Compare commits

...

1076 Commits

Author SHA1 Message Date
fa6107c97e modify context length for GPTQ + version bump (#25899)
* add new arg for gptq

* add tests

* add min version autogptq

* fix order

* skip test

* fix

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix style

* change model path

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-06 11:45:47 -04:00
300d6a4a62 Remove Falcon from undocumented list (#26008)
Remove falcon from undocumented list
2023-09-06 15:49:04 +01:00
fa522d8d7b 🌐[i18n-KO] Translated llm_tutorial.md to Korean (#25791)
* docs: ko: llm_tutoroal.md

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions

* fix: resolve suggestions
2023-09-06 07:40:03 -07:00
3e203f92be Fix small typo README.md (#25934)
* fix some samll bugs in readme

* Update docs/README.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-09-06 14:07:29 +01:00
842e99f1b9 TF-OPT attention mask fixes (#25238)
* stash commit

* More OPT updates

* Update src/transformers/models/opt/modeling_tf_opt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-09-06 13:37:27 +01:00
f6301b9a13 Falcon: fix revision propagation (#26006)
* Fix revision propagation

* Cleaner
2023-09-06 07:21:00 -04:00
f6295c6c53 Update README.md (#26003)
fixed a typo
2023-09-06 10:55:11 +01:00
172f42c512 save space when converting hf model to megatron model. (#25950)
* fix convert megatron model too large

* fix convert megatron model too large
2023-09-05 16:47:48 -04:00
b8def68934 Fix Mega chunking error when using decoder-only model (#25765)
* add: potential fix to mega chunking in decoder only model bug

* add: decoder with chunking test

* add: input_mask passed with input_ids
2023-09-05 21:50:14 +02:00
4fa0aff21e [VITS] tokenizer integration test: fix revision did not exist (#25996)
* revision did not exist

* correct revision
2023-09-05 21:21:33 +02:00
d0354e5e86 [CI] Fix red CI and ERROR failed should show (#25995)
* start with error too

* fix ?

* start with nit

* one more path

* use `job_name`

* mark pipeline test as slow
2023-09-05 20:16:00 +02:00
6206f599e1 Add LLaMA resources (#25859)
* docs: feat: model resources for llama

* fix: resolve suggestion

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-09-05 10:50:08 -07:00
8d518013ef [Wav2Vec2 Conformer] Fix inference float16 (#25985)
* [Wav2Vec2 Conformer] Fix inference float16

* fix test

* fix test more

* clean pipe test
2023-09-05 18:26:06 +01:00
6bc517ccd4 deepspeed resume from ckpt fixes and adding support for deepspeed optimizer and HF scheduler (#25863)
* Add support for deepspeed optimizer and HF scheduler

* fix bug

* fix the import

* fix issue with deepspeed scheduler saving for hf optim + hf scheduler scenario

* fix loading of hf scheduler when loading deepspeed checkpoint

* fix import of `DeepSpeedSchedulerWrapper`

* add tests

* add the comment and skip the failing tests

* address comment
2023-09-05 22:31:20 +05:30
1110b565d6 Add TFDebertaV2ForMultipleChoice (#25932)
* Add TFDebertaV2ForMultipleChoice

* Import newer model in main init

* Fix import issues

* Fix copies

* Add doc

* Fix tests

* Fix copies

* Fix docstring
2023-09-05 17:13:06 +01:00
da1af21dbb PegasusX add _no_split_modules (#25933)
* no_split_modules

* no_split_modules

* inputs_embeds+pos same device

* update _no_split_modules

* update _no_split_modules
2023-09-05 16:34:34 +01:00
70a98024b1 Patch with accelerate xpu (#25714)
* patch with accelerate xpu

* patch with accelerate xpu

* formatting

* fix tests

* revert ruff unrelated fixes

* revert ruff unrelated fixes

* revert ruff unrelated fixes

* fix test

* review fixes

* review fixes

* black fixed

* review commits

* review commits

* style fix

* use pytorch_utils

* revert markuplm test
2023-09-05 15:41:42 +01:00
aa5c94d38d Show failed tests on CircleCI layout in a better way (#25895)
* update

* update

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-05 15:49:33 +02:00
9a70d6e56f Trainer: delegate default generation values to generation_config (#25987) 2023-09-05 14:47:00 +01:00
aea761499f Update training_args.py to remove the runtime error (#25920)
This cl iterates through a list of keys rather than dict items while updating the dict elements. Fixes the following error:
File "..../transformers/training_args.py", line 1544, in post_init
for k, v in self.fsdp_config.items():
RuntimeError: dictionary keys changed during iteration
2023-09-05 12:43:51 +01:00
7011cd8667 Update RAG README.md with correct path to examples/seq2seq (#25953)
Update README.md with correct path to examples/seq2seq
2023-09-05 12:31:59 +01:00
6316ce8d27 [doc] Always call it Agents for consistency (#25958) 2023-09-05 12:27:20 +01:00
391f26459a Use main in conversion script (#25973)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-05 13:04:49 +02:00
Kai
6f125aaa48 fix typo (#25981)
rename doanloading to downloading
2023-09-05 11:13:06 +01:00
52a46dc57b Add Pop2Piano space demo. (#25975)
Update pop2piano.md
2023-09-05 11:07:02 +01:00
1cc3bc22fe nn.Identity is not required to be compatible with PyTorch < 1.1.0 as the minimum PyTorch version we currently support is 1.10.0 (#25974)
nn.Identity is not required to be compatible with PyTorch < 1.1.0 as the
minimum PyTorch version we currently support is 1.10.0
2023-09-05 11:37:54 +02:00
fbbe1b8a40 Fix test_load_img_url_timeout (#25976)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-05 11:34:28 +02:00
feec56959a Fix Detr CI (#25972)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-05 11:19:56 +02:00
404ff8fc17 Fix typo (#25966)
* Update feature_extraction_clap.py

* changed all lenght to length
2023-09-05 10:12:25 +02:00
d8e13b3e04 v4.34.dev.0 2023-09-04 15:12:11 -04:00
49b69fe0d4 [Falcon] Remove SDPA for falcon to support earlier versions of PyTorch (< 2.0) (#25947)
* remove SDPA for falcon

* revert previous behaviour and add warning

* nit

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update src/transformers/models/falcon/modeling_falcon.py

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-09-04 14:34:04 -04:00
22a69f1d7d Put Falcon back (#25960)
* Put Falcon back

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update test

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-04 14:17:09 -04:00
040c4613c2 Add type hints for tf models final batch (#25883)
* Add missing type hints and consistency to `RegNet` models

* Add missing type hints and consistency to `TFSamModel`

* Add missing type hints to `TFSegformerDecodeHead`

* Add missing type hints and consistency to `TransfoXL` family models

* Add missing type hints and consistency to `TFWav2Vec2ForSequenceClassification`

* Add type hints to `TFXLMModel`

* Fix linter

* Revert the type hints for `RegNet` to python 3.8 compliant

* Remove the redundant np.ndarray type hint.
2023-09-04 18:16:10 +01:00
44d2c199f6 Fix smart check (#25955)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-04 18:54:34 +02:00
3a479672ea Fix failing test (#25963) 2023-09-04 12:53:50 -04:00
034bc5d26a Add proper Falcon docs and conversion script (#25954)
* Add proper Falcon docs and conversion script

* Autodetect the decoder architecture instead of using an arg

* Update docs now that we can autodetect

* Fix doc error

* Add doc to toctree

* Quick doc update
2023-09-04 17:18:34 +01:00
d750eff627 [VITS] Fix init test (#25945)
* [VITS] Fix init test

* add flaky decorator

* style

* max attempts

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* style

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-09-04 17:09:26 +01:00
7cd01d4e38 Update README.md (#25922)
fixed a typo
2023-09-04 16:11:00 +02:00
bfb1895e33 Import deepspeed utilities from integrations (#25919)
Follow up from #25599
2023-09-04 14:03:48 +01:00
eb984418e2 [VITS] Handle deprecated weight norm (#25946) 2023-09-04 11:54:03 +01:00
f435003e0c [MMS] Fix pip install in docs (#25949) 2023-09-04 11:53:41 +01:00
604a6c51ae Update README.md (#25941)
fixed a typo
2023-09-04 11:28:21 +01:00
d4407a3bd1 Update autoclass_tutorial.md (#25929)
fixed typos
2023-09-04 11:16:49 +01:00
51e1e8120b Update community.md (#25928)
fixed a few typos
2023-09-04 11:16:34 +01:00
0f0e1a2c2b Fix typos (#25936)
* fix typo

* fix typo

* fix typo

* fix typos

* fix typos

* fix typo

* fix typo

* fix typo

* fix typos

* fix typo

* fix typo

* fix typo

* fix typos

* fix typos
2023-09-04 11:15:12 +01:00
b1d475f6d2 Skip offload tests for ViTDet (#25913)
* update

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-04 11:35:39 +02:00
ab8cba824e CI: hotfix (skip VitsModelTest::test_initialization) 2023-09-04 09:06:11 +02:00
0afa5071bd Update model_memory_anatomy.md (#25896)
typo fixes
2023-09-01 12:27:01 -07:00
a4dd53d88e Update-llama-code (#25826)
* some bug fixes

* updates

* Update code_llama.md

Co-authored-by: Omar Sanseviero <osanseviero@users.noreply.github.com>

* Add co author

Co-authored-by: pcuenca <pedro@latenitesoft.com>

* add a test

* fixup

* nits

* some updates

* fix-coies

* adress comments

* nits

* nits

* fix docsting

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update

* add int for https://huggingface.co/spaces/hf-accelerate/model-memory-usage

---------

Co-authored-by: Omar Sanseviero <osanseviero@users.noreply.github.com>
Co-authored-by: pcuenca <pedro@latenitesoft.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-09-01 20:40:40 +02:00
3587769c08 [VITS] Only trigger tokenizer warning for uroman (#25915) 2023-09-01 19:27:01 +01:00
1fa2d89a9b [MMS] Update docs with HF TTS implementation (#25907)
* [MMS] Update docs with HF TTS implementation

* Update docs/source/en/model_doc/mms.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add uromanise to docs

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-01 16:50:59 +01:00
b439129e74 [VITS] Add to TTA pipeline (#25906)
* [VITS] Add to TTA pipeline

* Update tests/pipelines/test_pipelines_text_to_audio.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* remove extra spaces

---------

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
2023-09-01 16:39:00 +01:00
be0e189bd3 Revert frozen training arguments (#25903)
* Revert frozen training arguments

* TODO
2023-09-01 11:24:12 -04:00
69c5b8f186 Remove broken docs for MusicGen (#25905)
Update musicgen.md
2023-09-01 15:26:42 +01:00
16d6e3087c Better error message for pipeline loading (#25912)
* update

* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-01 16:09:12 +02:00
53e2fd785b Falcon: Add RoPE scaling (#25878) 2023-09-01 12:05:53 +01:00
024acd271b fix FSDP model resume optimizer & scheduler (#25852)
* fix FSDP resume optimizer & scheduler

* improve trainer code quality

---------

Co-authored-by: machi04 <machi04@meituan.com>
2023-09-01 15:20:42 +05:30
4ece3b9433 add VITS model (#24085)
* add VITS model

* let's vits

* finish TextEncoder (mostly)

* rename VITS to Vits

* add StochasticDurationPredictor

* ads flow model

* add generator

* correctly set vocab size

* add tokenizer

* remove processor & feature extractor

* add PosteriorEncoder

* add missing weights to SDP

* also convert LJSpeech and VCTK checkpoints

* add training stuff in forward

* add placeholder tests for tokenizer

* add placeholder tests for model

* starting cleanup

* let the great renaming begin!

* use config

* global_conditioning

* more cleaning

* renaming variables

* more renaming

* more renaming

* it never ends

* reticulating the splines

* more renaming

* HiFi-GAN

* doc strings for main model

* fixup

* fix-copies

* don't make it a PreTrainedModel

* fixup

* rename config options

* remove training logic from forward pass

* simplify relative position

* use actual checkpoint

* style

* PR review fixes

* more review changes

* fixup

* more unit tests

* fixup

* fix doc test

* add integration test

* improve tokenizer tests

* add tokenizer integration test

* fix tests on GPU (gave OOM)

* conversion script can handle repos from hub

* add conversion script for all MMS-TTS checkpoints

* automatically create a README for the converted checkpoint

* small changes to config

* push README to hub

* only show uroman note for checkpoints that need it

* remove conversion script because code formatting breaks the readme

* make WaveNet layers configurable

* rename variables

* simplifying the math

* output attentions and hidden states

* remove VitsFlip in flow model

* also got rid of the other flip

* fix tests

* rename more variables

* rename tokenizer, add phonemization

* raise error when phonemizer missing

* re-order config docstrings to match method

* change config naming

* remove redundant str -> list

* fix copyright: vits authors -> kakao enterprise

* (mean, log_variances) -> (prior_mean, prior_log_variances)

* if return dict -> if not return dict

* speed -> speaking rate

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update fused tanh sigmoid

* reduce dims in tester

* audio -> output_values

* audio -> output_values in tuple out

* fix return type

* fix return type

* make _unconstrained_rational_quadratic_spline a function

* all nn's to accept a config

* add spectro to output

* move {speaking rate, noise scale, noise scale duration} to config

* path -> attn_path

* idxs -> valid idxs -> padded idxs

* output values -> waveform

* use config for attention

* make generation work

* harden integration test

* add spectrogram to dict output

* tokenizer refactor

* make style

* remove 'fake' padding token

* harden tokenizer tests

* ron norm test

* fprop / save tests deterministic

* move uroman to tokenizer as much as possible

* better logger message

* fix vivit imports

* add uroman integration test

* make style

* up

* matthijs -> sanchit-gandhi

* fix tokenizer test

* make fix-copies

* fix dict comprehension

* fix config tests

* fix model tests

* make outputs consistent with reverse/not reverse

* fix key concat

* more model details

* add author

* return dict

* speaker error

* labels error

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vits/convert_original_checkpoint.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove uromanize

* add docstrings

* add docstrings for tokenizer

* upper-case skip messages

* fix return dict

* style

* finish tests

* update checkpoints

* make style

* remove doctest file

* revert

* fix docstring

* fix tokenizer

* remove uroman integration test

* add sampling rate

* fix docs / docstrings

* style

* add sr to model output

* fix outputs

* style / copies

* fix docstring

* fix copies

* remove sr from model outputs

* Update utils/documentation_tests.txt

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add sr as allowed attr

---------

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-09-01 10:50:06 +01:00
ef10dbce5c remove torch_dtype override (#25894)
* remove torch_dtype override

* style

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-31 17:38:14 -04:00
0f08cd205a Smarter check for is_tensor (#25871)
* Smarter check for

* Use protected functions

* Do others too

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Address review comments

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-31 13:14:18 -04:00
3fb1535b09 Update setup.py (#25893)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-31 18:54:01 +02:00
eaf5e98ec0 Add type hints for tf models batch 1 (#25853)
* Add type hints to `TFBlipTextModel`

* Add missing type hints to DPR family models

* Add type hints to `TFLEDModel`

* Add type hints to `TFLxmertForPreTraining`

* Add missing type hints to `TFMarianMTModel` and `TFMarianModel`

* Add missing type hints to `TFRagModel` & `TFRagTokenForGeneration`

* Make type hints annotations consistent
2023-08-31 17:00:03 +01:00
9c5acca002 [InstructBlip] FINAL Fix instructblip test (#25887)
fix instructblip test
2023-08-31 17:01:27 +02:00
2be8a9098e Save image_processor while saving pipeline (ImageSegmentationPipeline) (#25884)
* Save image_processor while saving pipeline (ImageSegmentationPipeline)

* Fix black issues
2023-08-31 16:08:20 +02:00
a39ebbf879 [CodeLlama] Fix CI (#25890)
* Fix coellama

* style
2023-08-31 16:06:56 +02:00
3b39b90618 [TokenizerFast] can_save_slow_tokenizer as a property for when vocab_file's folder was removed (#25626)
* pad token should be None by default

* fix tests

* nits

* check if isfile vocabfile

* add warning if sp model folder was deleted

* save SPM when missing folder for sloz

* update the ` can_save_slow_tokenizer`  to be a property

* first batch

* second batch

* missing one
2023-08-31 14:17:26 +02:00
99fc3ac8ac Modify efficient GPU training doc with now-available adamw_bnb_8bit optimizer (#25807)
* Modify single-GPU efficient training doc with now-available adamw_bnb_8bit optimizer

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-31 10:55:10 +01:00
e95bcaeef0 fix ds z3 checkpointing when stage3_gather_16bit_weights_on_model_save=False (#25817)
* fix ds z3 checkpointing when  `stage3_gather_16bit_weights_on_model_save=False`

* refactoring
2023-08-31 15:17:53 +05:30
f8468b4fac For xla tensors, use an alternative way to get a unique id (#25802)
* For xla tensors, use an alternative way to get a unique id

Because xla tensors don't have storage.

* add is_torch_tpu_available check
2023-08-31 10:31:16 +01:00
716bb2e391 [ViTDet] Fix doc tests (#25880)
Fix docstrings
2023-08-30 22:49:03 +02:00
1c6f072db0 Reduce CI output (#25876)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-30 18:15:07 +02:00
9219d1427b pin pandas==2.0.3 (#25875)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-30 18:10:01 +02:00
459bc6738c Docs: fix example failing doctest in generation_strategies.md (#25874) 2023-08-30 16:23:44 +01:00
72298178bc fix max_memory for bnb (#25842) 2023-08-30 11:00:36 -04:00
f73c20970c Fix imports (#25869)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-30 16:11:54 +02:00
ed290b0837 Remote tools are turned off (#25867) 2023-08-30 09:40:39 -04:00
09dc99517f Add Blip2 model in VQA pipeline (#25532)
* Add Blip2 model in VQA pipeline

* use require_torch_gpu for test_large_model_pt_blip2

* use can_generate in vqa pipeline

* test Blip2ForConditionalGeneration using float16

* remove custom can_generate from Blip2ForConditionalGeneration
2023-08-30 14:16:16 +01:00
62399d6f35 Add flax installation in daily doctest workflow (#25860)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-30 15:13:50 +02:00
52574026b6 minor typo fix in PeftAdapterMixin docs (#25829)
fix minor documentation typo
2023-08-30 11:56:05 +01:00
1bf2f36daf Update README.md (#25832)
deleted unnecessary comma in the Adding a new model section.
2023-08-30 10:52:41 +01:00
07998ef399 Generate: models with custom generate() return True in can_generate() (#25838) 2023-08-29 20:10:46 +01:00
8c75cfdaee Update README.md (#25834)
_toctree.yml file. broken link, now fixed.
2023-08-29 20:02:57 +01:00
dbc16f4404 Support loading base64 images in pipelines (#25633)
* support loading base64 images

* add test

* mention in docs

* remove the logging

* sort imports

* update error message

* Update tests/utils/test_image_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* restructure to catch base64 exception

* doesn't like the newline

* download files

* format

* optimize imports

* guess it needs a space?

* support loading base64 images

* add test

* remove the logging

* sort imports

* restructure to catch base64 exception

* doesn't like the newline

* download files

* optimize imports

* guess it needs a space?

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-29 19:24:24 +01:00
ce2d4bc6a1 MaskFormer,Mask2former - reduce memory load (#25741)
Allocate result array ahead of time
2023-08-29 18:49:15 +01:00
0daeeb40a1 [AutoTokenizer] Add data2vec to mapping (#25835) 2023-08-29 18:26:41 +01:00
0e59c93983 update remaining Pop2Piano checkpoints (#25827)
update checkpoints
2023-08-29 18:00:40 +01:00
245dcc49ef 🤦update warning to If you want to use the new behaviour, set `legacy=… (#25833)
🤦update warning to If you want to use the new behaviour, set `legacy=False`. instead of True
2023-08-29 18:01:43 +02:00
aade754b27 🌐 [i18n-KO] Translated community.md to Korean (#25674)
* docs: ko: community.md

* feat: deepl draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
2023-08-29 11:47:24 -04:00
d97fd871e5 🌐 [i18n-KO] Translated add_new_pipeline.md to Korean (#25498)
* dos: ko: add_new_pipeline.mdx

* feat: chatgpt draft

* fix: manual edits

* docs: ko: add_new_pipeline

Update _toctree

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* Update docs/source/ko/add_new_pipeline.md

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
2023-08-29 11:38:44 -04:00
a35f889acc Tests: detect lines removed from "utils/not_doctested.txt" and doctest ALL generation files (#25763) 2023-08-29 16:15:05 +01:00
483861d52d Error with checking args.eval_accumulation_steps to gather tensors (#25819)
* Update trainer.py (error with checking steps in args.eval_accumulation_steps to gather tensors)

While the deprecated code has the correct check (line 3772): 
"if args.eval_accumulation_steps is not None and (step + 1) % args.eval_accumulation_steps == 0:"

The current code does not (line 3196):
"if args.eval_accumulation_steps is not None and self.accelerator.sync_gradients:"

We need to check "(step + 1) % args.eval_accumulation_steps == 0". Hence, the line 3196 should be modified to:
"if args.eval_accumulation_steps is not None and (step + 1) % args.eval_accumulation_steps == 0 and self.accelerator.sync_gradients:"

* Fix error with checking args.eval_accumulation_steps to gather tensors
2023-08-29 15:06:41 +01:00
33aa0af70c 🌐 [i18n-KO] model_memory_anatomy.md to Korean (#25755)
* docs: ko-model_memory_anatomy.md

* feat: chatgpt draft

* feat: manual edits

* feat: change document title

* feat: manual edits

* fix: resolve suggestion

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: heuristicwave <31366038+heuristicwave@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: heuristicwave <31366038+heuristicwave@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestion

---------

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-authored-by: heuristicwave <31366038+heuristicwave@users.noreply.github.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-08-29 09:48:51 -04:00
173fa7da9c 🌐 [i18n-KO] Translated peft.md to Korean (#25706)
* docs: ko: peft.mdx

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: heuristicwave <31366038+heuristicwave@users.noreply.github.com>

* fix: resolve suggestions

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: heuristicwave <31366038+heuristicwave@users.noreply.github.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-08-29 09:10:00 -04:00
2ee60b757e fix warning trigger for embed_positions when loading xglm (#25798)
* fix warning triggering for xglm.embed_positions

* Make TF variable a tf.constant to match (and fix some spelling)

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2023-08-29 14:09:07 +01:00
5b5ee235f3 [LlamaTokenizer] tokenize nits. (#25793)
* return when length is zero

* Add tests

Co-authored-by:  Avnish Narayan <38871737avnishn@users.noreply.github.com>

* Co-authored-by: avnishn
<38871737+avnishn@users.noreply.github.com>

* codeLlama doc should not be on Main

* update test

---------

Co-authored-by: Avnish Narayan <38871737avnishn@users.noreply.github.com>
2023-08-29 15:08:14 +02:00
9525515cd4 Minor wording changes for Code Llama (#25815)
* Update code_llama.md

* Update code_llama.md
2023-08-29 15:02:57 +02:00
3dd030d264 fix register (#25779) 2023-08-29 14:11:48 +02:00
dc0c102954 [Docs] More clarifications on BT + FA (#25823) 2023-08-29 13:52:25 +02:00
c9bae84eb5 Resolving Attribute error when using the FSDP ram efficient feature (#25820)
fix bug
2023-08-29 17:02:19 +05:30
77713d11f6 [DINOv2] Add backbone class (#25520)
* First draft

* More improvements

* Fix all tests

* More improvements

* Add backbone test

* Improve docstring

* Address comments

* Rename attribute

* Remove expected output

* Update src/transformers/models/dinov2/modeling_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix style

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-29 11:05:27 +01:00
4c21da5e34 Add ViTDet (#25524)
* First draft

* Fix READMEs

* Update return_dict

* Add more tests

* Fix docstrings

* Address comments

* Address more comments

* Address more comments

* Address more comments, fix test

* Fix test
2023-08-29 10:03:52 +01:00
99c3d44906 fixing name position_embeddings to object_queries (#24652)
* fixing name position_embeddings to object_queries

* [fix] renaming variable and docstring do object queries

* [fix] comment position_embedding to object queries

* [feat] changes from make-fix-copies to keep consistency

* Revert "[feat] changes from make-fix-copies to keep consistency"

This reverts commit 56e3e9ede1d32f7aeefba707ddfaf12c9b4b9e7e.

* [tests] fix wrong expected score

* [fix] wrong assignment causing wrong tensor shapes

* [fix] fixing position_embeddings to object queries to keep consistency (make fix copies)

* [fix] make fix copies, renaming position_embeddings to object_queries

* [fix] positional_embeddingss to object queries, fixes from make fix copies

* [fix] comments frmo make fix copies

* [fix] adding args validation to keep version support

* [fix] adding args validation to keep version support -conditional detr

* [fix] adding args validation to keep version support - maskformer

* [style] make fixup style fixes

* [feat] adding args checking

* [feat] fixcopies and args checking

* make fixup

* make fixup

---------

Co-authored-by: Lorenzobattistela <lorenzobattistela@gmail.com>
2023-08-29 09:09:45 +01:00
39c37fe45c Fix incorrect Boolean value in deepspeed example (#25788) 2023-08-29 09:22:37 +02:00
738ecd17d8 Arde/fsdp activation checkpointing (#25771)
* add FSDP config option to enable activation-checkpointing

* update docs

* add checks and remove redundant code

* fix formatting error
2023-08-29 12:52:14 +05:30
50573c648a [idefics] fix vision's hidden_act (#25787)
[idefics] fix vision's hidden_act
2023-08-28 07:37:37 -07:00
886b6be081 Add type hints for several pytorch models (batch-4) (#25749)
* Add type hints for MGP STR model

* Add missing type hints for plbart model

* Add type hints for Pix2struct model

* Add missing type hints to Rag model and tweak the docstring

* Add missing type hints to Sam model

* Add missing type hints to Swin2sr model

* Fix a type hint for Pix2StructTextModel

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Fix typo on Rag model docstring

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Fix linter

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-08-28 14:31:33 +01:00
ed915cff97 Add type hints for pytorch models (final batch) (#25750)
* Add type hints for table_transformer

* Add type hints to Timesformer model

* Add type hints to Timm Backbone model

* Add type hints to TVLT family models

* Add type hints to Vivit family models

* Use the typing instance instead of the python builtin.

* Fix the `replace_return_docstrings` decorator for Vivit model

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-08-28 14:31:22 +01:00
cb91ec67b5 Add type hints for several pytorch models (batch-2) (#25557)
* Add missing type hint to cpmant

* Add type hints to decision_transformer model

* Add type hints to deformable_detr models

* Add type hints to detr models

* Add type hints to deta models

* Add type hints to dpr models

* Update attention mask type hint

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update remaining attention masks type hints

* Update docstrings' type hints related to attention masks

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-08-28 13:58:23 +01:00
de139702a1 [LlamaFamiliy] add a tip about dtype (#25794)
* add a warning=True tip to the Llama2 doc

* code llama needs a tip too

* doc nit

* build PR doc

* doc nits

Co-authored-by: Lysandre <lysandre@huggingface.co>

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-08-28 12:07:31 +02:00
686c68f64c Add docstrings and fix VIVIT examples (#25628)
* fix docstrings and examples

* docstring update

* add missing whitespace
2023-08-26 20:08:47 +01:00
960807f62e [idefics] small fixes (#25764) 2023-08-25 10:59:29 -07:00
015f8e110d [CodeLlama] Add support for CodeLlama (#25740)
* add all

* Revert "Delete .github directory"

This reverts commit 9b0ff7b052e2b20b629a26fb13606b78a42944d1.

* make conversion script backward compatible

* fixup

* more styling

* copy to llama changes

* fix repo consistency

* nits

* document correct classes

* updates

* more fixes

* nits

* update auto mappings

* add readmes

* smallupdates

* llama-code replace with llama_code

* make fixup

* updates to the testsing suite

* fix fast nits

* more small fixes

* fix decode

* fix template processing

* properly reset the normalizer

* nits processor

* tokenization tests pass

* styling

* last tests

* additional nits

* one test is left

* nits

Co-authored-by faabian <faabian@users.noreply.github.com>

* update failing test

* fixup

* remove decode infilling users should handle it on their onw after generation, padding can be a problem

* update

* make test slow and more meaningfull

* fixup

* doc update

* fixup

* Apply suggestions from code review

* add kwargs doc

* tokenizer requires `requires_backend`

* type requires_backends

* CodeLlama instead of LlamaCode

* more name cahnges

* nits

* make doctests happy

* small pipeline nits

* last nit

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* update

* add codellama to toctree

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-08-25 18:57:40 +02:00
74081cb5fa fix a typo in docsting (#25759)
* fix a typo in docsting

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: statelesshz <jihuazhong1@huawei.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-25 17:46:56 +02:00
0040469bb8 Correct attention mask dtype for Flax GPT2 (#25636)
* Correct attention mask dtype

* reformat code

* add a test for boolean mask

* convert test to fast test

* delete unwanted print

* use assertTrue for testing
2023-08-25 17:36:37 +02:00
4b79697865 🚨🚨🚨 [Refactor] Move third-party related utility files into integrations/ folder 🚨🚨🚨 (#25599)
* move deepspeed to `lib_integrations.deepspeed`

* more refactor

* oops

* fix slow tests

* Fix docs

* fix docs

* addess feedback

* address feedback

* final modifs for PEFT

* fixup

* ok now

* trigger CI

* trigger CI again

* Update docs/source/en/main_classes/deepspeed.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* import from `integrations`

* address feedback

* revert removal of `deepspeed` module

* revert removal of `deepspeed` module

* fix conflicts

* ooops

* oops

* add deprecation warning

* place it on the top

* put `FutureWarning`

* fix conflicts with not_doctested.txt

* add back `bitsandbytes` module with a depr warning

* fix

* fix

* fixup

* oops

* fix doctests

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-08-25 17:13:34 +02:00
4d9e45f3ef Add type hints for several pytorch models (batch-3) (#25705)
* Add missing type hints for ErnieM family

* Add missing type hints for EsmForProteinFolding model

* Add missing type hints for Graphormer model

* Add type hints for InstructBlipQFormer model

* Add missing type hints for LayoutLMForMaskedLM model

* Add missing type hints for LukeForEntitySpanClassification model
2023-08-25 15:12:54 +01:00
8b0a7bfcdc Docs: fix indentation in HammingDiversityLogitsProcessor (#25756) 2023-08-25 14:56:39 +01:00
35c570c80e fix encoder hook (#25735)
* fix encoder hook

* style
2023-08-25 09:36:41 -04:00
dd8b7d28ae [Sentencepiece] make sure legacy do not require protobuf (#25684)
make sure legacy does not require `protobuf`
2023-08-25 14:41:04 +02:00
0770ce6cfb [CLAP] Fix logit scales dtype for fp16 (#25754) 2023-08-25 13:30:39 +01:00
494e96d8d6 Generate: logits processors are doctested and fix broken doctests (#25692)
* shorter example

* add logits processors to doctests

* remove file from conflict?

* tmp commit

* Fix broken tests; Shorter sampling tests

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-25 12:42:06 +01:00
c6a84b7202 [DOCS] Add example for HammingDiversityLogitsProcessor (#25481)
* updated logits processor text

* Update logits_process.py

* fixed formatting with black

* fixed formatting with black

* fixed formatting with Make Fixup

* more formatting fixes

* Update src/transformers/generation/logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Revert "fixed formatting with Make Fixup"

This reverts commit 47643083

* Revert "fixed formatting with black"

This reverts commit bfb153673664d099cbdbcce100ceb6a64868adaf.

* Revert "fixed formatting with Make Fixup"

This reverts commit 47643083

* Revert "fixed formatting with Make Fixup"

This reverts commit 47643083

* Revert "fixed formatting with black"

This reverts commit ad6ceb64

* Revert "fixed formatting with black"

This reverts commit ad6ceb64b7cf77addcc4c863d497bf948ec335c8.

* Update src/transformers/generation/logits_process.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Revert "fixed formatting with Make Fixup"

This reverts commit 47643083

* formatted logits_process with make fixup

---------

Co-authored-by: jesspeck <jess@localseoguide.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-25 12:35:40 +01:00
85cf90a1c9 Generate: add missing logits processors docs (#25653) 2023-08-25 11:56:17 +01:00
cb8e3ee25f Add FlaxCLIPTextModelWithProjection (#25254)
* Add FlaxClipTextModelWithProjection

This is necessary to support the Flax port of Stable Diffusion XL: fb6d705fb5/text_encoder_2/config.json (L3)

Co-authored-by: Martin Müller <martin.muller.me@gmail.com>
Co-authored-by: Juan Acevedo <juancevedo@gmail.com>

* Use FlaxCLIPTextModelOutput

* make fix-copies again

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Use `return_dict` for consistency with other uses.

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Fix docstring example.

* Add new model to FlaxCLIPTextModelTest

* Add to IGNORE_NON_AUTO_CONFIGURED list

* Fix naming convention.

---------

Co-authored-by: Martin Müller <martin.muller.me@gmail.com>
Co-authored-by: Juan Acevedo <juancevedo@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-08-25 10:58:14 +02:00
8968fface4 fixed typo in speech encoder decoder doc (#25745)
fixed typo in speech encoder decoder blog
2023-08-25 09:20:37 +02:00
ae320fa53f [PEFT] Fix PeftConfig save pretrained when calling add_adapter (#25738)
fix save_pretrained issue + add test
2023-08-25 08:19:11 +02:00
f26099e7b5 🌐 [i18n-KO] Translated visual_question_answering.md to Korean (#25679)
* docs: ko: visual_question_answering.md

* feat: chatgpt draft

tosquash: add code blocks

* fix: manual edits

~L34 14:25
~L126 16:52
~L224 17:00
~L335 17:11
~EOF 17:18

* fix: self-correction

* amend grammar, phrasing

* docs: add new entry to _toctree.yml

* fix: use terms from glossary

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

---------

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
2023-08-24 11:14:58 -07:00
0218876822 [ASR Pipe Test] Fix CTC timestamps error message (#25727) 2023-08-24 17:58:37 +01:00
fd0b94fd7b [from_pretrained] Fix failing PEFT tests (#25733)
fix failing PEFT tests
2023-08-24 18:48:41 +02:00
1b2381c46b ImageProcessor - check if input pixel values between 0-255 (#25688)
* Check if pixel values between 0-255 and add doc clarification

* Add missing docstrings

* _is_scale_image -> is_scaled_image

* Spelling is hard

* Tidy up
2023-08-24 17:24:36 +01:00
7a6efe1e9f [idefics] idefics-9b test use 4bit quant (#25734) 2023-08-24 08:33:14 -07:00
fecf08560c [from_pretrained] Simpler code for peft (#25726)
* refactor complicated from pretrained for peft

* nits

* more nits

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make tests happy

* fixup after merge

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-08-24 16:18:39 +02:00
0a365c3e6a Generate: nudge towards do_sample=False when temperature=0.0 (#25722) 2023-08-24 14:15:43 +01:00
584eeb5387 [AutoGPTQ] Add correct installation of GPTQ library + fix slow tests (#25713)
* add correct installation of GPTQ library

* update tests values
2023-08-24 14:57:16 +02:00
2febd50614 Fix number of minimal calls to the Hub with peft integration (#25715)
* Fix number of minimal calls to the Hub with peft integration

* Alternate design

* And this way?

* Revert

* Address comments
2023-08-24 14:56:11 +02:00
70b49f023c [PEFT] Fix peft version (#25710)
* fix peft version

* address comments

* adapt suggestion
2023-08-24 12:09:12 +02:00
8fff61b9db Fix failing test_batch_generation for bloom (#25718)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-24 11:15:29 +02:00
f01459c75d docs: Resolve typos in warning text (#25711)
Resolve typos in warning text
2023-08-24 11:14:27 +02:00
c2123626aa Update list of persons to tag (#25708) 2023-08-24 10:13:30 +02:00
6e6da5e4b8 [LlamaTokenizer] make unk_token_length a property (#25689)
make unk_token_length a property
2023-08-24 08:03:34 +02:00
b85b88069a fix ram efficient fsdp init (#25686) 2023-08-24 11:30:42 +05:30
68fa9a5937 Skip broken tests 2023-08-24 01:48:53 -04:00
4d40109c3a Fix typo in configuration_gpt2.py (#25676)
Update configuration_gpt2.py
2023-08-23 11:40:03 -07:00
3c2383b1c6 Generate: general test for decoder-only generation from inputs_embeds (#25687)
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-23 19:17:01 +01:00
656e17f6f7 correct resume training steps number in progress bar (#25691)
feat: correct update resume update with steps
2023-08-23 20:09:14 +02:00
6add3b313d [DOCS] Added docstring example for EpsilonLogitsWarper #24783 (#25378)
* [DOCS] Added docstring example for EpsilonLogitsWarper #24783

* minor code changes based on review comments

* set seed for both generate calls, reduced the example length

* fixed line length under 120 chars
2023-08-23 17:25:28 +01:00
2189a7f54a Fix pad_token check condition (#25685)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-23 16:39:28 +02:00
8657ec68fc Sets the stalebot to 10 AM CEST (#25678)
This sets the stale bot trigger time at 10 AM CEST rather than 5 PM CEST as all core maintainers on watch duty are now in the European timezone
2023-08-23 14:21:07 +02:00
77cb2ab792 ⚠️ [CLAP] Fix dtype of logit scales in init (#25682)
[CLAP] Fix dtype of logit scales
2023-08-23 13:17:37 +01:00
2cf87e2bbb Prevent Dynamo graph fragmentation in GPTNeoX with torch.baddbmm fix (#24941)
* Pass a Python scalar for alpha in torch.baddbmm

* fixup

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2023-08-23 14:07:46 +02:00
b413e0610b Remove utils/documentation_tests.txt (#25680)
* fix

* fix

* fix

* fix

* fix

* fix

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-23 11:14:45 +02:00
3d1edb6c5d fix wrong path in some doc (#25658)
* update

* check

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-23 08:34:30 +02:00
db58722084 [GPTNeo] Add input_embeds functionality to gpt_neo Causal LM (#25664)
nit
2023-08-23 07:49:19 +02:00
51794bf21e [SPM] Patch spm Llama and T5 (#25656)
* hot fix

* only encode with string prefix if starts with prefix

* styling

* add a new test

* fixup
2023-08-23 07:16:43 +02:00
57943630e2 Add Llama2 resources (#25531)
* docs: feat: model resources for llama2

Co-authored-by: Woojun Jung <hello_984@naver.com>

* fix: add description for dpo and rearrange posts

* docs: feat: add llama2 notebook resources

* style: one liners for each resource

Co-Authored-By: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
Co-Authored-By: Kihoon Son <75935546+kihoon71@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Fix typo

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Woojun Jung <hello_984@naver.com>
Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-22 17:14:54 -07:00
40a0cabd93 Update doc toctree (#25661)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-22 22:58:55 +02:00
977b2f05d5 Add input_embeds functionality to gpt_neo Causal LM (#25659)
* Updated gpt_neo causalLM to support using input embeddings for generation

* added indentation

* Did make fixup
2023-08-22 20:28:38 +02:00
908f853688 stringify config (#25637)
* stringify config

* apply code formatting
2023-08-22 17:21:01 +02:00
5eeaef921f Adds TRANSFORMERS_TEST_BACKEND (#25655)
* Adds `TRANSFORMERS_TEST_BACKEND`
Allows specifying arbitrary additional import following first `import torch`.
This is useful for some custom backends, that will require additional imports to trigger backend registration with upstream torch.
See https://github.com/pytorch/benchmark/pull/1805 for a similar change in `torchbench`.

* Update src/transformers/testing_utils.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Adds real backend example to documentation

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-08-22 17:08:13 +02:00
fd56f7f081 removing unnecesssary extra parameter (#25643) 2023-08-22 10:10:30 -04:00
e20fab0bbe Fix bloom add prefix space (#25652)
* properly support Sequence of pretokenizers

* actual fix

* make sure the fix works. Tests are not working for sure!

* hacky way

* add TODO

* update

* add a todo

* nits

* rename test

* nits

* rename test
2023-08-22 14:50:12 +02:00
62396cff46 TF 2.14 compatibility (#25630)
* Update the TF pin and see if anything breaks

* make fixup

* make fixup

* make fixup
2023-08-22 13:13:38 +01:00
3629190689 Put IDEFICS in the right section of the doc (#25650) 2023-08-22 10:39:10 +02:00
edb28722c2 Pass the proper token to PEFT integration in auto classes (#25649) 2023-08-22 10:13:56 +02:00
88e51ba306 [MINOR:TYPO] (#25646)
[MINOR:TYPO] Update tokenization_auto.py
2023-08-22 09:54:44 +02:00
6a314ea7cd [DOCS] MusicGen Docs Update (#25510)
* docs: note token limitations for MusicGen

* docs: note token limitations for MusicGen

* docs: fix token count with token limitations for MusicGen
2023-08-22 08:22:45 +02:00
182b83749a Add Number Normalisation for SpeechT5 (#25447)
* add: NumberNormalizer works for integers, floats, common currencies, negative numbers and percentages

* fix: renamed number normalizer class and added normalization to SpeechT5Processor

* fix: restyled with black and ruff, should pass code quality tests

* fix: moved normalization to tokenizer and other small changes to normalizer

* add: test for normalization and changed the existing full tokenizer test

* fix: tokenization tests now pass, made changes to existing tokenization where normalization is covered; added normalize arg to func signature

* fix: changed default normalize setting to False, modified the tests a bit

* fix: added support for comma separated numbers, tokenization on the fly with kwargs and normalizer getter setter funcs
2023-08-22 08:12:57 +02:00
58c36bea74 Support specifying revision in push_to_hub (#25578)
Support revision in push_to_hub
2023-08-22 07:55:35 +02:00
450a181d8b Add Pop2Piano (#21785)
* init commit

* config updated also some modeling

* Processor and Model config combined

* extraction pipeline(upto before spectogram & mel_conditioner) added but not properly tested

* model loading successful!

* feature extractor done!

* FE can now be called from HF

* postprocessing added in fe file

* same as prev commit

* Pop2PianoConfig doc done

* cfg docs slightly changed

* fe docs done

* batched

* batched working!

* temp

* v1

* checking

* trying to go with generate

* with generate and model tests passed

* before rebasing

* .

* tests done docs done remaining others & nits

* nits

* LogMelSpectogram shifted to FeatureExtractor

* is_tf rmeoved from pop2piano/init

* import solved

* tokenization tests added

* minor fixed regarding modeling_pop2piano

* tokenizer changed to only return midi_object and other changes

* Updated paper abstract(Camera-ready version) (#2)

* more comments and nits

* ruff changes

* code quality fix

* sg comments

* t5 change added and rebased

* comments except batching

* batching done

* comments

* small doc fix

* example removed from modeling

* ckpt

* forward it compatible with fe and generation done

* comments

* comments

* code-quality fix(maybe)

* ckpts changed

* doc file changed from mdx to md

* test fixes

* tokenizer test fix

* changes

* nits done main changes remaining

* code modified

* Pop2PianoProcessor added with tests

* other comments

* added Pop2PianoProcessor to dummy_objects

* added require_onnx to modeling file

* changes

* update .md file

* remove extra line in index.md

* back to the main index

* added pop2piano to index

* Added tokenizer.__call__ with valid args and batch_decode and aligned the processor part too

* changes

* added return types to 2 tokenizer methods

* the PR build test might work now

* added backends

* PR build fix

* vocab added

* comments

* refactored vocab into 1 file

* added conversion script

* comments

* essentia version changed in .md

* comments

* more tokenizer tests added

* minor fix

* tests extended for outputs acc check

* small fix

---------

Co-authored-by: Jongho Choi <sweetcocoa@snu.ac.kr>
2023-08-21 16:35:00 +01:00
6f041fcbb8 fix documentation for CustomTrainer (#25635)
fix doc
2023-08-21 17:23:17 +02:00
8608bf2049 🚨🚨🚨 changing default threshold and applying threshold before the rescale (#25608)
changing position of score threshold and its default value
2023-08-21 10:20:05 -04:00
2df24228d6 Skip doctest for some recent files (#25631)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-21 15:20:44 +02:00
2582bbde2e fix ACT_FN (#25627) 2023-08-21 14:33:43 +02:00
2c1bcbf5ed correct TTS pipeline docstrings snippet (#25587)
* correct TTS pipeline docstrings snippet

* add text_to_audio.py pipelines to documentation tests
2023-08-21 13:40:04 +02:00
e769ca3d28 Added paper links in logitprocess.py (#25482) 2023-08-21 12:09:34 +01:00
5c67682b16 v4.33.0.dev0 2023-08-21 07:07:04 -04:00
2f8acfea1c Fix test_modeling_mpt typo in model id (#25606)
Fix model id in get_large_model_config on file test_modeling_mpt
2023-08-21 11:11:21 +02:00
f09db47a71 Run doctest for new files (#25588)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-21 11:08:38 +02:00
9627c3da4a Fix PEFT integration failures on nightly CI (#25624)
fix PEFT integration failures
2023-08-21 10:04:44 +02:00
f92cc7034a Ignore all exceptions from signal in dynamic code (#25623) 2023-08-21 09:01:11 +02:00
1982dd3b15 Hotfix 2023-08-19 11:15:38 +02:00
6b82d936d4 reattach hooks when using resize_token_embeddings (#25596)
* reattach hooks

* fix style
2023-08-18 17:30:29 -04:00
6c811a322f new model: IDEFICS via HuggingFaceM4 (#24796)
* rename

* restore

* mappings

* unedited tests+docs

* docs

* fixes

* fix auto-sync breakage

* cleanup

* wip

* wip

* add fetch_images

* remove einops dependency

* update

* fix

* fix

* fix

* fix

* fix

* re-add

* add batching

* rework

* fix

* improve

* add Leo as I am extending his work

* cleanup

* fix

* cleanup

* slow-test

* fix

* fix

* fixes

* deal with warning

* rename modified llama classes

* rework fetch_images

* alternative implementation

* cleanup

* strict version

* cleanup

* [`IDEFICS`] Fix idefics ci (#25056)

* Fix IDEFICS CI

* fix test file

* fixup

* some changes to make tests pass

* fix

* fixup

* Update src/transformers/models/idefics/configuration_idefics.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

---------

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* remove compat checks

* style

* explain that Idefics is not for training from scratch

* require pt>=2.0

* fix idefics vision config (#25092)

* fix idefics vision config

* fixup

* clean

* Update src/transformers/models/idefics/configuration_idefics.py

---------

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* cleanup

* style

* cleanup

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* upcase

* sequence of images

* handle the case with no images

* Update src/transformers/image_processing_utils.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* support pure lm take 2

* support tokenizer options

* parameterize num_channels

* fix upcase

* s|IdeficsForCausalLM|IdeficsForVisionText2Text|g

* manual to one line

* addressing review

* unbreak

* remove clip dependency

* fix test

* consistency

* PIL import

* Idefics prefix

* Idefics prefix

* hack to make tests work

* style

* fix

* fix

* revert

* try/finally

* cleanup

* clean up

* move

* [`IDEFICS`] Fix idefics config refactor (#25149)

* refactor config

* nuke init weights

* more refactor

* oops

* remove visual question answering pipeline support

* Update src/transformers/models/idefics/clip.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update src/transformers/models/idefics/modeling_idefics.py

* cleanup

* mv clip.py vision.py

* tidyup

---------

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>

* fix

* license

* condition on pt

* fix

* style

* fix

* rm torchvision dependency, allow custom transforms

* address review

* rework device arg

* add_eos_token

* s/transforms/transform/

* fix top level imports

* fix return value

* cleanup

* cleanup

* fix

* style

* license

* license

* Update src/transformers/models/idefics/image_processing_idefics.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add a wrapper to freeze vision layears

* tidyup

* use the correct std/mean settings

* parameterize values from config

* add tests/models/idefics/test_image_processing_idefics.py

* add test_processor_idefics.py

* cleanup

* cleanups

* fix

* fix

* move to the right group

* style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add perceiver config

* reset

* missing arg docs

* Apply suggestions from code review

Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com>

* address review comments

* inject automatic end of utterance tokens (#25218)

* inject automatic end of utterance tokens

* fix

* fix

* fix

* rework to not use the config

* not end_of_utterance_token at the end

* Update src/transformers/models/idefics/processing_idefics.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address review

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/image_processing_utils.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* [`Idefics`] add image_embeddings option in generate-related methods (#25442)

* add image_embeddings option in generate-related methods

* style

* rename image_embeddings and allow perceiver embeddings precomputation

* compute embeddings within generate

* make is_encoder_decoder= True the default in config

* nested if else fix

* better triple check

* switch if elif order for pixel values / img embeds

* update model_kwargs perceiver only at the end

* use _prepare_model_inputs instead of encoder_decoder logic

* fix comment typo

* fix config default for is_encoder_decoder

* style

* add typehints

* precompute in forward

* doc builder

* style

* pop instead of get image hidden states

* Trigger CI

* Update src/transformers/models/idefics/modeling_idefics.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/idefics/modeling_idefics.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix * + indentation + style

* simplify a bit the use_resampler logic using comments

* update diocstrings

* Trigger CI

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix rebase changes

* unbreak #25237 - to be fixed in follow up PRs

* is_composition = False

* no longer needed

---------

Co-authored-by: leot13 <leo.tronchon@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Victor SANH <victorsanh@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-18 14:12:28 -07:00
4d64157ed3 🌐 [i18n-KO] Translated perf_train_tpu_tf.md to Korean (#25433)
* docs: ko: perf_train_tpu_tf.md

* feat: nmt and manual edit perf_train_tpu_tf.md

* fix: resolve suggestions

Co-authored-by: Sangam Lee <74291999+augustinLib@users.noreply.github.com>
Co-authored-by: Kim haewon <ehdvkf02@naver.com>
Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>

---------

Co-authored-by: Sangam Lee <74291999+augustinLib@users.noreply.github.com>
Co-authored-by: Kim haewon <ehdvkf02@naver.com>
Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>
2023-08-18 23:08:34 +02:00
6f4424bb08 Make TTS automodels importable (#25595)
* Add auto model for spectrogram/waveform

* Add doc and install

* Add dummy objects

* Did I miss anything?
2023-08-18 22:01:35 +02:00
faed2ca46f [PEFT] Peft integration alternative design (#25077)
* a draft version

* v2 integration

* fix

* make it more generic and works for IA3

* add set adapter and multiple adapters support

* fixup

* adapt a bit

* oops

* oops

* oops

* adapt more

* fix

* add more refactor

* now works with model class

* change it to instance method as it causes issues with `jit`.

* add CR

* change method name

* add `add_adapter` method

* clean up

* Update src/transformers/adapters/peft_mixin.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add moe utils

* fixup

* Update src/transformers/adapters/peft_mixin.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* adapt

* oops

* fixup

* add is_peft_available

* remove `requires_backend`

* trainer compatibility

* fixup + docstring

* more details

* trigger CI

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

* fixup + is_main_process

* added `save_peft_format` in save_pretrained

* up

* fix nits here and there

* nits here and there.

* docs

* revert `encoding="utf-8"`

* comment

* added slow tests before the PEFT release.

* fixup and nits

* let's be on the safe zone

* added more comments

* v1 docs

* add remaining docs

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* move to `lib_integrations`

* fixup

* this time fixup

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address final comments

* refactor to use `token`

* add PEFT to DockerFile for slow tests.

* added pipeline support.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-18 19:08:03 +02:00
ef1534252f [TokenizerFast] Fix setting prefix space in __init__ (#25563)
* properly support Sequence of pretokenizers

* actual fix

* make sure the fix works. Tests are not working for sure!

* hacky way

* add TODO

* update

* add a todo
2023-08-18 18:09:50 +02:00
636acc75b0 fix z3 init when using accelerate launcher (#25589) 2023-08-18 19:27:17 +05:30
8d2f953f4a [Time series Informer] fix dtype of cumsum (#25431)
* fix dtype of cumsum

* add comment
2023-08-18 14:27:16 +02:00
bc3e20dcf0 [Llama] remove prompt and fix prefix finetuning (#25565)
* nit

* update

* make sure use_default_system_prompt is saved

* update checkpointing

* consistency

* use_default_system_prompt for test
2023-08-18 13:39:23 +02:00
30b3c46ff5 [split_special_tokens] Add support for split_special_tokens argument to encode (#25081)
* draft changes

* update and add tests

* styling for no

* move test

* path to usable model

* update test

* small update

* update bertbased tokenizers

* don'tuse kwargs for _tokenize

* don'tuse kwargs for _tokenize

* fix copies

* update

* update test for special tokenizers

* fixup

* skip two tests

* remove pdb breakpiont()

* wowo

* rewrite custom tests

* nits

* revert chang in target keys

* fix markup lm

* update documentation of the argument
2023-08-18 13:26:27 +02:00
9d7afd2536 Replaces calls to .cuda with .to(torch_device) in tests (#25571)
* Replaces calls to `.cuda` with `.to(torch_device)` in tests
`torch.Tensor.cuda()` is a pre-0.4 solution to changing a tensor's device. It is recommended to prefer `.to(...)` for greater flexibility and error handling. Furthermore, this makes it more consistent with other tests (that tend to use `.to(torch_device)`) and ensures the correct device backend is used (if `torch_device` is neither `cpu` or `cuda`).

* addressing review comments

* more formatting changes in Bloom test

* `make style`

* Update tests/models/bloom/test_modeling_bloom.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixes style failures

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-18 12:40:40 +02:00
c45aab7535 Added missing parenthesis in call to is_fsdp_enabled (#25585)
Calling function is_fsdp_enabled instead of checking if it is not None
2023-08-18 10:32:46 +02:00
940d1a76b0 [Docs / BetterTransformer ] Added more details about flash attention + SDPA (#25265)
* added more details about flash attention

* correct and add more details

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* few modifs

* more details

* up

* Apply suggestions from code review

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>

* adapt from suggestion

* Apply suggestions from code review

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>

* trigger CI

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix nits and copies

* add new section

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
2023-08-18 10:32:28 +02:00
08e32519f8 Suggestions on Pipeline_webserver (#25570)
* Suggestions on Pipeline_webserver

docs: reorder the warning tip for pseudo-code

Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ko/pipeline_webserver.md

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-18 10:17:44 +02:00
659ab0423e Fix typo in example code (#25583)
`lang_code_to_id("en_XX")` => `lang_code_to_id["en_XX"]`

lang_code_to_id is a dict
2023-08-18 07:58:59 +02:00
4a27c13f1e add warning for 8bit optimizers (#25575)
* add warning for 8bit optimizers

* protect import
2023-08-17 14:48:58 -04:00
427adc898a Skip test_contrastive_generate for TFXLNet (#25574)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-17 18:56:34 +02:00
b8f69d0d10 Add Text-To-Speech pipeline (#24952)
* add AutoModelForTextToSpeech class

* add TTS pipeline and tessting

* add docstrings to text_to_speech pipeline

* fix torch dependency

* corrector 'processor is None' case in Pipeline

* correct repo id

* modify text-to-speech -> text-to-audio

* remove processor

* rename text_to_speech pipelines files to text_audio

* add textToWaveform and textToSpectrogram instead of textToAudio classes

* update TTS pipeline to the bare minimum

* update tests TTS pipeline

* make style and erase useless import torch in TTS pipeline tests

* modify how to check if generate or forward in TTS pipeline

* remove unnecessary extra new lines

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* refactor input_texts -> text_inputs

* correct docstrings of TTS.__call__

* correct the shape of generated waveform

* take care of Bark tokenizer special case

* correct run_pipeline_test TTS

* make style

* update TTS docstrings

* address Sylvain nit refactors

* make style

* refactor into one liners

* correct squeeze

* correct way to test if forward or generate

* Update output audio waveform shape

* make style

* correct import

* modify how the TTS pipeline test if a model can generate

* align shape output of TTS pipeline with consistent shape

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-08-17 17:34:47 +01:00
c4c0ceff09 add util for ram efficient loading of model when using fsdp (#25107)
* add util for ram efficient loading of model when using fsdp

* make fix-copies

* fixes 😅

* docs

* making it further easier to use

* rename the function

* refactor to handle fsdp ram efficiency in `from_pretrained`

* fixes

* fixes

* fixes

* update

* fixes

* revert `load_pretrained_model_only_on_rank0`

* resolve `load_from_checkpoint`
2023-08-17 21:53:34 +05:30
4e1dee0e8e Revert "change version (#25387)" (#25573)
This reverts commit 3a05e010e0c7e8abd3e5357dd4e89e28cc69003e.
2023-08-17 11:44:01 -04:00
d4c0aa1443 [Tests] Fix failing 8bit test (#25564)
* fix failing 8bit test

* trigger CI
2023-08-17 17:34:25 +02:00
181d778f83 [NllbMoe] Update code to properly support loss computation (#25429)
* update nllb_moe

* fix

* doc nits

* nits

* add a small test

* ficup

* remove adapted from
2023-08-17 17:21:56 +02:00
9264fc915a Inconsistency in PreTrainedModel.resize_token_embeddings When ZeRO3 Is Enabled (#25394)
* Inconsistency in PreTrainedModel.resize_token_embeddings

This PR addresses https://github.com/huggingface/transformers/issues/25241.

In previous implementation when ZeRO stage 3 was enbaled, resize_token_embeddings would create independent PyTorch weights on each device. Here we ensure that new embeddings are created with DeepSpeed init, and are properly partitioned accros devices.

* formatting with black

* adding the removed comments back in

---------

Co-authored-by: Sina Moeini <smoeini@amazon.com>
2023-08-17 17:19:54 +02:00
b4d5548800 🚨🚨🚨 [SPM] Finish fix spm models 🚨🚨🚨 (#25224)
* fix EVERYTHING

* more fixes

* ⚗️⚗️ Tokenizer magic ⚗️⚗️

* wrong value but test passes for the TODO

* update

* updat

* safe protobuf import?

* style

* non gated repo

* update

* fixup

* Update src/transformers/models/llama/tokenization_llama.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llama/tokenization_llama.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/t5/test_tokenization_t5.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* nits

* fix t5 too

* use assert equal

* fix llama decoding

* nits on t5

* fixup

* only remove the prefix space, not other spaces

* more deconding tests and more todos

* fix CI as well

* fixup

* skip failing test on CI (its tf its ok)

* skip test_subword_regularization_tokenizer that is also crashing on the CI for TF

* update llama

* revert good fixes

* fixup

* empty

* explain why we need to encode with an additional token

* better warning?

* nits

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-17 17:08:05 +02:00
5347d00092 [SwitchTransformers] Remove unused module (#25427)
* remove unused module

* remove old feed_forward_proj

* fixup
2023-08-17 17:03:41 +02:00
d6bf08f7f6 [resize_embedding] Introduce pad_to_multiple_of and guidance (#25088)
* fix

* revert cahnges and update resizing of embedding layer

* use wraning

* fixup

* more styling nits

* fix all tests that overload the embedding tests

* 👀👀 remove breakpoint

* remove useless overload + overload correctly where needed

* resize lm head with new vocab size

* reverse not necessary changes

* style

* fix CIs!

* fix last CI tests, adapt bark and Marian

* fixup
2023-08-17 17:00:32 +02:00
d2871b2975 Skip test_beam_search_xla_generate_simple for T5 (#25566)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-17 15:30:46 +02:00
1791ef8df6 Adds TRANSFORMERS_TEST_DEVICE (#25506)
* Adds `TRANSFORMERS_TEST_DEVICE`
Mirrors the same API in the diffusers library. Useful in transformers
too.

* replace backend checking with trying `torch.device`

* Adds better error message for unknown test devices

* `make style`

* adds documentation showing `TRANSFORMERS_TEST_DEVICE` usage.
2023-08-17 13:41:34 +02:00
e7e9261a20 [Docs] Fix un-rendered images (#25561)
fix un-rendered images
2023-08-17 12:08:11 +02:00
8992589dd6 Skip test_onnx_runtime_optimize for now (#25560)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-17 11:23:16 +02:00
e50c9253f3 YOLOS - reset default return_pixel_mask value (#25559)
Remove added back copied from statement
2023-08-17 09:48:38 +01:00
c8346cb267 🚨🚨🚨 Vivit update default rescale_factor value (#25547)
* Update default rescale_factor value

* Formatting
2023-08-17 09:35:56 +01:00
8fd6561981 Fix torch.fx tests on nightly CI (#25549)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-17 10:02:54 +02:00
ec25306b39 Fix MPT CI (#25548)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-17 09:06:26 +02:00
297a6a7aea Add documentation to dynamic module utils (#25534)
* Add documentation to dynamic module utils

* Address review comments
2023-08-17 08:28:06 +02:00
d1832dd808 Update trainer.py (#25553) 2023-08-17 08:10:33 +02:00
db816c6e02 [i18n-KO] Translated docs: ko: pr_checks.md to Korean (#24987)
* docs: ko: pr_checks.mdx

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* feat: chatgpt draft

* fix: manual edits

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-08-17 08:03:17 +02:00
2defb6b048 More utils doc (#25457)
* Document and clean more utils.

