمكنك أن تكون مبدعًا في كيفية زيادة بياناتك - ضبط السطوع والألوان، واالقص، والدوران، تغيير الحجم، التكبير، إلخ. ومع ذلك، كن حذرًا من عدم تغيير معنى الصور بزياداتك.
|
||||
> *معالجة الصور المسبقة: تضمن معالجة الصور اتتطابق الصور مع تنسيق الإدخال المتوقع للنموذج. عند ضبط نموذج رؤية حاسوبية بدقة، يجب معالجة الصور بالضبط كما كانت عند تدريب النموذج في البداية.
|
||||
>
|
||||
> يمكنك استخدام أي مكتبة تريدها لزيادة بيانات الصور. لمعالجة الصور المسبقة، استخدم `ImageProcessor` المرتبط بالنموذج.
|
||||
<Tip>
|
||||
|
||||
عادة ما تتبع معالجة الصور المسبقة شكلاً من أشكال زيادة البيانات (التضخيم). كلا العمليتين، معالجة الصور المسبقة وزيادة الصور تغيران بيانات الصورة، ولكنها تخدم أغراضًا مختلفة:
|
||||
|
||||
*زيادة البيانات: تغيير الصور عن طريق زيادة الصور بطريقة يمكن أن تساعد في منع الإفراط في التعميم وزيادة متانة النموذج. يمكنك أن تكون مبدعًا في كيفية زيادة بياناتك - ضبط السطوع والألوان، واالقص، والدوران، تغيير الحجم، التكبير، إلخ. ومع ذلك، كن حذرًا من عدم تغيير معنى الصور بزياداتك.
|
||||
*معالجة الصور المسبقة: تضمن معالجة الصور اتتطابق الصور مع تنسيق الإدخال المتوقع للنموذج. عند ضبط نموذج رؤية حاسوبية بدقة، يجب معالجة الصور بالضبط كما كانت عند تدريب النموذج في البداية.
|
||||
|
||||
يمكنك استخدام أي مكتبة تريدها لزيادة بيانات الصور. لمعالجة الصور المسبقة، استخدم `ImageProcessor` المرتبط بالنموذج.
|
||||
|
||||
</Tip>
|
||||
|
||||
قم بتحميل مجموعة بيانات [food101](https://huggingface.co/datasets/food101) (راجع دليل 🤗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub) لمزيد من التفاصيل حول كيفية تحميل مجموعة بيانات) لمعرفة كيف يمكنك استخدام معالج الصور مع مجموعات بيانات رؤية الحاسب:
|
||||
|
||||
> [!TIP]
|
||||
> استخدم معامل `split` من 🤗 Datasets لتحميل عينة صغيرة فقط من مجموعة التدريب نظرًا لحجم البيانات كبيرة جدًا!
|
||||
<Tip>
|
||||
|
||||
استخدم معامل `split` من 🤗 Datasets لتحميل عينة صغيرة فقط من مجموعة التدريب نظرًا لحجم البيانات كبيرة جدًا!
|
||||
|
||||
</Tip>
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset
|
||||
@ -344,13 +362,15 @@ pip install datasets
|
||||
... return examples
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> في المثال أعلاه، قمنا بتعيين `do_resize=False` لأننا قمنا بالفعل بتغيير حجم الصور في تحويل زيادة الصور،
|
||||
> واستفدنا من خاصية `size` من `image_processor` المناسب. إذا لم تقم بتغيير حجم الصور أثناء زيادة الصور،
|
||||
> فاترك هذا المعلمة. بشكل افتراضي، ستتعامل `ImageProcessor` مع تغيير الحجم.
|
||||
>
|
||||
> إذا كنت ترغب في تطبيع الصور كجزء من تحويل زيادة الصور، فاستخدم قيم `image_processor.image_mean`،
|
||||
> و `image_processor.image_std`.
|
||||
<Tip>
|
||||
|
||||
في المثال أعلاه، قمنا بتعيين `do_resize=False` لأننا قمنا بالفعل بتغيير حجم الصور في تحويل زيادة الصور،
|
||||
واستفدنا من خاصية `size` من `image_processor` المناسب. إذا لم تقم بتغيير حجم الصور أثناء زيادة الصور،
|
||||
فاترك هذا المعلمة. بشكل افتراضي، ستتعامل `ImageProcessor` مع تغيير الحجم.
|
||||
|
||||
إذا كنت ترغب في تطبيع الصور كجزء من تحويل زيادة الصور، فاستخدم قيم `image_processor.image_mean`،
|
||||
و `image_processor.image_std`.
|
||||
</Tip>
|
||||
|
||||
3. ثم استخدم 🤗 Datasets[`~datasets.Dataset.set_transform`] لتطبيق التحولات أثناء التنقل:
|
||||
```py
|
||||
@ -377,10 +397,13 @@ pip install datasets
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/preprocessed_image.png"/>
|
||||
</div>
|
||||
|
||||
> [!TIP]
|
||||
> بالنسبة للمهام مثل الكشف عن الأشياء، والتجزئة الدلالية، والتجزئة المثالية، والتجزئة الشاملة، يوفر `ImageProcessor`
|
||||
> تقوم هذه الطرق بتحويل النواتج الأولية للنموذج إلى تنبؤات ذات معنى مثل مربعات الحدود،
|
||||
> أو خرائط التجزئة.
|
||||
<Tip>
|
||||
|
||||
بالنسبة للمهام مثل الكشف عن الأشياء، والتجزئة الدلالية، والتجزئة المثالية، والتجزئة الشاملة، يوفر `ImageProcessor`
|
||||
تقوم هذه الطرق بتحويل النواتج الأولية للنموذج إلى تنبؤات ذات معنى مثل مربعات الحدود،
|
||||
أو خرائط التجزئة.
|
||||
|
||||
</Tip>
|
||||
|
||||
### الحشو Pad
|
||||
|
||||
|
||||
@ -23,8 +23,11 @@ pip install torch
|
||||
|
||||
يمثل [`pipeline`] أسهل وأسرع طريقة لاستخدام نموذج مُدرب مسبقًا للاستنتاج. يمكنك استخدام [`pipeline`] جاهزًا للعديد من المهام عبر طرق مختلفة، والتي يظهر بعضها في الجدول أدناه:
|
||||
|
||||
> [!TIP]
|
||||
> للاطلاع على القائمة الكاملة للمهام المتاحة، راجع [مرجع واجهة برمجة التطبيقات الخاصة بخط الأنابيب](./main_classes/pipelines).
|
||||
<Tip>
|
||||
|
||||
للاطلاع على القائمة الكاملة للمهام المتاحة، راجع [مرجع واجهة برمجة التطبيقات الخاصة بخط الأنابيب](./main_classes/pipelines).
|
||||
|
||||
</Tip>
|
||||
|
||||
<div dir="rtl">
|
||||
|
||||
@ -176,8 +179,11 @@ label: NEGATIVE, with score: 0.5309
|
||||
... )
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> اطلع على [الدليل التمهيدي للمعالجة المسبقة](./preprocessing) للحصول على مزيد من التفاصيل حول المعالجة، وكيفية استخدام [`AutoImageProcessor`] و [`AutoFeatureExtractor`] و [`AutoProcessor`] لمعالجة الصور والصوت والإدخالات متعددة الوسائط.
|
||||
<Tip>
|
||||
|
||||
اطلع على [الدليل التمهيدي للمعالجة المسبقة](./preprocessing) للحصول على مزيد من التفاصيل حول المعالجة، وكيفية استخدام [`AutoImageProcessor`] و [`AutoFeatureExtractor`] و [`AutoProcessor`] لمعالجة الصور والصوت والإدخالات متعددة الوسائط.
|
||||
|
||||
</Tip>
|
||||
|
||||
### AutoModel
|
||||
|
||||
@ -190,8 +196,11 @@ label: NEGATIVE, with score: 0.5309
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> راجع [ملخص المهمة](./task_summary) للاطلاع على المهام التي تدعمها فئة [`AutoModel`].
|
||||
<Tip>
|
||||
|
||||
راجع [ملخص المهمة](./task_summary) للاطلاع على المهام التي تدعمها فئة [`AutoModel`].
|
||||
|
||||
</Tip>
|
||||
|
||||
الآن قم بتمرير دفعة المدخلات المُعالجة مسبقًا مباشرة إلى النموذج. عليك فقط فك تعبئة القاموس عن طريق إضافة `**`:
|
||||
|
||||
@ -214,8 +223,11 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
[0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>)
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> تخرج جميع نماذج 🤗 Transformers (PyTorch أو TensorFlow) المصفوفات *قبل* دالة التنشيط النهائية (مثل softmax) لأن دالة التنشيط النهائية غالبًا ما تكون مدمجة مع دالة الخسارة. نواتج النموذج عبارة عن فئات بيانات خاصة، لذلك يتم استكمال سماتها تلقائيًا في IDE. وتتصرف مخرجات النموذج مثل زوج مرتب أو قاموس (يمكنك الفهرسة باستخدام عدد صحيح ، شريحة، أو سلسلة)، وفي هذه الحالة، يتم تجاهل السمات التي تساوي None.
|
||||
<Tip>
|
||||
|
||||
تخرج جميع نماذج 🤗 Transformers (PyTorch أو TensorFlow) المصفوفات *قبل* دالة التنشيط النهائية (مثل softmax) لأن دالة التنشيط النهائية غالبًا ما تكون مدمجة مع دالة الخسارة. نواتج النموذج عبارة عن فئات بيانات خاصة، لذلك يتم استكمال سماتها تلقائيًا في IDE. وتتصرف مخرجات النموذج مثل زوج مرتب أو قاموس (يمكنك الفهرسة باستخدام عدد صحيح ، شريحة، أو سلسلة)، وفي هذه الحالة، يتم تجاهل السمات التي تساوي None.
|
||||
|
||||
</Tip>
|
||||
|
||||
### حفظ النموذج
|
||||
|
||||
@ -351,8 +363,11 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
>>> trainer.train() # doctest: +SKIP
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> بالنسبة للمهام - مثل الترجمة أو التلخيص - التي تستخدم نموذج تسلسل إلى تسلسل، استخدم فئات [`Seq2SeqTrainer`] و [`Seq2SeqTrainingArguments`] بدلاً من ذلك.
|
||||
<Tip>
|
||||
|
||||
بالنسبة للمهام - مثل الترجمة أو التلخيص - التي تستخدم نموذج تسلسل إلى تسلسل، استخدم فئات [`Seq2SeqTrainer`] و [`Seq2SeqTrainingArguments`] بدلاً من ذلك.
|
||||
|
||||
</Tip>
|
||||
|
||||
يمكنك تخصيص سلوك حلقة التدريب عن طريق إنشاء فئة فرعية من الطرق داخل [`Trainer`]. يسمح لك ذلك بتخصيص ميزات مثل دالة الخسارة، والمحسن، والمجدول. راجع مرجع [`Trainer`] للتعرف على الطرق التي يمكن إنشاء فئات فرعية منها.
|
||||
|
||||
|
||||
@ -93,7 +93,6 @@ python examples/pytorch/summarization/run_summarization.py \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
@ -117,7 +116,6 @@ torchrun \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
@ -140,7 +138,6 @@ python xla_spawn.py --num_cores 8 \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
@ -197,7 +194,6 @@ python examples/pytorch/summarization/run_summarization.py \
|
||||
--summary_column summary_column_name \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--overwrite_output_dir \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--predict_with_generate
|
||||
@ -225,7 +221,6 @@ python examples/pytorch/summarization/run_summarization.py \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
@ -239,8 +234,6 @@ examples/pytorch/summarization/run_summarization.py -h
|
||||
|
||||
خيار آخر مفيد لتمكينه هو استئناف التدريب من نقطة تفتيش سابقة. سيضمن ذلك أنك تستطيع الاستمرار من حيث توقفت دون البدء من جديد إذا تم مقاطعة تدريبك. هناك طريقتان لاستئناف التدريب من نقطة تفتيش.
|
||||
|
||||
تستخدم الطريقة الأولى المعلمة `output_dir previous_output_dir` لاستئناف التدريب من أحدث نقطة تفتيش مخزنة في `output_dir`. في هذه الحالة، يجب عليك إزالة `overwrite_output_dir`:
|
||||
|
||||
```bash
|
||||
python examples/pytorch/summarization/run_summarization.py
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
@ -252,24 +245,6 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--output_dir previous_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
تستخدم الطريقة الثانية معلمة `resume_from_checkpoint path_to_specific_checkpoint` لاستئناف التدريب من مجلد نقطة تفتيش محددة.
|
||||
|
||||
```bash
|
||||
python examples/pytorch/summarization/run_summarization.py
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--resume_from_checkpoint path_to_specific_checkpoint \
|
||||
--predict_with_generate
|
||||
```
|
||||
@ -301,6 +276,5 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
@ -114,8 +114,11 @@ optimum-cli export onnx --model keras-io/transformers-qa distilbert_base_cased_s
|
||||
|
||||
### تصدير نموذج باستخدام `transformers.onnx`
|
||||
|
||||
> [!WARNING]
|
||||
> لم يعد يتم دعم `transformers.onnx` يُرجى تصدير النماذج باستخدام 🤗 Optimum كما هو موضح أعلاه. سيتم إزالة هذا القسم في الإصدارات القادمة.
|
||||
<Tip warning={true}>
|
||||
|
||||
لم يعد يتم دعم `transformers.onnx` يُرجى تصدير النماذج باستخدام 🤗 Optimum كما هو موضح أعلاه. سيتم إزالة هذا القسم في الإصدارات القادمة.
|
||||
|
||||
</Tip>
|
||||
|
||||
لتصدير نموذج 🤗 Transformers إلى ONNX باستخدام `transformers.onnx`، ثبّت التبعيات الإضافية:
|
||||
|
||||
|
||||
@ -27,8 +27,11 @@ rendered properly in your Markdown viewer.
|
||||
1. ضبط دقيق [DistilRoBERTa](https://huggingface.co/distilbert/distilroberta-base) على مجموعة فرعية [r/askscience](https://www.reddit.com/r/askscience/) من مجموعة بيانات [ELI5](https://huggingface.co/datasets/eli5).
|
||||
2. استخدام النموذج المدرب الخاص بك للاستنتاج.
|
||||
|
||||
> [!TIP]
|
||||
> لرؤية جميع العمارات ونقاط التحقق المتوافقة مع هذه المهمة، نوصي بالتحقق من [task-page](https://huggingface.co/tasks/text-generation)
|
||||
<Tip>
|
||||
|
||||
لرؤية جميع العمارات ونقاط التحقق المتوافقة مع هذه المهمة، نوصي بالتحقق من [task-page](https://huggingface.co/tasks/text-generation)
|
||||
|
||||
</Tip>
|
||||
|
||||
قبل أن تبدأ، تأكد من تثبيت جميع المكتبات الضرورية:
|
||||
|
||||
@ -192,8 +195,11 @@ pip install transformers datasets evaluate
|
||||
## التدريب (Train)
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> إذا لم تكن على دراية بتدريب نموذج باستخدام [`Trainer`], اطلع على [البرنامج التعليمي الأساسي](../training#train-with-pytorch-trainer)!
