mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-29 16:04:35 +08:00
Compare commits
226 Commits
trigger_vi
...
next-token
| Author | SHA1 | Date | |
|---|---|---|---|
| ad7bc7ba0c | |||
| badc71b9f6 | |||
| 565a0052ed | |||
| defeb04299 | |||
| 593276fe1e | |||
| 3aab6e95cb | |||
| fb82a98717 | |||
| cea254c909 | |||
| baddbdd24b | |||
| a974e3b4e1 | |||
| b1eae943a2 | |||
| 5f49e180a6 | |||
| 3b3ebcec40 | |||
| f5307272f5 | |||
| a092f6babf | |||
| be7aa3210b | |||
| 587c1b0ed1 | |||
| b73faef52f | |||
| 538e847c06 | |||
| 4f7b0ff8d1 | |||
| 9c50576860 | |||
| 0f5a8243c4 | |||
| f85fd90407 | |||
| b9f8f863d9 | |||
| 07dd6b2495 | |||
| 3142bd8592 | |||
| 10ae443ec0 | |||
| 80902ae9b1 | |||
| 008e0d87c5 | |||
| c769483188 | |||
| 55f2333366 | |||
| 1a5be2f5c0 | |||
| 19fdb75cf0 | |||
| b0735dc0c1 | |||
| 9e1017b479 | |||
| b5ececb900 | |||
| c4e71e8fff | |||
| 706b00928f | |||
| 07848a8405 | |||
| cd0f3ce73b | |||
| ba6d72226d | |||
| 701caef704 | |||
| 0a4e8e2855 | |||
| 63964b7c67 | |||
| 8b03c8eaf2 | |||
| eb74cf977b | |||
| 98328fd9a1 | |||
| 78079abeff | |||
| 7a9b071bfd | |||
| b5b76b5561 | |||
| bff32678cc | |||
| 9f0402bc4d | |||
| d03a3ca692 | |||
| a5a0c7b888 | |||
| cba279f46c | |||
| 6e3063422c | |||
| 4a03044ddb | |||
| d0c9c66d1c | |||
| 31f8a0fe8a | |||
| 36f97ae15b | |||
| 33d23c39ed | |||
| dffb118013 | |||
| e0aad278fe | |||
| e64ed0304c | |||
| 53fb245eb6 | |||
| d5f992f5e6 | |||
| 1ed19360b1 | |||
| bb567d85a4 | |||
| 3c289e2104 | |||
| f5d45d89c4 | |||
| 896833c183 | |||
| a63bc17416 | |||
| 54cd86708d | |||
| 135163e9c5 | |||
| a6b51e7341 | |||
| 3e960e032d | |||
| 9eb0a37c9e | |||
| 38f9c5b15b | |||
| 11b670a282 | |||
| b01984a51d | |||
| 2b585419b4 | |||
| b59386dc0a | |||
| 211f2b0875 | |||
| 73286d8e29 | |||
| d95c864a25 | |||
| 9895819514 | |||
| dfbee79ca3 | |||
| 1234683309 | |||
| 03a4c024dc | |||
| dcaf47dde5 | |||
| 163138a911 | |||
| f8630c778c | |||
| aa02a5d902 | |||
| b26157d64c | |||
| b369a65480 | |||
| 28d3148b07 | |||
| 7b7bb8df97 | |||
| 5c13cc0f94 | |||
| 71009e4b68 | |||
| d6c34cdcd0 | |||
| ae3e4e2d97 | |||
| 174684a9b6 | |||
| e4decee9c0 | |||
| ddf67d2d73 | |||
| 9a962dd9ed | |||
| 101b3fa4ea | |||
| a21f11fca2 | |||
| 4542086db7 | |||
| 6829936ee0 | |||
| e288ee00d8 | |||
| 711d78d104 | |||
| feec294dea | |||
| cb513e35f9 | |||
| f4ef41c45e | |||
| f834d368f6 | |||
| 2edb0e4b4d | |||
| 390f153469 | |||
| 2a79471318 | |||
| 9661896083 | |||
| 1c2f36b480 | |||
| b591d925be | |||
| 3f0b7d0fac | |||
| 9cde2f5d42 | |||
| 856f034f45 | |||
| bb3c6426d8 | |||
| 2ad152f84c | |||
| de70c8426e | |||
| 8ea61c4530 | |||
| d34e21e7dd | |||
| 183fb3637c | |||
| f022bf9322 | |||
| 0a52bd2403 | |||
| 555715f418 | |||
| 7a611f0afd | |||
| 3bd1c20149 | |||
| dbc4b91db4 | |||
| 46a4b7c909 | |||
| 9ecee14378 | |||
| f524439cc5 | |||
| 6e738411e1 | |||
| 9c500015c5 | |||
| 6f9da7649f | |||
| 7c9b0ca08c | |||
| 04282a9ef5 | |||
| aef12349b6 | |||
| 9644acb7cb | |||
| 7d93f93f83 | |||
| 47f8578d96 | |||
| 6c6302817d | |||
| 003deb16f1 | |||
| dbb9813dff | |||
| 656e2eab3f | |||
| 6bb6821d93 | |||
| 40a493c7ed | |||
| ea29f61ed9 | |||
| a4389494c7 | |||
| 0ba95564b7 | |||
| d69945e5fc | |||
| 7b5e327c6e | |||
| 120935234f | |||
| 91f6fa00f4 | |||
| 5036ec8872 | |||
| 7f28da2850 | |||
| 01ad9f4b49 | |||
| 3ab47b6ce3 | |||
| 1e921a3a9c | |||
| 57a79f51b2 | |||
| 44fa04ae8d | |||
| 34c1e29cdd | |||
| 0f77ca72ca | |||
| 27ef46e846 | |||
| fe9426f12d | |||
| 7caa57e85e | |||
| b11b28cc4e | |||
| 0e0e5c1044 | |||
| 955e61b0da | |||
| 0173a99e73 | |||
| e5a48785d9 | |||
| 4005e30c80 | |||
| aa27fa75cd | |||
| e021bf6bf8 | |||
| ef27b2bc22 | |||
| 4a2decd192 | |||
| 935bbbc711 | |||
| 1b00966395 | |||
| fe918d13b9 | |||
| aaf224d570 | |||
| 9b5ce556aa | |||
| b311a3f506 | |||
| b499a14b17 | |||
| e0f225cb10 | |||
| 342961f669 | |||
| 8771766a70 | |||
| 582d5e0e11 | |||
| a5cc7a67d7 | |||
| 67b3d45eb6 | |||
| 07feaad8fb | |||
| e40f301f1f | |||
| e27d230ddd | |||
| ab65ba47ad | |||
| 8fb60bf6be | |||
| 3ad35d0bca | |||
| e3b70b0d1c | |||
| 4143f94d51 | |||
| a63cb7578e | |||
| e387821a96 | |||
| f0e975c6cf | |||
| 31791b16a1 | |||
| 8ea72d12a2 | |||
| 5c85018072 | |||
| 7eaa90b87b | |||
| 4220039b29 | |||
| 8efe3a9d77 | |||
| a5c6172c81 | |||
| a31fa218ad | |||
| 716819b830 | |||
| 8f08318769 | |||
| 87e971e14d | |||
| aaed2f5577 | |||
| 7f1a97bae3 | |||
| 9f9020fed3 | |||
| 23d79cea75 | |||
| 774dc274ac | |||
| 0010b41524 | |||
| d498528800 | |||
| 66e696ee15 |
@ -43,18 +43,6 @@ jobs:
|
||||
parallelism: 1
|
||||
steps:
|
||||
- checkout
|
||||
- run: git branch
|
||||
- run: git log -n 1
|
||||
- run: python3 utils/extract_pr_number_from_circleci.py > pr_number.txt
|
||||
- run: echo $(cat pr_number.txt)
|
||||
- run: if [[ "$(cat pr_number.txt)" == "" && "$CIRCLE_BRANCH" != "main" && "$CIRCLE_BRANCH" != *-release ]]; then echo "Not a PR, not the main branch and not a release branch, skip test!"; circleci-agent step halt; fi
|
||||
- run: 'curl -L -H "Accept: application/vnd.github+json" -H "X-GitHub-Api-Version: 2022-11-28" https://api.github.com/repos/$CIRCLE_PROJECT_USERNAME/$CIRCLE_PROJECT_REPONAME/pulls/$(cat pr_number.txt) >> github.txt'
|
||||
- run: cat github.txt
|
||||
- run: (python3 -c 'import json; from datetime import datetime; fp = open("github.txt"); data = json.load(fp); fp.close(); f = "%Y-%m-%dT%H:%M:%SZ"; created = datetime.strptime(data["created_at"], f); updated = datetime.strptime(data["updated_at"], f); s = (updated - created).total_seconds(); print(int(s))' || true) > elapsed.txt
|
||||
- run: if [ "$(cat elapsed.txt)" == "" ]; then echo 60 > elapsed.txt; fi
|
||||
- run: cat elapsed.txt
|
||||
- run: if [ "$(cat elapsed.txt)" -lt "30" ]; then echo "PR is just opened, wait some actions from GitHub"; sleep 30; fi
|
||||
- run: 'if grep -q "\"draft\": true," github.txt; then echo "draft mode, skip test!"; circleci-agent step halt; fi'
|
||||
- run: uv pip install -U -e .
|
||||
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
|
||||
- run: mkdir -p test_preparation
|
||||
@ -124,8 +112,6 @@ jobs:
|
||||
|
||||
- run:
|
||||
name: "Retrieve Artifact Paths"
|
||||
env:
|
||||
CIRCLE_TOKEN: ${{ secrets.CI_ARTIFACT_TOKEN }}
|
||||
command: |
|
||||
project_slug="gh/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME}"
|
||||
job_number=${CIRCLE_BUILD_NUM}
|
||||
|
||||
@ -110,6 +110,7 @@ class CircleCIJob:
|
||||
print(f"Using {self.docker_image} docker image")
|
||||
if self.install_steps is None:
|
||||
self.install_steps = ["uv venv && uv pip install ."]
|
||||
self.install_steps.append("uv venv && uv pip install git+https://github.com/ydshieh/pytest.git@8.3.5-ydshieh git+https://github.com/ydshieh/pluggy.git@1.5.0-ydshieh")
|
||||
if self.pytest_options is None:
|
||||
self.pytest_options = {}
|
||||
if isinstance(self.tests_to_run, str):
|
||||
|
||||
25
.github/workflows/change_pr_to_draft.yml
vendored
25
.github/workflows/change_pr_to_draft.yml
vendored
@ -1,25 +0,0 @@
|
||||
name: Change PR to draft
|
||||
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [opened, reopened]
|
||||
|
||||
jobs:
|
||||
convert_pr_to_draft:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Convert PR to draft
|
||||
permissions:
|
||||
pull-requests: write
|
||||
contents: write
|
||||
if: github.event.pull_request.draft == false
|
||||
steps:
|
||||
- name: Convert PR to draft
|
||||
shell: bash
|
||||
env:
|
||||
PR_NUMBER: ${{ github.event.number }}
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
REPO: ${{ github.repository }}
|
||||
run: |
|
||||
echo $PR_NUMBER
|
||||
gh pr ready $PR_NUMBER --repo $REPO --undo
|
||||
gh pr comment $PR_NUMBER --repo $REPO --body "Hi 👋, thank you for opening this pull request! The pull request is converted to draft by default. The CI will be paused while the PR is in draft mode. When it is ready for review, please click the \`Ready for review\` button (at the bottom of the PR page). This will assign reviewers and trigger CI."
|
||||
@ -9,6 +9,18 @@ on:
|
||||
start_sha:
|
||||
required: true
|
||||
type: string
|
||||
job:
|
||||
required: true
|
||||
type: string
|
||||
slack_report_channel:
|
||||
required: true
|
||||
type: string
|
||||
ci_event:
|
||||
required: true
|
||||
type: string
|
||||
report_repo_id:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
|
||||
env:
|
||||
@ -26,7 +38,7 @@ env:
|
||||
|
||||
|
||||
jobs:
|
||||
run_models_gpu:
|
||||
check_new_failures:
|
||||
name: " "
|
||||
runs-on:
|
||||
group: aws-g4dn-4xlarge-cache
|
||||
@ -36,67 +48,118 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: ci_results_run_models_gpu
|
||||
path: /transformers/ci_results_run_models_gpu
|
||||
name: ci_results_${{ inputs.job }}
|
||||
path: /transformers/ci_results_${{ inputs.job }}
|
||||
|
||||
- name: Check file
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
if [ -f ci_results_${{ inputs.job }}/new_failures.json ]; then
|
||||
echo "`ci_results_${{ inputs.job }}/new_failures.json` exists, continue ..."
|
||||
echo "process=true" >> $GITHUB_ENV
|
||||
else
|
||||
echo "`ci_results_${{ inputs.job }}/new_failures.json` doesn't exist, abort."
|
||||
echo "process=false" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
if: ${{ env.process == 'true' }}
|
||||
with:
|
||||
pattern: setup_values*
|
||||
path: setup_values
|
||||
merge-multiple: true
|
||||
|
||||
- name: Prepare some setup values
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
if [ -f setup_values/prev_workflow_run_id.txt ]; then
|
||||
echo "PREV_WORKFLOW_RUN_ID=$(cat setup_values/prev_workflow_run_id.txt)" >> $GITHUB_ENV
|
||||
else
|
||||
echo "PREV_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
if [ -f setup_values/other_workflow_run_id.txt ]; then
|
||||
echo "OTHER_WORKFLOW_RUN_ID=$(cat setup_values/other_workflow_run_id.txt)" >> $GITHUB_ENV
|
||||
else
|
||||
echo "OTHER_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Get target commit
|
||||
working-directory: /transformers/utils
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
echo "END_SHA=$(TOKEN=${{ secrets.ACCESS_REPO_INFO_TOKEN }} python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"]); print(commit)')" >> $GITHUB_ENV
|
||||
echo "END_SHA=$(TOKEN=${{ secrets.ACCESS_REPO_INFO_TOKEN }} python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"], workflow_run_id=os.environ["PREV_WORKFLOW_RUN_ID"]); print(commit)')" >> $GITHUB_ENV
|
||||
|
||||
- name: Checkout to `start_sha`
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: git fetch && git checkout ${{ inputs.start_sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: pip freeze
|
||||
|
||||
- name: Check failed tests
|
||||
working-directory: /transformers
|
||||
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_run_models_gpu/new_model_failures.json --output_file new_model_failures_with_bad_commit.json
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit.json
|
||||
|
||||
- name: Show results
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
ls -l new_model_failures_with_bad_commit.json
|
||||
cat new_model_failures_with_bad_commit.json
|
||||
ls -l new_failures_with_bad_commit.json
|
||||
cat new_failures_with_bad_commit.json
|
||||
|
||||
- name: Checkout back
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
git checkout ${{ inputs.start_sha }}
|
||||
|
||||
- name: Process report
|
||||
shell: bash
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
env:
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
|
||||
JOB_NAME: ${{ inputs.job }}
|
||||
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
|
||||
run: |
|
||||
python3 utils/process_bad_commit_report.py
|
||||
|
||||
- name: Process report
|
||||
shell: bash
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
env:
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
|
||||
JOB_NAME: ${{ inputs.job }}
|
||||
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
|
||||
run: |
|
||||
{
|
||||
echo 'REPORT_TEXT<<EOF'
|
||||
@ -104,17 +167,31 @@ jobs:
|
||||
echo EOF
|
||||
} >> "$GITHUB_ENV"
|
||||
|
||||
- name: Prepare Slack report title
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
pip install slack_sdk
|
||||
echo "title=$(python3 -c 'import sys; sys.path.append("utils"); from utils.notification_service import job_to_test_map; ci_event = "${{ inputs.ci_event }}"; job = "${{ inputs.job }}"; test_name = job_to_test_map[job]; title = f"New failed tests of {ci_event}" + ":" + f" {test_name}"; print(title)')" >> $GITHUB_ENV
|
||||
|
||||
- name: Send processed report
|
||||
if: ${{ !endsWith(env.REPORT_TEXT, '{}') }}
|
||||
if: ${{ env.process == 'true' && !endsWith(env.REPORT_TEXT, '{}') }}
|
||||
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
|
||||
with:
|
||||
# Slack channel id, channel name, or user id to post message.
|
||||
# See also: https://api.slack.com/methods/chat.postMessage#channels
|
||||
channel-id: '#transformers-ci-feedback-tests'
|
||||
channel-id: '#${{ inputs.slack_report_channel }}'
|
||||
# For posting a rich message using Block Kit
|
||||
payload: |
|
||||
{
|
||||
"blocks": [
|
||||
{
|
||||
"type": "header",
|
||||
"text": {
|
||||
"type": "plain_text",
|
||||
"text": "${{ env.title }}"
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "section",
|
||||
"text": {
|
||||
19
.github/workflows/pr-style-bot.yml
vendored
Normal file
19
.github/workflows/pr-style-bot.yml
vendored
Normal file
@ -0,0 +1,19 @@
|
||||
# To run this bot, comment "@bot /style" on a PR
|
||||
name: Style Bot
|
||||
|
||||
on:
|
||||
issue_comment:
|
||||
types: [created]
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
pull-requests: write
|
||||
|
||||
jobs:
|
||||
style:
|
||||
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@main
|
||||
with:
|
||||
python_quality_dependencies: "[quality]"
|
||||
style_command_type: "default"
|
||||
secrets:
|
||||
bot_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
2
.github/workflows/self-comment-ci.yml
vendored
2
.github/workflows/self-comment-ci.yml
vendored
@ -29,7 +29,7 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Get PR number
|
||||
# For security: only allow team members to run
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
outputs:
|
||||
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
|
||||
steps:
|
||||
|
||||
@ -1,55 +0,0 @@
|
||||
name: Self-hosted runner (AMD mi210 scheduled CI caller)
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_scheduled_ci_caller*
|
||||
|
||||
jobs:
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
name: Torch pipeline CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
name: Example CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
name: DeepSpeed CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
||||
@ -15,10 +15,11 @@ jobs:
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
@ -26,10 +27,11 @@ jobs:
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
@ -37,10 +39,11 @@ jobs:
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
@ -48,8 +51,9 @@ jobs:
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
63
.github/workflows/self-scheduled-amd-mi300-caller.yml
vendored
Normal file
63
.github/workflows/self-scheduled-amd-mi300-caller.yml
vendored
Normal file
@ -0,0 +1,63 @@
|
||||
name: Self-hosted runner scale set (AMD mi300 scheduled CI caller)
|
||||
|
||||
# Note: For every job in this workflow, the name of the runner scale set is finalized in the runner yaml i.e. huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml
|
||||
# For example, 1gpu scale set: amd-mi300-ci-1gpu
|
||||
# 2gpu scale set: amd-mi300-ci-2gpu
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_scheduled_ci_caller*
|
||||
|
||||
jobs:
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi300-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi300
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
name: Torch pipeline CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi300-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi300
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
name: Example CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi300-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi300
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
name: DeepSpeed CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi300-ci
|
||||
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi300
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
42
.github/workflows/self-scheduled-caller.yml
vendored
42
.github/workflows/self-scheduled-caller.yml
vendored
@ -8,8 +8,43 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- run_scheduled_ci*
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
prev_workflow_run_id:
|
||||
description: 'previous workflow run id to compare'
|
||||
type: string
|
||||
required: false
|
||||
default: ""
|
||||
other_workflow_run_id:
|
||||
description: 'other workflow run id to compare'
|
||||
type: string
|
||||
required: false
|
||||
default: ""
|
||||
|
||||
|
||||
# Used for `push` to easily modiffy the target workflow runs to compare against
|
||||
env:
|
||||
prev_workflow_run_id: ""
|
||||
other_workflow_run_id: ""
|
||||
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
name: Setup
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Setup
|
||||
run: |
|
||||
mkdir "setup_values"
|
||||
echo "${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}" > "setup_values/prev_workflow_run_id.txt"
|
||||
echo "${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}" > "setup_values/other_workflow_run_id.txt"
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: setup_values
|
||||
path: setup_values
|
||||
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
@ -19,6 +54,7 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
@ -30,6 +66,7 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-pytorch-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
tf-pipeline:
|
||||
@ -41,6 +78,7 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-tensorflow-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
@ -52,6 +90,7 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
trainer-fsdp-ci:
|
||||
@ -63,6 +102,7 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
@ -75,6 +115,7 @@ jobs:
|
||||
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
|
||||
ci_event: Daily CI
|
||||
working-directory-prefix: /workspace
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
quantization-ci:
|
||||
@ -86,4 +127,5 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-quantization-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
18
.github/workflows/self-scheduled.yml
vendored
18
.github/workflows/self-scheduled.yml
vendored
@ -28,6 +28,10 @@ on:
|
||||
default: ''
|
||||
required: false
|
||||
type: string
|
||||
report_repo_id:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
@ -584,15 +588,21 @@ jobs:
|
||||
folder_slices: ${{ needs.setup.outputs.folder_slices }}
|
||||
quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
|
||||
ci_event: ${{ inputs.ci_event }}
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
|
||||
secrets: inherit
|
||||
|
||||
check_new_model_failures:
|
||||
if: ${{ always() && inputs.ci_event == 'Daily CI' && inputs.job == 'run_models_gpu' && needs.send_results.result == 'success' }}
|
||||
name: Check new model failures
|
||||
check_new_failures:
|
||||
if: ${{ always() && inputs.ci_event == 'Daily CI' && needs.send_results.result == 'success' }}
|
||||
name: Check new failures
|
||||
needs: send_results
|
||||
uses: ./.github/workflows/check_failed_model_tests.yml
|
||||
uses: ./.github/workflows/check_failed_tests.yml
|
||||
with:
|
||||
docker: ${{ inputs.docker }}
|
||||
start_sha: ${{ github.sha }}
|
||||
job: ${{ inputs.job }}
|
||||
slack_report_channel: ${{ inputs.slack_report_channel }}
|
||||
ci_event: ${{ inputs.ci_event }}
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
|
||||
secrets: inherit
|
||||
|
||||
58
.github/workflows/slack-report.yml
vendored
58
.github/workflows/slack-report.yml
vendored
@ -21,6 +21,9 @@ on:
|
||||
ci_event:
|
||||
required: true
|
||||
type: string
|
||||
report_repo_id:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
env:
|
||||
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
|
||||
@ -39,8 +42,23 @@ jobs:
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/download-artifact@v4
|
||||
|
||||
- name: Prepare some setup values
|
||||
run: |
|
||||
if [ -f setup_values/prev_workflow_run_id.txt ]; then
|
||||
echo "PREV_WORKFLOW_RUN_ID=$(cat setup_values/prev_workflow_run_id.txt)" >> $GITHUB_ENV
|
||||
else
|
||||
echo "PREV_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
if [ -f setup_values/other_workflow_run_id.txt ]; then
|
||||
echo "OTHER_WORKFLOW_RUN_ID=$(cat setup_values/other_workflow_run_id.txt)" >> $GITHUB_ENV
|
||||
else
|
||||
echo "OTHER_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Send message to Slack
|
||||
if: ${{ inputs.job != 'run_quantization_torch_gpu' }}
|
||||
shell: bash
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
@ -50,19 +68,22 @@ jobs:
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
CI_EVENT: ${{ inputs.ci_event }}
|
||||
CI_SHA: ${{ github.sha }}
|
||||
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
|
||||
CI_TEST_JOB: ${{ inputs.job }}
|
||||
SETUP_STATUS: ${{ inputs.setup_status }}
|
||||
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
# For a job that doesn't depend on (i.e. `needs`) `setup`, the value for `inputs.folder_slices` would be an
|
||||
# empty string, and the called script still get one argument (which is the emtpy string).
|
||||
run: |
|
||||
sudo apt-get install -y curl
|
||||
pip install huggingface_hub
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ inputs.folder_slices }}"
|
||||
if [ "${{ inputs.quantization_matrix }}" != "" ]; then
|
||||
python utils/notification_service.py "${{ inputs.quantization_matrix }}"
|
||||
else
|
||||
python utils/notification_service.py "${{ inputs.folder_slices }}"
|
||||
fi
|
||||
|
||||
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
|
||||
- name: Failure table artifacts
|
||||
@ -70,32 +91,3 @@ jobs:
|
||||
with:
|
||||
name: ci_results_${{ inputs.job }}
|
||||
path: ci_results_${{ inputs.job }}
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/download-artifact@v4
|
||||
- name: Send message to Slack for quantization workflow
|
||||
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
|
||||
CI_EVENT: ${{ inputs.ci_event }}
|
||||
CI_SHA: ${{ github.sha }}
|
||||
CI_TEST_JOB: ${{ inputs.job }}
|
||||
SETUP_STATUS: ${{ inputs.setup_status }}
|
||||
# We pass `needs.setup.outputs.quantization_matrix` as the argument. A processing in `notification_service_quantization.py` to change
|
||||
# `quantization/bnb` to `quantization_bnb` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
sudo apt-get install -y curl
|
||||
pip install huggingface_hub
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service_quantization.py "${{ inputs.quantization_matrix }}"
|
||||
|
||||
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
|
||||
- name: Failure table artifacts
|
||||
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ci_results_${{ inputs.job }}
|
||||
path: ci_results_${{ inputs.job }}
|
||||
|
||||
16
.github/workflows/trigger_circleci.yml
vendored
16
.github/workflows/trigger_circleci.yml
vendored
@ -1,16 +0,0 @@
|
||||
name: Trigger CircleCI
|
||||
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [ready_for_review]
|
||||
|
||||
jobs:
|
||||
trigger-circleci:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: trigger CircleCI pipeline via GitHub Actions
|
||||
uses: CircleCI-Public/trigger-circleci-pipeline-action@v1.0.5
|
||||
with:
|
||||
GHA_Meta: "Trigger via GitHub Actions"
|
||||
env:
|
||||
CCI_TOKEN: ${{ secrets.CIRCLECI_PAT }}
|
||||
@ -98,7 +98,12 @@ Install Transformers from source if you want the latest changes in the library o
|
||||
```shell
|
||||
git clone https://github.com/huggingface/transformers.git
|
||||
cd transformers
|
||||
|
||||
# pip
|
||||
pip install .[torch]
|
||||
|
||||
# uv
|
||||
uv pip install .[torch]
|
||||
```
|
||||
|
||||
## Quickstart
|
||||
@ -120,7 +125,7 @@ To chat with a model, the usage pattern is the same. The only difference is you
|
||||
> [!TIP]
|
||||
> You can also chat with a model directly from the command line.