* More documentation and fixes

* Switch to Lysandre's token

* Address review comments

* Actually put else
2023-08-17 07:58:35 +02:00
36f183ebab [ASR Pipeline] Fix init with timestamps (#25438)
* [ASR Pipeline] Fix init

* refactor test

* change default kwarg setting

* only perform checks if we have to

* override init

* move pre/forward/post checks to sanitize
2023-08-16 18:04:19 +01:00
6bca43bb90 Input data format (#25464)
* Add copied from statements for image processors

* Move out rescale and normalize to base image processor

* Remove rescale and normalize from vit (post rebase)

* Update docstrings and tidy up

* PR comments

* Add input_data_format as preprocess argument

* Resolve tests and tidy up

* Remove num_channels argument

* Update doc strings -> default ints not in code formatting
2023-08-16 17:45:02 +01:00
a6609caf4e More frozen args (#25540) 2023-08-16 12:19:51 -04:00
f61f072b61 Fix MaskFormerModelIntegrationTest OOM (#25544)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-16 18:11:24 +02:00
0ed23e4db2 fix vit hybrid test (#25543)
fix test
2023-08-16 17:02:57 +02:00
3f9cb33504 Generate: fix default max length warning (#25539) 2023-08-16 15:30:54 +01:00
e13d5b6048 Document the test fetcher (#25521)
* Document the test fetcher

* Address review comments
2023-08-16 14:18:32 +02:00
0b568291d7 Marian: post-hack-fix correction (#25459) 2023-08-16 11:49:29 +01:00
5ccf343aeb Fix nested configs of Jukebox (#25533) 2023-08-16 11:48:24 +02:00
c385de2441 [TYPO] fix typo/format in quicktour.md (#25519)
* fix_all_language_quicktour

* give up ! before bash command

---------

Co-authored-by: lishukan <lishukan@dxy.cn>
2023-08-16 08:03:23 +02:00
eec5841e9f Use dynamic past key-values shape in TF-Whisper (#25523) 2023-08-15 17:57:58 +01:00
ca51499248 Make training args fully immutable (#25435)
* Make training args fully immutable

* Working tests, PyTorch

* In test_trainer

* during testing

* Use proper dataclass way

* Fix test

* Another one

* Fix tf

* Lingering slow

* Exception

* Clean
2023-08-15 11:47:47 -04:00
YQ
f11518a542 add __repr__ to the BitsAndBytesConfig class (#25517)
add __repr__
2023-08-15 11:11:28 +02:00
7a94ea4c64 Bump tornado from 6.3.2 to 6.3.3 in /examples/research_projects/lxmert (#25511)
Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.3.2 to 6.3.3.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.3.2...v6.3.3)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-08-15 08:52:30 +02:00
2552b8c5bd Bump tornado from 6.3.2 to 6.3.3 in /examples/research_projects/visual_bert (#25512)
Bump tornado in /examples/research_projects/visual_bert

Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.3.2 to 6.3.3.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.3.2...v6.3.3)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-08-15 08:52:20 +02:00
df91ff5314 Check for case where auxiliary_head is None in UperNetPreTrainedModel (#25514)
check for case where auxiliary_head is None in UperNetPreTrainedModel
2023-08-15 08:44:21 +02:00
b42010bb1d Conditional DETR type hint fix (#25505) 2023-08-14 18:12:06 +01:00
c41291965f 🚨🚨🚨 Remove softmax for EfficientNetForImageClassification 🚨🚨🚨 (#25501)
* Remove softmax for EfficientNet

* Update integration test values

* Fix up
2023-08-14 17:08:47 +01:00
06a1d75bd5 fix gptq nits (#25500)
* fix nits

* fix docstring

* fix doc

* fix damp_percent

* fix doc
2023-08-14 11:43:38 -04:00
80f29a25a7 MaskFormer post_process_instance_segmentation bug fix convert out side of loop (#25497)
Bug fix - convert out side of loop
2023-08-14 16:00:57 +01:00
ee7d6694ed Set can_generate for SpeechT5ForTextToSpeech (#25493)
add can_generate=True to SpeechT5ForTextToSpeech
2023-08-14 15:41:47 +01:00
87c9d8a10f Add type hints to Blip2QFormer, BigBirdForQA and ConditionalDetr family models (#25488)
* Add missing type hints to `BigBirdForQuestionAnswering`

* Add type hints to `Blip2QFormerModel`

* Add type hints for `ConditionalDetr` family
2023-08-14 14:44:34 +01:00
b1b0fc4f56 Remove logging code in TF Longformer that fails to compile (#25496)
Remove wonky logger block
2023-08-14 14:22:15 +01:00
e97deca9a3 fix : escape key of start_token from special characters before search end_token in token2json function of DonutProcessor (#25472)
fix : escape key of start_token from special characters before searching for end_token
2023-08-14 13:46:17 +02:00
0ebe7ae160 Bump gitpython from 3.1.30 to 3.1.32 in /examples/research_projects/decision_transformer (#25467)
Bump gitpython in /examples/research_projects/decision_transformer

Bumps [gitpython](https://github.com/gitpython-developers/GitPython) from 3.1.30 to 3.1.32.
- [Release notes](https://github.com/gitpython-developers/GitPython/releases)
- [Changelog](https://github.com/gitpython-developers/GitPython/blob/main/CHANGES)
- [Commits](https://github.com/gitpython-developers/GitPython/compare/3.1.30...3.1.32)

---
updated-dependencies:
- dependency-name: gitpython
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-08-13 19:47:16 +02:00
2b22cde71e Bump gitpython from 3.1.30 to 3.1.32 in /examples/research_projects/distillation (#25468)
Bump gitpython in /examples/research_projects/distillation

Bumps [gitpython](https://github.com/gitpython-developers/GitPython) from 3.1.30 to 3.1.32.
- [Release notes](https://github.com/gitpython-developers/GitPython/releases)
- [Changelog](https://github.com/gitpython-developers/GitPython/blob/main/CHANGES)
- [Commits](https://github.com/gitpython-developers/GitPython/compare/3.1.30...3.1.32)

---
updated-dependencies:
- dependency-name: gitpython
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-08-13 19:47:04 +02:00
892f9ea0db import required torch and numpy libraries (#25483) 2023-08-13 19:26:40 +02:00
fe3c8ab1af Revert "Reuse the cache created for latest main on PRs/branches" (#25466)
Revert "Reuse the cache created for latest `main` on PRs/branches if `setup.py` is not modified (#25445)"

This reverts commit 1d75768695f667fc1efcb8823c062d41ad30f090.
2023-08-11 21:07:08 +02:00
5e5fa0d88c Mark flaky tests (#25463)
Make CI less brittle
2023-08-11 15:26:45 +01:00
11757e2bbd Add input_data_format argument, image transforms (#25462)
* Enable specifying input data format - overriding inferring

* Add tests
2023-08-11 15:09:31 +01:00
0acf56224b Update run_translation.py broken link example Pytoch (#25461)
* Update run_translation.py

Fixed link

* Update run_translation.py
2023-08-11 15:41:24 +02:00
1d75768695 Reuse the cache created for latest main on PRs/branches if setup.py is not modified (#25445)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-11 14:40:51 +02:00
4692d26194 Switch Transformers: remove overwritten beam sample test (#25458) 2023-08-11 13:16:01 +01:00
41d56ea6dd Refactor image processor testers (#25450)
* Refactor image processor test mixin

- Move test_call_numpy, test_call_pytorch, test_call_pil to mixin
- Rename mixin to reflect handling of logic more than saving
- Add prepare_image_inputs, expected_image_outputs for tests

* Fix for oneformer
2023-08-11 11:30:18 +01:00
454957c9bb Fix for #25437 (#25454)
* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-11 11:39:57 +02:00
55db70c63d GPTQ integration (#25062)
* GTPQ integration

* Add tests for gptq

* support for more quantization model

* fix style

* typo

* fix method

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add dataclass and fix quantization_method

* fix doc

* Update tests/quantization/gptq/test_gptq.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* modify dataclass

* add gtpqconfig import

* fix typo

* fix tests

* remove dataset as req arg

* remove tokenizer import

* add offload cpu quantization test

* fix check dataset

* modify dockerfile

* protect trainer

* style

* test for config

* add more log

* overwrite torch_dtype

* draft doc

* modify quantization_config docstring

* fix class name in docstring

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* more warning

* fix 8bit kwargs tests

* peft compatibility

* remove var

* fix is_gptq_quantized

* remove is_gptq_quantized

* fix wrap

* Update src/transformers/modeling_utils.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* add exllama

* skip test

* overwrite float16

* style

* fix skip test

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix docsting formatting

* add doc

* better test

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-08-10 16:06:29 -04:00
347001237a docs: add LLaMA-Efficient-Tuning to awesome-transformers (#25441)
Co-authored-by: statelesshz <jihuazhong1@huawei.com>
2023-08-10 17:13:39 +02:00
a7da2996a0 Fix issue with ratio evaluation steps and auto find batch size (#25436)
* Fully rebased solution

* 500
2023-08-10 11:07:32 -04:00
2d6839eaa6 Add examples to tests to run when setup.py is modified (#25437)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-10 16:42:05 +02:00
e7b001db4f Fix rendering for torch.compile() docs (#25432)
fix rendering
2023-08-10 13:25:00 +02:00
3e41cf13fc Generate: Load generation config when device_map is passed (#25413) 2023-08-10 10:54:26 +01:00
d0839f1a74 [WavLM] Fix Arxiv link and authors (#25415)
* [WavLM] Fix Arxiv link and authors

* make style
2023-08-10 10:50:12 +01:00
123ad5363f Generation: strict generation config validation at save time (#25411)
* strict gen config save; Add tests

* add note that the warning will be an exception in v4.34
2023-08-10 10:42:34 +01:00
16edf4d9fd Doc checks (#25408)
* Document check_dummies

* Type hints and doc in other files

* Document check inits

* Add documentation to

* Address review comments
2023-08-10 10:53:22 +02:00
b14d4641f6 🌐 [i18n-KO] Translated philosophy.md to Korean (#25010)
* docs: ko: philosophy.md

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions
2023-08-10 09:50:51 +02:00
b175fc39d9 [DINOv2] Update pooler output (#25392)
Update pooler output
2023-08-10 09:13:52 +02:00
d0c1aebea4 Bark: flexible generation config overload (#25414) 2023-08-09 18:51:51 +01:00
944ddce8bf Enable passing number of channels when inferring data format (#25412) 2023-08-09 17:41:21 +01:00
cb3c821cb7 aligned sample_beam output selection with beam_search (#25375)
* aligned sample_beam specs with beam_search

* pull origin main

* Revert "pull origin main"

This reverts commit 06d356f1137bb52272e120a03636598c44449cf3.

* update test_utils.py

* fix format

* remove comment

---------

Co-authored-by: Shogo Fujita <shogo.fujita@legalontech.jp>
2023-08-09 18:28:57 +02:00
704bf595eb Update Bark generation configs and tests (#25409)
* update bark generation configs for more coherent parameter

* make style

* update bark hub repo
2023-08-09 18:28:02 +02:00
cf84738d2e 🌐 [i18n-KO] Translated model_summary.md to Korean (#24625)
* docs: ko: model_summary.md

* feat: nmt and manual edit model_summary.mdx

* fix: resolve suggestions

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* fix: resolve suggestions2

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-08-09 18:27:27 +02:00
133aac09b0 🌐 [i18n-KO] Translated add_new_model.md to Korean (#24957)
* docs: ko: add_new_model.md

* feat: chatgpt draft

* fix: manual edits

* fix: change document title

* fix: edit with reviewers

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* fix: edit with reviewers

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* fix: edit with reviewers

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* fix: edit with reviewers

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* fix: edit with reviewers

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: edit with reviewers

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: edit with reviewers

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: edit with reviewers

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* fix: add anchor to header

* Update docs/source/ko/add_new_model.md

Co-authored-by: 이서정 <97655267+sjlee-wise@users.noreply.github.com>

* Update docs/source/ko/add_new_model.md

Co-authored-by: 이서정 <97655267+sjlee-wise@users.noreply.github.com>

* Update docs/source/ko/add_new_model.md

Co-authored-by: 이서정 <97655267+sjlee-wise@users.noreply.github.com>

* fix: edit with reviews

* feat: edit toctree

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-authored-by: 이서정 <97655267+sjlee-wise@users.noreply.github.com>
2023-08-09 18:24:29 +02:00
f2a43c7383 VQA task guide (#25244)
* initial commit

* semi-finished task guide draft

* image link

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/visual_question_answering.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* feedback addressed

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* nits addressed

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-09 08:29:06 -04:00
eb3ded16f7 Generate: lower severity of parameterization checks (#25407) 2023-08-09 13:15:06 +01:00
ef74da6582 16059 - Add extra type hints for AltCLIPModel (#25399) 2023-08-09 13:13:33 +01:00
f456b4d10b Generate: generation config validation fixes in docs (#25405) 2023-08-09 13:07:11 +01:00
00b93cda21 Improve training args (#25401)
* enhanced tips for some training args

* make style
2023-08-09 13:50:13 +02:00
3deed1f97e Generate: length validation (#25384) 2023-08-09 11:48:32 +01:00
d59b872c9e Docs: introduction to generation with LLMs (#25240)
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-09 11:09:20 +01:00
ea5dda2290 YOLOS - Revert default return_pixel_mask value (#25404)
Revert default return_pixel_mask value
2023-08-09 11:09:09 +01:00
599377161b Fix path for dynamic module creation (#25402) 2023-08-09 10:46:05 +02:00
85447bb22e rm useless condition since the previous condition contains it. (#25403) 2023-08-09 09:31:24 +02:00
1564a81ac5 16059 - Add missing type hints for ASTModel (#25364)
* 16059 - Add missing type hints for ASTModel

* Add an additional type hint

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-08-09 08:31:57 +02:00
1367142afd 🌐 [i18n-KO] Translated perf_train_cpu_many.md to Korean (#24923)
* docs: ko: perf_train_cpu_many.md

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-08-09 08:15:31 +02:00
41c5f45bfe [DOCS] Add example for TopPLogitsWarper (#25361)
* [DOCS] Add example for `TopPLogitsWarper`

* fix typo

* address review feedback

* address review nits
2023-08-08 19:18:33 +02:00
3a05e010e0 change version (#25387) 2023-08-08 13:05:41 -04:00
e3490104da Add copied from for image processor methods (#25121)
* Add copied from statements for image processors

* Move out rescale and normalize to base image processor

* Remove rescale and normalize from vit (post rebase)

* Update docstrings and tidy up

* PR comments
2023-08-08 17:02:49 +01:00
5b517e1764 Use small config for OneFormerModelTest.test_model_with_labels (#25383)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-08 17:15:34 +02:00
9c7b744795 Fix missing usage of token (#25382)
* add missing tokens

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-08 16:27:24 +02:00
5bd8c011bb Generate: add config-level validation (#25381) 2023-08-08 13:53:03 +01:00
9e57e0c063 Fix torch_job worker(s) crashing (#25374)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-08 14:12:56 +02:00
6247d1b2b6 🌐 [i18n-KO] Translated add_tensorflow_model.md to Korean (#25017)
* docs: ko: add_tensorflow_model.md

* feat: chatgpt draft

* fix: manual edits

* fix: manual edits

* fix: resolve suggestions

* fix: manual edits
2023-08-08 13:56:34 +02:00
26ce4dd8b7 Enable tests to run on third-party devcies (#25327)
* enable unit tests to run on third-party devcies other than CUDA and CPU.

* remove the modification that enabled ut on MPS

* control test on third-party device by env variable

* update

---------

Co-authored-by: statelesshz <jihuazhong1@huawei.com>
2023-08-08 13:48:50 +02:00
5744482abc Fix token in example template (#25351)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-08 12:00:31 +02:00
01ab39b65f Load state in else (#25318)
* Load else

* New approach

* Propagate
2023-08-08 05:41:00 -04:00
36d5b8b06c MaskFormer, Mask2Former - replace einsum for tracing (#25297)
* Replace einsum with ops for tracing

* Fix comment
2023-08-08 10:37:14 +01:00
dedd11160d [ASR Pipeline] Clarify return timestamps (#25344)
* [ASR Pipeline] Clarify return timestamps

* fix indentation

* fix ctc check

* fix ctc error message!

* fix test

* fix other test

* add new tests

* final comment
2023-08-08 10:16:00 +01:00
5ea2595ecd Add warning for missing attention mask when pad tokens are detected (#25345)
* Add attention mask and pad token warning to many of the models

* Remove changes under examples/research_projects

These files are not maintained by HG.

* Skip the warning check during torch.fx or JIT tracing

* Switch ordering for the warning and input shape assignment

This ordering is a little cleaner for some of the cases.

* Add missing line break in one of the files
2023-08-08 10:49:21 +02:00
6ea3ee3cd2 Fix test_model_parallelism (#25359)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-08 10:48:45 +02:00
d4bd33cc9f Register ModelOutput subclasses as supported torch.utils._pytree nodes (#25358)
* Register ModelOutput subclasses as supported torch.utils._pytree nodes

Fixes #25357 where DDP with static_graph=True does not sync gradients when calling backward() over tensors contained in ModelOutput subclasses

* Add test for torch pytree ModelOutput serialization and deserialization
2023-08-08 08:12:11 +02:00
a23ac36f8c [DOCS] Add descriptive docstring to MinNewTokensLength (#25196)
* Add descriptive docstring to MinNewTokensLength

It addresses https://github.com/huggingface/transformers/issues/24783

* Refine the differences between `min_length` and `min_new_tokens`

* Remove extra line

* Remove extra arguments in generate

* Add a missing space

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Run the linter

* Add clarification comments

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-08 08:09:17 +02:00
080a97119c Add mask2former fp16 support (#25093)
* Add mask2former fp16 support

* Clear consistency/quality issues

* Fix consistency/quality (2)

* Add integration test for mask2former (fp16 case)

* Fix code quality

* Add integration test for maskformer (fp16 case)

* Add integration test for oneformer (fp16 case)

* Remove slow decorator from fp16 tests

* Fix lint

* Remove usage of full inference and value checks for fp16

* Temporarily comment slow for {mask, mask2, one}former

* Add fp16 support to oneformer

* Revert "Temporarily comment slow for {mask, mask2, one}former"

This reverts commit e5371edabd301cf56079def0421a0a87df307cb0.

* Remove dtype conversion noop
2023-08-07 20:07:29 +01:00
5ee9693a1c Docs: Added benchmarks for torch.compile() for vision models (#24748)
* added benchmarks for compile

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* added more models

* added more models fr

* added visualizations

* minor fix

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/perf_torch_compile.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Added links to models and put charts side by side

* Added batch comparisons

* Added more comparisons

* Fix table

* Added link to wheel

* Update perf_torch_compile.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-07 17:18:43 +01:00
676247fd6b [DOCS] Add NoRepeatNGramLogitsProcessor Example for LogitsProcessor class (#25186)
* Add Description And Example to Docstring

* make style corrections

* make style

* Doc Style Consistent With HF

* Apply make style

* Modify Docstring

* Edit Type in Docstring

* Feedback Incorporated

* Edit Docstring

* make style

* Post Review Changes

* Review Feedback Incorporated

* Styling

* Formatting

* make style

* pep8
2023-08-07 17:02:14 +01:00
5fe36970e5 Adding more information in help parser on train_file and validation_file (#25324)
chorse: adding new doc on train and val
2023-08-07 17:56:13 +02:00
baf1daa58e Migrate Trainer from Repository to upload_folder (#25095)
* First draft

* Deal with progress bars

* Update src/transformers/utils/hub.py

Co-authored-by: Lucain <lucainp@gmail.com>

* Address review comments

* Forgot one

* Pin hf_hub

* Add argument for push all and fix tests

* Fix tests

* Address review comments

---------

Co-authored-by: Lucain <lucainp@gmail.com>
2023-08-07 17:47:22 +02:00
c177606fb4 Fix more offload edge cases (#25342)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-07 17:45:41 +02:00
7d65697da7 Generate: remove Marian hack (#25294)
Remove Marian hack
2023-08-07 15:38:24 +01:00
145109382a Allow trust_remote_code in example scripts (#25248)
* pytorch examples

* pytorch mim no trainer

* cookiecutter

* flax examples

* missed line in pytorch run_glue

* tensorflow examples

* tensorflow run_clip

* tensorflow run_mlm

* tensorflow run_ner

* tensorflow run_clm

* pytorch example from_configs

* pytorch no trainer examples

* Revert "tensorflow run_clip"

This reverts commit 261f86ac1f1c9e05dd3fd0291e1a1f8e573781d5.

* fix: duplicated argument
2023-08-07 16:32:25 +02:00
65001cb1c8 Loosen output shape restrictions on GPT-style models (#25188)
* Loosen output shape restrictions on GPT-style models

* Use more self-explanatory variables

* Revert "Use more self-explanatory variables"

This reverts commit 5fd9ab39119558b7e750f61aa4a19014dccc5ed5.
2023-08-07 16:31:15 +02:00
d6bfba76be Generalize CFG to allow for positive prompts (#25339)
* Generalize CFG to allow for positive prompts

* Add documentation, fix the correct class
2023-08-07 16:25:15 +02:00
b0f23036f1 Update TF pin in docker image (#25343)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-07 12:32:34 +02:00
b9da44bd3e 🌐 [i18n-KO] Translated perf_infer_gpu_one.md to Korean (#24978)
* docs: ko: perf_infer_gpu_one

* feat: chatgpt draft

* fix: manual edits

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: TaeYupNoh <107118671+TaeYupNoh@users.noreply.github.com>

* fix: resolve suggestions

* fix: resolve suggestions

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: TaeYupNoh <107118671+TaeYupNoh@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-08-07 08:37:29 +02:00
d533465150 add CFG for .generate() (#24654) 2023-08-06 20:15:24 +01:00
a6e6b1c622 Remove jnp.DeviceArray since it is deprecated. (#24875)
* Remove jnp.DeviceArray since it is deprecated.

* Replace all instances of jnp.DeviceArray with jax.Array

* Update src/transformers/models/bert/modeling_flax_bert.py

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-08-04 18:36:57 +01:00
fdd81aea12 [Whisper] Better error message for outdated generation config (#25298) 2023-08-04 15:53:57 +01:00
fdaef3368b Document toc check and doctest check scripts (#25319)
* Clean doc toc check and make doctest list better

* Add to Makefile
2023-08-04 16:24:04 +02:00
ce6d153a53 Make bark could have tiny model (#25290)
* temp

* update

* update

* update

* small dim

* small dim

* small dim

* fix

* update

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-04 15:13:14 +02:00
f0fd73a2de Document check copies (#25291)
* Document check copies better and add tests

* Include header in check for copies

* Manual fixes

* Try autofix

* Fixes

* Clean tests

* Finalize doc

* Remove debug print

* More fixes
2023-08-04 14:56:29 +02:00
29f04002e6 Deal with nested configs better in base class (#25237)
* Deal better with nested configs

* Fixes

* More fixes

* Fix last test

* Clean up existing configs

* Remove hack in MPT Config

* Update src/transformers/configuration_utils.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Fix setting a nested config via dict in the kwargs

* Adapt common test

* Add test for nested config load with dict

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-08-04 14:56:09 +02:00
aeb5a08abd Add offline mode for agents (#25226)
* Add offline mode for agents

* Disable second check too
2023-08-04 14:55:58 +02:00
bff4313b37 Generate: get generation mode as an enum (#25292) 2023-08-04 13:35:10 +01:00
fab1a0aa82 Give more memory in test_disk_offload (#25315) 2023-08-04 14:10:31 +02:00
67683095a6 Move usage of deprecated logging.warn to logging.warning (#25310)
The former spelling is deprecated and has been discouraged for a
while. The latter spelling seems to be more common in this project
anyway, so this change ought to be safe.

Fixes https://github.com/huggingface/transformers/issues/25283
2023-08-04 12:42:05 +01:00
641adca558 Fix typo: Roberta -> RoBERTa (#25302) 2023-08-03 14:17:30 -07:00
33da2db5ea [small] llama2.md typo (#25295)
`groupe` -> `grouped`
2023-08-03 14:17:06 -07:00
66c240f3c9 [JAX] Bump min version (#25286)
* [JAX] Bump min version

* make fixup
2023-08-03 16:05:02 +01:00
d114a6b71f Add timeout parameter to load_image function (#25184)
* Add timeout parameter to load_image function.

* Remove line.

* Reformat code

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add parameter to docs.

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-03 15:51:54 +01:00
6d3f9c1e2e add generate method to SpeechT5ForTextToSpeech (#25233)
* add generate method to SpeechT5ForTextToSpeech

* update speecht5forTTS docstrings

* Remove defaults to None in generate docstrings

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-08-03 14:12:07 +01:00
8455346c5c Update bark doc (#25234)
* add mention to optimization in Bark docs

* add offload mention in docs

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update bark docs.

* Update bark.md

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-08-03 14:08:39 +01:00
a8817371c9 Docs: separate generate section (#25235)
Separate generate doc section
2023-08-03 13:51:56 +01:00
30409af6e1 Update InstructBLIP & Align values after rescale update (#25209)
* Update InstructBLIP values
Note: the tests are not independent. Running the test independentely produces different logits compared to running all the integration tests

* Update test values after rescale update

* Remove left over commented out code

* Revert to previous rescaling logic

* Update rescale tests
2023-08-03 11:01:10 +01:00
15082a9dc6 Docs: Update list of report_to logging integrations in docstring (#25281)
* Update list of logging integrations in docstring

Also update type hint

* Also add 'flyte' to report_to callback list

* Revert 'report_to' type hint update

Due to CLI breaking
2023-08-03 11:34:45 +02:00
2bd7a27a67 CI with pytest_num_workers=8 for torch/tf jobs (#25274)
n8

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-02 22:00:32 +02:00
bd90cda9a6 CI with num_hidden_layers=2 🚀🚀🚀 (#25266)
* CI with layers=2

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-02 20:22:36 +02:00
b28ebb2655 [MMS] Fix mms (#25267)
* [MMS] Fix mms

* [MMS] Fix mms

* fix mms loading

* Apply suggestions from code review

* make style

* Update tests/models/wav2vec2/test_modeling_wav2vec2.py
2023-08-02 18:11:15 +02:00
ad8321512d recommend DeepSpeed's Argument Parsing documentation (#25268) 2023-08-02 11:48:39 -04:00
bef02fd6b9 🌐 [i18n-KO] Translated perf_infer_gpu_many.md to Korean (#24943)
* doc: ko: perf_infer_gpu_many.mdx

* feat: chatgpt draft

* fix: manual edits

* Update docs/source/ko/perf_infer_gpu_many.md

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-08-02 16:06:35 +02:00
8edd0da960 Remove pytest_options={"rA": None} in CI (#25263)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-02 14:53:05 +02:00
1baeed5bdf Fix return_dict_in_generate bug in InstructBlip generate function (#25246)
Fix bug in InstructBlip generate function

Previously, the postprocessing conducted on generated sequences in InstructBlip's generate function assumed these sequences were tensors (i.e. that `return_dict_in_generate == False`).

This commit checks whether the result of the call to the wrapped language model `generate()` is a tensor, and if not attempts to postprocess the sequence attribute of the returned results object.
2023-08-02 13:43:54 +01:00
eec0d84e6a [DOCS] Add example and modified docs of EtaLogitsWarper (#25125)
* added example and modified docs for EtaLogitsWarper

* make style

* fixed styling issue on 544

* removed error info and added set_seed

* Update src/transformers/generation/logits_process.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/generation/logits_process.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updated the results

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-02 11:55:56 +01:00
8021c684ec Fix some bugs for two stage training of deformable detr (#25045)
* Update modeling_deformable_detr.py

Fix bugs for two stage training

* Update modeling_deformable_detr.py

* Add test_two_stage_training to DeformableDetrModelTest

---------

Co-authored-by: yupeng.jia <yupeng.jia@momenta.ai>
2023-08-02 11:30:36 +01:00
1b35409768 Update rescale tests - cast to float after rescaling to reflect #25229 (#25259)
Rescale tests - cast to float after rescaling to reflect #25229
2023-08-02 11:29:55 +01:00
904e7e0f3c resolving zero3 init when using accelerate config with Trainer (#25227)
* resolving zero3 init when using accelerate config with Trainer

* refactor

* fix

* fix import
2023-08-02 15:07:27 +05:30
149cb0cce2 Add token arugment in example scripts (#25172)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-08-02 11:17:31 +02:00
YQ
c6a8768dab add pathname and line number to logging formatter in debug mode (#25203)
* add pathname and lineno to logging formatter in debug mode

* use TRANSFORMERS_VERBOSITY="detail" to print pathname and lineno
2023-08-02 09:44:43 +01:00
YQ
2230d149f0 fix get_keys_to_not_convert() to return correct modules for full precision inference (#25105)
* add test for `get_keys_to_not_convert`

* add minimum patch to keep mpt lm_head from 8bit quantization

* add reivsion to
2023-08-02 04:21:52 -04:00
f6f567d0be Fix set of model parallel in the Trainer when no GPUs are available (#25239) 2023-08-02 03:29:00 -04:00
d27e4c18fe Move rescale dtype recasting to match torchvision ToTensor (#25229)
Move dtype recasting to match torchvision ToTensor
2023-08-01 12:33:12 +01:00
3170af71e1 [Detr] Fix detr BatchNorm replacement issue (#25230)
* fix detr weird issue

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix copies

* fix copies

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-08-01 12:21:48 +02:00
05ebb0264e [MPT] Add require_bitsandbytes on MPT integration tests (#25201)
* add  `require_bitsandbytes` on MPT integration tests

* add it on mpt as well
2023-08-01 12:20:34 +02:00
972fdcc778 [Docs/quantization] Clearer explanation on how things works under the hood. + remove outdated info (#25216)
* clearer explanation on how things works under the hood.

* Update docs/source/en/main_classes/quantization.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/main_classes/quantization.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add `load_in_4bit` in `from_pretrained`

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-08-01 10:56:52 +02:00
77c3973e8f [Pix2Struct] Fix pix2struct cross attention (#25200)
* fix pix2struct cross attention

* fix torchscript slow test
2023-08-01 10:56:37 +02:00
4033ea7167 make build_mpt_alibi_tensor a method of MptModel so that deepspeed co… (#25193)
make build_mpt_alibi_tensor a method of MptModel so that deepspeed could override it to make autoTP work

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-08-01 01:35:49 -04:00
0fd8d2aa2c Fix docker image build failure (#25214)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-31 20:13:15 +02:00
1b4f6199c6 Update tiny model info. and pipeline testing (#25213)
* update tiny_model_summary.json

* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-31 19:35:33 +02:00
e0c50b274a [pipeline] revisit device check for pipeline (#25207)
* revisit device check for pipeline

* let's raise an error.
2023-07-31 18:43:21 +02:00
5220606607 [quantization.md] fix (#25190)
Update quantization.md
2023-07-31 09:37:29 -07:00
9ca3aa0156 Fix all_model_classes in FlaxBloomGenerationTest (#25211)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-31 17:32:05 +02:00
59dcea3fe4 [PreTrainedModel] Wrap cuda and to method correctly (#25206)
wrap `cuda` and `to` method correctly
2023-07-31 17:25:09 +02:00
67b85f24de Better error message in _prepare_output_docstrings (#25202)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-31 16:15:02 +02:00
4a564490e1 Musicgen: CFG is manually added (#25173) 2023-07-31 11:21:11 +01:00
05cda5df34 🚨🚨🚨 Fix rescale ViVit Efficientnet (#25174)
* Fix rescaling bug

* Add tests

* Update integration tests

* Fix up

* Update src/transformers/image_transforms.py

* Update test - new possible order in list
2023-07-28 19:52:51 +01:00
03f98f9683 [MusicGen] Fix integration tests (#25169)
* move to device

* update with cuda values

* fix fp16

* more rigorous
2023-07-28 18:50:15 +01:00
c90e14fb0f Fix beam search to sample at least 1 non eos token (#25103) (#25115) 2023-07-28 13:20:24 -04:00
31f137c04f 🌐 [i18n-KO] Translated transformers_agents.md to Korean (#24881)
* docs: ko: transformers_agents.md

* docs: ko: transformers_agents.md

* feat: deepl draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Juntae <79131091+sronger@users.noreply.github.com>
Co-authored-by: Injin Paek <71638597+eenzeenee@users.noreply.github.com>

---------

Co-authored-by: Juntae <79131091+sronger@users.noreply.github.com>
Co-authored-by: Injin Paek <71638597+eenzeenee@users.noreply.github.com>
2023-07-28 13:06:37 -04:00
dd9d45b6ec [InstructBlip] Fix instructblip slow test (#25171)
* fix instruct blip slow test

* Update tests/models/instructblip/test_modeling_instructblip.py
2023-07-28 17:00:10 +02:00
add0895dd9 [Mpt] Fix mpt slow test (#25170)
fix mpt slow test
2023-07-28 16:45:09 +02:00
d53b8ad780 Update use_auth_token -> token in example scripts (#25167)
* pytorch examples

* tensorflow examples

* flax examples

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-28 15:33:45 +02:00
3cbc560d03 added compiled model support for inference (#25124)
* added compiled model support for inference

* linter

* Fix tests

* linter

* linter

* remove inference mode from pipelines

* Linter

---------

Co-authored-by: amarkov <alexander@inworld.ai>
2023-07-28 08:28:04 -04:00
afa96fffdf make run_generation more generic for other devices (#25133)
* make run_generation more generic for other devices

* use Accelerate to support any device type it supports.

* make style

* fix error usage of accelerator.prepare_model

* use `PartialState` to make sure everything is running on the right device

---------

Co-authored-by: statelesshz <jihuazhong1@huawei.com>
2023-07-28 08:20:10 -04:00
d23d2c27c2 Represent query_length in a different way to solve jit issue (#25164)
Fix jit trace
2023-07-28 08:19:10 -04:00
YQ
2a78720104 override .cuda() to check if model is already quantized (#25166) 2023-07-28 08:17:24 -04:00
c1dba1111b Add test when downloading from gated repo (#25039) 2023-07-28 08:14:27 -04:00
6232c380f2 Fix .push_to_hub and cleanup get_full_repo_name usage (#25120)
* Fix .push_to_hub and cleanup get_full_repo_name usage

* Do not rely on Python bool conversion magic

* request changes
2023-07-28 11:40:08 +02:00
400e76ef11 Add new model in doc table of content (#25148) 2023-07-27 13:41:50 -04:00
e93103632b Add bloom flax (#25094)
* First commit

* step 1 working

* add alibi

* placeholder for `scan`

* add matrix mult alibi

* beta scaling factor for bmm

* working v1 - simple forward pass

* move layer_number from attribute to arg in call

* partial functioning scan

* hacky working scan

* add more modifs

* add test

* update scan for new kwarg order

* fix position_ids problem

* fix bug in attention layer

* small fix

- do the alibi broadcasting only once

* prelim refactor

* finish refactor

* alibi shifting

* incorporate dropout_add to attention module

* make style

* make padding work again

* update

* remove bogus file

* up

* get generation to work

* clean code a bit

* added small tests

* adding albii test

* make CI tests pass:

- change init weight
- add correct tuple for output attention
- add scan test
- make CI tests work

* fix few nits

* fix nit onnx

* fix onnx nit

* add missing dtype args to nn.Modules

* remove debugging statements

* fix scan generate

* Update modeling_flax_bloom.py

* Update test_modeling_flax_bloom.py

* Update test_modeling_flax_bloom.py

* Update test_modeling_flax_bloom.py

* fix small test issue + make style

* clean up

* Update tests/models/bloom/test_modeling_flax_bloom.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* fix function name

* small fix test

* forward contrib credits from PR17761

* Fix failing test

* fix small typo documentation

* fix non passing test

- remove device from build alibi

* refactor call

- refactor `FlaxBloomBlockCollection` module

* make style

* upcast to fp32

* cleaner way to upcast

* remove unused args

* remove layer number

* fix scan test

* make style

* fix i4 casting

* fix slow test

* Update src/transformers/models/bloom/modeling_flax_bloom.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* remove `layer_past`

* refactor a bit

* fix `scan` slow test

* remove useless import

* major changes

- remove unused code
- refactor a bit
- revert import `torch`

* major refactoring

- change build alibi

* remove scan

* fix tests

* make style

* clean-up alibi

* add integration tests

* up

* fix batch norm conversion

* style

* style

* update pt-fx cross tests

* update copyright

* Update src/transformers/modeling_flax_pytorch_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* per-weight check

* style

* line formats

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: haileyschoelkopf <haileyschoelkopf@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-27 18:24:56 +01:00
0c790ddbd1 More token things (#25146)
* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-27 17:42:07 +02:00
0b92ae3489 Add offload support to Bark (#25037)
* initial Bark offload proposal

* use hooks instead of manually offloading

* add test of bark offload to cpu feature

* Apply nit suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docstrings of offload

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* remove unecessary set_seed in Bark tests

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-07-27 15:35:17 +01:00
9cea3e7b80 [MptConfig] support from pretrained args (#25116)
* support from pretrained args

* draft addition of tests

* update test

* use parrent assert true

* Update src/transformers/models/mpt/configuration_mpt.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-07-27 16:24:52 +02:00
a1c4954d25 🚨🚨🚨Change default from adamw_hf to adamw_torch 🚨🚨🚨 (#25109)
* Change defaults

* Sylvain's comments
2023-07-27 09:11:28 -04:00
9a220ce30c Clarify 4/8 bit loading log message (#25134)
* clarify 4/8 bit loading log message

* make style
2023-07-27 09:09:27 -04:00
9429642e2d [T5/LlamaTokenizer] default legacy to None to not always warn (#25131)
default legacy to None
2023-07-27 14:43:18 +02:00
de9e3b5945 fix delete all checkpoints when save_total_limit is set to 1 (#25136) 2023-07-27 08:34:02 -04:00
a004237926 fix deepspeed load best model at end when the model gets sharded (#25057) 2023-07-27 07:11:43 +05:30
1689aea733 Move center_crop to BaseImageProcessor (#25122) 2023-07-26 18:30:38 +01:00
659829b6ae MaskFormer - enable return_dict in order to compile (#25052)
* Enable return_dict in order to compile

* Update tests
2023-07-26 16:23:30 +01:00
b914ec9847 Fix ViT docstring regarding default dropout values. (#25118)
Fix docstring for dropout.
2023-07-26 11:08:57 -04:00
1486d2aec2 Move common image processing methods to BaseImageProcessor (#25089)
Move out common methods
2023-07-26 15:09:17 +01:00
d30cf3d02f Fix past CI after #24334 (#25113)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-26 15:34:42 +02:00
224da5df69 update use_auth_token -> token (#25083)
* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-26 15:09:59 +02:00
Leo
c53c8e490c fix "UserWarning: Creating a tensor from a list of numpy.ndarrays is … (#24772)
fix "UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor."

Co-authored-by: 刘长伟 <hzliuchw@corp.netease.com>
2023-07-26 09:07:21 -04:00
04a5c859b0 Add descriptive docstring to TemperatureLogitsWarper (#24892)
* Add descriptive docstring to TemperatureLogitsWarper

It addresses https://github.com/huggingface/transformers/issues/24783

* Remove niche features

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Commit suggestion

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Refactor the examples to simpler ones

* Add a missing comma

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Make args description more compact

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Remove extra text after making description more compact

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fix linter

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-07-26 08:58:26 -04:00
31acba5697 Fix PvtModelIntegrationTest::test_inference_fp16 (#25106)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-26 14:57:44 +02:00
ee63520a7b 🌐[i18n-KO] Translated pipeline_webserver.md to Korean (#24828)
* translated pipeline_webserver.md

Co-Authored-By: Hyeonseo Yun <0525yhs@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update pipeline_webserver.md

* Apply suggestions from code review

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sangam Lee <74291999+augustinLib@users.noreply.github.com>
Co-authored-by: Kim haewon <ehdvkf02@naver.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Sangam Lee <74291999+augustinLib@users.noreply.github.com>
Co-authored-by: Kim haewon <ehdvkf02@naver.com>
2023-07-26 08:40:37 -04:00
277d3aed0a documentation for llama2 models (#25102)
* fix documentation

* changes
2023-07-26 08:30:33 -04:00
a5cc30d72a fix tied_params for meta tensor (#25101)
* fix tied_params for meta tensor

* remove duplicate
2023-07-25 18:08:45 -04:00
f1deb21fce Bump certifi from 2022.12.7 to 2023.7.22 in /examples/research_projects/visual_bert (#25097)
Bump certifi in /examples/research_projects/visual_bert

Bumps [certifi](https://github.com/certifi/python-certifi) from 2022.12.7 to 2023.7.22.
- [Commits](https://github.com/certifi/python-certifi/compare/2022.12.07...2023.07.22)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-07-25 17:25:14 -04:00
45bde362d2 Bump certifi from 2022.12.7 to 2023.7.22 in /examples/research_projects/decision_transformer (#25098)
Bump certifi in /examples/research_projects/decision_transformer

Bumps [certifi](https://github.com/certifi/python-certifi) from 2022.12.7 to 2023.7.22.
- [Commits](https://github.com/certifi/python-certifi/compare/2022.12.07...2023.07.22)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-07-25 17:25:05 -04:00
6b8dbc283c Bump certifi from 2022.12.7 to 2023.7.22 in /examples/research_projects/lxmert (#25096)
Bump certifi in /examples/research_projects/lxmert

Bumps [certifi](https://github.com/certifi/python-certifi) from 2022.12.7 to 2023.7.22.
- [Commits](https://github.com/certifi/python-certifi/compare/2022.12.07...2023.07.22)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-07-25 17:24:50 -04:00
da5ff18a4a Fix doctest (#25031)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-25 22:10:06 +02:00
8f36ab3e22 [T5, MT5, UMT5] Add [T5, MT5, UMT5]ForSequenceClassification (#24726)
* Initial addition of t5forsequenceclassification

* Adding imports and adding tests

* Formatting

* Running make fix-copies

* Adding mt5forseq

* Formatting

* run make fix-copies

* Adding to docs

* Add model_parallel

* Fix bug

* Fix

* Remove TODO

* Fixing tests for T5ForSequenceClassification

* Undo changes to dependency_versions_table.py

* Change classification head to work with T5Config directly

* Change seq length to let tests pass

* PR comments for formatting

* Formatting

* Initial addition of UMT5ForSequenceClassification

* Adding to inits and formatting

* run make fix-copies

* Add doc for UMT5ForSeqClass

* Update UMT5 config

* Fix docs

* Skip torch fx test for SequenceClassification

* Formatting

* Add skip to UMT5 tests as well

* Fix umt5 tests

* Running make fix-copies

* PR comments

* Fix for change to sentence_representation

* Rename seq_len to hidden_size since that's what it is

* Use base_model to follow format of the rest of the library

* Update docs

* Extract the decoder_input_ids changes and make one liner

* Make one-liner
2023-07-25 21:02:49 +02:00
21150cb0f3 Hotfix for failing MusicgenForConditionalGeneration tests (#25091)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-25 20:26:00 +02:00
f9cc333805 [ PreTrainedTokenizerFast] Keep properties from fast tokenizer (#25053)
* draft solution

* use `setdefault`

* nits

* add tests and fix truncation issue

* fix test

* test passes locally

* quality

* updates

* update tsets
2023-07-25 18:45:01 +02:00
0779fc8eb8 Edit err message and comment in test_model_is_small (#25087)
* Edit err message and comment in

* put back 80M comment
2023-07-25 12:24:36 -04:00
2fac342238 [TF] Also apply patch to support left padding (#25085)
* tf versions

* apply changes to other models

* 3 models slipped through the cracks
2023-07-25 11:23:09 -04:00
f104522718 [ ForSequenceClassification] Support left padding (#24979)
* support left padding

* nit

* Update src/transformers/models/gpt_neox/modeling_gpt_neox.py

* Update src/transformers/models/gpt_neox/modeling_gpt_neox.py
2023-07-25 16:19:43 +02:00
1e662f0f07 Allow generic composite models to pass more kwargs (#24927)
* fix

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-07-25 16:07:00 +02:00
b51312e24d 🌐 [i18n-KO] Translated perf_infer_cpu.md to Korean (#24920)
* docs: ko: perf_infer_cpu.md

* feat: chatgpt draft

* fix: manual edits

* Update docs/source/ko/_toctree.yml

* Update docs/source/ko/perf_infer_cpu.md

* Update docs/source/ko/perf_infer_cpu.md

이 부분은 저도 걸리적거렸던 부분입니다. 반영하겠습니다!

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/perf_infer_cpu.md

동의합니다! 제가 원본에 너무 얽매여 있었네요!

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/perf_infer_cpu.md

말씀하신대로 원문에 너무 집착했던것 같습니다

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/perf_infer_cpu.md

더 나은 어휘 사용에 감사드립니다!

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/perf_infer_cpu.md

이 당시 '주기'란 용어를 생각해내질 못했네요...

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/perf_infer_cpu.md

좀 더 자연스러운 문맥이 됐네요!

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/perf_infer_cpu.md

굳이 원본 형식에 얽매일 필요가 없군요!

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/perf_infer_cpu.md

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-07-25 16:04:14 +02:00
b99f7bd4fc [DOCS] add example NoBadWordsLogitsProcessor (#25046)
* add example NoBadWordsLogitsProcessor

* fix L764 & L767

* make style
2023-07-25 09:41:48 -04:00
dcb183f4bd [MPT] Add MosaicML's MPT model to transformers (#24629)
* draft add new model like

* some cleaning of the config

* nits

* add nested configs

* nits

* update

* update

* added layer norms + triton kernels

* consider only LPLayerNorm for now.

* update

* all keys match.

* Update

* fixing nits here and there

* working forward pass.

* removed einops dependency

* nits

* format

* add alibi

* byebye head mask

* refactor attention

* nits.

* format

* fix nits.

* nuke ande updates

* nuke tokenizer test

* don't reshape query with kv heads

* added a bit of documentation.

* remove unneeded things

* nuke more stuff

* nit

* logits match - same generations

* rm unneeded methods

* 1 remaining failing CI test

* nit

* fix nits

* fix docs

* fix docs

* rm tokenizer

* fixup

* fixup

* fixup and fix tests

* fixed configuration object.

* use correct activation

* few minor fixes

* clarify docs a bit

* logits match à 1e-12

* skip and unskip a test

* added some slow tests.

* fix readme

* add more details

* Update docs/source/en/model_doc/mpt.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix configuration issues

* more fixes in config

* added more models

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove unneeded position ids

* fix some  comments

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* revert suggestion

* mpt alibi + added batched generation

* Update src/transformers/models/mpt/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove init config

* Update src/transformers/models/mpt/configuration_mpt.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix nit

* add another slow test

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fits in one line

* some refactor because make fixup doesn't pass

* add ft notebook

* update md

* correct doc path

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-25 14:32:40 +02:00
1dbc1440a7 Fix: repeat per sample for SAM image embeddings (#25074)
Repeat per sample for SAM image embeddings
2023-07-25 08:30:14 -04:00
cb8abee511 🌐 [i18n-KO] Translated hpo_train.md to Korean (#24968)
* dos: ko: hpo_train.mdx

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions
2023-07-25 08:28:20 -04:00
f2c1df93f5 [generate] Only warn users if the generation_config's max_length is set to the default value (#25030)
* check max length is default

* nit

* update warning: no-longer deprecate

* comment in the configuration_utils in case max length's default gets changed in the futur
2023-07-25 14:20:37 +02:00
c879318cc5 replace per_gpu_eval_batch_size with per_device_eval_batch_size in readme of multiple-choice task (#25078)
replace `per_gpu_eval_batch_size` with `per_device_eval_batch_size`
in readme of multiple-choice
2023-07-25 08:11:56 -04:00
25e443c0d4 Fix broken link in README_hd.md (#25067)
Update README_hd.md
2023-07-25 08:09:01 -04:00
6bc61aa7af Set TF32 flag for PyTorch cuDNN backend (#25075) 2023-07-25 08:04:48 -04:00
5dba88b2d2 fix: add TOC anchor link (#25066) 2023-07-25 08:02:33 -04:00
f295fc8a16 Fix last models for common tests that are too big. (#25058)
* Fix last models for common tests that are too big.

* Remove print statement
2023-07-25 07:56:04 -04:00
ee1eb3b325 🌐 [i18n-KO] Translated perf_hardware.md to Korean (#24966)
* docs: ko: perf_hardware.md

* feat: nmt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

Co-authored-by: Haewon Kim <ehdvkf02@naver.com>

* Fix: manual edits

* fix: manual edits

* fix: manual edits

* fix: manual edits

* fix: fix rendering error of perf_hardware.md

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Haewon Kim <ehdvkf02@naver.com>
2023-07-25 07:44:24 -04:00
f6fe1d5514 🌐 [i18n-KO] Translated <tf_xla>.md to Korean (#24904)
* docs: ko: tf_xla.md

* feat: chatgpt draft

* fix: manual edits

* fix: manual edits

* fix: manual edits

* fix: resolve suggestions
2023-07-25 07:43:22 -04:00
faf25c040d [Docs] fix rope_scaling doc string (#25072)
fix rope_scaling doc string
2023-07-25 07:34:10 -04:00
c0742b15cb Generate - add beam indices output in contrained beam search (#25042) 2023-07-25 11:12:29 +01:00
c53a6eae74 [RWKV] Add note in doc on RwkvStoppingCriteria (#25055)
* Add note in doc on `RwkvStoppingCriteria`

* give some breathing space to the code
2023-07-25 10:15:00 +02:00
d2295708a6 Better error message when signal is not supported on OS (#25049)
* Better error message when signal is not supported on OS

* Address review comments
2023-07-24 14:34:16 -04:00
c0d1c33022 🌐 [i18n-KO] Translated perf_train_cpu.md to Korean (#24911)
* dos: ko: perf_train_cpu.md

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions

* fix: manual edits

Co-authored-by: Haewon Kim <ehdvkf02@naver.com>

---------

Co-authored-by: Haewon Kim <ehdvkf02@naver.com>
2023-07-24 17:54:13 +02:00
b08f41e62a [8bit] Fix 8bit corner case with Blip2 8bit (#25047)
fix 8bit corner case with Blip2 8bit
2023-07-24 16:58:40 +02:00
3611fc90e0 compute_loss in trainer failing to label shift for PEFT model when label smoothing enabled. (#25044)
* added PeftModelForCausalLM to MODEL_FOR_CAUSAL_LM_MAPPING_NAMES dict

* check for PEFT model in compute_loss section

---------

Co-authored-by: Nathan Brake <nbrake3@mmm.com>
2023-07-24 10:53:10 -04:00
a03d13c83d Pvt model (#24720)
* pull and push updates

* add docs

* fix modeling

* Add and run test

* make copies

* add task

* fix tests and fix small issues

* Checks on a Pull Request

* fix docs

* add desc pvt.md
2023-07-24 15:34:19 +01:00
afe8bfc075 Comment again print statement 2023-07-24 10:12:20 -04:00
42571f6eb8 Make more test models smaller (#25005)
* Make more test models tiny

* Make more test models tiny

* More models

* More models
2023-07-24 10:08:47 -04:00
8f1f0bf50f Fix typo in LlamaTokenizerFast docstring example (#25018) 2023-07-24 09:37:58 -04:00
3b734f5042 Add dispatch_batches to training arguments (#25038)
* Dispatch batches

* Copy items
2023-07-24 09:27:19 -04:00
9d2b983ed0 🌐 [i18n-KO] Translated testing.md to Korean (#24900)
* docs: ko: testing.md

* feat: draft

* fix: manual edits

* fix: edit ko/_toctree.yml

* fix: manual edits

* fix: manual edits

* fix: manual edits

* fix: manual edits

* fix: resolve suggestions
2023-07-24 09:24:11 -04:00
383be1b763 🌐[i18n-KO] Translated performance.md to Korean (#24883)
* dos: ko: performance.md

* feat: chatgpt draft

* fix: manual edits

* fix: manual edits

* Update docs/source/ko/performance.md

Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>

* Update docs/source/ko/performance.md

---------

Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>
2023-07-24 09:23:34 -04:00
efb2ba666d Better handling missing SYS in llama conversation tokenizer (#24997)
* Better handling missing SYS in llama conversation tokenizer

The existing code failed to add SYS if the conversation has history
without SYS, but did modify the passed conversation as it did.

Rearrange the code so modification to the conversation object are taken
into account for token id generation.

* Fix formatting with black

* Avoid one-liners

* Also fix fast tokenizer

* Drop List decl
2023-07-24 09:21:10 -04:00
6704923107 Support GatedRepoError + use raise from (#25034)
* Support GatedRepoError + use raise from

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Use token instead of use_auth_token in error messages

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-24 09:12:39 -04:00
75317aefb3 [docs] Performance docs tidy up, part 1 (#23963)
* first pass at the single gpu doc

* overview: improved clarity and navigation

* WIP

* updated intro and deepspeed sections

* improved torch.compile section

* more improvements

* minor improvements

* make style

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* feedback addressed

* mdx -> md

* link fix

* feedback addressed

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-07-24 08:57:24 -04:00
54ba8608d0 fix(integrations): store serialized TrainingArgs to wandb.config without sanitization. (#25035)
fix: store training args to wandb config without sanitization.

Allows resuming runs by reusing the wandb config.

Co-authored-by: Bharat Ramanathan <ramanathan.parameshwaran@gohuddl.com>
2023-07-24 08:42:39 -04:00
0906d21203 [logging.py] set default stderr path if None (#25033)
set default logger
2023-07-24 14:31:45 +02:00
c9a82be592 [check_config_docstrings.py] improve diagnostics (#25012)
* [check_config_docstrings.py] improve diagnostics

* style

* rephrase

* fix
2023-07-23 21:17:26 -07:00
b257c46a07 🌐 [i18n-KO] Updated Korean serialization.md (#24686)
fix: update ko/serialization.md

* chatgpt draft
2023-07-21 19:23:59 -04:00
87fba947a5 Move template doc file to md (#25004) 2023-07-21 16:49:44 -04:00
ea41e18cfc improve from_pretrained for zero3 multi gpus mode (#24964)
* improve from_pretrained for zero3 multi gpus mode

* Add check if torch.distributed.is_initialized

* Revert torch.distributed

---------

Co-authored-by: Stas Bekman <stas@stason.org>
2023-07-21 15:39:28 -04:00
95f96b45ff [Llama] remove persistent inv_freq tensor (#24998)
remove persistent tensor
2023-07-21 18:11:08 +02:00
d3ce048c20 [bnb] Add simple check for bnb import (#24995)
add simple check for bnb
2023-07-21 17:50:52 +02:00
f1a1eb4ae1 Fix llama tokenization doctest (#24990)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-21 16:47:51 +02:00
a7d213189d Use main_input_name for include_inputs_for_metrics (#24993) 2023-07-21 10:30:17 -04:00
a6484c89b9 Fix type annotation for deepspeed training arg (#24988) 2023-07-21 09:42:05 -04:00
5b7ffd5492 Avoid importing all models when instantiating a pipeline (#24960)
* Avoid importing all models when instantiating a pipeline

* Remove sums that don't work
2023-07-21 09:41:56 -04:00
640e1b6c6f Remove tokenizers from the doc table (#24963) 2023-07-21 09:41:36 -04:00
0511369a8b [LlamaConfig] Nit: pad token should be None by default (#24958)
* pad token should be None by default

* fix tests

* nits
2023-07-21 14:32:34 +02:00
f74560d007 Fix missing spaces in system prompt of Llama2 tokenizer (#24930)
* Update tokenization_llama.py

* Update tokenization_llama_fast.py

* Update src/transformers/models/llama/tokenization_llama_fast.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/llama/tokenization_llama.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/llama/tokenization_llama.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/llama/tokenization_llama_fast.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-07-21 08:28:54 -04:00
f4eb459ef2 fsdp fixes and enhancements (#24980)
* fix fsdp prepare to remove the warnings and fix excess memory usage

* Update training_args.py

* parity for FSDP+XLA

* Update trainer.py
2023-07-21 17:52:48 +05:30
ec3dfe5e24 🌐 [i18n-KO] Fixed Korean and English quicktour.md (#24664)
* fix: english/korean quicktour.md

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>

* fix: follow glossary

* 파인튜닝 -> 미세조정

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>
2023-07-21 08:19:28 -04:00
83f9314d10 fix: cast input pixels to appropriate dtype for image_to_text pipelines (#24947)
* fix: cast input pixels to appropriate dtype for image_to_text tasks

* fix: add casting to pixel inputs of additional models after running copy checks
2023-07-21 08:16:57 -04:00
1c7e5e2368 fix fsdp checkpointing issues (#24926)
* fix fsdp load

* Update trainer.py

* remove saving duplicate state_dict
2023-07-21 12:17:26 +05:30
9ef5256dfb Fallback for missing attribute Parameter.ds_numel (#24942)
* [trainer] fallback for deepspeed param count

* [trainer] more readable numel count
2023-07-20 15:19:35 -04:00
caf5e369fc Contrastive Search peak memory reduction (#24120)
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-07-20 18:46:53 +01:00
aa1b09c5d1 Change logic for logging in the examples (#24956)
Change logic
2023-07-20 12:30:10 -04:00
89a1f34271 [RWKV] Add Gradient Checkpointing support for RWKV (#24955)
add GC support for RWKV
2023-07-20 18:29:23 +02:00
9f912ef62a Bump aiohttp from 3.8.1 to 3.8.5 in /examples/research_projects/decision_transformer (#24954)
Bump aiohttp in /examples/research_projects/decision_transformer

Bumps [aiohttp](https://github.com/aio-libs/aiohttp) from 3.8.1 to 3.8.5.
- [Release notes](https://github.com/aio-libs/aiohttp/releases)
- [Changelog](https://github.com/aio-libs/aiohttp/blob/v3.8.5/CHANGES.rst)
- [Commits](https://github.com/aio-libs/aiohttp/compare/v3.8.1...v3.8.5)

---
updated-dependencies:
- dependency-name: aiohttp
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-07-20 12:17:38 -04:00
e75cb0cb3c fix type annotations for arguments in training_args (#24550)
* testing

* example script

* fix typehinting

* some tests

* make test

* optional update

* Union of arguments

* does this fix the issue

* remove reports

* set default to False

* documentation change

* None support

* does not need None

* Fix typing annotations for FSDP and DeepSpeed in TrainingArguments (#24549)

* Fix typing annotations for FSDP and DeepSpeed in TrainingArguments

* Change dict to Dict

* Revert "Fix typing annotations for FSDP and DeepSpeed in TrainingArguments" (#24574)

Revert "Fix typing annotations for FSDP and DeepSpeed in TrainingArguments (#24549)"

This reverts commit c5e29d4381d4b9739e6cb427adbca87fbb43a3ad.

* Fix typing annotations for FSDP and DeepSpeed in TrainingArguments (#24549)

* Fix typing annotations for FSDP and DeepSpeed in TrainingArguments

* Change dict to Dict

* merge

* hacky fix

* fixup

---------

Co-authored-by: Max Ryabinin <mryabinin0@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-20 10:13:13 -04:00
0c41765df4 [DOCS] Example for LogitsProcessor class (#24848)
* make docs

* fixup

* resolved

* remove debugs

* Revert "fixup"

This reverts commit 5e0f636aae0bf8707bc8bdaa6a9427fbf66834ed.