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن على دراية بتدريب نموذج باستخدام [`Trainer`], اطلع على [البرنامج التعليمي الأساسي](../training#train-with-pytorch-trainer)!
|
||||
|
||||
</Tip>
|
||||
|
||||
أنت جاهز الآن لبدء تدريب نموذجك! قم بتحميل DistilGPT2 باستخدام [`AutoModelForCausalLM`]:
|
||||
|
||||
@ -246,10 +252,13 @@ Perplexity: 49.61
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> للحصول على مثال أكثر تعمقًا حول كيفية تدريب نموذج للنمذجة اللغوية السببية، اطلع على الدفتر المقابل
|
||||
> [دفتر PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)
|
||||
> أو [دفتر TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
|
||||
<Tip>
|
||||
|
||||
للحصول على مثال أكثر تعمقًا حول كيفية تدريب نموذج للنمذجة اللغوية السببية، اطلع على الدفتر المقابل
|
||||
[دفتر PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)
|
||||
أو [دفتر TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
|
||||
|
||||
</Tip>
|
||||
|
||||
## الاستدلال (Inference)
|
||||
|
||||
|
||||
@ -24,8 +24,11 @@ rendered properly in your Markdown viewer.
|
||||
1. تكييف [DistilRoBERTa](https://huggingface.co/distilbert/distilroberta-base) على مجموعة فرعية [r/askscience](https://www.reddit.com/r/askscience/) من مجموعة بيانات [ELI5](https://huggingface.co/datasets/eli5).
|
||||
2. استخدام نموذج المدرب الخاص بك للاستدلال.
|
||||
|
||||
> [!TIP]
|
||||
> لمعرفة جميع البنى والنسخ المتوافقة مع هذه المهمة، نوصي بالتحقق من [صفحة المهمة](https://huggingface.co/tasks/fill-mask)
|
||||
<Tip>
|
||||
|
||||
لمعرفة جميع البنى والنسخ المتوافقة مع هذه المهمة، نوصي بالتحقق من [صفحة المهمة](https://huggingface.co/tasks/fill-mask)
|
||||
|
||||
</Tip>
|
||||
|
||||
قبل أن تبدأ، تأكد من تثبيت جميع المكتبات الضرورية:
|
||||
|
||||
@ -186,8 +189,11 @@ pip install transformers datasets evaluate
|
||||
## التدريب (Train)
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> إذا لم تكن على دراية بتعديل نموذج باستخدام [`Trainer`], ألق نظرة على الدليل الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن على دراية بتعديل نموذج باستخدام [`Trainer`], ألق نظرة على الدليل الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
|
||||
</Tip>
|
||||
|
||||
أنت مستعد الآن لبدء تدريب نموذجك! قم بتحميل DistilRoBERTa باستخدام [`AutoModelForMaskedLM`]:
|
||||
|
||||
@ -242,10 +248,13 @@ Perplexity: 8.76
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> لمثال أكثر تفصيلاً حول كيفية تعديل نموذج للنمذجة اللغوية المقنعة، ألق نظرة على الدفتر المقابل
|
||||
> [دفتر PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)
|
||||
> أو [دفتر TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
|
||||
<Tip>
|
||||
|
||||
لمثال أكثر تفصيلاً حول كيفية تعديل نموذج للنمذجة اللغوية المقنعة، ألق نظرة على الدفتر المقابل
|
||||
[دفتر PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)
|
||||
أو [دفتر TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
|
||||
|
||||
</Tip>
|
||||
|
||||
## الاستدلال
|
||||
|
||||
|
||||
@ -183,8 +183,11 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
|
||||
## التدريب (Train)
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> إذا لم تكن معتادًا على ضبط نموذج باستخدام [`Trainer`], فراجع الدرس الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن معتادًا على ضبط نموذج باستخدام [`Trainer`], فراجع الدرس الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
|
||||
</Tip>
|
||||
|
||||
أنت جاهز لبدء تدريب نموذجك الآن! قم بتحميل BERT باستخدام [`AutoModelForMultipleChoice`]:
|
||||
|
||||
@ -233,9 +236,12 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> للحصول على مثال أكثر تعمقًا حول كيفية ضبط نموذج للاختيار من متعدد، ألق نظرة على [دفتر ملاحظات PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)
|
||||
> أو [دفتر ملاحظات TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb) المقابل.
|
||||
<Tip>
|
||||
|
||||
للحصول على مثال أكثر تعمقًا حول كيفية ضبط نموذج للاختيار من متعدد، ألق نظرة على [دفتر ملاحظات PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)
|
||||
أو [دفتر ملاحظات TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb) المقابل.
|
||||
|
||||
</Tip>
|
||||
|
||||
## الاستدلال (Inference)
|
||||
|
||||
|
||||
@ -30,8 +30,11 @@ rendered properly in your Markdown viewer.
|
||||
1. ضبط [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) على مجموعة بيانات [SQuAD](https://huggingface.co/datasets/squad) للإجابة على الأسئلة الاستخراجية.
|
||||
2. استخدام النموذج المضبوط للاستدلال.
|
||||
|
||||
> [!TIP]
|
||||
> لمشاهدة جميع الهياكل والنسخ المتوافقة مع هذه المهمة، نوصي بالرجوع إلى [صفحة المهمة](https://huggingface.co/tasks/question-answering)
|
||||
<Tip>
|
||||
|
||||
لمشاهدة جميع الهياكل والنسخ المتوافقة مع هذه المهمة، نوصي بالرجوع إلى [صفحة المهمة](https://huggingface.co/tasks/question-answering)
|
||||
|
||||
</Tip>
|
||||
|
||||
قبل البدء، تأكد من تثبيت جميع المكتبات الضرورية:
|
||||
|
||||
@ -174,8 +177,11 @@ pip install transformers datasets evaluate
|
||||
## التدريب (Train)
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> إذا لم تكن معتادًا على ضبط نموذج باستخدام [`Trainer`], ألق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن معتادًا على ضبط نموذج باستخدام [`Trainer`], ألق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
|
||||
</Tip>
|
||||
|
||||
أنت جاهز لبدء تدريب نموذجك الآن! قم بتحميل DistilBERT باستخدام [`AutoModelForQuestionAnswering`]:
|
||||
|
||||
@ -222,9 +228,12 @@ pip install transformers datasets evaluate
|
||||
```
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> للحصول على مثال أكثر تعمقًا حول كيفية ضبط نموذج للإجابة على الأسئلة، ألق نظرة على [دفتر ملاحظات PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb) المقابل
|
||||
> أو [دفتر ملاحظات TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb).
|
||||
<Tip>
|
||||
|
||||
للحصول على مثال أكثر تعمقًا حول كيفية ضبط نموذج للإجابة على الأسئلة، ألق نظرة على [دفتر ملاحظات PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb) المقابل
|
||||
أو [دفتر ملاحظات TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb).
|
||||
|
||||
</Tip>
|
||||
|
||||
## التقييم (Evaluate)
|
||||
|
||||
|
||||
@ -22,8 +22,11 @@ rendered properly in your Markdown viewer.
|
||||
1. ضبط [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) على مجموعة بيانات [IMDb](https://huggingface.co/datasets/imdb) لتحديد ما إذا كانت مراجعة الفيلم إيجابية أو سلبية.
|
||||
2. استخدام نموذج الضبط الدقيق للتنبؤ.
|
||||
|
||||
> [!TIP]
|
||||
> لرؤية جميع البنى ونقاط التحقق المتوافقة مع هذه المهمة، نوصي بالتحقق من [صفحة المهمة](https://huggingface.co/tasks/text-classification).
|
||||
<Tip>
|
||||
|
||||
لرؤية جميع البنى ونقاط التحقق المتوافقة مع هذه المهمة، نوصي بالتحقق من [صفحة المهمة](https://huggingface.co/tasks/text-classification).
|
||||
|
||||
</Tip>
|
||||
|
||||
قبل أن تبدأ، تأكد من تثبيت جميع المكتبات الضرورية:
|
||||
|
||||
@ -128,8 +131,11 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
|
||||
>>> label2id = {"NEGATIVE": 0, "POSITIVE": 1}
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> إذا لم تكن على دراية بضبط نموذج دقيق باستخدام [`Trainer`], فالق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن على دراية بضبط نموذج دقيق باستخدام [`Trainer`], فالق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
|
||||
</Tip>
|
||||
|
||||
أنت مستعد الآن لبدء تدريب نموذجك! قم بتحميل DistilBERT مع [`AutoModelForSequenceClassification`] جنبًا إلى جنب مع عدد التصنيفات المتوقعة، وتصنيفات الخرائط:
|
||||
|
||||
@ -174,8 +180,11 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
|
||||
>>> trainer.train()
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> يستخدم [`Trainer`] الحشو الديناميكي افتراضيًا عند تمرير `tokenizer` إليه. في هذه الحالة، لا تحتاج لتحديد مُجمِّع البيانات صراحةً.
|
||||
<Tip>
|
||||
|
||||
يستخدم [`Trainer`] الحشو الديناميكي افتراضيًا عند تمرير `tokenizer` إليه. في هذه الحالة، لا تحتاج لتحديد مُجمِّع البيانات صراحةً.
|
||||
|
||||
</Tip>
|
||||
|
||||
بعد اكتمال التدريب، شارك نموذجك على Hub باستخدام الطريقة [`~transformers.Trainer.push_to_hub`] ليستخدمه الجميع:
|
||||
|
||||
@ -183,10 +192,13 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> للحصول على مثال أكثر عمقًا حول كيفية ضبط نموذج لتصنيف النصوص، قم بالاطلاع على الدفتر المقابل
|
||||
> [دفتر PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)
|
||||
> أو [دفتر TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
|
||||
<Tip>
|
||||
|
||||
للحصول على مثال أكثر عمقًا حول كيفية ضبط نموذج لتصنيف النصوص، قم بالاطلاع على الدفتر المقابل
|
||||
[دفتر PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)
|
||||
أو [دفتر TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
|
||||
|
||||
</Tip>
|
||||
|
||||
## الاستدلال(Inference)
|
||||
|
||||
|
||||
@ -30,8 +30,11 @@ rendered properly in your Markdown viewer.
|
||||
1. ضبط دقيق [T5](https://huggingface.co/google-t5/t5-small) على مجموعة فرعية من مشاريع قوانين ولاية كاليفورنيا من مجموعة بيانات [BillSum](https://huggingface.co/datasets/billsum) للتلخيص التجريدي.
|
||||
2. استخدام النموذج المضبوط بدقة للتنبؤ.
|
||||
|
||||
> [!TIP]
|
||||
> لمشاهدة جميع البنى ونقاط التفتيش المتوافقة مع هذه المهمة، نوصي بالتحقق من [صفحة المهمة](https://huggingface.co/tasks/summarization)
|
||||
<Tip>
|
||||
|
||||
لمشاهدة جميع البنى ونقاط التفتيش المتوافقة مع هذه المهمة، نوصي بالتحقق من [صفحة المهمة](https://huggingface.co/tasks/summarization)
|
||||
|
||||
</Tip>
|
||||
|
||||
قبل البدء، تأكد من تثبيت جميع المكتبات الضرورية:
|
||||
|
||||
@ -156,8 +159,11 @@ pip install transformers datasets evaluate rouge_score
|
||||
## التدريب (Train)
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> إذا لم تكن معتادًا على ضبط نموذج باستخدام [`Trainer`]، فألق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن معتادًا على ضبط نموذج باستخدام [`Trainer`]، فألق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
|
||||
</Tip>
|
||||
|
||||
أنت جاهز لبدء تدريب نموذجك الآن! قم بتحميل T5 باستخدام [`AutoModelForSeq2SeqLM`]:
|
||||
|
||||
@ -207,9 +213,12 @@ pip install transformers datasets evaluate rouge_score
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> للحصول على مثال أكثر تعمقًا حول كيفية ضبط نموذج للتجميع، ألقِ نظرة على [دفتر ملاحظات PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)
|
||||
> أو [دفتر ملاحظات TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb) المقابل.
|
||||
<Tip>
|
||||
|
||||
للحصول على مثال أكثر تعمقًا حول كيفية ضبط نموذج للتجميع، ألقِ نظرة على [دفتر ملاحظات PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)
|
||||
أو [دفتر ملاحظات TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb) المقابل.
|
||||
|
||||
</Tip>
|
||||
|
||||
## الاستدلال (Inference)
|
||||
|
||||
|
||||
@ -22,8 +22,11 @@
|
||||
1. ضبط [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) على مجموعة بيانات [WNUT 17](https://huggingface.co/datasets/wnut_17) للكشف عن كيانات جديدة.
|
||||
2. استخدام نموذجك المضبوط بدقة للاستدلال.
|
||||
|
||||
> [!TIP]
|
||||
> للاطلاع جميع البنى والنقاط المتوافقة مع هذه المهمة، نوصي بالرجوع من [صفحة المهمة](https://huggingface.co/tasks/token-classification).
|
||||
<Tip>
|
||||
|
||||
للاطلاع جميع البنى والنقاط المتوافقة مع هذه المهمة، نوصي بالرجوع من [صفحة المهمة](https://huggingface.co/tasks/token-classification).
|
||||
|
||||
</Tip>
|
||||
|
||||
قبل أن تبدأ، تأكد من تثبيت جميع المكتبات الضرورية:
|
||||
|
||||
@ -232,8 +235,11 @@ pip install transformers datasets evaluate seqeval
|
||||
... }
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> إذا لم تكن على دراية بتعديل نموذج باستخدام [`Trainer`], ألق نظرة على الدليل التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن على دراية بتعديل نموذج باستخدام [`Trainer`], ألق نظرة على الدليل التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
|
||||
</Tip>
|
||||
|
||||
أنت مستعد الآن لبدء تدريب نموذجك! قم بتحميل DistilBERT مع [`AutoModelForTokenClassification`] إلى جانب عدد التصنيفات المتوقعة، وخريطة التسميات:
|
||||
|
||||
@ -284,10 +290,13 @@ pip install transformers datasets evaluate seqeval
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> للحصول على مثال أكثر تفصيلاً حول كيفية تعديل نموذج لتصنيف الرموز، ألق نظرة على الدفتر المقابل
|
||||
> [دفتر PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)
|
||||
> أو [دفتر TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
|
||||
<Tip>
|
||||
|
||||
للحصول على مثال أكثر تفصيلاً حول كيفية تعديل نموذج لتصنيف الرموز، ألق نظرة على الدفتر المقابل
|
||||
[دفتر PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)
|
||||
أو [دفتر TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
|
||||
|
||||
</Tip>
|
||||
|
||||
## الاستدلال(Inference)
|
||||
|
||||
|
||||
@ -27,8 +27,11 @@ rendered properly in your Markdown viewer.
|
||||
1. ضبط دقيق لنموذج [T5](https://huggingface.co/google-t5/t5-small) على المجموعة الفرعية الإنجليزية-الفرنسية من مجموعة بيانات [OPUS Books](https://huggingface.co/datasets/opus_books) لترجمة النص الإنجليزي إلى الفرنسية.
|
||||
2. استخدام النموذج المضبوط بدقة للاستدلال.
|
||||
|
||||
> [!TIP]
|
||||
> لمشاهدة جميع البنى والنسخ المتوافقة مع هذه المهمة، نوصي بالتحقق من [صفحة المهمة](https://huggingface.co/tasks/translation).