|
||||
> ```shell
|
||||
> transformers chat --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct
|
||||
> transformers chat Qwen/Qwen2.5-0.5B-Instruct
|
||||
> ```
|
||||
|
||||
```py
|
||||
|
||||
@ -71,6 +71,12 @@ RUN python3 -m pip install --no-cache-dir g2p-en
|
||||
# For Some bitsandbytes tests
|
||||
RUN python3 -m pip install --no-cache-dir einops
|
||||
|
||||
# For Some tests with `@require_liger_kernel`
|
||||
RUN python3 -m pip install --no-cache-dir liger-kernel
|
||||
|
||||
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
FROM rocm/dev-ubuntu-22.04:6.2.4
|
||||
FROM rocm/pytorch:rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
@ -11,9 +11,6 @@ RUN apt update && \
|
||||
RUN git lfs install
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy
|
||||
|
||||
RUN python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade importlib-metadata setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
|
||||
|
||||
ARG REF=main
|
||||
@ -33,3 +30,6 @@ RUN cd transformers && python3 setup.py develop
|
||||
|
||||
# Remove nvml and nvidia-ml-py as it is not compatible with ROCm. apex is not tested on NVIDIA either.
|
||||
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
|
||||
|
||||
# `kernels` may causes many failing tests
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
@ -48,3 +48,6 @@ RUN python3 -c "from deepspeed.launcher.runner import main"
|
||||
|
||||
# Remove nvml as it is not compatible with ROCm
|
||||
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
|
||||
|
||||
# `kernels` may causes many failing tests
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
|
||||
@ -45,6 +45,9 @@ RUN python3 -m pip uninstall -y deepspeed
|
||||
# TODO: Find out why test fail.
|
||||
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
|
||||
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
@ -57,6 +57,9 @@ RUN python3 -m pip uninstall -y deepspeed
|
||||
#RUN git clone https://github.com/pytorch/TensorRT.git
|
||||
#RUN cd TensorRT/py && python3 setup.py install --fx-only
|
||||
|
||||
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
@ -28,6 +28,9 @@ RUN python3 -m pip uninstall -y tensorflow flax
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
@ -90,6 +90,9 @@ RUN python3 -m pip install --no-cache-dir "auto-round>=0.5.0"
|
||||
# Add transformers in editable mode
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch]
|
||||
|
||||
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
@ -39,6 +39,8 @@
|
||||
title: Tokenizers
|
||||
- local: image_processors
|
||||
title: Image processors
|
||||
- local: video_processors
|
||||
title: Video processors
|
||||
- local: backbones
|
||||
title: Backbones
|
||||
- local: feature_extractors
|
||||
@ -74,12 +76,12 @@
|
||||
title: Prompt engineering
|
||||
- local: llm_optims
|
||||
title: Optimizing inference
|
||||
- local: cache_explanation
|
||||
title: Caching
|
||||
- local: kv_cache
|
||||
title: KV cache strategies
|
||||
- local: serving
|
||||
title: Serving
|
||||
- local: cache_explanation
|
||||
title: Caching
|
||||
- local: llm_tutorial_optimization
|
||||
title: Getting the most out of LLMs
|
||||
- local: perplexity
|
||||
@ -362,7 +364,9 @@
|
||||
title: Feature Extractor
|
||||
- local: main_classes/image_processor
|
||||
title: Image Processor
|
||||
title: Main classes
|
||||
- local: main_classes/video_processor
|
||||
title: Video Processor
|
||||
title: Main Classes
|
||||
- sections:
|
||||
- sections:
|
||||
- local: model_doc/albert
|
||||
@ -382,7 +386,7 @@
|
||||
- local: model_doc/bert-japanese
|
||||
title: BertJapanese
|
||||
- local: model_doc/bertweet
|
||||
title: Bertweet
|
||||
title: BERTweet
|
||||
- local: model_doc/big_bird
|
||||
title: BigBird
|
||||
- local: model_doc/bigbird_pegasus
|
||||
@ -451,6 +455,8 @@
|
||||
title: Falcon
|
||||
- local: model_doc/falcon3
|
||||
title: Falcon3
|
||||
- local: model_doc/falcon_h1
|
||||
title: FalconH1
|
||||
- local: model_doc/falcon_mamba
|
||||
title: FalconMamba
|
||||
- local: model_doc/flan-t5
|
||||
@ -536,7 +542,7 @@
|
||||
- local: model_doc/mamba
|
||||
title: Mamba
|
||||
- local: model_doc/mamba2
|
||||
title: mamba2
|
||||
title: Mamba2
|
||||
- local: model_doc/marian
|
||||
title: MarianMT
|
||||
- local: model_doc/markuplm
|
||||
@ -1115,4 +1121,9 @@
|
||||
- local: internal/time_series_utils
|
||||
title: Utilities for Time Series
|
||||
title: Internal helpers
|
||||
- sections:
|
||||
- local: reference/environment_variables
|
||||
title: Environment Variables
|
||||
title: Reference
|
||||
title: API
|
||||
|
||||
|
||||
@ -125,4 +125,44 @@ would expect from a usual Python dictionary:
|
||||
|
||||
# You can also globally `register` a new function directly on it
|
||||
>>> ALL_ATTENTION_FUNCTIONS.register("new_func", new_func)
|
||||
```
|
||||
```
|
||||
|
||||
## Attention Mask Interface
|
||||
|
||||
Having a new attention function may mean that you need a new format of attention mask to decide what key and value tokens
|
||||
the query tokens should attend to. This is now possible with the `AttentionMaskInterface`! It works in the same way as
|
||||
the `AttentionInterface`:
|
||||
|
||||
```python
|
||||
from transformers import AttentionMaskInterface
|
||||
from transformers.masking_utils import sdpa_mask
|
||||
import torch
|
||||
|
||||
def my_new_sdpa_mask(*args, **kwargs):
|
||||
print("I just entered the attention mask computation")
|
||||
return sdpa_mask(*args, **kwargs)
|
||||
|
||||
AttentionMaskInterface.register("my_new_sdpa_mask", my_new_sdpa_mask)
|
||||
```
|
||||
|
||||
The reason you have to register it is because we need to automatically correct your mask format based on the attention implementation (for example, flex attention uses a BlockMask format, while sdpa uses a 4D tensor).
|
||||
By default, if you do not register an attention mask function along with your attention function, mask creation will be skipped
|
||||
and `attention_mask=None` will be passed along to the Attention layers.
|
||||
|
||||
The default signature of the attention mask functions is the following:
|
||||
|
||||
```python
|
||||
def custom_attention_mask(
|
||||
batch_size: int, # required arg
|
||||
cache_position: torch.Tensor, # required arg
|
||||
kv_length: int, # required arg
|
||||
kv_offset: int = 0, # required arg
|
||||
mask_function: Callable = causal_mask_function, # required arg
|
||||
attention_mask: Optional[torch.Tensor] = None, # required arg
|
||||
**kwargs, # a few additional args may be passed as kwargs, especially the model's config is always passed
|
||||
) -> Optional[torch.Tensor]:
|
||||
```
|
||||
|
||||
It mostly works thanks to the `mask_function`, which is a `Callable` in the form of [torch's mask_mod functions](https://pytorch.org/blog/flexattention/), taking 4 indices as input and returning a boolean to indicate if this position should take part in the attention computation.
|
||||
|
||||
If you cannot use the `mask_function` to create your mask for some reason, you can try to work around it by doing something similar to our [torch export workaround](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/executorch.py).
|
||||
@ -15,8 +15,7 @@ rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Caching
|
||||
|
||||
Imagine you’re having a conversation with someone, and instead of remembering what they previously said, they have to start from scratch every time you respond. This would be slow and inefficient, right?
|
||||
Imagine you're having a conversation with someone, and instead of remembering what they previously said, they have to start from scratch every time you respond. This would be slow and inefficient, right?
|
||||
|
||||
You can extend this analogy to transformer models. Autoregressive model generation can be slow because it makes a prediction one token at a time. Each new prediction is dependent on all the previous context.
|
||||
|
||||
@ -29,8 +28,50 @@ A key-value (KV) cache eliminates this inefficiency by storing kv pairs derived
|
||||
> [!WARNING]
|
||||
> Caching should only be used for **inference**. It may cause unexpected errors if it's enabled during training.
|
||||
|
||||
To better understand how and why caching works, let's take a closer look at the structure of the attention matrices.
|
||||
|
||||
## Attention matrices
|
||||
|
||||
The **scaled dot-product attention** is calculated as shown below for a batch of size `b`, number of attention heads `h`, sequence length so far `T`, and dimension per attention head `d_head`.
|
||||
|
||||
$$
|
||||
\text{Attention}(Q, K, V) = \text{softmax}\left( \frac{Q K^\top}{\sqrt{d_{\text{head}}}} \times \text{mask} \right) V
|
||||
$$
|
||||
|
||||
The query (`Q`), key (`K`), and value (`V`) matrices are projections from the input embeddings of shape `(b, h, T, d_head)`.
|
||||
|
||||
For causal attention, the mask prevents the model from attending to future tokens. Once a token is processed, its representation never changes with respect to future tokens, which means \\( K_{\text{past}} \\) and \\( V_{\text{past}} \\) can be cached and reused to compute the last token's representation.
|
||||
|
||||
$$
|
||||
\text{Attention}(q_t, [\underbrace{k_1, k_2, \dots, k_{t-1}}_{\text{cached}}, k_{t}], [\underbrace{v_1, v_2, \dots, v_{t-1}}_{\text{cached}}, v_{t}])
|
||||
$$
|
||||
|
||||
At inference time, you only need the last token's query to compute the representation \\( x_t \\) that predicts the next token \\( t+1 \\). At each step, the new key and value vectors are **stored** in the cache and **appended** to the past keys and values.
|
||||
|
||||
$$
|
||||
K_{\text{cache}} \leftarrow \text{concat}(K_{\text{past}}, k_t), \quad V_{\text{cache}} \leftarrow \text{concat}(V_{\text{past}}, v_t)
|
||||
$$
|
||||
|
||||
Attention is calculated independently in each layer of the model, and caching is done on a per-layer basis.
|
||||
|
||||
Refer to the table below to compare how caching improves efficiency.
|
||||
|
||||
| without caching | with caching | | | |
|
||||
|---|---|---|---|---|
|
||||
| for each step, recompute all previous `K` and `V` | for each step, only compute current `K` and `V` | | | |
|
||||
| attention cost per step is **quadratic** with sequence length | attention cost per step is **linear** with sequence length (memory grows linearly, but compute/token remains low) | | | |
|
||||
|
||||
|
||||
|
||||
## Cache class
|
||||
|
||||
A basic KV cache interface takes a key and value tensor for the current token and returns the updated `K` and `V` tensors. This is internally managed by a model's `forward` method.
|
||||
|
||||
```py
|
||||
new_K, new_V = cache.update(k_t, v_t, layer_idx)
|
||||
attn_output = attn_layer_idx_fn(q_t, new_K, new_V)
|
||||
```
|
||||
|
||||
When you use Transformers' [`Cache`] class, the self-attention module performs several critical steps to integrate past and present information.
|
||||
|
||||
1. The attention module concatenates current kv pairs with past kv pairs stored in the cache. This creates attentions weights with the shape `(new_tokens_length, past_kv_length + new_tokens_length)`. The current and past kv pairs are essentially combined to compute the attention scores, ensuring a model is aware of previous context and the current input.
|
||||
@ -39,6 +80,27 @@ When you use Transformers' [`Cache`] class, the self-attention module performs s
|
||||
|
||||
3. It is also important to be aware of the `cache_position`. This is important if you want to reuse a prefilled [`Cache`] with the `forward` method because you have to pass a valid `cache_position` value. This indicates the input positions in a sequence. `cache_position` is unaffected by padding, and it always adds one more position for each token. For example, if a kv cache contains 10 tokens - regardless of pad tokens - the cache position for the next token should be `torch.tensor([10])`.
|
||||
|
||||
## Cache storage implementation
|
||||
|
||||
The actual storage of key-value pairs varies between cache implementations. As an example, consider the [`DynamicCache`].
|
||||
|
||||
|
||||
In [`DynamicCache`], the key-value pairs are stored as two lists of tensors. Each tensor in the lists have the shape `[batch_size, num_heads, seq_len, head_dim]`.
|
||||
- `key_cache`: A list of tensors, one for each layer.
|
||||
- `value_cache`: A list of tensors, one for each layer.
|
||||
|
||||
When new tokens are processed:
|
||||
|
||||
1. For each layer, the new key and value states are concatenated with the existing cache.
|
||||
```py
|
||||
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
||||
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
||||
```
|
||||
|
||||
2. The cache grows dynamically as more tokens are processed. The sequence length dimension (`seq_len`) increases with each new token.
|
||||
|
||||
3. The cache maintains a count of seen tokens through `self._seen_tokens`. This is updated when the first layer processes a new token.
|
||||
|
||||
The example below demonstrates how to create a generation loop with [`DynamicCache`]. As discussed, the attention mask is a concatenation of past and current token values and `1` is added to the cache position for the next token.
|
||||
|
||||
```py
|
||||
@ -72,10 +134,14 @@ for _ in range(max_new_tokens):
|
||||
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
|
||||
"[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA,"
|
||||
```
|
||||
|
||||
## Legacy cache format
|
||||
|
||||
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format has is dynamic because it grows as text is generated, similar to [`DynamicCache`].
|
||||
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format is dynamic because it grows as text is generated, similar to [`DynamicCache`].
|
||||
|
||||
The legacy format is essentially the same data structure but organized differently.
|
||||
- It's a tuple of tuples, where each inner tuple contains the key and value tensors for a layer.
|
||||
- The tensors have the same shape `[batch_size, num_heads, seq_len, head_dim]`.
|
||||
- The format is less flexible and doesn't support features like quantization or offloading.
|
||||
|
||||
If your project depends on this legacy format, you can convert between [`DynamicCache`] and a tuple of tuples as shown below with the [`~DynamicCache.from_legacy_cache`] and [`DynamicCache.to_legacy_cache`] functions. This is helpful if you have custom logic for manipulating a cache in a specific format.
|
||||
|
||||
|
||||
@ -27,7 +27,7 @@ This guide shows you how to quickly start chatting with Transformers from the co
|
||||
|
||||
## transformers CLI
|
||||
|
||||
Chat with a model directly from the command line as shown below. It launches an interactive session with a model. Enter `clear` to reset the conversation, `exit` to terminate the session, and `help` to display all the command options.
|
||||
After you've [installed Transformers](./installation.md), chat with a model directly from the command line as shown below. It launches an interactive session with a model, with a few base commands listed at the start of the session.
|
||||
|
||||
```bash
|
||||
transformers chat Qwen/Qwen2.5-0.5B-Instruct
|
||||
@ -37,6 +37,12 @@ transformers chat Qwen/Qwen2.5-0.5B-Instruct
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers-chat-cli.png"/>
|
||||
</div>
|
||||
|
||||
You can launch the CLI with arbitrary `generate` flags, with the format `arg_1=value_1 arg_2=value_2 ...`
|
||||
|
||||
```bash
|
||||
transformers chat Qwen/Qwen2.5-0.5B-Instruct do_sample=False max_new_tokens=10
|
||||
```
|
||||
|
||||
For a full list of options, run the command below.
|
||||
|
||||
```bash
|
||||
|
||||
@ -20,11 +20,15 @@ A decoding strategy informs how a model should select the next generated token.
|
||||
|
||||
This guide will help you understand the different decoding strategies available in Transformers and how and when to use them.
|
||||
|
||||
## Greedy search
|
||||
## Basic decoding methods
|
||||
|
||||
Greedy search is the default decoding strategy. It selects the next most likely token at each step. Unless specified in [`GenerationConfig`], this strategy generates a maximum of 20 tokens.
|
||||
These are well established decoding methods, and should be your starting point for text generation tasks.
|
||||
|
||||
Greedy search works well for tasks with relatively short outputs. However, it breaks down when generating longer sequences because it begins to repeat itself.
|
||||
### Greedy search
|
||||
|
||||
Greedy search is the default decoding strategy. It selects the next most likely token at each step. Unless specified in [`GenerationConfig`], this strategy generates a maximum of 20 new tokens.
|
||||
|
||||
Greedy search works well for tasks with relatively short outputs where creativity is not a priority. However, it breaks down when generating longer sequences because it begins to repeat itself.
|
||||
|
||||
```py
|
||||
import torch
|
||||
@ -40,11 +44,11 @@ tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
'Hugging Face is an open-source company that provides a suite of tools and services for building, deploying, and maintaining natural language processing'
|
||||
```
|
||||
|
||||
## Contrastive search
|
||||
### Sampling
|
||||
|
||||
[Contrastive search](https://huggingface.co/papers/2202.06417) is a decoding strategy that aims to reduce repetition even while generating longer sequences. This strategy compares how similar a generated token is against previous tokens, and if they're more similar, a penalty is applied.
|
||||
Sampling, or multinomial sampling, randomly selects a token based on the probability distribution over the entire model's vocabulary (as opposed to the most likely token, as in greedy search). This means every token with a non-zero probability has a chance to be selected. Sampling strategies reduce repetition and can generate more creative and diverse outputs.
|
||||
|
||||
Enable contrastive search with the `penalty_alpha` and `top_k` parameters. The `penalty_alpha` manages the penalty applied and `top_k` is the number of most likely tokens to return.
|
||||
Enable multinomial sampling with `do_sample=True` and `num_beams=1`.
|
||||
|
||||
```py
|
||||
import torch
|
||||
@ -55,14 +59,14 @@ inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt"
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
|
||||
# explicitly set to 100 because Llama2 generation length is 4096
|
||||
outputs = model.generate(**inputs, max_new_tokens=100, penalty_alpha=0.6, top_k=4)
|
||||
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, num_beams=1)
|
||||
tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
'Hugging Face is an open-source company that provides a platform for building and deploying AI models.\nHugging Face is an open-source company that provides a platform for building and deploying AI models. The platform allows developers to build and deploy AI models, as well as collaborate with other developers.\nHugging Face was founded in 2019 by Thibault Wittemberg and Clément Delangue. The company is based in Paris, France.\nHugging Face has'
|
||||
'Hugging Face is an open-source company 🤗\nWe are open-source and believe that open-source is the best way to build technology. Our mission is to make AI accessible to everyone, and we believe that open-source is the best way to achieve that.'
|
||||
```
|
||||
|
||||
## Beam search
|
||||
### Beam search
|
||||
|
||||
Beam search keeps track of several generated sequences (beams) at each time step. After a certain number of steps, it selects the sequence with the highest *overall* probability. Unlike greedy search, this strategy can "look ahead" and pick a sequence with a higher probability overall even if the initial tokens have a lower probability.
|
||||
Beam search keeps track of several generated sequences (beams) at each time step. After a certain number of steps, it selects the sequence with the highest *overall* probability. Unlike greedy search, this strategy can "look ahead" and pick a sequence with a higher probability overall even if the initial tokens have a lower probability. It is best suited for input-grounded tasks, like describing an image or speech recognition. You can also use `do_sample=True` with beam search to sample at each step, but beam search will still greedily prune out low probability sequences between steps.
|
||||
|
||||
> [!TIP]
|
||||
> Check out the [beam search visualizer](https://huggingface.co/spaces/m-ric/beam_search_visualizer) to see how beam search works.
|
||||
@ -83,66 +87,11 @@ tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
"['Hugging Face is an open-source company that develops and maintains the Hugging Face platform, which is a collection of tools and libraries for building and deploying natural language processing (NLP) models. Hugging Face was founded in 2018 by Thomas Wolf']"
|
||||
```
|
||||
|
||||
## Diverse beam search
|
||||
## Advanced decoding methods
|
||||
|
||||
[Diverse beam search](https://hf.co/papers/1610.02424) is a variant of beam search that produces more diverse output candidates to choose from. This strategy measures the dissimilarity of sequences and a penalty is applied if sequences are too similar. To avoid high computation costs, the number of beams is divided into groups.
|
||||
Advanced decoding methods aim at either tackling specific generation quality issues (e.g. repetition) or at improving the generation throughput in certain situations. These techniques are more complex, and may not work correctly with all models.
|
||||
|
||||
Enable diverse beam search with the `num_beams`, `num_beam_groups` and `diversity_penalty` parameters (the `num_beams` parameter should be divisible by `num_beam_groups`).
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
||||
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
|
||||
# explicitly set to 100 because Llama2 generation length is 4096
|
||||
outputs = model.generate(**inputs, max_new_tokens=50, num_beams=6, num_beam_groups=3, diversity_penalty=1.0, do_sample=False)
|
||||
tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
'Hugging Face is an open-source company 🤗\nWe are an open-source company. Our mission is to democratize AI and make it accessible to everyone. We believe that AI should be used for the benefit of humanity, not for the benefit of a'
|
||||
```
|
||||
|
||||
## Multinomial sampling
|
||||
|
||||
Search methods selects the most likely tokens. Sampling, or multinomial sampling, randomly selects a token based on the probability distribution over the entire models vocabulary. This means every token with a non-zero probability has a chance to be selected. Sampling strategies reduce repetition and can generate more creative and diverse outputs.
|
||||
|
||||
Enable multinomial sampling with `do_sample=True` and `num_beams=1`.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
||||
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
|
||||
# explicitly set to 100 because Llama2 generation length is 4096
|
||||
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, num_beams=1)
|
||||
tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
'Hugging Face is an open-source company 🤗\nWe are open-source and believe that open-source is the best way to build technology. Our mission is to make AI accessible to everyone, and we believe that open-source is the best way to achieve that.'
|
||||
```
|
||||
|
||||
## Beam search multinomial sampling
|
||||
|
||||
This decoding strategy is a combination of beam search and multinomial sampling. It generates multiple beams and uses a sampling strategy for each beam.
|
||||
|
||||
Enable beam search multinomial sampling by setting `num_beams` to a value greater than 1 and `do_sample=True`.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
||||
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
|
||||
# explicitly set to 100 because Llama2 generation length is 4096
|
||||
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, num_beams=4)
|
||||
'Hugging Face is an open-source company 100% dedicated to making AI more accessible. We believe that AI should be available to everyone, and we’re working hard to make that a reality.\nWe’re a team of passionate engineers, designers,'
|
||||
```
|
||||
|
||||
## Speculative decoding
|
||||
### Speculative decoding
|
||||
|
||||
[Speculative](https://hf.co/papers/2211.17192) or assistive decoding isn't a search or sampling strategy. Instead, speculative decoding adds a second smaller model to generate candidate tokens. The main model verifies the candidate tokens in a single `forward` pass, which speeds up the decoding process overall. This method is especially useful for LLMs where it can be more costly and slower to generate tokens. Refer to the [speculative decoding](./llm_optims#speculative-decoding) guide to learn more.
|
||||
|
||||
@ -203,7 +152,7 @@ tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
### Prompt lookup decoding
|
||||
#### Prompt lookup decoding
|
||||
|
||||
[Prompt lookup decoding](./llm_optims#prompt-lookup-decoding) is a variant of speculative decoding that uses overlapping n-grams as the candidate tokens. It works well for input-grounded tasks such as summarization. Refer to the [prompt lookup decoding](./llm_optims#prompt-lookup-decoding) guide to learn more.
|
||||
|
||||
@ -245,7 +194,7 @@ outputs = model.generate(**inputs, assistant_early_exit=4, do_sample=False, max_
|
||||
tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
```
|
||||
|
||||
### Universal assisted decoding
|
||||
#### Universal assisted decoding
|
||||
|
||||
Universal assisted decoding (UAD) enables the main and assistant models to use different tokenizers. The main models input tokens are re-encoded into assistant model tokens. Candidate tokens are generated in the assistant encoding which are re-encoded into the main model candidate tokens. The candidate tokens are verified as explained in [speculative decoding](#speculative-decoding).
|
||||
|
||||
@ -269,7 +218,27 @@ tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
['Alice and Bob are sitting in a bar. Alice is drinking a beer and Bob is drinking a']
|
||||
```
|
||||
|
||||
## DoLa
|
||||
### Contrastive search
|
||||
|
||||
[Contrastive search](https://huggingface.co/papers/2202.06417) is a decoding strategy that aims to reduce repetition even while generating longer sequences. This strategy compares how similar a generated token is against previous tokens, and if they're more similar, a penalty is applied.
|
||||
|
||||
Enable contrastive search with the `penalty_alpha` and `top_k` parameters. The `penalty_alpha` manages the penalty applied and `top_k` is the number of most likely tokens to return.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
||||
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
|
||||
# explicitly set to 100 because Llama2 generation length is 4096
|
||||
outputs = model.generate(**inputs, max_new_tokens=100, penalty_alpha=0.6, top_k=4)
|
||||
tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
'Hugging Face is an open-source company that provides a platform for building and deploying AI models.\nHugging Face is an open-source company that provides a platform for building and deploying AI models. The platform allows developers to build and deploy AI models, as well as collaborate with other developers.\nHugging Face was founded in 2019 by Thibault Wittemberg and Clément Delangue. The company is based in Paris, France.\nHugging Face has'
|
||||
```
|
||||
|
||||
### DoLa
|
||||
|
||||
[Decoding by Contrasting Layers (DoLa)](https://hf.co/papers/2309.03883) is a contrastive decoding strategy for improving factuality and reducing hallucination. This strategy works by contrasting the logit differences between the final and early layers. As a result, factual knowledge localized to particular layers are amplified. DoLa is not recommended for smaller models like GPT-2.
|
||||
|
||||
@ -325,6 +294,209 @@ tokenizer.batch_decode(outputs[:, inputs.input_ids.shape[-1]:], skip_special_tok
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
### Diverse beam search
|
||||
|
||||
[Diverse beam search](https://hf.co/papers/1610.02424) is a variant of beam search that produces more diverse output candidates to choose from. This strategy measures the dissimilarity of sequences and a penalty is applied if sequences are too similar. To avoid high computation costs, the number of beams is divided into groups.
|
||||
|
||||
Enable diverse beam search with the `num_beams`, `num_beam_groups` and `diversity_penalty` parameters (the `num_beams` parameter should be divisible by `num_beam_groups`).