* prev (ignore)

* fixup broke some files

* remove files

* reverting modeling_reformer

* lang fix
2023-07-20 10:09:40 -04:00
35c04596f8 Fix main_input_name in src/transformers/keras_callbacks.py (#24916)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-20 15:01:37 +02:00
85514c17d1 Update processing_vision_text_dual_encoder.py (#24950)
Fixing small typo: kwrags -> kwargs
2023-07-20 08:25:38 -04:00
9859806608 Bump pygments from 2.11.2 to 2.15.0 in /examples/research_projects/decision_transformer (#24949)
Bump pygments in /examples/research_projects/decision_transformer

Bumps [pygments](https://github.com/pygments/pygments) from 2.11.2 to 2.15.0.
- [Release notes](https://github.com/pygments/pygments/releases)
- [Changelog](https://github.com/pygments/pygments/blob/master/CHANGES)
- [Commits](https://github.com/pygments/pygments/compare/2.11.2...2.15.0)

---
updated-dependencies:
- dependency-name: pygments
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-07-20 07:43:48 -04:00
89136ff7f8 Generate: sequence bias can handle same terminations (#24822) 2023-07-20 12:23:17 +01:00
37d8611ac9 replace no_cuda with use_cpu in test_pytorch_examples (#24944)
* replace no_cuda with use_cpu in test_pytorch_examples

* remove codes that never be used

* fix style
2023-07-20 07:09:04 -04:00
79444f370f Deprecate unused OpenLlama architecture (#24922)
* Resolve typo in check_repo.py

* Specify encoding when opening modeling files

* Deprecate the OpenLlama architecture

* Add disclaimer pointing to Llama

I'm open to different wordings here

* Match the capitalisation of LLaMA
2023-07-20 07:03:24 -04:00
8fd8c8e49e Add multi-label text classification support to pytorch example (#24770)
* Add text classification example

* set the problem type and finetuning task

* ruff reformated

* fix bug for unseting label_to_id for regression

* update README.md

* fixed finetuning task

* update comment

* check if label exists in feature before removing

* add useful logging
2023-07-20 07:02:44 -04:00
7381987f90 🌐 [i18n-KO] Translatedtasks/document_question_answering.md to Korean (#24588)
* docs: ko: `document_question_answering.md`

* fix: resolve suggestions

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-07-20 06:19:36 -04:00
6112b1c644 [doc] image_processing_vilt.py wrong default documented (#24931)
[doc] image_processing_vilt.py wrong default
2023-07-19 13:57:40 -07:00
ee4250a35f [Llama2] replace self.pretraining_tp with self.config.pretraining_tp (#24906)
* add possibility to disable TP

* fixup

* adapt from offline discussions
2023-07-19 14:26:27 +02:00
3a43794dd6 Fix minor llama2.md model doc typos (#24909)
Update llama2.md

 Fix typos in the llama2 model doc
2023-07-19 08:13:14 -04:00
99c1268e0a fix typo in BARK_PRETRAINED_MODEL_ARCHIVE_LIST (#24902)
fix typo in BARK_PRETRAINED_MODEL_ARCHIVE_LIST

suno/barh should be suno/bark
2023-07-19 07:35:04 -04:00
aa4afa67f3 Fixed issue where ACCELERATE_USE_CPU="False" results in bool(True) (#24907)
- This results in cpu mode on Apple Silicon mps
2023-07-19 07:30:01 -04:00
243b2ea3fd Fix test_model_parallelism for FalconModel (#24914)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-19 13:18:16 +02:00
c035970212 Update tested versions in READMEs (#24895)
* Update supported Python and PyTorch versions in readme

* Update Python, etc. versions in non-English readmes

These were more out of date than in the English readme. This
updates all the versions the readmes claim the repository is tested
with to the same versions stated in the English readme.

Those versions are current at least in the case of the Python and
PyTorch versions (and less out of date for the others).

* Propagate trailing whitespace fix to model list

This runs "make fix-copies". The only change is the removal of
whitespace. No actual information or wording is changed.

* Update tested TensorFlow to 2.6 in all readmes

Per pinning in setup.py

Unlike Python and PyTorch, the minimum supported TensorFlow version
has not very recently changed, but old versions were listed in all
READMEs.
2023-07-19 07:17:34 -04:00
129cb6d523 Avoid some pipeline tasks to use use_cache=True (#24893)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-19 09:49:52 +02:00
476be08c4a Check for accelerate env var when doing CPU only (#24890)
Check for use-cpu
2023-07-18 18:40:37 -04:00
a982c0225e Disable ipex env var if false (#24885)
Disable ipex if in use
2023-07-18 16:07:02 -04:00
07360b6c9c [Llama2] Add support for Llama 2 (#24891)
* add llama

* add other readmes

* update padding id in readme

* add link to paper

* fix paths and tokenizer

* more nits

* styling

* fit operation in 2 lines when possible

* nits

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add form

* update reademe

* update readme, we don't have a default pad token

* update test and tokenization

* LLaMA instead of Llama

* nits

* add expected text

* add greeedy output

* styling

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* sequential device map

* skip relevant changes

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-18 15:18:31 -04:00
30c172fc20 Separate CircleCI cache between main and pull (or other branches) (#24886)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-18 21:05:26 +02:00
dd49404a89 check if eval dataset is dict (#24877)
* check if eval dataset is dict

* formatting
2023-07-18 13:33:41 -04:00
5c5cb4eeb2 [Blip] Fix blip output name (#24889)
* fix blip output name

* add property

* oops

* fix failing test
2023-07-18 19:30:27 +02:00
a9e067a45c [InstructBlip] Fix int8/fp4 issues (#24888)
* fix dtype issue

* revert `.float()`

* fix copies
2023-07-18 19:24:36 +02:00
3ec10e6c76 Add DINOv2 (#24016)
* First draft

* More improvements

* Convert patch embedding layer

* Convert all weights

* Make conversion work

* Improve conversion script

* Fix style

* Make all tests pass

* Add image processor to auto mapping

* Add swiglu ffn

* Add image processor to conversion script

* Fix conversion of giant model

* Fix documentation

* Fix style

* Fix tests

* Address comments

* Address more comments

* Remove unused arguments

* Remove more arguments

* Rename parameters

* Include mask token

* Address comments

* Add docstring

* Transfer checkpoints

* Empty commit
2023-07-18 15:34:06 +01:00
57da42ad05 Enable ZeroShotAudioClassificationPipelineTests::test_small_model_pt (#24882)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-18 15:08:53 +02:00
9c875839c0 add ascend npu accelerator support (#24879)
* Add Ascend NPU accelerator support

* fix style warining
2023-07-18 08:20:32 -04:00
f14c7f999d Fix CircleCI cache (#24880)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-18 13:45:00 +02:00
ca974aff0f [Docs] Clarify 4bit docs (#24878)
* clarify 4bit docs

* Apply suggestions from code review

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

---------

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2023-07-18 13:39:08 +02:00
2ab75add4b Remove tests/onnx (#24868)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-17 22:37:28 +02:00
d561408cc3 Skip Add model like job (#24865) 2023-07-17 15:52:04 -04:00
870dfc15b2 Skip failing ZeroShotAudioClassificationPipelineTests::test_small_model_pt for now (#24867)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-17 15:51:50 -04:00
9dc965bb40 deprecate no_cuda (#24863)
* deprecate no_cuda

* style

* remove doc

* remove doc 2

* fix style
2023-07-17 14:52:28 -04:00
0f4502d335 Remove deprecated codes (#24837)
* remove `xpu_backend` training argument

* always call `contextlib.nullcontext()` since transformers updated to
python3.8

* these codes will not be executed
2023-07-17 14:45:59 -04:00
eeaa9c016a Make CLIP model could use new added tokens with meaningful pooling (#24777)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-17 20:35:20 +02:00
d0154015f7 Replace assert statements with exceptions (#24856)
* Changed AssertionError to ValueError

try-except block was using AssesrtionError in except statement while the expected error is value error. Fixed the same.

* Changed AssertionError to ValueError

try-except block was using AssesrtionError in except statement while the expected error is ValueError. Fixed the same.
Note: While raising the ValueError args are passed to it, but later added again while handling the error (See the code snippet)

* Changed AssertionError to ValueError

try-except block was using AssesrtionError in except statement while the expected error is ValueError. Fixed the same.
Note: While raising the ValueError args are passed to it, but later added again while handling the error (See the code snippet)

* Changed AssertionError to ValueError

* Changed AssertionError to ValueError

* Changed AssertionError to ValueError

* Changed AssertionError to ValueError

* Changed AssertionError to ValueError

* Changed assert statement to ValueError based

* Changed assert statement to ValueError based

* Changed assert statement to ValueError based

* Changed incorrect error handling from AssertionError to ValueError

* Undoed change from AssertionError to ValueError as it is not needed

* Reverted back to using AssertionError as it is not necessary to make it into ValueError

* Fixed erraneous comparision

Changed == to !=

* Fixed erraneous comparision

Changed == to !=

* formatted the code

* Ran make fix-copies
2023-07-17 14:32:44 -04:00
12b908c659 Fix the fetch of all example tests (#24864) 2023-07-17 14:10:13 -04:00
e9ad51306f 4.32.0.dev0 2023-07-17 13:30:44 -04:00
49eb357564 Fix token pass (#24862)
* Fix how token is passed along in from_pretrained for tokenizers

* It's actually not necessary
2023-07-17 13:27:11 -04:00
f42a35e611 Add bark (#24086)
* first raw version of the bark integration

* working code on small models with single run

* add converting script from suno weights 2 hf

* many changes

* correct past_kv output

* working implementation for inference

* update the converting script according to the architecture changes

* add a working end-to-end inference code

* remove some comments and make small changes

* remove unecessary comment

* add docstrings and ensure no unecessary intermediary output during audio generation

* remove done TODOs

* make style + add config docstrings

* modification for batch inference support on the whole model

* add details to .generation_audio method

* add copyright

* convert EncodecModel from original library to transformers implementation

* add two class in order to facilitate model and sub-models loading from the hub

* add support of loading the whole model

* add BarkProcessor

* correct modeling according to processor output

* Add proper __init__ and auto support

* Add up-to-date copyright/license message

* add relative import instead of absolute

* cleaner head_dim computation

* small comment removal or changes

* more verbose LayerNorm init method

* specify eps for clearer comprehension

* more verbose variable naming in the MLP module

* remove unecessary BarkBlock parameter

* clearer code in the forward pass of the BarkBlock

* remove _initialize_modules method for cleaner code

* Remove unnecessary methods from sub-models

* move code to remove unnecessary function

* rename a variable for clarity and change an assert

* move code and change variable name for clarity

* remove unnecessary asserts

* correct small bug

* correct a comment

* change variable names for clarity

* remove asserts

* change import from absolute to relative

* correct small error due to comma missing + correct import

* Add attribute Bark config

* add first version of tests

* update attention_map

* add tie_weights and resize_token_embeddings for fineModel

* correct getting attention_mask in generate_text_semantic

* remove Bark inference trick

* leave more choices in barkProcessor

* remove _no_split_modules

* fixe error in forward of block and introduce clearer notations

* correct converting script with last changes

* make style + add draft bark.mdx

* correct BarkModelTest::test_generate_text_semantic

* add Bark in main README

* add dummy_pt_objects for Bark

* add missing models in the main init

* correct test_decoder_model_past_with_large_inputs

* disable torchscript test

* change docstring of BarkProcessor

* Add test_processor_bark

* make style

* correct copyrights

* add bark.mdx + make style, quality and consistency

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Remove unnecessary test method

* simply logic of a test

* Only check first ids for slow audio generation

* split full end-to-end generation tests

* remove unneccessary comment

* change submodel names for clearer naming

* remove ModuleDict from modeling_bark

* combine two if statements

* ensure that an edge misued won't happen

* modify variable name

* move code snippet to the right place (coarse instead of semantic)

* change BarkSemanticModule -> BarkSemanticModel

* align BarkProcessor with transformers paradigm

* correct BarkProcessor tests with last commit changes

* change _validate_voice_preset to an instance method instead of a class method

* tie_weights already called with post_init

* add codec_model config to configuration

* update bark modeling tests with recent BarkProcessor changes

* remove SubModelPretrainedModel + change speakers embeddings prompt type in BarkModel

* change absolute imports to relative

* remove TODO

* change docstrings

* add examples to docs and docstrings

* make style

* uses BatchFeature in BarkProcessor insteads of dict

* continue improving docstrings and docs + make style

* correct docstrings examples

* more comprehensible speaker_embeddings load/Save

* rename speaker_embeddings_dict -> speaker_embeddings

* correct bark.mdx + add bark to documentation_tests

* correct docstrings configuration_bark

* integrate last nit suggestions

* integrate BarkGeneration configs

* make style

* remove bark tests from documentation_tests.txt because timeout - tested manually

* add proper generation config initialization

* small bark.mdx documentation changes

* rename bark.mdx -> bark.md

* add torch.no_grad behind BarkModel.generate_audio()

* replace assert by ValueError in convert_suno_to_hf.py

* integrate a series of short comments from reviewer

* move SemanticLogitsProcessors and remove .detach() from Bark docs and docstrings

* actually remove SemanticLogitsProcessor from modeling_bark.oy

* BarkProcessor returns a single output instead of tuple + correct docstrings

* make style + correct bug

* add initializer_range to BarkConfig + correct slow modeling tests

* add .clone() to history_prompt.coarse_prompt to avoid modifying input array

* Making sure no extra "`" are present

* remove extra characters in modeling_bark.py

* Correct output if history_prompt is None

* remove TODOs

* remove ravel comment

* completing generation_configuration_bark.py docstrings

* change docstrings - number of audio codebooks instead of Encodec codebooks

* change 'bias' docstrings in configuration_bark.py

* format code

* rename BarkModel.generate_audio -> BarkModel.generate_speech

* modify AutoConfig instead of EncodecConfig in BarkConfig

* correct AutoConfig wrong init

* refactor BarkModel and sub-models generate_coarse, generate_fine, generate_text_semantic

* remove SemanticLogitsProcessor and replace it with SuppressTokensLogitsProcessor

* move nb_codebook related config arguments to BarkFineConfig

* rename bark.mdx -> bark.md

* correcting BarkModelConfig from_pretrained + remove keys_to_ignore

* correct bark.md with correct hub path

* correct code bug in bark.md

* correct list tokens_to_suppress

* modify Processor to load nested speaker embeddings in a safer way

* correct batch sampling in BarkFineModel.generate_fine

* Apply suggestions from code review

Small docstrings correction and code improvements

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* give more details about num_layers in docstrings

* correct indentation mistake

* correct submodelconfig order of docstring variables

* put audio models in alphabetical order in utils/check_repo.my

* remove useless line from test_modeling_bark.py

* makes BarkCoarseModelTest inherits from (ModelTesterMixin, GenerationTesterMixin, unittest.TestCase) instead of BarkSemanticModelTest

* make a Tester class for each sub-model instead of inheriting

* add test_resize_embeddings=True for Bark sub-models

* add Copied from transformers.models.gpt_neo.modeling_gpt_neo.GPTNeoSelfAttention._split_heads

* remove 'Copied fom Bark' comment

* remove unneccessary comment

* change np.min -> min in modeling_bark.py

* refactored all custom layers to have Bark prefix

* add attention_mask as an argument of generate_text_semantic

* refactor sub-models start docstrings to have more precise config class definition

* move _tied_weights_keys overriding

* add docstrings to generate_xxx in modeling_bark.py

* add loading whole BarkModel to convert_suno_to_hf

* refactor attribute and variable names

* make style convert_suno

* update bark checkpoints

* remove never entered if statement

* move bark_modeling docstrings after BarkPretrainedModel class definition

* refactor modeling_bark.py: kv -> key_values

* small nits - code refactoring and removing unecessary lines from _init_weights

* nits - replace inplace method by variable assigning

* remove *optional* when necessary

* remove some lines in generate_speech

* add default value for optional parameter

* Refactor preprocess_histories_before_coarse -> preprocess_histories

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* correct usage after refactoring

* refactor Bark's generate_xxx -> generate and modify docstrings and tests accordingly

* update docstrings python in configuration_bark.py

* add bark files in utils/documentation_test.txt

* correct docstrings python snippet

* add the ability to use parameters in the form of e.g coarse_temperature

* add semantic_max_new_tokens in python snippet in docstrings for quicker generation

* Reformate sub-models kwargs in BakModel.generate

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* correct kwargs in BarkModel.generate

* correct attention_mask kwarg in BarkModel.generate

* add tests for sub-models args in BarkModel.generate and correct BarkFineModel.test_generate_fp16

* enrich BarkModel.generate docstrings with a description of how to use the kwargs

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-17 17:53:24 +01:00
c21c3737c1 Add TAPEX to the list of deprecated models (#24859)
* Add TAPEX to the list of deprecated models

* Add check

* Fix typo

* Fix import path for Van conversion
2023-07-17 12:53:03 -04:00
054e802914 fix broken links in READMEs (#24861)
fix MRA in READMEs
2023-07-17 18:47:14 +02:00
c965d30279 Fix comments for _merge_heads (#24855)
* Fix comments

* Fix comments
2023-07-17 11:07:16 -04:00
e4a52b6a15 Fix is_vision_available (#24853)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-17 16:58:51 +02:00
4f08887053 Add Multimodal heading and Document question answering in task_summary.mdx (#23318)
* add multimodal heading and docqa

* fix sentence

* task_summary data type = modality clarification

* change the multimodal example to a smaller model
2023-07-17 13:51:19 +01:00
38dfb86958 Bump cryptography from 41.0.0 to 41.0.2 in /examples/research_projects/decision_transformer (#24833)
Bump cryptography in /examples/research_projects/decision_transformer

Bumps [cryptography](https://github.com/pyca/cryptography) from 41.0.0 to 41.0.2.
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/41.0.0...41.0.2)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-07-17 07:17:17 -04:00
18d42bfd23 Remove unused code in GPT-Neo (#24826)
1
2023-07-17 07:07:47 -04:00
9771ad33be 🌐 [i18n-KO] Translated custom_tools.mdx to Korean (#24580)
* docs: ko: custom_tools.mdx

* feat: deepl draft

* fix: change .mdx to .md

* fix: resolve suggestions

* fix: resolve suggestions
2023-07-17 07:04:10 -04:00
8ba26c18cf deprecate sharded_ddp training argument (#24825)
* deprecate fairscale's ShardedDDP

* fix code style

* roll back

* deprecate the `sharded_ddp` training argument

---------

Co-authored-by: jihuazhong <jihuazhong1@huawei.com>
2023-07-17 06:57:42 -04:00
5bb4430edc [🔗 Docs] Fixed Incorrect Migration Link (#24793)
* [🔗 Docs] Fixed Incorrect Migration Link

* Update README.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-14 17:47:50 -04:00
1023705440 Check models used for common tests are small (#24824)
* First models

* Conditional DETR

* Treat DETR models, skip others

* Skip LayoutLMv2 as well

* Fix last tests
2023-07-14 14:43:19 -04:00
a865b62e07 set correct model input names for gptsw3tokenizer (#24788) 2023-07-14 18:13:45 +01:00
50726f9ea7 Fixing double use_auth_token.pop (preventing private models from being visible). (#24812)
Fixing double `use_auth_token.pop` (preventing private models from
being visible).

Should fix: https://github.com/huggingface/transformers/issues/14334#issuecomment-1634527833

Repro: Have a private repo, with `vocab.json` (spread out files for the
tokenizer) and use `AutoTokenizer.from_pretrained(...,
use_auth_token="token")`.
2023-07-14 15:20:02 +02:00
91d7df58b6 Copy code when using local trust remote code (#24785)
* Copy code when using local trust remote code

* Remote upgrade strategy

* Revert "Remote upgrade strategy"

This reverts commit 4f0392f5d747bcbbcf7211ef9f9b555a86778297.
2023-07-13 16:57:20 -04:00
f32303d519 Run hub tests (#24807)
* Run hub tests

* [all-test] Run tests please!

* [all-test] Add vision dep for hub tests

* Fix tests
2023-07-13 15:25:45 -04:00
9d7a0871e2 Use _BaseAutoModelClass's register method (#24810)
Switching _BaseAutoModelClass from_pretrained and from_config to use the register classmethod that it defines rather than using the _LazyAutoMapping register method directly. This makes use of the additional consistency check within the base model's register.
2023-07-13 15:24:51 -04:00
0866705022 Update setup.py to be compatible with pipenv (#24789) 2023-07-13 12:56:43 -04:00
c0ca73dc98 Remove Falcon docs for the release until TGI is ready (#24808)
* Remove Falcon docs for the release until TGI is ready

* Update toctree
2023-07-13 17:27:58 +01:00
f9a711df4a Fix typo 'submosules' (#24809) 2023-07-13 16:56:53 +01:00
eebce4470c Add accelerate version in transformers-cli env (#24806)
* Add accelerate version in transformers-cli env

* Add accelerate config
2023-07-13 16:50:19 +01:00
34d9409427 Llama/GPTNeoX: add RoPE scaling (#24653)
* add rope_scaling

* tmp commit

* add gptneox

* add tests

* GPTNeoX can now handle long inputs, so the pipeline test was wrong

* Update src/transformers/models/open_llama/configuration_open_llama.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove ntk

* remove redundant validation

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-13 16:47:30 +01:00
9342c8fb82 Deprecate models (#24787)
* Deprecate some models

* Fix imports

* Fix inits too

* Remove tests

* Add deprecated banner to documentation

* Remove from init

* Fix auto classes

* Style

* Remote upgrade strategy 1

* Remove site package cache

* Revert this part

* Fix typo...

* Update utils

* Update docs/source/en/model_doc/bort.md

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Address review comments

* With all files saved

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-07-13 11:46:54 -04:00
717dadc6f3 Skip torchscript tests for MusicgenForConditionalGeneration (#24782)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-13 15:54:18 +02:00
e367a9770f Fix MobileVitV2 doctest checkpoint (#24805)
* Fix doctest checkpoint

* Add import torch for mobilevit
2023-07-13 14:47:59 +01:00
e538189931 Upgrade jax/jaxlib/flax pin versions (#24791)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-13 13:57:30 +02:00
6ba4d5de3a [DOC] Clarify relationshi load_best_model_at_end and save_total_limit (#24614)
* Update training_args.py

Clarify the relationship between `load_best_model_at_end` and `save_total_limit`.

* fix: faulty quotes

* make quality

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* DOCS: add explicit `True`

* DOCS: make style/quality

---------

Co-authored-by: Bram Vanroy <Bram.Vanroy@UGent.be>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-13 07:36:16 -04:00
21946a8cf4 [fix] Change the condition of ValueError in "convert_checkpoint_from_transformers_to_megatron" (#24769)
* fix: half inference error

norm_factor is still torch.float32 after using model.half

So I changed it to register_buffer so I can change it to torch.float16 after using model.half

* fix: Added a variable "persistent=False"

* run make style

* [fix] Change the condition of ValueError
convert_checkpoint_from_transformers_to_megatron

* [fix] error wording
layers -> attention heads
2023-07-13 11:57:56 +01:00
1f6f32c243 Removing unnecessary device=device in modeling_llama.py (#24696)
* Update modeling_llama.py

Removing unnecessary `device=device`

* fix in all occurrences of _make_causal_mask
2023-07-13 10:30:22 +01:00
906afa1d5c Revert "Unpin protobuf in docker file (for daily CI)" (#24800)
Revert "Unpin protobuf in docker file (for daily CI) (#24761)"

This reverts commit 45025d92f815675e483f32812caa28cce3a960e7.
2023-07-13 04:19:45 +02:00
f1732e1374 Rm duplicate pad_across_processes (#24780)
Rm duplicate
2023-07-12 11:47:21 -04:00
cfc8a05305 Remove WWT from README (#24672) 2023-07-12 10:58:08 -04:00
395e566a42 gpt-bigcode: avoid zero_ to support Core ML (#24755)
gpt-bigcode: avoid `zeros_` to support Core ML.

In-place `zeros_` is not supported by the Core ML conversion process.
This PR replaces it with `zeros_like` so conversion can proceed.

The change only affects a workaround for a PyTorch bug on the `cpu`
device.
2023-07-12 16:38:25 +02:00
0284285501 Fix pad across processes dim in trainer and not being able to set the timeout (#24775)
* dim, and rm copy

* Don't rm copy for now

* Oops

* pad index

* Should be a working test

* Tickle down ddp timeout

* Put fix back in now that testing locally is done

* Better comment specifying timeout

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-12 10:01:51 -04:00
4f85aaa6c9 Update default values of bos/eos token ids in CLIPTextConfig (#24773)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-12 13:50:26 +02:00
fc9e387dc0 Replacement of 20 asserts with exceptions (#24757)
* initial replacements of asserts with errors/exceptions

* replace assert with exception in generation, align and bart

* reset formatting change

* reset another formatting issue

* Apply suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* don't touch this file

* change to 'is not False'

* fix type

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-12 07:45:09 -04:00
430a04a75a Docs: Update logit processors __call__ docs (#24729)
* tmp commit

* __call__ docs

* kwargs documented; shorter input_ids doc

* nit

* Update src/transformers/generation/logits_process.py
2023-07-12 12:21:30 +01:00
6e2f069650 Add MobileVitV2 to doctests (#24771)
* Add to doctests

* Alphabetical order
2023-07-12 12:06:17 +01:00
7edc33ac7a Fix eval_accumulation_steps leading to incorrect metrics (#24756)
Fix eval steps
2023-07-12 05:49:12 -04:00
45025d92f8 Unpin protobuf in docker file (for daily CI) (#24761)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-11 23:55:55 +02:00
6aadb8d016 Allow existing configs to be registered (#24760) 2023-07-11 16:52:34 -04:00
4c0e251dc7 🐛 Handle empty gen_kwargs for seq2seq trainer prediction_step function (#24759)
* 🐛 Handle empty gen_kwargs for seq2seq trainer prediction_step fn

Signed-off-by: gkumbhat <kumbhat.gaurav@gmail.com>

* Update src/transformers/trainer_seq2seq.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Signed-off-by: gkumbhat <kumbhat.gaurav@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-11 16:48:06 -04:00
253d43d46d Fix lr scheduler not being reset on reruns (#24758)
* Try this

* Solved!

* Rm extranious

* Rm extranious

* self

* Args'

* Check for if we created the lr scheduler

* Move comment

* Clean
2023-07-11 16:37:04 -04:00
1be0145d6a Skip some slow tests for doctesting in PRs (Circle)CI (#24753)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-11 22:08:14 +02:00
bb13a92859 [InstructBLIP] Fix bos token of LLaMa checkpoints (#24492)
* Add fix

* Fix doctest
2023-07-11 20:43:01 +01:00
aac4c79968 Fix non-deterministic Megatron-LM checkpoint name (#24674)
Fix non-deterministic checkpoint name

`os.listdir`'s order is not deterministic, which is a problem when
querying the first listed file as in the code (`os.listdir(...)[0]`).

This can return a checkpoint name such as `distrib_optim.pt`, which does
not include desired information such as the saved arguments originally
given to Megatron-LM.
2023-07-11 19:55:04 +01:00
33aafc26ee Skip keys not in the state dict when finding mismatched weights (#24749) 2023-07-11 12:40:21 -04:00
3d8697261e add gradient checkpointing for distilbert (#24719)
* add gradient checkpointing for distilbert

* reformatted
2023-07-11 11:29:47 -04:00
2642d8d04b Docs: add kwargs type to fix formatting (#24733) 2023-07-11 16:21:29 +01:00
5739726fcc fix: Text splitting in the BasicTokenizer (#22280)
* fix: Apostraphe splitting in the BasicTokenizer for CLIPTokenizer

* account for apostrophe at start of new word

* remove _run_split_on_punc, use re.findall instead

* remove debugging, make style and quality

* use pattern and punc splitting, repo-consistency will fail

* remove commented out debugging

* adds bool args to BasicTokenizer, remove pattern

* do_split_on_punc default True

* clean stray comments and line breaks

* rebase, repo-consistency

* update to just do punctuation split

* add unicode normalizing back

* remove redundant line
2023-07-11 11:07:58 -04:00
2489e380e4 Fix typo in LocalAgent (#24736) 2023-07-11 09:04:50 -04:00
8a5e8a9c2a Add ViViT (#22518)
* Add model

* Add ability to get classification head weights

* Add docs

* Add imports to __init__.py

* Run style

* Fix imports and add mdx doc

* Run style

* Fix copyright

* Fix config docstring

* Remove imports of ViViTLayer and load_tf_weights_in_vivit

* Remove FeatureExtractor and replace with ImageProcessor everywhere

* Remove ViViTForPreTraining from vivit.mdx

* Change ViViT -> Vivit everywhere

* Add model_doc to _toctree.yml

* Replace tuples with lists in arguments of VivitConfig

* Rename patch_size to tubelet_size in TubeletEmbeddings

* Fix checkpoint names

* Add tests

* Remove unused num_frames

* Fix imports for VivitImageProcessor

* Minor fixes

* Decrease number of frames in VivitModelTester from 32 to 16

* Decrease number of frames in VivitModelTester from 16 to 8

* Add initialization for pos embeddings

* Rename Vivit -> ViViT in some places

* Fix docstring and formatting

* Rename TubeletEmbeddings -> VivitTubeletEmbeddings

* Remove load_tf_weights_in_vivit

* Change checkpoint name

* Remove Vivit _TOKENIZER_FOR_DOC

* Fix

* Fix VivitTubeletEmbeddings and pass config object as parameter

* Use image_size and num_frames instead of video_size

* Change conversion script and fix differences with the orig implementation

* Fix docstrings

* Add attention head pruning

* Run style and fixup

* Fix tests

* Add ViViT to video_classification.mdx

* Save processor in conversion script

* Fix

* Add image processor test

* Run fixup and style

* Run fix-copies

* Update tests/models/vivit/test_modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vivit/test_modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Use PyAV instead of decord

* Add unittest.skip

* Run style

* Remove unneeded test

* Update docs/source/en/model_doc/vivit.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/configuration_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add model

* Add docs

* Run style

* Fix imports and add mdx doc

* Remove FeatureExtractor and replace with ImageProcessor everywhere

* Change ViViT -> Vivit everywhere

* Rename Vivit -> ViViT in some places

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Run make style

* Remove inputs save

* Fix image processor

* Fix

* Run `make style`

* Decrease parameters of VivitModelTester

* Decrease tubelet size

* Rename vivit.mdx

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix default values in image_processing_vivit.py

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-11 14:04:04 +01:00
b15343de6f [Patch-t5-tokenizer] Patches the changes on T5 to make sure previous behaviour is still valide for beginning of words (#24622)
* patch `_tokenize` function

* more tests

* properly fix

* fixup

* Update src/transformers/models/t5/tokenization_t5.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix without ifs

* update

* protect import

* add python processing

* is first needed

* add doc and update with lefacy

* updaate

* fix T5 SPM converter

* styling

* fix T5 warning

* add is_seqio_available

* remove is_first

* revert some changes

* more tests and update

* update llama test batterie

* fixup

* refactor T5 spm common tests

* draft the llama tests

* update

* uopdate test

* nits

* refine

* name nit

* fix t5 tests

* fix T5

* update

* revert convert slow to fast changes that fail lots of tests

* legacy support

* fixup

* nits is first not defined

* don't use legacy behaviour for switch transformers

* style

* My attempt to check.

* nits

* fixes

* update

* fixup

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates

* fixup

* add legacy warning

* fixup

* warning_once nit

* update t5 documentation test

* update llama tok documentation

* add space to warning

* nits

* nit

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* last nits

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2023-07-11 15:02:18 +02:00
b3ab3fac1d Falcon port (#24523)
* Initial commit

* Update src/transformers/models/falcon/configuration_falcon.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/falcon/configuration_falcon.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Cleanup config docstring

* Update src/transformers/models/falcon/configuration_falcon.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Convert to relative imports

* Remove torch < 1.8 warning

* Restructure cos_sin header

* qkv -> query, key, value

* Refactor attention calculation

* Add a couple of config variables to account for the different checkpoints

* Successful merging of the code paths!

* Fix misplaced line in the non-parallel attention path

* Update config and tests

* Add a pad_token_id when testing

* Support output_attentions when alibi is None

* make fixup

* Skip KV cache shape test

* No more _keys_to_ignore_on_load_missing

* Simplify self attention a bit

* Simplify self attention a bit

* make fixup

* stash commit

* Some more attention mask updates

* Should pass all tests except assisted generation!

* Add big model generation test

* make fixup

* Add temporary workaround for test

* Test overrides for assisted generation

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/models/falcon/test_modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Test overrides for assisted generation

* Add generation demo

* Update copyright

* Make the docstring model actually small

* Add module-level docstring

* Remove all assertions

* Add copied from bloom

* Reformat the QKV layer

* Add copied from bloom

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove unused line and reformat

* No single letter variables

* Cleanup return names

* Add copied from line

* Remove the deprecated arguments blocks

* Change the embeddings test to an alibi on/off test

* Remove position_ids from FalconForQA

* Remove old check for token type IDs

* Fix the alibi path when multi_query is False

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/falcon/test_modeling_falcon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update config naming

* Fix typo for new_decoder_architecture

* Add some comments

* Fix docstring

* Fix docstring

* Create range in the right dtype from the start

* Review comment cleanup

* n_head_kv -> num_kv_heads

* self.alibi -> self.use_alibi

* self.num_kv -> self.num_kv_heads

* Reorder config args

* Made alibi arguments Optional

* Add all model docstrings

* Add extra checkpoints

* Add author info for Falcon

* Stop removing token_type_ids because our checkpoints shouldn't return it anymore

* Add one hopeful comment for the future

* Fix typo

* Update tests, fix cache issue for generation

* Use -1e9 instead of -inf to avoid float overflow

* Recompute the rotary embeddings much less often

* Re-enable disabled tests

* One final fix to attention mask calculation, and update tests

* Cleanup targeting falcon-40b equivalency

* Post-rebase docs update

* Update docstrings, especially in the config

* More descriptive variable names, and comments where we can't rename them

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-11 13:36:31 +01:00
35eac0df75 add link to accelerate doc (#24601) 2023-07-10 17:49:30 -04:00
a074a5d34d Docs: change some input_ids doc reference from BertTokenizer to AutoTokenizer (#24730) 2023-07-10 17:57:26 +01:00
2541108564 [T5] Adding model_parallel = False to T5ForQuestionAnswering and MT5ForQuestionAnswering (#24684)
Adding model_parallel = False
2023-07-10 13:50:07 +01:00
30ed3adf47 Add Multi Resolution Analysis (MRA) (New PR) (#24513)
* Add all files

* Update masked_language_modeling.md

* fix mlm models

* fix conflicts

* fix conflicts

* fix copies

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Reduce seq_len and hidden_size in ModelTester

* remove output_attentions

* fix conflicts

* remove copied from statements

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-10 10:50:43 +01:00
abaca9f943 Enable conversational pipeline for GPTSw3Tokenizer (#24648)
* feat: Add `_build_conversation_input_ids` to GPT-SW3 tokenizer, adjust line length

* feat: Merge in PR https://github.com/huggingface/transformers/pull/24504.

This allows the GPT-SW3 models (and other GPT-2 based models) to be 4-bit quantised
using `load_in_4bit` with `bitsandbytes`.

* fix: F-string

* fix: F-string

* fix: Remove EOS token from all responses

* fix: Remove redundant newlines

* feat: Add `load_in_4bit` to `Pipeline`

* fix: Separate turns with `\n<s>\n` rather than `<s>`

* fix: Add missing newline in prompt

* tests: Add unit tests for the new `_build_conversation_input_ids` method

* style: Automatic style correction

* tests: Compare encodings rather than decodings

* fix: Remove `load_in_4bit` from pipeline arguments

* docs: Add description and references of the GPT-SW3 chat format

* style: Line breaks

* Apply suggestions from code review

Fix Conversation type hints

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix: Import TYPE_CHECKING

* style: Run automatic fixes

* tests: Remove `_build_conversation_input_ids` unit tests

* tests: Remove import of `Conversation` in GPT-SW3 unit test

* style: Revert formatting

* style: Move TYPE_CHECKING line after all imports

* style: Imports order

* fix: Change prompt to ensure that `sp_model.encode` and `encode` yields same result

* docs: Add TODO comment related to the addition of whitespace during decoding

* style: Automatic style checks

* fix: Remove final whitespace in prompt, as prefix whitespace is used by sentencepiece

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-07-07 19:52:21 +01:00
f614b6e393 Whisper: fix prompted max length (#24666) 2023-07-07 18:11:38 +01:00
4957294270 Fix flaky test_for_warning_if_padding_and_no_attention_mask (#24706)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-07 11:55:21 +02:00
fb78769b9c [MT5] Fix CONFIG_MAPPING issue leading it to load umt5 class (#24678)
* update

* add umt5 to auto tokenizer mapping

* nits

* fixup

* fix failing torch test
2023-07-07 11:33:54 +09:00
fded6f4186 Fix integration with Accelerate and failing test (#24691)
Fix integration
2023-07-06 14:12:16 -04:00
bbf3090848 Avoid import sentencepiece_model_pb2 in utils.__init__.py (#24689)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-06 16:30:23 +02:00
66a378429d DeepSpeed/FSDP ckpt saving utils fixes and FSDP training args fixes (#24591)
* update ds and fsdp ckpt logic

* refactoring

* fix 🐛

* resolve comment

* fix issue with overriding of the fsdp config set by accelerate
2023-07-06 15:03:25 +05:30
392740452e Add dropouts to GPT-NeoX (#24680)
* add attention dropout, post attention dropout, post mlp dropout to gpt-neox

* fix typo

* add documentation

* fix too long line

* ran Checking/fixing src/transformers/models/gpt_neox/configuration_gpt_neox.py src/transformers/models/gpt_neox/modeling_gpt_neox.py
python utils/custom_init_isort.py
python utils/sort_auto_mappings.py
doc-builder style src/transformers docs/source --max_len 119 --path_to_docs docs/source
python utils/check_doc_toc.py --fix_and_overwrite
running deps_table_update
updating src/transformers/dependency_versions_table.py
python utils/check_copies.py
python utils/check_table.py
python utils/check_dummies.py
python utils/check_repo.py
Checking all models are included.
Checking all models are public.
Checking all models are properly tested.
Checking all objects are properly documented.
Checking all models are in at least one auto class.
Checking all names in auto name mappings are defined.
Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.
Checking all auto mappings could be imported.
Checking all objects are equally (across frameworks) in the main __init__.
python utils/check_inits.py
python utils/check_config_docstrings.py
python utils/check_config_attributes.py
python utils/check_doctest_list.py
python utils/update_metadata.py --check-only
python utils/check_task_guides.py
2023-07-06 10:26:36 +01:00
fb3b22c3b9 LlamaTokenizer should be picklable (#24681)
* LlamaTokenizer should be picklable

* make fixup
2023-07-06 10:21:27 +01:00
9a5d468ba0 Add Nucleotide Transformer notebooks and restructure notebook list (#24669)
* Add Nucleotide Transformer notebooks and restructure lists

* Add missing linebreak!
2023-07-05 18:28:47 +01:00
3df3b9d4bf Fix model referenced and results in documentation. Model mentioned was inaccessible (#24609) 2023-07-05 13:25:36 -03:00
050ef14516 Unpin huggingface_hub (#24667)
* fix

* fix

* fix

* [test all] commit

* [test all] commit

* [test all] commit

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-05 16:49:10 +02:00
bd9dfc23b9 Add is_torch_mps_available function to utils (#24660)
* Add mps function utils

* black formating

* format fix

* Added MPS functionality to transformers

* format fix
2023-07-05 16:02:20 +02:00
ee339bad01 Fix VisionTextDualEncoderIntegrationTest (#24661)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-05 13:44:30 +02:00
d211a84aca Fix EncodecModelTest::test_multi_gpu_data_parallel_forward (#24663)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-05 11:37:46 +02:00
469f4d0c29 Make warning disappear for remote code in pipelines (#24603)
* Make warning disappear for remote code in pipelines

* Make sure it works twice in a row

* No need for that
2023-07-04 19:03:14 -04:00
b19c7b5ccf Add finetuned_from property in the autogenerated model card (#24528)
* Add finetuned_from tag in the autogenerated model card

* Update name
2023-07-04 17:58:31 -04:00
ea9caf7aba Update warning messages reffering to post_process_object_detection (#24649)
* including the threshold alert in warning messages.

* Updating doc owlvit.md including post_process_object_detection function with threshold.

* fix
2023-07-04 16:47:57 -03:00
f3e96235a3 documentation_tests.txt - sort filenames alphabetically (#24647)
* Sort filenames alphabetically

* Add check for order
2023-07-04 17:06:05 +01:00
a3b402ff9a llama fp16 torch.max bug fix (#24561)
* open llama fp16 bug fix

* bug fix

* bug fixed

* make style

* Update modeling_llama.py

* apply formatting

* Address amy's comment

---------

Co-authored-by: Prathik Rao <prathikrao@microsoft.com@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
Co-authored-by: root <root@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
2023-07-04 16:05:12 +01:00
4e94566018 Fix audio feature extractor deps (#24636)
* Fix audio feature extractor deps

* use audio utils window over torch window
2023-07-04 16:03:27 +01:00
cd4584e3c8 precompiled_charsmap checking before adding to the normalizers' list for XLNetTokenizerFast conversion. (#24618)
* precompiled_charsmap checking before adding to the normalizers' list.

* precompiled_charsmap checking for all Sentencepiece tokenizer models

* precompiled_charsmap checking for SPM tokenizer models - correct formatting
2023-07-04 02:51:42 +02:00
f4e4b4d0e2 Generate: force cache with inputs_embeds forwarding (#24639) 2023-07-03 18:18:49 +01:00
9934bb1f42 Generate: multi-device support for contrastive search (#24635) 2023-07-03 16:08:20 +01:00
4b26a61631 Fix loading dataset docs link in run_translation.py example (#24594)
* fix loading dataset link

* Update examples/tensorflow/translation/run_translation.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update examples/tensorflow/translation/run_translation.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-03 15:21:21 +01:00
6eedfa6dd1 Pin Pillow for now (#24633)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-03 12:24:46 +02:00
fc7ce2ebc5 [Time-Series] Added blog-post to tips (#24482)
* [Time-Series] Added blog-post to tips

* added Resources to time series models docs

* removed "with Bert"
2023-07-03 10:07:25 +02:00
e16191a8ac 🌐 [i18n-KO] Translated perplexity.mdx to Korean (#23850)
* docs: ko: `perplexity.mdx`

* translate comment

* reference english file

* change extension

* update toctree
2023-07-03 08:50:27 +02:00
799df10aef [Umt5] Add google's umt5 to transformers (#24477)
* add tokenization template

* update conversion script

* update modeling code

* update

* update convert checkpoint

* update modeling

* revert changes on convert script

* new conversion script for new format

* correct position bias

* cleaning a bit

* Credit co authors

Co-authored-by: agemagician
<ahmed.elnaggar@tum.de>

Co-authored-by: stefan-it
<>

* styling

* Add docq

* fix copies

* add co author

* Other Author

* Merge branch 'main' of https://github.com/huggingface/transformers into add-umt5

* add testing

* nit

* Update docs/source/en/model_doc/umt5.mdx

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* fix t5

* actual fix?

* revert wrong changes

* remove

* update test

* more fixes

* revert some changes

* add SPIECE_UNDERLINE

* add a commone xample

* upfate

* fix copies

* revert changes on t5 conversion script

* revert bytefallback changes since there was no addition yet

* fixup

* fixup

* ingore umt5 cutom testing folder

* fix readmes

* revertT5 changes

* same outputs

* fixup

* update example

* Apply suggestions from code review

* style

* draft addition of all new files

* current update

* fix attention and stuff

* finish refactoring

* auto config

* fixup

* more nits

* add umt5 to init

* use md format

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* revert changes on mt5

* revert mt4 changes

* update test

* more fixes

* add to mapping

* fix-copies

* fix copies

* foix retain grad

* fix some tests

* nits

* done

* Update src/transformers/models/umt5/modeling_umt5.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/model_doc/umt5.md

* Update src/transformers/models/umt5/__init__.py

* Update docs/source/en/model_doc/umt5.md

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* Update src/transformers/models/umt5/modeling_umt5.py

* update conversion script + use google checkpoints

* nits

* update test and modelling

* stash slow convert

* update fixupd

* don't change slow

---------

Co-authored-by: stefan-it <>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-03 07:38:21 +02:00
66ded238cd fix pydantic install command 2023-07-01 09:29:21 +02:00
d51aa48a76 Limit Pydantic to V1 in dependencies (#24596)
* Limit Pydantic to V1 in dependencies

Pydantic is about to release V2 release which will break a lot of things. This change prevents `transformers` to be used with Pydantic V2 to avoid breaking things.

* more

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-01 00:04:03 +02:00
299aafe55f Use protobuf 4 (#24599)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-30 20:56:55 +02:00
49e812d12b [several models] improve readability (#24585)
* [modeling_clip.py] improve readability

* apply to other models

* fix
2023-06-30 11:27:27 -07:00
134caef31a Speed up TF tests by reducing hidden layer counts (#24595)
* hidden layers, huh, what are they good for (absolutely nothing)

* Some tests break with 1 hidden layer, use 2

* Use 1 hidden layer in a few slow models

* Use num_hidden_layers=2 everywhere

* Slightly higher tol for groupvit

* Slightly higher tol for groupvit
2023-06-30 16:30:33 +01:00
3441ad7d43 Make (TF) CI faster (test only a subset of model classes) (#24592)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-30 16:54:54 +02:00
78a2b19fc8 Show a warning for missing attention masks when pad_token_id is not None (#24510)
* Adding warning messages to BERT for missing attention masks

These warning messages when there are pad tokens within the input ids and
no attention masks are given. The warning message should only show up once.

* Adding warning messages to BERT for missing attention masks

These warning messages are shown when the pad_token_id is not None
and no attention masks are given. The warning message should only
show up once.

* Ran fix copies to copy over the changes to some of the other models

* Add logger.warning_once.cache_clear() to the test

* Shows warning when there are no attention masks and input_ids start/end with pad tokens

* Using warning_once() instead and fix indexing in input_ids check

---------

Co-authored-by: JB Lau <hckyn@voyager2.local>
2023-06-30 08:19:39 -04:00
fd8dcd0953 Udate link to RunHouse hardware setup documentation. (#24590)
* Udate link to RunHouse hardware setup documentation.

* Fix link to hardware setup in other location as well
2023-06-30 12:11:58 +01:00
b52a03cd3b ⚠️⚠️[T5Tokenize] Fix T5 family tokenizers⚠️⚠️ (#24565)
* don't add space before single letter chars that don't have a merge

* fix the fix

* fixup

* add a test

* more testing

* fixup

* hack to make sure fast is also fixed

* update switch transformers test

* revert convert slow

* Update src/transformers/models/t5/tokenization_t5.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add typechecking

* quality

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-30 07:00:43 +02:00
9e28750287 fix peft ckpts not being pushed to hub (#24578)
* fix push to hub for peft ckpts

* oops
2023-06-30 00:07:44 +05:30
232c898f9f Fix annotations (#24582)
* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations
2023-06-29 14:17:35 -04:00
c817bc44e2 Check all objects are equally in the main __init__ file (#24573)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-29 17:49:59 +02:00
8c4471d1fc Fix ESM models buffers (#24576)
* Fix ESM models buffers

* Remove modifs

* Tied weights keys are needed silly

* quality
2023-06-29 10:55:21 -04:00
b324557aac Removal of deprecated vision methods and specify deprecation versions (#24570)
* Removal of deprecated methods and specify versions

* Fix tests
2023-06-29 15:09:51 +01:00
77db28dc52 Update some torchscript tests after #24505 (#24566)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-29 16:05:24 +02:00
1c1c90756d Add Musicgen (#24109)
* Add Audiocraft

* add cross attention

* style

* add for lm

* convert and verify

* introduce t5

* split configs

* load t5 + lm

* clean conversion

* copy from t5

* style

* start pattern provider

* make generation work

* style

* fix pos embs

* propagate shape changes

* propagate shape changes

* style

* delay pattern: pad tokens at end

* audiocraft -> musicgen

* fix inits

* add mdx

* style

* fix pad token in processor

* override generate and add todos

* add init to test

* undo pattern delay mask after gen

* remove cfg logits processor

* remove cfg logits processor

* remove logits processor in favour of mask

* clean pos embs

* make fix copies

* update readmes

* clean pos emb

* refactor encoder/decoder

* make fix copies

* update conversion

* fix config imports

* update config docs

* make style

* send pattern mask to device

* pattern mask with delay

* recover prompted audio tokens

* fix docstrings

* laydown test file

* pattern edge case

* remove t5 ref

* add processing class

* config refactor

* better pattern comment

* check if mask is not present

* check if mask is not present

* refactor to auto class

* remove encoder configs

* fix processor

* processor import

* start updating conversion

* start updating tests

* make style

* convert t5, encodec, lm

* convert as composite

* also convert processor

* run generate

* classifier free gen

* comments and clean up

* make style

* docs for logit proc

* docstring for uncond gen

* start lm tests

* work tests

* let the lm generate

* refactor: reshape inside forward

* undo greedy loop changes

* from_enc_dec -> from_sub_model

* fix input id shapes in docstrings

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* undo generate changes

* from sub model config

* Update src/transformers/models/musicgen/modeling_musicgen.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make generate work again

* generate uncond -> get uncond inputs

* remove prefix allowed tokens fn

* better error message

* logit proc checks

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* make decoder only tests work

* composite fast tests

* make style

* uncond generation

* feat extr padding

* make audio prompt work

* fix inputs docstrings

* unconditional inputs: dict -> model output

* clean up tests

* more clean up tests

* make style

* t5 encoder -> auto text encoder

* remove comments

* deal with frames

* fix auto text

* slow tests

* nice mdx

* remove can generate

* todo - hub id

* convert m/l

* make fix copies

* only import generation with torch

* ignore decoder from tests

* don't wrap uncond inputs

* make style

* cleaner uncond inputs

* add example to musicgen forward

* fix docs

* ignore MusicGen Model/ForConditionalGeneration in auto mapping

* add doc section to toctree

* add to doc tests

* add processor tests

* fix push to hub in conversion

* tips for decoder only loading

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix conversion for s / m / l checkpoints

* import stopping criteria from module

* remove from pipeline tests

* fix uncond docstring

* decode audio method

* fix docs

* org: sanchit-gandhi -> facebook

* fix max pos embeddings

* remove auto doc (not compatible with shapes)

* bump max pos emb

* make style

* fix doc

* fix config doc

* fix config doc

* ignore musicgen config from docstring

* make style

* fix config

* fix config for doctest

* consistent from_sub_models

* don't automap decoder

* fix mdx save audio file

* fix mdx save audio file

* processor batch decode for audio

* remove keys to ignore

* update doc md

* update generation config

* allow changes for default generation config

* update tests

* make style

* fix docstring for uncond

* fix processor test

* fix processor test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-29 14:48:59 +01:00
2dc5e1a120 Revert "Fix typing annotations for FSDP and DeepSpeed in TrainingArguments" (#24574)
Revert "Fix typing annotations for FSDP and DeepSpeed in TrainingArguments (#24549)"

This reverts commit c5e29d4381d4b9739e6cb427adbca87fbb43a3ad.
2023-06-29 08:14:43 -04:00
4f1b31c2ee Docs: 4 bit doc corrections (#24572)
4 bit doc corrections
2023-06-29 13:13:20 +01:00
1fd52e6e60 Fix annotations (#24571)
* fix annotations

* fix copies
2023-06-29 08:05:19 -04:00
63cc30e71b Fix Typo (#24559) 2023-06-29 08:04:07 -04:00
ae454f41d4 Update old existing feature extractor references (#24552)
* Update old existing feature extractor references

* Typo

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* Address comments from review - update 'feature extractor'
Co-authored by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-06-29 10:17:36 +01:00
10c2ac7bc6 Fixed OwlViTModel inplace operations (#24529)
* fixed OwlViTModel inplace operations

* fixed operands order in owlvit
2023-06-29 10:17:26 +02:00
66954ea25e Update masked_language_modeling.md (#24560)
See https://github.com/huggingface/transformers/issues/24546
2023-06-28 17:54:20 -04:00
fd6735102a Make PT/Flax tests could be run on GPU (#24557)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 20:11:01 +02:00
faae8d8255 Update PT/Flax weight conversion after #24030 (#24556)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 19:44:31 +02:00
33b5ef5cdf [InstructBlip] Add instruct blip int8 test (#24555)
* add 8bit instructblip test

* update tests
2023-06-28 19:06:30 +02:00
c70c88a268 Fix processor __init__ bug if image processor undefined (#24554)
Make sure feature_extractor is defined in all cases
2023-06-28 17:17:27 +01:00
903b97d8df [gpt2-int8] Add gpt2-xl int8 test (#24543)
add gpt2-xl test
2023-06-28 18:02:13 +02:00
b0651655be Update EncodecIntegrationTest (#24553)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 18:01:41 +02:00
6c57ce1558 Update PT/TF weight conversion after #24030 (#24547)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 16:36:57 +02:00
c5e29d4381 Fix typing annotations for FSDP and DeepSpeed in TrainingArguments (#24549)
* Fix typing annotations for FSDP and DeepSpeed in TrainingArguments

* Change dict to Dict
2023-06-28 10:36:17 -04:00
daccde143d Allow for warn_only selection in enable_full_determinism (#24496)
* Warn only in enable full determinism

* Add option in the function definition
2023-06-28 08:54:36 -04:00
11cb6e0f7e Unpin DeepSpeed and require DS >= 0.9.3 (#24541)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 14:01:22 +02:00
e84bf1f734 ⚠️ Time to say goodbye to py37 (#24091)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 07:22:39 +02:00
12240925cf Add bitsandbytes support for gpt2 models (#24504)
* Add bitsandbytes support for gpt2 models

* Guard Conv1D import to pass tensorflow test

* Appease ruff linter

* Fix 4bit test and remove int8 test boilerplate

* Update tests/bnb/test_mixed_int8.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-06-28 05:55:32 +02:00
89b6ee49fd Finishing tidying keys to ignore on load (#24535) 2023-06-27 21:35:15 -04:00
04f46a22d8 Fix Typo (#24530)
* Fix Typo

* Fix all copies
2023-06-27 15:38:14 -04:00
462f77cbce Allow backbones not in backbones_supported - Maskformer Mask2Former (#24532)
Allow backbones not in backbones_supported
2023-06-27 20:34:36 +01:00
8e5d1619b3 Clean load keys (#24505)
* Preliminary work on some models

* Fix test load missing and make sure nonpersistent buffers are tested

* Always ignore nonpersistent buffers if in state_dict

* Treat models

* More models

* Treat remaining models

* Fix quality

* Fix tests

* Remove draft

* This test is not needed anymore

* Fix copies

* Fix last test

* Newly added models

* Fix last tests

* Address review comments
2023-06-27 14:45:40 -04:00
53194991e9 [Mask2Former] Remove SwinConfig (#24259)
Remove SwinConfig
2023-06-27 13:33:55 -04:00
fb6a62762f Fix LR scheduler based on bs from auto bs finder (#24521)
* One solution

* args -> self
2023-06-27 13:28:26 -04:00
38db04ece0 Find module name in an OS-agnostic fashion (#24526)
* Find module name in an OS-agnostic fashion

* address review comment
2023-06-27 13:21:19 -04:00
7d150d68ff Update huggingface_hub commit sha (#24527)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-27 17:41:55 +02:00
4e8929dcbb set model to training mode before accelerate.prepare (#24520) 2023-06-27 10:09:38 -04:00
06910f5a76 [T5] Add T5ForQuestionAnswering and MT5ForQuestionAnswering (#24481)
* Adding T5ForQuestionAnswering

* Changed weight initialization that results in better initial loss when fine-tuning

* Update to class variables

* Running make fixup

* Running make fix-copies

* Remove model_parallel

* Adding MT5ForQuestionAnswering

* Adding docs

* Fix wrong doc

* Update src/transformers/models/mt5/modeling_mt5.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/t5/modeling_t5.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* File formatting

* Undoing change

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-06-27 10:07:06 -04:00
bcf02ec701 Update hyperparameter_search.py (#24515)
* Update hyperparameter_search.py

* resolve comments
2023-06-27 18:42:15 +05:30
6fe8d198e3 use accelerate autocast in jit eval path, since mix precision logic is… (#24460)
use accelerate autocast in jit eval path, since mix precision logic is in accelerator currently

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-06-27 08:33:21 -04:00
0863436b6c 🌐 [i18n-KO] Translated tflite.mdx to Korean (#24435)
* docs: ko: tflite.mdx

* feat: nmt and manual edit `tflite.mdx`

* revised: resolve suggestions tflite.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* revised: resolve suggestions and new line tflite.mdx

Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-06-27 08:18:42 -04:00
4abd3ee479 Fix poor past ci (#24485)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-27 14:14:17 +02:00
239ace152b Fix TypeError: Object of type int64 is not JSON serializable (#24340)
* Fix TypeError: Object of type int64 is not JSON serializable

* Convert numpy.float64 and numpy.int64 to float and int for json serialization

* Black reformatted examples/pytorch/token-classification/run_ner_no_trainer.py

* * make style
2023-06-27 12:15:49 +01:00
ac19871ce2 Generate: min_tokens_to_keep has to be >= 1 (#24453) 2023-06-27 11:48:23 +01:00
5f3efdf762 Generate: group_beam_search requires diversity_penalty>0.0 (#24456)
* add exception

* update docs
2023-06-27 10:46:39 +01:00
43479ef98f 🚨🚨 Fix group beam search (#24407)
* group_beam_search now works correctly

* add argument descriptions

* add a comment

* format

* make style

* change comment

* Update src/transformers/generation/beam_search.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

---------

Co-authored-by: shogo.fujita <shogo.fujita@legalontech.jp>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-06-27 10:43:10 +01:00
68c92981ff Fix link in utils (#24501)
* fix link

* new link

---------

Co-authored-by: Gema <gema@mbp-de-gema-2.lan>
2023-06-26 14:26:09 -04:00
7b4e3b5b40 Compute dropout_probability only in training mode (SpeechT5) (#24498)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-26 19:43:06 +02:00
c9fd49853f Fix 'local_rank' AttiributeError in Trainer class (#24297)
fix attribute error
2023-06-26 13:38:29 -04:00
850cf4af0c Compute dropout_probability only in training mode (#24486)
* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-26 18:36:47 +02:00
9895670e95 [InstructBlip] Add accelerate support for instructblip (#24488)
* add accelerate support for instructblip

* add `_keep_in_fp32_modules`

* dynamically adapt `_no_split_modules`

* better fix

* same logic for `_keep_in_fp32_modules`
2023-06-26 18:36:27 +02:00
5757923888 Add support for for loops in python interpreter (#24429)
Add support for for loops
2023-06-26 09:58:14 -04:00
c2aa5e17e4 Update token_classification.md (#24484)
Add link to pytorch CrossEntropyLoss so that one understand why '-100' is ignore by the loss function.
2023-06-26 08:42:38 -04:00
3ca022238b Update InstructBlipModelIntegrationTest (#24490)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-26 14:37:12 +02:00
195a9e5bdb deepspeed z1/z2 state dict fix (#24489)
* deepspeed z2/z1 state_dict bloating fix

* update

* version check
2023-06-26 17:45:37 +05:30
c8aff1d3e6 when resume from peft checkpoint, the model should be trainable (#24463) 2023-06-26 08:07:27 -04:00
914289ac4b [pipeline] Fix str device issue (#24396)
* fix str device issue

* fixup

* adapt from suggestions

* forward contrib credits from suggestions

* better fix

* added backward compatibility for older PT versions

* final fixes

* oops

* Attempting something with less branching.

---------

Co-authored-by: amyeroberts <amyeroberts@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2023-06-26 13:58:36 +02:00
892399c5ff Update AlbertModel type annotation (#24450)
Update type annotation
2023-06-26 10:59:42 +01:00
be2d9f2e47 Fix tpu_metrics_debug (#24452)
fix for tpu metrics debugs string
2023-06-26 10:59:07 +01:00
3b84d86b57 add missing alignment_heads to Whisper integration test (#24487)
add missing alignment heads
2023-06-26 11:50:10 +02:00
868363abb9 Add InstructBLIP (#23460)
* Squash 88 commits

* Use markdown

* Remove mdx files due to bad rebase

* Fix modeling files due to bad rebase

* Fix style

* Update comment

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-26 11:23:57 +02:00
8e164c5400 Improved keras imports (#24448)
* An end to accursed version-specific imports

* No more K.is_keras_tensor() either

* Update dependency tables

* Use a cleaner call context function getter

* Add a cap to <2.14

* Add cap to examples requirements too
2023-06-23 19:09:34 +01:00
1e9da2b0a6 Update JukeboxConfig.from_pretrained (#24443)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-23 15:00:52 +02:00
8767958fc1 Allow dict input for audio classification pipeline (#23445)
* Allow dict input for audio classification pipeline

* make style

* Empty commit to trigger CI

* Empty commit to trigger CI

* check for torchaudio

* add pip instructions

Co-authored-by: Sylvain <sylvain.gugger@gmail.com>

* Update src/transformers/pipelines/audio_classification.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* asr -> audio class

* asr -> audio class

---------

Co-authored-by: Sylvain <sylvain.gugger@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2023-06-23 13:50:37 +01:00
a6f37f8879 fixes issue when saving fsdp via accelerate's FSDP plugin (#24446) 2023-06-23 18:03:57 +05:30
2898fd3968 Fix some TFWhisperModelIntegrationTests (#24428)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-23 14:27:49 +02:00
5e9f6752ee Fix typo (#24440) 2023-06-23 08:21:08 -04:00
a28325e25e Replace python random with torch.rand to enable dynamo.export (#24434)
* Replace python random with torch.rand to enable dynamo.export

* revert changes to flax model code

* Remove unused random import

* Fix torch template

* Move torch.manual_seed(0) to right location
2023-06-23 08:17:21 -04:00
c036c814f4 fix the grad_acc issue at epoch boundaries (#24415)
* fix the grad_acc issue at epoch boundaries

Co-Authored-By: Zach Mueller <7831895+muellerzr@users.noreply.github.com>

* add contributors.