|
||||
<Tip>
|
||||
|
||||
لمشاهدة جميع البنى والنسخ المتوافقة مع هذه المهمة، نوصي بالتحقق من [صفحة المهمة](https://huggingface.co/tasks/translation).
|
||||
|
||||
</Tip>
|
||||
|
||||
قبل البدء، تأكد من تثبيت جميع المكتبات الضرورية:
|
||||
|
||||
@ -163,8 +166,11 @@ pip install transformers datasets evaluate sacrebleu
|
||||
## التدريب (Train)
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> إذا لم تكن معتادًا على ضبط دقيق نموذج باستخدام [`Trainer`], فألقِ نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن معتادًا على ضبط دقيق نموذج باستخدام [`Trainer`], فألقِ نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
|
||||
</Tip>
|
||||
|
||||
أنت جاهز لبدء تدريب نموذجك الآن! حمّل T5 باستخدام [`AutoModelForSeq2SeqLM`]:
|
||||
|
||||
@ -214,9 +220,12 @@ pip install transformers datasets evaluate sacrebleu
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> للحصول على مثال أكثر تعمقًا لكيفية ضبط نموذج للترجمة، ألق نظرة على [دفتر ملاحظات PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb) المقابل
|
||||
> أو [دفتر ملاحظات TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
|
||||
<Tip>
|
||||
|
||||
للحصول على مثال أكثر تعمقًا لكيفية ضبط نموذج للترجمة، ألق نظرة على [دفتر ملاحظات PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb) المقابل
|
||||
أو [دفتر ملاحظات TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
|
||||
|
||||
</Tip>
|
||||
|
||||
## الاستدلال (Inference)
|
||||
|
||||
|
||||
@ -13,8 +13,11 @@
|
||||
- [GPT2](model_doc/gpt2) لمهام NLP مثل توليد النصوص التي تستخدم فك تشفير
|
||||
- [BART](model_doc/bart) لمهام NLP مثل الملخص والترجمة التي تستخدم ترميز-فك تشفير
|
||||
|
||||
> [!TIP]
|
||||
> قبل المتابعة، من الجيد أن يكون لديك بعض المعرفة الأساسية بهيكلية المحولات (Transformer Architecture) الأصلية. إن معرفة كيفية عمل المُشفّرات (Encoders) والمُفكّكات (Decoders) وآلية الانتباه (Attention Mechanism) سوف تساعدك في فهم كيفية عمل نماذج Transformer المختلفة. إذا كنت مبتدئًا أو بحاجة إلى مراجعة، فراجع [دورتنا](https://huggingface.co/course/chapter1/4؟fw=pt) لمزيد من المعلومات!
|
||||
<Tip>
|
||||
|
||||
قبل المتابعة، من الجيد أن يكون لديك بعض المعرفة الأساسية بهيكلية المحولات (Transformer Architecture) الأصلية. إن معرفة كيفية عمل المُشفّرات (Encoders) والمُفكّكات (Decoders) وآلية الانتباه (Attention Mechanism) سوف تساعدك في فهم كيفية عمل نماذج Transformer المختلفة. إذا كنت مبتدئًا أو بحاجة إلى مراجعة، فراجع [دورتنا](https://huggingface.co/course/chapter1/4؟fw=pt) لمزيد من المعلومات!
|
||||
|
||||
</Tip>
|
||||
|
||||
## الكلام والصوت (Speech and audio)
|
||||
|
||||
@ -54,8 +57,11 @@
|
||||
1. قم بتقسيم الصورة إلى تسلسل من الرقع ومعالجتها بالتوازي باستخدام مُحوّل Transformer.
|
||||
2. استخدم شبكة عصبية تلافيفية CNN) حديثة، مثل [ConvNeXT](model_doc/convnext)، والتي تعتمد على الطبقات التلافيفية ولكنها تعتمد تصميمات حديثة للشبكات.
|
||||
|
||||
> [!TIP]
|
||||
> يقوم النهج الثالث بمزج المحولات مع التلافيف (على سبيل المثال، [Convolutional Vision Transformer](model_doc/cvt) أو [LeViT](model_doc/levit)). لن نناقشها لأنها تجمع ببساطة بين النهجين اللذين نستعرضهما هنا.
|
||||
<Tip>
|
||||
|
||||
يقوم النهج الثالث بمزج المحولات مع التلافيف (على سبيل المثال، [Convolutional Vision Transformer](model_doc/cvt) أو [LeViT](model_doc/levit)). لن نناقشها لأنها تجمع ببساطة بين النهجين اللذين نستعرضهما هنا.
|
||||
|
||||
</Tip>
|
||||
|
||||
يتم استخدام ViT و ConvNeXT بشكل شائع لتصنيف الصور، ولكن بالنسبة لمهام الرؤية الأخرى مثل اكتشاف الكائنات والتجزئة وتقدير العمق، سنلقي نظرة على DETR و Mask2Former و GLPN، على التوالي؛ فهذه النماذج هي الأنسب لتلك المهام.
|
||||
|
||||
@ -85,8 +91,11 @@
|
||||
|
||||
#### الشبكات العصبية التلافيفية (CNN)
|
||||
|
||||
> [!TIP]
|
||||
> يشرح هذا القسم بإيجاز الالتفافات، ولكن سيكون من المفيد أن يكون لديك فهم مسبق لكيفية تغيير شكل الصورة وحجمها. إذا كنت غير معتاد على الالتفافات، تحقق من [فصل الشبكات العصبية التلافيفية](https://github.com/fastai/fastbook/blob/master/13_convolutions.ipynb) من كتاب fastai!
|
||||
<Tip>
|
||||
|
||||
يشرح هذا القسم بإيجاز الالتفافات، ولكن سيكون من المفيد أن يكون لديك فهم مسبق لكيفية تغيير شكل الصورة وحجمها. إذا كنت غير معتاد على الالتفافات، تحقق من [فصل الشبكات العصبية التلافيفية](https://github.com/fastai/fastbook/blob/master/13_convolutions.ipynb) من كتاب fastai!
|
||||
|
||||
</Tip>
|
||||
|
||||
[ConvNeXT](model_doc/convnext) هو بنية CNN تعتمد تصاميم الشبكات الجديدة والحديثة لتحسين الأداء. ومع ذلك، لا تزال الالتفافات هي جوهر النموذج. من منظور عام، [الالتفاف](glossary#convolution) هو عملية حيث يتم ضرب مصفوفة أصغر (*نواة*) بمقطع صغير من وحدات بكسل الصورة. يحسب بعض الميزات منه، مثل نسيج معين أو انحناء خط. ثم ينزلق إلى النافذة التالية من البكسلات؛ المسافة التي تقطعها الالتفاف تسمى *الخطوة*.
|
||||
|
||||
@ -205,8 +214,11 @@
|
||||
هل أنت مستعد لتجربة الإجابة على الأسئلة؟ راجع [دليل الإجابة على الأسئلة](tasks/question_answering) الشامل الخاص بنا لمعرفة كيفية ضبط نموذج DistilBERT واستخدامه في الاستدلال!
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> 💡 لاحظ مدى سهولة استخدام BERT لمهام مختلفة بمجرد تدريبه مسبقًا. كل ما تحتاج إليه هو إضافة رأس محدد إلى النموذج المسبق التدريب للتلاعب بالحالات المخفية إلى الإخراج المطلوب!
|
||||
<Tip>
|
||||
|
||||
💡 لاحظ مدى سهولة استخدام BERT لمهام مختلفة بمجرد تدريبه مسبقًا. كل ما تحتاج إليه هو إضافة رأس محدد إلى النموذج المسبق التدريب للتلاعب بالحالات المخفية إلى الإخراج المطلوب!
|
||||
|
||||
</Tip>
|
||||
|
||||
### توليد النصوص (Text generation)
|
||||
|
||||
@ -224,8 +236,11 @@
|
||||
|
||||
هل أنت مستعد لتجربة توليد النصوص؟ تحقق من دليل [دليل نمذجة اللغة السببية](tasks/language_modeling#causal- الشامل الخاص بنا لمعرفة كيفية ضبط نموذج DistilGPT-2 واستخدامه للاستنتاج!
|
||||
|
||||
> [!TIP]
|
||||
> للحصول على مزيد من المعلومات حول توليد النص، راجع دليل [استراتيجيات توليد النصوص](generation_strategies)!
|
||||
<Tip>
|
||||
|
||||
للحصول على مزيد من المعلومات حول توليد النص، راجع دليل [استراتيجيات توليد النصوص](generation_strategies)!
|
||||
|
||||
</Tip>
|
||||
|
||||
### التلخيص (Summarization)
|
||||
|
||||
@ -241,8 +256,11 @@
|
||||
|
||||
هل أنت مستعد لتجربة التلخيص؟ تحقق من دليل التلخيص الشامل الخاص بنا لمعرفة كيفية ضبط نموذج T5 واستخدامه للاستنتاج!
|
||||
|
||||
> [!TIP]
|
||||
> للحصول على مزيد من المعلومات حول توليد النص، راجع دليل استراتيجيات توليد النص!
|
||||
<Tip>
|
||||
|
||||
للحصول على مزيد من المعلومات حول توليد النص، راجع دليل استراتيجيات توليد النص!
|
||||
|
||||
</Tip>
|
||||
|
||||
### الترجمة (Translation)
|
||||
|
||||
@ -254,5 +272,8 @@
|
||||
|
||||
هل أنت مستعد لتجربة الترجمة؟ تحقق من دليل الترجمة الشامل الخاص بنا لمعرفة كيفية ضبط نموذج T5 واستخدامه للاستنتاج!
|
||||
|
||||
> [!TIP]
|
||||
> **للحصول على مزيد من المعلومات حول توليد النصوص، راجع دليل [استراتيجيات توليد النصوص](generation_strategies)!**
|
||||
<Tip>
|
||||
|
||||
**للحصول على مزيد من المعلومات حول توليد النصوص، راجع دليل [استراتيجيات توليد النصوص](generation_strategies)!**
|
||||
|
||||
</Tip>
|
||||
|
||||
@ -1,7 +1,10 @@
|
||||
# التصدير إلى TorchScript
|
||||
|
||||
> [!TIP]
|
||||
> هذه هي بداية تجاربنا مع TorchScript ولا زلنا نستكشف قدراته مع نماذج المدخلات المتغيرة الحجم. إنه مجال اهتمامنا وسنعمق تحليلنا في الإصدارات القادمة، مع المزيد من الأمثلة البرمجية، وتنفيذ أكثر مرونة، ومقاييس مقارنة بين الأكواد القائمة على Python مع أكواد TorchScript المُجمّعة.
|
||||
<Tip>
|
||||
|
||||
هذه هي بداية تجاربنا مع TorchScript ولا زلنا نستكشف قدراته مع نماذج المدخلات المتغيرة الحجم. إنه مجال اهتمامنا وسنعمق تحليلنا في الإصدارات القادمة، مع المزيد من الأمثلة البرمجية، وتنفيذ أكثر مرونة، ومقاييس مقارنة بين الأكواد القائمة على Python مع أكواد TorchScript المُجمّعة.
|
||||
|
||||
</Tip>
|
||||
|
||||
وفقًا لـ [وثائق TorchScript](https://pytorch.org/docs/stable/jit.html):
|
||||
|
||||
|
||||
@ -2,12 +2,15 @@
|
||||
|
||||
تُتيح وحدة [`Trainer`] حلقة تدريب وتقييم متكاملة لنماذج PyTorch المطبقة في مكتبة Transformers. تحتاج فقط إلى تمرير المكونات الضرورية للتدريب (النموذج، والمجزىء النصى، ومجموعة البيانات، دالة التقييم، معلمات التدريب الفائقة، إلخ)، وستتولى فئة [`Trainer`] الباقي. هذا يُسهّل بدء التدريب بشكل أسرع دون كتابة حلقة التدريب الخاصة بك يدويًا. ولكن في الوقت نفسه، فإن [`Trainer`] قابل للتخصيص بدرجة كبيرة ويوفر العديد من خيارات التدريب حتى تتمكن من تخصيصه وفقًا لاحتياجات التدريب الخاصة بك بدقة.
|
||||
|
||||
> [!TIP]
|
||||
> بالإضافة إلى فئة [`Trainer`], توفر مكتبة Transformers أيضًا فئة [`Seq2SeqTrainer`] للمهام التسلسلية مثل الترجمة أو التلخيص. هناك أيضًا فئة [`~trl.SFTTrainer`] من مكتبة [TRL](https://hf.co/docs/trl) التي تغلّف فئة [`Trainer`] وهي مُحُسَّنة لتدريب نماذج اللغة مثل Llama-2 وMistral باستخدام تقنيات التوليد اللغوي. كما يدعم [`~trl.SFTTrainer`] ميزات مثل حزم التسلسلات، وLoRA، والقياس الكمي، وDeepSpeed مما يُمكّن من التدريب بكفاءة على نماذج ضخمة الحجم.
|
||||
>
|
||||
> <br>
|
||||
>
|
||||
> لا تتردد في الاطلاع على [مرجع API](./main_classes/trainer) لهذه الفئات الأخرى من النوع [`Trainer`] لمعرفة المزيد حول متى يتم استخدام كل منها. بشكل عام، [`Trainer`] هو الخيار الأكثر تنوعًا ومناسبًا لمجموعة واسعة من المهام. تم تصميم [`Seq2SeqTrainer`] للمهام التسلسلية ، و [`~trl.SFTTrainer`] مُصمم لتدريب نماذج اللغة الكبيرة.
|
||||
<Tip>
|
||||
|
||||
بالإضافة إلى فئة [`Trainer`], توفر مكتبة Transformers أيضًا فئة [`Seq2SeqTrainer`] للمهام التسلسلية مثل الترجمة أو التلخيص. هناك أيضًا فئة [`~trl.SFTTrainer`] من مكتبة [TRL](https://hf.co/docs/trl) التي تغلّف فئة [`Trainer`] وهي مُحُسَّنة لتدريب نماذج اللغة مثل Llama-2 وMistral باستخدام تقنيات التوليد اللغوي. كما يدعم [`~trl.SFTTrainer`] ميزات مثل حزم التسلسلات، وLoRA، والقياس الكمي، وDeepSpeed مما يُمكّن من التدريب بكفاءة على نماذج ضخمة الحجم.
|
||||
|
||||
<br>
|
||||
|
||||
لا تتردد في الاطلاع على [مرجع API](./main_classes/trainer) لهذه الفئات الأخرى من النوع [`Trainer`] لمعرفة المزيد حول متى يتم استخدام كل منها. بشكل عام، [`Trainer`] هو الخيار الأكثر تنوعًا ومناسبًا لمجموعة واسعة من المهام. تم تصميم [`Seq2SeqTrainer`] للمهام التسلسلية ، و [`~trl.SFTTrainer`] مُصمم لتدريب نماذج اللغة الكبيرة.
|
||||
|
||||
</Tip>
|
||||
|
||||
قبل البدء، تأكد من تثبيت مكتبة [Accelerate](https://hf.co/docs/accelerate) - وهي مكتبة تُمكّن تشغيل تدريب PyTorch في بيئات مُوزعة.