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
||||
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
|
||||
# explicitly set to 100 because Llama2 generation length is 4096
|
||||
outputs = model.generate(**inputs, max_new_tokens=50, num_beams=6, num_beam_groups=3, diversity_penalty=1.0, do_sample=False)
|
||||
tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
'Hugging Face is an open-source company 🤗\nWe are an open-source company. Our mission is to democratize AI and make it accessible to everyone. We believe that AI should be used for the benefit of humanity, not for the benefit of a'
|
||||
```
|
||||
|
||||
|
||||
## Custom decoding methods
|
||||
|
||||
Custom decoding methods enable specialized generation behavior such as the following:
|
||||
- have the model continue thinking if it is uncertain;
|
||||
- roll back generation if the model gets stuck;
|
||||
- handle special tokens with custom logic;
|
||||
- enhanced input preparation for advanced models;
|
||||
|
||||
We enable custom decoding methods through model repositories, assuming a specific model tag and file structure (see subsection below). This feature is an extension of [custom modeling code](./models.md#custom-models) and, like such, requires setting `trust_remote_code=True`.
|
||||
|
||||
If a model repository holds a custom decoding method, the easiest way to try it out is to load the model and generate with it:
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
# `transformers-community/custom_generate_example` holds a copy of `Qwen/Qwen2.5-0.5B-Instruct`, but
|
||||
# with custom generation code -> calling `generate` uses the custom decoding method!
|
||||
tokenizer = AutoTokenizer.from_pretrained("transformers-community/custom_generate_example")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"transformers-community/custom_generate_example", device_map="auto", trust_remote_code=True
|
||||
)
|
||||
|
||||
inputs = tokenizer(["The quick brown"], return_tensors="pt").to(model.device)
|
||||
# The custom decoding method is a minimal greedy decoding implementation. It also prints a custom message at run time.
|
||||
gen_out = model.generate(**inputs)
|
||||
# you should now see its custom message, "✨ using a custom generation method ✨"
|
||||
print(tokenizer.batch_decode(gen_out, skip_special_tokens=True))
|
||||
'The quick brown fox jumps over a lazy dog, and the dog is a type of animal. Is'
|
||||
```
|
||||
|
||||
Model repositories with custom decoding methods have a special property: their decoding method can be loaded from **any** model through [`~GenerationMixin.generate`]'s `custom_generate` argument. This means anyone can create and share their custom generation method to potentially work with any Transformers model, without requiring users to install additional Python packages.
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
||||
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", device_map="auto")
|
||||
|
||||
inputs = tokenizer(["The quick brown"], return_tensors="pt").to(model.device)
|
||||
# `custom_generate` replaces the original `generate` by the custom decoding method defined in
|
||||
# `transformers-community/custom_generate_example`
|
||||
gen_out = model.generate(**inputs, custom_generate="transformers-community/custom_generate_example", trust_remote_code=True)
|
||||
print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
|
||||
'The quick brown fox jumps over a lazy dog, and the dog is a type of animal. Is'
|
||||
```
|
||||
|
||||
You should read the `README.md` file of the repository containing the custom generation strategy to see what the new arguments and output type differences are, if they exist. Otherwise, you can assume it works like the base [`~GenerationMixin.generate`] method.
|
||||
|
||||
> [!TIP]
|
||||
> You can find all custom decoding methods by [searching for their custom tag.](https://huggingface.co/models?other=custom_generate), `custom_generate`
|
||||
|
||||
Consider the Hub repository [transformers-community/custom_generate_example](https://huggingface.co/transformers-community/custom_generate_example) as an example. The `README.md` states that it has an additional input argument, `left_padding`, which adds a number of padding tokens before the prompt.
|
||||
|
||||
```py
|
||||
gen_out = model.generate(
|
||||
**inputs, custom_generate="transformers-community/custom_generate_example", trust_remote_code=True, left_padding=5
|
||||
)
|
||||
print(tokenizer.batch_decode(gen_out)[0])
|
||||
'<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>The quick brown fox jumps over the lazy dog.\n\nThe sentence "The quick'
|
||||
```
|
||||
|
||||
If the custom method has pinned Python requirements that your environment doesn't meet, you'll get an exception about missing requirements. For instance, [transformers-community/custom_generate_bad_requirements](https://huggingface.co/transformers-community/custom_generate_bad_requirements) has an impossible set of requirements defined in its `custom_generate/requirements.txt` file, and you'll see the error message below if you try to run it.
|
||||
|
||||
```
|
||||
ImportError: Missing requirements in your local environment for `transformers-community/custom_generate_bad_requirements`:
|
||||
foo (installed: None)
|
||||
bar==0.0.0 (installed: None)
|
||||
torch>=99.0 (installed: 2.6.0)
|
||||
```
|
||||
|
||||
Updating your Python requirements accordingly will remove this error message.
|
||||
|
||||
### Creating a custom decoding method
|
||||
|
||||
To create a new decoding method, you need to create a new [**Model**](https://huggingface.co/new) repository and push a few files into it.
|
||||
1. The model you've designed your decoding method with.
|
||||
2. `custom_generate/generate.py`, which contains all the logic for your custom decoding method.
|
||||
3. `custom_generate/requirements.txt`, used to optionally add new Python requirements and/or lock specific versions to correctly use your method.
|
||||
4. `README.md`, where you should add the `custom_generate` tag and document any new arguments or output type differences of your custom method here.
|
||||
|
||||
After you've added all required files, your repository should look like this
|
||||
|
||||
```
|
||||
your_repo/
|
||||
├── README.md # include the 'custom_generate' tag
|
||||
├── config.json
|
||||
├── ...
|
||||
└── custom_generate/
|
||||
├── generate.py
|
||||
└── requirements.txt
|
||||
```
|
||||
|
||||
#### Adding the base model
|
||||
|
||||
The starting point for your custom decoding method is a model repository just like any other. The model to add to this repository should be the model you've designed your method with, and it is meant to be part of a working self-contained model-generate pair. When the model in this repository is loaded, your custom decoding method will override `generate`. Don't worry -- your decoding method can still be loaded with any other Transformers model, as explained in the section above.
|
||||
|
||||
If you simply want to copy an existing model, you can do
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("source/model_repo")
|
||||
model = AutoModelForCausalLM.from_pretrained("source/model_repo")
|
||||
tokenizer.save_pretrained("your/decoding_method", push_to_hub=True)
|
||||
model.save_pretrained("your/decoding_method", push_to_hub=True)
|
||||
```
|
||||
|
||||
#### generate.py
|
||||
|
||||
This is the core of your decoding method. It *must* contain a method named `generate`, and this method *must* contain a `model` argument as its first argument. `model` is the model instance, which means you have access to all attributes and methods in the model, including the ones defined in [`GenerationMixin`] (like the base `generate` method).
|
||||
|
||||
> [!WARNING]
|
||||
> `generate.py` must be placed in a folder named `custom_generate`, and not at the root level of the repository. The file paths for this feature are hardcoded.
|
||||
|
||||
Under the hood, when the base [`~GenerationMixin.generate`] method is called with a `custom_generate` argument, it first checks its Python requirements (if any), then locates the custom `generate` method in `generate.py`, and finally calls the custom `generate`. All received arguments and `model` are forwarded to your custom `generate` method, with the exception of the arguments used to trigger the custom generation (`trust_remote_code` and `custom_generate`).
|
||||
|
||||
This means your `generate` can have a mix of original and custom arguments (as well as a different output type) as shown below.
|
||||
|
||||
```py
|
||||
import torch
|
||||
|
||||
def generate(model, input_ids, generation_config=None, left_padding=None, **kwargs):
|
||||
generation_config = generation_config or model.generation_config # default to the model generation config
|
||||
cur_length = input_ids.shape[1]
|
||||
max_length = generation_config.max_length or cur_length + generation_config.max_new_tokens
|
||||
|
||||
# Example of custom argument: add `left_padding` (integer) pad tokens before the prompt
|
||||
if left_padding is not None:
|
||||
if not isinstance(left_padding, int) or left_padding < 0:
|
||||
raise ValueError(f"left_padding must be an integer larger than 0, but is {left_padding}")
|
||||
|
||||
pad_token = kwargs.pop("pad_token", None) or generation_config.pad_token_id or model.config.pad_token_id
|
||||
if pad_token is None:
|
||||
raise ValueError("pad_token is not defined")
|
||||
batch_size = input_ids.shape[0]
|
||||
pad_tensor = torch.full(size=(batch_size, left_padding), fill_value=pad_token).to(input_ids.device)
|
||||
input_ids = torch.cat((pad_tensor, input_ids), dim=1)
|
||||
cur_length = input_ids.shape[1]
|
||||
|
||||
# Simple greedy decoding loop
|
||||
while cur_length < max_length:
|
||||
logits = model(input_ids).logits
|
||||
next_token_logits = logits[:, -1, :]
|
||||
next_tokens = torch.argmax(next_token_logits, dim=-1)
|
||||
input_ids = torch.cat((input_ids, next_tokens[:, None]), dim=-1)
|
||||
cur_length += 1
|
||||
|
||||
return input_ids
|
||||
```
|
||||
|
||||
Follow the recommended practices below to ensure your custom decoding method works as expected.
|
||||
- Feel free to reuse the logic for validation and input preparation in the original [`~GenerationMixin.generate`].
|
||||
- Pin the `transformers` version in the requirements if you use any private method/attribute in `model`.
|
||||
- You can add other files in the `custom_generate` folder, and use relative imports.
|
||||
- Consider adding model validation, input validation, or even a separate test file to help users sanity-check your code in their environment.
|
||||
|
||||
#### requirements.txt
|
||||
|
||||
You can optionally specify additional Python requirements in a `requirements.txt` file inside the `custom_generate` folder. These are checked at runtime and an exception will be thrown if they're missing, nudging users to update their environment accordingly.
|
||||
|
||||
#### README.md
|
||||
|
||||
The root level `README.md` in the model repository usually describes the model therein. However, since the focus of the repository is the custom decoding method, we highly recommend to shift its focus towards describing the custom decoding method. In addition to a description of the method, we recommend documenting any input and/or output differences to the original [`~GenerationMixin.generate`]. This way, users can focus on what's new, and rely on Transformers docs for generic implementation details.
|
||||
|
||||
For discoverability, we highly recommend you to add the `custom_generate` tag to your repository. To do so, the top of your `README.md` file should look like the example below. After you push the file, you should see the tag in your repository!
|
||||
|
||||
```
|
||||
---
|
||||
library_name: transformers
|
||||
tags:
|
||||
- custom_generate
|
||||
---
|
||||
|
||||
(your markdown content here)
|
||||
```
|
||||
|
||||
Recommended practices:
|
||||
- Document input and output differences in [`~GenerationMixin.generate`].
|
||||
- Add self-contained examples to enable quick experimentation.
|
||||
- Describe soft-requirements such as if the method only works well with a certain family of models.
|
||||
|
||||
|
||||
## Resources
|
||||
|
||||
Read the [How to generate text: using different decoding methods for language generation with Transformers](https://huggingface.co/blog/how-to-generate) blog post for an explanation of how common decoding strategies work.
|
||||
|
||||
@ -90,11 +90,6 @@ class SamVisionAttentionSplit(SamVisionAttention, nn.Module):
|
||||
|
||||
attn_weights = (query * self.scale) @ key.transpose(-2, -1)
|
||||
|
||||
if self.use_rel_pos:
|
||||
attn_weights = self.add_decomposed_rel_pos(
|
||||
attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
|
||||
)
|
||||
|
||||
attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)
|
||||
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||||
attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
|
||||
@ -114,13 +109,14 @@ Load the model with [`~PreTrainedModel.from_pretrained`].
|
||||
|
||||
```py
|
||||
from transformers import SamModel
|
||||
from transformers.models.sam import modeling_sam
|
||||
|
||||
# replace the attention class in the modeling_sam module
|
||||
modeling_sam.SamVisionAttention = SamVisionAttentionSplit
|
||||
|
||||
# load the pretrained SAM model
|
||||
model = SamModel.from_pretrained("facebook/sam-vit-base")
|
||||
|
||||
# replace the attention class in the vision_encoder module
|
||||
for layer in model.vision_encoder.layers:
|
||||
if hasattr(layer, "attn"):
|
||||
layer.attn = SamVisionAttentionSplit(model.config.vision_config, model.config.vision_config.window_size)
|
||||
```
|
||||
|
||||
## LoRA
|
||||
@ -138,7 +134,7 @@ config = LoraConfig(
|
||||
# apply LoRA to q and v
|
||||
target_modules=["q", "v"],
|
||||
lora_dropout=0.1,
|
||||
task_type="mask-generation"
|
||||
task_type="FEATURE_EXTRACTION"
|
||||
)
|
||||
```
|
||||
|
||||
@ -152,5 +148,5 @@ Call [print_trainable_parameters](https://huggingface.co/docs/peft/package_refer
|
||||
|
||||
```py
|
||||
model.print_trainable_parameters()
|
||||
"trainable params: 608,256 || all params: 94,343,728 || trainable%: 0.6447"
|
||||
"trainable params: 589,824 || all params: 94,274,096 || trainable%: 0.6256"
|
||||
```
|
||||
@ -16,7 +16,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Image processors
|
||||
|
||||
Image processors converts images into pixel values, tensors that represent image colors and size. The pixel values are inputs to a vision or video model. To ensure a pretrained model receives the correct input, an image processor can perform the following operations to make sure an image is exactly like the images a model was pretrained on.
|
||||
Image processors converts images into pixel values, tensors that represent image colors and size. The pixel values are inputs to a vision model. To ensure a pretrained model receives the correct input, an image processor can perform the following operations to make sure an image is exactly like the images a model was pretrained on.
|
||||
|
||||
- [`~BaseImageProcessor.center_crop`] to resize an image
|
||||
- [`~BaseImageProcessor.normalize`] or [`~BaseImageProcessor.rescale`] pixel values
|
||||
|
||||
@ -84,6 +84,19 @@ class Trainer:
|
||||
|
||||
Backends that can be added here are all the backends that are available in the `import_utils.py` module.
|
||||
|
||||
Additionally, specific versions can be specified in each backend. For example, this is how you would specify
|
||||
a requirement on torch>=2.6 on the `Trainer` class:
|
||||
|
||||
```python
|
||||
from .utils.import_utils import requires
|
||||
|
||||
@requires(backends=("torch>=2.6", "accelerate"))
|
||||
class Trainer:
|
||||
...
|
||||
```
|
||||
|
||||
You can specify the following operators: `==`, `>`, `>=`, `<`, `<=`, `!=`.
|
||||
|
||||
## Methods
|
||||
|
||||
[[autodoc]] utils.import_utils.define_import_structure
|
||||
|
||||
@ -16,7 +16,8 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Model debugging toolboxes
|
||||
|
||||
This page lists all the debugging and model adding tools used by the library, as well as the utility functions it provides for it.
|
||||
This page lists all the debugging and model adding tools used by the library, as well as the utility functions it
|
||||
provides for it.
|
||||
|
||||
Most of those are only useful if you are adding new models in the library.
|
||||
|
||||
@ -26,13 +27,14 @@ Most of those are only useful if you are adding new models in the library.
|
||||
|
||||
### Model addition debugger - context manager for model adders
|
||||
|
||||
This context manager is a power user tool intended for model adders.
|
||||
It tracks all forward calls within a model forward and logs a slice of each input and output on a nested Json.
|
||||
To note, this context manager enforces `torch.no_grad()`.
|
||||
This context manager is a power user tool intended for model adders. It tracks all forward calls within a model forward
|
||||
and logs a slice of each input and output on a nested JSON. To note, this context manager enforces `torch.no_grad()`.
|
||||
|
||||
### Rationale
|
||||
|
||||
Because when porting models to transformers, even from python to python, model adders often have to do a lot of manual operations, involving saving and loading tensors, comparing dtypes, etc. This small tool can hopefully shave off some time.
|
||||
When porting models to transformers, even from python to python, model adders often have to do a lot of manual
|
||||
operations, involving saving and loading tensors, comparing dtypes, etc. This small tool can hopefully shave off some
|
||||
time.
|
||||
|
||||
### Usage
|
||||
|
||||
@ -62,10 +64,10 @@ inputs = processor(text=prompt, images=random_image, return_tensors="pt")
|
||||
|
||||
# call forward method (not .generate!)
|
||||
with model_addition_debugger_context(
|
||||
model,
|
||||
debug_path="optional_path_to_your_directory",
|
||||
do_prune_layers=False # This will output ALL the layers of a model.
|
||||
):
|
||||
model,
|
||||
debug_path="optional_path_to_your_directory",
|
||||
do_prune_layers=False # This will output ALL the layers of a model.
|
||||
):
|
||||
output = model.forward(**inputs)
|
||||
|
||||
```
|
||||
@ -73,8 +75,8 @@ with model_addition_debugger_context(
|
||||
|
||||
### Reading results
|
||||
|
||||
The debugger generates two files from the forward call, both with the same base name,
|
||||
but ending either with `_SUMMARY.json` or with `_FULL_TENSORS.json`.
|
||||
The debugger generates two files from the forward call, both with the same base name, but ending either with
|
||||
`_SUMMARY.json` or with `_FULL_TENSORS.json`.
|
||||
|
||||
The first one will contain a summary of each module's _input_ and _output_ tensor values and shapes.
|
||||
|
||||
@ -142,8 +144,8 @@ The first one will contain a summary of each module's _input_ and _output_ tenso
|
||||
{ ... and so on
|
||||
```
|
||||
|
||||
The `_FULL_TENSORS.json` file will display a full view of all tensors, which is useful
|
||||
for comparing two files.
|
||||
The `_FULL_TENSORS.json` file will display a full view of all tensors, which is useful for comparing two files.
|
||||
|
||||
```json
|
||||
"pixel_values": {
|
||||
"shape": "torch.Size([1, 5, 576, 588])",
|
||||
@ -196,9 +198,38 @@ for comparing two files.
|
||||
},
|
||||
```
|
||||
|
||||
#### Saving tensors to disk
|
||||
|
||||
Some model adders may benefit from logging full tensor values to disk to support, for example, numerical analysis
|
||||
across implementations.
|
||||
|
||||
Set `use_repr=False` to write tensors to disk using [SafeTensors](https://huggingface.co/docs/safetensors/en/index).
|
||||
|
||||
```python
|
||||
with model_addition_debugger_context(
|
||||
model,
|
||||
debug_path="optional_path_to_your_directory",
|
||||
do_prune_layers=False,
|
||||
use_repr=False, # Defaults to True
|
||||
):
|
||||
output = model.forward(**inputs)
|
||||
```
|
||||
|
||||
When using `use_repr=False`, tensors are written to the same disk location as the `_SUMMARY.json` and
|
||||
`_FULL_TENSORS.json` files. The `value` property of entries in the `_FULL_TENSORS.json` file will contain a relative
|
||||
path reference to the associated `.safetensors` file. Each tensor is written to its own file as the `data` property of
|
||||
the state dictionary. File names are constructed using the `module_path` as a prefix with a few possible postfixes that
|
||||
are built recursively.
|
||||
|
||||
* Module inputs are denoted with the `_inputs` and outputs by `_outputs`.
|
||||
* `list` and `tuple` instances, such as `args` or function return values, will be postfixed with `_{index}`.
|
||||
* `dict` instances will be postfixed with `_{key}`.
|
||||
|
||||
### Comparing between implementations
|
||||
|
||||
Once the forward passes of two models have been traced by the debugger, one can compare the `json` output files. See below: we can see slight differences between these two implementations' key projection layer. Inputs are mostly identical, but not quite. Looking through the file differences makes it easier to pinpoint which layer is wrong.
|
||||
Once the forward passes of two models have been traced by the debugger, one can compare the `json` output files. See
|
||||
below: we can see slight differences between these two implementations' key projection layer. Inputs are mostly
|
||||
identical, but not quite. Looking through the file differences makes it easier to pinpoint which layer is wrong.
|
||||
|
||||
|
||||

|
||||
@ -206,8 +237,13 @@ Once the forward passes of two models have been traced by the debugger, one can
|
||||
|
||||
### Limitations and scope
|
||||
|
||||
This feature will only work for torch-based models, and would require more work and case-by-case approach for say `jax`-based models that are usually compiled. Models relying heavily on external kernel calls may work, but trace will probably miss some things. Regardless, any python implementation that aims at mimicking another implementation can be traced once instead of reran N times with breakpoints.
|
||||
This feature will only work for torch-based models, and would require more work and case-by-case approach for say
|
||||
`jax`-based models that are usually compiled. Models relying heavily on external kernel calls may work, but trace will
|
||||
probably miss some things. Regardless, any python implementation that aims at mimicking another implementation can be
|
||||
traced once instead of reran N times with breakpoints.
|
||||
|
||||
If you pass `do_prune_layers=False` to your model debugger, ALL the layers will be outputted to `json`. Else, only the first and last layer will be shown. This is useful when some layers (typically cross-attention) appear only after N layers.
|
||||
If you pass `do_prune_layers=False` to your model debugger, ALL the layers will be outputted to `json`. Else, only the
|
||||
first and last layer will be shown. This is useful when some layers (typically cross-attention) appear only after N
|
||||
layers.
|
||||
|
||||
[[autodoc]] model_addition_debugger_context
|
||||
|
||||
@ -29,6 +29,11 @@ Most of those are only useful if you are studying the code of the models in the
|
||||
[[autodoc]] AttentionInterface
|
||||
- register
|
||||
|
||||
## Attention Mask Functions
|
||||
|
||||
[[autodoc]] AttentionMaskInterface
|
||||
- register
|
||||
|
||||
## Rotary Position Embedding Functions
|
||||
|
||||
[[autodoc]] dynamic_rope_update
|
||||
|
||||
@ -20,9 +20,13 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
Text generation is the most popular application for large language models (LLMs). A LLM is trained to generate the next word (token) given some initial text (prompt) along with its own generated outputs up to a predefined length or when it reaches an end-of-sequence (`EOS`) token.
|
||||
|
||||
In Transformers, the [`~GenerationMixin.generate`] API handles text generation, and it is available for all models with generative capabilities.
|
||||
In Transformers, the [`~GenerationMixin.generate`] API handles text generation, and it is available for all models with generative capabilities. This guide will show you the basics of text generation with [`~GenerationMixin.generate`] and some common pitfalls to avoid.
|
||||
|
||||
This guide will show you the basics of text generation with [`~GenerationMixin.generate`] and some common pitfalls to avoid.