Co-authored-by: sumpster

* address comments

---------

Co-authored-by: Zach Mueller <7831895+muellerzr@users.noreply.github.com>
2023-06-23 17:43:07 +05:30
468aed39af [Trainer] Fix .to call on 4bit models (#24444)
* fix `.to` call on 4bit models

* better check
2023-06-23 13:35:04 +02:00
ea91c2adca [AutoModel] Add AutoModelForTextEncoding (#24305)
* [AutoModel] Add AutoModelForTextEncoding

* add mt5

* add other models

* add to docs

* fix tf imports

* add tf to docs / init

* up

* fix inits

* add to dummy objects
2023-06-23 10:01:37 +01:00
feb83521ec [llama] Fix comments in weights converter (#24436)
Explain the reason to clone tensor
2023-06-22 20:38:53 -04:00
2c977e4a90 Save site-packages as cache in CircleCI job (#24424)
* fix

* fix

* Upgrade complete!

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-22 23:16:35 +02:00
2834c17ad2 Clarify batch size displayed when using DataParallel (#24430) 2023-06-22 14:46:20 -04:00
b6295b26c5 Refactor hyperparameter search backends (#24384)
* Refactor hyperparameter search backends

* Simpler refactoring without abstract base class

* black

* review comments:
specify name in class
use methods instead of callable class attributes
name constant better

* review comments: safer bool checking, log multiple available backends

* test ALL_HYPERPARAMETER_SEARCH_BACKENDS vs HPSearchBackend in unit test, not module. format with black.

* copyright
2023-06-22 14:28:25 -04:00
a1c4b63076 TF CI fix for Segformer (#24426)
Fix segformer so compilation can figure out the channel dim
2023-06-22 15:49:13 +01:00
754f61ca05 Update RayTune doc link for Hyperparameter tuning (#24422)
Update outdated hyperlink hpo_train.md 

Link to RayTune search space API docs was outdated - have provided correct new link for docs.

Co-authored-by: Joshua Samuel <66880119+Joshsamuel101@users.noreply.github.com>
2023-06-22 10:38:01 -04:00
8f2ef52fb6 Fix save_cache version in config.yml (#24419)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-22 16:18:16 +02:00
3ce3385c47 Revert "Fix gradient checkpointing + fp16 autocast for most models" (#24420)
Revert "Fix gradient checkpointing + fp16 autocast for most models (#24247)"

This reverts commit 285a48011da3145ae77c5b22bcfbe77d367e5173.
2023-06-22 16:11:27 +02:00
ebb62e8880 [bnb] Fix bnb serialization issue with new release (#24416)
* fix bnb issue

* fixup

* revert and do simple patching instead

* add more details
2023-06-22 15:40:38 +02:00
652ece0710 Skip test_conditional_generation_pt_pix2struct in Past CI (torch < 1.11) (#24417)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-22 15:34:13 +02:00
22fe73c378 TF safetensors reduced mem usage (#24404)
* Slight comment cleanup

* Reduce peak mem usage when loading TF-format safetensor weights

* Tweak the PyTorch loading code to support lazy loading from safetensors

* Pass safe_open objects to the PyTorch loading function

* Do GPU transposes for speed

* One more tweak to reduce peak usage further

* One-line hasattr

* Fix bug when there's a shape mismatch

* Rename state_dict in the loading code to be clearer

* Use TF format everywhere for consistency
2023-06-22 14:06:16 +01:00
7e03e46934 [ASR pipeline] Check for torchaudio (#23953)
* [ASR pipeline] Check for torchaudio

* add pip instructions

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>

---------

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
2023-06-22 13:48:49 +01:00
6ce6d62b6f Explicit arguments in from_pretrained (#24306)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-21 19:24:11 +02:00
127e81c272 Remove redundant code from TrainingArgs (#24401)
Remove redundant code
2023-06-21 11:51:27 -04:00
cd927a4736 add word-level timestamps to Whisper (#23205)
* let's go!

* initial implementation of token-level timestamps

* only return a single timestamp per token

* remove token probabilities

* fix return type

* fix doc comment

* strip special tokens

* rename

* revert to not stripping special tokens

* only support models that have alignment_heads

* add integration test

* consistently name it token-level timestamps

* small DTW tweak

* initial support for ASR pipeline

* fix pipeline doc comments

* resolve token timestamps in pipeline with chunking

* change warning when no final timestamp is found

* return word-level timestamps

* fixup

* fix bug that skipped final word in each chunk

* fix failing unit tests

* merge punctuations into the words

* also return word tokens

* also return token indices

* add (failing) unit test for combine_tokens_into_words

* make combine_tokens_into_words private

* restore OpenAI's punctuation rules

* add pipeline tests

* make requested changes

* PR review changes

* fix failing pipeline test

* small stuff from PR

* only return words and their timestamps, not segments

* move alignment_heads into generation config

* forgot to set alignment_heads in pipeline tests

* tiny comment fix

* grr
2023-06-21 17:48:21 +02:00
0f968ddaa3 Check auto mappings could be imported via from transformers (#24400)
* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-21 17:31:57 +02:00
1a6fb930fb Clean up dist import (#24402) 2023-06-21 11:19:42 -04:00
285a48011d Fix gradient checkpointing + fp16 autocast for most models (#24247)
* fix gc bug

* continue PoC on OPT

* fixes

* 🤯

* fix tests

* remove pytest.mark

* fixup

* forward contrib credits from discussions

* forward contrib credits from discussions

* reverting changes on untouched files.

---------

Co-authored-by: zhaoqf123 <zhaoqf123@users.noreply.github.com>
Co-authored-by: 7eu7d7 <7eu7d7@users.noreply.github.com>
2023-06-21 17:04:59 +02:00
1815d1865e [Trainer] Fix optimizer step on PyTorch TPU (#24389)
* update optimizer step for tpu

* add comment
2023-06-21 07:24:41 -04:00
4c6e429589 fix type annotation for debug arg (#24033)
* fix type annotation for debug arg

* fix TypeErorr
2023-06-21 11:42:21 +01:00
16c7b16a0a byebye Hub connection timeout - Recast (#24399)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-21 12:36:34 +02:00
5f0801d174 Generate: add SequenceBiasLogitsProcessor (#24334) 2023-06-21 11:14:41 +01:00
45f71d793d Add ffmpeg for doc_test_job on CircleCI (#24397)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-21 11:12:38 +02:00
ad78d9597b [docs] Fix NLLB-MoE links (#24388)
fix broken links
2023-06-20 17:34:20 -07:00
cb8f675510 Update deprecated torch.ger (#24387) 2023-06-20 20:21:13 -04:00
eb849f6604 Migrate doc files to Markdown. (#24376)
* Rename index.mdx to index.md

* With saved modifs

* Address review comment

* Treat all files

* .mdx -> .md

* Remove special char

* Update utils/tests_fetcher.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-06-20 18:07:47 -04:00
b0513b013b [Wav2Vec2 - MMS] Correct directly loading adapters weights (#24335)
* Correct direct lang loading

* correct more

* revert black

* Use tie weights instead=

* add tests

* add tests

* make style
2023-06-20 19:39:52 +02:00
e5c760d636 [GPTNeoX] Nit in config (#24349)
* add raise value error for attention size

* nits to fix test_config

* style
2023-06-20 19:19:19 +02:00
c2882403c4 [Whisper Docs] Nits (#24367)
* nits

* config doc did not match

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-06-20 19:18:52 +02:00
83dc5762e7 Skip a tapas (tokenization) test in past CI (#24378)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-20 18:35:45 +02:00
297d769d0e Better test name and enable pipeline test for pix2struct (#24377)
* best test name forever

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-20 18:29:30 +02:00
6950f70b38 style: add BitsAndBytesConfig __repr__ function (#24331)
* style: add repr to BitsAndBytesConfig

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>

* chore: update pattern for __repr__

implement diff dict for __repr__ of BitsAndBytesConfig

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>

---------

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
2023-06-20 12:26:08 -04:00
7feba74400 [Tokenizer doc] Clarification about add_prefix_space (#24368)
* nits

* more details

* fixup

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-20 18:22:00 +02:00
0527c1c0ea Add a check in ImageToTextPipeline._forward (#24373)
* fix

* fix

* fix

* Update src/transformers/pipelines/image_to_text.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2023-06-20 18:07:34 +02:00
dc4449918d Rename test to be more accurate (#24374) 2023-06-20 11:54:55 -04:00
a6b4d1ad83 Remove print statement 2023-06-20 11:14:29 -04:00
6c1344444a [Whisper] Make tests faster (#24105) 2023-06-20 16:01:56 +01:00
f924df3c7e [modelcard] add audio classification to task list (#24363) 2023-06-20 14:01:17 +01:00
c23d131eab Update tiny models for pipeline testing. (#24364)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-20 14:43:10 +02:00
56efbf4301 TensorFlow CI fixes (#24360)
* Fix saved_model_creation_extended

* Skip the BLIP model creation test for now

* Fix TF SAM test

* Fix longformer tests

* Fix Wav2Vec2

* Add a skip for XLNet

* make fixup

* make fix-copies

* Add comments
2023-06-20 12:59:21 +01:00
183f442ba8 Fix resuming PeftModel checkpoints in Trainer (#24274)
* Fix resuming checkpoints for PeftModels

Fix an error occurred when resuming a PeftModel from a training checkpoint. That was caused since PeftModel.pre_trained saves only adapter-related data while _load_from_checkpoint was expecting a torch sved model. This PR fix this issue and allows the adapter checkpoint to be loaded.

Resolves: #24252

* fix last comment

* fix nits

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-06-20 13:57:08 +02:00
0875b2509a Allow passing kwargs through to TFBertTokenizer (#24324) 2023-06-20 12:49:06 +01:00
cfc838dd4d Respect explicitly set framework parameter in pipeline (#24322)
* Respect framework parameter

* Move check to pipeline()

* Add check inside infer_framework_load_model again
2023-06-20 11:43:52 +01:00
c5454eba9e Fix the order in GPTNeo's docstring (#24358)
* Fix arg sort in docstring

* further order fix

* make style
2023-06-19 18:59:35 +01:00
20273ee214 [Doc Fix] Fix model name path in the transformers doc for AutoClasses (#24329)
fix model name path

Co-authored-by: Ritesh Ghorse <riteshghorse@Riteshs-Air.attlocal.net>
2023-06-19 17:26:55 +01:00
c003c8cb52 docs: add BentoML to awesome-transformers (#24344)
* docs: add BentoML to awesome-transformers

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>

* chore: add the project to the bottom of the line

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>

---------

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
2023-06-19 12:17:30 -04:00
52c4276e44 Fix link to documentation in Install from Source (#24336)
Update __init__.py

Fix link to documentation to install Transformers from source 
Probably the title changed at some point from 'Installing' to 'Install'
2023-06-19 17:12:55 +01:00
7e71eb2ef7 Fix ImageGPT doctest (#24353)
Fix doctest
2023-06-19 15:23:29 +01:00
a4de24f691 Make AutoFormer work with previous torch version (#24357)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-19 16:02:06 +02:00
7761b1893a Update MMS integration docs (#24311)
* Update mms.mdx

* Update mms.mdx

* Update docs/source/en/model_doc/mms.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update mms.mdx

* Update docs/source/en/model_doc/mms.mdx

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-06-19 14:49:01 +01:00
5fca839fef Fix device issue in SwitchTransformers (#24352)
* fix

* Update src/transformers/models/switch_transformers/modeling_switch_transformers.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-19 15:06:05 +02:00
3b5a56e595 Fix KerasMetricCallback: pass generate_kwargs even if use_xla_generation is False (#24333)
* Fix `KerasMetricCallback`: always pass `generate_kwargs`.

* Reformat code using Black.
2023-06-19 12:51:25 +01:00
0b259a3b7e Clean up disk sapce during docker image build for transformers-pytorch-gpu (#24346)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-19 12:54:02 +02:00
691b60db90 byebye Hub connection timeout (#24350)
byebye timeout

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-19 12:50:20 +02:00
17e3e7d686 pin apex to a speicifc commit (for DeepSpeed CI docker image) (#24351)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-19 12:48:53 +02:00
3c124df579 🌐 [i18n-KO] Fixed tutorial/preprocessing.mdx (#24156)
* fix: revise translations

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-06-19 11:43:57 +01:00
881c0df952 error bug on saving distributed optim state when using data parallel (#24108)
Update checkpoint_reshaping_and_interoperability.py
2023-06-19 16:04:21 +05:30
ee88ae5994 Adding ddp_broadcast_buffers argument to Trainer (#24326)
adding ddp_broadcast_buffers argument
2023-06-16 15:14:03 -04:00
9138995025 Add test for proper TF input signatures (#24320)
* Add test for proper input signatures

* No more signature pruning

* Test the dummy inputs are valid too

* fine-tine -> fine-tune

* Fix indent in test_dataset_conversion
2023-06-16 17:03:13 +01:00
bdfd57d1d1 Fix ImageGPT doc example (#24317)
* Fix ImageGPT doc example

* Update src/transformers/models/imagegpt/image_processing_imagegpt.py

* Fix types
2023-06-16 17:01:22 +01:00
096f2cf126 Tied weights load (#24310)
* Use tied weight keys

* More

* Fix tied weight missing warning

* Only give info on unexpected keys with different classes

* Deal with empty archs

* Fix tests

* Refine test
2023-06-16 10:55:42 -04:00
61ffdeba38 Fix ner average grouping with no groups (#24319)
Fixes #https://github.com/huggingface/transformers/issues/24314
2023-06-16 16:43:19 +02:00
3403712958 Big TF test cleanup (#24282)
* Fix one BLIP arg not being optional, remove misspelled arg

* Remove the lxmert test overrides and just use the base test_saved_model_creation

* saved_model_creation fixes and re-enabling tests across the board

* Remove unnecessary skip

* Stop caching sinusoidal embeddings in speech_to_text

* Fix transfo_xl compilation

* Fix transfo_xl compilation

* Fix the conditionals in xglm

* Set the save spec only when building

* Clarify comment

* Move comment correctly

* Correct embeddings generation for speech2text

* Mark RAG generation tests as @slow

* Remove redundant else:

* Add comment to clarify the save_spec line in build()

* Fix size tests for XGLM at last!

* make fixup

* Remove one band_part operation

* Mark test_keras_fit as @slow
2023-06-16 15:40:49 +01:00
896a58de15 Byebye pytorch 1.9 (#24080)
byebye

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-16 16:38:23 +02:00
62d71f4083 Fix functional TF Whisper and modernize tests (#24301)
* Revert whisper change and modify the test_compile_tf_model test

* make fixup

* Tweak test slightly

* Add functional model saving to test

* Ensure TF can infer shapes for data2vec

* Add override for efficientformer

* Mark test as slow
2023-06-16 14:43:43 +01:00
ba3fb4b8d7 [SwitchTransformers] Fix return values (#24300)
* clean history

* remove other changes

* fix

* fix coipes
2023-06-16 15:40:33 +02:00
0b7b4429c7 Update test versions on README.md (#24307)
Update README.md

Updated the tested versions
2023-06-15 18:01:11 +01:00
6134b9b4c7 Make can_generate as class method (#24299)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-15 18:31:38 +02:00
e45bc14350 Beam search type (#24288)
* test check in

* adding in type hint fix on beam search

* fixed code quality issue
2023-06-15 16:48:02 +01:00
1a113fcf65 Update tokenizer_summary.mdx (grammar) (#24286) 2023-06-15 16:31:47 +01:00
c3ca346b49 [Docs] Fix the paper URL for MMS model (#24302)
Fix the paper URL for MMS model
2023-06-15 15:45:49 +01:00
4124a09f8b [EnCodec] Changes for 32kHz ckpt (#24296)
* [EnCodec] Changes for 32kHz ckpt

* Update src/transformers/models/encodec/convert_encodec_checkpoint_to_pytorch.py

* Update src/transformers/models/encodec/convert_encodec_checkpoint_to_pytorch.py
2023-06-15 14:36:19 +01:00
01b55779d3 deepspeed init during eval fix (#24298)
* deepspeed init during eval fix

* commit suggestions

Co-Authored-By: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-15 18:47:09 +05:30
6a081c512a Update README_zh-hans.md (#24181)
* Update README_zh-hans.md

update document link

* Update README_zh-hans.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-15 13:50:40 +01:00
604a21b1e6 [Docs] Improve docs for MMS loading of other languages (#24292)
* Improve docs

* Apply suggestions from code review

* upload readme

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-15 14:29:32 +02:00
e6122c3f40 Fix image segmentation tool bug (#23897)
* Image segmentation tool bug

* Remove resizing in the tests
2023-06-15 08:09:31 -04:00
6cd34d451c [fix] bug in BatchEncoding.__getitem__ (#24293)
Co-authored-by: luchen <luchen@luchendeMBP.lan>
2023-06-15 12:33:37 +01:00
372f50030b Split common test from core tests (#24284) 2023-06-15 07:30:24 -04:00
a611ac9b3f remove unused is_decoder parameter in DetrAttention (#24226)
* issue#24161 remove unused is_decoder parameter in DetrAttention

* #24161 fix check_repository_consistency fail
2023-06-15 11:39:32 +01:00
33196b459c Fix LLaMa beam search when using parallelize (#24224)
* Fix LLaMa beam search when using parallelize

same issue as T5 #11717

* fix code format in modeling_llama.py

* fix format of _reorder_cache in modeling_llama.py
2023-06-15 11:28:48 +01:00
7504be35ab Fix check_config_attributes: check all configuration classes (#24231)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-15 11:39:20 +02:00
6793f0cfe0 Fix bug in slow tokenizer conversion, make it a lot faster (#24266)
* Make conversion faster, fix None vs 0 bug

* Add second sort for consistency

* Update src/transformers/convert_slow_tokenizer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-06-15 09:41:57 +01:00
1609a436ec Add MMS CTC Fine-Tuning (#24281)
* Add mms ctc fine tuning

* make style

* More fixes that are needed

* make fix-copies

* make draft for README

* add new file

* move to new file

* make style

* make style

* add quick test

* make style

* make style
2023-06-15 01:10:27 +02:00
0c3fdccf2f [WIP] add EnCodec model (#23655)
* boilerplate stuff

* messing around with the feature extractor

* fix feature extractor

* unit tests for feature extractor

* rename speech to audio

* quick-and-dirty import of Meta's code

* import weights (sort of)

* cleaning up

* more cleaning up

* move encoder/decoder args into config

* cleanup model

* rename EnCodec -> Encodec

* RVQ parameters in config

* add slow test

* add lstm init and test_init

* Add save & load

* finish EncodecModel

* remove decoder_input_values as they are ont used anywhere (not removed from doc yet)

* fix test feature extraction model name

* Add better slow test

* Fix tests

* some fixup and cleaning

* Improve further

* cleaning up quantizer

* fix up conversion script

* test don't pass, _encode_fram does not work

* update tests with output per encode and decode

* more cleanup

* rename _codebook

* remove old config cruft

* ratios & hop_length

* use ModuleList instead of Sequential

* clean up resnet block

* update types

* update tests

* fixup

* quick cleanup

* fix padding

* more styl,ing

* add patrick feedback

* fix copies

* fixup

* fix lstm

* fix shape issues

* fixup

* rename conv layers

* fixup

* fix decoding

* small conv refactoring

* remove norm_params

* simplify conv layers

* rename conv layers

* stuff

* Clean up

* Add padding logic

use padding mask

small conv refactoring

remove norm_params

simplify conv layers

rename conv layers

stuff

add batched test

update

Clean up

merge and update for padding

fix padding

fixup

* clean up more

* clean up more

* More clean ups

* cleanup convolutions

* typo

* fix typos

* fixup

* build PR doc?

* start refactoring docstring

* fix don't pad when no strid and chunk

* update docstring

* update docstring

* nits

* update going to lunch

* update config and model

* fix broken testse (becaue of the config changes)

* fix scale computation

* fixu[

* only return dict if speciefied or if config returns it

* remove todos

* update defaults in config

* update conversion script

* fix doctest

* more docstring + fixup

* nits on batched_tests

* more nits

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update basxed on review

* fix update

* updaet tests

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fixup

* add overlap and chunl_length_s

* cleanup feature extraction

* teste edge cases truncation and padding

* correct processor values

* update config encodec, nits

* fix tests

* fixup

* fix 24Hz test

* elle tests are green

* fix fixup

* Apply suggestions from code review

* revert readme changes

* fixup

* add example

* use facebook checkpoints

* fix typo

* no pipeline tests

* use slef.pad everywhere we can

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update based on review

* update

* update mdx

* fix bug and tests

* fixup

* fix doctest

* remove comment

* more nits

* add more coverage for `test_truncation_and_padding`

* fixup

* add last test

* fix text

* nits

* Update tests/models/encodec/test_modeling_encodec.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* take care of the last comments

* typo

* fix test

* nits

* fixup

* Update src/transformers/models/encodec/feature_extraction_encodec.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: arthur.zucker@gmail.com <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-14 18:57:23 +02:00
26a2ec56d7 Clean up old Accelerate checks (#24279)
* Clean up old Accelerate checks

* Put back imports
2023-06-14 12:44:09 -04:00
860d11ff7c Fix Debertav2 embed_proj (#24205)
* MLM prediction head output size from embed_size

Take the output size of the dense projection layer from embedding_size instead of hidden_size since there could be a projection of the input embedding into hidden_size if they are different

* project TFDebertaV2 mlm output to embedding size

embedding size can be different that hidden_size, so the final layer needs to project back to embedding size. like in ELECTRA or DeBERTaV3 style pertaining.

This should solve an error that occurs when loading models like "almanach/camemberta-base-generator".

* fix the same issue for reshaping after projection

* fix layernorm size

* add self.embedding_size to scope

* fix embed_proj scope name

* apply the same changes to TF Deberta

* add the changes to deberta

* added self.embedding_size instead of config.embedding_size

* added the same change to debertav2

* added coppied from deberta to deberta2 model

* config.embedding_size fix

* black

* fix deberta config name
2023-06-14 17:24:53 +01:00
a04ebc8b33 Pix2StructImageProcessor requires torch>=1.11.0 (#24270)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-14 17:05:40 +02:00
8978b696d7 Update check of core deps (#24277) 2023-06-14 10:06:31 -04:00
c4fec38bc7 Adapt Wav2Vec2 conversion for MMS lang identification (#24234)
* Add conversion for mms lid

* make style
2023-06-14 16:02:36 +02:00
4626df5077 TF: CTRL with native embedding layers (#23456) 2023-06-14 14:39:02 +01:00
eac8dede83 Skip some TQAPipelineTests tests in past CI (#24267)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-14 14:25:24 +02:00
91b62f5a78 QA doc: import torch before it is used (#24228)
* import torch before it is used

* style

Signed-off-by: byhsu <byhsu@linkedin.com>

---------

Signed-off-by: byhsu <byhsu@linkedin.com>
Co-authored-by: byhsu <byhsu@linkedin.com>
2023-06-14 11:23:55 +01:00
6ab045d6fe Fix URL in comment for contrastive loss function (#24271)
* Update language_modeling.py

in "class TextDatasetForNextSentencePrediction(Dataset)", double considering "self.tokenizer.num_special_tokens_to_add(pair=True)" 

so, i remove self.block_size, and add parameter for "def create_examples_from_document". like "class LineByLineWithSOPTextDataset" do

* Update language_modeling.py

* Fix URL in comment for contrastive loss function
2023-06-14 11:08:31 +01:00
b89fcccd44 update FSDP save and load logic (#24249)
* update fsdp save and load logic

* fix

* see if this resolves the failing tests
2023-06-14 00:49:15 +05:30
e0603d894d docs wrt using accelerate launcher with trainer (#24250)
* update docs

* missing part

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address comments

* address Zach's comment

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-14 00:31:06 +05:30
233113149b Skip GPT-J fx tests for torch < 1.12 (#24256)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-13 20:33:26 +02:00
3bd1fe4315 Stop storing references to bound methods via tf.function (#24146)
* Stop storing references to bound methods in tf.functions

* Remove the gc.collect calls now that we resolved the underlying problem

* Remove the default signature from model.serving entirely, big cleanup

* Remove _prune_signature as self.input_signature can prune itself

* Restore serving docstring

* Update int support test to check the input signature

* Make sure other tests also use model.input_signature and not serving.input_signature

* Restore _prune_signature

* Remove the doctest GC now it's no longer needed

* Correct core tests to use the pruned sig

* order lines correctly in core tests

* Add eager_serving back with a deprecation warning
2023-06-13 19:04:22 +01:00
b979a2064d Fix how we detect the TF package (#24255)
* Fix how we detect the TF package

* Add a comment as a talisman warding against future harm

* Actually put the comment in the right place
2023-06-13 18:57:50 +01:00
e64d99fa6b Update urls in warnings for rich rendering (#24136)
* fixing typo in url in warnings

* fixing typo in url in warnings

* multi-line fix

* multi-line fix

* Update src/transformers/generation/utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/generation/flax_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/generation/tf_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-13 18:23:30 +01:00
cf561d7cf1 Add torch >=1.12 requirement for Tapas (#24251)
* fix

* fix

* fix

* Update src/transformers/models/tapas/modeling_tapas.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-13 19:19:40 +02:00
b1ea6b4bf5 Generate: GenerationConfig can overwrite attributes at from_pretrained time (#24238)
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-13 17:59:21 +01:00
7bb6933b9d TF: standardize test_model_common_attributes for language models (#23457) 2023-06-13 17:51:37 +01:00
4ed075280c [Time Series] use mean scaler when scaling is a boolean True (#24237)
* use mean scaler when scaling is boolean True

* remove debug
2023-06-13 18:46:05 +02:00
695928e1e5 Tied params cleanup (#24211)
* First test

* Add info for all models

* style

* Repo consistency

* Fix last model and cleanup prints

* Repo consistency

* Use consistent function for detecting tied weights
2023-06-13 11:38:39 -04:00
3723329d01 deprecate use_mps_device (#24239) 2023-06-13 19:48:36 +05:30
3e142cb0f5 fix overflow when training mDeberta in fp16 (#24116)
* Porting changes from https://github.com/microsoft/DeBERTa/ that hopefully allows for fp16 training of mdeberta

* Updates to deberta modeling from microsoft repo

* Performing some cleanup

* Undoing changes that weren't necessary

* Undoing float calls

* Minimally change the p2c block

* Fix error

* Minimally changing the c2p block

* Switch to torch sqrt

* Remove math

* Adding back the to calls to scale

* Undoing attention_scores change

* Removing commented out code

* Updating modeling_sew_d.py to satisfy utils/check_copies.py

* Missed changed

* Further reduce changes needed to get fp16 working

* Reverting changes to modeling_sew_d.py

* Make same change in TF
2023-06-13 15:04:27 +01:00
f91810da88 Safely import pytest in testing_utils.py (#24241) 2023-06-13 14:28:08 +01:00
fdd78d9153 Improving error message when using use_safetensors=True. (#24232) 2023-06-13 15:07:00 +02:00
74b846cacf Update (TF)SamModelIntegrationTest (#24199)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-13 14:28:14 +02:00
d7389cd201 fix: TextIteratorStreamer cannot work with pipeline (#23641)
* fix: TextIteratorStreamer cannot work with pipeline

Deepcopying the TextIteratorStreamer object causes the exception.

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Update src/transformers/pipelines/text_generation.py

Got it. I will update the patch.

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/pipelines/text_generation.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update text_generation.py

---------

Signed-off-by: yuanwu <yuan.wu@intel.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-06-13 10:42:41 +01:00
70c7994095 Fix README copies 2023-06-12 16:24:27 -04:00
41a8fa4e14 Add the number of model test failures to slack CI report (#24207)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 21:27:10 +02:00
4da84008dc Finish dataloader integration (#24201) 2023-06-12 13:26:17 -04:00
0675600a60 Update WhisperForAudioClassification doc example (#24188)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 19:10:31 +02:00
e5dd7432e7 Remove unnecessary aten::to overhead in llama (#24203)
* fix dtype init

* fix copies

* fix fixcopies mess

* edit forward as well

* copy
2023-06-12 12:18:04 -04:00
4fe9716a79 Skip RWKV test in past CI (#24204)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 18:14:15 +02:00
f7d80cb3d2 Fix steps bugs in no trainer examples (#24197)
Fix step bugs in no trainer + load checkpoint + grad acc
2023-06-12 11:49:55 -04:00
08ae37c820 Fix _load_pretrained_model (#24200)
Fix test
2023-06-12 11:31:06 -04:00
ebd94b0f6f 🚨🚨🚨 Replace DataLoader logic for Accelerate in Trainer, remove unneeded tests 🚨🚨🚨 (#24028)
* Working integration

* Fix failing test

* Revert label host logic

* Bring it back!
2023-06-12 11:23:37 -04:00
dc42a9d76f 🌐 [i18n-KO] Translated tasks_summary.mdx to Korean (#23977)
* 🌐 [i18n-KO] Translated tasks_summary.mdx to Korean

Co-Authored-By: Hyeonseo Yun <0525yhs@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>

* Apply suggestions from code review

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* Update _toctree.yml

* Delete generation_strategies.mdx

* Delete tasks_explained.mdx

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
2023-06-12 11:07:15 -04:00
60b69f7de2 Generate: detect special architectures when loaded from PEFT (#24198) 2023-06-12 16:06:20 +01:00
97527898da typo: fix typos in CONTRIBUTING.md and deepspeed.mdx (#24184)
* typo: fix typos in CONTRIBUTING.md and deepspeed.mdx

* Update CONTRIBUTING.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-12 15:43:58 +01:00
dadc9fb427 Update GPTNeoXLanguageGenerationTest (#24193)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 15:37:12 +02:00
a9cdb059a8 Fix device issue in OpenLlamaModelTest::test_model_parallelism (#24195)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 15:21:27 +02:00
9f81f4f6dd Generate: force caching on the main model, in assisted generation (#24177) 2023-06-12 14:10:49 +01:00
535f92aea3 [i18n]Translated "attention.mdx" to korean (#23878)
* [i18n]Translated "attention.mdx" to korean

Co-Authored-By: Hyeonseo Yun <0525yhs@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* Update _toctree.yml

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-06-12 08:59:18 -04:00
ba64ec07bb Change ProgressCallback to use dynamic_ncols=True (#24101)
* Change ProgressCallback to use dynamic_ncols=True

* style: make style

* Revert "style: make style"

This reverts commit dee484904cd30a072d80e3be0a3d74a03cff30c6.

* run make style only trainer_callback
2023-06-12 08:56:48 -04:00
93f73a3848 Fix push to hub (#24187)
Add fix
2023-06-12 08:51:09 -04:00
e26c6f03be Fix Wav2Vec2 CI OOM (#24190)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 11:39:04 +02:00
8f093fb799 Avoid OOM in doctest CI (#24139)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-10 09:47:38 +02:00
0d217f428f [tests] fix bitsandbytes import issue (#24151)
fix bitsandbytes import issue
2023-06-09 21:53:11 -07:00
deff5979fe Tool types (#24032)
* Tool types

* Tests + fixes

* Isolate types

* Oops

* Review comments + docs

* Tests + docs

* soundfile -> vision
2023-06-09 13:34:07 -04:00
061580c82c Fix typo in streamers.py (#24144) 2023-06-09 17:27:46 +01:00
12bb853ccd [documentation] grammatical fixes in image_classification.mdx (#24141)
Update image_classification.mdx
2023-06-09 16:59:44 +01:00
d0d1632958 Fix Pipeline CI OOM issue (#24124)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-09 16:49:02 +02:00
a7501f6fc6 [BlenderBotSmall] Update doc example (#24092)
* small tokenizer uses `__start__` and `__end__`

* fix PR doctest
2023-06-09 16:31:57 +02:00
5af3a1aa48 [lamaTokenizerFast] Update documentation (#24132)
* Update documentation

* nits
2023-06-09 16:30:20 +02:00
62fe753325 [SAM] Fix sam slow test (#24140)
* fix sam test

* update pipeline typehint
2023-06-09 16:22:09 +02:00
847b47c0ee Fix XGLM OOM on CI (#24123)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-09 15:20:59 +02:00
b8fe259f16 Fix SAM OOM issue on CI (#24125)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-09 15:07:08 +02:00
707023d155 Fix TF Rag OOM issue (#24122)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-09 15:03:11 +02:00
f2b918356c fix bugs with trainer (#24134)
* fix the deepspeed test failures

* apex fix

* FSDP save ckpt fix

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-09 17:54:53 +05:30
be10092e63 Generate: PT's top_p enforces min_tokens_to_keep when it is 1 (#24111) 2023-06-09 13:20:05 +01:00
03585f3734 Correctly build models and import call_context for older TF versions (#24138) 2023-06-09 13:11:01 +01:00
a6d05d55f6 [bnb] Fix bnb config json serialization (#24137)
* fix bnb config json serialization

* forward contrib credits from discussions

---------

Co-authored-by: Andrechang <Andrechang@users.noreply.github.com>
2023-06-09 13:41:14 +02:00
e2972dffdd PLAM => PaLM (#24129) 2023-06-09 12:32:16 +01:00
535542d38d [Lllama] Update tokenization code to ensure parsing of the special tokens [core] (#24042)
* preventllama fast from returning token type ids

* remove type hints

* normalised False
2023-06-09 09:36:19 +02:00
2e2088f24b Avoid GPT-2 daily CI job OOM (in TF tests) (#24106)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-08 18:21:09 +02:00
9322c24476 Fix typo in Llama docstrings (#24020)
* Fix typo in Llama docstrings

Signed-off-by: Serge Panev <spanev@nvidia.com>

* Update

Signed-off-by: Serge Panev <spanev@nvidia.com>

* make style

Signed-off-by: Serge Panev <spanev@nvidia.com>

---------

Signed-off-by: Serge Panev <spanev@nvidia.com>
2023-06-08 17:19:07 +01:00
a73883ae9e add trust_remote_code option to CLI download cmd (#24097)
* add trust_remote_code option

* require_torch
2023-06-08 11:13:57 -04:00
8b169142f8 [GPT2] Add correct keys on _keys_to_ignore_on_load_unexpected on all child classes of GPT2PreTrainedModel (#24113)
* add correct keys on `_keys_to_ignore_on_load_unexpected`

* oops
2023-06-08 10:21:42 -04:00
71a114d3e0 fix get_keys_to_not_convert function (#24095)
* fix get_keys_to_not_convert funct

* Fix style
2023-06-08 10:14:27 -04:00
8c5f306719 Update the pin on Accelerate (#24110) 2023-06-08 10:11:01 -04:00
2200bf7a45 [Trainer] Correct behavior of _load_best_model for PEFT models (#24103)
* v1

* some refactor

- add ST format as well

* fix

* add `ADAPTER_WEIGHTS_NAME` & `ADAPTER_SAFE_WEIGHTS_NAME`
2023-06-08 15:38:30 +02:00
0f23605094 reset accelerate env variables after each test (#24107) 2023-06-08 09:19:07 -04:00
5fa0a1b23b Fix a tiny typo in WhisperForConditionalGeneration::generate docstring (#24045) 2023-06-08 13:54:56 +01:00
ba695c1efd v4.31.0.dev0 2023-06-07 16:49:00 -04:00
c3572e6bfb Add AzureOpenAiAgent (#24058)
* Add AzureOpenAiAgent

* quality

* Update src/transformers/tools/agents.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-06-07 16:34:53 -04:00
5eb3d3c702 Up pinned accelerate version (#24089)
* Min accelerate

* Also min version

* Min accelerate

* Also min version

* To different minor version

* Empty
2023-06-07 16:21:51 -04:00
d1c039e398 fix accelerator prepare during eval only mode (#24014)
* fix mixed precision prep during eval only mode

* update to address comments

* update to reflect the changes in accelerate
2023-06-08 01:03:13 +05:30
2c887cf8e0 Do not prepare lr scheduler as it as the right number of steps (#24088)
* Do not prepare lr scheduler as it as the right number of steps

* Trigger CI

* Trigger CI

* Trigger CI

* Add fake comment

* Remove fake comment

* Trigger CI please!
2023-06-07 15:31:32 -04:00
12298cb65c fix executable batch size issue (#24067)
* fix executable batch size issue

* fix

* undo
2023-06-07 22:08:04 +05:30
ef010071ee Update delete_doc_comment_trigger.yml (#24084)
fix base workflow name
2023-06-07 17:55:48 +02:00
89b00eef94 Fix expected value in tests of the test fetcher (#24077)
* Fix expected value in tests of the test fetcher

* Fix trigger for repo util tests
2023-06-07 11:38:56 -04:00
5c9394b54c [doc build] Use secrets (#24079) 2023-06-07 17:33:39 +02:00
1fc832b454 Make the TF dummies even smaller (#24071)
* Let's see if we can use the smallest possible dummies

* Make GPT-2's dummies a little longer

* Just use (1,2) as the default shape

* Update other dummies in sync

* Correct imports for Keras 2.13

* Shrink the Wav2Vec2 dummies
2023-06-07 16:23:05 +01:00
092c14c37d Be nice to TF (#24076)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-07 16:18:13 +02:00
4795219228 [bnb] Fix bnb skip modules (#24043)
* fix skip modules test

* oops

* address comments
2023-06-07 15:27:46 +02:00
a1160185ff Fix is_optimum_neuron_available (#23961)
Fix is_optimum_neuron_available
2023-06-07 09:13:01 -04:00
6b548129b1 [Hub] Add safe_serialization in push_to_hub (#24074)
add `safe_serialization` in push_to_hub
2023-06-07 09:07:33 -04:00
6daf7c311b Support PEFT models when saving the model using trainer (#24073)
* support PEFT models when saving the model using trainer

* fixup
2023-06-07 14:30:55 +02:00
1e4a7737ed Add support for non-rust implemented tokenization for __getitem__ method. (#24039)
* Add support for non-rust implemented tokenization for `__getitem__` method.

* Update for error message on adding new sub-branch for `__item__` method.

---------

Co-authored-by: liuyang17 <liuyang17@zhihu.com>
2023-06-07 12:29:19 +01:00
52972e70c7 [Wav2Vec2] Fix torch srcipt (#24062)
* [Wav2Vec2] Fix torch srcipt

* fix more
2023-06-07 07:27:07 -04:00
612b2a1a6d Generate: increase left-padding test atol (#23448)
increase atol
2023-06-07 11:56:57 +01:00
f1660d7e23 Remote code improvements (#23959)
* Fix model load when it has both code on the Hub and locally

* Add input check with timeout

* Add tests

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Some non-saved stuff

* Add feature extractors

* Add image processor

* Add model

* Add processor and tokenizer

* Reduce timeout

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-06-06 14:31:14 -04:00
60825f2c6e Fix device placement for model-parallelism in generate for encoder/de… (#24025)
* Fix device placement for model-parallelism in generate for encoder/decoders

* Remove debug statements
2023-06-06 14:30:59 -04:00
02d255db26 bring back filtered_test_list_cross_tests.txt (#24055)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-06 19:35:24 +02:00
bc9ecef942 Use new parametrization based weight norm if available (#24030)
* Use new parametrization based weight norm if available

See https://github.com/pytorch/pytorch/pull/103001

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

* handle copies

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

* black

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

---------

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
2023-06-06 13:34:57 -04:00
4a55e47877 Move TF building to an actual build() method (#23760)
* A fun new PR where I break the entire codebase again

* A fun new PR where I break the entire codebase again

* Handle cross-attention

* Move calls to model(model.dummy_inputs) to the new build() method

* Seeing what fails with the build context thing

* make fix-copies

* Let's see what fails with new build methods

* Fix the pytorch crossload build calls

* Fix the overridden build methods in vision_text_dual_encoder

* Make sure all our build methods set self.built or call super().build(), which also sets it

* make fix-copies

* Remove finished TODO

* Tentatively remove unneeded (?) line

* Transpose b in deberta correctly and remove unused threading local

* Get rid of build_with_dummies and all it stands for

* Rollback some changes to TF-PT crossloading

* Correctly call super().build()
2023-06-06 18:30:51 +01:00
cbf6bc2350 Oops, missed one (#24054)
Oops
2023-06-06 13:30:19 -04:00
7203ea6797 Reduce memory usage in TF building (#24046)
* Make the default dummies (2, 2) instead of (3, 3)

* Fix for Funnel

* Actually fix Funnel
2023-06-06 18:29:54 +01:00
072188d638 Act on deprecations in Accelerate no_trainer examples (#24053)
Act on deprecation
2023-06-06 13:04:38 -04:00
ff4c0fc7d2 Tiny fix for check_self_hosted_runner.py (#24052)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-06 18:17:41 +02:00
a717e0318c Add TimmBackbone model (#22619)
* Add test_backbone for convnext

* Add TimmBackbone model

* Add check for backbone type

* Tidying up - config checks

* Update convnextv2

* Tidy up

* Fix indices & clearer comment

* Exceptions for config checks

* Correclty update config for tests

* Safer imports

* Safer safer imports

* Fix where decorators go

* Update import logic and backbone tests

* More import fixes

* Fixup

* Only import all_models if torch available

* Fix kwarg updates in from_pretrained & main rebase

* Tidy up

* Add tests for AutoBackbone

* Tidy up

* Fix import error

* Fix up

* Install nattan in doc_test_job

* Revert back to setting self._out_xxx directly

* Bug fix - out_indices mapping from out_features

* Fix tests

* Dont accept output_loading_info for Timm models

* Set out_xxx and don't remap

* Use smaller checkpoint for test

* Don't remap timm indices - check out_indices based on stage names

* Skip test as it's n/a

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Cleaner imports / spelling is hard

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-06 17:11:30 +01:00
b8935980a2 Modification of one text example file should trigger said test (#24051) 2023-06-06 12:02:56 -04:00
02fe3af275 Prevent ZeroDivisionError on trainer.evaluate if model and dataset are tiny (#24049)
Prevent ZeroDivisionError if evaluation is too quick
2023-06-06 11:31:05 -04:00
d924390d5b Use TruncatedNormal from Keras initializers (#24036)
Co-authored-by: Andrey Voynov <avoin@google.com>
2023-06-06 14:51:44 +01:00
c2e3fa0b2a Fixing single candidate_label return. (#24023) 2023-06-06 15:26:10 +02:00
6307312dfc Add check for tied parameters (#24029)
* Add check for tied parameters

* Fix style

* fix style

* Fix versioning

* Change if to elif
2023-06-06 09:12:46 -04:00
7da3ce04a6 🌐 [i18n-KO] Translated bertology.mdx to Korean (#23968)
* docs: ko: `bertology.mdx`

* feat: nmt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-06-06 09:08:45 -04:00
c938597657 🌐 [i18n-KO] Translated language-modeling.mdx (#23969)
* docs: ko: `language_modeling.mdx`

* feat: nmt draft

* fix: manual edits

* fix: add inline toc

* fix: typo in toc_tree.yml

* fix: resolve suggestions

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-06-06 09:08:26 -04:00
7631db0fdc Pin deepspeed to 0.9.2 for now (#24024)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-05 20:00:28 +02:00
17846646f2 Fix MobileViTV2 checkpoint name (#24018)
* fix

* fix

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-05 18:12:45 +02:00
649ffbf575 🌐 [i18n-KO] Translated tasks_explained.mdx to Korean (#23844)
* docs: ko: tasks_explained.mdx

* feat: nmt and manual edit `tasks_explained.mdx`

* revised: resolve suggestions task_explained.mdx

* fixed: added draft of reference docs

Co-Authored-By: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>

* revised: resolve suggestions(voca, spell check) task_explained.mdx

Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* revised: remove duplicate sentence in task_explained.mdx

* fixed: remove draft of reference docs

- I think it will be confusing in the translation process.
- This issue is included in #23971.

---------

Co-authored-by: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-06-05 12:02:03 -04:00
2872f9671b TensorBoard callback no longer adds hparams (#23999)
tensorboard callback no longer adds hparams
2023-06-05 11:53:45 -04:00
44bd590a29 Pix2Struct: fix wrong broadcast axis of attention mask in visual encoder (#23976)
* fix wrong broadcast axis of attention mask in visual encoder

* fix slow tests

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-06-05 11:47:29 -04:00
7824fa431e expose safe_serialization argument in the pipeline API (#23775)
expose safe_serialization argument of PreTrainedModel and TFPreTrainedModel in the save_pretrained of the pipeline api

Co-authored-by: Yessen Kanapin <yessen@deepinfra.com>
2023-06-05 11:19:58 -04:00
b4919cb520 Auto tokenizer registration (#23965)
add check loop over extra content
2023-06-05 11:10:47 -04:00
b143019005 Update README.md (#24022)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-05 17:08:15 +02:00
5176dc2310 Skip test_multi_gpu_data_parallel_forward for MobileViTV2ModelTest (#24017)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-05 16:29:32 +02:00
460b844360 fix trainer slow tests related to hyperparam search (#24011)
* fix trainer slow tests

* commit 2
2023-06-05 17:58:10 +05:30
3c3108972a Fix typo in doc comment of BitsAndBytesConfig (#23978) 2023-06-05 12:10:31 +01:00
539e2281cd Bump cryptography from 39.0.1 to 41.0.0 in /examples/research_projects/decision_transformer (#23964)
Bump cryptography in /examples/research_projects/decision_transformer

Bumps [cryptography](https://github.com/pyca/cryptography) from 39.0.1 to 41.0.0.
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/39.0.1...41.0.0)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-06-02 16:23:44 -04:00
bacaab1629 Added time-series blogs to the models (#23857)
* added blogs to docs

* removed new-line
2023-06-02 12:32:34 -04:00
167a0d8f87 Add an option to reduce compile() console spam (#23938)
* Add an option to reduce compile() console spam

* Add annotations to the example scripts

* Add notes to the quicktour docs as well

* minor fix
2023-06-02 15:28:52 +01:00
c9cf337772 [Whisper Tokenizer] Skip special tokens when decoding with timestamps (#23945) 2023-06-02 16:26:59 +02:00
8940d315aa Trainer: fixed evaluate raising KeyError for ReduceLROnPlateau (#23952)
Trainer: fixed KeyError on evaluate for ReduceLROnPlateau

Co-authored-by: Claudius Kienle <claudius.kienle@artiminds.com>
2023-06-02 08:53:48 -04:00
2fdba73a99 🌐 [i18n-KO] Translated object_detection.mdx to Korean (#23164)
* translated object_detection.mdx

Co-Authored-By: Hyeonseo Yun <0525_hhgus@naver.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: simso <3035487+simso@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: simso <3035487+simso@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-06-02 07:43:55 -04:00
dcb5e18c9e add new mms functions to doc (#23954) 2023-06-02 11:35:52 +01:00
07c54413ac Add MobileViTv2 (#22820)
* generated code from add-new-model-like

* Add code for modeling, config, and weight conversion

* add tests for image-classification, update modeling and config

* add code, tests for semantic-segmentation

* make style, make quality, make fix-copies

* make fix-copies

* Update modeling_mobilevitv2.py

fix bugs

* Update _toctree.yml

* update modeling, config

fix bugs

* Edit docs - fix bug MobileViTv2v2 -> MobileViTv2

* Update mobilevitv2.mdx

* update docstrings

* Update configuration_mobilevitv2.py

make style

* Update convert_mlcvnets_to_pytorch.py

remove unused options

* Update convert_mlcvnets_to_pytorch.py

make style

* Add suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style, make quality

* Add suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add suggestions from code review

Remove MobileViTv2ImageProcessor

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style

* Add suggestions from code review

Rename MobileViTv2 -> MobileViTV2

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update modeling_mobilevitv2.py

make style

* Update serialization.mdx

* Update modeling_mobilevitv2.py

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-02 10:37:02 +01:00
5dfd407b37 [MMS] Scaling Speech Technology to 1,000+ Languages | Add attention adapter to Wav2Vec2 (#23813)
* add fine-tuned with adapter layer

* Add set_target_lang to tokenizer

* Implement load adapter

* add tests

* make style

* Apply suggestions from code review

* Update src/transformers/models/wav2vec2/tokenization_wav2vec2.py

* make fix-copies

* Apply suggestions from code review

* make fix-copies

* make style again

* mkae style again

* fix doc string

* Update tests/models/wav2vec2/test_tokenization_wav2vec2.py

* Apply suggestions from code review

* fix

* Correct wav2vec2 adapter

* mkae style

* Update src/transformers/models/wav2vec2/modeling_wav2vec2.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* add more nice docs

* finish

* finish

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

* all finish

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-02 10:30:24 +01:00
f49a3453ca Fix ReduceLROnPlateau object has no attribute 'get_last_lr' (#23944)
* Fix 'ReduceLROnPlateau' object has no attribute 'get_last_lr'

* fix style
2023-06-01 16:10:52 -04:00
c62b01d0b0 use _make_causal_mask in clip/vit models (#23942)
use _make_causal_mask in clip models
2023-06-01 16:10:24 -04:00
e03a9cc0cd Modify device_map behavior when loading a model using from_pretrained (#23922)
* Modify device map behavior for 4/8 bits model

* Remove device_map arg for training 4/8 bit model

* Remove index

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add Exceptions

* Modify comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix formatting

* Get current device with accelerate

* Revert "Get current device with accelerate"

This reverts commit 46f00799103bbe15bd58762ba029aab35363c4f7.

* Fix Exception

* Modify quantization doc

* Fix error

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-01 13:21:22 -04:00
d1fa349e78 #23675 Registering Malay language (#23689)
* #23675 Registering Malay language

* removing untranslated files

* some translate

* more updates to toctree

* inc index

* additional translations for toctree

* translations of more sections

* removing untranslated file

* translated index.mdx to malay
2023-06-01 13:17:27 -04:00
dc67da0182 Revert "Update stale.yml to use HuggingFaceBot" (#23943)
Revert "Update stale.yml to use HuggingFaceBot (#23941)"

This reverts commit 5929f86ebba157b3ea3460622215a2b9db69d44b.
2023-06-01 11:58:11 -04:00
8088ca4185 Make TF ESM inv_freq non-trainable like PyTorch (#23940)
Make TF inv_freq non-trainable like PyTorch
2023-06-01 16:15:00 +01:00
5929f86ebb Update stale.yml to use HuggingFaceBot (#23941) 2023-06-01 10:54:50 -04:00
857d4e1c87 rename DocumentQuestionAnsweringTool parameter input to match docstring (#23939)
rename encode input to match docstring
2023-06-01 10:54:01 -04:00
9193188276 Pin rhoknp (#23937) 2023-06-01 10:25:43 -04:00
af2c36793f Fix doc string nits (#23929) 2023-06-01 10:10:15 -04:00
9a35a7b9e1 Effectively allow encoder_outputs input to be a tuple in pix2struct (#23932)
consistentcy
2023-06-01 09:07:57 -04:00
9603ef890a [Flax Whisper] Update decode docstring (#23908) 2023-06-01 14:36:45 +02:00
fabe17a726 Skip device placement for past key values in decoder models (#23919) 2023-05-31 15:32:21 -04:00
6affd9cd7c [PushToHub] Make it possible to upload folders (#23920)
Add first draft
2023-05-31 15:31:28 -04:00
4aa13224a5 Update the update metadata job to use upload_folder (#23917) 2023-05-31 14:10:14 -04:00
3ff443a6d9 Re-enable squad test (#23912)
* Re-enable squad test

* [all-test]

* [all-test] Fix all test command

* Fix the all-test
2023-05-31 13:44:26 -04:00
d13021e35f remove the extra accelerator.prepare (#23914)
remove the extra `accelerator.prepare` that slipped in with multiple update from main 😅
2023-05-31 23:04:55 +05:30
c608b8fc93 Bug fix - flip_channel_order for channels first images (#23701)
Bug fix - flip_channel_order for channels_first
2023-05-31 17:12:27 +01:00
0b3d092f63 Empty circleci config (#23913)
* Try easy first

* Add an empty job

* Fix name

* Fix method
2023-05-31 12:02:05 -04:00
8714b964ee Raise error if loss can't be calculated - ViT MIM (#23872)
Raise error if loss can't be calculated
2023-05-31 17:01:53 +01:00
404d925384 add conditional statement for auxiliary loss calculation (#23899)
* add conditional statement for auxiliary loss calculation

* fix style and copies
2023-05-31 16:40:23 +01:00
c63bfc3023 [RWKV] Fix RWKV 4bit (#23910)
fix RWKV 4bit
2023-05-31 17:36:56 +02:00
55451c66ce Upgrade safetensors version (#23911)
* Upgrade safetensors

* Second table
2023-05-31 11:30:39 -04:00
7adce8b532 fix: Replace add_prefix_space in get_prompt_ids with manual space for FastTokenizer compatibility (#23796)
* add ' ' replacement for add_prefix_space

* add fast tokenizer test
2023-05-31 10:52:35 -04:00
84bac652f3 Move import check to before state reset (#23906)
* Move import check to before state reset

* Guard better
2023-05-31 10:49:43 -04:00
e42869b091 [bnb] add warning when no linear (#23894)
* add warning for gpt2-like models

* more details

* adapt from suggestions
2023-05-31 16:40:07 +02:00
8f915c450d Unpin numba (#23162)
* fix for ragged list

* unpin numba

* make style

* np.object -> object

* propagate changes to tokenizer as well

* np.long -> "long"

* revert tokenization changes

* check with tokenization changes

* list/tuple logic

* catch numpy

* catch else case

* clean up

* up

* better check

* trigger ci

* Empty commit to trigger CI
2023-05-31 14:59:30 +01:00
d99f11e898 ensure banned_mask and indices in same device (#23901)
* ensure banned_mask and indices in same device

* ensure banned_mask and indices in same device

switch the order in which indices and banned_mask are created and create banned_mask on the proper device
2023-05-31 09:47:46 -04:00
d68d6665f9 Support shared tensors (#23871)
* Suport shared storage

* Really be sure we have the same storage

* Make style

* - Refactor storage identifier mechanism
 - Group everything into a single for loop

* Make style

* PR

* make style

* Update src/transformers/pytorch_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-31 09:42:30 -04:00
68d53bc717 Fix Trainer when model is loaded on a different GPU (#23792) 2023-05-31 07:54:26 -04:00
0963a2508b fix(configuration_llama): add keys_to_ignore_at_inference to LlamaConfig (#23891) 2023-05-31 07:39:51 -04:00
00f6ba0e7e Skip failing test for now 2023-05-31 06:31:33 -04:00
a73b1d59a3 accelerate deepspeed and gradient accumulation integrate (#23236)
* mixed precision support via accelerate

* fix issues

* fix for the sharded ddp case

* fix flax and tf failing tests

* `refactor the place to create `Accelerator` object

* move ddp prep to accelerate

* fix 😅

* resolving comments

* move fsdp handling to accelerate

* fixex

* fix saving

* shift torch dynamo handling to accelerate

* shift deepspeed integration and save & load utils to accelerate

* fix accelerate launcher support

* oops

* fix 🐛

* save ckpt fix

* Trigger CI

* nasty 🐛 😅

* as deepspeed needs grad_acc fixes, transfer grad_acc to accelerate

* make tests happy

* quality 

* loss tracked needs to account for grad_acc

* fixing the deepspeed tests

* quality 

* 😅😅😅

* tests 😡

* quality 

* Trigger CI

* resolve comments and fix the issue with the previous merge from branch

* Trigger CI

* accelerate took over deepspeed integration

---------

Co-authored-by: Stas Bekman <stas@stason.org>
2023-05-31 15:16:22 +05:30
88f50a1e89 Add TensorFlow implementation of EfficientFormer (#22620)
* Add tf code for efficientformer

* Fix return dict bug - return last hidden state after last stage

* Fix corresponding return dict bug

* Override test tol

* Change default values of training to False

* Set training to default False X3

* Rm axis from ln

* Set init in dense projection

* Rm debug stuff

* Make style; all tests pass.

* Modify year to 2023

* Fix attention biases codes

* Update the shape list logic

* Add a batch norm eps config

* Remove extract comments in test files

* Add conditional attn and hidden states return for serving output

* Change channel dim checking logic

* Add exception for withteacher model in training mode

* Revert layer count for now

* Add layer count for conditional layer naming

* Transpose for conv happens only in main layer

* Make tests smaller

* Make style

* Update doc

* Rm from_pt

* Change to actual expect image class label

* Remove stray print in tests

* Update image processor test

* Remove the old serving output logic

* Make style

* Make style

* Complete test
2023-05-31 10:43:12 +01:00
9fea71b465 Fix last instances of kbit -> quantized (#23797) 2023-05-31 11:38:20 +02:00
38dbbc2640 Fix bug leading to missing token in GPTSanJapaneseTokenizer (#23883)
* add \n

* removed copied from header
2023-05-31 11:32:27 +02:00
03db591047 shift torch dynamo handling to accelerate (#23168)
* mixed precision support via accelerate

* fix issues

* fix for the sharded ddp case

* fix flax and tf failing tests

* `refactor the place to create `Accelerator` object

* move ddp prep to accelerate

* fix 😅

* resolving comments

* move fsdp handling to accelerate

* fixex

* fix saving

* shift torch dynamo handling to accelerate
2023-05-31 14:42:07 +05:30
0b774074a5 move fsdp handling to accelerate (#23158)
* mixed precision support via accelerate

* fix issues

* fix for the sharded ddp case

* fix flax and tf failing tests

* `refactor the place to create `Accelerator` object

* move ddp prep to accelerate

* fix 😅

* resolving comments

* move fsdp handling to accelerate

* fixex

* fix saving
2023-05-31 14:10:46 +05:30
015829e6c4 🌐 [i18n-KO] Translated pad_truncation.mdx to Korean (#23823)
* docs: ko: pad_truncation.mdx

* feat: manual draft

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-05-31 10:23:59 +02:00
1cf148a6aa Smangrul/accelerate ddp integrate (#23151)
* mixed precision support via accelerate

* fix issues

* fix for the sharded ddp case

* fix flax and tf failing tests

* `refactor the place to create `Accelerator` object

* move ddp prep to accelerate

* fix 😅

* resolving comments
2023-05-31 13:42:49 +05:30
9f0646a555 Smangrul/accelerate mp integrate (#23148)
* mixed precision support via accelerate

* fix issues

* fix for the sharded ddp case

* fix flax and tf failing tests

* `refactor the place to create `Accelerator` object

* address comments by removing debugging print statements
2023-05-31 12:27:51 +05:30
de9255de27 Adds AutoProcessor.from_pretrained support for MCTCTProcessor (#23856)
Adds support for AutoProcessor.from_pretrained to MCTCTProcessor models
2023-05-30 14:36:18 -04:00
6451ad0471 Editing issue with pickle def with lambda function (#23869)
* Editing issue with pickle def with lambda function

* fix type

* Made helper function private

* delete tab

---------

Co-authored-by: georgebredis <9454-georgebredis@users.noreply.gitlab.aicrowd.com>
2023-05-30 13:26:37 -04:00
af2aac51fc [from_pretrained] imporve the error message when _no_split_modules is not defined (#23861)
* Better warning

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* format line

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-30 17:12:14 +02:00
58022e41b8 #23388 Issue: Update RoBERTa configuration (#23863) 2023-05-30 10:53:40 -04:00
6fc0454b2f [LlamaTokenizerFast] nit update post_processor on the fly (#23855)
* Update the processor when changing add_eos and add_bos

* fixup

* update

* add a test

* fix failing tests

* fixup
2023-05-30 16:50:41 +02:00
0623f08e99 Update collating_graphormer.py (#23862) 2023-05-30 10:23:20 -04:00
62ba64b90a Adds a FlyteCallback (#23759)
* initial flyte callback

* lint

* logs should still be saved to Flyte even if pandas isn't install (unlikely)

* cr - flyte team

* add docs for Flytecallback

* fix doc string - cr sgugger

* Apply suggestions from code review

cr - sgugger fix doc strings

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-30 10:08:07 -04:00
867316670a 🌐 [i18n-KO] Translated troubleshooting.mdx to Korean (#23166)
* docs: ko: troubleshooting.mdx

* revised: fix _toctree.yml #23112

* feat: nmt draft `troubleshooting.mdx`

* fix: manual edits `troubleshooting.mdx`

* revised: resolve suggestions troubleshooting.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-05-30 09:49:47 -04:00
192aa04783 [i18n-KO] Translated video_classification.mdx to Korean (#23026)
* task/video_classification translated

Co-Authored-By: Hyeonseo Yun <0525_hhgus@naver.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>

* Update video_classification.mdx

* Update _toctree.yml

* Update _toctree.yml

* Update _toctree.yml

* Update _toctree.yml

---------

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-05-30 09:28:44 -04:00
a077f710f3 🌐 [i18n-KO] Translated fast_tokenizers.mdx to Korean (#22956)
* docs: ko: fast_tokenizer.mdx

content - translated

Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Hyeonseo Yun <0525_hhgus@naver.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* Update fast_tokenizers.mdx

* Update fast_tokenizers.mdx

* Update fast_tokenizers.mdx

* Update fast_tokenizers.mdx

* Update _toctree.yml

---------

Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-05-30 09:27:40 -04:00
2faa09530b fix Whisper tests on GPU (#23753)
* move input features to GPU

* skip these tests because undefined behavior

* unskip tests
2023-05-30 09:06:58 -04:00
ac224dee90 TF SAM shape flexibility fixes (#23842)
SAM shape flexibility fixes for compilation
2023-05-30 13:08:44 +01:00
af45ec0a16 add type hint in pipeline model argument (#23740)
* add type hint in pipeline model argument

* add pretrainedmodel and tfpretainedmodel type hint

* make type hints string
2023-05-30 11:05:58 +01:00
4b6a5a7caa [Time-Series] Autoformer model (#21891)
* ran `transformers-cli add-new-model-like`

* added `AutoformerLayernorm` and `AutoformerSeriesDecomposition`

* added `decomposition_layer` in `init` and `moving_avg` to config

* added `AutoformerAutoCorrelation` to encoder & decoder

* removed caninical self attention `AutoformerAttention`

* added arguments in config and model tester. Init works! 😁

* WIP autoformer attention with autocorrlation

* fixed `attn_weights` size

* wip time_delay_agg_training

* fixing sizes and debug time_delay_agg_training

* aggregation in training works! 😁

* `top_k_delays` -> `top_k_delays_index` and added `contiguous()`

* wip time_delay_agg_inference

* finish time_delay_agg_inference 😎

* added resize to autocorrelation

* bug fix: added the length of the output signal to `irfft`

* `attention_mask = None` in the decoder

* fixed test: changed attention expected size, `test_attention_outputs` works!