|
||||
|
||||
@ -161,15 +164,21 @@ trainer = Trainer(
|
||||
|
||||
## تسجيل الأحداث (Logging)
|
||||
|
||||
> [!TIP]
|
||||
> راجع مرجع [API](./main_classes/logging) للتسجيل للحصول على مزيد من المعلومات حول مستويات التسجيل المختلفة للأحداث.
|
||||
<Tip>
|
||||
|
||||
راجع مرجع [API](./main_classes/logging) للتسجيل للحصول على مزيد من المعلومات حول مستويات التسجيل المختلفة للأحداث.
|
||||
|
||||
</Tip>
|
||||
|
||||
يتم تعيين [`Trainer`] إلى `logging.INFO` افتراضيًا والذي يُبلغ عن الأخطاء والتحذيرات ومعلومات أساسية أخرى. يتم تعيين نسخة [`Trainer`] - في البيئات الموزعة - إلى `logging.WARNING` والتي يُبلغ فقط عن الأخطاء والتحذيرات. يمكنك تغيير مستوى تسجيل الأحداث باستخدام معاملي [`log_level`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.log_level) و [`log_level_replica`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.log_level_replica) في [`TrainingArguments`].
|
||||
|
||||
لتهيئة إعداد مُستوى تسجيل اﻷحداث لكل عقدة، استخدم معامل [`log_on_each_node`](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments.log_on_each_node) لتحديد ما إذا كان سيتم استخدام مُستوى السجل على كل عقدة أو فقط على العقدة الرئيسية.
|
||||
|
||||
> [!TIP]
|
||||
> يحدد [`Trainer`] مُستوى التسجيل بشكل مُنفصل لكل عقدة في طريقة [`Trainer.__init__`]، لذا فقد ترغب في التفكير في تعيين هذا الإعداد في وقت سابق إذا كنت تستخدم وظائف Transformers الأخرى قبل إنشاء كائن [`Trainer`].
|
||||
<Tip>
|
||||
|
||||
يحدد [`Trainer`] مُستوى التسجيل بشكل مُنفصل لكل عقدة في طريقة [`Trainer.__init__`]، لذا فقد ترغب في التفكير في تعيين هذا الإعداد في وقت سابق إذا كنت تستخدم وظائف Transformers الأخرى قبل إنشاء كائن [`Trainer`].
|
||||
|
||||
</Tip>
|
||||
|
||||
على سبيل المثال، لتعيين التعليمات البرمجية والوحدات النمطية الرئيسية الخاصة بك لاستخدام نفس مُستوى التسجيل وفقًا لكل عقدة:
|
||||
|
||||
@ -373,8 +382,11 @@ trainer.train()
|
||||
تم تقديم مُحسِّنات LOMO في [التدريب على المعلمات الكاملة لنماذج اللغة الكبيرة باستخدام موارد محدودة](https://hf.co/papers/2306.09782) و [AdaLomo: تحسين ذاكرة منخفضة بمعدل تعلم متكيف](https://hf.co/papers/2310.10195).
|
||||
يتكون كلاهما من طريقة فعالة لضبط المعلمات الكاملة. تدمج محسنات LOMO حساب الاشتقاق وتحديث المعلمات في خطوة واحدة لتقليل استخدام الذاكرة. محسنات LOMO المدعومة هي `"lomo"` و `"adalomo"`. أولاً قم بتثبيت LOMO من pypi `pip install lomo-optim` أو قم بتثبيته من المصدر باستخدام `pip install git+https://github.com/OpenLMLab/LOMO.git`.
|
||||
|
||||
> [!TIP]
|
||||
> وفقًا للمؤلفين، يوصى باستخدام `AdaLomo` بدون `grad_norm` للحصول على أداء أفضل وسرعة أعلى.
|
||||
<Tip>
|
||||
|
||||
وفقًا للمؤلفين، يوصى باستخدام `AdaLomo` بدون `grad_norm` للحصول على أداء أفضل وسرعة أعلى.
|
||||
|
||||
</Tip>
|
||||
|
||||
فيما يلي نص برمجي بسيط يوضح كيفية ضبط نموذج [google/gemma-2b](https://huggingface.co/google/gemma-2b) على مجموعة بيانات IMDB في الدقة الكاملة:
|
||||
|
||||
@ -399,8 +411,9 @@ trainer.train()
|
||||
|
||||
### مُحسِّن GrokAdamW
|
||||
تم تصميم مُحسِّن GrokAdamW لتعزيز أداء التدريب واستقراره، خاصةً للنماذج التي تستفيد من دوال إشارة `grokking`. لاستخدام `GrokAdamW`، قم أولاً بتثبيت حزمة المُحسِّن باستخدام `pip install grokadamw`.
|
||||
> [!TIP]
|
||||
> يُعد GrokAdamW مفيدًا بشكل خاص للنماذج التي تتطلب تقنيات تحسين مُتقدمة لتحقيق أداء واستقرار أفضل.
|
||||
<Tip>
|
||||
يُعد GrokAdamW مفيدًا بشكل خاص للنماذج التي تتطلب تقنيات تحسين مُتقدمة لتحقيق أداء واستقرار أفضل.
|
||||
</Tip>
|
||||
|
||||
فيما يلي نص برمجى بسيط لشرح كيفية ضبط [google/gemma-2b](https://huggingface.co/google/gemma-2b) بدقة على مجموعة بيانات IMDB باستخدام مُحسِّن GrokAdamW:
|
||||
```python
|
||||
@ -469,8 +482,11 @@ trainer.train()
|
||||
|
||||
يتم تشغيل فئة [`Trainer`] بواسطة [تسريع](https://hf.co/docs/accelerate)، وهي مكتبة لتدريب نماذج PyTorch بسهولة في بيئات موزعة مع دعم عمليات التكامل مثل [FullyShardedDataParallel (FSDP)](https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/) و [DeepSpeed](https://www.deepspeed.ai/).
|
||||
|
||||
> [!TIP]
|
||||
> تعرف على المزيد حول استراتيجيات تجزئة FSDP، وتفريغ وحدة المعالجة المركزية (CPU)، والمزيد مع [`Trainer`] في [دليل Fully Sharded Data Parallel](fsdp).
|
||||
<Tip>
|
||||
|
||||
تعرف على المزيد حول استراتيجيات تجزئة FSDP، وتفريغ وحدة المعالجة المركزية (CPU)، والمزيد مع [`Trainer`] في [دليل Fully Sharded Data Parallel](fsdp).
|
||||
|
||||
</Tip>
|
||||
|
||||
لاستخدام Accelerate مع [`Trainer`]]، قم بتشغيل الأمر [`accelerate.config`](https://huggingface.co/docs/accelerate/package_reference/cli#accelerate-config) لإعداد التدريب لبيئة التدريب الخاصة بك. نشئ هذا الأمر ملف `config_file.yaml` الذي سيتم استخدامه عند تشغيل نص للتدريب البرمجى. على سبيل المثال، بعض تكوينات المثال التي يمكنك إعدادها هي:
|
||||
|
||||
@ -595,7 +611,6 @@ accelerate launch \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3 \
|
||||
--output_dir /tmp/$TASK_NAME/ \
|
||||
--overwrite_output_dir
|
||||
```
|
||||
|
||||
يمكنك أيضًا تحديد المعلمات من ملف `config_file.yaml` مباشرة في سطر الأوامر:
|
||||
@ -618,7 +633,6 @@ accelerate launch --num_processes=2 \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3 \
|
||||
--output_dir /tmp/$TASK_NAME/ \
|
||||
--overwrite_output_dir
|
||||
```
|
||||
|
||||
اطلع على برنامج تعليمي [Launching your Accelerate scripts](https://huggingface.co/docs/accelerate/basic_tutorials/launch) لمعرفة المزيد حول `accelerate_launch` والتكوينات المخصصة.
|
||||
|
||||
@ -72,8 +72,11 @@
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased", num_labels=5)
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> سترى تحذيرًا بشأن بعض أوزان النموذج المُدرب مسبقًا لن تُستخدم وبعض الأوزان الأخرى ستُبدء بشكل عشوائي. لا تقلق، هذا أمر طبيعي تمامًا! يتم التخلص من رأس النموذج المُدرب مسبقًا لشبكة BERT، ويتم استبداله برأس تصنيف يُبدء بشكل عشوائي. سوف تقوم بضبط الرأس الجديد للنموذج بدقة على مهمة تصنيف التسلسلات الخاصة بك، مما ينقل المعرفة من النموذج المُدرب مسبقًا إليه.
|
||||
<Tip>
|
||||
|
||||
سترى تحذيرًا بشأن بعض أوزان النموذج المُدرب مسبقًا لن تُستخدم وبعض الأوزان الأخرى ستُبدء بشكل عشوائي. لا تقلق، هذا أمر طبيعي تمامًا! يتم التخلص من رأس النموذج المُدرب مسبقًا لشبكة BERT، ويتم استبداله برأس تصنيف يُبدء بشكل عشوائي. سوف تقوم بضبط الرأس الجديد للنموذج بدقة على مهمة تصنيف التسلسلات الخاصة بك، مما ينقل المعرفة من النموذج المُدرب مسبقًا إليه.
|
||||
|
||||
</Tip>
|
||||
|
||||
### اختيار أحسن العوامل والمتغيرات للتدريب (Training hyperparameters)
|
||||
|
||||
@ -227,8 +230,11 @@ torch.cuda.empty_cache()
|
||||
>>> model.to(device)
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> احصل على وصول مجاني إلى وحدة معالجة رسومات سحابية إذا لم يكن لديك واحدة مع دفتر ملاحظات مستضاف مثل [Colaboratory](https://colab.research.google.com/) أو [SageMaker StudioLab](https://studiolab.sagemaker.aws/).
|
||||
<Tip>
|
||||
|
||||
احصل على وصول مجاني إلى وحدة معالجة رسومات سحابية إذا لم يكن لديك واحدة مع دفتر ملاحظات مستضاف مثل [Colaboratory](https://colab.research.google.com/) أو [SageMaker StudioLab](https://studiolab.sagemaker.aws/).
|
||||
|
||||
</Tip>
|
||||
|
||||
رائع، الآن أنت مستعد للتدريب! 🥳
|
||||
|
||||
|
||||
@ -39,8 +39,9 @@ CUDA out of memory. Tried to allocate 256.00 MiB (GPU 0; 11.17 GiB total capacit
|
||||
|
||||
- حاول استخدام [`gradient_accumulation_steps`](main_classes/trainer#transformers.TrainingArguments.gradient_accumulation_steps) في [`TrainingArguments`] لزيادة حجم الدُفعة بشكل فعال.
|
||||
|
||||
> [!TIP]
|
||||
> راجع دليل [الأداء](performance) لمزيد من التفاصيل حول تقنيات توفير الذاكرة.
|
||||
<Tip>
|
||||
راجع دليل [الأداء](performance) لمزيد من التفاصيل حول تقنيات توفير الذاكرة.
|
||||
</Tip>
|
||||
|
||||
## عدم القدرة على تحميل نموذج TensorFlow محفوظ
|
||||
|
||||
@ -137,8 +138,9 @@ tensor([[-0.1008, -0.4061]], grad_fn=<AddmmBackward0>)
|
||||
|
||||
يجب عليك في معظم الوقت توفير `attention_mask` للنموذج لتجاهل رموز الحشو لتجنب هذا الخطأ الصامت. الآن يتطابق مُخرجات التسلسل الثاني مع مُخرجاته الفعلية:
|
||||
|
||||
> [!TIP]
|
||||
> بشكل افتراضي، ينشئ مجزىء النصوص `attention_mask` لك استنادًا إلى إعدادات المجزىء المحدد.
|
||||
<Tip>
|
||||
بشكل افتراضي، ينشئ مجزىء النصوص `attention_mask` لك استنادًا إلى إعدادات المجزىء المحدد.
|
||||
</Tip>
|
||||
|
||||
```python
|
||||
>>> attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0]])
|
||||
|
||||
@ -53,7 +53,7 @@ Lassen Sie uns daher ein wenig tiefer in das allgemeine Design der Bibliothek ei
|
||||
### Überblick über die Modelle
|
||||
|
||||
Um ein Modell erfolgreich hinzuzufügen, ist es wichtig, die Interaktion zwischen Ihrem Modell und seiner Konfiguration zu verstehen,
|
||||
[`PreTrainedModel`] und [`PretrainedConfig`]. Als Beispiel werden wir
|
||||
[`PreTrainedModel`] und [`PreTrainedConfig`]. Als Beispiel werden wir
|
||||
das Modell, das zu 🤗 Transformers hinzugefügt werden soll, `BrandNewBert` nennen.
|
||||
|
||||
Schauen wir uns das mal an:
|
||||
@ -81,10 +81,10 @@ model.config # model has access to its config
|
||||
```
|
||||
|
||||
Ähnlich wie das Modell erbt die Konfiguration grundlegende Serialisierungs- und Deserialisierungsfunktionalitäten von
|
||||
[`PretrainedConfig`]. Beachten Sie, dass die Konfiguration und das Modell immer in zwei verschiedene Formate serialisiert werden
|
||||
[`PreTrainedConfig`]. Beachten Sie, dass die Konfiguration und das Modell immer in zwei verschiedene Formate serialisiert werden
|
||||
unterschiedliche Formate serialisiert werden - das Modell in eine *pytorch_model.bin* Datei und die Konfiguration in eine *config.json* Datei. Aufruf von
|
||||
[`~PreTrainedModel.save_pretrained`] wird automatisch
|
||||
[`~PretrainedConfig.save_pretrained`] auf, so dass sowohl das Modell als auch die Konfiguration gespeichert werden.
|
||||
[`~PreTrainedConfig.save_pretrained`] auf, so dass sowohl das Modell als auch die Konfiguration gespeichert werden.
|
||||
|
||||
|
||||
### Code-Stil
|
||||
@ -748,8 +748,11 @@ Tests erfolgreich sind, führen Sie
|
||||
RUN_SLOW=1 pytest -sv tests/models/brand_new_bert/test_modeling_brand_new_bert.py::BrandNewBertModelIntegrationTests
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Falls Sie Windows verwenden, sollten Sie `RUN_SLOW=1` durch `SET RUN_SLOW=1` ersetzen.
|
||||
<Tip>
|
||||
|
||||
Falls Sie Windows verwenden, sollten Sie `RUN_SLOW=1` durch `SET RUN_SLOW=1` ersetzen.
|
||||
|
||||
</Tip>
|
||||
|
||||
Zweitens sollten alle Funktionen, die speziell für *brand_new_bert* sind, zusätzlich in einem separaten Test getestet werden unter
|
||||
`BrandNewBertModelTester`/`BrandNewBertModelTest`. Dieser Teil wird oft vergessen, ist aber in zweierlei Hinsicht äußerst nützlich
|
||||
|
||||
@ -18,8 +18,11 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
Bei so vielen verschiedenen Transformator-Architekturen kann es eine Herausforderung sein, eine für Ihren Checkpoint zu erstellen. Als Teil der 🤗 Transformers Kernphilosophie, die Bibliothek leicht, einfach und flexibel nutzbar zu machen, leitet eine `AutoClass` automatisch die richtige Architektur aus einem gegebenen Checkpoint ab und lädt sie. Mit der Methode `from_pretrained()` kann man schnell ein vortrainiertes Modell für eine beliebige Architektur laden, so dass man keine Zeit und Ressourcen aufwenden muss, um ein Modell von Grund auf zu trainieren. Die Erstellung dieser Art von Checkpoint-agnostischem Code bedeutet, dass Ihr Code, wenn er für einen Checkpoint funktioniert, auch mit einem anderen Checkpoint funktionieren wird - solange er für eine ähnliche Aufgabe trainiert wurde - selbst wenn die Architektur unterschiedlich ist.