|
||||
> [!TIP]
|
||||
> You can also chat with a model directly from the command line. ([reference](./conversations.md#transformers-cli))
|
||||
> ```shell
|
||||
> transformers chat Qwen/Qwen2.5-0.5B-Instruct
|
||||
> ```
|
||||
|
||||
## Default generate
|
||||
|
||||
@ -80,14 +84,17 @@ GenerationConfig {
|
||||
}
|
||||
```
|
||||
|
||||
You can customize [`~GenerationMixin.generate`] by overriding the parameters and values in [`GenerationConfig`]. Some of the most commonly adjusted parameters are [max_new_tokens](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.max_new_tokens), [num_beams](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.num_beams), [do_sample](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.do_sample), and [num_return_sequences](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.num_return_sequences).
|
||||
You can customize [`~GenerationMixin.generate`] by overriding the parameters and values in [`GenerationConfig`]. See [this section below](#common-options) for commonly adjusted parameters.
|
||||
|
||||
```py
|
||||
# enable beam search sampling strategy
|
||||
model.generate(**inputs, num_beams=4, do_sample=True)
|
||||
```
|
||||
|
||||
[`~GenerationMixin.generate`] can also be extended with external libraries or custom code. The `logits_processor` parameter accepts custom [`LogitsProcessor`] instances for manipulating the next token probability distribution. `stopping_criteria` supports custom [`StoppingCriteria`] to stop text generation. Check out the [logits-processor-zoo](https://github.com/NVIDIA/logits-processor-zoo) for more examples of external [`~GenerationMixin.generate`]-compatible extensions.
|
||||
[`~GenerationMixin.generate`] can also be extended with external libraries or custom code:
|
||||
1. the `logits_processor` parameter accepts custom [`LogitsProcessor`] instances for manipulating the next token probability distribution;
|
||||
2. the `stopping_criteria` parameters supports custom [`StoppingCriteria`] to stop text generation;
|
||||
3. other custom generation methods can be loaded through the `custom_generate` flag ([docs](generation_strategies.md/#custom-decoding-methods)).
|
||||
|
||||
Refer to the [Generation strategies](./generation_strategies) guide to learn more about search, sampling, and decoding strategies.
|
||||
|
||||
@ -134,6 +141,20 @@ outputs = model.generate(**inputs, generation_config=generation_config)
|
||||
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## Common Options
|
||||
|
||||
[`~GenerationMixin.generate`] is a powerful tool that can be heavily customized. This can be daunting for a new users. This section contains a list of popular generation options that you can define in most text generation tools in Transformers: [`~GenerationMixin.generate`], [`GenerationConfig`], `pipelines`, the `chat` CLI, ...
|
||||
|
||||
| Option name | Type | Simplified description |
|
||||
|---|---|---|
|
||||
| `max_new_tokens` | `int` | Controls the maximum generation length. Be sure to define it, as it usually defaults to a small value. |
|
||||
| `do_sample` | `bool` | Defines whether generation will sample the next token (`True`), or is greedy instead (`False`). Most use cases should set this flag to `True`. Check [this guide](./generation_strategies.md) for more information. |
|
||||
| `temperature` | `float` | How unpredictable the next selected token will be. High values (`>0.8`) are good for creative tasks, low values (e.g. `<0.4`) for tasks that require "thinking". Requires `do_sample=True`. |
|
||||
| `num_beams` | `int` | When set to `>1`, activates the beam search algorithm. Beam search is good on input-grounded tasks. Check [this guide](./generation_strategies.md) for more information. |
|
||||
| `repetition_penalty` | `float` | Set it to `>1.0` if you're seeing the model repeat itself often. Larger values apply a larger penalty. |
|
||||
| `eos_token_id` | `List[int]` | The token(s) that will cause generation to stop. The default value is usually good, but you can specify a different token. |
|
||||
|
||||
|
||||
## Pitfalls
|
||||
|
||||
The section below covers some common issues you may encounter during text generation and how to solve them.
|
||||
@ -286,4 +307,4 @@ Take a look below for some more specific and specialized text generation librari
|
||||
- [SynCode](https://github.com/uiuc-focal-lab/syncode): a library for context-free grammar guided generation (JSON, SQL, Python).
|
||||
- [Text Generation Inference](https://github.com/huggingface/text-generation-inference): a production-ready server for LLMs.
|
||||
- [Text generation web UI](https://github.com/oobabooga/text-generation-webui): a Gradio web UI for text generation.
|
||||
- [logits-processor-zoo](https://github.com/NVIDIA/logits-processor-zoo): additional logits processors for controlling text generation.
|
||||
- [logits-processor-zoo](https://github.com/NVIDIA/logits-processor-zoo): additional logits processors for controlling text generation.
|
||||
|
||||
55
docs/source/en/main_classes/video_processor.md
Normal file
55
docs/source/en/main_classes/video_processor.md
Normal file
@ -0,0 +1,55 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
|
||||
# Video Processor
|
||||
|
||||
A **Video Processor** is a utility responsible for preparing input features for video models, as well as handling the post-processing of their outputs. It provides transformations such as resizing, normalization, and conversion into PyTorch.
|
||||
|
||||
The video processor extends the functionality of image processors by allowing Vision Large Language Models (VLMs) to handle videos with a distinct set of arguments compared to images. It serves as the bridge between raw video data and the model, ensuring that input features are optimized for the VLM.
|
||||
|
||||
When adding a new VLM or updating an existing one to enable distinct video preprocessing, saving and reloading the processor configuration will store the video related arguments in a dedicated file named `video_preprocessing_config.json`. Don't worry if you haven't updated your VLM, the processor will try to load video related configurations from a file named `preprocessing_config.json`.
|
||||
|
||||
|
||||
### Usage Example
|
||||
Here's an example of how to load a video processor with [`llava-hf/llava-onevision-qwen2-0.5b-ov-hf`](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf) model:
|
||||
|
||||
```python
|
||||
from transformers import AutoVideoProcessor
|
||||
|
||||
processor = AutoVideoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-0.5b-ov-hf")
|
||||
```
|
||||
|
||||
Currently, if using base image processor for videos, it processes video data by treating each frame as an individual image and applying transformations frame-by-frame. While functional, this approach is not highly efficient. Using `AutoVideoProcessor` allows us to take advantage of **fast video processors**, leveraging the [torchvision](https://pytorch.org/vision/stable/index.html) library. Fast processors handle the whole batch of videos at once, without iterating over each video or frame. These updates introduce GPU acceleration and significantly enhance processing speed, especially for tasks requiring high throughput.
|
||||
|
||||
Fast video processors are available for all models and are loaded by default when an `AutoVideoProcessor` is initialized. When using a fast video processor, you can also set the `device` argument to specify the device on which the processing should be done. By default, the processing is done on the same device as the inputs if the inputs are tensors, or on the CPU otherwise. For even more speed improvement, we can compile the processor when using 'cuda' as device.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers.video_utils import load_video
|
||||
from transformers import AutoVideoProcessor
|
||||
|
||||
video = load_video("video.mp4")
|
||||
processor = AutoVideoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-0.5b-ov-hf", device="cuda")
|
||||
processor = torch.compile(processor)
|
||||
processed_video = processor(video, return_tensors="pt")
|
||||
```
|
||||
|
||||
|
||||
## BaseVideoProcessor
|
||||
|
||||
[[autodoc]] video_processing_utils.BaseVideoProcessor
|
||||
|
||||
@ -57,6 +57,7 @@ This model was contributed by [lysandre](https://huggingface.co/lysandre). This
|
||||
- Embedding size E is different from hidden size H justified because the embeddings are context independent (one embedding vector represents one token), whereas hidden states are context dependent (one hidden state represents a sequence of tokens) so it's more logical to have H >> E. Also, the embedding matrix is large since it's V x E (V being the vocab size). If E < H, it has less parameters.
|
||||
- Layers are split in groups that share parameters (to save memory).
|
||||
Next sentence prediction is replaced by a sentence ordering prediction: in the inputs, we have two sentences A and B (that are consecutive) and we either feed A followed by B or B followed by A. The model must predict if they have been swapped or not.
|
||||
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
### Using Scaled Dot Product Attention (SDPA)
|
||||
|
||||
|
||||
@ -74,6 +74,10 @@ Likewise, if your `NewModel` is a subclass of [`PreTrainedModel`], make sure its
|
||||
|
||||
[[autodoc]] AutoImageProcessor
|
||||
|
||||
## AutoVideoProcessor
|
||||
|
||||
[[autodoc]] AutoVideoProcessor
|
||||
|
||||
## AutoProcessor
|
||||
|
||||
[[autodoc]] AutoProcessor
|
||||
@ -385,3 +389,9 @@ The following auto classes are available for the following multimodal tasks.
|
||||
### AutoModelForImageTextToText
|
||||
|
||||
[[autodoc]] AutoModelForImageTextToText
|
||||
|
||||
## Time Series
|
||||
|
||||
### AutoModelForTimeSeriesPrediction
|
||||
|
||||
[[autodoc]] AutoModelForTimeSeriesPrediction
|
||||
|
||||
@ -39,7 +39,7 @@ Checkout all Bamba-9B model checkpoints [here](https://github.com/foundation-mod
|
||||
<!---
|
||||
## Usage Tips
|
||||
|
||||
Tips:
|
||||
Tips:
|
||||
|
||||
- The architecture is based on Mamba-2 models.
|
||||
|
||||
@ -63,7 +63,35 @@ response = model.generate(**inputs, max_new_tokens=64)
|
||||
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
|
||||
```
|
||||
|
||||
|
||||
## Padding-Free Training
|
||||
|
||||
Bamba supports padding-free training in which distinct training examples can be concatenated
|
||||
together while nevertheless processing the inputs as though they belonged to separate batches. When
|
||||
the examples are of varying lengths, padding-free training can provide significant speed ups and
|
||||
memory savings compared to batching the examples together and using padding, as the unnecessary
|
||||
compute and memory due to padding is avoided entirely. The performance gains depend on factors such
|
||||
as the model and the data distribution, but throughput gains up to [~2x are commonly
|
||||
seen](https://github.com/huggingface/transformers/pull/35861#issue-2807873129).
|
||||
|
||||
Using padding-free training with Bamba requires the `flash-attn`, `mamba-ssm`, and `causal-conv1d`
|
||||
packages, and the following arguments must be passed to the model in addition to `input_ids` and
|
||||
`labels`:
|
||||
* `position_ids: torch.LongTensor`: the position index of each token in each sequence.
|
||||
* `seq_idx: torch.IntTensor`: the index of each sequence in the batch.
|
||||
* Each of the [`FlashAttentionKwargs`]
|
||||
* `cu_seq_lens_q: torch.LongTensor`: The cumulative sequence lengths of all queries.
|
||||
* `cu_seq_lens_k: torch.LongTensor`: The cumulative sequence lengths of all keys.
|
||||
* `max_length_q: int`: the longest query length in the batch.
|
||||
* `max_length_k: int`: the longest key length in the batch.
|
||||
|
||||
The `attention_mask` inputs should not be provided. The [`DataCollatorWithFlattening`] can be used
|
||||
to programmatically generate the above set of additional arguments using `return_seq_idx=True` and
|
||||
`return_flash_attn_kwargs=True`. See [this blog post](https://huggingface.co/blog/packing-with-FA2)
|
||||
for additional information.
|
||||
|
||||
|
||||
[[autodoc]] BambaForCausalLM
|
||||
- forward
|
||||
|
||||
This HF implementation is contributed by [ani300](https://github.com/ani300) and [fabianlim](https://github.com/fabianlim).
|
||||
This HF implementation is contributed by [ani300](https://github.com/ani300) and [fabianlim](https://github.com/fabianlim).
|
||||
|
||||
@ -14,115 +14,87 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# BART
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# BART
|
||||
[BART](https://huggingface.co/papers/1910.13461) is a sequence-to-sequence model that combines the pretraining objectives from BERT and GPT. It’s pretrained by corrupting text in different ways like deleting words, shuffling sentences, or masking tokens and learning how to fix it. The encoder encodes the corrupted document and the corrupted text is fixed by the decoder. As it learns to recover the original text, BART gets really good at both understanding and generating language.
|
||||
|
||||
The Bart model was proposed in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
|
||||
Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
|
||||
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019.
|
||||
You can find all the original BART checkpoints under the [AI at Meta](https://huggingface.co/facebook?search_models=bart) organization.
|
||||
|
||||
According to the abstract,
|
||||
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
- Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a
|
||||
left-to-right decoder (like GPT).
|
||||
- The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme,
|
||||
where spans of text are replaced with a single mask token.
|
||||
- BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It
|
||||
matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new
|
||||
state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains
|
||||
of up to 6 ROUGE.
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The authors' code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/bart).
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
## Usage tips:
|
||||
pipeline = pipeline(
|
||||
task="fill-mask",
|
||||
model="facebook/bart-large",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create <mask> through a process known as photosynthesis.")
|
||||
|
||||
- BART is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
the left.
|
||||
- Sequence-to-sequence model with an encoder and a decoder. Encoder is fed a corrupted version of the tokens, decoder is fed the original tokens (but has a mask to hide the future words like a regular transformers decoder). A composition of the following transformations are applied on the pretraining tasks for the encoder:
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
* mask random tokens (like in BERT)
|
||||
* delete random tokens
|
||||
* mask a span of k tokens with a single mask token (a span of 0 tokens is an insertion of a mask token)
|
||||
* permute sentences
|
||||
* rotate the document to make it start at a specific token
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
## Implementation Notes
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"facebook/bart-large",
|
||||
)
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"facebook/bart-large",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to("cuda")
|
||||
|
||||
- Bart doesn't use `token_type_ids` for sequence classification. Use [`BartTokenizer`] or
|
||||
[`~BartTokenizer.encode`] to get the proper splitting.
|
||||
- The forward pass of [`BartModel`] will create the `decoder_input_ids` if they are not passed.
|
||||
This is different than some other modeling APIs. A typical use case of this feature is mask filling.
|
||||
- Model predictions are intended to be identical to the original implementation when
|
||||
`forced_bos_token_id=0`. This only works, however, if the string you pass to
|
||||
[`fairseq.encode`] starts with a space.
|
||||
- [`~generation.GenerationMixin.generate`] should be used for conditional generation tasks like
|
||||
summarization, see the example in that docstrings.
|
||||
- Models that load the *facebook/bart-large-cnn* weights will not have a `mask_token_id`, or be able to perform
|
||||
mask-filling tasks.
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
## Mask Filling
|
||||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
The `facebook/bart-base` and `facebook/bart-large` checkpoints can be used to fill multi-token masks.
|
||||
|
||||
```python
|
||||
from transformers import BartForConditionalGeneration, BartTokenizer
|
||||
|
||||
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large", forced_bos_token_id=0)
|
||||
tok = BartTokenizer.from_pretrained("facebook/bart-large")
|
||||
example_english_phrase = "UN Chief Says There Is No <mask> in Syria"
|
||||
batch = tok(example_english_phrase, return_tensors="pt")
|
||||
generated_ids = model.generate(batch["input_ids"])
|
||||
assert tok.batch_decode(generated_ids, skip_special_tokens=True) == [
|
||||
"UN Chief Says There Is No Plan to Stop Chemical Weapons in Syria"
|
||||
]
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
|
||||
## Resources
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with BART. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
```bash
|
||||
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model facebook/bart-large --device 0
|
||||
```
|
||||
|
||||
<PipelineTag pipeline="summarization"/>
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
- A blog post on [Distributed Training: Train BART/T5 for Summarization using 🤗 Transformers and Amazon SageMaker](https://huggingface.co/blog/sagemaker-distributed-training-seq2seq).
|
||||
- A notebook on how to [finetune BART for summarization with fastai using blurr](https://colab.research.google.com/github/ohmeow/ohmeow_website/blob/master/posts/2021-05-25-mbart-sequence-classification-with-blurr.ipynb). 🌎
|
||||
- A notebook on how to [finetune BART for summarization in two languages with Trainer class](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb). 🌎
|
||||
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb).
|
||||
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb).
|
||||
- [`FlaxBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/summarization).
|
||||
- An example of how to train [`BartForConditionalGeneration`] with a Hugging Face `datasets` object can be found in this [forum discussion](https://discuss.huggingface.co/t/train-bart-for-conditional-generation-e-g-summarization/1904)
|
||||
- [Summarization](https://huggingface.co/course/chapter7/5?fw=pt#summarization) chapter of the 🤗 Hugging Face course.
|
||||
- [Summarization task guide](../tasks/summarization)
|
||||
## Notes
|
||||
|
||||
<PipelineTag pipeline="fill-mask"/>
|
||||
|
||||
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
|
||||
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
|
||||
- [`FlaxBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb).
|
||||
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 🤗 Hugging Face Course.
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
|
||||
<PipelineTag pipeline="translation"/>
|
||||
|
||||
- A notebook on how to [finetune mBART using Seq2SeqTrainer for Hindi to English translation](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb). 🌎
|
||||
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/translation) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb).
|
||||
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/translation) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
|
||||
- [Translation task guide](../tasks/translation)
|
||||
|
||||
See also:
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- [Distilled checkpoints](https://huggingface.co/models?search=distilbart) are described in this [paper](https://arxiv.org/abs/2010.13002).
|
||||
- Inputs should be padded on the right because BERT uses absolute position embeddings.
|
||||
- The [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) checkpoint doesn't include `mask_token_id` which means it can't perform mask-filling tasks.
|
||||
- BART doesn’t use `token_type_ids` for sequence classification. Use [`BartTokenizer`] or [`~PreTrainedTokenizerBase.encode`] to get the proper splitting.
|
||||
- The forward pass of [`BartModel`] creates the `decoder_input_ids` if they're not passed. This can be different from other model APIs, but it is a useful feature for mask-filling tasks.
|
||||
- Model predictions are intended to be identical to the original implementation when `forced_bos_token_id=0`. This only works if the text passed to `fairseq.encode` begins with a space.
|
||||
- [`~GenerationMixin.generate`] should be used for conditional generation tasks like summarization.
|
||||
|
||||
## BartConfig
|
||||
|
||||
|
||||
@ -150,6 +150,7 @@ If you're interested in submitting a resource to be included here, please feel f
|
||||
[[autodoc]] BeitImageProcessor
|
||||
- preprocess
|
||||
- post_process_semantic_segmentation
|
||||
|
||||
## BeitImageProcessorFast
|
||||
|
||||
[[autodoc]] BeitImageProcessorFast
|
||||
|
||||
@ -16,60 +16,82 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# BERTweet
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
## BERTweet
|
||||
|
||||
The BERTweet model was proposed in [BERTweet: A pre-trained language model for English Tweets](https://www.aclweb.org/anthology/2020.emnlp-demos.2.pdf) by Dat Quoc Nguyen, Thanh Vu, Anh Tuan Nguyen.
|
||||
[BERTweet](https://huggingface.co/papers/2005.10200) shares the same architecture as [BERT-base](./bert), but it’s pretrained like [RoBERTa](./roberta) on English Tweets. It performs really well on Tweet-related tasks like part-of-speech tagging, named entity recognition, and text classification.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*We present BERTweet, the first public large-scale pre-trained language model for English Tweets. Our BERTweet, having
|
||||
the same architecture as BERT-base (Devlin et al., 2019), is trained using the RoBERTa pre-training procedure (Liu et
|
||||
al., 2019). Experiments show that BERTweet outperforms strong baselines RoBERTa-base and XLM-R-base (Conneau et al.,
|
||||
2020), producing better performance results than the previous state-of-the-art models on three Tweet NLP tasks:
|
||||
Part-of-speech tagging, Named-entity recognition and text classification.*
|
||||
You can find all the original BERTweet checkpoints under the [VinAI Research](https://huggingface.co/vinai?search_models=BERTweet) organization.
|
||||
|
||||
This model was contributed by [dqnguyen](https://huggingface.co/dqnguyen). The original code can be found [here](https://github.com/VinAIResearch/BERTweet).
|
||||
> [!TIP]
|
||||
> Refer to the [BERT](./bert) docs for more examples of how to apply BERTweet to different language tasks.
|
||||
|
||||
## Usage example
|
||||
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
```python
|
||||
>>> import torch
|
||||
>>> from transformers import AutoModel, AutoTokenizer
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
>>> bertweet = AutoModel.from_pretrained("vinai/bertweet-base")
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
>>> # For transformers v4.x+:
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", use_fast=False)
|
||||
pipeline = pipeline(
|
||||
task="fill-mask",
|
||||
model="vinai/bertweet-base",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create <mask> through a process known as photosynthesis.")
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
>>> # For transformers v3.x:
|
||||
>>> # tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base")
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
>>> # INPUT TWEET IS ALREADY NORMALIZED!
|
||||
>>> line = "SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :cry:"
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"vinai/bertweet-base",
|
||||
)
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"vinai/bertweet-base",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto"
|
||||
)
|
||||
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to("cuda")
|
||||
|
||||
>>> input_ids = torch.tensor([tokenizer.encode(line)])
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
>>> with torch.no_grad():
|
||||
... features = bertweet(input_ids) # Models outputs are now tuples
|
||||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
>>> # With TensorFlow 2.0+:
|
||||
>>> # from transformers import TFAutoModel
|
||||
>>> # bertweet = TFAutoModel.from_pretrained("vinai/bertweet-base")
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
|
||||
<Tip>
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
This implementation is the same as BERT, except for tokenization method. Refer to [BERT documentation](bert) for
|
||||
API reference information.
|
||||
```bash
|
||||
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model vinai/bertweet-base --device 0
|
||||
```
|
||||
|
||||
</Tip>
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
- Use the [`AutoTokenizer`] or [`BertweetTokenizer`] because it’s preloaded with a custom vocabulary adapted to tweet-specific tokens like hashtags (#), mentions (@), emojis, and common abbreviations. Make sure to also install the [emoji](https://pypi.org/project/emoji/) library.
|
||||
- Inputs should be padded on the right (`padding="max_length"`) because BERT uses absolute position embeddings.
|
||||
|
||||
## BertweetTokenizer
|
||||
|
||||
|
||||
@ -14,63 +14,87 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# BigBird
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
|
||||
<img alt= "Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# BigBird
|
||||
|
||||
The BigBird model was proposed in [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by
|
||||
Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon,
|
||||
Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others. BigBird, is a sparse-attention
|
||||
based transformer which extends Transformer based models, such as BERT to much longer sequences. In addition to sparse
|
||||
attention, BigBird also applies global attention as well as random attention to the input sequence. Theoretically, it
|
||||
has been shown that applying sparse, global, and random attention approximates full attention, while being
|
||||
computationally much more efficient for longer sequences. As a consequence of the capability to handle longer context,
|
||||
BigBird has shown improved performance on various long document NLP tasks, such as question answering and
|
||||
summarization, compared to BERT or RoBERTa.
|
||||
[BigBird](https://huggingface.co/papers/2007.14062) is a transformer model built to handle sequence lengths up to 4096 compared to 512 for [BERT](./bert). Traditional transformers struggle with long inputs because attention gets really expensive as the sequence length grows. BigBird fixes this by using a sparse attention mechanism, which means it doesn’t try to look at everything at once. Instead, it mixes in local attention, random attention, and a few global tokens to process the whole input. This combination gives it the best of both worlds. It keeps the computation efficient while still capturing enough of the sequence to understand it well. Because of this, BigBird is great at tasks involving long documents, like question answering, summarization, and genomic applications.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP.
|
||||
Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence
|
||||
length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that
|
||||
reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and
|
||||
is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our
|
||||
theoretical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire
|
||||
sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to
|
||||
8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context,
|
||||
BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also
|
||||
propose novel applications to genomics data.*
|
||||
You can find all the original BigBird checkpoints under the [Google](https://huggingface.co/google?search_models=bigbird) organization.
|
||||
|
||||
This model was contributed by [vasudevgupta](https://huggingface.co/vasudevgupta). The original code can be found
|
||||
[here](https://github.com/google-research/bigbird).
|
||||
> [!TIP]
|
||||
> Click on the BigBird models in the right sidebar for more examples of how to apply BigBird to different language tasks.
|
||||
|
||||
## Usage tips
|
||||
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
- For an in-detail explanation on how BigBird's attention works, see [this blog post](https://huggingface.co/blog/big-bird).
|
||||
- BigBird comes with 2 implementations: **original_full** & **block_sparse**. For the sequence length < 1024, using
|
||||
**original_full** is advised as there is no benefit in using **block_sparse** attention.
|
||||
- The code currently uses window size of 3 blocks and 2 global blocks.
|
||||
- Sequence length must be divisible by block size.
|
||||
- Current implementation supports only **ITC**.
|
||||
- Current implementation doesn't support **num_random_blocks = 0**
|
||||
- BigBird is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
the left.
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="fill-mask",
|
||||
model="google/bigbird-roberta-base",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create [MASK] through a process known as photosynthesis.")