* removed unnecessary code

* apply AutoformerLayernorm in final norm in enc & dec

* added series decomposition to the encoder

* added series decomp to decoder, with inputs

* added trend todos

* added autoformer to README

* added to index

* added autoformer.mdx

* remove scaling and init attention_mask in the decoder

* make style

* fix copies

* make fix-copies

* inital fix-copies

* fix from https://github.com/huggingface/transformers/pull/22076

* make style

* fix class names

* added trend

* added d_model and projection layers

* added `trend_projection` source, and decomp layer init

* added trend & seasonal init for decoder input

* AutoformerModel cannot be copied as it has the decomp layer too

* encoder can be copied from time series transformer

* fixed generation and made distrb. out more robust

* use context window to calculate decomposition

* use the context_window for decomposition

* use output_params helper

* clean up AutoformerAttention

* subsequences_length off by 1

* make fix copies

* fix test

* added init for nn.Conv1d

* fix IGNORE_NON_TESTED

* added model_doc

* fix ruff

* ignore tests

* remove dup

* fix SPECIAL_CASES_TO_ALLOW

* do not copy due to conv1d weight init

* remove unused imports

* added short summary

* added label_length and made the model non-autoregressive

* added params docs

* better doc for `factor`

* fix tests

* renamed `moving_avg` to `moving_average`

* renamed `factor` to `autocorrelation_factor`

* make style

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix configurations

* fix integration tests

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fixing `lags_sequence` doc

* Revert "fixing `lags_sequence` doc"

This reverts commit 21e34911e36a6f8f45f25cbf43584a49e5316c55.

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* model layers now take the config

* added `layer_norm_eps` to the config

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* added `config.layer_norm_eps` to AutoformerLayernorm

* added `config.layer_norm_eps` to all layernorm layers

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix variable names

* added inital pretrained model

* added use_cache docstring

* doc strings for trend and use_cache

* fix order of args

* imports on one line

* fixed get_lagged_subsequences docs

* add docstring for create_network_inputs

* get rid of layer_norm_eps config

* add back layernorm

* update fixture location

* fix signature

* use AutoformerModelOutput dataclass

* fix pretrain config

* no need as default exists

* subclass ModelOutput

* remove layer_norm_eps config

* fix test_model_outputs_equivalence test

* test hidden_states_output

* make fix-copies

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* removed unused attr

* Update tests/models/autoformer/test_modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* use AutoFormerDecoderOutput

* fix formatting

* fix formatting

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-30 10:23:32 +02:00
17a55534f5 Enable code-specific revision for code on the Hub (#23799)
* Enable code-specific revision for code on the Hub

* invalidate old revision
2023-05-26 15:51:15 -04:00
edf7772826 Log the right train_batch_size if using auto_find_batch_size and also log the adjusted value seperately. (#23800)
* Log right bs

* Log

* Diff message
2023-05-26 15:09:05 -04:00
e724246935 Fix no such file or directory error (#23783)
* Fix no such file or directory error

* Address comment

* Fix formatting issue
2023-05-26 14:24:57 -04:00
b7b729b38d no_cuda does not take effect in non distributed environment (#23795)
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
2023-05-26 10:47:51 -04:00
d61d747627 Update trainer.mdx class_weights example (#23787)
class_weights tensor should follow model's device
2023-05-26 08:36:33 -04:00
4d9b76a80f Fix RWKV backward on GPU (#23774) 2023-05-26 08:33:17 -04:00
8d28dba35d [OPT] Doc nit, using fast is fine (#23789)
small doc nit
2023-05-26 14:30:32 +02:00
f67dac97bd [Nllb-Moe] Fix nllb moe accelerate issue (#23758)
fix nllb moe accelerate issue
2023-05-25 22:37:33 +02:00
d685e330b5 Bump tornado from 6.0.4 to 6.3.2 in /examples/research_projects/visual_bert (#23767)
Bump tornado in /examples/research_projects/visual_bert

Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.0.4 to 6.3.2.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.0.4...v6.3.2)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-25 16:16:12 -04:00
4b0e7ded1c Bump tornado from 6.0.4 to 6.3.2 in /examples/research_projects/lxmert (#23766)
Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.0.4 to 6.3.2.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.0.4...v6.3.2)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-25 16:16:01 -04:00
f04f549bae Fix is_ninja_available() (#23752)
* Fix is_ninja_available()

search ninja using subprocess instead of importlib.

* Fix style

* Fix doc

* Fix style
2023-05-25 16:10:25 -04:00
3416bba7c7 [LongFormer] code nits, removed unused parameters (#23749)
* remove unused parameters

* remove unused parameters in config
2023-05-25 16:06:14 +02:00
6e4bc67099 Revamp test selection for the example tests (#23737)
* Revamp test selection for the example tests

* Rename old XLA test and fake modif in run_glue

* Fixes

* Fake Trainer modif

* Remove fake modifs
2023-05-25 09:38:21 -04:00
7d4fe85ef3 Fix psuh_to_hub in Trainer when nothing needs pushing (#23751) 2023-05-25 09:38:09 -04:00
06c28cd0fc Add LlamaIndex to awesome-transformers.md (#23484) 2023-05-25 09:35:10 -04:00
f0a2a82ab4 Fix pip install --upgrade accelerate command in modeling_utils.py (#23747)
Fix command in modeling_utils.py
2023-05-25 07:48:48 -04:00
e45e756d22 Remove the last few TF serving sigs (#23738)
Remove some more serving methods that (I think?) turned up while this PR was open
2023-05-24 21:19:44 +01:00
9850e6ddab Enable prompts on the Hub (#23662)
* Enable prompts on the Hub

* Update src/transformers/tools/prompts.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Address review comments

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-24 16:09:13 -04:00
75bbf20bce Fix sagemaker DP/MP (#23681)
* Check for use_sagemaker_dp

* Add a check for is_sagemaker_mp when setting _n_gpu again. Should be last broken thing

* Try explicit check?

* Quality
2023-05-24 15:51:09 -04:00
89159651ba Fix the regex in get_imports to support multiline try blocks and excepts with specific exception types (#23725)
* fix and test get_imports for multiline try blocks, and excepts with specific errors

* fixup

* add some more tests

* add license
2023-05-24 15:40:19 -04:00
d8222be57e [Whisper] Reduce batch size in tests (#23736) 2023-05-24 17:31:25 +01:00
814de8fac7 Overhaul TF serving signatures + dummy inputs (#23234)
* Let's try autodetecting serving sigs

* Don't clobber existing sigs

* Change shapes for multiplechoice models

* Make default dummy inputs smarter too

* Fix missing f-string

* Let's YOLO a serving output too

* Read __class__.__name__ properly

* Don't just pass naked lists in there and expect it to be okay

* Code cleanup

* Update default serving sig

* Clearer error messages

* Further updates to the default serving output

* make fixup

* Update the serving output a bit more

* Cleanups and renames, raise errors appropriately when we can't infer inputs

* More renames

* we're building in a functional context again, yolo

* import DUMMY_INPUTS from the right place

* import DUMMY_INPUTS from the right place

* Support cross-attention in the dummies

* Support cross-attention in the dummies

* Complete removal of dummy/serving overrides in BERT

* Complete removal of dummy/serving overrides in RoBERTa

* Obliterate lots and lots of serving sig and dummy overrides

* merge type hint changes

* Fix for token_type_ids with vocab_size 1

* Add missing property decorator

* Fix T5 and hopefully some models that take conv inputs

* More signature pruning

* Fix T5's signature

* Fix Wav2Vec2 signature

* Fix LongformerForMultipleChoice input signature

* Fix BLIP and LED

* Better default serving output error handling

* Fix BART dummies

* Fix dummies for cross-attention, esp encoder-decoder models

* Fix visionencoderdecoder signature

* Fix BLIP serving output

* Small tweak to BART dummies

* Cleanup the ugly parameter inspection line that I used in a few places

* committed a breakpoint again

* Move the text_dims check

* Remove blip_text serving_output

* Add decoder_input_ids to the default input sig

* Remove all the manual overrides for encoder-decoder model signatures

* Tweak longformer/led input sigs

* Tweak default serving output

* output.keys() -> output

* make fixup
2023-05-24 17:03:24 +01:00
3d7baef114 fix: Whisper generate, move text_prompt_ids trim up for max_new_tokens calculation (#23724)
move text_prompt_ids trimming to top
2023-05-24 11:34:21 -04:00
50a56bedb6 fix: delete duplicate sentences in document_question_answering.mdx (#23735)
fix: delete duplicate sentence
2023-05-24 11:20:50 -04:00
d2d8822604 TF SAM memory reduction (#23732)
* Extremely small change to TF SAM dummies to reduce memory usage on build

* remove debug breakpoint

* Debug print statement to track array sizes

* More debug shape printing

* More debug shape printing

* Now remove the debug shape printing

* make fixup

* make fixup
2023-05-24 15:59:02 +01:00
28aa438cd2 Minor awesome-transformers.md fixes (#23453)
Minor docs fixes
2023-05-24 08:57:52 -04:00
f8b2574416 Better TF docstring types (#23477)
* Rework TF type hints to use | None instead of Optional[] for tf.Tensor

* Rework TF type hints to use | None instead of Optional[] for tf.Tensor

* Don't forget the imports

* Add the imports to tests too

* make fixup

* Refactor tests that depended on get_type_hints

* Better test refactor

* Fix an old hidden bug in the test_keras_fit input creation code

* Fix for the Deit tests
2023-05-24 13:52:52 +01:00
767e6b5314 fix gptj could not jit.trace in GPU (#23317)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-05-24 08:48:31 -04:00
b4698b7ef2 fix: use bool instead of uint8/byte in Deberta/DebertaV2/SEW-D to make it compatible with TensorRT (#23683)
* Use bool instead of uint8/byte in DebertaV2 to make it compatible with TensorRT

TensorRT cannot accept onnx graph with uint8/byte intermediate tensors. This PR uses bool tensors instead of unit8/byte tensors to make the exported onnx file can work with TensorRT.

* fix: use bool instead of uint8/byte in Deberta and SEW-D

---------

Co-authored-by: Yuxian Qiu <yuxianq@nvidia.com>
2023-05-24 08:47:43 -04:00
2eaaf17a0b Export to ONNX doc refocused on using optimum, added tflite (#23434)
* doc refocused on using optimum, tflite

* minor updates to fix checks

* Apply suggestions from code review

Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>

* TFLite to separate page, added links

* Removed the onnx list builder

* make style

* Update docs/source/en/serialization.mdx

Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>

---------

Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
2023-05-24 08:13:23 -04:00
796162c512 Paged Optimizer + Lion Optimizer for Trainer (#23217)
* Added lion and paged optimizers and made original tests pass.

* Added tests for paged and lion optimizers.

* Added and fixed optimizer tests.

* Style and quality checks.

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-05-24 12:53:28 +02:00
9d73b92269 4-bit QLoRA via bitsandbytes (4-bit base model + LoRA) (#23479)
* Added lion and paged optimizers and made original tests pass.

* Added tests for paged and lion optimizers.

* Added and fixed optimizer tests.

* Style and quality checks.

* Initial draft. Some tests fail.

* Fixed dtype bug.

* Fixed bug caused by torch_dtype='auto'.

* All test green for 8-bit and 4-bit layers.

* Added fix for fp32 layer norms and bf16 compute in LLaMA.

* Initial draft. Some tests fail.

* Fixed dtype bug.

* Fixed bug caused by torch_dtype='auto'.

* All test green for 8-bit and 4-bit layers.

* Added lion and paged optimizers and made original tests pass.

* Added tests for paged and lion optimizers.

* Added and fixed optimizer tests.

* Style and quality checks.

* Fixing issues for PR #23479.

* Added fix for fp32 layer norms and bf16 compute in LLaMA.

* Reverted variable name change.

* Initial draft. Some tests fail.

* Fixed dtype bug.

* Fixed bug caused by torch_dtype='auto'.

* All test green for 8-bit and 4-bit layers.

* Added lion and paged optimizers and made original tests pass.

* Added tests for paged and lion optimizers.

* Added and fixed optimizer tests.

* Style and quality checks.

* Added missing tests.

* Fixup changes.

* Added fixup changes.

* Missed some variables to rename.

* revert trainer tests

* revert test trainer

* another revert

* fix tests and safety checkers

* protect import

* simplify a bit

* Update src/transformers/trainer.py

* few fixes

* add warning

* replace with `load_in_kbit = load_in_4bit or load_in_8bit`

* fix test

* fix tests

* this time fix tests

* safety checker

* add docs

* revert torch_dtype

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* multiple fixes

* update docs

* version checks and multiple fixes

* replace `is_loaded_in_kbit`

* replace `load_in_kbit`

* change methods names

* better checks

* oops

* oops

* address final comments

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-24 12:52:45 +02:00
33687a3f61 add GPTJ/bloom/llama/opt into model list and enhance the jit support (#23291)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-05-24 10:57:56 +01:00
003a0cf8cc Fix some docs what layerdrop does (#23691)
* Fix some docs what layerdrop does

* Update src/transformers/models/data2vec/configuration_data2vec_audio.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix more docs

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-23 14:50:40 -04:00
357f281ba2 fix: load_best_model_at_end error when load_in_8bit is True (#23443)
Ref: https://github.com/huggingface/peft/issues/394
    Loading a quantized checkpoint into non-quantized Linear8bitLt is not supported.
    call module.cuda() before module.load_state_dict()
2023-05-23 14:50:27 -04:00
de5f86e59d Skip TFCvtModelTest::test_keras_fit_mixed_precision for now (#23699)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-23 20:47:47 +02:00
3d57404464 is_batched fix for remaining 2-D numpy arrays (#23309)
* Fix is_batched code to allow 2-D numpy arrays for audio

* Tests

* Fix typo

* Incorporate comments from PR #23223
2023-05-23 14:37:35 -04:00
6b7d6f848b [Blip] Fix blip doctest (#23698)
fix blip doctest
2023-05-23 18:25:44 +02:00
876d9a32c6 TF version compatibility fixes (#23663)
* New TF version compatibility fixes

* Remove dummy print statement, move expand_1d

* Make a proper framework inference function

* Make a proper framework inference function

* ValueError -> TypeError
2023-05-23 16:42:11 +01:00
42baa58f90 [SAM] Fixes pipeline and adds a dummy pipeline test (#23684)
* add a dummy pipeline test

* change test name
2023-05-23 17:36:49 +02:00
71a5ed3433 Fix a BridgeTower test (#23694)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-23 17:32:57 +02:00
1fe1e3caa4 🌐 [i18n-KO] Translated tasks/monocular_depth_estimation.mdx to Korean (#23621)
docs: ko: `tasks/monocular_depth_estimation`

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-05-23 15:54:39 +02:00
9e8d7066e6 Making safetensors a core dependency. (#23254)
* Making `safetensors` a core dependency.

To be merged later, I'm creating the PR so we can try it out.

* Update setup.py

* Remove duplicates.

* Even more redundant.
2023-05-23 15:16:34 +02:00
abf691aac0 Fix PyTorch SAM tests (#23682)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-23 14:48:38 +02:00
b687af0b36 Fix typo in a parameter name for open llama model (#23637)
* Update modeling_open_llama.py

Fix typo in `use_memorry_efficient_attention` parameter name

* Update configuration_open_llama.py

Fix typo in `use_memorry_efficient_attention` parameter name

* Update configuration_open_llama.py

Take care of backwards compatibility ensuring that the previous parameter name is taken into account if used

* Update configuration_open_llama.py

format to adjust the line length

* Update configuration_open_llama.py

proper code formatting using `make fixup`

* Update configuration_open_llama.py

pop the argument not to let it be set later down the line
2023-05-23 12:57:58 +01:00
527ab894e5 Add PerSAM [bis] (#23659)
* Add PerSAM args

* Make attn_sim optional

* Rename to attention_similarity

* Add docstrigns

* Improve docstrings
2023-05-23 11:43:12 +02:00
aa30cd4f3f Bump requests from 2.22.0 to 2.31.0 in /examples/research_projects/lxmert (#23668)
Bump requests in /examples/research_projects/lxmert

Bumps [requests](https://github.com/psf/requests) from 2.22.0 to 2.31.0.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.22.0...v2.31.0)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-23 05:31:53 -04:00
9bf72ae564 Bump requests from 2.22.0 to 2.31.0 in /examples/research_projects/visual_bert (#23670)
Bump requests in /examples/research_projects/visual_bert

Bumps [requests](https://github.com/psf/requests) from 2.22.0 to 2.31.0.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.22.0...v2.31.0)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-23 05:31:30 -04:00
ecc05f8c1e Bump requests from 2.27.1 to 2.31.0 in /examples/research_projects/decision_transformer (#23673)
Bump requests in /examples/research_projects/decision_transformer

Bumps [requests](https://github.com/psf/requests) from 2.27.1 to 2.31.0.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.27.1...v2.31.0)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-23 05:28:09 -04:00
e30ceae07b small fix to remove unused eos in processor when it's not used. (#23408) 2023-05-23 09:27:36 +02:00
2f424d7979 [image-to-text pipeline] Add conditional text support + GIT (#23362)
* First draft

* Remove print statements

* Add conditional generation

* Add more tests

* Remove scripts

* Remove BLIP specific linkes

* Add support for pix2struct

* Add fast test

* Address comment

* Fix style
2023-05-22 21:45:50 +02:00
e69feab8a1 Update workflow files (#23658)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-22 21:26:51 +02:00
b191d7db44 Update all no_trainer with skip_first_batches (#23664) 2023-05-22 14:49:31 -04:00
26a06814a1 Fix SAM tests and use smaller checkpoints (#23656)
* Fix SAM tests and use smaller checkpoints

* Override test_model_from_pretrained to use sam-vit-base as well

* make fixup
2023-05-22 19:42:35 +02:00
6f72e71f97 changing the requirements to a cpu torch version that works (#23483) 2023-05-22 12:58:55 -04:00
5de2a6d5e5 Fix wav2vec2 is_batched check to include 2-D numpy arrays (#23223)
* Fix wav2vec2 is_batched check to include 2-D numpy arrays

* address comment

* Add tests

* oops

* oops

* Switch to np array

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Switch to np array

* condition merge

* Specify mono channel only in comment

* oops, add other comment too

* make style

* Switch list check from falsiness to empty

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-05-22 12:57:45 -04:00
4ddd9de9d3 Bugfix: LLaMA layer norm incorrectly changes input type and consumers lots of memory (#23535)
* Fixed bug where LLaMA layer norm would change input type.

* make fix-copies

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-05-22 18:20:38 +02:00
fe34486f12 Muellerzr fix deepspeed (#23657)
* Fix deepspeed recursion

* Better fix
2023-05-22 11:22:54 -04:00
7bbdfd7b24 Fix accelerate logger bug (#23650)
* fix logger bug

* Update tests/mixed_int8/test_mixed_int8.py

Co-authored-by: Zachary Mueller <muellerzr@gmail.com>

* import `PartialState`

---------

Co-authored-by: Zachary Mueller <muellerzr@gmail.com>
2023-05-22 15:39:47 +02:00
29294b0e68 Fix tensor device while attention_mask is not None (#23538)
* Fix tensor device while attention_mask is not None

* Fix tensor device while attention_mask is not None
2023-05-22 09:30:46 -04:00
12ec7f0c20 Remove erroneous img closing tag (#23646)
See https://github.com/huggingface/transformers/pull/23625
2023-05-22 09:28:26 -04:00
6397b7f008 Debug example code for MegaForCausalLM (#23382)
* Debug example code for MegaForCausalLM

set ignore_mismatched_sizes=True in model loading code

* Fix up
2023-05-22 10:53:14 +01:00
3658488ff7 Fix tests/repo_utils/test_get_test_info.py (#23485)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-20 06:53:10 +02:00
9728f1134b Fix confusing transformers installation in CI (#23465)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-19 22:10:18 +02:00
1f2c00d671 Fix DeepSpeed stuff in the nightly CI (#23478)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-19 20:31:55 +02:00
3cb9309024 [Blip] Remove redundant shift right (#23153)
* remove redundant shit right

* fix failing tests

* this time fix tests
2023-05-19 19:14:16 +02:00
847e5691a6 Fix: Change tensors to integers for torch.dynamo and torch.compile compatibility (#23475)
* Fix: Change tensors to integers in torch.split() for torch.dynamo and torch.compile compatibility

* Applied the suggested fix to the utils/check_copies.py test

* Applied the suggested fix by changing the original function that gets copied
2023-05-19 12:50:11 -04:00
389bdba618 Fix PretrainedConfig min_length docstring (#23471) 2023-05-19 17:48:35 +01:00
b455ad0a64 Fix parallel mode check (#23409)
* Fix sagemaker/distributed state

* Fix correctly

* Bring back -1

* Bring back local rank for distributed check

* better version

* Cleanest option
2023-05-19 12:44:24 -04:00
db4d765249 Fix transformers' DeepSpeed CI job (#23463)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-19 17:50:06 +02:00
2aa0cc2c2a Use config to set name and description if not present (#23473)
Use config to set name and descriptiob if not present
2023-05-19 10:36:14 -04:00
21bd3be172 [RWKV] Rwkv fix for 8bit inference (#23468)
* rwkv fix for 8bit inference

* add comment
2023-05-19 16:12:25 +02:00
1c460a5273 TF port of the Segment Anything Model (SAM) (#22970)
* First commit

* Add auto-translation with GPT-4

* make fixup

* Add a functional layernorm for TF

* Add all the auxiliary imports etc.

* Add the extra processor and tests

* rebase to main

* Add all the needed fixes to the GPT code

* make fixup

* Make convolutions channels-last so they run on CPU

* make fixup

* Fix final issues

* Fix other models affected by test change

* Clarify comment on the sparse_prompt_embeddings check

* Refactor functional_layernorm, use shape_list in place of .shape in some places

* Remove deprecated torch-alike code

* Update tests/models/sam/test_modeling_tf_sam.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/sam/test_modeling_tf_sam.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Refactor processor with common methods and separated private methods

* make fixup

* Quietly delete the file that didn't do anything (sorry Sylvain)

* Refactor the processor tests into one file

* make fixup

* Clean up some unnecessary indirection

* Fix TF mask postprocessing

* Add more processor equivalence tests

* Refactor generate_crop_boxes to use framework-neutral np code

* Make the serving output correctly conditional

* Fix error message line length

* Use dict keys rather than indices internally in both TF and PT SAM call/forward

* Return dicts internally in the call/forward methods

* Revert changes to common tests and just override check_pt_tf_outputs

* Revert changes to other model tests

* Clarify comments for functional layernorm

* Add missing transpose from PT code

* Removed unused copied from in PT code

* Remove overrides for tests that don't exist in TF

* Fix transpose and update tests for PT and TF to check pred_masks

* Add training flag

* Update tests to use TF checkpoints

* Update index.mdx

* Add missing cross-test decorator

* Remove optional extra asterisks

* Revert return_dict changes in PT code

* Update src/transformers/models/sam/modeling_tf_sam.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove None return annotations on init methods

* Update tests/models/sam/test_processor_sam.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix input_boxes shapes

* make fixup

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-19 14:14:13 +01:00
8aa8513f71 Remove .data usages in optimizations.py (#23417)
Patched the optimizers
2023-05-19 07:41:51 -04:00
3cf01b2060 README: Fix affiliation for MEGA (#23394)
* README: Fix affiliation for MEGA

* Fix quality

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-05-19 11:03:07 +02:00
2acedf4721 feat: Whisper prompting (#22496)
* initial working additions

* clean and rename, add cond stripping initial prompt to decode

* cleanup, edit create_initial_prompt_ids, add tests

* repo consistency, flip order of conditional

* fix error, move the processor fn to the tokenizer

* repo consistency, update test ids to corresponding tokenizer

* use convert_tokens_to_ids not get_vocab...

* use actual conditional in generate

* make sytle

* initial address comments

* initial working add new params to pipeline

* first draft of sequential generation for condition_on_previous_text

* add/update tests, make compatible with timestamps

* make compatible with diff. input kwargs and max length

* add None check

* add temperature check

* flip temp check operand

* refocusing to prev pr scope

* remove the params too

* make style

* edits, move max length incorporating prompt to whisper

* address comments

* remove asr pipeline prompt decoding, fix indexing

* address comments (more tests, validate prompt)

* un-comment out tests (from debug)

* remove old comment

* address comments

* fix typo

* remove timestamp token from test

* make style

* cleanup

* copy method to fast tokenizer, set max_new_tokens for test

* prompt_ids type just pt

* address Amy's comments

* make style
2023-05-19 09:33:11 +01:00
a7920065f2 fix bug in group_texts function, that was inserting short batches (#23429)
* fix bug in group_texts function, that was inserting short batches

* fully exclude short batches and return empty dict instead

* fix style
2023-05-18 14:22:30 -04:00
b7b81d9344 Clean up CUDA kernels (#23455) 2023-05-18 14:14:43 -04:00
40ed18ae15 Add an option to log result from the Agent (#23454) 2023-05-18 14:06:49 -04:00
f69589d1bc add cleanlab to awesome-transformers tools list (#23440)
* add tool to awesome-transformers list

* add keyword list

* sgugger wording suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-18 13:14:28 -04:00
167aa76cfa Properly guard PyTorch stuff (#23452)
* Properly guard PyTorch stuff

* [all-test]

* [all-test] Fix model imports as well

* Making sure StoppingCriteria is always defined

* [all-test]
2023-05-18 12:17:17 -04:00
ffad4f1373 Update tiny models and pipeline tests (#23446)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-18 17:29:04 +02:00
2406dbdcfa Less flaky test_assisted_decoding_matches_greedy_search (#23451)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-18 17:28:22 +02:00
21f7e81b6b Make RwkvModel accept attention_mask but discard it internally (#23442)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-18 17:14:25 +02:00
cf43200861 Add local agent (#23438)
* Add local agent

* Document LocalAgent
2023-05-18 11:09:55 -04:00
db13634183 TF: GPT2 with native embedding layers (#23436) 2023-05-18 14:46:40 +01:00
c618ab4fab Fix DecisionTransformerConfig doctring (#23450) 2023-05-18 14:07:10 +01:00
5777c3cb3f Fix (skip) a pipeline test for RwkvModel (#23444)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-18 14:54:23 +02:00
8cfae44093 🌐 [i18n-KO] Translated tasks/zero_shot_object_detection.mdx to Korean (#23430)
docs: ko: zero_shot_object_detection
2023-05-18 08:52:17 -04:00
f2d2880bbb remove unnecessary print in gpt neox sequence classifier (#23433) 2023-05-18 11:34:33 +01:00
aea7b23b57 Generate: skip left-padding tests on old models (#23437) 2023-05-18 11:04:51 +01:00
a8732e09bb Fix device issue in SwiftFormerModelIntegrationTest::test_inference_image_classification_head (#23435)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-17 19:48:18 +02:00
0f2c738207 Remove hardcoded prints in Trainer (#23432) 2023-05-17 13:08:12 -04:00
a574de302f Encoder-Decoder: add informative exception when the decoder is not compatible (#23426) 2023-05-17 17:42:54 +01:00
939a65aba7 Update Bigbird Pegasus tests (#23431)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-17 18:14:29 +02:00
cf9e7cb079 TF: embeddings out of bounds check factored into function (#23427) 2023-05-17 17:04:51 +01:00
45e3d6496a Update error message when Accelerate isn't installed (#23373)
Update error
2023-05-17 11:16:02 -04:00
ea0eb15649 Small fixes and link in the README (#23428)
Fix + link
2023-05-17 11:07:36 -04:00
5ba0c332b6 Top 100 (#22912)
* Awesome Transformers

* Update

* Update

* Keywords

* Keywords

* Complete document

* Add lm-evaluation-harness

* Edit txtai according to David's comments

* Update awesome-transformers.md
2023-05-17 10:46:55 -04:00
ebb649a4e3 Add Missing tokenization test [electra] (#22997)
* Create test_tokenization_electra.py

* Update tests/models/electra/test_tokenization_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-17 10:45:15 -04:00
cyy
a2789adddf [Reland] search model buffers for dtype as the last resort (#23319)
search model buffers for dtype as the last resort
2023-05-17 09:05:07 -04:00
3d764fe860 Return early once stop token is found. (#23421)
Previously even after finding a stop token, other stop tokens were considered, which is unnecessary and slows down processing.

Currently, this unnecessary overhead is negligible since there are usually 2 stop tokens considered and they are fairly short, but in future it may become more expensive.
2023-05-17 09:00:08 -04:00
3d3c7d4213 [SAM] fix sam slow test (#23376)
* fix sam slow test

* oops

* fix error message
2023-05-17 14:27:43 +02:00
22a0769933 Update 3 docker files to use cu118 (#23406)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-17 14:26:50 +02:00
a6c9643ce7 Use dict.items to avoid unnecessary lookups. (#23415)
It's more efficient to iterate over key, value dict pairs instead of iterating over keys and performing value lookups on each iteration. It's also more idiomatic.
2023-05-17 11:25:29 +01:00
43f146208e Fix a typo in HfAgent docstring. (#23420) 2023-05-17 09:43:02 +01:00
46d2468695 Update ConvNextV2ModelIntegrationTest::test_inference_image_classification_head (#23402)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-16 23:35:11 +02:00
ca3df9f0cf Run doctest (in PRs) only when some doc example(s) are modified (#23387)
* fix

* fix

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-16 23:29:02 +02:00
17d0290e57 Why crash the whole run when HFHub gives a 50x error? (#23320)
Logging an error and continuing is probably following the principle of least surprise.
2023-05-16 15:46:53 -04:00
d712ebd86d Fix smdistributed check (#23414) 2023-05-16 15:18:31 -04:00
4e244b8817 Replace appends with list comprehension. (#23359)
It's more idiomatic and significantly more efficient because
1) it avoids repeated `append` call that Python has to resolve on each iteration
2) can preallocate the size of the final list avoiding resizing
2023-05-16 20:14:11 +01:00
918a06e25d Generate: add test to check KV format (#23403)
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-16 19:28:19 +01:00
9cf4a8b456 Build with non Python files (#23405)
* Add a test of the built release

* Polish everything

* Trigger CI
2023-05-16 14:23:10 -04:00
5b1ad0eb73 Docs: add link to assisted generation blog post (#23397) 2023-05-16 18:54:34 +01:00
bbbc5c15d4 [AutoModel] fix torch_dtype=auto in from_pretrained (#23379)
* [automodel] fix torch_dtype=auto in from_pretrained

* add test

* fix logic

* Update src/transformers/models/auto/auto_factory.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-16 10:21:42 -07:00
8a58809312 Fix translation no_trainer (#23407)
* Fix translation
2023-05-16 13:10:42 -04:00
130e154291 Generate: faster can_generate check on TF and Flax (#23398) 2023-05-16 15:12:21 +01:00
2922e394e3 [Pix2Struct] Add conditional generation on docstring example (#23399)
add conditional generation on docstring
2023-05-16 15:59:18 +02:00
52d516c3a9 Minor fixes in transformers-tools (#23364)
* Few fixes in new Tools implementation

* code quality
2023-05-16 15:55:44 +02:00
728c5e82cc 🌐 [i18n-KO] Translated asr.mdx to Korean (#23106)
* docs: ko: task/asr.mdx

* feat: manual draft

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-05-16 09:22:56 -04:00
770a1275d3 Fix chat prompt in HFAgent (#23335)
fix chat prompts
2023-05-16 09:18:58 -04:00
466af1a356 OPT/BioGPT: Improved attention mask shape exception (#23270) 2023-05-16 13:59:53 +01:00
21741e8c7e Update test_batched_inference_image_captioning_conditioned (#23391)
* fix

* fix

* fix test + add more docs

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-05-16 14:49:24 +02:00
d765717c76 Fix RwkvModel (#23392)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-16 12:14:54 +02:00
80ca924709 Use mkstemp to replace deprecated mktemp (#23372)
* Use `mkstemp` to replace deprecated `mktemp`

The `tempfile.mktemp` function is [deprecated](https://docs.python.org/3/library/tempfile.html#tempfile.mktemp) due to [security issues](https://cwe.mitre.org/data/definitions/377.html).

* Update src/transformers/utils/hub.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-16 11:10:54 +01:00
ba6815e824 Replace NumPy Operations with JAX NumPy Equivalents for JIT Compilation Compatibility (#23356)
* Replace numpy operations with jax.numpy for JIT compatibility

Replaced numpy operations with their jax.numpy equivalents in the transformer library. This change was necessary to prevent errors during JIT compilation. Specifically, the modifications involve changing numpy's in-place assignments to jax.numpy's immutable update methods.

* rm numpy import

* rm numpy import and fix np->jnp

* fixed slices bug

* fixed decoder_start_tokens -> decoder_start_token_id

* fixed jnp in modleing mt5

* doc fix

* rm numpy import

* make
2023-05-16 10:54:19 +01:00
c2393cad08 Added type hints for Graphormer pytorch version (#23073)
* Added type hints for `Graphormer` pytorch version

added type hints for graphormers pytorch , checked formating issues .

* made the code less bloated
2023-05-15 18:27:41 +01:00
ee3be05310 Fix test typos - audio feature extractors (#23310) 2023-05-15 17:22:10 +01:00
8f76dc8e5a Skip failing AlignModelTest::test_multi_gpu_data_parallel_forward (#23374)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 16:46:58 +02:00
41d47db90f [Bugfix] OPTDecoderLayer does not return attentions when gradient_checkpointing and training is enabled. (#23367)
Update modeling_opt.py
2023-05-15 13:31:53 +01:00
569a97adb2 Revert "Only add files with modification outside doc blocks" (#23371)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 14:28:36 +02:00
c94f7a1cce Fix OwlViTForObjectDetection.image_guided_detection doc example (#23370)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 14:17:09 +02:00
380280d994 Fix BigBirdForMaskedLM doctest (#23369)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 14:15:43 +02:00
96ae83a0d2 Fix some is_xxx_available (#23365)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 14:08:45 +02:00
65b885027a Typo suggestion (#23360)
Update graphormer.mdx

Typo suggestion
2023-05-15 12:04:16 +01:00
81a73fa638 Fix issue introduced in PR #23163 (#23363)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 11:38:44 +02:00
2958b55fe5 Removing one of the twice defined position_embeddings in LongFormer (#23343)
Removing twice defined position_embeddings

The self.position_embeddings in LongFormerEmbeddings is defined twice.
Removing the first with padding_idx
2023-05-15 10:35:55 +01:00
cf11493dce Use cu118 with cudnn >= 8.6 in docker file (#23339)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-12 21:58:15 +02:00
79743cedab replaced assert with raise ValueError for t5, switch_transformers, pix2struct, mt5, longt5, gptsan_japanese. (#23273)
* replaced assert with raise ValueError

* one liner

* reverse one liner and cache-decoder check
2023-05-12 19:29:50 +01:00
291c5e9b25 Handle padding warning in generation when using inputs_embeds (#23131)
* Handle padding warning in generation when using `inputs_embeds`

* Simpler condition

* Black formatter

* Changed warning logic
2023-05-12 17:06:15 +01:00
65d7b21b77 OR am I crazy? (#23295)
or or and
2023-05-12 16:47:40 +01:00
ef3e25ce4e [docs] Fix Agents and Tools docstring (#23313)
fix kwargs
2023-05-12 08:29:13 -07:00
a3975f94f3 Only add files with modification outside doc blocks (#23327)
* min. version for pytest

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-12 16:35:15 +02:00
7f8b909189 Compute the mask in-place, with less memory reads, and on CUDA on XLNetLMHeadModel (#23332)
When working on TorchInductor, I realised that there was a part from
`XLNetLMHeadModel` that was being compiled to CPU code.

This PR should allow to fuse this operation with other CUDA operations
in `torch.compile`. It also should be faster on eager mode, as it has a
this implementation has a lower foot-print.

If in-place operations are not allowed even in non-grad context, I still
believe that doing ones + tril rather than a ones + tril + zeros + cat
should be faster simply due to the number of memory reads/writes.

I tested that this code produces the same results for `0 <= qlen,mlen <
10` and `same_length in (True, False)`.
2023-05-12 14:35:37 +01:00
1934 changed files with 125267 additions and 37250 deletions

View File

@ -30,9 +30,9 @@ jobs:
parallelism: 1
steps:
- checkout
- run: pip install --upgrade pip
- run: pip install GitPython
- run: pip install .
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager GitPython
- run: pip install -U --upgrade-strategy eager .
- run: mkdir -p test_preparation
- run: python utils/tests_fetcher.py | tee tests_fetched_summary.txt
- store_artifacts:
@ -43,6 +43,24 @@ jobs:
else
touch test_preparation/test_list.txt
fi
- run: |
if [ -f examples_test_list.txt ]; then
mv examples_test_list.txt test_preparation/examples_test_list.txt
else
touch test_preparation/examples_test_list.txt
fi
- run: |
if [ -f filtered_test_list_cross_tests.txt ]; then
mv filtered_test_list_cross_tests.txt test_preparation/filtered_test_list_cross_tests.txt
else
touch test_preparation/filtered_test_list_cross_tests.txt
fi
- run: |
if [ -f doctest_list.txt ]; then
cp doctest_list.txt test_preparation/doctest_list.txt
else
touch test_preparation/doctest_list.txt
fi
- run: |
if [ -f test_repo_utils.txt ]; then
mv test_repo_utils.txt test_preparation/test_repo_utils.txt
@ -56,21 +74,10 @@ jobs:
else
touch test_preparation/filtered_test_list.txt
fi
- run: python utils/tests_fetcher.py --filters tests examples | tee examples_tests_fetched_summary.txt
- run: |
if [ -f test_list.txt ]; then
mv test_list.txt test_preparation/examples_test_list.txt
else
touch test_preparation/examples_test_list.txt
fi
- run: |
if [ -f filtered_test_list_cross_tests.txt ]; then
mv filtered_test_list_cross_tests.txt test_preparation/filtered_test_list_cross_tests.txt
else
touch test_preparation/filtered_test_list_cross_tests.txt
fi
- store_artifacts:
path: test_preparation/test_list.txt
- store_artifacts:
path: test_preparation/doctest_list.txt
- store_artifacts:
path: ~/transformers/test_preparation/filtered_test_list.txt
- store_artifacts:
@ -97,13 +104,13 @@ jobs:
parallelism: 1
steps:
- checkout
- run: pip install --upgrade pip
- run: pip install GitPython
- run: pip install .
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager GitPython
- run: pip install -U --upgrade-strategy eager .
- run: |
mkdir test_preparation
echo -n "tests" > test_preparation/test_list.txt
echo -n "tests" > test_preparation/examples_test_list.txt
echo -n "all" > test_preparation/examples_test_list.txt
echo -n "tests/repo_utils" > test_preparation/test_repo_utils.txt
- run: |
echo -n "tests" > test_list.txt
@ -129,14 +136,22 @@ jobs:
- checkout
- restore_cache:
keys:
- v0.6-code_quality-{{ checksum "setup.py" }}
- v0.6-code-quality
- run: pip install --upgrade pip
- run: pip install .[all,quality]
- v0.7-code_quality-pip-{{ checksum "setup.py" }}
- v0.7-code-quality-pip
- restore_cache:
keys:
- v0.7-code_quality-site-packages-{{ checksum "setup.py" }}
- v0.7-code-quality-site-packages
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager .[all,quality]
- save_cache:
key: v0.5-code_quality-{{ checksum "setup.py" }}
key: v0.7-code_quality-pip-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- save_cache:
key: v0.7-code_quality-site-packages-{{ checksum "setup.py" }}
paths:
- '~/.pyenv/versions/'
- run:
name: Show installed libraries and their versions
command: pip freeze | tee installed.txt
@ -162,14 +177,22 @@ jobs:
- checkout
- restore_cache:
keys:
- v0.6-repository_consistency-{{ checksum "setup.py" }}
- v0.6-repository_consistency
- run: pip install --upgrade pip
- run: pip install .[all,quality]
- v0.7-repository_consistency-pip-{{ checksum "setup.py" }}
- v0.7-repository_consistency-pip
- restore_cache:
keys:
- v0.7-repository_consistency-site-packages-{{ checksum "setup.py" }}
- v0.7-repository_consistency-site-packages
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager .[all,quality]
- save_cache:
key: v0.5-repository_consistency-{{ checksum "setup.py" }}
key: v0.7-repository_consistency-pip-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- save_cache:
key: v0.7-repository_consistency-site-packages-{{ checksum "setup.py" }}
paths:
- '~/.pyenv/versions/'
- run:
name: Show installed libraries and their versions
command: pip freeze | tee installed.txt

View File

@ -32,16 +32,28 @@ COMMON_ENV_VARIABLES = {
"RUN_PT_TF_CROSS_TESTS": False,
"RUN_PT_FLAX_CROSS_TESTS": False,
}
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile", "s": None}
# Disable the use of {"s": None} as the output is way too long, causing the navigation on CircleCI impractical
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile"}
DEFAULT_DOCKER_IMAGE = [{"image": "cimg/python:3.8.12"}]
class EmptyJob:
job_name = "empty"
def to_dict(self):
return {
"working_directory": "~/transformers",
"docker": copy.deepcopy(DEFAULT_DOCKER_IMAGE),
"steps":["checkout"],
}
@dataclass
class CircleCIJob:
name: str
additional_env: Dict[str, Any] = None
cache_name: str = None
cache_version: str = "0.6"
cache_version: str = "0.7"
docker_image: List[Dict[str, str]] = None
install_steps: List[str] = None
marker: Optional[str] = None
@ -75,6 +87,11 @@ class CircleCIJob:
def to_dict(self):
env = COMMON_ENV_VARIABLES.copy()
env.update(self.additional_env)
cache_branch_prefix = os.environ.get("CIRCLE_BRANCH", "pull")
if cache_branch_prefix != "main":
cache_branch_prefix = "pull"
job = {
"working_directory": self.working_directory,
"docker": self.docker_image,
@ -90,8 +107,21 @@ class CircleCIJob:
{
"restore_cache": {
"keys": [
f"v{self.cache_version}-{self.cache_name}-" + '{{ checksum "setup.py" }}',
f"v{self.cache_version}-{self.cache_name}-",
# check the fully-matched cache first
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-" + '{{ checksum "setup.py" }}',
# try the partially-matched cache from `main`
f"v{self.cache_version}-{self.cache_name}-main-pip-",
# try the general partially-matched cache
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-",
]
}
},
{
"restore_cache": {
"keys": [
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-" + '{{ checksum "setup.py" }}',
f"v{self.cache_version}-{self.cache_name}-main-site-packages-",
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-",
]
}
},
@ -100,11 +130,19 @@ class CircleCIJob:
steps.append(
{
"save_cache": {
"key": f"v{self.cache_version}-{self.cache_name}-" + '{{ checksum "setup.py" }}',
"key": f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-" + '{{ checksum "setup.py" }}',
"paths": ["~/.cache/pip"],
}
}
)
steps.append(
{
"save_cache": {
"key": f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-" + '{{ checksum "setup.py" }}',
"paths": ["~/.pyenv/versions/"],
}
}
)
steps.append({"run": {"name": "Show installed libraries and their versions", "command": "pip freeze | tee installed.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/installed.txt"}})
@ -117,7 +155,7 @@ class CircleCIJob:
if self.command_timeout:
test_command = f"timeout {self.command_timeout} "
test_command += f"python -m pytest -n {self.pytest_num_workers} " + " ".join(pytest_flags)
if self.parallelism == 1:
if self.tests_to_run is None:
test_command += " << pipeline.parameters.tests_to_run >>"
@ -185,18 +223,27 @@ class CircleCIJob:
# failure.
test_command = f"({test_command}) || true"
else:
test_command += " | tee tests_output.txt"
test_command += " || true"
steps.append({"run": {"name": "Run tests", "command": test_command}})
check_test_command = f'if [ -s reports/{self.job_name}/failures_short.txt ]; '
check_test_command += 'then echo "Some test failed!"; echo ""; '
check_test_command += f'cat reports/{self.job_name}/failures_short.txt; '
check_test_command += 'echo ""; echo ""; '
py_command = f'import os; fp = open("reports/{self.job_name}/summary_short.txt"); failed = os.linesep.join([x for x in fp.read().split(os.linesep) if x.startswith("FAILED ", "ERROR ")]); fp.close(); fp = open("summary_short.txt", "w"); fp.write(failed); fp.close()'
check_test_command += f"$(python3 -c '{py_command}'); "
check_test_command += f'cat summary_short.txt; echo ""; exit -1; '
check_test_command += f'elif [ -s reports/{self.job_name}/stats.txt ]; then echo "All tests pass!"; '
# return code `124` means the previous (pytest run) step is timeout
if self.name == "pr_documentation_tests":
checkout_doctest_command = 'if [ -s reports/tests_pr_documentation_tests/failures_short.txt ]; '
checkout_doctest_command += 'then echo "some test failed"; '
checkout_doctest_command += 'cat reports/tests_pr_documentation_tests/failures_short.txt; '
checkout_doctest_command += 'cat reports/tests_pr_documentation_tests/summary_short.txt; exit -1; '
checkout_doctest_command += 'elif [ -s reports/tests_pr_documentation_tests/stats.txt ]; then echo "All tests pass!"; '
checkout_doctest_command += 'elif [ -f 124.txt ]; then echo "doctest timeout!"; else echo "other fatal error)"; exit -1; fi;'
steps.append({"run": {"name": "Check doctest results", "command": checkout_doctest_command}})
check_test_command += 'elif [ -f 124.txt ]; then echo "doctest timeout!"; '
check_test_command += 'else echo "other fatal error"; echo ""; exit -1; fi;'
steps.append({"run": {"name": "Check test results", "command": check_test_command}})
steps.append({"store_artifacts": {"path": "~/transformers/tests_output.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/reports"}})
@ -215,10 +262,10 @@ torch_and_tf_job = CircleCIJob(
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng git-lfs cmake",
"git lfs install",
"pip install --upgrade pip",
"pip install .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]",
"pip install tensorflow_probability",
"pip install git+https://github.com/huggingface/accelerate",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
],
marker="is_pt_tf_cross_test",
pytest_options={"rA": None, "durations": 0},
@ -230,9 +277,9 @@ torch_and_flax_job = CircleCIJob(
additional_env={"RUN_PT_FLAX_CROSS_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade pip",
"pip install .[sklearn,flax,torch,testing,sentencepiece,torch-speech,vision]",
"pip install git+https://github.com/huggingface/accelerate",
"pip install -U --upgrade-strategy eager --upgrade pip",
"pip install -U --upgrade-strategy eager .[sklearn,flax,torch,testing,sentencepiece,torch-speech,vision]",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
],
marker="is_pt_flax_cross_test",
pytest_options={"rA": None, "durations": 0},
@ -243,12 +290,12 @@ torch_job = CircleCIJob(
"torch",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time",
"pip install --upgrade pip",
"pip install .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]",
"pip install git+https://github.com/huggingface/accelerate",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
],
parallelism=1,
pytest_num_workers=3,
pytest_num_workers=8,
)
@ -256,12 +303,11 @@ tf_job = CircleCIJob(
"tf",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng cmake",
"pip install --upgrade pip",
"pip install .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]",
"pip install tensorflow_probability",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
],
parallelism=1,
pytest_options={"rA": None},
)
@ -269,11 +315,10 @@ flax_job = CircleCIJob(
"flax",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade pip",
"pip install .[flax,testing,sentencepiece,flax-speech,vision]",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[flax,testing,sentencepiece,flax-speech,vision]",
],
parallelism=1,
pytest_options={"rA": None},
)
@ -282,10 +327,9 @@ pipelines_torch_job = CircleCIJob(
additional_env={"RUN_PIPELINE_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade pip",
"pip install .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video]",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video]",
],
pytest_options={"rA": None},
marker="is_pipeline_test",
)
@ -295,11 +339,10 @@ pipelines_tf_job = CircleCIJob(
additional_env={"RUN_PIPELINE_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade pip",
"pip install .[sklearn,tf-cpu,testing,sentencepiece,vision]",
"pip install tensorflow_probability",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,testing,sentencepiece,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
],
pytest_options={"rA": None},
marker="is_pipeline_test",
)
@ -319,8 +362,8 @@ custom_tokenizers_job = CircleCIJob(
"sudo cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local\n"
"sudo make install\n",
},
"pip install --upgrade pip",
"pip install .[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]",
"python -m unidic download",
],
parallelism=None,
@ -338,11 +381,10 @@ examples_torch_job = CircleCIJob(
cache_name="torch_examples",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade pip",
"pip install .[sklearn,torch,sentencepiece,testing,torch-speech]",
"pip install -r examples/pytorch/_tests_requirements.txt",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,sentencepiece,testing,torch-speech]",
"pip install -U --upgrade-strategy eager -r examples/pytorch/_tests_requirements.txt",
],
tests_to_run="./examples/pytorch/",
)
@ -351,11 +393,10 @@ examples_tensorflow_job = CircleCIJob(
cache_name="tensorflow_examples",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade pip",
"pip install .[sklearn,tensorflow,sentencepiece,testing]",
"pip install -r examples/tensorflow/_tests_requirements.txt",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tensorflow,sentencepiece,testing]",
"pip install -U --upgrade-strategy eager -r examples/tensorflow/_tests_requirements.txt",
],
tests_to_run="./examples/tensorflow/",
)
@ -363,22 +404,22 @@ examples_flax_job = CircleCIJob(
"examples_flax",
cache_name="flax_examples",
install_steps=[
"pip install --upgrade pip",
"pip install .[flax,testing,sentencepiece]",
"pip install -r examples/flax/_tests_requirements.txt",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[flax,testing,sentencepiece]",
"pip install -U --upgrade-strategy eager -r examples/flax/_tests_requirements.txt",
],
tests_to_run="./examples/flax/",
)
hub_job = CircleCIJob(
"hub",
additional_env={"HUGGINGFACE_CO_STAGING": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install git-lfs",
'git config --global user.email "ci@dummy.com"',
'git config --global user.name "ci"',
"pip install --upgrade pip",
"pip install .[torch,sentencepiece,testing]",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,sentencepiece,testing,vision]",
],
marker="is_staging_test",
pytest_num_workers=1,
@ -389,8 +430,8 @@ onnx_job = CircleCIJob(
"onnx",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade pip",
"pip install .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
],
pytest_options={"k onnx": None},
pytest_num_workers=1,
@ -401,14 +442,16 @@ exotic_models_job = CircleCIJob(
"exotic_models",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev",
"pip install --upgrade pip",
"pip install .[torch,testing,vision]",
"pip install torchvision",
"pip install scipy",
"pip install 'git+https://github.com/facebookresearch/detectron2.git'",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,testing,vision]",
"pip install -U --upgrade-strategy eager torchvision",
"pip install -U --upgrade-strategy eager scipy",
"pip install -U --upgrade-strategy eager 'git+https://github.com/facebookresearch/detectron2.git'",
"sudo apt install tesseract-ocr",
"pip install pytesseract",
"pip install natten",
"pip install -U --upgrade-strategy eager pytesseract",
"pip install -U --upgrade-strategy eager natten",
# TODO (ydshieh): Remove this line once `https://github.com/facebookresearch/detectron2/issues/5010` is resolved
'pip install -U --upgrade-strategy eager "Pillow<10.0.0"',
],
tests_to_run=[
"tests/models/*layoutlmv*",
@ -423,8 +466,8 @@ exotic_models_job = CircleCIJob(
repo_utils_job = CircleCIJob(
"repo_utils",
install_steps=[
"pip install --upgrade pip",
"pip install .[quality,testing,torch]",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[quality,testing,torch]",
],
parallelism=None,
pytest_num_workers=1,
@ -443,11 +486,12 @@ doc_test_job = CircleCIJob(
"pr_documentation_tests",
additional_env={"TRANSFORMERS_VERBOSITY": "error", "DATASETS_VERBOSITY": "error", "SKIP_CUDA_DOCTEST": "1"},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time",
"pip install --upgrade pip",
"pip install -e .[dev]",
"pip install git+https://github.com/huggingface/accelerate",
"pip install --upgrade pytest pytest-sugar",
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time ffmpeg",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager -e .[dev]",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
"pip install --upgrade --upgrade-strategy eager pytest pytest-sugar",
"pip install -U --upgrade-strategy eager natten",
"find -name __pycache__ -delete",
"find . -name \*.pyc -delete",
# Add an empty file to keep the test step running correctly even no file is selected to be tested.
@ -468,7 +512,7 @@ doc_test_job = CircleCIJob(
},
],
tests_to_run="$(cat pr_documentation_tests.txt)", # noqa
pytest_options={"-doctest-modules": None, "doctest-glob": "*.mdx", "dist": "loadfile", "rvsA": None},
pytest_options={"-doctest-modules": None, "doctest-glob": "*.md", "dist": "loadfile", "rvsA": None},
command_timeout=1200, # test cannot run longer than 1200 seconds
pytest_num_workers=1,
)
@ -483,7 +527,6 @@ REGULAR_TESTS = [
hub_job,
onnx_job,
exotic_models_job,
doc_test_job
]
EXAMPLES_TESTS = [
examples_torch_job,
@ -495,6 +538,8 @@ PIPELINE_TESTS = [
pipelines_tf_job,
]
REPO_UTIL_TESTS = [repo_utils_job]
DOC_TESTS = [doc_test_job]
def create_circleci_config(folder=None):
if folder is None:
@ -550,23 +595,43 @@ def create_circleci_config(folder=None):
example_file = os.path.join(folder, "examples_test_list.txt")
if os.path.exists(example_file) and os.path.getsize(example_file) > 0:
jobs.extend(EXAMPLES_TESTS)
with open(example_file, "r", encoding="utf-8") as f:
example_tests = f.read()
for job in EXAMPLES_TESTS:
framework = job.name.replace("examples_", "").replace("torch", "pytorch")
if example_tests == "all":
job.tests_to_run = [f"examples/{framework}"]
else:
job.tests_to_run = [f for f in example_tests.split(" ") if f.startswith(f"examples/{framework}")]
if len(job.tests_to_run) > 0:
jobs.append(job)
doctest_file = os.path.join(folder, "doctest_list.txt")
if os.path.exists(doctest_file):
with open(doctest_file) as f:
doctest_list = f.read()
else:
doctest_list = []
if len(doctest_list) > 0:
jobs.extend(DOC_TESTS)
repo_util_file = os.path.join(folder, "test_repo_utils.txt")
if os.path.exists(repo_util_file) and os.path.getsize(repo_util_file) > 0:
jobs.extend(REPO_UTIL_TESTS)
if len(jobs) > 0:
config = {"version": "2.1"}
config["parameters"] = {
# Only used to accept the parameters from the trigger
"nightly": {"type": "boolean", "default": False},
"tests_to_run": {"type": "string", "default": test_list},
}
config["jobs"] = {j.job_name: j.to_dict() for j in jobs}
config["workflows"] = {"version": 2, "run_tests": {"jobs": [j.job_name for j in jobs]}}
with open(os.path.join(folder, "generated_config.yml"), "w") as f:
f.write(yaml.dump(config, indent=2, width=1000000, sort_keys=False))
if len(jobs) == 0:
jobs = [EmptyJob()]
config = {"version": "2.1"}
config["parameters"] = {
# Only used to accept the parameters from the trigger
"nightly": {"type": "boolean", "default": False},
"tests_to_run": {"type": "string", "default": test_list},
}
config["jobs"] = {j.job_name: j.to_dict() for j in jobs}
config["workflows"] = {"version": 2, "run_tests": {"jobs": [j.job_name for j in jobs]}}
with open(os.path.join(folder, "generated_config.yml"), "w") as f:
f.write(yaml.dump(config, indent=2, width=1000000, sort_keys=False))
if __name__ == "__main__":

View File

@ -37,15 +37,16 @@ body:
- pipelines: @Narsil
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @sgugger
- trainer: @muellerz and @pacman100
Integrations:
- deepspeed: HF Trainer: @stas00, Accelerate: @pacman100
- deepspeed: HF Trainer/Accelerate: @pacman100
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @sgugger @muellerzr
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc and @younesbelkada
Documentation: @sgugger, @stevhliu and @MKhalusova
Documentation: @stevhliu and @MKhalusova
Model hub:
@ -61,7 +62,7 @@ body:
Maintained examples (not research project or legacy):
- Flax: @sanchit-gandhi
- PyTorch: @sgugger
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
- TensorFlow: @Rocketknight1
Research projects are not maintained and should be taken as is.