|
||||
|
||||
> [!TIP]
|
||||
> Denken Sie daran, dass sich die Architektur auf das Skelett des Modells bezieht und die Checkpoints die Gewichte für eine bestimmte Architektur sind. Zum Beispiel ist [BERT](https://huggingface.co/google-bert/bert-base-uncased) eine Architektur, während `google-bert/bert-base-uncased` ein Checkpoint ist. Modell ist ein allgemeiner Begriff, der entweder Architektur oder Prüfpunkt bedeuten kann.
|
||||
<Tip>
|
||||
|
||||
Denken Sie daran, dass sich die Architektur auf das Skelett des Modells bezieht und die Checkpoints die Gewichte für eine bestimmte Architektur sind. Zum Beispiel ist [BERT](https://huggingface.co/google-bert/bert-base-uncased) eine Architektur, während `google-bert/bert-base-uncased` ein Checkpoint ist. Modell ist ein allgemeiner Begriff, der entweder Architektur oder Prüfpunkt bedeuten kann.
|
||||
|
||||
</Tip>
|
||||
|
||||
In dieser Anleitung lernen Sie, wie man:
|
||||
|
||||
@ -94,9 +97,12 @@ Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur
|
||||
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
> [!WARNING]
|
||||
> Für PyTorch-Modelle verwendet die Methode `from_pretrained()` `torch.load()`, die intern `pickle` verwendet und als unsicher bekannt ist. Generell sollte man niemals ein Modell laden, das aus einer nicht vertrauenswürdigen Quelle stammen könnte, oder das manipuliert worden sein könnte. Dieses Sicherheitsrisiko wird für öffentliche Modelle, die auf dem Hugging Face Hub gehostet werden, teilweise gemildert, da diese bei jeder Übertragung [auf Malware](https://huggingface.co/docs/hub/security-malware) gescannt werden. Siehe die [Hub-Dokumentation](https://huggingface.co/docs/hub/security) für Best Practices wie [signierte Commit-Verifizierung](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) mit GPG.
|
||||
>
|
||||
> TensorFlow- und Flax-Checkpoints sind nicht betroffen und können in PyTorch-Architekturen mit den Kwargs `from_tf` und `from_flax` für die Methode `from_pretrained` geladen werden, um dieses Problem zu umgehen.
|
||||
<Tip warning={true}>
|
||||
|
||||
Für PyTorch-Modelle verwendet die Methode `from_pretrained()` `torch.load()`, die intern `pickle` verwendet und als unsicher bekannt ist. Generell sollte man niemals ein Modell laden, das aus einer nicht vertrauenswürdigen Quelle stammen könnte, oder das manipuliert worden sein könnte. Dieses Sicherheitsrisiko wird für öffentliche Modelle, die auf dem Hugging Face Hub gehostet werden, teilweise gemildert, da diese bei jeder Übertragung [auf Malware](https://huggingface.co/docs/hub/security-malware) gescannt werden. Siehe die [Hub-Dokumentation](https://huggingface.co/docs/hub/security) für Best Practices wie [signierte Commit-Verifizierung](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) mit GPG.
|
||||
|
||||
TensorFlow- und Flax-Checkpoints sind nicht betroffen und können in PyTorch-Architekturen mit den Kwargs `from_tf` und `from_flax` für die Methode `from_pretrained` geladen werden, um dieses Problem zu umgehen.
|
||||
|
||||
</Tip>
|
||||
|
||||
Im Allgemeinen empfehlen wir die Verwendung der Klasse "AutoTokenizer" und der Klasse "AutoModelFor", um trainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten.
|
||||
|
||||
@ -269,8 +269,11 @@ Sie können auch eine kleinere Anzahl an Tests angeben, um nur die Funktion, an
|
||||
|
||||
Standardmäßig werden langsame Tests übersprungen, aber Sie können die Umgebungsvariable `RUN_SLOW` auf `yes` setzen, um sie auszuführen. Dies wird den Download vieler Gigabyte an Modellen starten - stellen Sie also sicher, dass Sie sowohl genügend Festplattenspeicher als auch eine gute Internetverbindung oder die nötige Geduld haben!
|
||||
|
||||
> [!WARNING]
|
||||
> Vergessen Sie nicht, einen *Pfad zu einem Unterordner oder einer Testdatei* anzugeben, um den Test auszuführen. Sonst führen Sie alle Tests im `tests` oder `examples` Ordner aus, was sehr lange dauern wird!
|
||||
<Tip warning={true}>
|
||||
|
||||
Vergessen Sie nicht, einen *Pfad zu einem Unterordner oder einer Testdatei* anzugeben, um den Test auszuführen. Sonst führen Sie alle Tests im `tests` oder `examples` Ordner aus, was sehr lange dauern wird!
|
||||
|
||||
</Tip>
|
||||
|
||||
```bash
|
||||
RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model
|
||||
|
||||
@ -121,8 +121,11 @@ pip install -e .
|
||||
Diese Befehle verknüpfen den Ordner, in den Sie das Repository geklont haben, mit den Pfaden Ihrer Python-Bibliotheken. Python wird nun in dem Ordner suchen, in den Sie geklont haben, zusätzlich zu den normalen Bibliothekspfaden. Wenn zum Beispiel Ihre Python-Pakete normalerweise in `~/anaconda3/envs/main/lib/python3.7/site-packages/` installiert sind, wird Python auch den Ordner durchsuchen, in den Sie geklont haben: `~/transformers/`.
|
||||
|
||||
|
||||
> [!WARNING]
|
||||
> Sie müssen den Ordner `transformers` behalten, wenn Sie die Bibliothek weiter verwenden wollen.
|
||||
<Tip warning={true}>
|
||||
|
||||
Sie müssen den Ordner `transformers` behalten, wenn Sie die Bibliothek weiter verwenden wollen.
|
||||
|
||||
</Tip>
|
||||
|
||||
Jetzt können Sie Ihren Klon mit dem folgenden Befehl ganz einfach auf die neueste Version von 🤗 Transformers aktualisieren:
|
||||
|
||||
@ -151,15 +154,21 @@ Vorgefertigte Modelle werden heruntergeladen und lokal zwischengespeichert unter
|
||||
3. Shell-Umgebungsvariable: `XDG_CACHE_HOME` + `/huggingface`.
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> Transformers verwendet die Shell-Umgebungsvariablen `PYTORCH_TRANSFORMERS_CACHE` oder `PYTORCH_PRETRAINED_BERT_CACHE`, wenn Sie von einer früheren Iteration dieser Bibliothek kommen und diese Umgebungsvariablen gesetzt haben, sofern Sie nicht die Shell-Umgebungsvariable `TRANSFORMERS_CACHE` angeben.
|
||||
<Tip>
|
||||
|
||||
Transformers verwendet die Shell-Umgebungsvariablen `PYTORCH_TRANSFORMERS_CACHE` oder `PYTORCH_PRETRAINED_BERT_CACHE`, wenn Sie von einer früheren Iteration dieser Bibliothek kommen und diese Umgebungsvariablen gesetzt haben, sofern Sie nicht die Shell-Umgebungsvariable `TRANSFORMERS_CACHE` angeben.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Offline Modus
|
||||
|
||||
Transformers ist in der Lage, in einer Firewall- oder Offline-Umgebung zu laufen, indem es nur lokale Dateien verwendet. Setzen Sie die Umgebungsvariable `HF_HUB_OFFLINE=1`, um dieses Verhalten zu aktivieren.
|
||||
|
||||
> [!TIP]
|
||||
> Fügen sie [🤗 Datasets](https://huggingface.co/docs/datasets/) zu Ihrem Offline-Trainingsworkflow hinzufügen, indem Sie die Umgebungsvariable `HF_DATASETS_OFFLINE=1` setzen.
|
||||
<Tip>
|
||||
|
||||
Fügen sie [🤗 Datasets](https://huggingface.co/docs/datasets/) zu Ihrem Offline-Trainingsworkflow hinzufügen, indem Sie die Umgebungsvariable `HF_DATASETS_OFFLINE=1` setzen.
|
||||
|
||||
</Tip>
|
||||
|
||||
So würden Sie beispielsweise ein Programm in einem normalen Netzwerk mit einer Firewall für externe Instanzen mit dem folgenden Befehl ausführen:
|
||||
|
||||
@ -234,5 +243,8 @@ Sobald Ihre Datei heruntergeladen und lokal zwischengespeichert ist, geben Sie d
|
||||
>>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json")
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Weitere Informationen zum Herunterladen von Dateien, die auf dem Hub gespeichert sind, finden Sie im Abschnitt [Wie man Dateien vom Hub herunterlädt](https://huggingface.co/docs/hub/how-to-downstream).
|
||||
<Tip>
|
||||
|
||||
Weitere Informationen zum Herunterladen von Dateien, die auf dem Hub gespeichert sind, finden Sie im Abschnitt [Wie man Dateien vom Hub herunterlädt](https://huggingface.co/docs/hub/how-to-downstream).
|
||||
|
||||
</Tip>
|
||||
|
||||
@ -68,17 +68,20 @@ Damit sich Ihr Modell so verhält, wie Sie es für Ihre Aufgabe erwarten, müsse
|
||||
|
||||
Lassen Sie uns über Code sprechen!
|
||||
|
||||
> [!TIP]
|
||||
> Wenn Sie an der grundlegenden Verwendung von LLMs interessiert sind, ist unsere High-Level-Schnittstelle [`Pipeline`](pipeline_tutorial) ein guter Ausgangspunkt. LLMs erfordern jedoch oft fortgeschrittene Funktionen wie Quantisierung und Feinsteuerung des Token-Auswahlschritts, was am besten über [`~generation.GenerationMixin.generate`] erfolgt. Die autoregressive Generierung mit LLMs ist ebenfalls ressourcenintensiv und sollte für einen angemessenen Durchsatz auf einer GPU ausgeführt werden.
|
||||
<Tip>
|
||||
|
||||
Wenn Sie an der grundlegenden Verwendung von LLMs interessiert sind, ist unsere High-Level-Schnittstelle [`Pipeline`](pipeline_tutorial) ein guter Ausgangspunkt. LLMs erfordern jedoch oft fortgeschrittene Funktionen wie Quantisierung und Feinsteuerung des Token-Auswahlschritts, was am besten über [`~generation.GenerationMixin.generate`] erfolgt. Die autoregressive Generierung mit LLMs ist ebenfalls ressourcenintensiv und sollte für einen angemessenen Durchsatz auf einer GPU ausgeführt werden.
|
||||
|
||||
</Tip>
|
||||
|
||||
<!-- TODO: update example to llama 2 (or a newer popular baseline) when it becomes ungated -->
|
||||
Zunächst müssen Sie das Modell laden.
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForCausalLM
|
||||
>>> from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
||||
|
||||
>>> model = AutoModelForCausalLM.from_pretrained(
|
||||
... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True
|
||||
... "openlm-research/open_llama_7b", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
|
||||
... )
|
||||
```
|
||||
|
||||
@ -116,12 +119,12 @@ Und das war's! Mit ein paar Zeilen Code können Sie sich die Macht eines LLM zun
|
||||
Es gibt viele [Generierungsstrategien](generation_strategies), und manchmal sind die Standardwerte für Ihren Anwendungsfall vielleicht nicht geeignet. Wenn Ihre Ausgaben nicht mit dem übereinstimmen, was Sie erwarten, haben wir eine Liste der häufigsten Fallstricke erstellt und wie Sie diese vermeiden können.
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b")
|
||||
>>> tokenizer.pad_token = tokenizer.eos_token # Llama has no pad token by default
|
||||
>>> model = AutoModelForCausalLM.from_pretrained(
|
||||
... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True
|
||||
... "openlm-research/open_llama_7b", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
|
||||
... )
|
||||
```
|
||||
|
||||
|
||||
@ -27,8 +27,11 @@ In diesem Tutorial lernen Sie zwei Methoden kennen, wie Sie ein trainiertes oder
|
||||
frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope;
|
||||
picture-in-picture" allowfullscreen></iframe>
|
||||
|
||||
> [!TIP]
|
||||
> Um ein Modell mit der Öffentlichkeit zu teilen, benötigen Sie ein Konto auf [huggingface.co](https://huggingface.co/join). Sie können auch einer bestehenden Organisation beitreten oder eine neue Organisation gründen.
|
||||
<Tip>
|
||||
|
||||
Um ein Modell mit der Öffentlichkeit zu teilen, benötigen Sie ein Konto auf [huggingface.co](https://huggingface.co/join). Sie können auch einer bestehenden Organisation beitreten oder eine neue Organisation gründen.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Repository-Funktionen
|
||||
|
||||
|
||||
@ -63,8 +63,11 @@ peft_model_id = "ybelkada/opt-350m-lora"
|
||||
model = AutoModelForCausalLM.from_pretrained(peft_model_id)
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Sie können einen PEFT-Adapter entweder mit einer `AutoModelFor`-Klasse oder der Basismodellklasse wie `OPTForCausalLM` oder `LlamaForCausalLM` laden.
|
||||
<Tip>
|
||||
|
||||
Sie können einen PEFT-Adapter entweder mit einer `AutoModelFor`-Klasse oder der Basismodellklasse wie `OPTForCausalLM` oder `LlamaForCausalLM` laden.
|
||||
|
||||
</Tip>
|
||||
|
||||
Sie können einen PEFT-Adapter auch laden, indem Sie die Methode `load_adapter` aufrufen:
|
||||
|
||||
@ -165,8 +168,11 @@ output = model.generate(**inputs)
|
||||
|
||||
PEFT-Adapter werden von der Klasse [`Trainer`] unterstützt, so dass Sie einen Adapter für Ihren speziellen Anwendungsfall trainieren können. Dazu müssen Sie nur ein paar weitere Codezeilen hinzufügen. Zum Beispiel, um einen LoRA-Adapter zu trainieren:
|
||||
|
||||
> [!TIP]
|
||||
> Wenn Sie mit der Feinabstimmung eines Modells mit [`Trainer`] noch nicht vertraut sind, werfen Sie einen Blick auf das Tutorial [Feinabstimmung eines vortrainierten Modells](Training).
|
||||
<Tip>
|
||||
|
||||
Wenn Sie mit der Feinabstimmung eines Modells mit [`Trainer`] noch nicht vertraut sind, werfen Sie einen Blick auf das Tutorial [Feinabstimmung eines vortrainierten Modells](Training).
|
||||
|
||||
</Tip>
|
||||
|
||||
1. Definieren Sie Ihre Adapterkonfiguration mit dem Aufgabentyp und den Hyperparametern (siehe [`~peft.LoraConfig`] für weitere Details darüber, was die Hyperparameter tun).