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"google/bigbird-roberta-base",
|
||||
)
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"google/bigbird-roberta-base",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
)
|
||||
inputs = tokenizer("Plants create [MASK] through a process known as photosynthesis.", return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
!echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers-cli run --task fill-mask --model google/bigbird-roberta-base --device 0
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
- Inputs should be padded on the right because BigBird uses absolute position embeddings.
|
||||
- BigBird supports `original_full` and `block_sparse` attention. If the input sequence length is less than 1024, it is recommended to use `original_full` since sparse patterns don't offer much benefit for smaller inputs.
|
||||
- The current implementation uses window size of 3 blocks and 2 global blocks, only supports the ITC-implementation, and doesn't support `num_random_blocks=0`.
|
||||
- The sequence length must be divisible by the block size.
|
||||
|
||||
## Resources
|
||||
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
- Read the [BigBird](https://huggingface.co/blog/big-bird) blog post for more details about how its attention works.
|
||||
|
||||
## BigBirdConfig
|
||||
|
||||
|
||||
@ -14,77 +14,121 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# BioGPT
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# BioGPT
|
||||
|
||||
The BioGPT model was proposed in [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. BioGPT is a domain-specific generative pre-trained Transformer language model for biomedical text generation and mining. BioGPT follows the Transformer language model backbone, and is pre-trained on 15M PubMed abstracts from scratch.
|
||||
[BioGPT](https://huggingface.co/papers/2210.10341) is a generative Transformer model based on [GPT-2](./gpt2) and pretrained on 15 million PubMed abstracts. It is designed for biomedical language tasks.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find all the original BioGPT checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=biogpt) organization.
|
||||
|
||||
*Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.*
|
||||
> [!TIP]
|
||||
> Click on the BioGPT models in the right sidebar for more examples of how to apply BioGPT to different language tasks.
|
||||
|
||||
This model was contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/microsoft/BioGPT).
|
||||
The example below demonstrates how to generate biomedical text with [`Pipeline`], [`AutoModel`], and also from the command line.
|
||||
|
||||
## Usage tips
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
- BioGPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left.
|
||||
- BioGPT was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next token in a sequence. Leveraging this feature allows BioGPT to generate syntactically coherent text as it can be observed in the run_generation.py example script.
|
||||
- The model can take the `past_key_values` (for PyTorch) as input, which is the previously computed key/value attention pairs. Using this (past_key_values or past) value prevents the model from re-computing pre-computed values in the context of text generation. For PyTorch, see past_key_values argument of the BioGptForCausalLM.forward() method for more information on its usage.
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
### Using Scaled Dot Product Attention (SDPA)
|
||||
|
||||
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
|
||||
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
|
||||
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
|
||||
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
|
||||
page for more information.
|
||||
|
||||
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
|
||||
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
|
||||
|
||||
```
|
||||
from transformers import BioGptForCausalLM
|
||||
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt", attn_implementation="sdpa", torch_dtype=torch.float16)
|
||||
generator = pipeline(
|
||||
task="text-generation",
|
||||
model="microsoft/biogpt",
|
||||
torch_dtype=torch.float16,
|
||||
device=0,
|
||||
)
|
||||
result = generator("Ibuprofen is best used for", truncation=True, max_length=50, do_sample=True)[0]["generated_text"]
|
||||
print(result)
|
||||
```
|
||||
|
||||
On a local benchmark (NVIDIA GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16` and `microsoft/biogpt` model with a CausalLM head,
|
||||
we saw the following speedups during training.
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
| num_training_steps | batch_size | seq_len | is cuda | Time per batch (eager - s) | Time per batch (sdpa - s) | Speedup (%) | Eager peak mem (MB) | sdpa peak mem (MB) | Mem saving (%) |
|
||||
|--------------------|------------|---------|---------|----------------------------|---------------------------|-------------|---------------------|--------------------|----------------|
|
||||
| 100 | 1 | 128 | False | 0.038 | 0.031 | 21.301 | 1601.862 | 1601.497 | 0.023 |
|
||||
| 100 | 1 | 256 | False | 0.039 | 0.034 | 15.084 | 1624.944 | 1625.296 | -0.022 |
|
||||
| 100 | 2 | 128 | False | 0.039 | 0.033 | 16.820 | 1624.567 | 1625.296 | -0.045 |
|
||||
| 100 | 2 | 256 | False | 0.065 | 0.059 | 10.255 | 1672.164 | 1672.164 | 0.000 |
|
||||
| 100 | 4 | 128 | False | 0.062 | 0.058 | 6.998 | 1671.435 | 1672.164 | -0.044 |
|
||||
| 100 | 4 | 256 | False | 0.113 | 0.100 | 13.316 | 2350.179 | 1848.435 | 27.144 |
|
||||
| 100 | 8 | 128 | False | 0.107 | 0.098 | 9.883 | 2098.521 | 1848.435 | 13.530 |
|
||||
| 100 | 8 | 256 | False | 0.222 | 0.196 | 13.413 | 3989.980 | 2986.492 | 33.601 |
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"microsoft/biogpt",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
On a local benchmark (NVIDIA GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16` and `microsoft/biogpt` model with a simple AutoModel head,
|
||||
we saw the following speedups during inference.
|
||||
input_text = "Ibuprofen is best used for"
|
||||
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
||||
|
||||
| num_batches | batch_size | seq_len | is cuda | is half | use mask | Per token latency eager (ms) | Per token latency SDPA (ms) | Speedup (%) | Mem eager (MB) | Mem BT (MB) | Mem saved (%) |
|
||||
|-------------|------------|---------|---------|---------|----------|------------------------------|-----------------------------|-------------|----------------|--------------|---------------|
|
||||
| 50 | 1 | 64 | True | True | True | 0.115 | 0.098 | 17.392 | 716.998 | 716.998 | 0.000 |
|
||||
| 50 | 1 | 128 | True | True | True | 0.115 | 0.093 | 24.640 | 730.916 | 730.916 | 0.000 |
|
||||
| 50 | 2 | 64 | True | True | True | 0.114 | 0.096 | 19.204 | 730.900 | 730.900 | 0.000 |
|
||||
| 50 | 2 | 128 | True | True | True | 0.117 | 0.095 | 23.529 | 759.262 | 759.262 | 0.000 |
|
||||
| 50 | 4 | 64 | True | True | True | 0.113 | 0.096 | 18.325 | 759.229 | 759.229 | 0.000 |
|
||||
| 50 | 4 | 128 | True | True | True | 0.186 | 0.178 | 4.289 | 816.478 | 816.478 | 0.000 |
|
||||
with torch.no_grad():
|
||||
generated_ids = model.generate(**inputs, max_length=50)
|
||||
|
||||
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
||||
print(output)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
## Resources
|
||||
```bash
|
||||
echo -e "Ibuprofen is best used for" | transformers-cli run --task text-generation --model microsoft/biogpt --device 0
|
||||
```
|
||||
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bit precision.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
||||
|
||||
bnb_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_use_double_quant=True
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/BioGPT-Large")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"microsoft/BioGPT-Large",
|
||||
quantization_config=bnb_config,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
input_text = "Ibuprofen is best used for"
|
||||
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
||||
with torch.no_grad():
|
||||
generated_ids = model.generate(**inputs, max_length=50)
|
||||
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
||||
print(output)
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Pad inputs on the right because BioGPT uses absolute position embeddings.
|
||||
- BioGPT can reuse previously computed key-value attention pairs. Access this feature with the [past_key_values](https://huggingface.co/docs/transformers/main/en/model_doc/biogpt#transformers.BioGptModel.forward.past_key_values) parameter in [`BioGPTModel.forward`].
|
||||
- The `head_mask` argument is ignored when using an attention implementation other than "eager". If you want to use `head_mask`, make sure `attn_implementation="eager"`).
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"microsoft/biogpt",
|
||||
attn_implementation="eager"
|
||||
)
|
||||
|
||||
## BioGptConfig
|
||||
|
||||
@ -108,7 +152,7 @@ we saw the following speedups during inference.
|
||||
[[autodoc]] BioGptForCausalLM
|
||||
- forward
|
||||
|
||||
|
||||
|
||||
## BioGptForTokenClassification
|
||||
|
||||
[[autodoc]] BioGptForTokenClassification
|
||||
|
||||
@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
Note that [`BlenderbotSmallModel`] and
|
||||
@ -52,7 +54,7 @@ found [here](https://github.com/facebookresearch/ParlAI).
|
||||
|
||||
## Usage tips
|
||||
|
||||
Blenderbot Small is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
Blenderbot Small is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
the left.
|
||||
|
||||
|
||||
|
||||
@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
@ -45,7 +47,7 @@ This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The
|
||||
|
||||
## Usage tips and example
|
||||
|
||||
Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
|
||||
Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
|
||||
rather than the left.
|
||||
|
||||
An example:
|
||||
@ -71,7 +73,7 @@ An example:
|
||||
`facebook/blenderbot_small_90M`, have a different architecture and consequently should be used with
|
||||
[BlenderbotSmall](blenderbot-small).
|
||||
|
||||
|
||||
|
||||
## Resources
|
||||
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
|
||||
@ -39,7 +39,7 @@ CSM can be used to simply generate speech from a text prompt:
|
||||
import torch
|
||||
from transformers import CsmForConditionalGeneration, AutoProcessor
|
||||
|
||||
model_id = "eustlb/csm-1b"
|
||||
model_id = "sesame/csm-1b"
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# load the model and the processor
|
||||
@ -74,7 +74,7 @@ import torch
|
||||
from transformers import CsmForConditionalGeneration, AutoProcessor
|
||||
from datasets import load_dataset, Audio
|
||||
|
||||
model_id = "eustlb/csm-1b"
|
||||
model_id = "sesame/csm-1b"
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# load the model and the processor
|
||||
@ -119,7 +119,7 @@ import torch
|
||||
from transformers import CsmForConditionalGeneration, AutoProcessor
|
||||
from datasets import load_dataset, Audio
|
||||
|
||||
model_id = "eustlb/csm-1b"
|
||||
model_id = "sesame/csm-1b"
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# load the model and the processor
|
||||
@ -176,7 +176,7 @@ import copy
|
||||
from transformers import CsmForConditionalGeneration, AutoProcessor
|
||||
from datasets import load_dataset
|
||||
|
||||
model_id = "eustlb/csm-1b"
|
||||
model_id = "sesame/csm-1b"
|
||||
device = "cuda"
|
||||
|
||||
# set logs to ensure no recompilation and graph breaks
|
||||
@ -308,13 +308,14 @@ CSM Transformers integration supports training!
|
||||
from transformers import CsmForConditionalGeneration, AutoProcessor
|
||||
from datasets import load_dataset, Audio
|
||||
|
||||
model_id = "eustlb/csm-1b"
|
||||
model_id = "sesame/csm-1b"
|
||||
device = "cuda"
|
||||
|
||||
# load the model and the processor
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
|
||||
model.train()
|
||||
model.codec_model.eval()
|
||||
|
||||
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
|
||||
# ensure the audio is 24kHz
|
||||
@ -355,6 +356,10 @@ The original code can be found [here](https://github.com/SesameAILabs/csm).
|
||||
|
||||
## CsmProcessor
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/eustlb/documentation-images/resolve/main/fig1.jpg"/>
|
||||
</div>
|
||||
|
||||
[[autodoc]] CsmProcessor
|
||||
- __call__
|
||||
|
||||
|
||||
@ -53,6 +53,7 @@ The original code for vision can be found [here](https://github.com/facebookrese
|
||||
- For Data2VecAudio, preprocessing is identical to [`Wav2Vec2Model`], including feature extraction
|
||||
- For Data2VecText, preprocessing is identical to [`RobertaModel`], including tokenization.
|
||||
- For Data2VecVision, preprocessing is identical to [`BeitModel`], including feature extraction.
|
||||
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
### Using Scaled Dot Product Attention (SDPA)
|
||||
|
||||
|
||||
@ -28,8 +28,8 @@ We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 67
|
||||
We are super happy to make this code community-powered, and would love to see how you can best optimize the following:
|
||||
|
||||
- current implementation uses the "naive" attention compution (so not really MLA)
|
||||
- current implementation loops through the experts. This should be replaced. Pointers to use `get_packed_weights` from `intetrations/tensor_parallel`.
|
||||
- current implementation uses the eleuther formula for ROPE, using the orginal one would be more efficient! (should still follow our API)
|
||||
- current implementation loops through the experts. This should be replaced. Pointers to use `get_packed_weights` from `integrations/tensor_parallel`.
|
||||
- current implementation uses the eleuther formula for ROPE, using the original one would be more efficient! (should still follow our API)
|
||||
- static cache is not supported (this should be just a generation config issue / config shape issues)
|
||||
|
||||
### Usage tips
|
||||
|
||||
65
docs/source/en/model_doc/falcon_h1.md
Normal file
65
docs/source/en/model_doc/falcon_h1.md
Normal file
@ -0,0 +1,65 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# FalconH1
|
||||
|
||||
## Overview
|
||||
|
||||
The FalconH1 model was developed by the TII Pretraining team. A comprehensive research paper covering the architecture, pretraining dynamics, experimental results, and conclusions is forthcoming. You can read more about this series in [this website](https://github.com/tiiuae/Falcon-H1).
|
||||
|
||||
## Contributors
|
||||
|
||||
This model was contributed by [DhiyaEddine](https://huggingface.co/DhiyaEddine), [ybelkada](https://huggingface.co/ybelkada), [JingweiZuo](https://huggingface.co/JingweiZuo), [IlyasChahed](https://huggingface.co/IChahed), and [MaksimVelikanov](https://huggingface.co/yellowvm).
|
||||
The original code can be found [here](https://github.com/tiiuae/Falcon-H1).
|
||||
|
||||
|
||||
## FalconH1Config
|
||||
|
||||
| Model | Depth | Dim | Attn Heads | KV | Mamba Heads | d_head | d_state | Ctx Len |
|
||||
|-----------|--------|------|------------|----|--------------|--------------|------|-----------------|
|
||||
| H1 0.5B | 36 | 1024 | 8 | 2 | 24 | 64 / 64 | 128 | 4K, 16K-SFT |
|
||||
| H1 1.5B | 24 | 2048 | 8 | 2 | 48 | 128 / 64 | 256 | 128K |
|
||||
| H1 1.5B-d | 66 | 1280 | 6 | 2 | 24 | 128 / 64 | 256 | 128K |
|
||||
| H1 3B | 32 | 2560 | 10 | 2 | 32 | 128 / 128 | 256 | 128K |
|
||||
| H1 7B | 44 | 3072 | 12 | 2 | 24 | 128 / 128 | 256 | 256K |
|
||||
| H1 34B | 72 | 5120 | 20 | 4 | 32 | 128 / 128 | 256 | 256K |
|
||||
|
||||
|
||||
|
||||
[[autodoc]] FalconH1Config
|
||||
|
||||
<!---
|
||||
## Usage Tips
|
||||
Tips:
|
||||
- The architecture is based on Mamba-2 models.
|
||||
## FalconH1Model
|
||||
[[autodoc]] FalconH1Model
|
||||
- forward
|
||||
-->
|
||||
|
||||
## FalconH1ForCausalLM
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon-H1-7B-Instruct")
|
||||
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon-H1-7B-Instruct")
|
||||
|
||||
message = ["Mamba is a snake with following properties "]
|
||||
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
|
||||
response = model.generate(**inputs, max_new_tokens=64)
|
||||
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
|
||||
```
|
||||
|
||||
[[autodoc]] FalconH1ForCausalLM
|
||||
- forward
|
||||
|
||||
This HF implementation is contributed by [younesbelkada](https://github.com/younesbelkada) and [DhiaEddineRhaiem](https://github.com/dhiaEddineRhaiem).
|
||||
@ -46,8 +46,12 @@ The main differences compared to GPT2.
|
||||
- Merge the key and value caches into one (this changes the format of layer_past/ present, does it risk creating problems?)
|
||||
- Use the memory layout (self.num_heads, 3, self.head_dim) instead of `(3, self.num_heads, self.head_dim)` for the QKV tensor with MHA. (prevents an overhead with the merged key and values, but makes the checkpoints incompatible with the original openai-community/gpt2 model).
|
||||
|
||||
|
||||
You can read more about the optimizations in the [original pull request](https://github.com/huggingface/transformers/pull/22575)
|
||||
|
||||
> [!NOTE]
|
||||
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
## Combining Starcoder and Flash Attention 2
|
||||
|
||||
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature.
|
||||
|
||||
@ -9,12 +9,11 @@ Unless required by applicable law or agreed to in writing, software distributed
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Granite
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
@ -22,49 +21,94 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Granite
|
||||
|
||||
The Granite model was proposed in [Power Scheduler: A Batch Size and Token Number Agnostic Learning Rate Scheduler](https://arxiv.org/abs/2408.13359) by Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adriana Meza Soria, David D. Cox and Rameswar Panda.
|
||||
[Granite](https://huggingface.co/papers/2408.13359) is a 3B parameter language model trained with the Power scheduler. Discovering a good learning rate for pretraining large language models is difficult because it depends on so many variables (batch size, number of training tokens, etc.) and it is expensive to perform a hyperparameter search. The Power scheduler is based on a power-law relationship between the variables and their transferability to larger models. Combining the Power scheduler with Maximum Update Parameterization (MUP) allows a model to be pretrained with one set of hyperparameters regardless of all the variables.
|
||||
|
||||
PowerLM-3B is a 3B state-of-the-art small language model trained with the Power learning rate scheduler. It is trained on a wide range of open-source and synthetic datasets with permissive licenses. PowerLM-3B has shown promising results compared to other models in the size categories across various benchmarks, including natural language multi-choices, code generation, and math reasoning.
|
||||
You can find all the original Granite checkpoints under the [IBM-Granite](https://huggingface.co/ibm-granite) organization.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
> [!TIP]
|
||||
> Click on the Granite models in the right sidebar for more examples of how to apply Granite to different language tasks.
|
||||
|
||||
*Finding the optimal learning rate for language model pretraining is a challenging task.
|
||||
This is not only because there is a complicated correlation between learning rate, batch size, number of training tokens, model size, and other hyperparameters but also because it is prohibitively expensive to perform a hyperparameter search for large language models with Billions or Trillions of parameters. Recent studies propose using small proxy models and small corpus to perform hyperparameter searches and transposing the optimal parameters to large models and large corpus. While the zero-shot transferability is theoretically and empirically proven for model size related hyperparameters, like depth and width, the zero-shot transfer from small corpus to large corpus is underexplored.
|
||||
In this paper, we study the correlation between optimal learning rate, batch size, and number of training tokens for the recently proposed WSD scheduler. After thousands of small experiments, we found a power-law relationship between variables and demonstrated its transferability across model sizes. Based on the observation, we propose a new learning rate scheduler, Power scheduler, that is agnostic about the number of training tokens and batch size. The experiment shows that combining the Power scheduler with Maximum Update Parameterization (\mup) can consistently achieve impressive performance with one set of hyperparameters regardless of the number of training tokens, batch size, model size, and even model architecture. Our 3B dense and MoE models trained with the Power scheduler achieve comparable performance as state-of-the-art small language models.
|
||||
We [open source](https://huggingface.co/collections/ibm/power-lm-66be64ae647ddf11b9808000) these pretrained models.*
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`, and from the command line.
|
||||
|
||||
Tips:
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="text-generation",
|
||||
model="ibm-granite/granite-3.3-2b-base",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device=0
|
||||
)
|
||||
pipe("Explain quantum computing in simple terms ", max_new_tokens=50)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_path = "ibm/PowerLM-3b"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.3-2b-base")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"ibm-granite/granite-3.3-2b-base",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
# drop device_map if running on CPU
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
|
||||
model.eval()
|
||||
inputs = tokenizer("Explain quantum computing in simple terms", return_tensors="pt").to("cuda")
|
||||
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
# change input text as desired
|
||||
prompt = "Write a code to find the maximum value in a list of numbers."
|
||||
```python
|
||||
echo -e "Explain quantum computing simply." | transformers-cli run --task text-generation --model ibm-granite/granite-3.3-8b-instruct --device 0
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
# tokenize the text
|
||||
input_tokens = tokenizer(prompt, return_tensors="pt")
|
||||
# generate output tokens
|
||||
output = model.generate(**input_tokens, max_new_tokens=100)
|
||||
# decode output tokens into text
|
||||
output = tokenizer.batch_decode(output)
|
||||
# loop over the batch to print, in this example the batch size is 1
|
||||
for i in output:
|
||||
print(i)
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
||||
|
||||
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.3-8b-base")
|
||||
model = AutoModelForCausalLM.from_pretrained("ibm-granite/granite-3.3-8b-base", torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="sdpa", quantization_config=quantization_config)
|
||||
|
||||
inputs = tokenizer("Explain quantum computing in simple terms", return_tensors="pt").to("cuda")
|
||||
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
|
||||
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(""ibm-granite/granite-3.3-2b-base"")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"ibm-granite/granite-3.3-2b-base",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa",
|
||||
quantization_config=quantization_config,
|
||||
)
|
||||
|
||||
input_ids = tokenizer("Explain artificial intelligence to a 10 year old", return_tensors="pt").to("cuda")
|
||||
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
This model was contributed by [mayank-mishra](https://huggingface.co/mayank-mishra).
|
||||
|
||||
|
||||
|
||||
## GraniteConfig
|
||||
|
||||
[[autodoc]] GraniteConfig
|
||||
|
||||
@ -50,7 +50,7 @@ This model was contributed by [patrickvonplaten](https://huggingface.co/patrickv
|
||||
- Hubert is a speech model that accepts a float array corresponding to the raw waveform of the speech signal.
|
||||
- Hubert model was fine-tuned using connectionist temporal classification (CTC) so the model output has to be decoded
|
||||
using [`Wav2Vec2CTCTokenizer`].
|
||||
|
||||
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
## Using Flash Attention 2
|
||||
|
||||
|
||||
@ -58,6 +58,12 @@ The attributes can be obtained from model config, as `model.config.num_query_tok
|
||||
|
||||
[[autodoc]] InstructBlipVideoProcessor
|
||||
|
||||
|
||||
## InstructBlipVideoVideoProcessor
|
||||
|
||||
[[autodoc]] InstructBlipVideoVideoProcessor
|
||||
- preprocess
|
||||
|
||||
## InstructBlipVideoImageProcessor
|
||||
|
||||
[[autodoc]] InstructBlipVideoImageProcessor
|
||||
|
||||
@ -353,3 +353,7 @@ This example showcases how to handle a batch of chat conversations with interlea
|
||||
## InternVLProcessor
|
||||
|
||||
[[autodoc]] InternVLProcessor
|
||||
|
||||
## InternVLVideoProcessor
|
||||
|
||||
[[autodoc]] InternVLVideoProcessor
|
||||
|
||||
@ -99,7 +99,7 @@ quantization_config = BitsAndBytesConfig(load_in_8bit=True,
|
||||
device_map = {'model.embed_tokens': 0, 'model.layers.0': 0, 'model.layers.1': 0, 'model.layers.2': 0, 'model.layers.3': 0, 'model.layers.4': 0, 'model.layers.5': 0, 'model.layers.6': 0, 'model.layers.7': 0, 'model.layers.8': 0, 'model.layers.9': 1, 'model.layers.10': 1, 'model.layers.11': 1, 'model.layers.12': 1, 'model.layers.13': 1, 'model.layers.14': 1, 'model.layers.15': 1, 'model.layers.16': 1, 'model.layers.17': 1, 'model.layers.18': 2, 'model.layers.19': 2, 'model.layers.20': 2, 'model.layers.21': 2, 'model.layers.22': 2, 'model.layers.23': 2, 'model.layers.24': 2, 'model.layers.25': 2, 'model.layers.26': 2, 'model.layers.27': 3, 'model.layers.28': 3, 'model.layers.29': 3, 'model.layers.30': 3, 'model.layers.31': 3, 'model.layers.32': 3, 'model.layers.33': 3, 'model.layers.34': 3, 'model.layers.35': 3, 'model.layers.36': 4, 'model.layers.37': 4, 'model.layers.38': 4, 'model.layers.39': 4, 'model.layers.40': 4, 'model.layers.41': 4, 'model.layers.42': 4, 'model.layers.43': 4, 'model.layers.44': 4, 'model.layers.45': 5, 'model.layers.46': 5, 'model.layers.47': 5, 'model.layers.48': 5, 'model.layers.49': 5, 'model.layers.50': 5, 'model.layers.51': 5, 'model.layers.52': 5, 'model.layers.53': 5, 'model.layers.54': 6, 'model.layers.55': 6, 'model.layers.56': 6, 'model.layers.57': 6, 'model.layers.58': 6, 'model.layers.59': 6, 'model.layers.60': 6, 'model.layers.61': 6, 'model.layers.62': 6, 'model.layers.63': 7, 'model.layers.64': 7, 'model.layers.65': 7, 'model.layers.66': 7, 'model.layers.67': 7, 'model.layers.68': 7, 'model.layers.69': 7, 'model.layers.70': 7, 'model.layers.71': 7, 'model.final_layernorm': 7, 'lm_head': 7}
|
||||
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Large-1.6",
|
||||
torch_dtype=torch.bfloat16,
|
||||
attn_implementation="flash_attention_2",
|
||||
attn_implementation="flash_attention_2",
|
||||
quantization_config=quantization_config,
|
||||
device_map=device_map)
|
||||
|
||||
|
||||
@ -262,6 +262,10 @@ model = LlavaNextVideoForConditionalGeneration.from_pretrained(
|
||||
|
||||
[[autodoc]] LlavaNextVideoImageProcessor
|
||||
|
||||
## LlavaNextVideoVideoProcessor
|
||||
|
||||
[[autodoc]] LlavaNextVideoVideoProcessor
|
||||
|
||||
## LlavaNextVideoModel
|
||||
|
||||
[[autodoc]] LlavaNextVideoModel
|
||||
|
||||
@ -147,7 +147,7 @@ print(processor.decode(output[0], skip_special_tokens=True))
|
||||
|
||||
### Multi image inference
|
||||
|
||||
LLaVa-OneVision can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). For that you have to use checkpoints with an "ov" suffix. Here is how you can do it:
|
||||
LLaVa-OneVision can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). For that you have to use checkpoints with an "ov" suffix. For multi-image cases, we recommend using a **nested list of images** as input. Otherwise, every image will be patchified and consume a lot of memory. Here is how you can do it:
|
||||
|
||||
```python
|
||||
import requests
|
||||
@ -303,6 +303,7 @@ model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
||||
## LlavaOnevisionImageProcessor
|
||||
|
||||
[[autodoc]] LlavaOnevisionImageProcessor
|
||||
- preprocess
|
||||
|
||||
## LlavaOnevisionImageProcessorFast
|
||||
|
||||
@ -313,6 +314,10 @@ model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
||||
|
||||
[[autodoc]] LlavaOnevisionVideoProcessor
|
||||
|
||||
## LlavaOnevisionVideoProcessor
|
||||
|
||||
[[autodoc]] LlavaOnevisionVideoProcessor
|
||||
|
||||
## LlavaOnevisionModel
|
||||
|
||||
[[autodoc]] LlavaOnevisionModel
|
||||
|
||||
@ -51,6 +51,9 @@ multilingual it expects the sequences in a certain format: A special language id
|
||||
source and target text. The source text format is `[lang_code] X [eos]`, where `lang_code` is source language
|
||||
id for source text and target language id for target text, with `X` being the source or target text.