View File

@ -23,23 +23,23 @@ Some notes:
* Please translate in a gender-neutral way.
* Add your translations to the folder called `<languageCode>` inside the [source folder](https://github.com/huggingface/transformers/tree/main/docs/source).
* Register your translation in `<languageCode>/_toctree.yml`; please follow the order of the [English version](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml).
* Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @ArthurZucker, @sgugger for review.
* Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @stevhliu and @MKhalusova for review.
* 🙋 If you'd like others to help you with the translation, you can also post in the 🤗 [forums](https://discuss.huggingface.co/).
## Get Started section
- [ ] [index.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/index.mdx) https://github.com/huggingface/transformers/pull/20180
- [ ] [quicktour.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/quicktour.mdx) (waiting for initial PR to go through)
- [ ] [installation.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/installation.mdx).
- [ ] [index.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/index.md) https://github.com/huggingface/transformers/pull/20180
- [ ] [quicktour.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/quicktour.md) (waiting for initial PR to go through)
- [ ] [installation.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/installation.md).
## Tutorial section
- [ ] [pipeline_tutorial.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/pipeline_tutorial.mdx)
- [ ] [autoclass_tutorial.mdx](https://github.com/huggingface/transformers/blob/master/docs/source/autoclass_tutorial.mdx)
- [ ] [preprocessing.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/preprocessing.mdx)
- [ ] [training.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/training.mdx)
- [ ] [accelerate.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/accelerate.mdx)
- [ ] [model_sharing.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/model_sharing.mdx)
- [ ] [multilingual.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/multilingual.mdx)
- [ ] [pipeline_tutorial.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/pipeline_tutorial.md)
- [ ] [autoclass_tutorial.md](https://github.com/huggingface/transformers/blob/master/docs/source/autoclass_tutorial.md)
- [ ] [preprocessing.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/preprocessing.md)
- [ ] [training.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/training.md)
- [ ] [accelerate.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/accelerate.md)
- [ ] [model_sharing.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/model_sharing.md)
- [ ] [multilingual.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/multilingual.md)
<!--
Keep on adding more as you go 🔥

View File

@ -51,14 +51,16 @@ Library:
- pipelines: @Narsil
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @sgugger
- trainer: @muellerz and @pacman100
Integrations:
- deepspeed: HF Trainer: @stas00, Accelerate: @pacman100
- deepspeed: HF Trainer/Accelerate: @pacman100
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc and @younesbelkada
Documentation: @sgugger, @stevhliu and @MKhalusova
Documentation: @stevhliu and @MKhalusova
HF projects:
@ -70,7 +72,7 @@ HF projects:
Maintained examples (not research project or legacy):
- Flax: @sanchit-gandhi
- PyTorch: @sgugger
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
- TensorFlow: @Rocketknight1
-->

View File

@ -16,7 +16,6 @@ requirements:
- pip
- numpy >=1.17
- dataclasses
- importlib_metadata
- huggingface_hub
- packaging
- filelock
@ -31,7 +30,6 @@ requirements:
- python
- numpy >=1.17
- dataclasses
- importlib_metadata
- huggingface_hub
- packaging
- filelock

View File

@ -3,13 +3,13 @@ name: Add model like runner
on:
push:
branches:
- main
pull_request:
paths:
- "src/**"
- "tests/**"
- ".github/**"
types: [opened, synchronize, reopened]
- none # put main here when this is fixed
#pull_request:
# paths:
# - "src/**"
# - "tests/**"
# - ".github/**"
# types: [opened, synchronize, reopened]
jobs:
run_tests_templates_like:

View File

@ -71,6 +71,16 @@ jobs:
name: "Latest PyTorch + DeepSpeed"
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
@ -98,6 +108,16 @@ jobs:
name: "Latest PyTorch + DeepSpeed (Push CI - Daily Build)"
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
@ -156,6 +176,16 @@ jobs:
if: inputs.image_postfix != '-push-ci'
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2

View File

@ -52,6 +52,16 @@ jobs:
name: "Nightly PyTorch + DeepSpeed"
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2

View File

@ -15,7 +15,7 @@ jobs:
strategy:
fail-fast: false
matrix:
version: ["1.13", "1.12", "1.11", "1.10", "1.9"]
version: ["1.13", "1.12", "1.11", "1.10"]
runs-on: ubuntu-latest
steps:
-

View File

@ -18,3 +18,4 @@ jobs:
languages: de en es fr it ko pt zh
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@ -1,13 +1,14 @@
name: Delete dev documentation
name: Delete doc comment
on:
pull_request:
types: [ closed ]
workflow_run:
workflows: ["Delete doc comment trigger"]
types:
- completed
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment.yml@main
with:
pr_number: ${{ github.event.number }}
package: transformers
secrets:
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}

View File

@ -0,0 +1,12 @@
name: Delete doc comment trigger
on:
pull_request:
types: [ closed ]
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment_trigger.yml@main
with:
pr_number: ${{ github.event.number }}

View File

@ -34,7 +34,7 @@ jobs:
nvidia-smi
- name: Install transformers in edit mode
run: python3 -m pip install -e .
run: python3 -m pip install -e .[flax]
- name: GPU visibility
run: |
@ -43,9 +43,13 @@ jobs:
- name: Show installed libraries and their versions
run: pip freeze
- name: Get doctest files
run: |
$(python3 -c 'from utils.tests_fetcher import get_all_doctest_files; to_test = get_all_doctest_files(); to_test = " ".join(to_test); fp = open("doc_tests.txt", "w"); fp.write(to_test); fp.close()')
- name: Run doctests
run: |
python3 -m pytest -v --make-reports doc_tests_gpu --doctest-modules $(cat utils/documentation_tests.txt) -sv --doctest-continue-on-failure --doctest-glob="*.mdx"
python3 -m pytest -v --make-reports doc_tests_gpu --doctest-modules $(cat doc_tests.txt) -sv --doctest-continue-on-failure --doctest-glob="*.md"
- name: Failure short reports
if: ${{ failure() }}

View File

@ -67,21 +67,10 @@ jobs:
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_pytorch_1-9:
name: PyTorch 1.9
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_past_ci_pytorch_1-10]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.9"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-11:
name: TensorFlow 2.11
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_pytorch_1-9]
needs: [run_past_ci_pytorch_1-10]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow

View File

@ -115,6 +115,10 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -172,6 +176,10 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -217,6 +225,10 @@ jobs:
working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/

View File

@ -111,6 +111,10 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
@ -183,6 +187,10 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
@ -255,6 +263,10 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Install
working-directory: /transformers
run: |

View File

@ -195,6 +195,10 @@ jobs:
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
@ -284,6 +288,10 @@ jobs:
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
@ -373,6 +381,10 @@ jobs:
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
@ -459,6 +471,10 @@ jobs:
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/

View File

@ -119,6 +119,10 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -176,6 +180,10 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -221,6 +229,10 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -268,6 +280,10 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -315,6 +331,10 @@ jobs:
run: |
git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -361,6 +381,10 @@ jobs:
working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/

View File

@ -2,7 +2,7 @@ name: Stale Bot
on:
schedule:
- cron: "0 15 * * *"
- cron: "0 8 * * *"
jobs:
close_stale_issues:
@ -17,7 +17,7 @@ jobs:
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: 3.8
- name: Install requirements
run: |

View File

@ -19,9 +19,9 @@ jobs:
- name: Setup environment
run: |
pip install --upgrade pip
pip install datasets pandas
pip install datasets pandas==2.0.3
pip install .[torch,tf,flax]
- name: Update metadata
run: |
python utils/update_metadata.py --token ${{ secrets.SYLVAIN_HF_TOKEN }} --commit_sha ${{ github.sha }}
python utils/update_metadata.py --token ${{ secrets.LYSANDRE_HF_TOKEN }} --commit_sha ${{ github.sha }}

View File

@ -0,0 +1,16 @@
name: Upload PR Documentation
on:
workflow_run:
workflows: ["Build PR Documentation"]
types:
- completed
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
with:
package_name: transformers
secrets:
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}

View File

@ -130,7 +130,7 @@ You will need basic `git` proficiency to contribute to
manual. Type `git --help` in a shell and enjoy! If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
You'll need **[Python 3.7]((https://github.com/huggingface/transformers/blob/main/setup.py#L426))** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/main/setup.py#L426))** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
1. Fork the [repository](https://github.com/huggingface/transformers) by
clicking on the **[Fork](https://github.com/huggingface/transformers/fork)** button on the repository's page. This creates a copy of the code
@ -275,7 +275,7 @@ You'll need **[Python 3.7]((https://github.com/huggingface/transformers/blob/mai
request description to make sure they are linked (and people viewing the issue know you
are working on it).<br>
☐ To indicate a work in progress please prefix the title with `[WIP]`. These are
useful to avoid duplicated work, and to differentiate it from PRs ready to be merged.
useful to avoid duplicated work, and to differentiate it from PRs ready to be merged.<br>
☐ Make sure existing tests pass.<br>
☐ If adding a new feature, also add tests for it.<br>
- If you are adding a new model, make sure you use
@ -284,7 +284,7 @@ useful to avoid duplicated work, and to differentiate it from PRs ready to be me
`RUN_SLOW=1 python -m pytest tests/models/my_new_model/test_my_new_model.py`.
- If you are adding a new tokenizer, write tests and make sure
`RUN_SLOW=1 python -m pytest tests/models/{your_model_name}/test_tokenization_{your_model_name}.py` passes.
CircleCI does not run the slow tests, but GitHub Actions does every night!<br>
- CircleCI does not run the slow tests, but GitHub Actions does every night!<br>
☐ All public methods must have informative docstrings (see
[`modeling_bert.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py)

View File

@ -158,7 +158,7 @@ You are not required to read the following guidelines before opening an issue. H
--do_train --n_train 500 --num_train_epochs 1 \
--per_device_train_batch_size 1 --freeze_embeds \
--src_lang en_XX --tgt_lang ro_RO --task translation \
--fp16 --sharded_ddp
--fp16
```
If you don't break it up, one has to scroll horizontally which often makes it quite difficult to quickly see what's happening.

View File

@ -1 +0,0 @@
include LICENSE

View File

@ -80,6 +80,7 @@ fix-copies:
python utils/check_copies.py --fix_and_overwrite
python utils/check_table.py --fix_and_overwrite
python utils/check_dummies.py --fix_and_overwrite
python utils/check_doctest_list.py --fix_and_overwrite
python utils/check_task_guides.py --fix_and_overwrite
# Run tests for the library
@ -111,3 +112,10 @@ post-release:
post-patch:
python utils/release.py --post_release --patch
build-release:
rm -rf dist
rm -rf build
python setup.py bdist_wheel
python setup.py sdist
python utils/check_build.py

View File

@ -113,7 +113,18 @@ In Multimodal tasks:
- [Document Question Answering with LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Zero-shot Video Classification with X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
**[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team, is the official demo of this repos text generation capabilities.
## 100 projects using Transformers
Transformers is more than a toolkit to use pretrained models: it's a community of projects built around it and the
Hugging Face Hub. We want Transformers to enable developers, researchers, students, professors, engineers, and anyone
else to build their dream projects.
In order to celebrate the 100,000 stars of transformers, we have decided to put the spotlight on the
community, and we have created the [awesome-transformers](./awesome-transformers.md) page which lists 100
incredible projects built in the vicinity of transformers.
If you own or use a project that you believe should be part of the list, please open a PR to add it!
## If you are looking for custom support from the Hugging Face team
@ -236,7 +247,7 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
### With pip
This repository is tested on Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ and TensorFlow 2.3+.
This repository is tested on Python 3.8+, Flax 0.4.1+, PyTorch 1.10+ and TensorFlow 2.6+.
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
@ -279,6 +290,8 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
@ -305,6 +318,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
@ -324,6 +338,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
@ -332,10 +347,12 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
@ -358,8 +375,10 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
@ -369,6 +388,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
@ -382,17 +402,22 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Facebook) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
@ -400,7 +425,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
@ -410,7 +435,9 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
@ -432,7 +459,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/main/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
@ -449,6 +476,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
@ -458,8 +486,11 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
@ -495,7 +526,6 @@ These implementations have been tested on several datasets (see the example scri
| [Training and fine-tuning](https://huggingface.co/docs/transformers/training) | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the `Trainer` API |
| [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/main/examples) | Example scripts for fine-tuning models on a wide range of tasks |
| [Model sharing and uploading](https://huggingface.co/docs/transformers/model_sharing) | Upload and share your fine-tuned models with the community |
| [Migration](https://huggingface.co/docs/transformers/migration) | Migrate to 🤗 Transformers from `pytorch-transformers` or `pytorch-pretrained-bert` |
## Citation

View File

@ -224,7 +224,7 @@ El modelo en si es un [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.h
### Con pip
Este repositorio está probado en Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ y TensorFlow 2.3+.
Este repositorio está probado en Python 3.8+, Flax 0.4.1+, PyTorch 1.10+ y TensorFlow 2.6+.
Deberías instalar 🤗 Transformers en un [ambiente virtual](https://docs.python.org/3/library/venv.html). Si no estas familiarizado con los entornos virtuales de Python, consulta la [guía de usuario](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
@ -267,6 +267,8 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
@ -293,6 +295,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
@ -312,6 +315,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
@ -320,10 +324,12 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
@ -346,8 +352,10 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
@ -357,6 +365,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
@ -375,12 +384,17 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
@ -398,7 +412,9 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
@ -420,7 +436,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/main/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
@ -437,6 +453,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
@ -446,8 +463,11 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
@ -500,4 +520,4 @@ Ahora nosotros tenemos un [papel](https://www.aclweb.org/anthology/2020.emnlp-de
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```
```

View File

@ -200,7 +200,7 @@ checkpoint: जाँच बिंदु
### पिप का उपयोग करना
इस रिपॉजिटरी का परीक्षण Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ और TensorFlow 2.3+ के तहत किया गया है।
इस रिपॉजिटरी का परीक्षण Python 3.8+, Flax 0.4.1+, PyTorch 1.10+ और TensorFlow 2.6+ के तहत किया गया है।
आप [वर्चुअल एनवायरनमेंट] (https://docs.python.org/3/library/venv.html) में 🤗 ट्रांसफॉर्मर इंस्टॉल कर सकते हैं। यदि आप अभी तक पायथन के वर्चुअल एनवायरनमेंट से परिचित नहीं हैं, तो कृपया इसे [उपयोगकर्ता निर्देश] (https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) पढ़ें।
@ -239,6 +239,8 @@ conda install -c huggingface transformers
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research से) Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. द्वाराअनुसंधान पत्र [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) के साथ जारी किया गया
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (फेसबुक) साथ थीसिस [बार्ट: प्राकृतिक भाषा निर्माण, अनुवाद के लिए अनुक्रम-से-अनुक्रम पूर्व प्रशिक्षण , और समझ] (https://arxiv.org/pdf/1910.13461.pdf) पर निर्भर माइक लुईस, यिनहान लियू, नमन गोयल, मार्जन ग़ज़विनिनेजाद, अब्देलरहमान मोहम्मद, ओमर लेवी, वेस स्टोयानोव और ल्यूक ज़ेटलमॉयर
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (से École polytechnique) साथ थीसिस [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) पर निर्भर Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis रिहाई।
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (VinAI Research से) साथ में पेपर [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701)गुयेन लुओंग ट्रान, डुओंग मिन्ह ले और डाट क्वोक गुयेन द्वारा पोस्ट किया गया।
@ -265,6 +267,7 @@ conda install -c huggingface transformers
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI से) साथ वाला पेपर [लर्निंग ट्रांसफरेबल विजुअल मॉडल फ्रॉम नेचुरल लैंग्वेज सुपरविजन](https://arxiv.org /abs/2103.00020) एलेक रैडफोर्ड, जोंग वूक किम, क्रिस हैलासी, आदित्य रमेश, गेब्रियल गोह, संध्या अग्रवाल, गिरीश शास्त्री, अमांडा एस्केल, पामेला मिश्किन, जैक क्लार्क, ग्रेचेन क्रुएगर, इल्या सुत्स्केवर द्वारा।
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (सेल्सफोर्स से) साथ में पेपर [प्रोग्राम सिंथेसिस के लिए एक संवादात्मक प्रतिमान](https://arxiv.org/abs/2203.13474) एरिक निजकैंप, बो पैंग, हिरोआकी हयाशी, लिफू तू, हुआन वांग, यिंगबो झोउ, सिल्वियो सावरेस, कैमिंग जिओंग रिलीज।
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI से) Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve. द्वाराअनुसंधान पत्र [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) के साथ जारी किया गया
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (माइक्रोसॉफ्ट रिसर्च एशिया से) कागज के साथ [फास्ट ट्रेनिंग कन्वर्जेंस के लिए सशर्त डीईटीआर](https://arxiv. org/abs/2108.06152) डेपू मेंग, ज़ियाओकांग चेन, ज़ेजिया फैन, गैंग ज़ेंग, होउकियांग ली, युहुई युआन, लेई सन, जिंगडोंग वांग द्वारा।
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech से) साथ में कागज [ConvBERT: स्पैन-आधारित डायनेमिक कनवल्शन के साथ BERT में सुधार](https://arxiv .org/abs/2008.02496) जिहांग जियांग, वीहाओ यू, डाकान झोउ, युनपेंग चेन, जियाशी फेंग, शुइचेंग यान द्वारा।
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI से) साथ वाला पेपर [A ConvNet for the 2020s](https://arxiv.org/abs /2201.03545) ज़ुआंग लियू, हेंज़ी माओ, चाओ-युआन वू, क्रिस्टोफ़ फीचटेनहोफ़र, ट्रेवर डेरेल, सैनिंग ज़ी द्वारा।
@ -284,6 +287,7 @@ conda install -c huggingface transformers
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (फेसबुक से) साथ में कागज [ट्रांसफॉर्मर्स के साथ एंड-टू-एंड ऑब्जेक्ट डिटेक्शन](https://arxiv. org/abs/2005.12872) निकोलस कैरियन, फ़्रांसिस्को मस्सा, गेब्रियल सिनेव, निकोलस उसुनियर, अलेक्जेंडर किरिलोव, सर्गेई ज़ागोरुयको द्वारा।
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [DialoGPT: बड़े पैमाने पर जनरेटिव प्री-ट्रेनिंग फॉर कन्वर्सेशनल रिस्पांस जेनरेशन](https ://arxiv.org/abs/1911.00536) यिज़े झांग, सिकी सन, मिशेल गैली, येन-चुन चेन, क्रिस ब्रोकेट, जियांग गाओ, जियानफेंग गाओ, जिंगजिंग लियू, बिल डोलन द्वारा।
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI से) Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski. द्वाराअनुसंधान पत्र [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) के साथ जारी किया गया
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (हगिंगफेस से), साथ में कागज [डिस्टिलबर्ट, बीईआरटी का डिस्टिल्ड वर्जन: छोटा, तेज, सस्ता और हल्का] (https://arxiv.org/abs/1910.01108) विक्टर सनह, लिसांड्रे डेब्यू और थॉमस वुल्फ द्वारा पोस्ट किया गया। यही तरीका GPT-2 को [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERta से [DistilRoBERta](https://github.com) पर कंप्रेस करने के लिए भी लागू किया जाता है। / हगिंगफेस/ट्रांसफॉर्मर्स/ट्री/मेन/उदाहरण/डिस्टिलेशन), बहुभाषी BERT से [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) और डिस्टिलबर्ट का जर्मन संस्करण।
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [DiT: सेल्फ सुपरवाइज्ड प्री-ट्रेनिंग फॉर डॉक्यूमेंट इमेज ट्रांसफॉर्मर](https://arxiv.org/abs/2203.02378) जुनलॉन्ग ली, यिहेंग जू, टेंगचाओ लव, लेई कुई, चा झांग द्वारा फुरु वेई द्वारा पोस्ट किया गया।
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER से) साथ में कागज [OCR-मुक्त डॉक्यूमेंट अंडरस्टैंडिंग ट्रांसफॉर्मर](https://arxiv.org/abs /2111.15664) गीवूक किम, टीकग्यू होंग, मूनबिन यिम, जियोंग्योन नाम, जिनयॉन्ग पार्क, जिनयॉन्ग यिम, वोनसेओक ह्वांग, सांगडू यूं, डोंगयून हान, सेउंग्युन पार्क द्वारा।
@ -292,10 +296,12 @@ conda install -c huggingface transformers
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google रिसर्च/स्टैनफोर्ड यूनिवर्सिटी से) साथ में दिया गया पेपर [इलेक्ट्रा: जेनरेटर के बजाय भेदभाव करने वाले के रूप में टेक्स्ट एन्कोडर्स का पूर्व-प्रशिक्षण] (https://arxiv.org/abs/2003.10555) केविन क्लार्क, मिन्ह-थांग लुओंग, क्वोक वी. ले, क्रिस्टोफर डी. मैनिंग द्वारा पोस्ट किया गया।
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI से) Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. द्वाराअनुसंधान पत्र [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) के साथ जारी किया गया
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google रिसर्च से) साथ में दिया गया पेपर [सीक्वेंस जेनरेशन टास्क के लिए प्री-ट्रेंड चेकपॉइंट का इस्तेमाल करना](https:/ /arxiv.org/abs/1907.12461) साशा रोठे, शशि नारायण, अलियाक्सि सेवेरिन द्वारा।
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)**(Baidu से) साथ देने वाला पेपर [ERNIE: एन्हांस्ड रिप्रेजेंटेशन थ्रू नॉलेज इंटीग्रेशन](https://arxiv.org/abs/1904.09223) यू सन, शुओहुआन वांग, युकुन ली, शिकुन फेंग, ज़ुई चेन, हान झांग, शिन तियान, डैनक्सियांग झू, हाओ तियान, हुआ वू द्वारा पोस्ट किया गया।
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu से) Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. द्वाराअनुसंधान पत्र [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) के साथ जारी किया गया
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (मेटा AI से) ट्रांसफॉर्मर प्रोटीन भाषा मॉडल हैं। **ESM-1b** पेपर के साथ जारी किया गया था [ अलेक्जेंडर राइव्स, जोशुआ मेयर, टॉम सर्कु, सिद्धार्थ गोयल, ज़ेमिंग लिन द्वारा जैविक संरचना और कार्य असुरक्षित सीखने को 250 मिलियन प्रोटीन अनुक्रमों तक स्केल करने से उभरता है] (https://www.pnas.org/content/118/15/e2016239118) जेसन लियू, डेमी गुओ, मायल ओट, सी. लॉरेंस ज़िटनिक, जेरी मा और रॉब फर्गस। **ESM-1v** को पेपर के साथ जारी किया गया था [भाषा मॉडल प्रोटीन फ़ंक्शन पर उत्परिवर्तन के प्रभावों की शून्य-शॉट भविष्यवाणी को सक्षम करते हैं] (https://doi.org/10.1101/2021.07.09.450648) जोशुआ मेयर, रोशन राव, रॉबर्ट वेरकुइल, जेसन लियू, टॉम सर्कु और अलेक्जेंडर राइव्स द्वारा। **ESM-2** को पेपर के साथ जारी किया गया था [भाषा मॉडल विकास के पैमाने पर प्रोटीन अनुक्रम सटीक संरचना भविष्यवाणी को सक्षम करते हैं](https://doi.org/10.1101/2022.07.20.500902) ज़ेमिंग लिन, हलील अकिन, रोशन राव, ब्रायन ही, झोंगकाई झू, वेंटिंग लू, ए द्वारा लान डॉस सैंटोस कोस्टा, मरियम फ़ज़ल-ज़रंडी, टॉम सर्कू, साल कैंडिडो, अलेक्जेंडर राइव्स।
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS से) साथ वाला पेपर [FlauBERT: Unsupervised Language Model Pre-training for फ़्रेंच](https://arxiv .org/abs/1912.05372) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, बेंजामिन लेकोउटेक्स, अलेक्जेंड्रे अल्लाउज़ेन, बेनोइट क्रैबे, लॉरेंट बेसेसियर, डिडिएर श्वाब द्वारा।
@ -318,8 +324,10 @@ conda install -c huggingface transformers
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA से) साथ में कागज [GroupViT: टेक्स्ट सुपरविजन से सिमेंटिक सेगमेंटेशन इमर्जेस](https://arxiv .org/abs/2202.11094) जियारुई जू, शालिनी डी मेलो, सिफ़ी लियू, वोनमिन बायन, थॉमस ब्रेउएल, जान कौट्ज़, ज़ियाओलोंग वांग द्वारा।
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (फेसबुक से) साथ में पेपर [ह्यूबर्ट: सेल्फ सुपरवाइज्ड स्पीच रिप्रेजेंटेशन लर्निंग बाय मास्क्ड प्रेडिक्शन ऑफ हिडन यूनिट्स](https ://arxiv.org/abs/2106.07447) वेई-निंग सू, बेंजामिन बोल्टे, याओ-हंग ह्यूबर्ट त्साई, कुशाल लखोटिया, रुस्लान सालाखुतदीनोव, अब्देलरहमान मोहम्मद द्वारा।
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (बर्कले से) साथ में कागज [I-BERT: Integer-only BERT Quantization](https:// arxiv.org/abs/2101.01321) सेहून किम, अमीर घोलमी, ज़ेवेई याओ, माइकल डब्ल्यू महोनी, कर्ट केटज़र द्वारा।
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce से) Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi. द्वाराअनुसंधान पत्र [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) के साथ जारी किया गया
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
@ -329,6 +337,7 @@ conda install -c huggingface transformers
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (मेटा AI से) साथ वाला पेपर [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https:/ /arxiv.org/abs/2104.01136) बेन ग्राहम, अलाएल्डिन एल-नौबी, ह्यूगो टौवरन, पियरे स्टॉक, आर्मंड जौलिन, हर्वे जेगौ, मैथिज डूज़ द्वारा।
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (दक्षिण चीन प्रौद्योगिकी विश्वविद्यालय से) साथ में कागज [LiLT: एक सरल लेकिन प्रभावी भाषा-स्वतंत्र लेआउट ट्रांसफार्मर संरचित दस्तावेज़ समझ के लिए](https://arxiv.org/abs/2202.13669) जियापेंग वांग, लियानवेन जिन, काई डिंग द्वारा पोस्ट किया गया।
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI से) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. द्वाराअनुसंधान पत्र [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) के साथ जारी किया गया
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI से) Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.. द्वाराअनुसंधान पत्र [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) के साथ जारी किया गया
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (मैंडी गुओ, जोशुआ आइंस्ली, डेविड यूथस, सैंटियागो ओंटानन, जियानमो नि, यूं-हुआन सुंग, यिनफेई यांग द्वारा पोस्ट किया गया।
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (स्टूडियो औसिया से) साथ में पेपर [LUKE: डीप कॉन्टेक्स्टुअलाइज्ड एंटिटी रिप्रेजेंटेशन विद एंटिटी-अवेयर सेल्फ-अटेंशन](https ://arxiv.org/abs/2010.01057) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto द्वारा।
@ -347,12 +356,17 @@ conda install -c huggingface transformers
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA से) साथ वाला पेपर [Megatron-LM: ट्रेनिंग मल्टी-बिलियन पैरामीटर लैंग्वेज मॉडल्स यूजिंग मॉडल पैरेललिज़्म] (https://arxiv.org/abs/1909.08053) मोहम्मद शोएबी, मोस्टोफा पटवारी, राउल पुरी, पैट्रिक लेग्रेस्ले, जेरेड कैस्पर और ब्रायन कैटानज़ारो द्वारा पोस्ट किया गया।
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research से) Peng Wang, Cheng Da, and Cong Yao. द्वाराअनुसंधान पत्र [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) के साथ जारी किया गया
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (फ्रॉम Studio Ousia) साथ में पेपर [mLUKE: द पावर ऑफ एंटिटी रिप्रेजेंटेशन इन मल्टीलिंगुअल प्रीट्रेन्ड लैंग्वेज मॉडल्स](https://arxiv.org/abs/2110.08151) रयोकन री, इकुया यामाडा, और योशिमासा त्सुरोका द्वारा।
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook से) Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli. द्वाराअनुसंधान पत्र [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) के साथ जारी किया गया
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [मोबाइलबर्ट: संसाधन-सीमित उपकरणों के लिए एक कॉम्पैक्ट टास्क-अज्ञेय बीईआरटी] (https://arxiv.org/abs/2004.02984) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, और Denny Zhou द्वारा पोस्ट किया गया।
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple से) साथ में कागज [MobileViT: लाइट-वेट, जनरल-पर्पस, और मोबाइल-फ्रेंडली विजन ट्रांसफॉर्मर] (https://arxiv.org/abs/2110.02178) सचिन मेहता और मोहम्मद रस्तगरी द्वारा पोस्ट किया गया।
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple से) Sachin Mehta and Mohammad Rastegari. द्वाराअनुसंधान पत्र [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) के साथ जारी किया गया
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML से) the MosaicML NLP Team. द्वाराअनुसंधान पत्र [llm-foundry](https://github.com/mosaicml/llm-foundry/) के साथ जारी किया गया
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison से) Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh. द्वाराअनुसंधान पत्र [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) के साथ जारी किया गया
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI से) साथ वाला पेपर [mT5: एक व्यापक बहुभाषी पूर्व-प्रशिक्षित टेक्स्ट-टू-टेक्स्ट ट्रांसफॉर्मर]( https://arxiv.org/abs/2010.11934) लिंटिंग ज़ू, नोआ कॉन्सटेंट, एडम रॉबर्ट्स, मिहिर काले, रामी अल-रफू, आदित्य सिद्धांत, आदित्य बरुआ, कॉलिन रैफेल द्वारा पोस्ट किया गया।
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (हुआवेई नूह के आर्क लैब से) साथ में कागज़ [NEZHA: चीनी भाषा समझ के लिए तंत्रिका प्रासंगिक प्रतिनिधित्व](https :/ /arxiv.org/abs/1909.00204) जुन्किउ वेई, ज़ियाओज़े रेन, ज़िआओगुआंग ली, वेनयोंग हुआंग, यी लियाओ, याशेंग वांग, जियाशू लिन, शिन जियांग, जिओ चेन और कुन लियू द्वारा।
@ -360,7 +374,7 @@ conda install -c huggingface transformers
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta से) the NLLB team. द्वाराअनुसंधान पत्र [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) के साथ जारी किया गया
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में कागज [Nyströmformer: A Nyström- आधारित एल्गोरिथम आत्म-ध्यान का अनुमान लगाने के लिए ](https://arxiv.org/abs/2102.03902) युनयांग ज़िओंग, झानपेंग ज़ेंग, रुद्रसिस चक्रवर्ती, मिंगक्सिंग टैन, ग्लेन फंग, यिन ली, विकास सिंह द्वारा पोस्ट किया गया।
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs से) पेपर [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) जितेश जैन, जिआचेन ली, मांगटिक चिउ, अली हसनी, निकिता ओरलोव, हम्फ्री शि के द्वारा जारी किया गया है।
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI से) साथ में कागज [विज़न ट्रांसफॉर्मर्स के साथ सिंपल ओपन-वोकैबुलरी ऑब्जेक्ट डिटेक्शन](https:/ /arxiv.org/abs/2205.06230) मैथियास मिंडरर, एलेक्सी ग्रिट्सेंको, ऑस्टिन स्टोन, मैक्सिम न्यूमैन, डिर्क वीसेनबोर्न, एलेक्सी डोसोवित्स्की, अरविंद महेंद्रन, अनुराग अर्नब, मुस्तफा देहघानी, ज़ुओरन शेन, जिओ वांग, ज़ियाओहुआ झाई, थॉमस किफ़, और नील हॉल्सबी द्वारा पोस्ट किया गया।
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
@ -370,7 +384,9 @@ conda install -c huggingface transformers
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google से) Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. द्वाराअनुसंधान पत्र [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) के साथ जारी किया गया
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP से) साथ वाला पेपर [प्रोग्राम अंडरस्टैंडिंग एंड जेनरेशन के लिए यूनिफाइड प्री-ट्रेनिंग](https://arxiv .org/abs/2103.06333) वसी उद्दीन अहमद, सैकत चक्रवर्ती, बैशाखी रे, काई-वेई चांग द्वारा।
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [ProphetNet: प्रेडिक्टिंग फ्यूचर एन-ग्राम फॉर सीक्वेंस-टू-सीक्वेंस प्री-ट्रेनिंग ](https://arxiv.org/abs/2001.04063) यू यान, वीज़ेन क्यूई, येयुन गोंग, दयाहेंग लियू, नान डुआन, जिउशेंग चेन, रुओफ़ेई झांग और मिंग झोउ द्वारा पोस्ट किया गया।
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. से) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. द्वाराअनुसंधान पत्र [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) के साथ जारी किया गया
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA से) साथ वाला पेपर [डीप लर्निंग इंफ़ेक्शन के लिए इंटीजर क्वांटिज़ेशन: प्रिंसिपल्स एंड एम्पिरिकल इवैल्यूएशन](https:// arxiv.org/abs/2004.09602) हाओ वू, पैट्रिक जुड, जिआओजी झांग, मिखाइल इसेव और पॉलियस माइकेविसियस द्वारा।
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (फेसबुक से) साथ में कागज [रिट्रीवल-ऑगमेंटेड जेनरेशन फॉर नॉलेज-इंटेंसिव एनएलपी टास्क](https://arxiv .org/abs/2005.11401) पैट्रिक लुईस, एथन पेरेज़, अलेक्जेंड्रा पिक्टस, फैबियो पेट्रोनी, व्लादिमीर कारपुखिन, नमन गोयल, हेनरिक कुटलर, माइक लुईस, वेन-ताउ यिह, टिम रॉकटाशेल, सेबस्टियन रिडेल, डौवे कीला द्वारा।
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google अनुसंधान से) केल्विन गु, केंटन ली, ज़ोरा तुंग, पानुपोंग पसुपत और मिंग-वेई चांग द्वारा साथ में दिया गया पेपर [REALM: रिट्रीवल-ऑगमेंटेड लैंग्वेज मॉडल प्री-ट्रेनिंग](https://arxiv.org/abs/2002.08909)।
@ -392,7 +408,7 @@ conda install -c huggingface transformers
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (फेसबुक से) साथ में पेपर [लार्ज-स्केल सेल्फ- एंड सेमी-सुपरवाइज्ड लर्निंग फॉर स्पीच ट्रांसलेशन](https://arxiv.org/abs/2104.06678) चांगहान वांग, ऐनी वू, जुआन पिनो, एलेक्सी बेवस्की, माइकल औली, एलेक्सिस द्वारा Conneau द्वारा पोस्ट किया गया।
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (तेल अवीव यूनिवर्सिटी से) साथ में पेपर [स्पैन सिलेक्शन को प्री-ट्रेनिंग करके कुछ-शॉट क्वेश्चन आंसरिंग](https:// arxiv.org/abs/2101.00438) ओरि राम, युवल कर्स्टन, जोनाथन बेरेंट, अमीर ग्लोबर्सन, ओमर लेवी द्वारा।
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (बर्कले से) कागज के साथ [SqueezeBERT: कुशल तंत्रिका नेटवर्क के बारे में NLP को कंप्यूटर विज़न क्या सिखा सकता है?](https: //arxiv.org/abs/2006.11316) फॉरेस्ट एन. इनडोला, अल्बर्ट ई. शॉ, रवि कृष्णा, और कर्ट डब्ल्यू. केटज़र द्वारा।
1. **[SwiftFormer](https://huggingface.co/docs/transformers/main/model_doc/swiftformer)** (MBZUAI से) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. द्वाराअनुसंधान पत्र [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) के साथ जारी किया गया
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI से) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. द्वाराअनुसंधान पत्र [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) के साथ जारी किया गया
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (माइक्रोसॉफ्ट से) साथ में कागज [स्वाइन ट्रांसफॉर्मर: शिफ्टेड विंडोज का उपयोग कर पदानुक्रमित विजन ट्रांसफॉर्मर](https://arxiv .org/abs/2103.14030) ज़ी लियू, युटोंग लिन, यू काओ, हान हू, यिक्सुआन वेई, झेंग झांग, स्टीफन लिन, बैनिंग गुओ द्वारा।
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft से) साथ वाला पेपर [Swin Transformer V2: स्केलिंग अप कैपेसिटी एंड रेजोल्यूशन](https:// ज़ी लियू, हान हू, युटोंग लिन, ज़ुलिआंग याओ, ज़ेंडा ज़ी, यिक्सुआन वेई, जिया निंग, यू काओ, झेंग झांग, ली डोंग, फुरु वेई, बैनिंग गुओ द्वारा arxiv.org/abs/2111.09883।
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
@ -409,6 +425,7 @@ conda install -c huggingface transformers
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research से) Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant. द्वाराअनुसंधान पत्र [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) के साथ जारी किया गया
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (माइक्रोसॉफ्ट रिसर्च से) साथ में दिया गया पेपर [UniSpeech: यूनिफाइड स्पीच रिप्रेजेंटेशन लर्निंग विद लेबलेड एंड अनलेबल्ड डेटा](https:/ /arxiv.org/abs/2101.07597) चेंगई वांग, यू वू, याओ कियान, केनिची कुमातानी, शुजी लियू, फुरु वेई, माइकल ज़ेंग, ज़ुएदोंग हुआंग द्वारा।
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [UNISPEECH-SAT: यूनिवर्सल स्पीच रिप्रेजेंटेशन लर्निंग विद स्पीकर अवेयर प्री-ट्रेनिंग ](https://arxiv.org/abs/2110.05752) सानयुआन चेन, यू वू, चेंग्यी वांग, झेंगयांग चेन, झूओ चेन, शुजी लियू, जियान वू, याओ कियान, फुरु वेई, जिन्यु ली, जियांगज़ान यू द्वारा पोस्ट किया गया।
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
@ -418,8 +435,11 @@ conda install -c huggingface transformers
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (गूगल एआई से) कागज के साथ [एक इमेज इज़ वर्थ 16x16 वर्ड्स: ट्रांसफॉर्मर्स फॉर इमेज रिकॉग्निशन एट स्केल](https://arxiv.org/abs/2010.11929) एलेक्सी डोसोवित्स्की, लुकास बेयर, अलेक्जेंडर कोलेसनिकोव, डिर्क वीसेनबोर्न, शियाओहुआ झाई, थॉमस अनटरथिनर, मुस्तफा देहघानी, मैथियास मिंडरर, जॉर्ज हेगोल्ड, सिल्वेन गेली, जैकब उस्ज़कोरेइट द्वारा हॉल्सबी द्वारा पोस्ट किया गया।
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP से) साथ वाला पेपर [VisualBERT: A Simple and Performant Baseline for Vision and Language](https:/ /arxiv.org/pdf/1908.03557) लियुनियन हेरोल्ड ली, मार्क यात्स्कर, दा यिन, चो-जुई हसीह, काई-वेई चांग द्वारा।
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI से) Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He. द्वाराअनुसंधान पत्र [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) के साथ जारी किया गया
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (मेटा एआई से) साथ में कागज [मास्कड ऑटोएन्कोडर स्केलेबल विजन लर्नर्स हैं](https://arxiv.org/ एब्स/2111.06377) कैमिंग हे, ज़िनेली चेन, सेनिंग ज़ी, यांगहो ली, पिओट्र डॉलर, रॉस गिर्शिक द्वारा।
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (मेटा एआई से) साथ में कागज [लेबल-कुशल सीखने के लिए मास्क्ड स्याम देश के नेटवर्क](https://arxiv. org/abs/2204.07141) महमूद असरान, मथिल्डे कैरन, ईशान मिश्रा, पियोट्र बोजानोवस्की, फ्लोरियन बोर्डेस, पास्कल विंसेंट, आर्मंड जौलिन, माइकल रब्बत, निकोलस बल्लास द्वारा।
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise से) Jaehyeon Kim, Jungil Kong, Juhee Son. द्वाराअनुसंधान पत्र [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) के साथ जारी किया गया
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (फेसबुक एआई से) साथ में पेपर [wav2vec 2.0: ए फ्रेमवर्क फॉर सेल्फ-सुपरवाइज्ड लर्निंग ऑफ स्पीच रिप्रेजेंटेशन] (https://arxiv.org/abs/2006.11477) एलेक्सी बेवस्की, हेनरी झोउ, अब्देलरहमान मोहम्मद, माइकल औली द्वारा।
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI से) साथ वाला पेपर [FAIRSEQ S2T: FAIRSEQ के साथ फास्ट स्पीच-टू-टेक्स्ट मॉडलिंग ](https://arxiv.org/abs/2010.05171) चांगहान वांग, यूं तांग, जुताई मा, ऐनी वू, सरव्या पोपुरी, दिमित्रो ओखोनको, जुआन पिनो द्वारा पोस्ट किया गया।
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI से) साथ वाला पेपर [सरल और प्रभावी जीरो-शॉट क्रॉस-लिंगुअल फोनेम रिकॉग्निशन](https:/ /arxiv.org/abs/2109.11680) कियानटोंग जू, एलेक्सी बाएव्स्की, माइकल औली द्वारा।
@ -440,7 +460,7 @@ conda install -c huggingface transformers
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में पेपर [यू ओनली सैंपल (लगभग) ज़ानपेंग ज़ेंग, युनयांग ज़िओंग द्वारा , सत्य एन. रवि, शैलेश आचार्य, ग्लेन फंग, विकास सिंह द्वारा पोस्ट किया गया।
1. एक नए मॉडल में योगदान देना चाहते हैं? नए मॉडल जोड़ने में आपका मार्गदर्शन करने के लिए हमारे पास एक **विस्तृत मार्गदर्शिका और टेम्प्लेट** है। आप उन्हें [`टेम्पलेट्स`](./templates) निर्देशिका में पा सकते हैं। पीआर शुरू करने से पहले [योगदान दिशानिर्देश] (./CONTRIBUTING.md) देखना और अनुरक्षकों से संपर्क करना या प्रतिक्रिया प्राप्त करने के लिए एक नया मुद्दा खोलना याद रखें।
यह जांचने के लिए कि क्या किसी मॉडल में पहले से ही Flax, PyTorch या TensorFlow का कार्यान्वयन है, या यदि उसके पास Tokenizers लाइब्रेरी में संबंधित टोकन है, तो [यह तालिका] (https://huggingface.co/ docs/transformers/index#supported) देखें। -फ्रेमवर्क)।
यह जांचने के लिए कि क्या किसी मॉडल में पहले से ही Flax, PyTorch या TensorFlow का कार्यान्वयन है, या यदि उसके पास Tokenizers लाइब्रेरी में संबंधित टोकन है, तो [यह तालिका](https://huggingface.co/docs/transformers/index#supported) देखें। -फ्रेमवर्क)।
इन कार्यान्वयनों का परीक्षण कई डेटासेट पर किया गया है (देखें केस स्क्रिप्ट का उपयोग करें) और वैनिला कार्यान्वयन के लिए तुलनात्मक रूप से प्रदर्शन करना चाहिए। आप उपयोग के मामले के दस्तावेज़ [इस अनुभाग](https://huggingface.co/docs/transformers/examples) में व्यवहार का विवरण पढ़ सकते हैं।

View File

@ -258,7 +258,7 @@ And here is the equivalent code for TensorFlow:
### pipにて
このリポジトリは、Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+, TensorFlow 2.3+ でテストされています。
このリポジトリは、Python 3.8+, Flax 0.4.1+, PyTorch 1.10+, TensorFlow 2.6+ でテストされています。
🤗Transformersは[仮想環境](https://docs.python.org/3/library/venv.html)にインストールする必要があります。Pythonの仮想環境に慣れていない場合は、[ユーザーガイド](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)を確認してください。
@ -301,6 +301,8 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research から) Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. から公開された研究論文 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918)
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (BAAI から) Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell から公開された研究論文: [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679)
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (MIT から) Yuan Gong, Yu-An Chung, James Glass から公開された研究論文: [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778)
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (Facebook から) Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer から公開された研究論文: [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461)
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (École polytechnique から) Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis から公開された研究論文: [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321)
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (VinAI Research から) Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen から公開された研究論文: [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701)
@ -327,6 +329,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI から) Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever から公開された研究論文: [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (University of Göttingen から) Timo Lüddecke and Alexander Ecker から公開された研究論文: [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003)
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (Salesforce から) Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong から公開された研究論文: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474)
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI から) Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve. から公開された研究論文 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (Microsoft Research Asia から) Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang から公開された研究論文: [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152)
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech から) Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan から公開された研究論文: [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496)
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI から) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie から公開された研究論文: [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545)
@ -346,6 +349,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook から) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko から公開された研究論文: [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research から) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan から公開された研究論文: [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536)
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (SHI Labs から) Ali Hassani and Humphrey Shi から公開された研究論文: [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001)
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI から) Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski. から公開された研究論文 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (HuggingFace から), Victor Sanh, Lysandre Debut and Thomas Wolf. 同じ手法で GPT2, RoBERTa と Multilingual BERT の圧縮を行いました.圧縮されたモデルはそれぞれ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation)、[DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation)、[DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) と名付けられました. 公開された研究論文: [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108)
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (Microsoft Research から) Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei から公開された研究論文: [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378)
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER から), Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park から公開された研究論文: [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664)
@ -354,10 +358,12 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (Snap Research から) Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. から公開された研究論文 [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191)
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google Research/Stanford University から) Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning から公開された研究論文: [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555)
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI から) Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. から公開された研究論文 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438)
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google Research から) Sascha Rothe, Shashi Narayan, Aliaksei Severyn から公開された研究論文: [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461)
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (Baidu から) Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu から公開された研究論文: [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223)
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu から) Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. から公開された研究論文 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674)
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (Meta AI から) はトランスフォーマープロテイン言語モデルです. **ESM-1b** は Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus から公開された研究論文: [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118). **ESM-1v** は Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives から公開された研究論文: [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648). **ESM-2** と **ESMFold** は Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives から公開された研究論文: [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902)
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (Google AI から) Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V から公開されたレポジトリー [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS から) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab から公開された研究論文: [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372)
@ -380,8 +386,10 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA から) Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang から公開された研究論文: [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094)
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (Facebook から) Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed から公開された研究論文: [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447)
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (Berkeley から) Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer から公開された研究論文: [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321)
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (OpenAI から) Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever から公開された研究論文: [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/)
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce から) Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi. から公開された研究論文 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500)
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (OpenAI から) Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever から公開された研究論文: [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf)
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (Microsoft Research Asia から) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou から公開された研究論文: [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318)
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (Microsoft Research Asia から) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou から公開された研究論文: [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740)
@ -391,6 +399,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (Meta AI から) Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze から公開された研究論文: [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136)
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (South China University of Technology から) Jiapeng Wang, Lianwen Jin, Kai Ding から公開された研究論文: [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669)
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI から) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. から公開された研究論文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI から) Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.. から公開された研究論文 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX)
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI から) Iz Beltagy, Matthew E. Peters, Arman Cohan から公開された研究論文: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150)
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI から) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang から公開された研究論文: [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916)
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia から) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto から公開された研究論文: [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057)
@ -409,12 +418,17 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA から) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro から公開された研究論文: [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053)
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research から) Peng Wang, Cheng Da, and Cong Yao. から公開された研究論文 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592)
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (Studio Ousia から) Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka から公開された研究論文: [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151)
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook から) Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli. から公開された研究論文 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516)
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (CMU/Google Brain から) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou から公開された研究論文: [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984)
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (Google Inc. から) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam から公開された研究論文: [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861)
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (Google Inc. から) Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen から公開された研究論文: [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple から) Sachin Mehta and Mohammad Rastegari から公開された研究論文: [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178)
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple から) Sachin Mehta and Mohammad Rastegari. から公開された研究論文 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680)
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (Microsoft Research から) Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu から公開された研究論文: [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297)
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML から) the MosaicML NLP Team. から公開された研究論文 [llm-foundry](https://github.com/mosaicml/llm-foundry/)
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison から) Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh. から公開された研究論文 [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284)
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI から) Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel から公開された研究論文: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934)
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (RUC AI Box から) Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen から公開された研究論文: [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131)
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (SHI Labs から) Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi から公開された研究論文: [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143)
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noahs Ark Lab から) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu から公開された研究論文: [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204)
@ -422,7 +436,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta から) the NLLB team. から公開された研究論文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison から) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh から公開された研究論文: [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902)
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs から) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi から公開された研究論文: [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220)
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI から) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al から公開された研究論文: [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068)
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby から公開された研究論文: [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230)
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google から) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu から公開された研究論文: [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777)
@ -432,7 +446,9 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google から) Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. から公開された研究論文 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347)
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP から) Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang から公開された研究論文: [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333)
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (Sea AI Labs から) Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng から公開された研究論文: [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418)
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research から) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou から公開された研究論文: [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063)
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. から) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. から公開された研究論文 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf)
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA から) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius から公開された研究論文: [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602)
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (Facebook から) Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela から公開された研究論文: [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401)
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google Research から) Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang から公開された研究論文: [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909)
@ -454,7 +470,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook から), Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau から公開された研究論文: [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678)
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University から), Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy から公開された研究論文: [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438)
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley から) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer から公開された研究論文: [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316)
1. **[SwiftFormer](https://huggingface.co/docs/transformers/main/model_doc/swiftformer)** (MBZUAI から) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. から公開された研究論文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI から) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. から公開された研究論文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft から) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo から公開された研究論文: [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft から) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo から公開された研究論文: [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883)
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (University of Würzburg から) Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte から公開された研究論文: [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345)
@ -471,6 +487,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (Microsoft から), Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei から公開された研究論文: [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282)
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill から), Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal から公開された研究論文: [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156)
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (Google Research から) Yi Tay, Mostafa Dehghani, Vinh Q から公開された研究論文: [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research から) Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant. から公開された研究論文 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi)
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (Microsoft Research から) Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang から公開された研究論文: [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597)
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (Microsoft Research から) Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu から公開された研究論文: [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752)
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (Peking University から) Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun. から公開された研究論文 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221)
@ -480,8 +497,11 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP から) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang から公開された研究論文: [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557)
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI から) Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He. から公開された研究論文 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527)
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI から) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick から公開された研究論文: [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377)
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI から) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas から公開された研究論文: [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141)
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise から) Jaehyeon Kim, Jungil Kong, Juhee Son. から公開された研究論文 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103)
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (Facebook AI から) Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli から公開された研究論文: [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477)
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI から) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino から公開された研究論文: [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171)
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI から) Qiantong Xu, Alexei Baevski, Michael Auli から公開された研究論文: [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680)

View File

@ -175,7 +175,7 @@ limitations under the License.
### pip로 설치하기
이 저장소는 Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+, TensorFlow 2.3+에서 테스트 되었습니다.
이 저장소는 Python 3.8+, Flax 0.4.1+, PyTorch 1.10+, TensorFlow 2.6+에서 테스트 되었습니다.
[가상 환경](https://docs.python.org/3/library/venv.html)에 🤗 Transformers를 설치하세요. Python 가상 환경에 익숙하지 않다면, [사용자 가이드](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)를 확인하세요.
@ -216,6 +216,8 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research 에서 제공)은 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.의 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918)논문과 함께 발표했습니다.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
@ -242,6 +244,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI 에서) Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 의 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 논문과 함께 발표했습니다.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (University of Göttingen 에서) Timo Lüddecke and Alexander Ecker 의 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 논문과 함께 발표했습니다.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (Salesforce 에서) Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 의 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 논문과 함께 발표했습니다.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI 에서 제공)은 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.의 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)논문과 함께 발표했습니다.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (Microsoft Research Asia 에서) Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 의 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 논문과 함께 발표했습니다.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech 에서) Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 의 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 논문과 함께 발표했습니다.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI 에서) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 의 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 논문과 함께 발표했습니다.
@ -261,6 +264,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook 에서) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 의 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 논문과 함께 발표했습니다.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research 에서) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 의 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 논문과 함께 발표했습니다.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (SHI Labs 에서) Ali Hassani and Humphrey Shi 의 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 논문과 함께 발표했습니다.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI 에서 제공)은 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.의 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)논문과 함께 발표했습니다.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (HuggingFace 에서) Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT 의 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 논문과 함께 발표했습니다.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (Microsoft Research 에서) Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 의 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 논문과 함께 발표했습니다.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER 에서) Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 의 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 논문과 함께 발표했습니다.
@ -269,10 +273,12 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google Research/Stanford University 에서) Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 의 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 논문과 함께 발표했습니다.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI 에서 제공)은 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.의 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438)논문과 함께 발표했습니다.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google Research 에서) Sascha Rothe, Shashi Narayan, Aliaksei Severyn 의 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 논문과 함께 발표했습니다.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (Baidu 에서) Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 의 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) 논문과 함께 발표했습니다.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu 에서 제공)은 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.의 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674)논문과 함께 발표했습니다.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
@ -295,8 +301,10 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA 에서) Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 의 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 논문과 함께 발표했습니다.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (Facebook 에서) Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 의 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 논문과 함께 발표했습니다.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (Berkeley 에서) Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 의 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 논문과 함께 발표했습니다.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (OpenAI 에서) Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 의 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 논문과 함께 발표했습니다.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce 에서 제공)은 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.의 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500)논문과 함께 발표했습니다.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (OpenAI 에서) Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever 의 [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) 논문과 함께 발표했습니다.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (Microsoft Research Asia 에서) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 의 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 논문과 함께 발표했습니다.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (Microsoft Research Asia 에서) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 의 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 논문과 함께 발표했습니다.
@ -306,6 +314,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (Meta AI 에서) Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 의 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 논문과 함께 발표했습니다.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (South China University of Technology 에서) Jiapeng Wang, Lianwen Jin, Kai Ding 의 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 논문과 함께 발표했습니다.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.의 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)논문과 함께 발표했습니다.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..의 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX)논문과 함께 발표했습니다.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI 에서) Iz Beltagy, Matthew E. Peters, Arman Cohan 의 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 논문과 함께 발표했습니다.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI 에서) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 의 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 논문과 함께 발표했습니다.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia 에서) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 의 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 논문과 함께 발표했습니다.
@ -324,12 +333,17 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA 에서) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 의 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 논문과 함께 발표했습니다.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research 에서 제공)은 Peng Wang, Cheng Da, and Cong Yao.의 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592)논문과 함께 발표했습니다.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (Studio Ousia 에서) Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 의 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 논문과 함께 발표했습니다.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook 에서 제공)은 Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.의 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516)논문과 함께 발표했습니다.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (CMU/Google Brain 에서) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 의 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 논문과 함께 발표했습니다.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (Google Inc. 에서) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 의 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 논문과 함께 발표했습니다.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (Google Inc. 에서) Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 의 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 논문과 함께 발표했습니다.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple 에서) Sachin Mehta and Mohammad Rastegari 의 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 논문과 함께 발표했습니다.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple 에서 제공)은 Sachin Mehta and Mohammad Rastegari.의 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680)논문과 함께 발표했습니다.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (Microsoft Research 에서) Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 의 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 논문과 함께 발표했습니다.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML 에서 제공)은 the MosaicML NLP Team.의 [llm-foundry](https://github.com/mosaicml/llm-foundry/)논문과 함께 발표했습니다.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison 에서 제공)은 Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.의 [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) 논문과 함께 발표했습니다.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI 에서) Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 의 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 논문과 함께 발표했습니다.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (RUC AI Box 에서) Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 의 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 논문과 함께 발표했습니다.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (SHI Labs 에서) Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 의 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 논문과 함께 발표했습니다.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noahs Ark Lab 에서) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 의 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 논문과 함께 발표했습니다.
@ -337,7 +351,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta 에서 제공)은 the NLLB team.의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)논문과 함께 발표했습니다.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison 에서) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 의 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 논문과 함께 발표했습니다.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs 에서) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 의 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 논문과 함께 발표했습니다.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI 에서) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 의 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 논문과 함께 발표했습니다.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI 에서) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 의 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 논문과 함께 발표했습니다.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google 에서) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 의 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 논문과 함께 발표했습니다.
@ -347,7 +361,9 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google 에서 제공)은 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.의 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347)논문과 함께 발표했습니다.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP 에서) Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 의 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 논문과 함께 발표했습니다.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (Sea AI Labs 에서) Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 의 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 논문과 함께 발표했습니다.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. 에서 제공)은 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.의 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf)논문과 함께 발표했습니다.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA 에서) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 의 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 논문과 함께 발표했습니다.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (Facebook 에서) Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 의 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 논문과 함께 발표했습니다.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google Research 에서) Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 의 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 논문과 함께 발표했습니다.
@ -369,7 +385,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook 에서) Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 의 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 논문과 함께 발표했습니다.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University 에서) Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 의 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 논문과 함께 발표했습니다.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley 에서) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 의 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 논문과 함께 발표했습니다.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/main/model_doc/swiftformer)** (MBZUAI 에서 제공)은 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.의 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)논문과 함께 발표했습니다.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI 에서 제공)은 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.의 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)논문과 함께 발표했습니다.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft 에서) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 의 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 논문과 함께 발표했습니다.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft 에서) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 의 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 논문과 함께 발표했습니다.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (University of Würzburg 에서) Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 의 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 논문과 함께 발표했습니다.
@ -386,6 +402,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (Microsoft 에서) Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 의 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 논문과 함께 발표했습니다.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill 에서) Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal 의 [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) 논문과 함께 발표했습니다.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (Google Research 에서) Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzle 의 [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) 논문과 함께 발표했습니다.
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research 에서 제공)은 Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.의 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi)논문과 함께 발표했습니다.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (Microsoft Research 에서) Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 의 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 논문과 함께 발표했습니다.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (Microsoft Research 에서) Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 의 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 논문과 함께 발표했습니다.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (Peking University 에서 제공)은 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.의 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221)논문과 함께 발표했습니다.
@ -395,8 +412,11 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP 에서) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 의 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 논문과 함께 발표했습니다.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI 에서 제공)은 Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.의 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527)논문과 함께 발표했습니다.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI 에서) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 의 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 논문과 함께 발표했습니다.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI 에서) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 의 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) 논문과 함께 발표했습니다.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise 에서 제공)은 Jaehyeon Kim, Jungil Kong, Juhee Son.의 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103)논문과 함께 발표했습니다.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (Facebook AI 에서) Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 의 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 논문과 함께 발표했습니다.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI 에서) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 의 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 논문과 함께 발표했습니다.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI 에서) Qiantong Xu, Alexei Baevski, Michael Auli 의 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 논문과 함께 발표했습니다.
@ -414,7 +434,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI 에서) Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 의 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 논문과 함께 발표했습니다.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (Facebook AI 에서) Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 의 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 논문과 함께 발표했습니다.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (Huazhong University of Science & Technology 에서) Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 의 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 논문과 함께 발표했습니다.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (the University of Wisconsin - Madison 에서) Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 의 [You Only Sample (Almost) 논문과 함께 발표했습니다.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (the University of Wisconsin - Madison 에서) Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 의 [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) 논문과 함께 발표했습니다.
1. 새로운 모델을 올리고 싶나요? 우리가 **상세한 가이드와 템플릿** 으로 새로운 모델을 올리도록 도와드릴게요. 가이드와 템플릿은 이 저장소의 [`templates`](./templates) 폴더에서 확인하실 수 있습니다. [컨트리뷰션 가이드라인](./CONTRIBUTING.md)을 꼭 확인해주시고, PR을 올리기 전에 메인테이너에게 연락하거나 이슈를 오픈해 피드백을 받으시길 바랍니다.
각 모델이 Flax, PyTorch, TensorFlow으로 구현되었는지 또는 🤗 Tokenizers 라이브러리가 지원하는 토크나이저를 사용하는지 확인하려면, [이 표](https://huggingface.co/docs/transformers/index#supported-frameworks)를 확인하세요.