|
||||
|
||||
|
||||
@ -22,8 +22,11 @@ Die [`pipeline`] macht es einfach, jedes beliebige Modell aus dem [Hub](https://
|
||||
* Einen bestimmten Tokenizer oder ein bestimmtes Modell zu verwenden.
|
||||
* Eine [`pipeline`] für Audio-, Vision- und multimodale Aufgaben zu verwenden.
|
||||
|
||||
> [!TIP]
|
||||
> Eine vollständige Liste der unterstützten Aufgaben und verfügbaren Parameter finden Sie in der [`pipeline`]-Dokumentation.
|
||||
<Tip>
|
||||
|
||||
Eine vollständige Liste der unterstützten Aufgaben und verfügbaren Parameter finden Sie in der [`pipeline`]-Dokumentation.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Verwendung von Pipelines
|
||||
|
||||
|
||||
@ -147,8 +147,11 @@ Zusätzliche Prüfungen betreffen PRs, die neue Modelle hinzufügen, vor allem,
|
||||
|
||||
Da die Transformers-Bibliothek in Bezug auf den Modellcode sehr eigenwillig ist und jedes Modell vollständig in einer einzigen Datei implementiert sein sollte, ohne sich auf andere Modelle zu stützen, haben wir einen Mechanismus hinzugefügt, der überprüft, ob eine Kopie des Codes einer Ebene eines bestimmten Modells mit dem Original übereinstimmt. Auf diese Weise können wir bei einer Fehlerbehebung alle anderen betroffenen Modelle sehen und entscheiden, ob wir die Änderung weitergeben oder die Kopie zerstören.
|
||||
|
||||
> [!TIP]
|
||||
> Wenn eine Datei eine vollständige Kopie einer anderen Datei ist, sollten Sie sie in der Konstante `FULL_COPIES` von `utils/check_copies.py` registrieren.
|
||||
<Tip>
|
||||
|
||||
Wenn eine Datei eine vollständige Kopie einer anderen Datei ist, sollten Sie sie in der Konstante `FULL_COPIES` von `utils/check_copies.py` registrieren.
|
||||
|
||||
</Tip>
|
||||
|
||||
Dieser Mechanismus stützt sich auf Kommentare der Form `# Kopiert von xxx`. Das `xxx` sollte den gesamten Pfad zu der Klasse der Funktion enthalten, die darunter kopiert wird. Zum Beispiel ist `RobertaSelfOutput` eine direkte Kopie der Klasse `BertSelfOutput`. Sie können also [hier](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L289) sehen, dass sie einen Kommentar hat:
|
||||
|
||||
@ -178,8 +181,11 @@ Sie können mehrere Muster durch ein Komma getrennt hinzufügen. Zum Beispiel is
|
||||
|
||||
Wenn die Reihenfolge eine Rolle spielt (weil eine der Ersetzungen mit einer vorherigen in Konflikt geraten könnte), werden die Ersetzungen von links nach rechts ausgeführt.
|
||||
|
||||
> [!TIP]
|
||||
> Wenn die Ersetzungen die Formatierung ändern (wenn Sie z.B. einen kurzen Namen durch einen sehr langen Namen ersetzen), wird die Kopie nach Anwendung des automatischen Formats überprüft.
|
||||
<Tip>
|
||||
|
||||
Wenn die Ersetzungen die Formatierung ändern (wenn Sie z.B. einen kurzen Namen durch einen sehr langen Namen ersetzen), wird die Kopie nach Anwendung des automatischen Formats überprüft.
|
||||
|
||||
</Tip>
|
||||
|
||||
Eine andere Möglichkeit, wenn es sich bei den Mustern nur um verschiedene Umschreibungen derselben Ersetzung handelt (mit einer groß- und einer kleingeschriebenen Variante), besteht darin, die Option `all-casing` hinzuzufügen. [Hier](https://github.com/huggingface/transformers/blob/15082a9dc6950ecae63a0d3e5060b2fc7f15050a/src/transformers/models/mobilebert/modeling_mobilebert.py#L1237) ist ein Beispiel in `MobileBertForSequenceClassification` mit dem Kommentar:
|
||||
|
||||
|
||||
@ -30,8 +30,11 @@ Bevor Sie Ihre Daten in einem Modell verwenden können, müssen die Daten in ein
|
||||
|
||||
Das wichtigste Werkzeug zur Verarbeitung von Textdaten ist ein [Tokenizer](main_classes/tokenizer). Ein Tokenizer zerlegt Text zunächst nach einer Reihe von Regeln in *Token*. Die Token werden in Zahlen umgewandelt, die zum Aufbau von Tensoren als Eingabe für ein Modell verwendet werden. Alle zusätzlichen Eingaben, die ein Modell benötigt, werden ebenfalls vom Tokenizer hinzugefügt.
|
||||
|
||||
> [!TIP]
|
||||
> Wenn Sie ein vortrainiertes Modell verwenden möchten, ist es wichtig, den zugehörigen vortrainierten Tokenizer zu verwenden. Dadurch wird sichergestellt, dass der Text auf die gleiche Weise aufgeteilt wird wie das Pretraining-Korpus und die gleichen entsprechenden Token-zu-Index (in der Regel als *vocab* bezeichnet) während des Pretrainings verwendet werden.
|
||||
<Tip>
|
||||
|
||||
Wenn Sie ein vortrainiertes Modell verwenden möchten, ist es wichtig, den zugehörigen vortrainierten Tokenizer zu verwenden. Dadurch wird sichergestellt, dass der Text auf die gleiche Weise aufgeteilt wird wie das Pretraining-Korpus und die gleichen entsprechenden Token-zu-Index (in der Regel als *vocab* bezeichnet) während des Pretrainings verwendet werden.
|
||||
|
||||
</Tip>
|
||||
|
||||
Laden Sie einen vortrainierten Tokenizer mit der Klasse [AutoTokenizer], um schnell loszulegen. Damit wird das *vocab* heruntergeladen, das verwendet wird, wenn ein Modell vortrainiert wird.
|
||||
|
||||
|
||||
@ -20,9 +20,12 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
Mit 🤗 Transformers können Sie sofort loslegen! Verwenden Sie die [`pipeline`] für schnelle Inferenz und laden Sie schnell ein vortrainiertes Modell und einen Tokenizer mit einer [AutoClass](./model_doc/auto), um Ihre Text-, Bild- oder Audioaufgabe zu lösen.
|
||||
|
||||
> [!TIP]
|
||||
> Alle in der Dokumentation vorgestellten Codebeispiele haben oben links einen Umschalter für PyTorch und TensorFlow. Wenn
|
||||
> nicht, wird erwartet, dass der Code für beide Backends ohne Änderungen funktioniert.
|
||||
<Tip>
|
||||
|
||||
Alle in der Dokumentation vorgestellten Codebeispiele haben oben links einen Umschalter für PyTorch und TensorFlow. Wenn
|
||||
nicht, wird erwartet, dass der Code für beide Backends ohne Änderungen funktioniert.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Pipeline
|
||||
|
||||
@ -51,8 +54,11 @@ Die [`pipeline`] unterstützt viele gängige Aufgaben:
|
||||
* Audioklassifizierung: Zuweisung eines Labels zu einem bestimmten Audiosegment.
|
||||
* Automatische Spracherkennung (ASR): Transkription von Audiodaten in Text.
|
||||
|
||||
> [!TIP]
|
||||
> Für mehr Details über die [`pipeline`] und assoziierte Aufgaben, schauen Sie in die Dokumentation [hier](./main_classes/pipelines).
|
||||
<Tip>
|
||||
|
||||
Für mehr Details über die [`pipeline`] und assoziierte Aufgaben, schauen Sie in die Dokumentation [hier](./main_classes/pipelines).
|
||||
|
||||
</Tip>
|
||||
|
||||
### Verwendung der Pipeline
|
||||
|
||||
@ -220,8 +226,11 @@ Lesen Sie das Tutorial [preprocessing](./preprocessing) für weitere Details zur
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> In der [Aufgabenzusammenfassung](./task_summary) steht, welche [AutoModel]-Klasse für welche Aufgabe zu verwenden ist.
|
||||
<Tip>
|
||||
|
||||
In der [Aufgabenzusammenfassung](./task_summary) steht, welche [AutoModel]-Klasse für welche Aufgabe zu verwenden ist.
|
||||
|
||||
</Tip>
|
||||
|
||||
Jetzt können Sie Ihren vorverarbeiteten Stapel von Eingaben direkt an das Modell übergeben. Sie müssen nur das Wörterbuch entpacken, indem Sie `**` hinzufügen:
|
||||
|
||||
@ -240,15 +249,21 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
[0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>)
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Alle 🤗 Transformers-Modelle (PyTorch oder TensorFlow) geben die Tensoren *vor* der endgültigen Aktivierungsfunktion
|
||||
> Funktion (wie Softmax) aus, da die endgültige Aktivierungsfunktion oft mit dem Verlusten verschmolzen ist.
|
||||
<Tip>
|
||||
|
||||
Alle 🤗 Transformers-Modelle (PyTorch oder TensorFlow) geben die Tensoren *vor* der endgültigen Aktivierungsfunktion
|
||||
Funktion (wie Softmax) aus, da die endgültige Aktivierungsfunktion oft mit dem Verlusten verschmolzen ist.
|
||||
|
||||
</Tip>
|
||||
|
||||
Modelle sind ein standardmäßiges [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) oder ein [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model), sodass Sie sie in Ihrer üblichen Trainingsschleife verwenden können. Um jedoch die Dinge einfacher zu machen, bietet 🤗 Transformers eine [`Trainer`]-Klasse für PyTorch, die Funktionalität für verteiltes Training, gemischte Präzision und mehr bietet. Für TensorFlow können Sie die Methode `fit` aus [Keras](https://keras.io/) verwenden. Siehe das [training tutorial](./training) für weitere Details.
|
||||
|
||||
> [!TIP]
|
||||
> Transformers-Modellausgaben sind spezielle Datenklassen, so dass ihre Attribute in einer IDE automatisch vervollständigt werden.
|
||||
> Die Modellausgänge verhalten sich auch wie ein Tupel oder ein Wörterbuch (z.B. können Sie mit einem Integer, einem Slice oder einem String indexieren), wobei die Attribute, die "None" sind, ignoriert werden.
|
||||
<Tip>
|
||||
|
||||
Transformers-Modellausgaben sind spezielle Datenklassen, so dass ihre Attribute in einer IDE automatisch vervollständigt werden.
|
||||
Die Modellausgänge verhalten sich auch wie ein Tupel oder ein Wörterbuch (z.B. können Sie mit einem Integer, einem Slice oder einem String indexieren), wobei die Attribute, die "None" sind, ignoriert werden.
|
||||
|
||||
</Tip>
|
||||
|
||||
### Modell speichern
|
||||
|
||||
|
||||
@ -98,7 +98,6 @@ python examples/pytorch/summarization/run_summarization.py \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
@ -122,7 +121,6 @@ torchrun \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
@ -144,7 +142,6 @@ python xla_spawn.py --num_cores 8 \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
@ -201,7 +198,6 @@ python examples/pytorch/summarization/run_summarization.py \
|
||||
--summary_column summary_column_name \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--overwrite_output_dir \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--predict_with_generate
|
||||
@ -229,7 +225,6 @@ python examples/pytorch/summarization/run_summarization.py \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
@ -243,8 +238,6 @@ examples/pytorch/summarization/run_summarization.py -h
|
||||
|
||||
Eine weitere hilfreiche Option, die Sie aktivieren können, ist die Wiederaufnahme des Trainings von einem früheren Kontrollpunkt aus. Auf diese Weise können Sie im Falle einer Unterbrechung Ihres Trainings dort weitermachen, wo Sie aufgehört haben, ohne von vorne beginnen zu müssen. Es gibt zwei Methoden, um das Training von einem Kontrollpunkt aus wieder aufzunehmen.
|
||||
|
||||
Die erste Methode verwendet das Argument `output_dir previous_output_dir`, um das Training ab dem letzten in `output_dir` gespeicherten Kontrollpunkt wieder aufzunehmen. In diesem Fall sollten Sie `overwrite_output_dir` entfernen:
|
||||
|
||||
```bash
|
||||
python examples/pytorch/summarization/run_summarization.py
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
@ -256,24 +249,6 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--output_dir previous_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
Die zweite Methode verwendet das Argument `Resume_from_checkpoint path_to_specific_checkpoint`, um das Training ab einem bestimmten Checkpoint-Ordner wieder aufzunehmen.
|
||||
|
||||
```bash
|
||||
python examples/pytorch/summarization/run_summarization.py
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--resume_from_checkpoint path_to_specific_checkpoint \
|
||||
--predict_with_generate
|
||||
```
|
||||
@ -305,6 +280,5 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
@ -323,11 +323,17 @@ Und führen Sie dann jeden Test mehrmals durch (standardmäßig 50):
|
||||
pytest --flake-finder --flake-runs=5 tests/test_failing_test.py
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Dieses Plugin funktioniert nicht mit dem `-n` Flag von `pytest-xdist`.
|
||||
<Tip>
|
||||
|
||||
> [!TIP]
|
||||
> Es gibt noch ein anderes Plugin `pytest-repeat`, aber es funktioniert nicht mit `unittest`.
|
||||
Dieses Plugin funktioniert nicht mit dem `-n` Flag von `pytest-xdist`.
|
||||
|
||||
</Tip>
|
||||
|
||||
<Tip>
|
||||
|
||||
Es gibt noch ein anderes Plugin `pytest-repeat`, aber es funktioniert nicht mit `unittest`.
|
||||
|
||||
</Tip>
|
||||
|
||||
#### Run tests in a random order
|
||||
|
||||
@ -796,14 +802,20 @@ keine Daten dort hinterlassen haben.
|
||||
- `after=True`: das temporäre Verzeichnis wird immer am Ende des Tests gelöscht.
|
||||
- `after=False`: das temporäre Verzeichnis wird am Ende des Tests immer beibehalten.
|
||||
|
||||
> [!TIP]
|
||||
> Um das Äquivalent von `rm -r` sicher ausführen zu können, sind nur Unterverzeichnisse des Projektarchivs checkout erlaubt, wenn
|
||||
> ein explizites `tmp_dir` verwendet wird, so dass nicht versehentlich ein `/tmp` oder ein ähnlich wichtiger Teil des Dateisystems vernichtet wird.
|
||||
> d.h. geben Sie bitte immer Pfade an, die mit `./` beginnen.
|
||||
<Tip>
|
||||
|
||||
> [!TIP]
|
||||
> Jeder Test kann mehrere temporäre Verzeichnisse registrieren, die alle automatisch entfernt werden, sofern nicht anders gewünscht.
|
||||
> anders.
|
||||
Um das Äquivalent von `rm -r` sicher ausführen zu können, sind nur Unterverzeichnisse des Projektarchivs checkout erlaubt, wenn
|
||||
ein explizites `tmp_dir` verwendet wird, so dass nicht versehentlich ein `/tmp` oder ein ähnlich wichtiger Teil des Dateisystems vernichtet wird.
|
||||
d.h. geben Sie bitte immer Pfade an, die mit `./` beginnen.