|
||||
|
||||
> [!NOTE]
|
||||
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
The [`M2M100Tokenizer`] depends on `sentencepiece` so be sure to install it before running the
|
||||
examples. To install `sentencepiece` run `pip install sentencepiece`.
|
||||
|
||||
|
||||
@ -14,85 +14,124 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Mamba
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Mamba
|
||||
|
||||
The Mamba model was proposed in [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
|
||||
[Mamba](https://huggingface.co/papers/2312.00752) is a selective structured state space model (SSMs) designed to work around Transformers computational inefficiency when dealing with long sequences. It is a completely attention-free architecture, and comprised of a combination of H3 and gated MLP blocks (Mamba block). Mamba's "content-based reasoning" allows it to focus on specific parts of an input depending on the current token. Mamba also uses a new hardware-aware parallel algorithm to compensate for the lack of convolutional operations. As a result, Mamba has fast inference and can scale to very long sequences.
|
||||
|
||||
This model is a new paradigm architecture based on `state-space-models`. You can read more about the intuition behind these [here](https://srush.github.io/annotated-s4/).
|
||||
You can find all the original Mamba checkpoints under the [State Space Models](https://huggingface.co/state-spaces) organization.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5× higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.*
|
||||
> [!TIP]
|
||||
> Click on the Mamba models in the right sidebar for more examples of how to apply Mamba to different language tasks.
|
||||
|
||||
Tips:
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
- Mamba is a new `state space model` architecture that rivals the classic Transformers. It is based on the line of progress on structured state space models, with an efficient hardware-aware design and implementation in the spirit of [FlashAttention](https://github.com/Dao-AILab/flash-attention).
|
||||
- Mamba stacks `mixer` layers, which are the equivalent of `Attention` layers. The core logic of `mamba` is held in the `MambaMixer` class.
|
||||
- Two implementations cohabit: one is optimized and uses fast cuda kernels, while the other one is naive but can run on any device!
|
||||
- The current implementation leverages the original cuda kernels: the equivalent of flash attention for Mamba are hosted in the [`mamba-ssm`](https://github.com/state-spaces/mamba) and the [`causal_conv1d`](https://github.com/Dao-AILab/causal-conv1d) repositories. Make sure to install them if your hardware supports them!
|
||||
- Contributions to make the naive path faster are welcome 🤗
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
This model was contributed by [ArthurZ](https://huggingface.co/ArthurZ).
|
||||
The original code can be found [here](https://github.com/state-spaces/mamba).
|
||||
|
||||
# Usage
|
||||
|
||||
### A simple generation example:
|
||||
```python
|
||||
from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="text-generation",
|
||||
model="state-spaces/mamba-130m-hf",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create energy through a process known as")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")
|
||||
model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf")
|
||||
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
|
||||
model = AutoModelForCausalLM.from_pretrained("state-spaces/mamba-130m-hf", torch_dtype=torch.float16, device_map="auto",)
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
out = model.generate(input_ids, max_new_tokens=10)
|
||||
print(tokenizer.batch_decode(out))
|
||||
output = model.generate(**input_ids)
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
```
|
||||
|
||||
### Peft finetuning
|
||||
The slow version is not very stable for training, and the fast one needs `float32`!
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from trl import SFTTrainer
|
||||
from peft import LoraConfig
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
|
||||
model_id = "state-spaces/mamba-130m-hf"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||||
dataset = load_dataset("Abirate/english_quotes", split="train")
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
num_train_epochs=3,
|
||||
per_device_train_batch_size=4,
|
||||
logging_dir='./logs',
|
||||
logging_steps=10,
|
||||
learning_rate=2e-3
|
||||
)
|
||||
lora_config = LoraConfig(
|
||||
r=8,
|
||||
target_modules=["x_proj", "embeddings", "in_proj", "out_proj"],
|
||||
task_type="CAUSAL_LM",
|
||||
bias="none"
|
||||
)
|
||||
trainer = SFTTrainer(
|
||||
model=model,
|
||||
processing_class=tokenizer,
|
||||
args=training_args,
|
||||
peft_config=lora_config,
|
||||
train_dataset=dataset,
|
||||
dataset_text_field="quote",
|
||||
)
|
||||
trainer.train()
|
||||
```bash
|
||||
echo -e "Plants create energy through a process known as" | transformers run --task text-generation --model state-spaces/mamba-130m-hf --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bit integers.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
|
||||
from torchao.quantization import Int4WeightOnlyConfig
|
||||
|
||||
quantization_config = Int4WeightOnlyConfig(group_size=128)
|
||||
quantization_config = TorchAoConfig(quant_type=quant_config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-2.8b-hf")
|
||||
model = AutoModelForCausalLM.from_pretrained("state-spaces/mamba-2.8b-hf", torch_dtype=torch.bfloat16, quantization_config=quantization_config, device_map="auto",)
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids)
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
## Notes
|
||||
|
||||
- The current implementation uses the original CUDA kernels. The FlashAttention equivalent implementation is hosted in the [mamba-ssm](https://github.com/state-spaces/mamba) and [causal_conv1d](https://github.com/Dao-AILab/causal-conv1d) repositories. Make sure to install them if your hardware supports it!
|
||||
- Mamba stacks `mixer` layers which are equivalent to `Attention` layers. You can find the main logic of Mamba in the `MambaMixer` class.
|
||||
- The example below demonstrates how to fine-tune Mamba with [PEFT](https://huggingface.co/docs/peft).
|
||||
|
||||
```py
|
||||
from datasets import load_dataset
|
||||
from trl import SFTTrainer
|
||||
from peft import LoraConfig
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
|
||||
|
||||
model_id = "state-spaces/mamba-130m-hf"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||||
dataset = load_dataset("Abirate/english_quotes", split="train")
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
num_train_epochs=3,
|
||||
per_device_train_batch_size=4,
|
||||
logging_dir='./logs',
|
||||
logging_steps=10,
|
||||
learning_rate=2e-3
|
||||
)
|
||||
lora_config = LoraConfig(
|
||||
r=8,
|
||||
target_modules=["x_proj", "embeddings", "in_proj", "out_proj"],
|
||||
task_type="CAUSAL_LM",
|
||||
bias="none"
|
||||
)
|
||||
trainer = SFTTrainer(
|
||||
model=model,
|
||||
processing_class=tokenizer,
|
||||
args=training_args,
|
||||
peft_config=lora_config,
|
||||
train_dataset=dataset,
|
||||
dataset_text_field="quote",
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
## MambaConfig
|
||||
|
||||
[[autodoc]] MambaConfig
|
||||
|
||||
@ -14,47 +14,94 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
# Mamba 2
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
[Mamba 2](https://huggingface.co/papers/2405.21060) is based on the state space duality (SSD) framework which connects structured state space models (SSMs) and attention variants. It uses a more efficient SSD algorithm that is 2-8x faster than Mamba and modifies the architecture to enable tensor parallelism and a grouped-value attention (GVA) head structure.
|
||||
|
||||
## Overview
|
||||
You can find all the original Mamba 2 checkpoints under the [State Space Models](https://huggingface.co/state-spaces) organization, but the examples shown below use [mistralai/Mamba-Codestral-7B-v0.1](https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1) because a Hugging Face implementation isn't supported yet for the original checkpoints.
|
||||
|
||||
The Mamba2 model was proposed in [Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality](https://arxiv.org/abs/2405.21060) by Tri Dao and Albert Gu. It is a State Space Model similar to Mamba 1, with better performances in a simplified architecture.
|
||||
> [!TIP]
|
||||
> Click on the Mamba models in the right sidebar for more examples of how to apply Mamba to different language tasks.
|
||||
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
*While Transformers have been the main architecture behind deep learning's success in language modeling, state-space models (SSMs) such as Mamba have recently been shown to match or outperform Transformers at small to medium scale. We show that these families of models are actually quite closely related, and develop a rich framework of theoretical connections between SSMs and variants of attention, connected through various decompositions of a well-studied class of structured semiseparable matrices. Our state space duality (SSD) framework allows us to design a new architecture (Mamba-2) whose core layer is an a refinement of Mamba's selective SSM that is 2-8X faster, while continuing to be competitive with Transformers on language modeling.*
|
||||
|
||||
Tips:
|
||||
|
||||
This version should support all implementations of Mamba 2, and in particular [Mamba-2 codestral](https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1) from Mistral AI. In particular, mamba 2 codestral was released with a number of `groups` equal to 8, which can be thought intuitively as similar to the number of kv heads in an attention-based model.
|
||||
This model has two different forward passes, `torch_forward` or `cuda_kernels_forward`. The latter uses the original cuda kernels if they are found in your environment, and is slower on the prefill i.e. requires a "warmup run" due to high cpu overhead, see [here](https://github.com/state-spaces/mamba/issues/389#issuecomment-2171755306) and [also here](https://github.com/state-spaces/mamba/issues/355#issuecomment-2147597457). Without compilation, the `torch_forward` implementation is faster by a factor 3 to 4. Further, there are no positional embeddings in this model, but there is an `attention_mask` and a specific logic to mask out hidden states in two places in the case of batched generation, see [here](https://github.com/state-spaces/mamba/issues/66#issuecomment-1863563829) as well. Due to this, in addition to the reimplementation of mamba2 kernels, batched generation and cached generation are expected to have slight discrepancies. Further, the results given by the cuda kernels or the torch forward are expected to be slightly different. The SSM algorithm heavily relies on tensor contractions, which have matmul equivalents but the order of operations is slightly different, making the difference greater at smaller precisions.
|
||||
Another note, shutdown of hidden states corresponding to padding tokens is done in 2 places and mostly has been tested with left-padding. Right-padding will propagate noise down the line and is not guaranteed to yield satisfactory results. `tokenizer.padding_side = "left"` ensures you are using the correct padding side.
|
||||
|
||||
This model was contributed by [Molbap](https://huggingface.co/Molbap), with tremendous help from [Anton Vlasjuk](https://github.com/vasqu).
|
||||
The original code can be found [here](https://github.com/state-spaces/mamba).
|
||||
|
||||
|
||||
# Usage
|
||||
|
||||
### A simple generation example:
|
||||
```python
|
||||
from transformers import Mamba2Config, Mamba2ForCausalLM, AutoTokenizer
|
||||
```python
|
||||
import torch
|
||||
model_id = 'mistralai/Mamba-Codestral-7B-v0.1'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id, revision='refs/pr/9', from_slow=True, legacy=False)
|
||||
model = Mamba2ForCausalLM.from_pretrained(model_id, revision='refs/pr/9')
|
||||
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
|
||||
from transformers import pipeline
|
||||
|
||||
out = model.generate(input_ids, max_new_tokens=10)
|
||||
print(tokenizer.batch_decode(out))
|
||||
pipeline = pipeline(
|
||||
task="text-generation",
|
||||
model="mistralai/Mamba-Codestral-7B-v0.1",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create energy through a process known as")
|
||||
```
|
||||
|
||||
Here's a draft script for finetuning:
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1")
|
||||
model = AutoModelForCausalLM.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1", torch_dtype=torch.bfloat16, device_map="auto")
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids)
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model mistralai/Mamba-Codestral-7B-v0.1 --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bit integers.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
|
||||
|
||||
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
|
||||
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1")
|
||||
model = AutoModelForCausalLM.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1", torch_dtype=torch.bfloat16, quantization_config=quantization_config, device_map="auto")
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids)
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
## Notes
|
||||
|
||||
- Codestral Mamba has `groups=8` which are similar to the number of kv heads in an attention-based model.
|
||||
- Codestral Mamba has two different forward passes, `torch_forward` or `cuda_kernels_forward`, and their results are expected to be slightly different.
|
||||
- `torch_forward` without compilation is 3-4x faster than `cuda_kernels_forward`.
|
||||
- `cuda_kernels_forward` uses the original CUDA kernels if they're available in your environment. It is slower during prefill because it requires a "warmup run" due to the higher CPU overhead (see [these](https://github.com/state-spaces/mamba/issues/389#issuecomment-2171755306) [comments](https://github.com/state-spaces/mamba/issues/355#issuecomment-2147597457) for more details).
|
||||
|
||||
- There are no positional embeddings in this model, but there is an `attention_mask` and a specific logic to mask out hidden states in two places in the case of batched generation (see this [comment](https://github.com/state-spaces/mamba/issues/66#issuecomment-1863563829) for more details). This (and the addition of the reimplemented Mamba 2 kernels) results in a slight discrepancy between batched and cached generation.
|
||||
|
||||
- The SSM algorithm heavily relies on tensor contractions, which have matmul equivalents but the order of operations is slightly different. This makes the difference greater at smaller precisions.
|
||||
|
||||
- Hidden states that correspond to padding tokens is shutdown in 2 places and is mostly tested with left-padding. Right-padding propagates noise down the line and is not guaranteed to yield satisfactory results. `tokenizer.padding_side = "left"` ensures you are using the correct padding side.
|
||||
|
||||
- The example below demonstrates how to fine-tune Mamba 2 with [PEFT](https://huggingface.co/docs/peft).
|
||||
|
||||
```python
|
||||
from trl import SFTTrainer
|
||||
from peft import LoraConfig
|
||||
|
||||
@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
@ -155,7 +157,7 @@ Example of translating english to many romance languages, using old-style 2 char
|
||||
>>> model = MarianMTModel.from_pretrained(model_name)
|
||||
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
|
||||
>>> tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
|
||||
["c'est une phrase en anglais que nous voulons traduire en français",
|
||||
["c'est une phrase en anglais que nous voulons traduire en français",
|
||||
'Isto deve ir para o português.',
|
||||
'Y esto al español']
|
||||
```
|
||||
|
||||
@ -35,6 +35,9 @@ You can find all the original mBART checkpoints under the [AI at Meta](https://h
|
||||
> [!TIP]
|
||||
> Click on the mBART models in the right sidebar for more examples of applying mBART to different language tasks.
|
||||
|
||||
> [!NOTE]
|
||||
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
The example below demonstrates how to translate text with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
<hfoptions id="usage">
|
||||
|
||||
@ -62,6 +62,9 @@ python src/transformers/models/musicgen/convert_musicgen_transformers.py \
|
||||
--checkpoint small --pytorch_dump_folder /output/path --safe_serialization
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
## Generation
|
||||
|
||||
MusicGen is compatible with two generation modes: greedy and sampling. In practice, sampling leads to significantly
|
||||
|
||||
@ -44,6 +44,9 @@ There are two key differences with MusicGen:
|
||||
1. The audio prompt is used here as a conditional signal for the generated audio sample, whereas it's used for audio continuation in [MusicGen](https://huggingface.co/docs/transformers/main/en/model_doc/musicgen).
|
||||
2. Conditional text and audio signals are concatenated to the decoder's hidden states instead of being used as a cross-attention signal, as in MusicGen.
|
||||
|
||||
> [!NOTE]
|
||||
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
## Generation
|
||||
|
||||
MusicGen Melody is compatible with two generation modes: greedy and sampling. In practice, sampling leads to significantly better results than greedy, thus we encourage sampling mode to be used where possible. Sampling is enabled by default, and can be explicitly specified by setting `do_sample=True` in the call to [`MusicgenMelodyForConditionalGeneration.generate`], or by overriding the model's generation config (see below).
|
||||
|
||||
@ -51,10 +51,10 @@ The original code can be found [here](https://github.com/facebookresearch/fairse
|
||||
|
||||
## Implementation differences with SwitchTransformers
|
||||
|
||||
The biggest difference is the way the tokens are routed. NLLB-MoE uses a `top-2-gate` which means that for each input, only the top two experts are selected based on the
|
||||
highest predicted probabilities from the gating network, and the remaining experts are ignored. In `SwitchTransformers`, only the top-1 probabilities are computed,
|
||||
which means that tokens have less probability of being forwarded. Moreover, if a token is not routed to any expert, `SwitchTransformers` still adds its unmodified hidden
|
||||
states (kind of like a residual connection) while they are masked in `NLLB`'s top-2 routing mechanism.
|
||||
The biggest difference is the way the tokens are routed. NLLB-MoE uses a `top-2-gate` which means that for each input, only the top two experts are selected based on the
|
||||
highest predicted probabilities from the gating network, and the remaining experts are ignored. In `SwitchTransformers`, only the top-1 probabilities are computed,
|
||||
which means that tokens have less probability of being forwarded. Moreover, if a token is not routed to any expert, `SwitchTransformers` still adds its unmodified hidden
|
||||
states (kind of like a residual connection) while they are masked in `NLLB`'s top-2 routing mechanism.
|
||||
|
||||
## Generating with NLLB-MoE
|
||||
|
||||
|
||||
@ -14,27 +14,119 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# OLMo2
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# OLMo2
|
||||
[OLMo2](https://huggingface.co/papers/2501.00656) improves on [OLMo](./olmo) by changing the architecture and training recipes of the original models. This includes excluding all biases to improve training stability, non-parametric layer norm, SwiGLU activation function, rotary positional embeddings, and a modified BPE-based tokenizer that masks personal identifiable information. It is pretrained on [Dolma](https://huggingface.co/datasets/allenai/dolma), a dataset of 3T tokens.
|
||||
|
||||
The OLMo2 model is the successor of the OLMo model, which was proposed in
|
||||
[OLMo: Accelerating the Science of Language Models](https://arxiv.org/abs/2402.00838).
|
||||
You can find all the original OLMo2 checkpoints under the [OLMo2](https://huggingface.co/collections/allenai/olmo-2-674117b93ab84e98afc72edc) collection.
|
||||
|
||||
The architectural changes from the original OLMo model to this model are:
|
||||
> [!TIP]
|
||||
> Click on the OLMo2 models in the right sidebar for more examples of how to apply OLMo2 to different language tasks.
|
||||
|
||||
- RMSNorm is used instead of standard layer norm.
|
||||
- Norm is applied to attention queries and keys.
|
||||
- Norm is applied after attention/feedforward layers rather than before.
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`] and from the command line.
|
||||
|
||||
This model was contributed by [shanearora](https://huggingface.co/shanearora).
|
||||
The original code can be found [here](https://github.com/allenai/OLMo/tree/main/olmo).
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="text-generation",
|
||||
model="allenai/OLMo-2-0425-1B",
|
||||
torch_dtype=torch.float16,
|
||||
device=0,
|
||||
)
|
||||
|
||||
result = pipe("Plants create energy through a process known as")
|
||||
print(result)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"allenai/OLMo-2-0425-1B"
|
||||
)
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"allenai/OLMo-2-0425-1B",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)
|
||||
|
||||
output = model.generate(**input_ids, max_length=50, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model allenai/OLMo-2-0425-1B --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bits.
|
||||
```py
|
||||
|
||||
#pip install torchao
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
|
||||
|
||||
torchao_config = TorchAoConfig(
|
||||
"int4_weight_only",
|
||||
group_size=128
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"allenai/OLMo-2-0425-1B"
|
||||
)
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"allenai/OLMo-2-0425-1B",
|
||||
quantization_config=torchao_config,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)
|
||||
|
||||
output = model.generate(**input_ids, max_length=50, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
|
||||
```
|
||||
|
||||
|
||||
## Notes
|
||||
|
||||
- OLMo2 uses RMSNorm instead of standard layer norm. The RMSNorm is applied to attention queries and keys, and it is applied after the attention and feedforward layers rather than before.
|
||||
- OLMo2 requires Transformers v4.48 or higher.
|
||||
- Load specific intermediate checkpoints by adding the `revision` parameter to [`~PreTrainedModel.from_pretrained`].
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-0425-1B", revision="stage1-step140000-tokens294B")
|
||||
```
|
||||
|
||||
|
||||
## Olmo2Config
|
||||
|
||||
@ -41,6 +41,9 @@ Tips:
|
||||
- OPT has the same architecture as [`BartDecoder`].
|
||||
- Contrary to GPT2, OPT adds the EOS token `</s>` to the beginning of every prompt.
|
||||
|
||||
> [!NOTE]
|
||||
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
## Resources
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with OPT. If you're
|
||||
|
||||
@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
@ -18,6 +18,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
@ -18,6 +18,8 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
@ -29,7 +31,7 @@ on Java, Python and English.
|
||||
According to the abstract
|
||||
|
||||
*Code summarization and generation empower conversion between programming language (PL) and natural language (NL),
|
||||
while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART,
|
||||
while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART,
|
||||
a sequence-to-sequence model capable of performing a broad spectrum of program and language understanding and generation tasks.
|
||||
PLBART is pre-trained on an extensive collection of Java and Python functions and associated NL text via denoising autoencoding.
|
||||
Experiments on code summarization in the English language, code generation, and code translation in seven programming languages
|
||||
@ -50,7 +52,7 @@ target text format is `[tgt_lang_code] X [eos]`. `bos` is never used.
|
||||
|
||||
However, for fine-tuning, in some cases no language token is provided in cases where a single language is used. Please refer to [the paper](https://arxiv.org/abs/2103.06333) to learn more about this.
|
||||
|
||||
In cases where the language code is needed, the regular [`~PLBartTokenizer.__call__`] will encode source text format
|
||||
In cases where the language code is needed, the regular [`~PLBartTokenizer.__call__`] will encode source text format
|
||||
when you pass texts as the first argument or with the keyword argument `text`, and will encode target text format if
|
||||
it's passed with the `text_target` keyword argument.
|
||||
|
||||
|
||||
@ -40,6 +40,9 @@ The abstract from the paper is the following:
|
||||
|
||||
`Qwen2-Audio-7B` and `Qwen2-Audio-7B-Instruct` can be found on the [Huggingface Hub](https://huggingface.co/Qwen)
|
||||
|
||||
> [!NOTE]
|
||||
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
### Inference
|
||||
|
||||
```python
|
||||
|
||||
@ -287,6 +287,11 @@ model = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||
[[autodoc]] Qwen2VLImageProcessor
|
||||
- preprocess
|
||||
|
||||
## Qwen2VLVideoProcessor
|
||||
|
||||
[[autodoc]] Qwen2VLVideoProcessor
|
||||
- preprocess
|
||||
|
||||
## Qwen2VLImageProcessorFast
|
||||
|
||||
[[autodoc]] Qwen2VLImageProcessorFast
|
||||
|
||||
@ -23,6 +23,7 @@ rendered properly in your Markdown viewer.
|
||||
">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
The RoBERTa model was proposed in [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, [Myle Ott](https://huggingface.co/myleott), Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
|
||||
|
||||
@ -14,46 +14,78 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# RoFormer
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# RoFormer
|
||||
|
||||
The RoFormer model was proposed in [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
|
||||
[RoFormer](https://huggingface.co/papers/2104.09864) introduces Rotary Position Embedding (RoPE) to encode token positions by rotating the inputs in 2D space. This allows a model to track absolute positions and model relative relationships. RoPE can scale to longer sequences, account for the natural decay of token dependencies, and works with the more efficient linear self-attention.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find all the RoFormer checkpoints on the [Hub](https://huggingface.co/models?search=roformer).
|
||||
|
||||
*Position encoding in transformer architecture provides supervision for dependency modeling between elements at
|
||||
different positions in the sequence. We investigate various methods to encode positional information in
|
||||
transformer-based language models and propose a novel implementation named Rotary Position Embedding(RoPE). The
|
||||
proposed RoPE encodes absolute positional information with rotation matrix and naturally incorporates explicit relative
|
||||
position dependency in self-attention formulation. Notably, RoPE comes with valuable properties such as flexibility of
|
||||
being expand to any sequence lengths, decaying inter-token dependency with increasing relative distances, and
|
||||
capability of equipping the linear self-attention with relative position encoding. As a result, the enhanced
|
||||
transformer with rotary position embedding, or RoFormer, achieves superior performance in tasks with long texts. We
|
||||
release the theoretical analysis along with some preliminary experiment results on Chinese data. The undergoing
|
||||
experiment for English benchmark will soon be updated.*
|
||||
> [!TIP]
|
||||
> Click on the RoFormer models in the right sidebar for more examples of how to apply RoFormer to different language tasks.
|
||||
|
||||
This model was contributed by [junnyu](https://huggingface.co/junnyu). The original code can be found [here](https://github.com/ZhuiyiTechnology/roformer).
|
||||
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
## Usage tips
|
||||
RoFormer is a BERT-like autoencoding model with rotary position embeddings. Rotary position embeddings have shown
|
||||
improved performance on classification tasks with long texts.