View File

@ -200,7 +200,7 @@ checkpoint: 检查点
### 使用 pip
这个仓库已在 Python 3.6+、Flax 0.3.2+、PyTorch 1.3.1+ 和 TensorFlow 2.3+ 下经过测试。
这个仓库已在 Python 3.8+、Flax 0.4.1+、PyTorch 1.10+ 和 TensorFlow 2.6+ 下经过测试。
你可以在[虚拟环境](https://docs.python.org/3/library/venv.html)中安装 🤗 Transformers。如果你还不熟悉 Python 的虚拟环境,请阅此[用户说明](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。
@ -240,6 +240,8 @@ conda install -c huggingface transformers
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (来自 Google Research) 伴随论文 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) 由 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig 发布。
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (来自 BAAI) 伴随论文 [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) 由 Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell 发布。
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (来自 MIT) 伴随论文 [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) 由 Yuan Gong, Yu-An Chung, James Glass 发布。
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (来自 Facebook) 伴随论文 [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) 由 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer 发布。
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (来自 École polytechnique) 伴随论文 [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) 由 Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis 发布。
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (来自 VinAI Research) 伴随论文 [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) 由 Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen 发布。
@ -266,6 +268,7 @@ conda install -c huggingface transformers
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (来自 OpenAI) 伴随论文 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 由 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 发布。
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (来自 University of Göttingen) 伴随论文 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 由 Timo Lüddecke and Alexander Ecker 发布。
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (来自 Salesforce) 伴随论文 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 由 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 发布。
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (来自 MetaAI) 伴随论文 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) 由 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve 发布。
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (来自 Microsoft Research Asia) 伴随论文 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 由 Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 发布。
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (来自 YituTech) 伴随论文 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 由 Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 发布。
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (来自 Facebook AI) 伴随论文 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 由 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 发布。
@ -285,6 +288,7 @@ conda install -c huggingface transformers
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (来自 Facebook) 伴随论文 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 由 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 发布。
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (来自 Microsoft Research) 伴随论文 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 由 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 发布。
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (来自 SHI Labs) 伴随论文 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 由 Ali Hassani and Humphrey Shi 发布。
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (来自 Meta AI) 伴随论文 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) 由 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski 发布。
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (来自 HuggingFace), 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 同样的方法也应用于压缩 GPT-2 到 [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa 到 [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT 到 [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) 和德语版 DistilBERT。
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (来自 Microsoft Research) 伴随论文 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 由 Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 发布。
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (来自 NAVER) 伴随论文 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 由 Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 发布。
@ -293,10 +297,12 @@ conda install -c huggingface transformers
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (来自 Snap Research) 伴随论文 [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) 由 Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren 发布。
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (来自 Meta AI) 伴随论文 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) 由 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi 发布。
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (来自 Google Research) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (来自 Baidu) 伴随论文 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 发布。
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (来自 Baidu) 伴随论文 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) 由 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang 发布。
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。
@ -319,8 +325,10 @@ conda install -c huggingface transformers
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (来自 UCSD, NVIDIA) 伴随论文 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 由 Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 发布。
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (来自 Facebook) 伴随论文 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 由 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 发布。
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (来自 Berkeley) 伴随论文 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 由 Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 发布。
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (来自 OpenAI) 伴随论文 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 由 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 发布。
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (来自 Salesforce) 伴随论文 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) 由 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi 发布。
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 由 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 发布。
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 由 Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 发布。
@ -330,6 +338,7 @@ conda install -c huggingface transformers
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (来自 Meta AI) 伴随论文 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 由 Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 发布。
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (来自 South China University of Technology) 伴随论文 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 由 Jiapeng Wang, Lianwen Jin, Kai Ding 发布。
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (来自 The FAIR team of Meta AI) 伴随论文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) 由 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample 发布。
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (来自 The FAIR team of Meta AI) 伴随论文 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) 由 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom. 发布。
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (来自 Google AI) released 伴随论文 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 由 Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 发布。
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (来自 Studio Ousia) 伴随论文 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 由 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 发布。
@ -348,12 +357,17 @@ conda install -c huggingface transformers
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (来自 Alibaba Research) 伴随论文 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) 由 Peng Wang, Cheng Da, and Cong Yao 发布。
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (来自 Studio Ousia) 伴随论文 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 由 Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 发布。
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (来自 Facebook) 伴随论文 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) 由 Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli 发布。
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (来自 CMU/Google Brain) 伴随论文 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 由 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 发布。
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (来自 Google Inc.) 伴随论文 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 由 Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 发布。
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (来自 Google Inc.) 伴随论文 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 由 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 发布。
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (来自 Apple) 伴随论文 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 由 Sachin Mehta and Mohammad Rastegari 发布。
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (来自 Apple) 伴随论文 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) 由 Sachin Mehta and Mohammad Rastegari 发布。
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (来自 Microsoft Research) 伴随论文 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 由 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 发布。
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (来自 MosaiML) 伴随论文 [llm-foundry](https://github.com/mosaicml/llm-foundry/) 由 the MosaicML NLP Team 发布。
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (来自 the University of Wisconsin - Madison) 伴随论文 [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) 由 Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh 发布。
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (来自 Google AI) 伴随论文 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 由 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 发布。
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (来自 中国人民大学 AI Box) 伴随论文 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 由 Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 发布。
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (来自 SHI Labs) 伴随论文 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 由 Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 发布。
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (来自华为诺亚方舟实验室) 伴随论文 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 由 Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 发布。
@ -361,7 +375,7 @@ conda install -c huggingface transformers
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (来自 the University of Wisconsin - Madison) 伴随论文 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 由 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 发布。
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (来自 SHI Labs) 伴随论文 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 由 Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 发布。
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (来自 [s-JoL](https://huggingface.co/s-JoL)) 由 [Open-Llama](https://github.com/s-JoL/Open-Llama) 发布.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (来自 [s-JoL](https://huggingface.co/s-JoL)) 由 [Open-Llama](https://github.com/s-JoL/Open-Llama) 发布.
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (来自 Meta AI) 伴随论文 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 由 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 发布。
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (来自 Google AI) 伴随论文 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 由 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 发布。
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。
@ -371,7 +385,9 @@ conda install -c huggingface transformers
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (来自 Google) 伴随论文 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) 由 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova 发布。
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (来自 UCLA NLP) 伴随论文 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 由 Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 发布。
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (来自 Sea AI Labs) 伴随论文 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 由 Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 发布。
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (来自 Nanjing University, The University of Hong Kong etc.) 伴随论文 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) 由 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao 发布。
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (来自 NVIDIA) 伴随论文 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 由 Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 发布。
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (来自 Facebook) 伴随论文 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 由 Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 发布。
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (来自 Google Research) 伴随论文 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 由 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 发布。
@ -393,7 +409,7 @@ conda install -c huggingface transformers
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。
1. **[SwiftFormer](https://huggingface.co/docs/transformers/main/model_doc/swiftformer)** (来自 MBZUAI) 伴随论文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) 由 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan 发布。
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (来自 MBZUAI) 伴随论文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) 由 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan 发布。
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (来自 Microsoft) 伴随论文 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 由 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 发布。
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (来自 University of Würzburg) 伴随论文 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 由 Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 发布。
@ -410,6 +426,7 @@ conda install -c huggingface transformers
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (来自 Microsoft) 伴随论文 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 由 Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 发布。
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (来自 UNC Chapel Hill) 伴随论文 [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) 由 Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal 发布。
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (来自 Google Research) 伴随论文 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) 由 Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant 发布。
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (来自 Microsoft Research) 伴随论文 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 由 Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 发布。
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (来自 Microsoft Research) 伴随论文 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 由 Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 发布。
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (来自 Peking University) 伴随论文 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) 由 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun 发布。
@ -419,8 +436,11 @@ conda install -c huggingface transformers
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (来自 Meta AI) 伴随论文 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) 由 Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He 发布。
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (来自 Meta AI) 伴随论文 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 发布.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (来自 Kakao Enterprise) 伴随论文 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) 由 Jaehyeon Kim, Jungil Kong, Juhee Son 发布。
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (来自 Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) 由 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (来自 Facebook AI) 伴随论文 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 由 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 发布。
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (来自 Facebook AI) 伴随论文 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 发布。
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (来自 Facebook AI) 伴随论文 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 由 Qiantong Xu, Alexei Baevski, Michael Auli 发布。
@ -438,7 +458,7 @@ conda install -c huggingface transformers
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (来自 Facebook AI) 伴随论文 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 由 Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 发布。
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (来自 Facebook AI) 伴随论文 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 由 Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 发布。
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (来自 Huazhong University of Science & Technology) 伴随论文 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 由 Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 发布。
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (来自 the University of Wisconsin - Madison) 伴随论文 [You Only Sample (Almost) 由 Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 发布。
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (来自 the University of Wisconsin - Madison) 伴随论文 [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) 由 Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 发布。
1. 想要贡献新的模型?我们这里有一份**详细指引和模板**来引导你添加新的模型。你可以在 [`templates`](./templates) 目录中找到他们。记得查看 [贡献指南](./CONTRIBUTING.md) 并在开始写 PR 前联系维护人员或开一个新的 issue 来获得反馈。
要检查某个模型是否已有 Flax、PyTorch 或 TensorFlow 的实现,或其是否在 🤗 Tokenizers 库中有对应词符化器tokenizer敬请参阅[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。
@ -450,7 +470,7 @@ conda install -c huggingface transformers
| 章节 | 描述 |
|-|-|
| [文档](https://huggingface.co/transformers/) | 完整的 API 文档和教程 |
| [文档](https://huggingface.co/docs/transformers/) | 完整的 API 文档和教程 |
| [任务总结](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支持的任务 |
| [预处理教程](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 来为模型准备数据 |
| [训练和微调](https://huggingface.co/docs/transformers/training) | 在 PyTorch/TensorFlow 的训练循环或 `Trainer` API 中使用 🤗 Transformers 提供的模型 |

View File

@ -212,7 +212,7 @@ Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換
### 使用 pip
這個 Repository 已在 Python 3.6+、Flax 0.3.2+、PyTorch 1.3.1+ 和 TensorFlow 2.3+ 下經過測試。
這個 Repository 已在 Python 3.8+、Flax 0.4.1+、PyTorch 1.10+ 和 TensorFlow 2.6+ 下經過測試。
你可以在[虛擬環境](https://docs.python.org/3/library/venv.html)中安裝 🤗 Transformers。如果你還不熟悉 Python 的虛擬環境,請閱此[使用者指引](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。
@ -252,6 +252,8 @@ conda install -c huggingface transformers
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
@ -278,6 +280,7 @@ conda install -c huggingface transformers
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
@ -297,6 +300,7 @@ conda install -c huggingface transformers
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER) released with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
@ -305,10 +309,12 @@ conda install -c huggingface transformers
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
@ -331,8 +337,10 @@ conda install -c huggingface transformers
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
@ -342,6 +350,7 @@ conda install -c huggingface transformers
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
@ -360,12 +369,17 @@ conda install -c huggingface transformers
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the paper [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
@ -373,7 +387,7 @@ conda install -c huggingface transformers
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
@ -383,7 +397,9 @@ conda install -c huggingface transformers
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
@ -405,7 +421,7 @@ conda install -c huggingface transformers
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook) released with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University) released with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/main/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
@ -422,6 +438,7 @@ conda install -c huggingface transformers
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
@ -431,8 +448,11 @@ conda install -c huggingface transformers
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
@ -450,7 +470,7 @@ conda install -c huggingface transformers
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. 想要貢獻新的模型?我們這裡有一份**詳細指引和模板**來引導你加入新的模型。你可以在 [`templates`](./templates) 目錄中找到它們。記得查看[貢獻指引](./CONTRIBUTING.md)並在開始寫 PR 前聯繫維護人員或開一個新的 issue 來獲得 feedbacks。
要檢查某個模型是否已有 Flax、PyTorch 或 TensorFlow 的實作,或其是否在🤗 Tokenizers 函式庫中有對應的 tokenizer敬請參閱[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。

609
awesome-transformers.md Normal file
View File

@ -0,0 +1,609 @@
# Awesome projects built with Transformers
This page lists awesome projects built on top of Transformers. Transformers is more than a toolkit to use pretrained
models: it's a community of projects built around it and the Hugging Face Hub. We want Transformers to enable
developers, researchers, students, professors, engineers, and anyone else to build their dream projects.
In this list, we showcase incredibly impactful and novel projects that have pushed the field forward. We celebrate
100 of these projects as we reach the milestone of 100k stars as a community; but we're very open to pull requests
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
to add it.
## [gpt4all](https://github.com/nomic-ai/gpt4all)
[gpt4all](https://github.com/nomic-ai/gpt4all) is an ecosystem of open-source chatbots trained on massive collections of clean assistant data including code, stories and dialogue. It offers open-source, large language models such as LLaMA and GPT-J trained in an assistant-style.
Keywords: Open-source, LLaMa, GPT-J, instruction, assistant
## [recommenders](https://github.com/microsoft/recommenders)
This repository contains examples and best practices for building recommendation systems, provided as Jupyter notebooks. It goes over several aspects required to build efficient recommendation systems: data preparation, modeling, evaluation, model selection & optimization, as well as operationalization
Keywords: Recommender systems, AzureML
## [lama-cleaner](https://github.com/Sanster/lama-cleaner)
Image inpainting tool powered by Stable Diffusion. Remove any unwanted object, defect, people from your pictures or erase and replace anything on your pictures.
Keywords: inpainting, SD, Stable Diffusion
## [flair](https://github.com/flairNLP/flair)
FLAIR is a powerful PyTorch NLP framework, convering several important tasks: NER, sentiment-analysis, part-of-speech tagging, text and document embeddings, among other things.
Keywords: NLP, text embedding, document embedding, biomedical, NER, PoS, sentiment-analysis
## [mindsdb](https://github.com/mindsdb/mindsdb)
MindsDB is a low-code ML platform, which automates and integrates several ML frameworks into the data stack as "AI Tables" to streamline the integration of AI into applications, making it accessible to developers of all skill levels.
Keywords: Database, low-code, AI table
## [langchain](https://github.com/hwchase17/langchain)
[langchain](https://github.com/hwchase17/langchain) is aimed at assisting in the development of apps merging both LLMs and other sources of knowledge. The library allows chaining calls to applications, creating a sequence across many tools.
Keywords: LLMs, Large Language Models, Agents, Chains
## [LlamaIndex](https://github.com/jerryjliu/llama_index)
[LlamaIndex](https://github.com/jerryjliu/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retreival mechanisms to perform different LLM tasks and obtain knowledge-augmented results.
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
## [ParlAI](https://github.com/facebookresearch/ParlAI)
[ParlAI](https://github.com/facebookresearch/ParlAI) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dialogue, to visual question answering. It provides more than 100 datasets under the same API, a large zoo of pretrained models, a set of agents, and has several integrations.
Keywords: Dialogue, Chatbots, VQA, Datasets, Agents
## [sentence-transformers](https://github.com/UKPLab/sentence-transformers)
This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various task. Text is embedding in vector space such that similar text is close and can efficiently be found using cosine similarity.
Keywords: Dense vector representations, Text embeddings, Sentence embeddings
## [ludwig](https://github.com/ludwig-ai/ludwig)
Ludwig is a declarative machine learning framework that makes it easy to define machine learning pipelines using a simple and flexible data-driven configuration system. Ludwig is targeted at a wide variety of AI tasks. It provides a data-driven configuration system, training, prediction, and evaluation scripts, as well as a programmatic API.
Keywords: Declarative, Data-driven, ML Framework
## [InvokeAI](https://github.com/invoke-ai/InvokeAI)
[InvokeAI](https://github.com/invoke-ai/InvokeAI) is an engine for Stable Diffusion models, aimed at professionals, artists, and enthusiasts. It leverages the latest AI-driven technologies through CLI as well as a WebUI.
Keywords: Stable-Diffusion, WebUI, CLI
## [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)
[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) is an easy-to-use and powerful NLP library particularly targeted at the Chinese languages. It has support for multiple pre-trained model zoos, and supports a wide-range of NLP tasks from research to industrial applications.
Keywords: NLP, Chinese, Research, Industry
## [stanza](https://github.com/stanfordnlp/stanza)
The Stanford NLP Group's official Python NLP library. It contains support for running various accurate natural language processing tools on 60+ languages and for accessing the Java Stanford CoreNLP software from Python.
Keywords: NLP, Multilingual, CoreNLP
## [DeepPavlov](https://github.com/deeppavlov/DeepPavlov)
[DeepPavlov](https://github.com/deeppavlov/DeepPavlov) is an open-source conversational AI library. It is designed for the development of production ready chat-bots and complex conversational systems, as well as research in the area of NLP and, particularly, of dialog systems.
Keywords: Conversational, Chatbot, Dialog
## [alpaca-lora](https://github.com/tloen/alpaca-lora)
Alpaca-lora contains code for reproducing the Stanford Alpaca results using low-rank adaptation (LoRA). The repository provides training (fine-tuning) as well as generation scripts.
Keywords: LoRA, Parameter-efficient fine-tuning
## [imagen-pytorch](https://github.com/lucidrains/imagen-pytorch)
An open-source Implementation of Imagen, Google's closed-source Text-to-Image Neural Network that beats DALL-E2. As of release, it is the new SOTA for text-to-image synthesis.
Keywords: Imagen, Text-to-image
## [adapter-transformers](https://github.com/adapter-hub/adapter-transformers)
[adapter-transformers](https://github.com/adapter-hub/adapter-transformers) is an extension of HuggingFace's Transformers library, integrating adapters into state-of-the-art language models by incorporating AdapterHub, a central repository for pre-trained adapter modules. It is a drop-in replacement for transformers, which is regularly updated to stay up-to-date with the developments of transformers.
Keywords: Adapters, LoRA, Parameter-efficient fine-tuning, Hub
## [NeMo](https://github.com/NVIDIA/NeMo)
NVIDIA [NeMo](https://github.com/NVIDIA/NeMo) is a conversational AI toolkit built for researchers working on automatic speech recognition (ASR), text-to-speech synthesis (TTS), large language models (LLMs), and natural language processing (NLP). The primary objective of [NeMo](https://github.com/NVIDIA/NeMo) is to help researchers from industry and academia to reuse prior work (code and pretrained models) and make it easier to create new https://developer.nvidia.com/conversational-ai#started.
Keywords: Conversational, ASR, TTS, LLMs, NLP
## [Runhouse](https://github.com/run-house/runhouse)
[Runhouse](https://github.com/run-house/runhouse) allows to send code and data to any of your compute or data infra, all in Python, and continue to interact with them normally from your existing code and environment. Runhouse developers mention:
> Think of it as an expansion pack to your Python interpreter that lets it take detours to remote machines or manipulate remote data.
Keywords: MLOps, Infrastructure, Data storage, Modeling
## [MONAI](https://github.com/Project-MONAI/MONAI)
[MONAI](https://github.com/Project-MONAI/MONAI) is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its ambitions are:
- developing a community of academic, industrial and clinical researchers collaborating on a common foundation;
- creating state-of-the-art, end-to-end training workflows for healthcare imaging;
- providing researchers with the optimized and standardized way to create and evaluate deep learning models.
Keywords: Healthcare imaging, Training, Evaluation
## [simpletransformers](https://github.com/ThilinaRajapakse/simpletransformers)
Simple Transformers lets you quickly train and evaluate Transformer models. Only 3 lines of code are needed to initialize, train, and evaluate a model. It supports a wide variety of NLP tasks.
Keywords: Framework, simplicity, NLP
## [JARVIS](https://github.com/microsoft/JARVIS)
[JARVIS](https://github.com/microsoft/JARVIS) is a system attempting to merge LLMs such as GPT-4 with the rest of the open-source ML community: leveraging up to 60 downstream models in order to perform tasks identified by the LLM.
Keywords: LLM, Agents, HF Hub
## [transformers.js](https://xenova.github.io/transformers.js/)
[transformers.js](https://xenova.github.io/transformers.js/) is a JavaScript library targeted at running models from transformers directly within the browser.
Keywords: Transformers, JavaScript, browser
## [bumblebee](https://github.com/elixir-nx/bumblebee)
Bumblebee provides pre-trained Neural Network models on top of Axon, a neural networks library for the Elixir language. It includes integration with 🤗 Models, allowing anyone to download and perform Machine Learning tasks with few lines of code.
Keywords: Elixir, Axon
## [argilla](https://github.com/argilla-io/argilla)
Argilla is an open-source platform providing advanced NLP labeling, monitoring, and workspaces. It is compatible with many open source ecosystems such as Hugging Face, Stanza, FLAIR, and others.
Keywords: NLP, Labeling, Monitoring, Workspaces
## [haystack](https://github.com/deepset-ai/haystack)
Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs. It offers production-ready tools to quickly build complex decision making, question answering, semantic search, text generation applications, and more.
Keywords: NLP, Framework, LLM
## [spaCy](https://github.com/explosion/spaCy)
[spaCy](https://github.com/explosion/spaCy) is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. It offers support for transformers models through its third party package, spacy-transformers.
Keywords: NLP, Framework
## [speechbrain](https://github.com/speechbrain/speechbrain)
SpeechBrain is an open-source and all-in-one conversational AI toolkit based on PyTorch.
The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognition, speech enhancement, speech separation, language identification, multi-microphone signal processing, and many others.
Keywords: Conversational, Speech
## [skorch](https://github.com/skorch-dev/skorch)
Skorch is a scikit-learn compatible neural network library that wraps PyTorch. It has support for models within transformers, and tokenizers from tokenizers.
Keywords: Scikit-Learn, PyTorch
## [bertviz](https://github.com/jessevig/bertviz)
BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models.
Keywords: Visualization, Transformers
## [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax)
[mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) is a haiku library using the xmap/pjit operators in JAX for model parallelism of transformers. This library is designed for scalability up to approximately 40B parameters on TPUv3s. It was the library used to train the GPT-J model.
Keywords: Haiku, Model parallelism, LLM, TPU
## [deepchem](https://github.com/deepchem/deepchem)
DeepChem aims to provide a high quality open-source toolchain that democratizes the use of deep-learning in drug discovery, materials science, quantum chemistry, and biology.
Keywords: Drug discovery, Materials Science, Quantum Chemistry, Biology
## [OpenNRE](https://github.com/thunlp/OpenNRE)
An Open-Source Package for Neural Relation Extraction (NRE). It is targeted at a wide range of users, from newcomers to relation extraction, to developers, researchers, or students.
Keywords: Neural Relation Extraction, Framework
## [pycorrector](https://github.com/shibing624/pycorrector)
PyCorrector is a Chinese Text Error Correction Tool. It uses a language model to detect errors, pinyin feature and shape feature to correct Chinese text errors. it can be used for Chinese Pinyin and stroke input method.
Keywords: Chinese, Error correction tool, Language model, Pinyin
## [nlpaug](https://github.com/makcedward/nlpaug)
This python library helps you with augmenting nlp for machine learning projects. It is a lightweight library featuring synthetic data generation for improving model performance, support for audio and text, and compatibility with several ecosystems (scikit-learn, pytorch, tensorflow).
Keywords: Data augmentation, Synthetic data generation, Audio, NLP
## [dream-textures](https://github.com/carson-katri/dream-textures)
[dream-textures](https://github.com/carson-katri/dream-textures) is a library targeted at bringing stable-diffusion support within Blender. It supports several use-cases, such as image generation, texture projection, inpainting/outpainting, ControlNet, and upscaling.
Keywords: Stable-Diffusion, Blender
## [seldon-core](https://github.com/SeldonIO/seldon-core)
Seldon core converts your ML models (Tensorflow, Pytorch, H2o, etc.) or language wrappers (Python, Java, etc.) into production REST/GRPC microservices.
Seldon handles scaling to thousands of production machine learning models and provides advanced machine learning capabilities out of the box including Advanced Metrics, Request Logging, Explainers, Outlier Detectors, A/B Tests, Canaries and more.
Keywords: Microservices, Modeling, Language wrappers
## [open_model_zoo](https://github.com/openvinotoolkit/open_model_zoo)
This repository includes optimized deep learning models and a set of demos to expedite development of high-performance deep learning inference applications. Use these free pre-trained models instead of training your own models to speed-up the development and production deployment process.
Keywords: Optimized models, Demos
## [ml-stable-diffusion](https://github.com/apple/ml-stable-diffusion)
ML-Stable-Diffusion is a repository by Apple bringing Stable Diffusion support to Core ML, on Apple Silicon devices. It supports stable diffusion checkpoints hosted on the Hugging Face Hub.
Keywords: Stable Diffusion, Apple Silicon, Core ML
## [stable-dreamfusion](https://github.com/ashawkey/stable-dreamfusion)
Stable-Dreamfusion is a pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model.
Keywords: Text-to-3D, Stable Diffusion
## [txtai](https://github.com/neuml/txtai)
[txtai](https://github.com/neuml/txtai) is an open-source platform for semantic search and workflows powered by language models. txtai builds embeddings databases, which are a union of vector indexes and relational databases enabling similarity search with SQL. Semantic workflows connect language models together into unified applications.
Keywords: Semantic search, LLM
## [djl](https://github.com/deepjavalibrary/djl)
Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning. DJL is designed to be easy to get started with and simple to use for developers. DJL provides a native Java development experience and functions like any other regular Java library. DJL offers [a Java binding](https://github.com/deepjavalibrary/djl/tree/master/extensions/tokenizers) for HuggingFace Tokenizers and easy conversion toolkit for HuggingFace model to deploy in Java.
Keywords: Java, Framework
## [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/)
This project provides a unified framework to test generative language models on a large number of different evaluation tasks. It has support for more than 200 tasks, and supports different ecosystems: HF Transformers, GPT-NeoX, DeepSpeed, as well as the OpenAI API.
Keywords: LLM, Evaluation, Few-shot
## [gpt-neox](https://github.com/EleutherAI/gpt-neox)
This repository records EleutherAI's library for training large-scale language models on GPUs. The framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. It is focused on training multi-billion-parameter models.
Keywords: Training, LLM, Megatron, DeepSpeed
## [muzic](https://github.com/microsoft/muzic)
Muzic is a research project on AI music that empowers music understanding and generation with deep learning and artificial intelligence. Muzic was created by researchers from Microsoft Research Asia.
Keywords: Music understanding, Music generation
## [dalle-flow](https://github.com/jina-ai/dalle-flow)
DALL·E Flow is an interactive workflow for generating high-definition images from a text prompt. Itt leverages DALL·E-Mega, GLID-3 XL, and Stable Diffusion to generate image candidates, and then calls CLIP-as-service to rank the candidates w.r.t. the prompt.
The preferred candidate is fed to GLID-3 XL for diffusion, which often enriches the texture and background. Finally, the candidate is upscaled to 1024x1024 via SwinIR.
Keywords: High-definition image generation, Stable Diffusion, DALL-E Mega, GLID-3 XL, CLIP, SwinIR
## [lightseq](https://github.com/bytedance/lightseq)
LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP and CV models such as BERT, GPT, Transformer, etc. It is therefore best useful for machine translation, text generation, image classification, and other sequence related tasks.
Keywords: Training, Inference, Sequence Processing, Sequence Generation
## [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)
The goal of this project is to create a learning based system that takes an image of a math formula and returns corresponding LaTeX code.
Keywords: OCR, LaTeX, Math formula
## [open_clip](https://github.com/mlfoundations/open_clip)
OpenCLIP is an open source implementation of OpenAI's CLIP.
The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift.
The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset.
Specifically, a ResNet-50 model trained with this codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet.
Keywords: CLIP, Open-source, Contrastive, Image-text
## [dalle-playground](https://github.com/saharmor/dalle-playground)
A playground to generate images from any text prompt using Stable Diffusion and Dall-E mini.
Keywords: WebUI, Stable Diffusion, Dall-E mini
## [FedML](https://github.com/FedML-AI/FedML)
[FedML](https://github.com/FedML-AI/FedML) is a federated learning and analytics library enabling secure and collaborative machine learning on decentralized data anywhere at any scale.
It supports large-scale cross-silo federated learning, and cross-device federated learning on smartphones/IoTs, and research simulation.
Keywords: Federated Learning, Analytics, Collaborative ML, Decentralized
## [gpt-code-clippy](https://github.com/CodedotAl/gpt-code-clippy)
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.
Keywords: LLM, Code
## [TextAttack](https://github.com/QData/TextAttack)
[TextAttack](https://github.com/QData/TextAttack) 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP.
Keywords: Adversarial attacks, Data augmentation, NLP
## [OpenPrompt](https://github.com/thunlp/OpenPrompt)
Prompt-learning is a paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modify the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. [OpenPrompt](https://github.com/thunlp/OpenPrompt) supports loading PLMs directly from https://github.com/huggingface/transformers.
## [text-generation-webui](https://github.com/oobabooga/text-generation-webui/)
[text-generation-webui](https://github.com/oobabooga/text-generation-webui/) is a Gradio Web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, Pythia, OPT, and GALACTICA.
Keywords: LLM, WebUI
## [libra](https://github.com/Palashio/libra)
An ergonomic machine learning [libra](https://github.com/Palashio/libra)ry for non-technical users. It focuses on ergonomics and on ensuring that training a model is as simple as it can be.
Keywords: Ergonomic, Non-technical
## [alibi](https://github.com/SeldonIO/alibi)
Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-quality implementations of black-box, white-box, local and global explanation methods for classification and regression models.
Keywords: Model inspection, Model interpretation, Black-box, White-box
## [tortoise-tts](https://github.com/neonbjb/tortoise-tts)
Tortoise is a text-to-speech program built with the following priorities: strong multi-voice capabilities, and highly realistic prosody and intonation.
Keywords: Text-to-speech
## [flower](https://github.com/adap/flower)
Flower (flwr) is a framework for building federated learning systems. The design of Flower is based on a few guiding principles: customizability, extendability, framework agnosticity, and ease-of-use.
Keywords: Federated learning systems, Customizable, Extendable, Framework-agnostic, Simplicity
## [fast-bert](https://github.com/utterworks/fast-bert)
Fast-Bert is a deep learning library that allows developers and data scientists to train and deploy BERT and XLNet based models for natural language processing tasks beginning with Text Classification. It is aimed at simplicity.
Keywords: Deployment, BERT, XLNet
## [towhee](https://github.com/towhee-io/towhee)
Towhee makes it easy to build neural data processing pipelines for AI applications. We provide hundreds of models, algorithms, and transformations that can be used as standard pipeline building blocks. Users can use Towhee's Pythonic API to build a prototype of their pipeline and automatically optimize it for production-ready environments.
Keywords: Data processing pipeline, Optimization
## [alibi-detect](https://github.com/SeldonIO/alibi-detect)
Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection.
Keywords: Adversarial, Outlier, Drift detection
## [FARM](https://github.com/deepset-ai/FARM)
[FARM](https://github.com/deepset-ai/FARM) makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built upon transformers and provides additional features to simplify the life of developers: Parallelized preprocessing, highly modular design, multi-task learning, experiment tracking, easy debugging and close integration with AWS SageMaker.
Keywords: Transfer Learning, Modular design, Multi-task learning, Experiment tracking
## [aitextgen](https://github.com/minimaxir/aitextgen)
A robust Python tool for text-based AI training and generation using OpenAI's GPT-2 and EleutherAI's GPT Neo/GPT-3 architecture.
[aitextgen](https://github.com/minimaxir/aitextgen) is a Python package that leverages PyTorch, Hugging Face Transformers and pytorch-lightning with specific optimizations for text generation using GPT-2, plus many added features.
Keywords: Training, Generation
## [diffgram](https://github.com/diffgram/diffgram)
Diffgram aims to integrate human supervision into platforms. We support your team programmatically changing the UI (Schema, layout, etc.) like in Streamlit. This means that you can collect and annotate timely data from users. In other words, we are the platform behind your platform, an integrated part of your application, to ship new & better AI products faster.
Keywords: Human supervision, Platform
## [ecco](https://github.com/jalammar/ecco)
Explain, analyze, and visualize NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0).
Keywords: Model explainability
## [s3prl](https://github.com/s3prl/s3prl)
[s3prl](https://github.com/s3prl/s3prl) stands for Self-Supervised Speech Pre-training and Representation Learning. Self-supervised speech pre-trained models are called upstream in this toolkit, and are utilized in various downstream tasks.
Keywords: Speech, Training
## [ru-dalle](https://github.com/ai-forever/ru-dalle)
RuDALL-E aims to be similar to DALL-E, targeted to Russian.
Keywords: DALL-E, Russian
## [DeepKE](https://github.com/zjunlp/DeepKE)
[DeepKE](https://github.com/zjunlp/DeepKE) is a knowledge extraction toolkit for knowledge graph construction supporting cnSchemalow-resource, document-level and multimodal scenarios for entity, relation and attribute extraction.
Keywords: Knowledge Extraction, Knowledge Graphs
## [Nebuly](https://github.com/nebuly-ai/nebuly)
Nebuly is the next-generation platform to monitor and optimize your AI costs in one place. The platform connects to all your AI cost sources (compute, API providers, AI software licenses, etc) and centralizes them in one place to give you full visibility on a model basis. The platform also provides optimization recommendations and a co-pilot model that can guide during the optimization process. The platform builds on top of the open-source tools allowing you to optimize the different steps of your AI stack to squeeze out the best possible cost performances.
Keywords: Optimization, Performance, Monitoring
## [imaginAIry](https://github.com/brycedrennan/imaginAIry)
Offers a CLI and a Python API to generate images with Stable Diffusion. It has support for many tools, like image structure control (controlnet), instruction-based image edits (InstructPix2Pix), prompt-based masking (clipseg), among others.
Keywords: Stable Diffusion, CLI, Python API
## [sparseml](https://github.com/neuralmagic/sparseml)
SparseML is an open-source model optimization toolkit that enables you to create inference-optimized sparse models using pruning, quantization, and distillation algorithms. Models optimized with SparseML can then be exported to the ONNX and deployed with DeepSparse for GPU-class performance on CPU hardware.
Keywords: Model optimization, Pruning, Quantization, Distillation
## [opacus](https://github.com/pytorch/opacus)
Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment.
Keywords: Differential privacy
## [LAVIS](https://github.com/salesforce/LAVIS)
[LAVIS](https://github.com/salesforce/LAVIS) is a Python deep learning library for LAnguage-and-VISion intelligence research and applications. This library aims to provide engineers and researchers with a one-stop solution to rapidly develop models for their specific multimodal scenarios, and benchmark them across standard and customized datasets. It features a unified interface design to access
Keywords: Multimodal, NLP, Vision
## [buzz](https://github.com/chidiwilliams/buzz)
Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper.
Keywords: Audio transcription, Translation
## [rust-bert](https://github.com/guillaume-be/rust-bert)
Rust-native state-of-the-art Natural Language Processing models and pipelines. Port of Hugging Face's Transformers library, using the tch-rs crate and pre-processing from rust-tokenizers. Supports multi-threaded tokenization and GPU inference. This repository exposes the model base architecture, task-specific heads and ready-to-use pipelines.
Keywords: Rust, BERT, Inference
## [EasyNLP](https://github.com/alibaba/EasyNLP)
[EasyNLP](https://github.com/alibaba/EasyNLP) is an easy-to-use NLP development and application toolkit in PyTorch, first released inside Alibaba in 2021. It is built with scalable distributed training strategies and supports a comprehensive suite of NLP algorithms for various NLP applications. [EasyNLP](https://github.com/alibaba/EasyNLP) integrates knowledge distillation and few-shot learning for landing large pre-trained models, together with various popular multi-modality pre-trained models. It provides a unified framework of model training, inference, and deployment for real-world applications.
Keywords: NLP, Knowledge distillation, Few-shot learning, Multi-modality, Training, Inference, Deployment
## [TurboTransformers](https://github.com/Tencent/TurboTransformers)
A fast and user-friendly runtime for transformer inference (Bert, Albert, GPT2, Decoders, etc) on CPU and GPU.
Keywords: Optimization, Performance
## [hivemind](https://github.com/learning-at-home/hivemind)
Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers.
Keywords: Decentralized training
## [docquery](https://github.com/impira/docquery)
DocQuery is a library and command-line tool that makes it easy to analyze semi-structured and unstructured documents (PDFs, scanned images, etc.) using large language models (LLMs). You simply point DocQuery at one or more documents and specify a question you want to ask. DocQuery is created by the team at Impira.
Keywords: Semi-structured documents, Unstructured documents, LLM, Document Question Answering
## [CodeGeeX](https://github.com/THUDM/CodeGeeX)
[CodeGeeX](https://github.com/THUDM/CodeGeeX) is a large-scale multilingual code generation model with 13 billion parameters, pre-trained on a large code corpus of more than 20 programming languages. It has several unique features:
- Multilingual code generation
- Crosslingual code translation
- Is a customizable programming assistant
Keywords: Code Generation Model
## [ktrain](https://github.com/amaiya/ktrain)
[ktrain](https://github.com/amaiya/ktrain) is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, [ktrain](https://github.com/amaiya/ktrain) is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners.
Keywords: Keras wrapper, Model building, Training, Deployment
## [FastDeploy](https://github.com/PaddlePaddle/FastDeploy)
[FastDeploy](https://github.com/PaddlePaddle/FastDeploy) is an Easy-to-use and High Performance AI model deployment toolkit for Cloud, Mobile and Edge with packageout-of-the-box and unified experience, endend-to-end optimization for over fire160+ Text, Vision, Speech and Cross-modal AI models. Including image classification, object detection, OCR, face detection, matting, pp-tracking, NLP, stable diffusion, TTS and other tasks to meet developers' industrial deployment needs for multi-scenario, multi-hardware and multi-platform.
Keywords: Model deployment, CLoud, Mobile, Edge
## [underthesea](https://github.com/undertheseanlp/underthesea)
[underthesea](https://github.com/undertheseanlp/underthesea) is a Vietnamese NLP toolkit. Underthesea is a suite of open source Python modules data sets and tutorials supporting research and development in Vietnamese Natural Language Processing. We provides extremely easy API to quickly apply pretrained NLP models to your Vietnamese text, such as word segmentation, part-of-speech tagging (PoS), named entity recognition (NER), text classification and dependency parsing.
Keywords: Vietnamese, NLP
## [hasktorch](https://github.com/hasktorch/hasktorch)
Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the core C++ libraries shared by PyTorch.
Keywords: Haskell, Neural Networks
## [donut](https://github.com/clovaai/donut)
Donut, or Document understanding transformer, is a new method of document understanding that utilizes an OCR-free end-to-end Transformer model.
Donut does not require off-the-shelf OCR engines/APIs, yet it shows state-of-the-art performances on various visual document understanding tasks, such as visual document classification or information extraction (a.k.a. document parsing).
Keywords: Document Understanding
## [transformers-interpret](https://github.com/cdpierse/transformers-interpret)
Transformers Interpret is a model explainability tool designed to work exclusively with the transformers package.
In line with the philosophy of the Transformers package Transformers Interpret allows any transformers model to be explained in just two lines. Explainers are available for both text and computer vision models. Visualizations are also available in notebooks and as savable png and html files
Keywords: Model interpretation, Visualization
## [mlrun](https://github.com/mlrun/mlrun)
MLRun is an open MLOps platform for quickly building and managing continuous ML applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. With MLRun, you can choose any IDE on your local machine or on the cloud. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements.
Keywords: MLOps
## [FederatedScope](https://github.com/alibaba/FederatedScope)
[FederatedScope](https://github.com/alibaba/FederatedScope) is a comprehensive federated learning platform that provides convenient usage and flexible customization for various federated learning tasks in both academia and industry. Based on an event-driven architecture, [FederatedScope](https://github.com/alibaba/FederatedScope) integrates rich collections of functionalities to satisfy the burgeoning demands from federated learning, and aims to build up an easy-to-use platform for promoting learning safely and effectively.
Keywords: Federated learning, Event-driven
## [pythainlp](https://github.com/PyThaiNLP/pythainlp)
PyThaiNLP is a Python package for text processing and linguistic analysis, similar to NLTK with focus on Thai language.
Keywords: Thai, NLP, NLTK
## [FlagAI](https://github.com/FlagAI-Open/FlagAI)
[FlagAI](https://github.com/FlagAI-Open/FlagAI) (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model. Our goal is to support training, fine-tuning, and deployment of large-scale models on various downstream tasks with multi-modality.
Keywords: Large models, Training, Fine-tuning, Deployment, Multi-modal
## [pyserini](https://github.com/castorini/pyserini)
[pyserini](https://github.com/castorini/pyserini) is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse representations is provided via integration with the group's Anserini IR toolkit. Retrieval using dense representations is provided via integration with Facebook's Faiss library.
Keywords: IR, Information Retrieval, Dense, Sparse
## [baal](https://github.com/baal-org/baal)
[baal](https://github.com/baal-org/baal) is an active learning library that supports both industrial applications and research usecases. [baal](https://github.com/baal-org/baal) currently supports Monte-Carlo Dropout, MCDropConnect, deep ensembles, and semi-supervised learning.
Keywords: Active Learning, Research, Labeling
## [cleanlab](https://github.com/cleanlab/cleanlab)
[cleanlab](https://github.com/cleanlab/cleanlab) is the standard data-centric AI package for data quality and machine learning with messy, real-world data and labels. For text, image, tabular, audio (among others) datasets, you can use cleanlab to automatically: detect data issues (outliers, label errors, near duplicates, etc), train robust ML models, infer consensus + annotator-quality for multi-annotator data, suggest data to (re)label next (active learning).
Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active Learning
## [BentoML](https://github.com/bentoml/BentoML)
[BentoML](https://github.com/bentoml) is the unified framework for for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage.
Keywords: BentoML, Framework, Deployment, AI Applications
## [LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning)
[LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning) offers a user-friendly fine-tuning framework that incorporates PEFT. The repository includes training(fine-tuning) and inference examples for LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, and other LLMs. A ChatGLM version is also available in [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning).
Keywords: PEFT, fine-tuning, LLaMA-2, ChatGLM, Qwen

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:11.7.1-cudnn8-devel-ubuntu20.04
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -13,7 +13,7 @@ ARG PYTORCH='2.0.1'
# (not always a valid torch version)
ARG INTEL_TORCH_EXT='1.11.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu117'
ARG CUDA='cu118'
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
@ -22,7 +22,6 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
# TODO: Handle these in a python utility script
RUN [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile
@ -32,21 +31,32 @@ RUN echo torch=$VERSION
# TODO: We might need to specify proper versions that work with a specific torch version (especially for past CI).
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.12 protobuf==3.20.3 tensorflow_text tensorflow_probability
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.13 protobuf==3.20.3 tensorflow_text tensorflow_probability
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
RUN python3 -m pip uninstall -y flax jax
RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT+cpu -f https://software.intel.com/ipex-whl-stable
RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT+cpu -f https://developer.intel.com/ipex-whl-stable-cpu
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/peft@main#egg=peft
# Add bitsandbytes for mixed int8 testing
RUN python3 -m pip install --no-cache-dir bitsandbytes
# For bettertransformer
RUN python3 -m pip install --no-cache-dir optimum
# Add auto-gptq for gtpq quantization testing
RUN python3 -m pip install --no-cache-dir auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
# Add einops for additional model testing
RUN python3 -m pip install --no-cache-dir einops
# For bettertransformer + gptq
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
# For video model testing
RUN python3 -m pip install --no-cache-dir decord av==9.2.0

View File

@ -24,7 +24,7 @@ ARG FRAMEWORK
ARG VERSION
# Control `setuptools` version to avoid some issues
RUN [ "$VERSION" != "1.9" -a "$VERSION" != "1.10" ] && python3 -m pip install -U setuptools || python3 -m pip install -U "setuptools<=59.5"
RUN [ "$VERSION" != "1.10" ] && python3 -m pip install -U setuptools || python3 -m pip install -U "setuptools<=59.5"
# Remove all frameworks
RUN python3 -m pip uninstall -y torch torchvision torchaudio tensorflow jax flax

View File

@ -1,12 +1,12 @@
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel_22-08.html#rel_22-08
FROM nvcr.io/nvidia/pytorch:22.08-py3
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-22-12.html#rel-22-12
FROM nvcr.io/nvidia/pytorch:22.12-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='2.0.1'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu117'
ARG CUDA='cu118'
RUN apt -y update
RUN apt install -y libaio-dev
@ -15,6 +15,8 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip uninstall -y torch torchvision torchaudio
# Install latest release PyTorch
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
@ -24,6 +26,9 @@ RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# Uninstall `transformer-engine` shipped with the base image
RUN python3 -m pip uninstall -y transformer-engine
# Uninstall `torch-tensorrt` shipped with the base image
RUN python3 -m pip uninstall -y torch-tensorrt
@ -31,7 +36,7 @@ RUN python3 -m pip uninstall -y torch-tensorrt
RUN python3 -m pip uninstall -y apex
RUN git clone https://github.com/NVIDIA/apex
# `MAX_JOBS=1` disables parallel building to avoid cpu memory OOM when building image on GitHub Action (standard) runners
RUN cd apex && MAX_JOBS=1 python3 -m pip install --global-option="--cpp_ext" --global-option="--cuda_ext" --no-cache -v --disable-pip-version-check .
RUN cd apex && git checkout 82ee367f3da74b4cd62a1fb47aa9806f0f47b58b && MAX_JOBS=1 python3 -m pip install --global-option="--cpp_ext" --global-option="--cuda_ext" --no-cache -v --disable-pip-version-check .
# Pre-build **latest** DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
@ -45,5 +50,5 @@ RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip in
RUN cd transformers && python3 setup.py develop
# The base image ships with `pydantic==1.8.2` which is not working - i.e. the next command fails
RUN python3 -m pip install -U --no-cache-dir pydantic
RUN python3 -m pip install -U --no-cache-dir "pydantic<2"
RUN python3 -c "from deepspeed.launcher.runner import main"

View File

@ -1,11 +1,11 @@
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel_22-08.html#rel_22-08
FROM nvcr.io/nvidia/pytorch:22.08-py3
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-22-12.html#rel-22-12
FROM nvcr.io/nvidia/pytorch:22.12-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu117'
ARG CUDA='cu118'
RUN apt -y update
RUN apt install -y libaio-dev
@ -14,6 +14,8 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip uninstall -y torch torchvision torchaudio
# Install **nightly** release PyTorch (flag `--pre`)
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
@ -23,6 +25,9 @@ RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# Uninstall `transformer-engine` shipped with the base image
RUN python3 -m pip uninstall -y transformer-engine
# Uninstall `torch-tensorrt` and `apex` shipped with the base image
RUN python3 -m pip uninstall -y torch-tensorrt apex

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:11.7.1-cudnn8-devel-ubuntu20.04
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -16,7 +16,7 @@ ARG PYTORCH='2.0.1'
ARG TORCH_VISION=''
ARG TORCH_AUDIO=''
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu117'
ARG CUDA='cu118'
RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -12,7 +12,7 @@ RUN git clone https://github.com/huggingface/transformers && cd transformers &&
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-tensorflow,testing]
# If set to nothing, will install the latest version
ARG TENSORFLOW='2.12'
ARG TENSORFLOW='2.13'
RUN [ ${#TENSORFLOW} -gt 0 ] && VERSION='tensorflow=='$TENSORFLOW'.*' || VERSION='tensorflow'; python3 -m pip install --no-cache-dir -U $VERSION
RUN python3 -m pip uninstall -y torch flax

View File

@ -81,10 +81,10 @@ The `preview` command only works with existing doc files. When you add a complet
## Adding a new element to the navigation bar
Accepted files are Markdown (.md or .mdx).
Accepted files are Markdown (.md).
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/transformers/blob/main/docs/source/_toctree.yml) file.
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml) file.
## Renaming section headers and moving sections
@ -109,7 +109,7 @@ Sections that were moved:
Use the relative style to link to the new file so that the versioned docs continue to work.
For an example of a rich moved section set please see the very end of [the Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.mdx).
For an example of a rich moved section set please see the very end of [the Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md).
## Writing Documentation - Specification
@ -138,7 +138,7 @@ When translating, refer to the guide at [./TRANSLATING.md](https://github.com/hu
When adding a new model:
- Create a file `xxx.mdx` or under `./source/model_doc` (don't hesitate to copy an existing file as template).
- Create a file `xxx.md` or under `./source/model_doc` (don't hesitate to copy an existing file as template).
- Link that file in `./source/_toctree.yml`.
- Write a short overview of the model:
- Overview with paper & authors
@ -147,7 +147,7 @@ When adding a new model:
- Add the classes that should be linked in the model. This generally includes the configuration, the tokenizer, and
every model of that class (the base model, alongside models with additional heads), both in PyTorch and TensorFlow.
The order is generally:
- Configuration,
- Configuration
- Tokenizer
- PyTorch base model
- PyTorch head models
@ -369,20 +369,7 @@ contains the example docstring to the [documentation_tests.txt](../utils/documen
### For Python files
You will first need to run the following command (from the root of the repository) to prepare the doc file (doc-testing needs to add additional lines that we don't include in the doc source files):
```bash
python utils/prepare_for_doc_test.py src docs
```
If you work on a specific python module, say `modeling_wav2vec2.py`, you can run the command as follows (to avoid the unnecessary temporary changes in irrelevant files):
```bash
python utils/prepare_for_doc_test.py src/transformers/utils/doc.py src/transformers/models/wav2vec2/modeling_wav2vec2.py
```
(`utils/doc.py` should always be included)
Then you can run all the tests in the docstrings of a given file with the following command, here is how we test the modeling file of Wav2Vec2 for instance:
Run all the tests in the docstrings of a given file with the following command, here is how we test the modeling file of Wav2Vec2 for instance:
```bash
pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py -sv --doctest-continue-on-failure
@ -394,30 +381,12 @@ If you want to isolate a specific docstring, just add `::` after the file name t
pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py::transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward -sv --doctest-continue-on-failure
```
Once you're done, you can run the following command (still from the root of the repository) to undo the changes made by the first command before committing:
```bash
python utils/prepare_for_doc_test.py src docs --remove_new_line
```
### For Markdown files
You will first need to run the following command (from the root of the repository) to prepare the doc file (doc-testing needs to add additional lines that we don't include in the doc source files):
You can test locally a given file with this command (here testing the quicktour):
```bash
python utils/prepare_for_doc_test.py src docs
```
Then you can test locally a given file with this command (here testing the quicktour):
```bash
pytest --doctest-modules docs/source/quicktour.mdx -sv --doctest-continue-on-failure --doctest-glob="*.mdx"
```
Once you're done, you can run the following command (still from the root of the repository) to undo the changes made by the first command before committing:
```bash
python utils/prepare_for_doc_test.py src docs --remove_new_line
pytest --doctest-modules docs/source/quicktour.md -sv --doctest-continue-on-failure --doctest-glob="*.md"
```
### Writing doctests

View File

@ -54,4 +54,4 @@ The fields you should add are `local` (with the name of the file containing the
Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter.
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @sgugger.
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @stevhliu and @MKhalusova.

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Verteiltes Training mit 🤗 Accelerate

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Vortrainierte Instanzen mit einer AutoClass laden

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 🤗 Transformers
@ -169,6 +173,7 @@ Die Bibliothek enthält derzeit JAX-, PyTorch- und TensorFlow-Implementierungen,
1. **[Transformer-XL](model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UL2](model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[VAN](model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
@ -213,7 +218,7 @@ Flax), PyTorch, und/oder TensorFlow haben.
| BigBird-Pegasus | ❌ | ❌ | ✅ | ❌ | ❌ |
| Blenderbot | ✅ | ✅ | ✅ | ✅ | ✅ |
| BlenderbotSmall | ✅ | ✅ | ✅ | ✅ | ✅ |
| BLOOM | ❌ | ✅ | ✅ | ❌ | |
| BLOOM | ❌ | ✅ | ✅ | ❌ | |
| CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| CANINE | ✅ | ❌ | ✅ | ❌ | ❌ |
| CLIP | ✅ | ✅ | ✅ | ✅ | ✅ |

View File

@ -12,6 +12,10 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Installation

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Ein Modell teilen

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Pipelines für Inferenzen

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Vorverarbeiten
@ -350,12 +354,12 @@ Als Nächstes sehen Sie sich das Bild mit dem Merkmal 🤗 Datensätze [Bild] (h
### Merkmalsextraktor
Laden Sie den Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]:
Laden Sie den Merkmalsextraktor mit [`AutoImageProcessor.from_pretrained`]:
```py
>>> from transformers import AutoFeatureExtractor
>>> from transformers import AutoImageProcessor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
```
### Datenerweiterung
@ -367,9 +371,9 @@ Bei Bildverarbeitungsaufgaben ist es üblich, den Bildern als Teil der Vorverarb
```py
>>> from torchvision.transforms import Compose, Normalize, RandomResizedCrop, ColorJitter, ToTensor
>>> normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
>>> normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
>>> _transforms = Compose(
... [RandomResizedCrop(feature_extractor.size), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize]
... [RandomResizedCrop(image_processor.size["height"]), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize]
... )
```

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Schnellstart
@ -64,11 +68,13 @@ Installieren Sie die folgenden Abhängigkeiten, falls Sie dies nicht bereits get
<frameworkcontent>
<pt>
```bash
pip install torch
```
</pt>
<tf>
```bash
pip install tensorflow
```
@ -222,6 +228,7 @@ Genau wie die [`pipeline`] akzeptiert der Tokenizer eine Liste von Eingaben. Dar
<frameworkcontent>
<pt>
```py
>>> pt_batch = tokenizer(
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
@ -233,6 +240,7 @@ Genau wie die [`pipeline`] akzeptiert der Tokenizer eine Liste von Eingaben. Dar
```
</pt>
<tf>
```py
>>> tf_batch = tokenizer(
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
@ -371,6 +379,7 @@ Ein besonders cooles 🤗 Transformers-Feature ist die Möglichkeit, ein Modell
<frameworkcontent>
<pt>
```py
>>> from transformers import AutoModel
@ -379,6 +388,7 @@ Ein besonders cooles 🤗 Transformers-Feature ist die Möglichkeit, ein Modell
```
</pt>
<tf>
```py
>>> from transformers import TFAutoModel

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Optimierung eines vortrainierten Modells

View File

@ -19,110 +19,128 @@
title: Train with a script
- local: accelerate
title: Set up distributed training with 🤗 Accelerate
- local: peft
title: Load and train adapters with 🤗 PEFT
- local: model_sharing
title: Share your model
- local: transformers_agents
title: Agents
- local: llm_tutorial
title: Generation with LLMs
title: Tutorials
- sections:
- sections:
- local: tasks/sequence_classification
title: Text classification
- local: tasks/token_classification
title: Token classification
- local: tasks/question_answering
title: Question answering
- local: tasks/language_modeling
title: Causal language modeling
- local: tasks/masked_language_modeling
title: Masked language modeling
- local: tasks/translation
title: Translation
- local: tasks/summarization
title: Summarization
- local: tasks/multiple_choice
title: Multiple choice
- isExpanded: false
sections:
- local: tasks/sequence_classification
title: Text classification
- local: tasks/token_classification
title: Token classification
- local: tasks/question_answering
title: Question answering
- local: tasks/language_modeling
title: Causal language modeling
- local: tasks/masked_language_modeling
title: Masked language modeling
- local: tasks/translation
title: Translation
- local: tasks/summarization
title: Summarization
- local: tasks/multiple_choice
title: Multiple choice
title: Natural Language Processing
isExpanded: false
- sections:
- local: tasks/audio_classification
title: Audio classification
- local: tasks/asr
title: Automatic speech recognition
- isExpanded: false
sections:
- local: tasks/audio_classification
title: Audio classification
- local: tasks/asr
title: Automatic speech recognition
title: Audio
isExpanded: false
- sections:
- local: tasks/image_classification
title: Image classification
- local: tasks/semantic_segmentation
title: Semantic segmentation
- local: tasks/video_classification
title: Video classification
- local: tasks/object_detection
title: Object detection
- local: tasks/zero_shot_object_detection
title: Zero-shot object detection
- local: tasks/zero_shot_image_classification
title: Zero-shot image classification
- local: tasks/monocular_depth_estimation
title: Depth estimation
- isExpanded: false
sections:
- local: tasks/image_classification
title: Image classification
- local: tasks/semantic_segmentation
title: Semantic segmentation
- local: tasks/video_classification
title: Video classification
- local: tasks/object_detection
title: Object detection
- local: tasks/zero_shot_object_detection
title: Zero-shot object detection
- local: tasks/zero_shot_image_classification
title: Zero-shot image classification
- local: tasks/monocular_depth_estimation
title: Depth estimation
title: Computer Vision
isExpanded: false
- sections:
- local: tasks/image_captioning
title: Image captioning
- local: tasks/document_question_answering
title: Document Question Answering
- local: tasks/text-to-speech
title: Text to speech
- isExpanded: false
sections:
- local: tasks/image_captioning
title: Image captioning
- local: tasks/document_question_answering
title: Document Question Answering
- local: tasks/visual_question_answering
title: Visual Question Answering
- local: tasks/text-to-speech
title: Text to speech
title: Multimodal
isExpanded: false
- isExpanded: false
sections:
- local: generation_strategies
title: Customize the generation strategy
title: Generation
title: Task Guides
- sections:
- local: fast_tokenizers
title: Use fast tokenizers from 🤗 Tokenizers
- local: multilingual
title: Run inference with multilingual models
- local: generation_strategies
title: Customize text generation strategy
- local: create_a_model
title: Use model-specific APIs
- local: custom_models
title: Share a custom model
- local: sagemaker
title: Run training on Amazon SageMaker
- local: serialization
title: Export to ONNX
- local: torchscript
title: Export to TorchScript
- local: benchmarks
title: Benchmarks
- local: notebooks
title: Notebooks with examples
- local: community
title: Community resources
- local: custom_tools
title: Custom Tools and Prompts
- local: troubleshooting
title: Troubleshoot
- local: fast_tokenizers
title: Use fast tokenizers from 🤗 Tokenizers
- local: multilingual
title: Run inference with multilingual models
- local: create_a_model
title: Use model-specific APIs
- local: custom_models
title: Share a custom model
- local: sagemaker
title: Run training on Amazon SageMaker
- local: serialization
title: Export to ONNX
- local: tflite
title: Export to TFLite
- local: torchscript
title: Export to TorchScript
- local: benchmarks
title: Benchmarks
- local: notebooks
title: Notebooks with examples
- local: community
title: Community resources
- local: custom_tools
title: Custom Tools and Prompts
- local: troubleshooting
title: Troubleshoot
title: Developer guides
- sections:
- local: performance
title: Overview
- local: performance
title: Overview
- sections:
- local: perf_train_gpu_one
title: Training on one GPU
title: Methods and tools for efficient training on a single GPU
- local: perf_train_gpu_many
title: Training on many GPUs
title: Multiple GPUs and parallelism
- local: perf_train_cpu
title: Training on CPU
title: Efficient training on CPU
- local: perf_train_cpu_many
title: Training on many CPUs
title: Distributed CPU training
- local: perf_train_tpu
title: Training on TPUs
- local: perf_train_tpu_tf
title: Training on TPU with TensorFlow
- local: perf_train_special
title: Training on Specialized Hardware
- local: perf_hardware
title: Custom hardware for training
- local: hpo_train
title: Hyperparameter Search using Trainer API
title: Efficient training techniques
- sections:
- local: perf_infer_cpu
title: Inference on CPU
- local: perf_infer_gpu_one
@ -131,32 +149,30 @@
title: Inference on many GPUs
- local: perf_infer_special
title: Inference on Specialized Hardware
- local: perf_hardware
title: Custom hardware for training
- local: big_models
title: Instantiating a big model
- local: debugging
title: Debugging
- local: hpo_train
title: Hyperparameter Search using Trainer API
- local: tf_xla
title: XLA Integration for TensorFlow Models
title: Optimizing inference
- local: big_models
title: Instantiating a big model
- local: debugging
title: Troubleshooting
- local: tf_xla
title: XLA Integration for TensorFlow Models
- local: perf_torch_compile
title: Optimize inference using `torch.compile()`
title: Performance and scalability
- sections:
- local: contributing
title: How to contribute to transformers?
- local: add_new_model
title: How to add a model to 🤗 Transformers?
- local: add_tensorflow_model
title: How to convert a 🤗 Transformers model to TensorFlow?
- local: add_new_pipeline
title: How to add a pipeline to 🤗 Transformers?
- local: testing
title: Testing
- local: pr_checks
title: Checks on a Pull Request
- local: contributing
title: How to contribute to transformers?
- local: add_new_model
title: How to add a model to 🤗 Transformers?
- local: add_tensorflow_model
title: How to convert a 🤗 Transformers model to TensorFlow?
- local: add_new_pipeline
title: How to add a pipeline to 🤗 Transformers?
- local: testing
title: Testing
- local: pr_checks
title: Checks on a Pull Request
title: Contribute
- sections:
- local: philosophy
title: Philosophy
@ -180,6 +196,8 @@
title: Perplexity of fixed-length models
- local: pipeline_webserver
title: Pipelines for webserver inference
- local: model_memory_anatomy
title: Model training anatomy
title: Conceptual guides
- sections:
- sections:
@ -265,6 +283,8 @@
title: CANINE
- local: model_doc/codegen
title: CodeGen
- local: model_doc/code_llama
title: CodeLlama
- local: model_doc/convbert
title: ConvBERT
- local: model_doc/cpm
@ -293,6 +313,8 @@
title: ErnieM
- local: model_doc/esm
title: ESM
- local: model_doc/falcon
title: Falcon
- local: model_doc/flan-t5
title: FLAN-T5
- local: model_doc/flan-ul2
@ -333,6 +355,8 @@
title: LED
- local: model_doc/llama
title: LLaMA
- local: model_doc/llama2
title: Llama2
- local: model_doc/longformer
title: Longformer
- local: model_doc/longt5
@ -359,6 +383,10 @@
title: MobileBERT
- local: model_doc/mpnet
title: MPNet
- local: model_doc/mpt
title: MPT
- local: model_doc/mra
title: MRA
- local: model_doc/mt5
title: MT5
- local: model_doc/mvp
@ -423,6 +451,8 @@
title: Transformer XL
- local: model_doc/ul2
title: UL2
- local: model_doc/umt5
title: UMT5
- local: model_doc/xmod
title: X-MOD
- local: model_doc/xglm
@ -466,6 +496,8 @@
title: DETR
- local: model_doc/dinat
title: DiNAT
- local: model_doc/dinov2
title: DINO V2
- local: model_doc/dit
title: DiT
- local: model_doc/dpt
@ -492,10 +524,14 @@
title: MobileNetV2
- local: model_doc/mobilevit
title: MobileViT
- local: model_doc/mobilevitv2
title: MobileViTV2
- local: model_doc/nat
title: NAT
- local: model_doc/poolformer
title: PoolFormer
- local: model_doc/pvt
title: Pyramid Vision Transformer (PVT)
- local: model_doc/regnet
title: RegNet
- local: model_doc/resnet
@ -524,10 +560,14 @@
title: Vision Transformer (ViT)
- local: model_doc/vit_hybrid
title: ViT Hybrid
- local: model_doc/vitdet
title: ViTDet
- local: model_doc/vit_mae
title: ViTMAE
- local: model_doc/vit_msn
title: ViTMSN
- local: model_doc/vivit
title: ViViT
- local: model_doc/yolos
title: YOLOS
title: Vision models
@ -535,12 +575,22 @@
sections:
- local: model_doc/audio-spectrogram-transformer
title: Audio Spectrogram Transformer
- local: model_doc/bark
title: Bark
- local: model_doc/clap
title: CLAP
- local: model_doc/encodec
title: EnCodec
- local: model_doc/hubert
title: Hubert
- local: model_doc/mctct
title: MCTCT
- local: model_doc/mms
title: MMS
- local: model_doc/musicgen
title: MusicGen
- local: model_doc/pop2piano
title: Pop2Piano
- local: model_doc/sew
title: SEW
- local: model_doc/sew-d
@ -555,6 +605,8 @@
title: UniSpeech
- local: model_doc/unispeech-sat
title: UniSpeech-SAT
- local: model_doc/vits
title: VITS
- local: model_doc/wav2vec2
title: Wav2Vec2
- local: model_doc/wav2vec2-conformer
@ -600,6 +652,10 @@
title: GIT
- local: model_doc/groupvit
title: GroupViT
- local: model_doc/idefics
title: IDEFICS
- local: model_doc/instructblip
title: InstructBLIP
- local: model_doc/layoutlm
title: LayoutLM
- local: model_doc/layoutlmv2
@ -654,6 +710,8 @@
title: Reinforcement learning models
- isExpanded: false
sections:
- local: model_doc/autoformer
title: Autoformer
- local: model_doc/informer
title: Informer
- local: model_doc/time_series_transformer