|
||||
|
||||
</Tip>
|
||||
|
||||
<Tip>
|
||||
|
||||
Jeder Test kann mehrere temporäre Verzeichnisse registrieren, die alle automatisch entfernt werden, sofern nicht anders gewünscht.
|
||||
anders.
|
||||
|
||||
</Tip>
|
||||
|
||||
### Temporäre Überschreibung von sys.path
|
||||
|
||||
|
||||
@ -87,9 +87,12 @@ Beginnen Sie mit dem Laden Ihres Modells und geben Sie die Anzahl der erwarteten
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased", num_labels=5)
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Es wird eine Warnung angezeigt, dass einige der trainierten Parameter nicht verwendet werden und einige Parameter zufällig
|
||||
> initialisiert werden. Machen Sie sich keine Sorgen, das ist völlig normal! Der vorher trainierte Kopf des BERT-Modells wird verworfen und durch einen zufällig initialisierten Klassifikationskopf ersetzt. Sie werden diesen neuen Modellkopf in Ihrer Sequenzklassifizierungsaufgabe feinabstimmen, indem Sie das Wissen des vortrainierten Modells auf ihn übertragen.
|
||||
<Tip>
|
||||
|
||||
Es wird eine Warnung angezeigt, dass einige der trainierten Parameter nicht verwendet werden und einige Parameter zufällig
|
||||
initialisiert werden. Machen Sie sich keine Sorgen, das ist völlig normal! Der vorher trainierte Kopf des BERT-Modells wird verworfen und durch einen zufällig initialisierten Klassifikationskopf ersetzt. Sie werden diesen neuen Modellkopf in Ihrer Sequenzklassifizierungsaufgabe feinabstimmen, indem Sie das Wissen des vortrainierten Modells auf ihn übertragen.
|
||||
|
||||
</Tip>
|
||||
|
||||
### Hyperparameter für das Training
|
||||
|
||||
@ -245,8 +248,11 @@ Geben Sie schließlich `device` an, um einen Grafikprozessor zu verwenden, wenn
|
||||
>>> model.to(device)
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Holen Sie sich mit einem gehosteten Notebook wie [Colaboratory](https://colab.research.google.com/) oder [SageMaker StudioLab](https://studiolab.sagemaker.aws/) kostenlosen Zugang zu einem Cloud-GPU, wenn Sie noch keinen haben.
|
||||
<Tip>
|
||||
|
||||
Holen Sie sich mit einem gehosteten Notebook wie [Colaboratory](https://colab.research.google.com/) oder [SageMaker StudioLab](https://studiolab.sagemaker.aws/) kostenlosen Zugang zu einem Cloud-GPU, wenn Sie noch keinen haben.
|
||||
|
||||
</Tip>
|
||||
|
||||
Großartig, Sie sind bereit für das Training! 🥳
|
||||
|
||||
|
||||
@ -216,6 +216,11 @@
|
||||
- local: quantization/contribute
|
||||
title: Contribute
|
||||
title: Quantization
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: kernel_doc/overview
|
||||
title: Kernels in transformers
|
||||
title: Kernels
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: serialization
|
||||
@ -279,6 +284,8 @@
|
||||
title: Knowledge Distillation for Computer Vision
|
||||
- local: tasks/keypoint_matching
|
||||
title: Keypoint matching
|
||||
- local: tasks/training_vision_backbone
|
||||
title: Training vision models using Backbone API
|
||||
title: Computer vision
|
||||
- sections:
|
||||
- local: tasks/image_captioning
|
||||
@ -342,8 +349,6 @@
|
||||
title: Models
|
||||
- local: main_classes/text_generation
|
||||
title: Text Generation
|
||||
- local: main_classes/onnx
|
||||
title: ONNX
|
||||
- local: main_classes/optimizer_schedules
|
||||
title: Optimization
|
||||
- local: main_classes/output
|
||||
@ -370,6 +375,8 @@
|
||||
title: Image Processor
|
||||
- local: main_classes/video_processor
|
||||
title: Video Processor
|
||||
- local: main_classes/kernels
|
||||
title: Kernels
|
||||
title: Main Classes
|
||||
- sections:
|
||||
- sections:
|
||||
@ -539,8 +546,6 @@
|
||||
title: Helium
|
||||
- local: model_doc/herbert
|
||||
title: HerBERT
|
||||
- local: model_doc/hgnet_v2
|
||||
title: HGNet-V2
|
||||
- local: model_doc/hunyuan_v1_dense
|
||||
title: HunYuanDenseV1
|
||||
- local: model_doc/hunyuan_v1_moe
|
||||
@ -557,6 +562,8 @@
|
||||
title: LED
|
||||
- local: model_doc/lfm2
|
||||
title: LFM2
|
||||
- local: model_doc/lfm2_moe
|
||||
title: LFM2Moe
|
||||
- local: model_doc/llama
|
||||
title: LLaMA
|
||||
- local: model_doc/llama2
|
||||
@ -1019,6 +1026,8 @@
|
||||
title: CLIPSeg
|
||||
- local: model_doc/clvp
|
||||
title: CLVP
|
||||
- local: model_doc/cwm
|
||||
title: Code World Model (CWM)
|
||||
- local: model_doc/cohere2_vision
|
||||
title: Cohere2Vision
|
||||
- local: model_doc/colpali
|
||||
@ -1179,6 +1188,8 @@
|
||||
title: TVP
|
||||
- local: model_doc/udop
|
||||
title: UDOP
|
||||
- local: model_doc/video_llama_3
|
||||
title: VideoLlama3
|
||||
- local: model_doc/video_llava
|
||||
title: VideoLlava
|
||||
- local: model_doc/vilt
|
||||
|
||||
@ -55,6 +55,7 @@ deepspeed --num_gpus 2 trainer-program.py ...
|
||||
</hfoptions>
|
||||
|
||||
## Order of accelerators
|
||||
|
||||
To select specific accelerators to use and their order, use the environment variable appropriate for your hardware. This is often set on the command line for each run, but can also be added to your `~/.bashrc` or other startup config file.
|
||||
|
||||
For example, if there are 4 accelerators (0, 1, 2, 3) and you only want to run accelerators 0 and 2:
|
||||
|
||||
@ -51,7 +51,7 @@ This section describes how the model and configuration classes interact and the
|
||||
|
||||
### Model and configuration
|
||||
|
||||
All Transformers' models inherit from a base [`PreTrainedModel`] and [`PretrainedConfig`] class. The configuration is the models blueprint.
|
||||
All Transformers' models inherit from a base [`PreTrainedModel`] and [`PreTrainedConfig`] class. The configuration is the models blueprint.
|
||||
|
||||
There is never more than two levels of abstraction for any model to keep the code readable. The example model here, BrandNewLlama, inherits from `BrandNewLlamaPreTrainedModel` and [`PreTrainedModel`]. It is important that a new model only depends on [`PreTrainedModel`] so that it can use the [`~PreTrainedModel.from_pretrained`] and [`~PreTrainedModel.save_pretrained`] methods.
|
||||
|
||||
@ -66,9 +66,9 @@ model = BrandNewLlamaModel.from_pretrained("username/brand_new_llama")
|
||||
model.config
|
||||
```
|
||||
|
||||
[`PretrainedConfig`] provides the [`~PretrainedConfig.from_pretrained`] and [`~PretrainedConfig.save_pretrained`] methods.
|
||||
[`PreTrainedConfig`] provides the [`~PreTrainedConfig.from_pretrained`] and [`~PreTrainedConfig.save_pretrained`] methods.
|
||||
|
||||
When you use [`PreTrainedModel.save_pretrained`], it automatically calls [`PretrainedConfig.save_pretrained`] so that both the model and configuration are saved together.
|
||||
When you use [`PreTrainedModel.save_pretrained`], it automatically calls [`PreTrainedConfig.save_pretrained`] so that both the model and configuration are saved together.
|
||||
|
||||
A model is saved to a `model.safetensors` file and a configuration is saved to a `config.json` file.
|
||||
|
||||
|
||||
@ -292,7 +292,7 @@ The `@auto_docstring` decorator automatically generates docstrings by:
|
||||
|
||||
8. Unrolling kwargs typed with the unpack operator. For specific methods (defined in `UNROLL_KWARGS_METHODS`) or classes (defined in `UNROLL_KWARGS_CLASSES`), the decorator processes `**kwargs` parameters that are typed with `Unpack[KwargsTypedDict]`. It extracts the documentations from the `TypedDict` and adds each parameter to the function's docstring.
|
||||
|
||||
Currently only supported for [`FastImageProcessorKwargs`].
|
||||
Currently only supported for [`ImagesKwargs`].
|
||||
|
||||
## Best practices
|
||||
|
||||
|
||||
@ -22,7 +22,7 @@ Higher-level computer visions tasks, such as object detection or image segmentat
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Backbone.png"/>
|
||||
</div>
|
||||
|
||||
Load a backbone with [`~PretrainedConfig.from_pretrained`] and use the `out_indices` parameter to determine which layer, given by the index, to extract a feature map from.
|
||||
Load a backbone with [`~PreTrainedConfig.from_pretrained`] and use the `out_indices` parameter to determine which layer, given by the index, to extract a feature map from.
|
||||
|
||||
```py
|
||||
from transformers import AutoBackbone
|
||||
@ -46,7 +46,7 @@ There are two ways to load a Transformers backbone, [`AutoBackbone`] and a model
|
||||
<hfoptions id="backbone-classes">
|
||||
<hfoption id="AutoBackbone">
|
||||
|
||||
The [AutoClass](./model_doc/auto) API automatically loads a pretrained vision model with [`~PretrainedConfig.from_pretrained`] as a backbone if it's supported.
|
||||
The [AutoClass](./model_doc/auto) API automatically loads a pretrained vision model with [`~PreTrainedConfig.from_pretrained`] as a backbone if it's supported.
|
||||
|
||||
Set the `out_indices` parameter to the layer you'd like to get the feature map from. If you know the name of the layer, you could also use `out_features`. These parameters can be used interchangeably, but if you use both, make sure they refer to the same layer.
|
||||
|
||||
|
||||
@ -41,13 +41,13 @@ $$
|
||||
|
||||
The query (`Q`), key (`K`), and value (`V`) matrices are projections from the input embeddings of shape `(b, h, T, d_head)`.
|
||||
|
||||
For causal attention, the mask prevents the model from attending to future tokens. Once a token is processed, its representation never changes with respect to future tokens, which means \\( K_{\text{past}} \\) and \\( V_{\text{past}} \\) can be cached and reused to compute the last token's representation.
|
||||
For causal attention, the mask prevents the model from attending to future tokens. Once a token is processed, its representation never changes with respect to future tokens, which means $ K_{\text{past}} $ and $ V_{\text{past}} $ can be cached and reused to compute the last token's representation.
|
||||
|
||||
$$
|
||||
\text{Attention}(q_t, [\underbrace{k_1, k_2, \dots, k_{t-1}}_{\text{cached}}, k_{t}], [\underbrace{v_1, v_2, \dots, v_{t-1}}_{\text{cached}}, v_{t}])
|
||||
$$
|
||||
|
||||
At inference time, you only need the last token's query to compute the representation \\( x_t \\) that predicts the next token \\( t+1 \\). At each step, the new key and value vectors are **stored** in the cache and **appended** to the past keys and values.
|
||||
At inference time, you only need the last token's query to compute the representation $ x_t $ that predicts the next token $ t+1 $. At each step, the new key and value vectors are **stored** in the cache and **appended** to the past keys and values.
|
||||
|
||||
$$
|
||||
K_{\text{cache}} \leftarrow \text{concat}(K_{\text{past}}, k_t), \quad V_{\text{cache}} \leftarrow \text{concat}(V_{\text{past}}, v_t)
|
||||
@ -59,7 +59,7 @@ Refer to the table below to compare how caching improves efficiency.
|
||||
|
||||
| without caching | with caching |
|
||||
|---|---|
|
||||
| for each step, recompute all previous `K` and `V` | for each step, only compute current `K` and `V`
|
||||
| for each step, recompute all previous `K` and `V` | for each step, only compute current `K` and `V` |
|
||||
| attention cost per step is **quadratic** with sequence length | attention cost per step is **linear** with sequence length (memory grows linearly, but compute/token remains low) |
|
||||
|
||||
## Cache class
|
||||
@ -98,9 +98,10 @@ The example below demonstrates how to create a generation loop with [`DynamicCac
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache, infer_device
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
||||
from accelerate import Accelerator
|
||||
|
||||
device = f"{infer_device()}:0"
|
||||
device = Accelerator().device
|
||||
|
||||
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, dtype=torch.bfloat16, device_map=device)
|
||||
@ -143,9 +144,10 @@ The generation loop usually takes care of the cache position, but if you're writ
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache, infer_device
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
||||
from accelerate import Accelerator
|
||||
|
||||
device = f"{infer_device()}:0"
|
||||
device = Accelerator().device
|
||||
|
||||
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, dtype=torch.bfloat16, device_map=device)
|
||||
@ -156,31 +158,3 @@ inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, ret
|
||||
generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=10)
|
||||
|
||||
```
|
||||
|
||||
## Legacy cache format
|
||||
|
||||
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format is dynamic because it grows as text is generated, similar to [`DynamicCache`].
|
||||
|
||||
The legacy format is essentially the same data structure but organized differently.
|
||||
|
||||
- It's a tuple of tuples, where each inner tuple contains the key and value tensors for a layer.
|
||||
- The tensors have the same shape `[batch_size, num_heads, seq_len, head_dim]`.
|
||||
- The format is less flexible and doesn't support features like quantization or offloading.
|
||||
|
||||
If your project depends on this legacy format, we recommend to convert to [`DynamicCache`] with [`~DynamicCache.from_legacy_cache`]. Note that legacy cache format is deprecated and not used anymore in `Transformers`. You can convert back to tuple format with [`DynamicCache.to_legacy_cache`] functions, which is helpful if you have custom logic for manipulating a cache in a specific format.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", dtype=torch.float16, device_map="auto")
|
||||
inputs = tokenizer("Hello, my name is", return_tensors="pt").to(model.device)
|
||||
|
||||
# `return_dict_in_generate=True` is required to return the cache and `return_legacy_cache` forces the returned cache
|
||||
# in the legacy format
|
||||
generation_outputs = model.generate(**inputs, return_dict_in_generate=True, return_legacy_cache=True, max_new_tokens=5)
|
||||
|
||||
cache = DynamicCache.from_legacy_cache(generation_outputs.past_key_values)
|
||||
legacy_format_cache = cache.to_legacy_cache()
|
||||
```
|
||||
|
||||
@ -6,13 +6,13 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
This page regroups resources around 🤗 Transformers developed by the community.