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
## Resources
|
||||
```py
|
||||
# uncomment to install rjieba which is needed for the tokenizer
|
||||
# !pip install rjieba
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
pipe = pipeline(
|
||||
task="fill-mask",
|
||||
model="junnyu/roformer_chinese_base",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
output = pipe("水在零度时会[MASK]")
|
||||
print(output)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
# uncomment to install rjieba which is needed for the tokenizer
|
||||
# !pip install rjieba
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"junnyu/roformer_chinese_base", torch_dtype=torch.float16
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
|
||||
|
||||
input_ids = tokenizer("水在零度时会[MASK]", return_tensors="pt").to(model.device)
|
||||
outputs = model(**input_ids)
|
||||
decoded = tokenizer.batch_decode(outputs.logits.argmax(-1), skip_special_tokens=True)
|
||||
print(decoded)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "水在零度时会[MASK]" | transformers-cli run --task fill-mask --model junnyu/roformer_chinese_base --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
- The current RoFormer implementation is an encoder-only model. The original code can be found in the [ZhuiyiTechnology/roformer](https://github.com/ZhuiyiTechnology/roformer) repository.
|
||||
|
||||
## RoFormerConfig
|
||||
|
||||
|
||||
@ -43,8 +43,8 @@ import requests
|
||||
from transformers import SamHQModel, SamHQProcessor
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
model = SamHQModel.from_pretrained("sushmanth/sam_hq_vit_b").to(device)
|
||||
processor = SamHQProcessor.from_pretrained("sushmanth/sam_hq_vit_b")
|
||||
model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-base").to(device)
|
||||
processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-base")
|
||||
|
||||
img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
|
||||
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
||||
@ -69,8 +69,8 @@ import requests
|
||||
from transformers import SamHQModel, SamHQProcessor
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
model = SamHQModel.from_pretrained("sushmanth/sam_hq_vit_b").to(device)
|
||||
processor = SamHQProcessor.from_pretrained("sushmanth/sam_hq_vit_b")
|
||||
model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-base").to(device)
|
||||
processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-base")
|
||||
|
||||
img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
|
||||
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
||||
|
||||
@ -46,6 +46,9 @@ This model was contributed by [anton-l](https://huggingface.co/anton-l).
|
||||
- SEWForCTC is fine-tuned using connectionist temporal classification (CTC) so the model output has to be decoded using
|
||||
[`Wav2Vec2CTCTokenizer`].
|
||||
|
||||
> [!NOTE]
|
||||
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
## Resources
|
||||
|
||||
- [Audio classification task guide](../tasks/audio_classification)
|
||||
|
||||
@ -197,6 +197,9 @@ print(generated_texts[0])
|
||||
[[autodoc]] SmolVLMImageProcessor
|
||||
- preprocess
|
||||
|
||||
## SmolVLMVideoProcessor
|
||||
[[autodoc]] SmolVLMVideoProcessor
|
||||
- preprocess
|
||||
|
||||
## SmolVLMProcessor
|
||||
[[autodoc]] SmolVLMProcessor
|
||||
|
||||
@ -14,59 +14,77 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Swin Transformer
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Swin Transformer
|
||||
|
||||
The Swin Transformer was proposed in [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
|
||||
by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
|
||||
[Swin Transformer](https://huggingface.co/papers/2103.14030) is a hierarchical vision transformer. Images are processed in patches and windowed self-attention is used to capture local information. These windows are shifted across the image to allow for cross-window connections, capturing global information more efficiently. This hierarchical approach with shifted windows allows the Swin Transformer to process images effectively at different scales and achieve linear computational complexity relative to image size, making it a versatile backbone for various vision tasks like image classification and object detection.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find all official Swin Transformer checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=swin) organization.
|
||||
|
||||
*This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone
|
||||
for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains,
|
||||
such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text.
|
||||
To address these differences, we propose a hierarchical Transformer whose representation is computed with \bold{S}hifted
|
||||
\bold{win}dows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping
|
||||
local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at
|
||||
various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it
|
||||
compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense
|
||||
prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation
|
||||
(53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and
|
||||
+2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones.
|
||||
The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures.*
|
||||
> [!TIP]
|
||||
> Click on the Swin Transformer models in the right sidebar for more examples of how to apply Swin Transformer to different image tasks.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png"
|
||||
alt="drawing" width="600"/>
|
||||
The example below demonstrates how to classify an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
<small> Swin Transformer architecture. Taken from the <a href="https://arxiv.org/abs/2102.03334">original paper</a>.</small>
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
This model was contributed by [novice03](https://huggingface.co/novice03). The Tensorflow version of this model was contributed by [amyeroberts](https://huggingface.co/amyeroberts). The original code can be found [here](https://github.com/microsoft/Swin-Transformer).
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
## Usage tips
|
||||
pipeline = pipeline(
|
||||
task="image-classification",
|
||||
model="microsoft/swin-tiny-patch4-window7-224",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
|
||||
```
|
||||
</hfoption>
|
||||
|
||||
- Swin pads the inputs supporting any input height and width (if divisible by `32`).
|
||||
- Swin can be used as a *backbone*. When `output_hidden_states = True`, it will output both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, sequence_length, num_channels)`.
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
## Resources
|
||||
```py
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Swin Transformer.
|
||||
image_processor = AutoImageProcessor.from_pretrained(
|
||||
"microsoft/swin-tiny-patch4-window7-224",
|
||||
use_fast=True,
|
||||
)
|
||||
model = AutoModelForImageClassification.from_pretrained(
|
||||
"microsoft/swin-tiny-patch4-window7-224",
|
||||
device_map="cuda"
|
||||
)
|
||||
|
||||
<PipelineTag pipeline="image-classification"/>
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
inputs = image_processor(image, return_tensors="pt").to("cuda")
|
||||
|
||||
- [`SwinForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
|
||||
- See also: [Image classification task guide](../tasks/image_classification)
|
||||
with torch.no_grad():
|
||||
logits = model(**inputs).logits
|
||||
predicted_class_id = logits.argmax(dim=-1).item()
|
||||
|
||||
Besides that:
|
||||
class_labels = model.config.id2label
|
||||
predicted_class_label = class_labels[predicted_class_id]
|
||||
print(f"The predicted class label is: {predicted_class_label}")
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
- [`SwinForMaskedImageModeling`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
|
||||
## Notes
|
||||
|
||||
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
- Swin can pad the inputs for any input height and width divisible by `32`.
|
||||
- Swin can be used as a [backbone](../backbones). When `output_hidden_states = True`, it outputs both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, sequence_length, num_channels)`.
|
||||
|
||||
## SwinConfig
|
||||
|
||||
|
||||
@ -14,37 +14,74 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Swin Transformer V2
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Swin Transformer V2
|
||||
|
||||
The Swin Transformer V2 model was proposed in [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
|
||||
[Swin Transformer V2](https://huggingface.co/papers/2111.09883) is a 3B parameter model that focuses on how to scale a vision model to billions of parameters. It introduces techniques like residual-post-norm combined with cosine attention for improved training stability, log-spaced continuous position bias to better handle varying image resolutions between pre-training and fine-tuning, and a new pre-training method (SimMIM) to reduce the need for large amounts of labeled data. These improvements enable efficiently training very large models (up to 3 billion parameters) capable of processing high-resolution images.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find official Swin Transformer V2 checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=swinv2) organization.
|
||||
|
||||
*Large-scale NLP models have been shown to significantly improve the performance on language tasks with no signs of saturation. They also demonstrate amazing few-shot capabilities like that of human beings. This paper aims to explore large-scale models in computer vision. We tackle three major issues in training and application of large vision models, including training instability, resolution gaps between pre-training and fine-tuning, and hunger on labelled data. Three main techniques are proposed: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) A log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) A self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. Through these techniques, this paper successfully trained a 3 billion-parameter Swin Transformer V2 model, which is the largest dense vision model to date, and makes it capable of training with images of up to 1,536×1,536 resolution. It set new performance records on 4 representative vision tasks, including ImageNet-V2 image classification, COCO object detection, ADE20K semantic segmentation, and Kinetics-400 video action classification. Also note our training is much more efficient than that in Google's billion-level visual models, which consumes 40 times less labelled data and 40 times less training time.*
|
||||
> [!TIP]
|
||||
> Click on the Swin Transformer V2 models in the right sidebar for more examples of how to apply Swin Transformer V2 to vision tasks.
|
||||
|
||||
This model was contributed by [nandwalritik](https://huggingface.co/nandwalritik).
|
||||
The original code can be found [here](https://github.com/microsoft/Swin-Transformer).
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
## Resources
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Swin Transformer v2.
|
||||
pipeline = pipeline(
|
||||
task="image-classification",
|
||||
model="microsoft/swinv2-tiny-patch4-window8-256",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
|
||||
```
|
||||
|
||||
<PipelineTag pipeline="image-classification"/>
|
||||
</hfoption>
|
||||
|
||||
- [`Swinv2ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
|
||||
- See also: [Image classification task guide](../tasks/image_classification)
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
Besides that:
|
||||
```py
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
||||
|
||||
- [`Swinv2ForMaskedImageModeling`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
|
||||
image_processor = AutoImageProcessor.from_pretrained(
|
||||
"microsoft/swinv2-tiny-patch4-window8-256",
|
||||
)
|
||||
model = AutoModelForImageClassification.from_pretrained(
|
||||
"microsoft/swinv2-tiny-patch4-window8-256",
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
inputs = image_processor(image, return_tensors="pt").to(model.device)
|
||||
|
||||
with torch.no_grad():
|
||||
logits = model(**inputs).logits
|
||||
|
||||
predicted_class_id = logits.argmax(dim=-1).item()
|
||||
predicted_class_label = model.config.id2label[predicted_class_id]
|
||||
print(f"The predicted class label is: {predicted_class_label}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
- Swin Transformer V2 can pad the inputs for any input height and width divisible by `32`.
|
||||
- Swin Transformer V2 can be used as a [backbone](../backbones). When `output_hidden_states = True`, it outputs both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, sequence_length, num_channels)`.
|
||||
|
||||
## Swinv2Config
|
||||
|
||||
|
||||
@ -54,6 +54,9 @@ found [here](https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT).
|
||||
decoded using [`Wav2Vec2CTCTokenizer`].
|
||||
- UniSpeechSat performs especially well on speaker verification, speaker identification, and speaker diarization tasks.
|
||||
|
||||
> [!NOTE]
|
||||
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
## Resources
|
||||
|
||||
- [Audio classification task guide](../tasks/audio_classification)
|
||||
|
||||
@ -49,6 +49,9 @@ found [here](https://github.com/microsoft/UniSpeech/tree/main/UniSpeech).
|
||||
- UniSpeech model can be fine-tuned using connectionist temporal classification (CTC) so the model output has to be
|
||||
decoded using [`Wav2Vec2CTCTokenizer`].
|
||||
|
||||
> [!NOTE]
|
||||
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
## Resources
|
||||
|
||||
- [Audio classification task guide](../tasks/audio_classification)
|
||||
|
||||
@ -211,6 +211,11 @@ model = VideoLlavaForConditionalGeneration.from_pretrained(
|
||||
|
||||
[[autodoc]] VideoLlavaImageProcessor
|
||||
|
||||
|
||||
## VideoLlavaVideoProcessor
|
||||
|
||||
[[autodoc]] VideoLlavaVideoProcessor
|
||||
|
||||
## VideoLlavaProcessor
|
||||
|
||||
[[autodoc]] VideoLlavaProcessor
|
||||
|
||||
@ -72,6 +72,11 @@ This model was contributed by [nielsr](https://huggingface.co/nielsr). The origi
|
||||
[[autodoc]] ViltImageProcessor
|
||||
- preprocess
|
||||
|
||||
## ViltImageProcessorFast
|
||||
|
||||
[[autodoc]] ViltImageProcessorFast
|
||||
- preprocess
|
||||
|
||||
## ViltProcessor
|
||||
|
||||
[[autodoc]] ViltProcessor
|
||||
|
||||
@ -50,6 +50,9 @@ Note: Meta (FAIR) released a new version of [Wav2Vec2-BERT 2.0](https://huggingf
|
||||
- Wav2Vec2 model was trained using connectionist temporal classification (CTC) so the model output has to be decoded
|
||||
using [`Wav2Vec2CTCTokenizer`].
|
||||
|
||||
> [!NOTE]
|
||||
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
## Using Flash Attention 2
|
||||
|
||||
Flash Attention 2 is an faster, optimized version of the model.
|
||||
|
||||
@ -32,6 +32,9 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
You can find all the original Whisper checkpoints under the [Whisper](https://huggingface.co/collections/openai/whisper-release-6501bba2cf999715fd953013) collection.
|
||||
|
||||
> [!NOTE]
|
||||
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
> [!TIP]
|
||||
> Click on the Whisper models in the right sidebar for more examples of how to apply Whisper to different audio tasks.
|
||||
|
||||
@ -92,7 +95,7 @@ transcription[0]
|
||||
|
||||
## Notes
|
||||
|
||||
- Whisper relies on [`~GenerationMixin.generate`] for inference.
|
||||
- Whisper relies a custom [`generate`] for inference, make sure to check the docs below.
|
||||
- The [`WhisperProcessor`] can be used for preparing audio and decoding predicted ids back into text.
|
||||
|
||||
## WhisperConfig
|
||||
|
||||
@ -14,100 +14,101 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# ZoeDepth
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# ZoeDepth
|
||||
|
||||
The ZoeDepth model was proposed in [ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth](https://arxiv.org/abs/2302.12288) by Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, Matthias Müller. ZoeDepth extends the [DPT](dpt) framework for metric (also called absolute) depth estimation. ZoeDepth is pre-trained on 12 datasets using relative depth and fine-tuned on two domains (NYU and KITTI) using metric depth. A lightweight head is used with a novel bin adjustment design called metric bins module for each domain. During inference, each input image is automatically routed to the appropriate head using a latent classifier.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*This paper tackles the problem of depth estimation from a single image. Existing work either focuses on generalization performance disregarding metric scale, i.e. relative depth estimation, or state-of-the-art results on specific datasets, i.e. metric depth estimation. We propose the first approach that combines both worlds, leading to a model with excellent generalization performance while maintaining metric scale. Our flagship model, ZoeD-M12-NK, is pre-trained on 12 datasets using relative depth and fine-tuned on two datasets using metric depth. We use a lightweight head with a novel bin adjustment design called metric bins module for each domain. During inference, each input image is automatically routed to the appropriate head using a latent classifier. Our framework admits multiple configurations depending on the datasets used for relative depth pre-training and metric fine-tuning. Without pre-training, we can already significantly improve the state of the art (SOTA) on the NYU Depth v2 indoor dataset. Pre-training on twelve datasets and fine-tuning on the NYU Depth v2 indoor dataset, we can further improve SOTA for a total of 21% in terms of relative absolute error (REL). Finally, ZoeD-M12-NK is the first model that can jointly train on multiple datasets (NYU Depth v2 and KITTI) without a significant drop in performance and achieve unprecedented zero-shot generalization performance to eight unseen datasets from both indoor and outdoor domains.*
|
||||
[ZoeDepth](https://huggingface.co/papers/2302.12288) is a depth estimation model that combines the generalization performance of relative depth estimation (how far objects are from each other) and metric depth estimation (precise depth measurement on metric scale) from a single image. It is pre-trained on 12 datasets using relative depth and 2 datasets (NYU Depth v2 and KITTI) for metric accuracy. A lightweight head with a metric bin module for each domain is used, and during inference, it automatically selects the appropriate head for each input image with a latent classifier.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/zoedepth_architecture_bis.png"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> ZoeDepth architecture. Taken from the <a href="https://arxiv.org/abs/2302.12288">original paper.</a> </small>
|
||||
You can find all the original ZoeDepth checkpoints under the [Intel](https://huggingface.co/Intel?search=zoedepth) organization.
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr).
|
||||
The original code can be found [here](https://github.com/isl-org/ZoeDepth).
|
||||
The example below demonstrates how to estimate depth with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
## Usage tips
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
- ZoeDepth is an absolute (also called metric) depth estimation model, unlike DPT which is a relative depth estimation model. This means that ZoeDepth is able to estimate depth in metric units like meters.
|
||||
```py
|
||||
import requests
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
from PIL import Image
|
||||
|
||||
The easiest to perform inference with ZoeDepth is by leveraging the [pipeline API](../main_classes/pipelines.md):
|
||||
|
||||
```python
|
||||
>>> from transformers import pipeline
|
||||
>>> from PIL import Image
|
||||
>>> import requests
|
||||
|
||||
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
>>> pipe = pipeline(task="depth-estimation", model="Intel/zoedepth-nyu-kitti")
|
||||
>>> result = pipe(image)
|
||||
>>> depth = result["depth"]
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
pipeline = pipeline(
|
||||
task="depth-estimation",
|
||||
model="Intel/zoedepth-nyu-kitti",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
results = pipeline(image)
|
||||
results["depth"]
|
||||
```
|
||||
|
||||
Alternatively, one can also perform inference using the classes:
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoImageProcessor, ZoeDepthForDepthEstimation
|
||||
>>> import torch
|
||||
>>> import numpy as np
|
||||
>>> from PIL import Image
|
||||
>>> import requests
|
||||
```py
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import AutoModelForDepthEstimation, AutoImageProcessor
|
||||
|
||||
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||||
image_processor = AutoImageProcessor.from_pretrained(
|
||||
"Intel/zoedepth-nyu-kitti"
|
||||
)
|
||||
model = AutoModelForDepthEstimation.from_pretrained(
|
||||
"Intel/zoedepth-nyu-kitti",
|
||||
device_map="auto"
|
||||
)
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
inputs = image_processor(image, return_tensors="pt").to("cuda")
|
||||
|
||||
>>> image_processor = AutoImageProcessor.from_pretrained("Intel/zoedepth-nyu-kitti")
|
||||
>>> model = ZoeDepthForDepthEstimation.from_pretrained("Intel/zoedepth-nyu-kitti")
|
||||
with torch.no_grad():
|
||||
outputs = model(inputs)
|
||||
|
||||
>>> # prepare image for the model
|
||||
>>> inputs = image_processor(images=image, return_tensors="pt")
|
||||
# interpolate to original size and visualize the prediction
|
||||
## ZoeDepth dynamically pads the input image, so pass the original image size as argument
|
||||
## to `post_process_depth_estimation` to remove the padding and resize to original dimensions.
|
||||
post_processed_output = image_processor.post_process_depth_estimation(
|
||||
outputs,
|
||||
source_sizes=[(image.height, image.width)],
|
||||
)
|
||||
|
||||
>>> with torch.no_grad():
|
||||
... outputs = model(inputs)
|
||||
|
||||
>>> # interpolate to original size and visualize the prediction
|
||||
>>> ## ZoeDepth dynamically pads the input image. Thus we pass the original image size as argument
|
||||
>>> ## to `post_process_depth_estimation` to remove the padding and resize to original dimensions.
|
||||
>>> post_processed_output = image_processor.post_process_depth_estimation(
|
||||
... outputs,
|
||||
... source_sizes=[(image.height, image.width)],
|
||||
... )
|
||||
|
||||
>>> predicted_depth = post_processed_output[0]["predicted_depth"]
|
||||
>>> depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
|
||||
>>> depth = depth.detach().cpu().numpy() * 255
|
||||
>>> depth = Image.fromarray(depth.astype("uint8"))
|
||||
predicted_depth = post_processed_output[0]["predicted_depth"]
|
||||
depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
|
||||
depth = depth.detach().cpu().numpy() * 255
|
||||
Image.fromarray(depth.astype("uint8"))
|
||||
```
|
||||
|
||||
<Tip>
|
||||
<p>In the <a href="https://github.com/isl-org/ZoeDepth/blob/edb6daf45458569e24f50250ef1ed08c015f17a7/zoedepth/models/depth_model.py#L131">original implementation</a> ZoeDepth model performs inference on both the original and flipped images and averages out the results. The <code>post_process_depth_estimation</code> function can handle this for us by passing the flipped outputs to the optional <code>outputs_flipped</code> argument:</p>
|
||||
<pre><code class="language-Python">>>> with torch.no_grad():
|
||||
... outputs = model(pixel_values)
|
||||
... outputs_flipped = model(pixel_values=torch.flip(inputs.pixel_values, dims=[3]))
|
||||
>>> post_processed_output = image_processor.post_process_depth_estimation(
|
||||
... outputs,
|
||||
... source_sizes=[(image.height, image.width)],
|
||||
... outputs_flipped=outputs_flipped,
|
||||
... )
|
||||
</code></pre>
|
||||
</Tip>
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
- In the [original implementation](https://github.com/isl-org/ZoeDepth/blob/edb6daf45458569e24f50250ef1ed08c015f17a7/zoedepth/models/depth_model.py#L131) ZoeDepth performs inference on both the original and flipped images and averages the results. The `post_process_depth_estimation` function handles this by passing the flipped outputs to the optional `outputs_flipped` argument as shown below.
|
||||
```py
|
||||
with torch.no_grad():
|
||||
outputs = model(pixel_values)
|
||||
outputs_flipped = model(pixel_values=torch.flip(inputs.pixel_values, dims=[3]))
|
||||
post_processed_output = image_processor.post_process_depth_estimation(
|
||||
outputs,
|
||||
source_sizes=[(image.height, image.width)],
|
||||
outputs_flipped=outputs_flipped,
|
||||
)
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ZoeDepth.
|
||||
|
||||
- A demo notebook regarding inference with ZoeDepth models can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ZoeDepth). 🌎
|
||||
- Refer to this [notebook](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ZoeDepth) for an inference example.
|
||||
|
||||
## ZoeDepthConfig
|
||||
|
||||
|
||||
@ -54,8 +54,8 @@ For each model type, there is a separate class for each machine learning framewo
|
||||
from transformers import AutoModelForCausalLM, MistralForCausalLM
|
||||
|
||||
# load with AutoClass or model-specific class
|
||||
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", , torch_dtype="auto", device_map="auto")
|
||||
model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", , torch_dtype="auto", device_map="auto")
|
||||
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype="auto", device_map="auto")
|
||||
model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype="auto", device_map="auto")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
@ -272,6 +272,7 @@ Explicitly set the [torch_dtype](https://pytorch.org/docs/stable/tensor_attribut
|
||||
<hfoption id="specific dtype">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
gemma = AutoModelForCausalLM.from_pretrained("google/gemma-7b", torch_dtype=torch.float16)
|
||||
|
||||
@ -243,13 +243,7 @@ class Olmo2Attention(OlmoAttention):
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
attn_output, attn_weights = attention_interface(
|
||||
self,
|
||||
|
||||
@ -13,9 +13,15 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Distributed GPU inference
|
||||
# Tensor parallelism in transformers
|
||||
|
||||
[Tensor parallelism](./perf_train_gpu_many#tensor-parallelism) shards a model onto multiple GPUs and parallelizes computations such as matrix multiplication. It enables fitting larger model sizes into memory and is faster because each GPU can process a tensor slice.
|
||||
This document assumes that you are already familiar with the basics of tensor parallelism. If you are not, please refer to the [Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=tensor_parallelism) section on tensor parallelism.
|
||||
|
||||
> [!TIP]
|
||||
> Tensor parallelism is very communication intensive, therefore it is reccomended to use it on a single machine with multiple GPUs, utilizing fast intra-node communication. For multi-node training, methods as pipeline or data parallelism are more efficient (depending on your use case).
|
||||
|
||||
Tensor parallelism requires slight changes to the model parameters, therefore in transformers, we support some of the popular models out of the box.
|
||||
|
||||
> [!TIP]
|
||||
> Expand the list below to see which models support tensor parallelism. Open a GitHub issue or pull request to add support for a model not currently below.
|
||||
@ -37,9 +43,218 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
</details>
|
||||
|
||||
Set `tp_plan="auto"` in [`~AutoModel.from_pretrained`] to enable tensor parallelism for inference.
|
||||
## Using 🤗 transformers
|
||||
|
||||
```py
|
||||
Transformers provides a simple interface to use for tensor parallelism. We provide multiple classes implementing different partitioning
|
||||
strategies and a simple entrypoint to parallelize `nn.Module` instance. You won't have to interact with this interface directly, everything is done in `PretrainedModel.from_pretrained` method for you. This section will first talk about the partitioning strategies
|
||||
we support, then the user interface you will be interacting with, and finally it will teach you how to extend it with your own partitioning
|
||||
strategies.
|
||||
|
||||
### Partitioning strategies
|
||||
|
||||
In transformers, partitioning strategies reside in a class `ParallelInterface` which works like a mapping from string to the strategy implementation.
|
||||
|
||||
|
||||
```python
|
||||
class ParallelInterface(MutableMapping):
|
||||
"""
|
||||
Dict-like object keeping track of allowed attention functions. You can easily add a new attention function
|
||||
with a call to `register()`. If a model needs to locally overwrite an existing attention function, say `sdpa`,
|
||||
it needs to declare a new instance of this class inside the `modeling_<model>.py`, and declare it on that instance.
|
||||
"""
|
||||
_global_mapping = {
|
||||
"colwise": ColwiseParallel(),
|
||||
"rowwise": RowwiseParallel(),
|
||||
"colwise_rep": ColwiseParallel(output_layouts=Replicate()),
|
||||
"rowwise_rep": RowwiseParallel(input_layouts=Replicate()),
|
||||
"local_colwise": ColwiseParallel(use_dtensor=False),
|
||||
"local_rowwise": RowwiseParallel(use_dtensor=False),
|
||||
"local": IsolatedParallel(),
|
||||
"gather": GatherParallel(),
|
||||
"local_packed_rowwise": PackedRowwiseParallel(use_dtensor=False),
|
||||
"sequence_parallel": SequenceParallel(),
|
||||
"replicate": ReplicateParallel(),
|
||||
}
|
||||
```
|
||||
|
||||
We support the following strategies:
|
||||
|
||||
- `ColwiseParallel` - A simple column-wise partitioning, being able to handle both weights and biases, does exactly what we've discussed before.
|
||||
- `RowwiseParallel` - Again, row-wise partitioning as dicussed before, supports weights and biases, on top of that it also supports `nn.Embedding` modules.
|
||||
- `SequenceParallel` - Sequence parallel implementation, for support of `LayerNorm` and `Dropout` layers. Also supports Python implementation of `RMSNorm` (see [this](https://github.com/facebookresearch/llama/blob/main/llama/model.py#L34))
|
||||
- `PackedColwiseParallel` - A variant of column-wise partitioning, however it works on packed weights (i.e. `up_proj` and `gate_proj` being packed together). For more details, see [this comment](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108)
|
||||
- `PackedRowwiseParallel` - A variant of row-wise partitioning, works on packed weights, for more details check the comment linked above.
|
||||
- `GatherParallel` - A very simple class, that only makes the outputs of the module to be gathered across devices.
|
||||
- `IsolatedParallel` - This is a special case, where we want to *isolate* the module from the rest of the devices (world). This is used for Experts in MoE layers, basically creating Expert parallelism of sorts.
|
||||
- `ReplicateParallel` - Many `torch.distributed` APIs break if model is partially sharded, so this class is used to replicate the module across all devices.
|
||||
|
||||
### Sharding a model
|
||||
|
||||
We provide two ways to shard a model, first one is to use `auto` tensor parallelism plan, which will automatically shard the model based on our predefined configuration. This requires the model to have predefined tensor parallel plan in transformers.
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
# model_id = "meta-llama/Meta-Llama-3-8B-Instruct" # better for smaller number of GPUs
|
||||
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct" # better to visualize all the possible strategies
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan="auto")
|
||||
|
||||
print(model._tp_plan)
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> For a list of models that support tensor parallelism, see the [Supported models](#supported-models) section above.
|
||||
|
||||
The second way is to manually specify your own partitioning plan.
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
tp_plan = {
|
||||
"model.layers.*.self_attn.q_proj": "colwise",
|
||||
"model.layers.*.self_attn.k_proj": "colwise",
|
||||
"model.layers.*.self_attn.v_proj": "colwise",
|
||||
"model.layers.*.self_attn.o_proj": "rowwise",
|
||||
...
|
||||
}
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan=tp_plan)
|
||||
|
||||
print(model._tp_plan)
|
||||
```
|
||||
|
||||
You might have noticed that there are some special cases in the `ParallelInterface` mapping, let's now talk about them. This will help you understand their purpose and help with extending to other strategies.
|
||||
|
||||
### PackedRowwiseParallel
|
||||
This class is a special case of `RowwiseParallel`, it's used to shard packed weights. Weight packing is a common technique used in models. It's a technique where we pack multiple linear layers into a single, bigger one.
|
||||
|
||||
For example in `Llama4` model, we pack `up_proj` and `gate_proj` into a single `gate_up_proj` module.
|
||||
```python
|
||||
class Llama4TextExperts(nn.Module):
|
||||
...
|
||||
self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim))
|
||||
```
|
||||
|
||||
Then in forward, we can use batch matrix multiplication to compute the output of the `gate_up_proj` module.
|
||||
|
||||
```python
|
||||
def forward(self, hidden_states):
|
||||
...
|
||||
gate_up = torch.bmm(hidden_states, self.gate_up_proj) # Compute the output of the gate_up_proj module
|
||||
gate, up = gate_up.chunk(2, dim=-1) # Split the output into gate and up
|
||||
```
|
||||
|
||||
In this case, we need to use the `PackedRowwiseParallel` strategy to shard the `gate_up_proj` module, as using a simple `RowwiseParallel` will shard the layers wrongly.
|
||||
|
||||
> [!TIP]
|
||||
> If this is a bit difficult to wrap your head around, check out [this comment](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108) for an amazing visual representation of why `Packed*` needs to be used.
|
||||
|
||||
|
||||
### `local*` strategies
|
||||
|
||||
You could have noticed that there are `local*` strategies, which use the same layers as `*` strategy, but don't use `DTensor` at all.
|
||||
This is because `DTensor` is not supported for some of the operations: such as `torch.chunk`. Therefore, sometimes we need to use the `local*` strategies, which use vanilla `torch.Tensor` and do some of the distributed logic manually.
|
||||
|
||||
<!---
|
||||
Readd this when I get the exact error message
|
||||
> [!TIP]
|
||||
> If you are using a custom partitioning strategy, and it's not working with `... is not supported` error, try using the `local*` strategies to see if they work better.
|
||||
-->
|
||||
|
||||
> [!WARNING]
|
||||
> Manually specifying your own partitiong plan requires a good understanding of the model architecture and how the partitioning strategies interact together. If you are not sure about this, the resulting model can be very slow, even failing or incorrect. Again, refer to the [Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=tensor_parallelism) which can teach you everything required.
|
||||
|
||||
### Extending the interface with your own partitioning strategies
|
||||
|
||||
This is a very advanced topic, which requires a good understanding of distributed collectives and the model architecture.
|
||||
Your custom partitioning strategy should inherit from `TensorParallelLayer` defined in [integrations/tensor_parallel.py](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py) and implement: `partition_tensor`, `_prepare_input_fn` and `_prepare_output_fn`. Then it should be registered in the `ParallelInterface` mapping, so our dispatching logic can find it when specified in the `tp_plan`.
|
||||
|
||||
Let's go through this workflow step by step, on an already existing example: `ColwiseParallel`.
|
||||
|
||||
1. Inherit from `TensorParallelLayer` and initialization
|
||||
|
||||
```python
|
||||
class ColwiseParallel(TensorParallelLayer):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
input_layouts: Optional[Placement] = None, # The input layout coming from the previous layer
|
||||
output_layouts: Optional[Placement] = None, # The output layout we want to achieve
|
||||
use_local_output: bool = True, # Whether to use local output or not
|
||||
use_dtensor=True, # Whether to use DTensor or not
|
||||
):
|
||||
self.input_layouts = (input_layouts or Replicate(),) # The input sharding coming from the previous layer
|
||||
self.output_layouts = (output_layouts or Shard(-1),) # Desired output sharding
|
||||
self.desired_input_layouts = (Replicate(),) # Desired input sharding, inputs should be replicated across GPUs
|
||||
self.use_local_output = use_local_output
|
||||
self.use_dtensor = use_dtensor
|
||||
```
|
||||
|
||||
In the `__init__` method, we define these attributes, where `input_layouts` and `output_layouts` describing, how the input and output tensors should be placed on the devices. `desired_input_layouts` is used to specify, how the input *SHOULD* be placed on the devices.
|
||||
|
||||
2a. Implement `partition_tensor` method
|
||||
|
||||
```python
|
||||
def partition_tensor(
|
||||
self,
|
||||
param, # Full tensor of the parameter
|
||||
empty_param, # Empty tensor of the parameter, will be filled with the partitioned tensor
|
||||
param_type, # Type of the parameter, `bias` or `weight`
|
||||
param_casting_dtype, # The type to cast the parameter to
|
||||
to_contiguous, # Whether to convert the tensor to a contiguous memory layout
|
||||
rank, # The rank of the current device
|
||||
device_mesh, # The device mesh
|
||||
) -> nn.Parameter: # Return the partitioned parameter
|
||||
...
|
||||
```
|
||||
|
||||
This method is used to partition the tensor, and fill the `empty_param` with the partitioned tensor.
|
||||
We provide some utility functions to help you with this, such as `get_tensor_shard` which will get you the correct shard of the original parameter for this rank or `get_packed_weights` to help with packed weights.
|
||||
|
||||
2b. Implement `_prepare_input_fn` and `_prepare_output_fn` methods
|
||||
|
||||
These methods are used as [`pre-forward`](https://docs.pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_pre_hook.html) and [`forward`](https://docs.pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_hook.html) hooks respectively. Their purpose is to re-distribute the inputs and outputs to the desired layout, passed in the `__init__` method.
|
||||
|
||||
```python
|
||||
def _prepare_input_fn(input_layouts, desired_input_layouts, mod, inputs, device_mesh):
|
||||
...
|
||||
# Do some custom logic, cast to DTensor etc.
|
||||
...
|
||||
return inputs.redistribute(placements=desired_input_layouts, device_mesh=device_mesh)
|
||||
|
||||
def _prepare_output_fn(output_layouts, use_local_output, mod, outputs, device_mesh):
|
||||
...
|
||||
# Do some custom logic, cast to DTensor etc.
|
||||
...
|
||||
return outputs.redistribute(placements=output_layouts, device_mesh=device_mesh)
|
||||
```
|
||||
|
||||
3. Register the strategy
|
||||
Congratulations! You've implemented your own partitioning strategy. Now, to use it with your own `tp_plan`, you need to register it in the `ParallelInterface` mapping.
|
||||
|
||||
```python
|
||||
from transformers.integrations.tensor_parallel import ParallelInterface
|
||||
|
||||
ParallelInterface.register_strategy("colwise_custom", ColwiseParallel)
|
||||
```
|
||||
|
||||
And now you can use it in your `tp_plan` as such:
|
||||
|
||||
```python
|
||||
tp_plan = {
|
||||
"model.layers.*.self_attn.q_proj": "colwise_custom",
|
||||
...
|
||||
}
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan=tp_plan)
|
||||
```
|
||||
|
||||
|
||||
## Full example
|
||||
|
||||
Let's go through a full example of inference with tensor parallelism.
|
||||
```python
|
||||
import os
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
@ -66,17 +281,49 @@ Launch the inference script above on [torchrun](https://pytorch.org/docs/stable/
|
||||
torchrun --nproc-per-node 4 demo.py
|
||||
```
|
||||
|
||||
For CPU, please binding different socket on each rank. For example, if you are using Intel 4th Gen Xeon:
|
||||
```bash
|
||||
export OMP_NUM_THREADS=56
|
||||
numactl -C 0-55 -m 0 torchrun --nnodes=2 --node_rank=0 --master_addr="127.0.0.1" --master_port=29500 --nproc-per-node 1 demo.py & numactl -C 56-111 -m 1 torchrun --nnodes=2 --node_rank=1 --master_addr="127.0.0.1" --master_port=29500 --nproc-per-node 1 demo.py & wait
|
||||
```
|
||||
The CPU benchmark data will be released soon.
|
||||
|
||||
You can benefit from considerable speed ups for inference, especially for inputs with large batch size or long sequences.
|
||||
|
||||
For a single forward pass on [Llama](./model_doc/llama) with a sequence length of 512 and various batch sizes, you can expect the following speed ups.
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Meta-Llama-3-8B-Instruct%2C%20seqlen%20%3D%20512%2C%20python%2C%20w_%20compile.png">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Meta-Llama-3-8B-Instruct%2C%20seqlen%20%3D%20512%2C%20python%2C%20w_%20compile.png">
|
||||
</div>
|
||||
|
||||
## Tensor parallelism in-depth
|
||||
Our implementation of tensor parallelism is framework-agnostic in design, but the specific implementations we've developed rely on the torch.distributed package. We heavily utilize abstractions such as `DeviceMesh` or `DTensor` to provide a simple and extensible interface to the user.
|
||||
|
||||
### DeviceMesh
|
||||
Imagine `DeviceMesh` as a multi-dimensional grid of devices that communicate together. Different parallelization strategies require different types of communication patterns, therefore we can create a `DeviceMesh` with multiple submeshes:
|
||||
```python
|
||||
from torch.distributed.device_mesh import init_device_mesh
|
||||
|
||||
# Create a 1D mesh of 4 GPUs
|
||||
device_mesh = init_device_mesh("cuda", (4,), mesh_dim_names=["tp"])
|
||||
```
|
||||
Then, most of the `torch.distributed` defined parallelization strategies can be applied to a mesh itself, or its submesh, automatically handling the communication patterns.
|
||||
|
||||
### DTensor
|
||||
|
||||
Abbreviation for Distributed Tensor, `DTensor` is a tensor subclass that handles the distributed logic on-top of the usual tensor operations. Most of the model weights in case of tensor parallelism are stored as `DTensor`s (with some exceptions, more on that later).
|
||||
The most important part of DTensor, that is crucial to understand, is the `placement` attribute. It's an attribute that tells PyTorch how is the tensor placed on the devices of the `DeviceMesh`.
|
||||
|
||||
It can have the following values:
|
||||
|
||||
- `Shard(dimension)` - Annotates that this `DTensor` is sharded across a given dimension, over the `DeviceMesh` it was constructed under. For example, if we would like to shard weights for column-wise partitioning, we would do:
|
||||
```python
|
||||
weight = ...
|
||||
weight = DTensor.from_local(weight, device_mesh["tp"], placements=[Shard(0)]) # Shard across the 1st (column-wise) dimension
|
||||
bias = ...
|
||||
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Shard(-1)]) # Shard across the ONLY dimension
|
||||
```
|
||||
|
||||
To give another example, for row-wise partitioning, we would do:
|
||||
```python
|
||||
weight = ...
|
||||
weight = DTensor.from_local(weight, device_mesh["tp"], placements=[Shard(1)]) # Shard across the 2nd (row-wise) dimension
|
||||
bias = ...
|
||||
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Replicate()]) # Replicate bias across all GPUs
|
||||
```
|
||||
|
||||
- `Replicate()` - Annotates that this `DTensor` is replicated across the `DeviceMesh`. Very straight-forward, only creates a full copy of the tensor on each device.
|
||||
- `Partial()` - This placement is mostly of no interest to us, it's used to annotate that this tensor is pending a reduction operation.
|
||||
|
||||
@ -106,6 +106,8 @@ dataset[0]["text"]
|
||||
Remember to resample the sampling rate to match the pretrained models required sampling rate.
|
||||
|
||||
```py
|
||||
from datasets import Audio
|
||||
|
||||
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
||||
```
|
||||
|
||||
|
||||
58
docs/source/en/reference/environment_variables.md
Normal file
58
docs/source/en/reference/environment_variables.md
Normal file
@ -0,0 +1,58 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Environment Variables
|
||||
|
||||
## HF_ENABLE_PARALLEL_LOADING
|
||||
|
||||
By default this is disabled. Enables the loading of torch and safetensor based weights to be loaded in parallel. Can decrease the time to load large models significantly, often times producing speed ups around ~50%.
|
||||
|
||||
Can be set to a string equal to `"false"` or `"true"`. e.g. `os.environ["HF_ENABLE_PARALLEL_LOADING"] = "true"`.
|
||||
|
||||
e.g. `facebook/opt-30b` on an AWS EC2 g4dn.metal instance can be made to load in ~30s with this enabled vs ~55s without it.
|
||||
|
||||
Profile before committing to using this environment variable, this will not produce speed ups for smaller models.
|
||||
|
||||
```py
|
||||
import os
|
||||
|
||||
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "true"
|
||||
|
||||
from transformers import pipeline
|
||||
|
||||
model = pipeline(task="text-generation", model="facebook/opt-30b", device_map="auto")
|
||||
```
|
||||
|
||||
## HF_PARALLEL_LOADING_WORKERS
|
||||
|
||||
Determines how many threads should be used when parallel loading is enabled. Default is `8`.
|
||||
|
||||
If the number of files that are being loaded is less than the number of threads specified, the number that is actually spawned will be equal to the number of files.
|
||||
|
||||
e.g. If you specify 8 workers, and there are only 2 files, only 2 workers will be spawned.
|
||||
|
||||
Tune as you see fit.
|
||||
|
||||
```py
|
||||
import os
|
||||
|
||||
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "true"
|
||||
os.environ["HF_PARALLEL_LOADING_WORKERS"] = "4"
|
||||
|
||||
from transformers import pipeline
|
||||
|
||||
model = pipeline(task="text-generation", model="facebook/opt-30b", device_map="auto")
|
||||
```
|
||||
@ -372,14 +372,14 @@ accelerate launch \
|
||||
|
||||
### torch.compile
|
||||
|
||||
[torch.compile](./perf_torch_compile) can significantly speed up training and reduce computational overhead. Configure your torch.compile settings in [`TrainingArguments`]. Set `torch.compile` to `True`, and select a backend and compile mode.
|
||||
[torch.compile](./perf_torch_compile) can significantly speed up training and reduce computational overhead. Configure your torch.compile settings in [`TrainingArguments`]. Set `torch_compile` to `True`, and select a backend and compile mode.
|
||||
|
||||
```py
|
||||
from transformers import TrainingArguments
|
||||
|
||||
training_args = TrainingArguments(
|
||||
torch.compile=True,
|
||||
torch.compile_backend="inductor",
|
||||
torch_compile=True,
|
||||
torch_compile_backend="inductor",
|
||||
torch_compile_mode="default",
|
||||
...,
|
||||
)
|
||||
|
||||
49
docs/source/en/video_processors.md
Normal file
49
docs/source/en/video_processors.md
Normal file
@ -0,0 +1,49 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
|
||||
# Video Processor
|
||||
|
||||
A **Video Processor** is a utility responsible for preparing input features for video models, as well as handling the post-processing of their outputs. It provides transformations such as resizing, normalization, and conversion into PyTorch.
|
||||
|
||||
The video processor extends the functionality of image processors by allowing the models to handle videos with a distinct set of arguments compared to images. It serves as the bridge between raw video data and the model, ensuring that input features are optimized for the VLM.
|
||||
|
||||
Use [`~BaseVideoProcessor.from_pretrained`] to load a video processors configuration (image size, whether to normalize and rescale, etc.) from a video model on the Hugging Face [Hub](https://hf.co) or local directory. The configuration for each pretrained model should be saved in a [video_preprocessor_config.json] file but older models might have the config saved in [preprocessor_config.json](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf/blob/main/preprocessor_config.json) file. Note that the latter is less preferred and will be removed in the future.
|
||||
|
||||
|
||||
### Usage Example
|
||||
Here's an example of how to load a video processor with [`llava-hf/llava-onevision-qwen2-0.5b-ov-hf`](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf) model:
|
||||
|
||||
```python
|
||||
from transformers import AutoVideoProcessor
|
||||
|
||||
processor = AutoVideoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-0.5b-ov-hf")
|
||||
```
|
||||
|
||||
Currently, if using base image processor for videos, it processes video data by treating each frame as an individual image and applying transformations frame-by-frame. While functional, this approach is not highly efficient. Using `AutoVideoProcessor` allows us to take advantage of **fast video processors**, leveraging the [torchvision](https://pytorch.org/vision/stable/index.html) library. Fast processors handle the whole batch of videos at once, without iterating over each video or frame. These updates introduce GPU acceleration and significantly enhance processing speed, especially for tasks requiring high throughput.
|
||||
|
||||
Fast video processors are available for all models and are loaded by default when an `AutoVideoProcessor` is initialized. When using a fast video processor, you can also set the `device` argument to specify the device on which the processing should be done. By default, the processing is done on the same device as the inputs if the inputs are tensors, or on the CPU otherwise. For even more speed improvement, we can compile the processor when using 'cuda' as device.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers.video_utils import load_video
|
||||
from transformers import AutoVideoProcessor
|
||||
|
||||
video = load_video("video.mp4")
|
||||
processor = AutoVideoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-0.5b-ov-hf", device="cuda")
|
||||
processor = torch.compile(processor)
|
||||
processed_video = processor(video, return_tensors="pt")
|
||||
```
|
||||
@ -29,8 +29,6 @@
|
||||
- sections:
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: tasks/sequence_classification
|
||||
title: テキストの分類
|
||||
- local: tasks/token_classification
|
||||
title: トークンの分類
|
||||
- local: tasks/question_answering
|
||||
|
||||
@ -47,7 +47,7 @@ ALBERTモデルは、「[ALBERT: A Lite BERT for Self-supervised Learning of Lan
|
||||
|
||||
## 参考資料
|
||||
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [トークン分類タスクガイド](../tasks/token_classification)
|
||||
- [質問応答タスクガイド](../tasks/question_answering)
|
||||
- [マスクされた言語モデルタスクガイド](../tasks/masked_language_modeling)
|
||||
|
||||
@ -372,3 +372,10 @@ AutoModel.register(NewModelConfig, NewModel)
|
||||
### AutoModelForImageTextToText
|
||||
|
||||
[[autodoc]] AutoModelForImageTextToText
|
||||
|
||||
## Time Series
|
||||
|
||||
### AutoModelForTimeSeriesPrediction
|
||||
|
||||
[[autodoc]] AutoModelForTimeSeriesPrediction
|
||||
|
||||
|
||||
@ -129,7 +129,7 @@ BART を始めるのに役立つ公式 Hugging Face およびコミュニティ
|
||||
- [翻訳タスクガイド](../tasks/translation)
|
||||
|
||||
以下も参照してください。
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [質問回答タスク ガイド](../tasks/question_answering)
|
||||
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
|
||||
- [抽出されたチェックポイント](https://huggingface.co/models?search=distilbart) は、この [論文](https://arxiv.org/abs/2010.13002) で説明されています。
|
||||
|
||||
@ -105,6 +105,7 @@ BEiT の使用を開始するのに役立つ公式 Hugging Face およびコミ
|
||||
|
||||
[[autodoc]] BeitImageProcessor
|
||||
- preprocess
|
||||
- post_process_semantic_segmentation
|
||||
|
||||
## BeitImageProcessorFast
|
||||
|
||||
|
||||
@ -76,7 +76,7 @@ BERT を始めるのに役立つ公式 Hugging Face およびコミュニティ
|
||||
- [`BertForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)。
|
||||
- [`TFBertForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)。
|
||||
- [`FlaxBertForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb)。
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
|
||||
<PipelineTag pipeline="token-classification"/>
|
||||
|
||||
|
||||
@ -58,7 +58,7 @@ BigBird は、質問応答や要約などのさまざまな NLP タスクのパ
|
||||
|
||||
## ドキュメント リソース
|
||||
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [トークン分類タスクガイド](../tasks/token_classification)
|
||||
- [質問回答タスク ガイド](../tasks/question_answering)
|
||||
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
|
||||
|
||||
@ -58,7 +58,7 @@ BigBird は、質問応答や要約などのさまざまな NLP タスクのパ
|
||||
|
||||
## ドキュメント リソース
|
||||
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [質問回答タスク ガイド](../tasks/question_answering)
|
||||
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
|
||||
- [翻訳タスクガイド](../tasks/translation)
|
||||
|
||||
@ -39,7 +39,7 @@ BLOOM を使い始めるのに役立つ公式 Hugging Face およびコミュニ
|
||||
|
||||
以下も参照してください。
|
||||
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [トークン分類タスクガイド](../tasks/token_classification)
|
||||
- [質問回答タスク ガイド](../tasks/question_answering)
|
||||
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user