|
||||
|
||||
## Community resources:
|
||||
## Community resources
|
||||
|
||||
| Resource | Description | Author |
|
||||
|:----------|:-------------|------:|
|
||||
| [Hugging Face Transformers Glossary Flashcards](https://www.darigovresearch.com/huggingface-transformers-glossary-flashcards) | A set of flashcards based on the [Transformers Docs Glossary](glossary) that has been put into a form which can be easily learned/revised using [Anki](https://apps.ankiweb.net/) an open source, cross platform app specifically designed for long term knowledge retention. See this [Introductory video on how to use the flashcards](https://www.youtube.com/watch?v=Dji_h7PILrw). | [Darigov Research](https://www.darigovresearch.com/) |
|
||||
|
||||
## Community notebooks:
|
||||
## Community notebooks
|
||||
|
||||
| Notebook | Description | Author | |
|
||||
|:----------|:-------------|:-------------|------:|
|
||||
|
||||
@ -25,12 +25,12 @@ This guide will show you how to customize a ResNet model, enable [AutoClass](./m
|
||||
|
||||
## Configuration
|
||||
|
||||
A configuration, given by the base [`PretrainedConfig`] class, contains all the necessary information to build a model. This is where you'll configure the attributes of the custom ResNet model. Different attributes gives different ResNet model types.
|
||||
A configuration, given by the base [`PreTrainedConfig`] class, contains all the necessary information to build a model. This is where you'll configure the attributes of the custom ResNet model. Different attributes gives different ResNet model types.
|
||||
|
||||
The main rules for customizing a configuration are:
|
||||
|
||||
1. A custom configuration must subclass [`PretrainedConfig`]. This ensures a custom model has all the functionality of a Transformers' model such as [`~PretrainedConfig.from_pretrained`], [`~PretrainedConfig.save_pretrained`], and [`~PretrainedConfig.push_to_hub`].
|
||||
2. The [`PretrainedConfig`] `__init__` must accept any `kwargs` and they must be passed to the superclass `__init__`. [`PretrainedConfig`] has more fields than the ones set in your custom configuration, so when you load a configuration with [`~PretrainedConfig.from_pretrained`], those fields need to be accepted by your configuration and passed to the superclass.
|
||||
1. A custom configuration must subclass [`PreTrainedConfig`]. This ensures a custom model has all the functionality of a Transformers' model such as [`~PreTrainedConfig.from_pretrained`], [`~PreTrainedConfig.save_pretrained`], and [`~PreTrainedConfig.push_to_hub`].
|
||||
2. The [`PreTrainedConfig`] `__init__` must accept any `kwargs` and they must be passed to the superclass `__init__`. [`PreTrainedConfig`] has more fields than the ones set in your custom configuration, so when you load a configuration with [`~PreTrainedConfig.from_pretrained`], those fields need to be accepted by your configuration and passed to the superclass.
|
||||
|
||||
> [!TIP]
|
||||
> It is useful to check the validity of some of the parameters. In the example below, a check is implemented to ensure `block_type` and `stem_type` belong to one of the predefined values.
|
||||
@ -38,10 +38,10 @@ The main rules for customizing a configuration are:
|
||||
> Add `model_type` to the configuration class to enable [AutoClass](./models#autoclass) support.
|
||||
|
||||
```py
|
||||
from transformers import PretrainedConfig
|
||||
from transformers import PreTrainedConfig
|
||||
from typing import List
|
||||
|
||||
class ResnetConfig(PretrainedConfig):
|
||||
class ResnetConfig(PreTrainedConfig):
|
||||
model_type = "resnet"
|
||||
|
||||
def __init__(
|
||||
@ -74,7 +74,7 @@ class ResnetConfig(PretrainedConfig):
|
||||
super().__init__(**kwargs)
|
||||
```
|
||||
|
||||
Save the configuration to a JSON file in your custom model folder, `custom-resnet`, with [`~PretrainedConfig.save_pretrained`].
|
||||
Save the configuration to a JSON file in your custom model folder, `custom-resnet`, with [`~PreTrainedConfig.save_pretrained`].
|
||||
|
||||
```py
|
||||
resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True)
|
||||
@ -83,7 +83,7 @@ resnet50d_config.save_pretrained("custom-resnet")
|
||||
|
||||
## Model
|
||||
|
||||
With the custom ResNet configuration, you can now create and customize the model. The model subclasses the base [`PreTrainedModel`] class. Like [`PretrainedConfig`], inheriting from [`PreTrainedModel`] and initializing the superclass with the configuration extends Transformers' functionalities such as saving and loading to the custom model.
|
||||
With the custom ResNet configuration, you can now create and customize the model. The model subclasses the base [`PreTrainedModel`] class. Like [`PreTrainedConfig`], inheriting from [`PreTrainedModel`] and initializing the superclass with the configuration extends Transformers' functionalities such as saving and loading to the custom model.
|
||||
|
||||
Transformers' models follow the convention of accepting a `config` object in the `__init__` method. This passes the entire `config` to the model sublayers, instead of breaking the `config` object into multiple arguments that are individually passed to the sublayers.
|
||||
|
||||
@ -235,7 +235,7 @@ from resnet_model.configuration_resnet import ResnetConfig
|
||||
from resnet_model.modeling_resnet import ResnetModel, ResnetModelForImageClassification
|
||||
```
|
||||
|
||||
Copy the code from the model and configuration files. To make sure the AutoClass objects are saved with [`~PreTrainedModel.save_pretrained`], call the [`~PretrainedConfig.register_for_auto_class`] method. This modifies the configuration JSON file to include the AutoClass objects and mapping.
|
||||
Copy the code from the model and configuration files. To make sure the AutoClass objects are saved with [`~PreTrainedModel.save_pretrained`], call the [`~PreTrainedConfig.register_for_auto_class`] method. This modifies the configuration JSON file to include the AutoClass objects and mapping.
|
||||
|
||||
For a model, pick the appropriate `AutoModelFor` class based on the task.
|
||||
|
||||
|
||||
@ -593,7 +593,7 @@ To deploy DeepSpeed on multiple GPUs, add `--num_gpus`. You don't need to add `-
|
||||
deepspeed --num_gpus=2 examples/pytorch/translation/run_translation.py \
|
||||
--deepspeed tests/deepspeed/ds_config_zero3.json \
|
||||
--model_name_or_path google-t5/t5-small --per_device_train_batch_size 1 \
|
||||
--output_dir output_dir --overwrite_output_dir --fp16 \
|
||||
--output_dir output_dir --fp16 \
|
||||
--do_train --max_train_samples 500 --num_train_epochs 1 \
|
||||
--dataset_name wmt16 --dataset_config "ro-en" \
|
||||
--source_lang en --target_lang ro
|
||||
@ -616,7 +616,7 @@ To deploy DeepSpeed on a single GPU, add `--num_gpus`. You don't need to add `--
|
||||
deepspeed --num_gpus=1 examples/pytorch/translation/run_translation.py \
|
||||
--deepspeed tests/deepspeed/ds_config_zero2.json \
|
||||
--model_name_or_path google-t5/t5-small --per_device_train_batch_size 1 \
|
||||
--output_dir output_dir --overwrite_output_dir --fp16 \
|
||||
--output_dir output_dir --fp16 \
|
||||
--do_train --max_train_samples 500 --num_train_epochs 1 \
|
||||
--dataset_name wmt16 --dataset_config "ro-en" \
|
||||
--source_lang en --target_lang ro
|
||||
|
||||
@ -16,44 +16,17 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# ExecuTorch
|
||||
|
||||
[ExecuTorch](https://pytorch.org/executorch/stable/index.html) is a platform that enables PyTorch training and inference programs to be run on mobile and edge devices. It is powered by [torch.compile](https://pytorch.org/docs/stable/torch.compiler.html) and [torch.export](https://pytorch.org/docs/main/export.html) for performance and deployment.
|
||||
[ExecuTorch](https://pytorch.org/executorch/stable/index.html) runs PyTorch models on mobile and edge devices. Export your Transformers models to the ExecuTorch format with [Optimum ExecuTorch](https://github.com/huggingface/optimum-executorch) with the command below.
|
||||
|
||||
You can use ExecuTorch with Transformers with [torch.export](https://pytorch.org/docs/main/export.html). The [`~transformers.convert_and_export_with_cache`] method converts a [`PreTrainedModel`] into an exportable module. Under the hood, it uses [torch.export](https://pytorch.org/docs/main/export.html) to export the model, ensuring compatibility with ExecuTorch.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import LlamaForCausalLM, AutoTokenizer, GenerationConfig
|
||||
from transformers.integrations.executorch import(
|
||||
TorchExportableModuleWithStaticCache,
|
||||
convert_and_export_with_cache
|
||||
)
|
||||
|
||||
generation_config = GenerationConfig(
|
||||
use_cache=True,
|
||||
cache_implementation="static",
|
||||
cache_config={
|
||||
"batch_size": 1,
|
||||
"max_cache_len": 20,
|
||||
}
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B", pad_token="</s>", padding_side="right")
|
||||
model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B", device_map="auto", dtype=torch.bfloat16, attn_implementation="sdpa", generation_config=generation_config)
|
||||
|
||||
exported_program = convert_and_export_with_cache(model)
|
||||
```
|
||||
|
||||
The exported PyTorch model is now ready to be used with ExecuTorch. Wrap the model with [`~transformers.TorchExportableModuleWithStaticCache`] to generate text.
|
||||
|
||||
```py
|
||||
prompts = ["Simply put, the theory of relativity states that "]
|
||||
prompt_tokens = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
|
||||
prompt_token_ids = prompt_tokens["input_ids"]
|
||||
|
||||
generated_ids = TorchExportableModuleWithStaticCache.generate(
|
||||
exported_program=exported_program, prompt_token_ids=prompt_token_ids, max_new_tokens=20,
|
||||
)
|
||||
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||||
print(generated_text)
|
||||
['Simply put, the theory of relativity states that 1) the speed of light is the']
|
||||
optimum-cli export executorch \
|
||||
--model "HuggingFaceTB/SmolLM2-135M-Instruct" \
|
||||
--task "text-generation" \
|
||||
--recipe "xnnpack" \
|
||||
--use_custom_sdpa \
|
||||
--use_custom_kv_cache \
|
||||
--qlinear 8da4w \
|
||||
--qembedding 8w \
|
||||
--output_dir="hf_smollm2"
|
||||
```
|
||||
Run `optimum-cli export executorch --help` to see all export options. For detailed export instructions, check the [README](optimum/exporters/executorch/README.md).
|
||||
|
||||
@ -32,9 +32,10 @@ Greedy search works well for tasks with relatively short outputs where creativit
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from accelerate import Accelerator
|
||||
|
||||
device = infer_device()
|
||||
device = Accelerator().device
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
||||
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to(device)
|
||||
@ -54,9 +55,10 @@ Enable multinomial sampling with `do_sample=True` and `num_beams=1`.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from accelerate import Accelerator
|
||||
|
||||
device = infer_device()
|
||||
device = Accelerator().device
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
||||
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to(device)
|
||||
@ -79,9 +81,10 @@ Enable beam search with the `num_beams` parameter (should be greater than 1 othe
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from accelerate import Accelerator
|
||||
|
||||
device = infer_device()
|
||||
device = Accelerator().device
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
||||
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to(device)
|
||||
@ -166,9 +169,10 @@ Enable prompt lookup decoding with the `prompt_lookup_num_tokens` parameter.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from accelerate import Accelerator
|
||||
|
||||
device = infer_device()
|
||||
device = Accelerator().device
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-1.7B")
|
||||
model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-1.7B", dtype=torch.float16).to(device)
|
||||
|
||||
@ -296,9 +296,12 @@ These labels are different according to the model head, for example:
|
||||
- For automatic speech recognition models, ([`Wav2Vec2ForCTC`]), the model expects a tensor of dimension `(batch_size,
|
||||
target_length)` with each value corresponding to the expected label of each individual token.
|
||||
|
||||
> [!TIP]
|
||||
> Each model's labels may be different, so be sure to always check the documentation of each model for more information
|
||||
> about their specific labels!
|
||||
<Tip>
|
||||
|
||||
Each model's labels may be different, so be sure to always check the documentation of each model for more information
|
||||
about their specific labels!
|
||||
|
||||
</Tip>
|
||||
|
||||
The base models ([`BertModel`]) do not accept labels, as these are the base transformer models, simply outputting
|
||||
features.
|
||||
|
||||
@ -15,15 +15,12 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Hyperparameter search
|
||||
|
||||
Hyperparameter search discovers an optimal set of hyperparameters that produces the best model performance. [`Trainer`] supports several hyperparameter search backends - [Optuna](https://optuna.readthedocs.io/en/stable/index.html), [SigOpt](https://docs.sigopt.com/), [Weights & Biases](https://docs.wandb.ai/), [Ray Tune](https://docs.ray.io/en/latest/tune/index.html) - through [`~Trainer.hyperparameter_search`] to optimize an objective or even multiple objectives.
|
||||
Hyperparameter search discovers an optimal set of hyperparameters that produces the best model performance. [`Trainer`] supports several hyperparameter search backends - [Optuna](https://optuna.readthedocs.io/en/stable/index.html), [Weights & Biases](https://docs.wandb.ai/), [Ray Tune](https://docs.ray.io/en/latest/tune/index.html) - through [`~Trainer.hyperparameter_search`] to optimize an objective or even multiple objectives.
|
||||
|
||||
This guide will go over how to set up a hyperparameter search for each of the backends.
|
||||
|
||||
> [!WARNING]
|
||||
> [SigOpt](https://github.com/sigopt/sigopt-server) is in public archive mode and is no longer actively maintained. Try using Optuna, Weights & Biases or Ray Tune instead.
|
||||
|
||||
```bash
|
||||
pip install optuna/sigopt/wandb/ray[tune]
|
||||
pip install optuna/wandb/ray[tune]
|
||||
```
|
||||
|
||||
To use [`~Trainer.hyperparameter_search`], you need to create a `model_init` function. This function includes basic model information (arguments and configuration) because it needs to be reinitialized for each search trial in the run.
|
||||
@ -40,7 +37,6 @@ def model_init(trial):
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
```
|
||||
|
||||
@ -109,31 +105,7 @@ best_trials = trainer.hyperparameter_search(
|
||||
n_trials=20,
|
||||
compute_objective=compute_objective,
|
||||
)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="SigOpt">
|
||||
|
||||
[SigOpt](https://docs.sigopt.com/ai-module-api-references/api_reference/objects/object_parameter) optimizes double, integer, and categorical parameters.
|
||||
|
||||
```py
|
||||
def sigopt_hp_space(trial):
|
||||
return [
|
||||
{"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"},
|
||||
{
|
||||
"categorical_values": ["16", "32", "64", "128"],
|
||||
"name": "per_device_train_batch_size",
|
||||
"type": "categorical",
|
||||
},
|
||||
]
|
||||
|
||||
best_trials = trainer.hyperparameter_search(
|
||||
direction=["minimize", "maximize"],
|
||||
backend="sigopt",
|
||||
hp_space=sigopt_hp_space,
|
||||
n_trials=20,
|
||||
compute_objective=compute_objective,
|
||||
)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
@ -166,4 +138,4 @@ best_trials = trainer.hyperparameter_search(
|
||||
|
||||
## Distributed Data Parallel
|
||||
|
||||
[`Trainer`] only supports hyperparameter search for distributed data parallel (DDP) on the Optuna and SigOpt backends. Only the rank-zero process is used to generate the search trial, and the resulting parameters are passed along to the other ranks.
|
||||
[`Trainer`] only supports hyperparameter search for distributed data parallel (DDP) on the Optuna backends. Only the rank-zero process is used to generate the search trial, and the resulting parameters are passed along to the other ranks.
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user