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Distributed training with 🤗 Accelerate
@ -129,4 +133,4 @@ accelerate launch train.py
>>> notebook_launcher(training_function)
```
For more information about 🤗 Accelerate and it's rich features, refer to the [documentation](https://huggingface.co/docs/accelerate).
For more information about 🤗 Accelerate and its rich features, refer to the [documentation](https://huggingface.co/docs/accelerate).

View File

@ -7,6 +7,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# How to add a model to 🤗 Transformers?
@ -97,7 +101,7 @@ own regarding how code should be written :-)
1. The forward pass of your model should be fully written in the modeling file while being fully independent of other
models in the library. If you want to reuse a block from another model, copy the code and paste it with a
`# Copied from` comment on top (see [here](https://github.com/huggingface/transformers/blob/v4.17.0/src/transformers/models/roberta/modeling_roberta.py#L160)
for a good example).
for a good example and [there](pr_checks#check-copies) for more documentation on Copied from).
2. The code should be fully understandable, even by a non-native English speaker. This means you should pick
descriptive variable names and avoid abbreviations. As an example, `activation` is preferred to `act`.
One-letter variable names are strongly discouraged unless it's an index in a for loop.
@ -357,7 +361,7 @@ We expect that every model added to 🤗 Transformers passes a couple of integra
model and the reimplemented version in 🤗 Transformers have to give the exact same output up to a precision of 0.001!
Since it is normal that the exact same model written in different libraries can give a slightly different output
depending on the library framework, we accept an error tolerance of 1e-3 (0.001). It is not enough if the model gives
nearly the same output, they have to be the almost identical. Therefore, you will certainly compare the intermediate
nearly the same output, they have to be almost identical. Therefore, you will certainly compare the intermediate
outputs of the 🤗 Transformers version multiple times against the intermediate outputs of the original implementation of
*brand_new_bert* in which case an **efficient** debugging environment of the original repository is absolutely
important. Here is some advice is to make your debugging environment as efficient as possible.
@ -817,7 +821,7 @@ tests for you.
Now, all the necessary functionality for *brand_new_bert* is added - you're almost done! The only thing left to add is
a nice docstring and a doc page. The Cookiecutter should have added a template file called
`docs/source/model_doc/brand_new_bert.mdx` that you should fill out. Users of your model will usually first look at
`docs/source/model_doc/brand_new_bert.md` that you should fill out. Users of your model will usually first look at
this page before using your model. Hence, the documentation must be understandable and concise. It is very useful for
the community to add some *Tips* to show how the model should be used. Don't hesitate to ping the Hugging Face team
regarding the docstrings.

View File

@ -7,6 +7,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# How to create a custom pipeline?

View File

@ -7,6 +7,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# How to convert a 🤗 Transformers model to TensorFlow?
@ -52,7 +56,7 @@ you might recall from our [general overview of 🤗 Transformers](add_new_model#
that we are an opinionated bunch - the ease of use of 🤗 Transformers relies on consistent design choices. From
experience, we can tell you a few important things about adding TensorFlow models:
- Don't reinvent the wheel! More often that not, there are at least two reference implementations you should check: the
- Don't reinvent the wheel! More often than not, there are at least two reference implementations you should check: the
PyTorch equivalent of the model you are implementing and other TensorFlow models for the same class of problems.
- Great model implementations survive the test of time. This doesn't happen because the code is pretty, but rather
because the code is clear, easy to debug and build upon. If you make the life of the maintainers easy with your
@ -97,7 +101,7 @@ TensorFlow-related pull request.
**2. Prepare transformers dev environment**
Having selected the model architecture, open an draft PR to signal your intention to work on it. Follow the
Having selected the model architecture, open a draft PR to signal your intention to work on it. Follow the
instructions below to set up your environment and open a draft PR.
1. Fork the [repository](https://github.com/huggingface/transformers) by clicking on the 'Fork' button on the
@ -228,9 +232,9 @@ changes:
- Include the modeling file in the documentation test file list in `utils/documentation_tests.txt`
- Add the lazy loading classes related to *BrandNewBert* in `src/transformers/utils/dummy_tf_objects.py`
- Update the import structures for the public classes in `src/transformers/models/brand_new_bert/__init__.py`
- Add the documentation pointers to the public methods of *BrandNewBert* in `docs/source/en/model_doc/brand_new_bert.mdx`
- Add yourself to the list of contributors to *BrandNewBert* in `docs/source/en/model_doc/brand_new_bert.mdx`
- Finally, add a green tick ✅ to the TensorFlow column of *BrandNewBert* in `docs/source/en/index.mdx`
- Add the documentation pointers to the public methods of *BrandNewBert* in `docs/source/en/model_doc/brand_new_bert.md`
- Add yourself to the list of contributors to *BrandNewBert* in `docs/source/en/model_doc/brand_new_bert.md`
- Finally, add a green tick ✅ to the TensorFlow column of *BrandNewBert* in `docs/source/en/index.md`
When you're happy with your implementation, run the following checklist to confirm that your model architecture is
ready:
@ -324,7 +328,7 @@ That's it! 🎉
## Debugging mismatches across ML frameworks 🐛
At some point, when adding a new architecture or when creating TensorFlow weights for an existing architecture, you
might come across errors compaining about mismatches between PyTorch and TensorFlow. You might even decide to open the
might come across errors complaining about mismatches between PyTorch and TensorFlow. You might even decide to open the
model architecture code for the two frameworks, and find that they look identical. What's going on? 🤔
First of all, let's talk about why understanding these mismatches matters. Many community members will use 🤗
@ -347,7 +351,7 @@ ingredient here is patience. Here is our suggested workflow for when you come ac
that you'll have to venture into the source implementation of said instruction. In some cases, you might find an
issue with a reference implementation - don't abstain from opening an issue in the upstream repository.
In some cases, in dicussion with the 🤗 Transformers team, we might find that the fixing the mismatch is infeasible.
In some cases, in discussion with the 🤗 Transformers team, we might find that fixing the mismatch is infeasible.
When the mismatch is very small in the output layers of the model (but potentially large in the hidden states), we
might decide to ignore it in favor of distributing the model. The `pt-to-tf` CLI mentioned above has a `--max-error`
flag to override the error message at weight conversion time.

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Attention mechanisms

View File

@ -8,11 +8,15 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Load pretrained instances with an AutoClass
With so many different Transformer architectures, it can be challenging to create one for your checkpoint. As a part of 🤗 Transformers core philosophy to make the library easy, simple and flexible to use, an `AutoClass` automatically infer and load the correct architecture from a given checkpoint. The `from_pretrained()` method lets you quickly load a pretrained model for any architecture so you don't have to devote time and resources to train a model from scratch. Producing this type of checkpoint-agnostic code means if your code works for one checkpoint, it will work with another checkpoint - as long as it was trained for a similar task - even if the architecture is different.
With so many different Transformer architectures, it can be challenging to create one for your checkpoint. As a part of 🤗 Transformers core philosophy to make the library easy, simple and flexible to use, an `AutoClass` automatically infers and loads the correct architecture from a given checkpoint. The `from_pretrained()` method lets you quickly load a pretrained model for any architecture so you don't have to devote time and resources to train a model from scratch. Producing this type of checkpoint-agnostic code means if your code works for one checkpoint, it will work with another checkpoint - as long as it was trained for a similar task - even if the architecture is different.
<Tip>

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Benchmarks

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# BERTology

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Instantiating a big model
@ -19,11 +23,11 @@ from PyTorch is:
2. Load your pretrained weights.
3. Put those pretrained weights in your random model.
Step 1 and 2 both require a full version of the model in memory, which is not a problem in most cases, but if your model starts weighing several GigaBytes, those two copies can make you got our of RAM. Even worse, if you are using `torch.distributed` to launch a distributed training, each process will load the pretrained model and store these two copies in RAM.
Step 1 and 2 both require a full version of the model in memory, which is not a problem in most cases, but if your model starts weighing several GigaBytes, those two copies can make you get out of RAM. Even worse, if you are using `torch.distributed` to launch a distributed training, each process will load the pretrained model and store these two copies in RAM.
<Tip>
Note that the randomly created model is initialized with "empty" tensors, which take the space in memory without filling it (thus the random values are whatever was in this chunk of memory at a given time). The random initialization following the appropriate distribution for the kind of model/parameters instatiated (like a normal distribution for instance) is only performed after step 3 on the non-initialized weights, to be as fast as possible!
Note that the randomly created model is initialized with "empty" tensors, which take the space in memory without filling it (thus the random values are whatever was in this chunk of memory at a given time). The random initialization following the appropriate distribution for the kind of model/parameters instantiated (like a normal distribution for instance) is only performed after step 3 on the non-initialized weights, to be as fast as possible!
</Tip>
@ -116,4 +120,4 @@ If you want to directly load such a sharded checkpoint inside a model without us
Sharded checkpoints reduce the memory usage during step 2 of the workflow mentioned above, but in order to use that model in a low memory setting, we recommend leveraging our tools based on the Accelerate library.
Please read the following guide for more information: [Large model loading using Accelerate](./main_classes/model#large-model-loading)
Please read the following guide for more information: [Large model loading using Accelerate](./main_classes/model#large-model-loading)

View File

@ -1,4 +1,8 @@
# Community
<!--⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Community
This page regroups resources around 🤗 Transformers developed by the community.
@ -6,7 +10,7 @@ This page regroups resources around 🤗 Transformers developed by the community
| Resource | Description | Author |
|:----------|:-------------|------:|
| [Hugging Face Transformers Glossary Flashcards](https://www.darigovresearch.com/huggingface-transformers-glossary-flashcards) | A set of flashcards based on the [Transformers Docs Glossary](glossary) that has been put into a form which can be easily learnt/revised using [Anki ](https://apps.ankiweb.net/) an open source, cross platform app specifically designed for long term knowledge retention. See this [Introductory video on how to use the flashcards](https://www.youtube.com/watch?v=Dji_h7PILrw). | [Darigov Research](https://www.darigovresearch.com/) |
| [Hugging Face Transformers Glossary Flashcards](https://www.darigovresearch.com/huggingface-transformers-glossary-flashcards) | A set of flashcards based on the [Transformers Docs Glossary](glossary) that has been put into a form which can be easily learned/revised using [Anki ](https://apps.ankiweb.net/) an open source, cross platform app specifically designed for long term knowledge retention. See this [Introductory video on how to use the flashcards](https://www.youtube.com/watch?v=Dji_h7PILrw). | [Darigov Research](https://www.darigovresearch.com/) |
## Community notebooks:
@ -31,7 +35,7 @@ This page regroups resources around 🤗 Transformers developed by the community
|[Speed up Fine-Tuning in Transformers with Dynamic Padding / Bucketing](https://github.com/ELS-RD/transformers-notebook/blob/master/Divide_Hugging_Face_Transformers_training_time_by_2_or_more.ipynb)|How to speed up fine-tuning by a factor of 2 using dynamic padding / bucketing|[Michael Benesty](https://github.com/pommedeterresautee) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1CBfRU1zbfu7-ijiOqAAQUA-RJaxfcJoO?usp=sharing)|
|[Pretrain Reformer for Masked Language Modeling](https://github.com/patrickvonplaten/notebooks/blob/master/Reformer_For_Masked_LM.ipynb)| How to train a Reformer model with bi-directional self-attention layers | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tzzh0i8PgDQGV3SMFUGxM7_gGae3K-uW?usp=sharing)|
|[Expand and Fine Tune Sci-BERT](https://github.com/lordtt13/word-embeddings/blob/master/COVID-19%20Research%20Data/COVID-SciBERT.ipynb)| How to increase vocabulary of a pretrained SciBERT model from AllenAI on the CORD dataset and pipeline it. | [Tanmay Thakur](https://github.com/lordtt13) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1rqAR40goxbAfez1xvF3hBJphSCsvXmh8)|
|[Fine Tune BlenderBotSmall for Summarization using the Trainer API](https://github.com/lordtt13/transformers-experiments/blob/master/Custom%20Tasks/fine-tune-blenderbot_small-for-summarization.ipynb)| How to fine tune BlenderBotSmall for summarization on a custom dataset, using the Trainer API. | [Tanmay Thakur](https://github.com/lordtt13) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/19Wmupuls7mykSGyRN_Qo6lPQhgp56ymq?usp=sharing)|
|[Fine Tune BlenderBotSmall for Summarization using the Trainer API](https://github.com/lordtt13/transformers-experiments/blob/master/Custom%20Tasks/fine-tune-blenderbot_small-for-summarization.ipynb)| How to fine-tune BlenderBotSmall for summarization on a custom dataset, using the Trainer API. | [Tanmay Thakur](https://github.com/lordtt13) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/19Wmupuls7mykSGyRN_Qo6lPQhgp56ymq?usp=sharing)|
|[Fine-tune Electra and interpret with Integrated Gradients](https://github.com/elsanns/xai-nlp-notebooks/blob/master/electra_fine_tune_interpret_captum_ig.ipynb) | How to fine-tune Electra for sentiment analysis and interpret predictions with Captum Integrated Gradients | [Eliza Szczechla](https://elsanns.github.io) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/electra_fine_tune_interpret_captum_ig.ipynb)|
|[fine-tune a non-English GPT-2 Model with Trainer class](https://github.com/philschmid/fine-tune-GPT-2/blob/master/Fine_tune_a_non_English_GPT_2_Model_with_Huggingface.ipynb) | How to fine-tune a non-English GPT-2 Model with Trainer class | [Philipp Schmid](https://www.philschmid.de) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/philschmid/fine-tune-GPT-2/blob/master/Fine_tune_a_non_English_GPT_2_Model_with_Huggingface.ipynb)|
|[Fine-tune a DistilBERT Model for Multi Label Classification task](https://github.com/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb) | How to fine-tune a DistilBERT Model for Multi Label Classification task | [Dhaval Taunk](https://github.com/DhavalTaunk08) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb)|

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Create a custom architecture
@ -205,7 +209,7 @@ Easily reuse this checkpoint for another task by switching to a different model
The last base class you need before using a model for textual data is a [tokenizer](main_classes/tokenizer) to convert raw text to tensors. There are two types of tokenizers you can use with 🤗 Transformers:
- [`PreTrainedTokenizer`]: a Python implementation of a tokenizer.
- [`PreTrainedTokenizerFast`]: a tokenizer from our Rust-based [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) library. This tokenizer type is significantly faster - especially during batch tokenization - due to it's Rust implementation. The fast tokenizer also offers additional methods like *offset mapping* which maps tokens to their original words or characters.
- [`PreTrainedTokenizerFast`]: a tokenizer from our Rust-based [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) library. This tokenizer type is significantly faster - especially during batch tokenization - due to its Rust implementation. The fast tokenizer also offers additional methods like *offset mapping* which maps tokens to their original words or characters.
Both tokenizers support common methods such as encoding and decoding, adding new tokens, and managing special tokens.
@ -259,7 +263,7 @@ To use, create an image processor associated with the model you're using. For ex
ViTImageProcessor {
"do_normalize": true,
"do_resize": true,
"feature_extractor_type": "ViTImageProcessor",
"image_processor_type": "ViTImageProcessor",
"image_mean": [
0.5,
0.5,
@ -291,7 +295,7 @@ Modify any of the [`ViTImageProcessor`] parameters to create your custom image p
ViTImageProcessor {
"do_normalize": false,
"do_resize": true,
"feature_extractor_type": "ViTImageProcessor",
"image_processor_type": "ViTImageProcessor",
"image_mean": [
0.3,
0.3,

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Sharing custom models
@ -337,7 +341,7 @@ model. This is different from pushing the code to the Hub in the sense that user
get the custom models (contrarily to automatically downloading the model code from the Hub).
As long as your config has a `model_type` attribute that is different from existing model types, and that your model
classes have the right `config_class` attributes, you can just add them to the auto classes likes this:
classes have the right `config_class` attributes, you can just add them to the auto classes like this:
```py
from transformers import AutoConfig, AutoModel, AutoModelForImageClassification

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Custom Tools and Prompts
@ -21,7 +25,7 @@ If you are not aware of what tools and agents are in the context of transformers
<Tip warning={true}>
Transformers Agent is an experimental API that is subject to change at any time. Results returned by the agents
Transformers Agents is an experimental API that is subject to change at any time. Results returned by the agents
can vary as the APIs or underlying models are prone to change.
</Tip>
@ -414,6 +418,13 @@ of the tools, it has available to it.
</Tip>
In both cases, you can pass a repo ID instead of the prompt template if you would like to use a template hosted by someone in the community. The default prompts live in [this repo](https://huggingface.co/datasets/huggingface-tools/default-prompts) as an example.
To upload your custom prompt on a repo on the Hub and share it with the community just make sure:
- to use a dataset repository
- to put the prompt template for the `run` command in a file named `run_prompt_template.txt`
- to put the prompt template for the `chat` command in a file named `chat_prompt_template.txt`
## Using custom tools
In this section, we'll be leveraging two existing custom tools that are specific to image generation:

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Debugging

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Use tokenizers from 🤗 Tokenizers

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Text generation strategies
@ -51,7 +55,7 @@ When you load a model explicitly, you can inspect the generation configuration t
>>> from transformers import AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> model.generation_config
>>> model.generation_config # doctest: +IGNORE_RESULT
GenerationConfig {
"_from_model_config": true,
"bos_token_id": 50256,
@ -73,7 +77,7 @@ producing highly repetitive results.
You can override any `generation_config` by passing the parameters and their values directly to the [`generate`] method:
```python
>>> my_model.generate(**inputs, num_beams=4, do_sample=True)
>>> my_model.generate(**inputs, num_beams=4, do_sample=True) # doctest: +SKIP
```
Even if the default decoding strategy mostly works for your task, you can still tweak a few things. Some of the
@ -88,7 +92,7 @@ sequences that start with a lower probability initial tokens and would've been i
- `do_sample`: if set to `True`, this parameter enables decoding strategies such as multinomial sampling, beam-search
multinomial sampling, Top-K sampling and Top-p sampling. All these strategies select the next token from the probability
distribution over the entire vocabulary with various strategy-specific adjustments.
- `num_return_sequences`: the number of sequence candidates to return for each input. This options is only available for
- `num_return_sequences`: the number of sequence candidates to return for each input. This option is only available for
the decoding strategies that support multiple sequence candidates, e.g. variations of beam search and sampling. Decoding
strategies like greedy search and contrastive search return a single output sequence.
@ -103,11 +107,11 @@ If you would like to share your fine-tuned model with a specific generation conf
```python
>>> from transformers import AutoModelForCausalLM, GenerationConfig
>>> model = AutoModelForCausalLM.from_pretrained("my_account/my_model")
>>> model = AutoModelForCausalLM.from_pretrained("my_account/my_model") # doctest: +SKIP
>>> generation_config = GenerationConfig(
... max_new_tokens=50, do_sample=True, top_k=50, eos_token_id=model.config.eos_token_id
... )
>>> generation_config.save_pretrained("my_account/my_model", push_to_hub=True)
>>> generation_config.save_pretrained("my_account/my_model", push_to_hub=True) # doctest: +SKIP
```
You can also store several generation configurations in a single directory, making use of the `config_file_name`
@ -129,19 +133,20 @@ one for summarization with beam search). You must have the right Hub permissions
... pad_token=model.config.pad_token_id,
... )
>>> translation_generation_config.save_pretrained("t5-small", "translation_generation_config.json", push_to_hub=True)
>>> # Tip: add `push_to_hub=True` to push to the Hub
>>> translation_generation_config.save_pretrained("/tmp", "translation_generation_config.json")
>>> # You could then use the named generation config file to parameterize generation
>>> generation_config = GenerationConfig.from_pretrained("t5-small", "translation_generation_config.json")
>>> generation_config = GenerationConfig.from_pretrained("/tmp", "translation_generation_config.json")
>>> inputs = tokenizer("translate English to French: Configuration files are easy to use!", return_tensors="pt")
>>> outputs = model.generate(**inputs, generation_config=generation_config)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['Les fichiers de configuration sont faciles à utiliser !']
['Les fichiers de configuration sont faciles à utiliser!']
```
## Streaming
The `generate()` supports streaming, through its `streamer` input. The `streamer` input is compatible any instance
The `generate()` supports streaming, through its `streamer` input. The `streamer` input is compatible with any instance
from a class that has the following methods: `put()` and `end()`. Internally, `put()` is used to push new tokens and
`end()` is used to flag the end of text generation.
@ -213,10 +218,9 @@ The two main parameters that enable and control the behavior of contrastive sear
>>> outputs = model.generate(**inputs, penalty_alpha=0.6, top_k=4, max_new_tokens=100)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Hugging Face Company is a family owned and operated business. \
We pride ourselves on being the best in the business and our customer service is second to none.\
\n\nIf you have any questions about our products or services, feel free to contact us at any time.\
We look forward to hearing from you!']
['Hugging Face Company is a family owned and operated business. We pride ourselves on being the best
in the business and our customer service is second to none.\n\nIf you have any questions about our
products or services, feel free to contact us at any time. We look forward to hearing from you!']
```
### Multinomial sampling
@ -229,7 +233,8 @@ risk of repetition.
To enable multinomial sampling set `do_sample=True` and `num_beams=1`.
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0) # For reproducibility
>>> checkpoint = "gpt2-large"
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
@ -240,11 +245,8 @@ To enable multinomial sampling set `do_sample=True` and `num_beams=1`.
>>> outputs = model.generate(**inputs, do_sample=True, num_beams=1, max_new_tokens=100)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Today was an amazing day because we are now in the final stages of our trip to New York City which was very tough. \
It is a difficult schedule and a challenging part of the year but still worth it. I have been taking things easier and \
I feel stronger and more motivated to be out there on their tour. Hopefully, that experience is going to help them with \
their upcoming events which are currently scheduled in Australia.\n\nWe love that they are here. They want to make a \
name for themselves and become famous for what they']
['Today was an amazing day because when you go to the World Cup and you don\'t, or when you don\'t get invited,
that\'s a terrible feeling."']
```
### Beam-search decoding
@ -268,7 +270,7 @@ To enable this decoding strategy, specify the `num_beams` (aka number of hypothe
>>> outputs = model.generate(**inputs, num_beams=5, max_new_tokens=50)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['It is astonishing how one can have such a profound impact on the lives of so many people in such a short period of \
['It is astonishing how one can have such a profound impact on the lives of so many people in such a short period of
time."\n\nHe added: "I am very proud of the work I have been able to do in the last few years.\n\n"I have']
```
@ -278,7 +280,8 @@ As the name implies, this decoding strategy combines beam search with multinomia
the `num_beams` greater than 1, and set `do_sample=True` to use this decoding strategy.
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, set_seed
>>> set_seed(0) # For reproducibility
>>> prompt = "translate English to German: The house is wonderful."
>>> checkpoint = "t5-small"
@ -297,50 +300,53 @@ the `num_beams` greater than 1, and set `do_sample=True` to use this decoding st
The diverse beam search decoding strategy is an extension of the beam search strategy that allows for generating a more diverse
set of beam sequences to choose from. To learn how it works, refer to [Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models](https://arxiv.org/pdf/1610.02424.pdf).
This approach has two main parameters: `num_beams` and `num_beam_groups`.
The groups are selected to ensure they are distinct enough compared to the others, and regular beam search is used within each group.
This approach has three main parameters: `num_beams`, `num_beam_groups`, and `diversity_penalty`.
The diversity penalty ensures the outputs are distinct across groups, and beam search is used within each group.
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> checkpoint = "google/pegasus-xsum"
>>> prompt = "The Permaculture Design Principles are a set of universal design principles \
>>> that can be applied to any location, climate and culture, and they allow us to design \
>>> the most efficient and sustainable human habitation and food production systems. \
>>> Permaculture is a design system that encompasses a wide variety of disciplines, such \
>>> as ecology, landscape design, environmental science and energy conservation, and the \
>>> Permaculture design principles are drawn from these various disciplines. Each individual \
>>> design principle itself embodies a complete conceptual framework based on sound \
>>> scientific principles. When we bring all these separate principles together, we can \
>>> create a design system that both looks at whole systems, the parts that these systems \
>>> consist of, and how those parts interact with each other to create a complex, dynamic, \
>>> living system. Each design principle serves as a tool that allows us to integrate all \
>>> the separate parts of a design, referred to as elements, into a functional, synergistic, \
>>> whole system, where the elements harmoniously interact and work together in the most \
>>> efficient way possible."
>>> prompt = (
... "The Permaculture Design Principles are a set of universal design principles "
... "that can be applied to any location, climate and culture, and they allow us to design "
... "the most efficient and sustainable human habitation and food production systems. "
... "Permaculture is a design system that encompasses a wide variety of disciplines, such "
... "as ecology, landscape design, environmental science and energy conservation, and the "
... "Permaculture design principles are drawn from these various disciplines. Each individual "
... "design principle itself embodies a complete conceptual framework based on sound "
... "scientific principles. When we bring all these separate principles together, we can "
... "create a design system that both looks at whole systems, the parts that these systems "
... "consist of, and how those parts interact with each other to create a complex, dynamic, "
... "living system. Each design principle serves as a tool that allows us to integrate all "
... "the separate parts of a design, referred to as elements, into a functional, synergistic, "
... "whole system, where the elements harmoniously interact and work together in the most "
... "efficient way possible."
... )
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
>>> outputs = model.generate(**inputs, num_beams=5, num_beam_groups=5, max_new_tokens=30)
>>> outputs = model.generate(**inputs, num_beams=5, num_beam_groups=5, max_new_tokens=30, diversity_penalty=1.0)
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'The Design Principles are a set of universal design principles that can be applied to any location, climate and culture, and they allow us to design the most efficient and sustainable human habitation and food production systems.'
'The Design Principles are a set of universal design principles that can be applied to any location, climate and
culture, and they allow us to design the'
```
This guide illustrates the main parameters that enable various decoding strategies. More advanced parameters exist for the
[`generate`] method, which gives you even further control over the [`generate`] method's behavior.
For the complete list of the available parameters, refer to the [API documentation](./main_classes/text_generation.mdx).
For the complete list of the available parameters, refer to the [API documentation](./main_classes/text_generation.md).
### Assisted Decoding
Assisted decoding is a modification of the decoding strategies above that uses an assistant model with the same
tokenizer (ideally a much smaller model) to greedily generate a few candidate tokens. The main model then validates
the candidate tokens in a single forward pass, which speeds up the decoding process. Currently, only greedy search
and sampling are supported with assisted decoding, and doesn't support batched inputs.
<!-- TODO: add link to the blog post about assisted decoding when it exists -->
and sampling are supported with assisted decoding, and doesn't support batched inputs. To learn more about assisted
decoding, check [this blog post](https://huggingface.co/blog/assisted-generation).
To enable assisted decoding, set the `assistant_model` argument with a model.
@ -361,13 +367,12 @@ To enable assisted decoding, set the `assistant_model` argument with a model.
['Alice and Bob are sitting in a bar. Alice is drinking a beer and Bob is drinking a']
```
When using assisted decoding with sampling methods, you can use the `temperarure` argument to control the randomness
When using assisted decoding with sampling methods, you can use the `temperature` argument to control the randomness
just like in multinomial sampling. However, in assisted decoding, reducing the temperature will help improving latency.
<!-- TODO: link the blog post again to explain why the tradeoff exists -->
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
>>> set_seed(42) # For reproducibility
>>> prompt = "Alice and Bob"
>>> checkpoint = "EleutherAI/pythia-1.4b-deduped"
@ -380,5 +385,5 @@ just like in multinomial sampling. However, in assisted decoding, reducing the t
>>> assistant_model = AutoModelForCausalLM.from_pretrained(assistant_checkpoint)
>>> outputs = model.generate(**inputs, assistant_model=assistant_model, do_sample=True, temperature=0.5)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
["Alice and Bob are sitting on the sofa. Alice says, 'I'm going to my room"]
['Alice and Bob are going to the same party. It is a small party, in a small']
```

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Glossary
@ -183,7 +187,7 @@ The model head refers to the last layer of a neural network that accepts the raw
### image patch
Vision-based Transformers models split an image into smaller patches which are linearly embedded, and then passed as a sequence to the model. You can find the `patch_size` - or resolution - of the model in it's configuration.
Vision-based Transformers models split an image into smaller patches which are linearly embedded, and then passed as a sequence to the model. You can find the `patch_size` - or resolution - of the model in its configuration.
### inference

View File

@ -7,6 +7,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Hyperparameter Search using Trainer API
@ -50,7 +54,7 @@ For optuna, see optuna [object_parameter](https://optuna.readthedocs.io/en/stabl
... }
```
For raytune, see raytune [object_parameter](https://docs.ray.io/en/latest/tune/api_docs/search_space.html), it's like following:
For raytune, see raytune [object_parameter](https://docs.ray.io/en/latest/tune/api/search_space.html), it's like following:
```py
>>> def ray_hp_space(trial):
@ -117,4 +121,4 @@ You could define your own compute_objective function, if not defined, the defaul
```
## Hyperparameter search For DDP finetune
Currently, Hyperparameter search for DDP is enabled for optuna and sigopt. Only the rank-zero process will generate the search trial and pass the argument to other ranks.
Currently, Hyperparameter search for DDP is enabled for optuna and sigopt. Only the rank-zero process will generate the search trial and pass the argument to other ranks.

496
docs/source/en/index.md Normal file
View File

@ -0,0 +1,496 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 🤗 Transformers
State-of-the-art Machine Learning for [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/), and [JAX](https://jax.readthedocs.io/en/latest/).
🤗 Transformers provides APIs and tools to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities, such as:
📝 **Natural Language Processing**: text classification, named entity recognition, question answering, language modeling, summarization, translation, multiple choice, and text generation.<br>
🖼️ **Computer Vision**: image classification, object detection, and segmentation.<br>
🗣️ **Audio**: automatic speech recognition and audio classification.<br>
🐙 **Multimodal**: table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
🤗 Transformers support framework interoperability between PyTorch, TensorFlow, and JAX. This provides the flexibility to use a different framework at each stage of a model's life; train a model in three lines of code in one framework, and load it for inference in another. Models can also be exported to a format like ONNX and TorchScript for deployment in production environments.
Join the growing community on the [Hub](https://huggingface.co/models), [forum](https://discuss.huggingface.co/), or [Discord](https://discord.com/invite/JfAtkvEtRb) today!
## If you are looking for custom support from the Hugging Face team
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="width: 100%; max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a>
## Contents
The documentation is organized into five sections:
- **GET STARTED** provides a quick tour of the library and installation instructions to get up and running.
- **TUTORIALS** are a great place to start if you're a beginner. This section will help you gain the basic skills you need to start using the library.
- **HOW-TO GUIDES** show you how to achieve a specific goal, like finetuning a pretrained model for language modeling or how to write and share a custom model.
- **CONCEPTUAL GUIDES** offers more discussion and explanation of the underlying concepts and ideas behind models, tasks, and the design philosophy of 🤗 Transformers.
- **API** describes all classes and functions:
- **MAIN CLASSES** details the most important classes like configuration, model, tokenizer, and pipeline.
- **MODELS** details the classes and functions related to each model implemented in the library.
- **INTERNAL HELPERS** details utility classes and functions used internally.
### Supported models
<!--This list is updated automatically from the README with _make fix-copies_. Do not update manually! -->
1. **[ALBERT](model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[ByT5](model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Conditional DETR](model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[DETA](model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GIT](model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[Longformer](model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[mLUKE](model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SegFormer](model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechT5](model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
### Supported frameworks
The table below represents the current support in the library for each of those models, whether they have a Python
tokenizer (called "slow"). A "fast" tokenizer backed by the 🤗 Tokenizers library, whether they have support in Jax (via
Flax), PyTorch, and/or TensorFlow.
<!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!-->
| Model | PyTorch support | TensorFlow support | Flax Support |
|:-----------------------------:|:---------------:|:------------------:|:------------:|
| ALBERT | ✅ | ✅ | ✅ |
| ALIGN | ✅ | ❌ | ❌ |
| AltCLIP | ✅ | ❌ | ❌ |
| Audio Spectrogram Transformer | ✅ | ❌ | ❌ |
| Autoformer | ✅ | ❌ | ❌ |
| Bark | ✅ | ❌ | ❌ |
| BART | ✅ | ✅ | ✅ |
| BEiT | ✅ | ❌ | ✅ |
| BERT | ✅ | ✅ | ✅ |
| Bert Generation | ✅ | ❌ | ❌ |
| BigBird | ✅ | ❌ | ✅ |
| BigBird-Pegasus | ✅ | ❌ | ❌ |
| BioGpt | ✅ | ❌ | ❌ |
| BiT | ✅ | ❌ | ❌ |
| Blenderbot | ✅ | ✅ | ✅ |
| BlenderbotSmall | ✅ | ✅ | ✅ |
| BLIP | ✅ | ✅ | ❌ |
| BLIP-2 | ✅ | ❌ | ❌ |
| BLOOM | ✅ | ❌ | ✅ |
| BridgeTower | ✅ | ❌ | ❌ |
| CamemBERT | ✅ | ✅ | ❌ |
| CANINE | ✅ | ❌ | ❌ |
| Chinese-CLIP | ✅ | ❌ | ❌ |
| CLAP | ✅ | ❌ | ❌ |
| CLIP | ✅ | ✅ | ✅ |
| CLIPSeg | ✅ | ❌ | ❌ |
| CodeGen | ✅ | ❌ | ❌ |
| CodeLlama | ✅ | ❌ | ❌ |
| Conditional DETR | ✅ | ❌ | ❌ |
| ConvBERT | ✅ | ✅ | ❌ |
| ConvNeXT | ✅ | ✅ | ❌ |
| ConvNeXTV2 | ✅ | ❌ | ❌ |
| CPM-Ant | ✅ | ❌ | ❌ |
| CTRL | ✅ | ✅ | ❌ |
| CvT | ✅ | ✅ | ❌ |
| Data2VecAudio | ✅ | ❌ | ❌ |
| Data2VecText | ✅ | ❌ | ❌ |
| Data2VecVision | ✅ | ✅ | ❌ |
| DeBERTa | ✅ | ✅ | ❌ |
| DeBERTa-v2 | ✅ | ✅ | ❌ |
| Decision Transformer | ✅ | ❌ | ❌ |
| Deformable DETR | ✅ | ❌ | ❌ |
| DeiT | ✅ | ✅ | ❌ |
| DETA | ✅ | ❌ | ❌ |
| DETR | ✅ | ❌ | ❌ |
| DiNAT | ✅ | ❌ | ❌ |
| DINOv2 | ✅ | ❌ | ❌ |
| DistilBERT | ✅ | ✅ | ✅ |
| DonutSwin | ✅ | ❌ | ❌ |
| DPR | ✅ | ✅ | ❌ |
| DPT | ✅ | ❌ | ❌ |
| EfficientFormer | ✅ | ✅ | ❌ |
| EfficientNet | ✅ | ❌ | ❌ |
| ELECTRA | ✅ | ✅ | ✅ |
| EnCodec | ✅ | ❌ | ❌ |
| Encoder decoder | ✅ | ✅ | ✅ |
| ERNIE | ✅ | ❌ | ❌ |
| ErnieM | ✅ | ❌ | ❌ |
| ESM | ✅ | ✅ | ❌ |
| FairSeq Machine-Translation | ✅ | ❌ | ❌ |
| Falcon | ✅ | ❌ | ❌ |
| FlauBERT | ✅ | ✅ | ❌ |
| FLAVA | ✅ | ❌ | ❌ |
| FNet | ✅ | ❌ | ❌ |
| FocalNet | ✅ | ❌ | ❌ |
| Funnel Transformer | ✅ | ✅ | ❌ |
| GIT | ✅ | ❌ | ❌ |
| GLPN | ✅ | ❌ | ❌ |
| GPT Neo | ✅ | ❌ | ✅ |
| GPT NeoX | ✅ | ❌ | ❌ |
| GPT NeoX Japanese | ✅ | ❌ | ❌ |
| GPT-J | ✅ | ✅ | ✅ |
| GPT-Sw3 | ✅ | ✅ | ✅ |
| GPTBigCode | ✅ | ❌ | ❌ |
| GPTSAN-japanese | ✅ | ❌ | ❌ |
| Graphormer | ✅ | ❌ | ❌ |
| GroupViT | ✅ | ✅ | ❌ |
| Hubert | ✅ | ✅ | ❌ |
| I-BERT | ✅ | ❌ | ❌ |
| IDEFICS | ✅ | ❌ | ❌ |
| ImageGPT | ✅ | ❌ | ❌ |
| Informer | ✅ | ❌ | ❌ |
| InstructBLIP | ✅ | ❌ | ❌ |
| Jukebox | ✅ | ❌ | ❌ |
| LayoutLM | ✅ | ✅ | ❌ |
| LayoutLMv2 | ✅ | ❌ | ❌ |
| LayoutLMv3 | ✅ | ✅ | ❌ |
| LED | ✅ | ✅ | ❌ |
| LeViT | ✅ | ❌ | ❌ |
| LiLT | ✅ | ❌ | ❌ |
| LLaMA | ✅ | ❌ | ❌ |
| Longformer | ✅ | ✅ | ❌ |
| LongT5 | ✅ | ❌ | ✅ |
| LUKE | ✅ | ❌ | ❌ |
| LXMERT | ✅ | ✅ | ❌ |
| M-CTC-T | ✅ | ❌ | ❌ |
| M2M100 | ✅ | ❌ | ❌ |
| Marian | ✅ | ✅ | ✅ |
| MarkupLM | ✅ | ❌ | ❌ |
| Mask2Former | ✅ | ❌ | ❌ |
| MaskFormer | ✅ | ❌ | ❌ |
| MaskFormerSwin | ❌ | ❌ | ❌ |
| mBART | ✅ | ✅ | ✅ |
| MEGA | ✅ | ❌ | ❌ |
| Megatron-BERT | ✅ | ❌ | ❌ |
| MGP-STR | ✅ | ❌ | ❌ |
| MobileBERT | ✅ | ✅ | ❌ |
| MobileNetV1 | ✅ | ❌ | ❌ |
| MobileNetV2 | ✅ | ❌ | ❌ |
| MobileViT | ✅ | ✅ | ❌ |
| MobileViTV2 | ✅ | ❌ | ❌ |
| MPNet | ✅ | ✅ | ❌ |
| MPT | ✅ | ❌ | ❌ |
| MRA | ✅ | ❌ | ❌ |
| MT5 | ✅ | ✅ | ✅ |
| MusicGen | ✅ | ❌ | ❌ |
| MVP | ✅ | ❌ | ❌ |
| NAT | ✅ | ❌ | ❌ |
| Nezha | ✅ | ❌ | ❌ |
| NLLB-MOE | ✅ | ❌ | ❌ |
| Nyströmformer | ✅ | ❌ | ❌ |
| OneFormer | ✅ | ❌ | ❌ |
| OpenAI GPT | ✅ | ✅ | ❌ |
| OpenAI GPT-2 | ✅ | ✅ | ✅ |
| OpenLlama | ✅ | ❌ | ❌ |
| OPT | ✅ | ✅ | ✅ |
| OWL-ViT | ✅ | ❌ | ❌ |
| Pegasus | ✅ | ✅ | ✅ |
| PEGASUS-X | ✅ | ❌ | ❌ |
| Perceiver | ✅ | ❌ | ❌ |
| Pix2Struct | ✅ | ❌ | ❌ |
| PLBart | ✅ | ❌ | ❌ |
| PoolFormer | ✅ | ❌ | ❌ |
| Pop2Piano | ✅ | ❌ | ❌ |
| ProphetNet | ✅ | ❌ | ❌ |
| PVT | ✅ | ❌ | ❌ |
| QDQBert | ✅ | ❌ | ❌ |
| RAG | ✅ | ✅ | ❌ |
| REALM | ✅ | ❌ | ❌ |
| Reformer | ✅ | ❌ | ❌ |
| RegNet | ✅ | ✅ | ✅ |
| RemBERT | ✅ | ✅ | ❌ |
| ResNet | ✅ | ✅ | ✅ |
| RetriBERT | ✅ | ❌ | ❌ |
| RoBERTa | ✅ | ✅ | ✅ |
| RoBERTa-PreLayerNorm | ✅ | ✅ | ✅ |
| RoCBert | ✅ | ❌ | ❌ |
| RoFormer | ✅ | ✅ | ✅ |
| RWKV | ✅ | ❌ | ❌ |
| SAM | ✅ | ✅ | ❌ |
| SegFormer | ✅ | ✅ | ❌ |
| SEW | ✅ | ❌ | ❌ |
| SEW-D | ✅ | ❌ | ❌ |
| Speech Encoder decoder | ✅ | ❌ | ✅ |
| Speech2Text | ✅ | ✅ | ❌ |
| Speech2Text2 | ❌ | ❌ | ❌ |
| SpeechT5 | ✅ | ❌ | ❌ |
| Splinter | ✅ | ❌ | ❌ |
| SqueezeBERT | ✅ | ❌ | ❌ |
| SwiftFormer | ✅ | ❌ | ❌ |
| Swin Transformer | ✅ | ✅ | ❌ |
| Swin Transformer V2 | ✅ | ❌ | ❌ |
| Swin2SR | ✅ | ❌ | ❌ |
| SwitchTransformers | ✅ | ❌ | ❌ |
| T5 | ✅ | ✅ | ✅ |
| Table Transformer | ✅ | ❌ | ❌ |
| TAPAS | ✅ | ✅ | ❌ |
| Time Series Transformer | ✅ | ❌ | ❌ |
| TimeSformer | ✅ | ❌ | ❌ |
| TimmBackbone | ❌ | ❌ | ❌ |
| Trajectory Transformer | ✅ | ❌ | ❌ |
| Transformer-XL | ✅ | ✅ | ❌ |
| TrOCR | ✅ | ❌ | ❌ |
| TVLT | ✅ | ❌ | ❌ |
| UMT5 | ✅ | ❌ | ❌ |
| UniSpeech | ✅ | ❌ | ❌ |
| UniSpeechSat | ✅ | ❌ | ❌ |
| UPerNet | ✅ | ❌ | ❌ |
| VAN | ✅ | ❌ | ❌ |
| VideoMAE | ✅ | ❌ | ❌ |
| ViLT | ✅ | ❌ | ❌ |
| Vision Encoder decoder | ✅ | ✅ | ✅ |
| VisionTextDualEncoder | ✅ | ✅ | ✅ |
| VisualBERT | ✅ | ❌ | ❌ |
| ViT | ✅ | ✅ | ✅ |
| ViT Hybrid | ✅ | ❌ | ❌ |
| VitDet | ✅ | ❌ | ❌ |
| ViTMAE | ✅ | ✅ | ❌ |
| ViTMSN | ✅ | ❌ | ❌ |
| VITS | ✅ | ❌ | ❌ |
| ViViT | ✅ | ❌ | ❌ |
| Wav2Vec2 | ✅ | ✅ | ✅ |
| Wav2Vec2-Conformer | ✅ | ❌ | ❌ |
| WavLM | ✅ | ❌ | ❌ |
| Whisper | ✅ | ✅ | ✅ |
| X-CLIP | ✅ | ❌ | ❌ |
| X-MOD | ✅ | ❌ | ❌ |
| XGLM | ✅ | ✅ | ✅ |
| XLM | ✅ | ✅ | ❌ |
| XLM-ProphetNet | ✅ | ❌ | ❌ |
| XLM-RoBERTa | ✅ | ✅ | ✅ |
| XLM-RoBERTa-XL | ✅ | ❌ | ❌ |
| XLNet | ✅ | ✅ | ❌ |
| YOLOS | ✅ | ❌ | ❌ |
| YOSO | ✅ | ❌ | ❌ |
<!-- End table-->

View File

@ -12,6 +12,10 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Installation

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for `FeatureExtractors`

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# General Utilities

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for Generation
@ -71,39 +75,104 @@ values. Here, for instance, it has two keys that are `sequences` and `scores`.
We document here all output types.
### GreedySearchOutput
[[autodoc]] generation.GreedySearchDecoderOnlyOutput
### PyTorch
[[autodoc]] generation.GreedySearchEncoderDecoderOutput
[[autodoc]] generation.FlaxGreedySearchOutput
### SampleOutput
[[autodoc]] generation.SampleDecoderOnlyOutput
[[autodoc]] generation.GreedySearchDecoderOnlyOutput
[[autodoc]] generation.SampleEncoderDecoderOutput
[[autodoc]] generation.FlaxSampleOutput
### BeamSearchOutput
[[autodoc]] generation.BeamSearchDecoderOnlyOutput
[[autodoc]] generation.SampleDecoderOnlyOutput
[[autodoc]] generation.BeamSearchEncoderDecoderOutput
### BeamSampleOutput
[[autodoc]] generation.BeamSearchDecoderOnlyOutput
[[autodoc]] generation.BeamSampleEncoderDecoderOutput
[[autodoc]] generation.BeamSampleDecoderOnlyOutput
[[autodoc]] generation.BeamSampleEncoderDecoderOutput
[[autodoc]] generation.ContrastiveSearchEncoderDecoderOutput
[[autodoc]] generation.ContrastiveSearchDecoderOnlyOutput
### TensorFlow
[[autodoc]] generation.TFGreedySearchEncoderDecoderOutput
[[autodoc]] generation.TFGreedySearchDecoderOnlyOutput
[[autodoc]] generation.TFSampleEncoderDecoderOutput
[[autodoc]] generation.TFSampleDecoderOnlyOutput
[[autodoc]] generation.TFBeamSearchEncoderDecoderOutput
[[autodoc]] generation.TFBeamSearchDecoderOnlyOutput
[[autodoc]] generation.TFBeamSampleEncoderDecoderOutput
[[autodoc]] generation.TFBeamSampleDecoderOnlyOutput
[[autodoc]] generation.TFContrastiveSearchEncoderDecoderOutput
[[autodoc]] generation.TFContrastiveSearchDecoderOnlyOutput
### FLAX
[[autodoc]] generation.FlaxSampleOutput
[[autodoc]] generation.FlaxGreedySearchOutput
[[autodoc]] generation.FlaxBeamSearchOutput
## LogitsProcessor
A [`LogitsProcessor`] can be used to modify the prediction scores of a language model head for
generation.
### PyTorch
[[autodoc]] AlternatingCodebooksLogitsProcessor
- __call__
[[autodoc]] ClassifierFreeGuidanceLogitsProcessor
- __call__
[[autodoc]] EncoderNoRepeatNGramLogitsProcessor
- __call__
[[autodoc]] EncoderRepetitionPenaltyLogitsProcessor
- __call__
[[autodoc]] EpsilonLogitsWarper
- __call__
[[autodoc]] EtaLogitsWarper
- __call__
[[autodoc]] ExponentialDecayLengthPenalty
- __call__
[[autodoc]] ForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] ForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] ForceTokensLogitsProcessor
- __call__
[[autodoc]] HammingDiversityLogitsProcessor
- __call__
[[autodoc]] InfNanRemoveLogitsProcessor
- __call__
[[autodoc]] LogitNormalization
- __call__
[[autodoc]] LogitsProcessor
- __call__
@ -119,40 +188,54 @@ generation.
[[autodoc]] MinNewTokensLengthLogitsProcessor
- __call__
[[autodoc]] TemperatureLogitsWarper
- __call__
[[autodoc]] RepetitionPenaltyLogitsProcessor
- __call__
[[autodoc]] TopPLogitsWarper
- __call__
[[autodoc]] TopKLogitsWarper
- __call__
[[autodoc]] TypicalLogitsWarper
[[autodoc]] NoBadWordsLogitsProcessor
- __call__
[[autodoc]] NoRepeatNGramLogitsProcessor
- __call__
[[autodoc]] NoBadWordsLogitsProcessor
- __call__
[[autodoc]] PrefixConstrainedLogitsProcessor
- __call__
[[autodoc]] HammingDiversityLogitsProcessor
[[autodoc]] RepetitionPenaltyLogitsProcessor
- __call__
[[autodoc]] ForcedBOSTokenLogitsProcessor
[[autodoc]] SequenceBiasLogitsProcessor
- __call__
[[autodoc]] ForcedEOSTokenLogitsProcessor
[[autodoc]] SuppressTokensAtBeginLogitsProcessor
- __call__
[[autodoc]] InfNanRemoveLogitsProcessor
[[autodoc]] SuppressTokensLogitsProcessor
- __call__
[[autodoc]] TemperatureLogitsWarper
- __call__
[[autodoc]] TopKLogitsWarper
- __call__
[[autodoc]] TopPLogitsWarper
- __call__
[[autodoc]] TypicalLogitsWarper
- __call__
[[autodoc]] UnbatchedClassifierFreeGuidanceLogitsProcessor
- __call__
[[autodoc]] WhisperTimeStampLogitsProcessor
- __call__
### TensorFlow
[[autodoc]] TFForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] TFForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] TFForceTokensLogitsProcessor
- __call__
[[autodoc]] TFLogitsProcessor
@ -164,15 +247,6 @@ generation.
[[autodoc]] TFLogitsWarper
- __call__
[[autodoc]] TFTemperatureLogitsWarper
- __call__
[[autodoc]] TFTopPLogitsWarper
- __call__
[[autodoc]] TFTopKLogitsWarper
- __call__
[[autodoc]] TFMinLengthLogitsProcessor
- __call__
@ -185,10 +259,30 @@ generation.
[[autodoc]] TFRepetitionPenaltyLogitsProcessor
- __call__
[[autodoc]] TFForcedBOSTokenLogitsProcessor
[[autodoc]] TFSuppressTokensAtBeginLogitsProcessor
- __call__
[[autodoc]] TFForcedEOSTokenLogitsProcessor
[[autodoc]] TFSuppressTokensLogitsProcessor
- __call__
[[autodoc]] TFTemperatureLogitsWarper
- __call__
[[autodoc]] TFTopKLogitsWarper
- __call__
[[autodoc]] TFTopPLogitsWarper
- __call__
### FLAX
[[autodoc]] FlaxForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxForceTokensLogitsProcessor
- __call__
[[autodoc]] FlaxLogitsProcessor
@ -200,27 +294,30 @@ generation.
[[autodoc]] FlaxLogitsWarper
- __call__
[[autodoc]] FlaxTemperatureLogitsWarper
[[autodoc]] FlaxMinLengthLogitsProcessor
- __call__
[[autodoc]] FlaxTopPLogitsWarper
[[autodoc]] FlaxSuppressTokensAtBeginLogitsProcessor
- __call__
[[autodoc]] FlaxSuppressTokensLogitsProcessor
- __call__
[[autodoc]] FlaxTemperatureLogitsWarper
- __call__
[[autodoc]] FlaxTopKLogitsWarper
- __call__
[[autodoc]] FlaxForcedBOSTokenLogitsProcessor
[[autodoc]] FlaxTopPLogitsWarper
- __call__
[[autodoc]] FlaxForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxMinLengthLogitsProcessor
[[autodoc]] FlaxWhisperTimeStampLogitsProcessor
- __call__
## StoppingCriteria
A [`StoppingCriteria`] can be used to change when to stop generation (other than EOS token).
A [`StoppingCriteria`] can be used to change when to stop generation (other than EOS token). Please note that this is exclusivelly available to our PyTorch implementations.
[[autodoc]] StoppingCriteria
- __call__
@ -236,7 +333,7 @@ A [`StoppingCriteria`] can be used to change when to stop generation (other than
## Constraints
A [`Constraint`] can be used to force the generation to include specific tokens or sequences in the output.
A [`Constraint`] can be used to force the generation to include specific tokens or sequences in the output. Please note that this is exclusivelly available to our PyTorch implementations.
[[autodoc]] Constraint

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for Image Processors

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Custom Layers and Utilities
@ -54,9 +58,6 @@ Most of those are only useful if you are studying the code of the models in the
[[autodoc]] modeling_tf_utils.TFConv1D
[[autodoc]] modeling_tf_utils.TFSharedEmbeddings
- call
[[autodoc]] modeling_tf_utils.TFSequenceSummary
## TensorFlow loss functions

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for pipelines

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Time Series Utilities

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for Tokenizers

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for Trainer

View File

@ -0,0 +1,221 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Generation with LLMs
[[open-in-colab]]
LLMs, or Large Language Models, are the key component behind text generation. In a nutshell, they consist of large pretrained transformer models trained to predict the next word (or, more precisely, token) given some input text. Since they predict one token at a time, you need to do something more elaborate to generate new sentences other than just calling the model -- you need to do autoregressive generation.
Autoregressive generation is the inference-time procedure of iteratively calling a model with its own generated outputs, given a few initial inputs. In 🤗 Transformers, this is handled by the [`~generation.GenerationMixin.generate`] method, which is available to all models with generative capabilities.
This tutorial will show you how to:
* Generate text with an LLM
* Avoid common pitfalls
* Next steps to help you get the most out of your LLM
Before you begin, make sure you have all the necessary libraries installed:
```bash
pip install transformers bitsandbytes>=0.39.0 -q
```
## Generate text
A language model trained for [causal language modeling](tasks/language_modeling) takes a sequence of text tokens as input and returns the probability distribution for the next token.
<!-- [GIF 1 -- FWD PASS] -->
<figure class="image table text-center m-0 w-full">
<video
style="max-width: 90%; margin: auto;"
autoplay loop muted playsinline
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/assisted-generation/gif_1_1080p.mov"
></video>
<figcaption>"Forward pass of an LLM"</figcaption>
</figure>
A critical aspect of autoregressive generation with LLMs is how to select the next token from this probability distribution. Anything goes in this step as long as you end up with a token for the next iteration. This means it can be as simple as selecting the most likely token from the probability distribution or as complex as applying a dozen transformations before sampling from the resulting distribution.
<!-- [GIF 2 -- TEXT GENERATION] -->
<figure class="image table text-center m-0 w-full">
<video
style="max-width: 90%; margin: auto;"
autoplay loop muted playsinline
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/assisted-generation/gif_2_1080p.mov"
></video>
<figcaption>"Autoregressive generation iteratively selects the next token from a probability distribution to generate text"</figcaption>
</figure>
The process depicted above is repeated iteratively until some stopping condition is reached. Ideally, the stopping condition is dictated by the model, which should learn when to output an end-of-sequence (`EOS`) token. If this is not the case, generation stops when some predefined maximum length is reached.
Properly setting up the token selection step and the stopping condition is essential to make your model behave as you'd expect on your task. That is why we have a [`~generation.GenerationConfig`] file associated with each model, which contains a good default generative parameterization and is loaded alongside your model.
Let's talk code!
<Tip>
If you're interested in basic LLM usage, our high-level [`Pipeline`](pipeline_tutorial) interface is a great starting point. However, LLMs often require advanced features like quantization and fine control of the token selection step, which is best done through [`~generation.GenerationMixin.generate`]. Autoregressive generation with LLMs is also resource-intensive and should be executed on a GPU for adequate throughput.
</Tip>
<!-- TODO: update example to llama 2 (or a newer popular baseline) when it becomes ungated -->
First, you need to load the model.
```py
>>> from transformers import AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained(
... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True
... )
```
You'll notice two flags in the `from_pretrained` call:
- `device_map` ensures the model is moved to your GPU(s)
- `load_in_4bit` applies [4-bit dynamic quantization](main_classes/quantization) to massively reduce the resource requirements
There are other ways to initialize a model, but this is a good baseline to begin with an LLM.
Next, you need to preprocess your text input with a [tokenizer](tokenizer_summary).
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b")
>>> model_inputs = tokenizer(["A list of colors: red, blue"], return_tensors="pt").to("cuda")
```
The `model_inputs` variable holds the tokenized text input, as well as the attention mask. While [`~generation.GenerationMixin.generate`] does its best effort to infer the attention mask when it is not passed, we recommend passing it whenever possible for optimal results.
Finally, call the [`~generation.GenerationMixin.generate`] method to returns the generated tokens, which should be converted to text before printing.
```py
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'A list of colors: red, blue, green, yellow, black, white, and brown'
```
And that's it! In a few lines of code, you can harness the power of an LLM.
## Common pitfalls
There are many [generation strategies](generation_strategies), and sometimes the default values may not be appropriate for your use case. If your outputs aren't aligned with what you're expecting, we've created a list of the most common pitfalls and how to avoid them.
```py
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b")
>>> tokenizer.pad_token = tokenizer.eos_token # Llama has no pad token by default
>>> model = AutoModelForCausalLM.from_pretrained(
... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True
... )
```
### Generated output is too short/long
If not specified in the [`~generation.GenerationConfig`] file, `generate` returns up to 20 tokens by default. We highly recommend manually setting `max_new_tokens` in your `generate` call to control the maximum number of new tokens it can return. Keep in mind LLMs (more precisely, [decoder-only models](https://huggingface.co/learn/nlp-course/chapter1/6?fw=pt)) also return the input prompt as part of the output.
```py
>>> model_inputs = tokenizer(["A sequence of numbers: 1, 2"], return_tensors="pt").to("cuda")
>>> # By default, the output will contain up to 20 tokens
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'A sequence of numbers: 1, 2, 3, 4, 5'
>>> # Setting `max_new_tokens` allows you to control the maximum length
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=50)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'A sequence of numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,'
```
### Incorrect generation mode
By default, and unless specified in the [`~generation.GenerationConfig`] file, `generate` selects the most likely token at each iteration (greedy decoding). Depending on your task, this may be undesirable; creative tasks like chatbots or writing an essay benefit from sampling. On the other hand, input-grounded tasks like audio transcription or translation benefit from greedy decoding. Enable sampling with `do_sample=True`, and you can learn more about this topic in this [blog post](https://huggingface.co/blog/how-to-generate).
```py
>>> # Set seed or reproducibility -- you don't need this unless you want full reproducibility
>>> from transformers import set_seed
>>> set_seed(0)
>>> model_inputs = tokenizer(["I am a cat."], return_tensors="pt").to("cuda")
>>> # LLM + greedy decoding = repetitive, boring output
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'I am a cat. I am a cat. I am a cat. I am a cat'
>>> # With sampling, the output becomes more creative!
>>> generated_ids = model.generate(**model_inputs, do_sample=True)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'I am a cat.\nI just need to be. I am always.\nEvery time'
```
### Wrong padding side
LLMs are [decoder-only](https://huggingface.co/learn/nlp-course/chapter1/6?fw=pt) architectures, meaning they continue to iterate on your input prompt. If your inputs do not have the same length, they need to be padded. Since LLMs are not trained to continue from pad tokens, your input needs to be left-padded. Make sure you also don't forget to pass the attention mask to generate!
```py
>>> # The tokenizer initialized above has right-padding active by default: the 1st sequence,
>>> # which is shorter, has padding on the right side. Generation fails.
>>> model_inputs = tokenizer(
... ["1, 2, 3", "A, B, C, D, E"], padding=True, return_tensors="pt"
... ).to("cuda")
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True)[0]
''
>>> # With left-padding, it works as expected!
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b", padding_side="left")
>>> tokenizer.pad_token = tokenizer.eos_token # Llama has no pad token by default
>>> model_inputs = tokenizer(
... ["1, 2, 3", "A, B, C, D, E"], padding=True, return_tensors="pt"
... ).to("cuda")
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'1, 2, 3, 4, 5, 6,'
```
<!-- TODO: when the prompting guide is ready, mention the importance of setting the right prompt in this section -->
## Further resources
While the autoregressive generation process is relatively straightforward, making the most out of your LLM can be a challenging endeavor because there are many moving parts. For your next steps to help you dive deeper into LLM usage and understanding:
<!-- TODO: complete with new guides -->
### Advanced generate usage
1. [Guide](generation_strategies) on how to control different generation methods, how to set up the generation configuration file, and how to stream the output;
2. API reference on [`~generation.GenerationConfig`], [`~generation.GenerationMixin.generate`], and [generate-related classes](internal/generation_utils).
### LLM leaderboards
1. [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), which focuses on the quality of the open-source models;
2. [Open LLM-Perf Leaderboard](https://huggingface.co/spaces/optimum/llm-perf-leaderboard), which focuses on LLM throughput.
### Latency and throughput
1. [Guide](main_classes/quantization) on dynamic quantization, which shows you how to drastically reduce your memory requirements.
### Related libraries
1. [`text-generation-inference`](https://github.com/huggingface/text-generation-inference), a production-ready server for LLMs;
2. [`optimum`](https://github.com/huggingface/optimum), an extension of 🤗 Transformers that optimizes for specific hardware devices.

View File

@ -0,0 +1,105 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Agents & Tools
<Tip warning={true}>
Transformers Agents is an experimental API which is subject to change at any time. Results returned by the agents
can vary as the APIs or underlying models are prone to change.
</Tip>
To learn more about agents and tools make sure to read the [introductory guide](../transformers_agents). This page
contains the API docs for the underlying classes.
## Agents
We provide three types of agents: [`HfAgent`] uses inference endpoints for opensource models, [`LocalAgent`] uses a model of your choice locally and [`OpenAiAgent`] uses OpenAI closed models.
### HfAgent
[[autodoc]] HfAgent
### LocalAgent
[[autodoc]] LocalAgent
### OpenAiAgent
[[autodoc]] OpenAiAgent
### AzureOpenAiAgent
[[autodoc]] AzureOpenAiAgent
### Agent
[[autodoc]] Agent
- chat
- run
- prepare_for_new_chat
## Tools
### load_tool
[[autodoc]] load_tool
### Tool
[[autodoc]] Tool
### PipelineTool
[[autodoc]] PipelineTool
### RemoteTool
[[autodoc]] RemoteTool
### launch_gradio_demo
[[autodoc]] launch_gradio_demo
## Agent Types
Agents can handle any type of object in-between tools; tools, being completely multimodal, can accept and return
text, image, audio, video, among other types. In order to increase compatibility between tools, as well as to
correctly render these returns in ipython (jupyter, colab, ipython notebooks, ...), we implement wrapper classes
around these types.
The wrapped objects should continue behaving as initially; a text object should still behave as a string, an image
object should still behave as a `PIL.Image`.
These types have three specific purposes:
- Calling `to_raw` on the type should return the underlying object
- Calling `to_string` on the type should return the object as a string: that can be the string in case of an `AgentText`
but will be the path of the serialized version of the object in other instances
- Displaying it in an ipython kernel should display the object correctly
### AgentText
[[autodoc]] transformers.tools.agent_types.AgentText
### AgentImage
[[autodoc]] transformers.tools.agent_types.AgentImage
### AgentAudio
[[autodoc]] transformers.tools.agent_types.AgentAudio

View File

@ -1,64 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Agents & Tools
<Tip warning={true}>
Transformers Agent is an experimental API which is subject to change at any time. Results returned by the agents
can vary as the APIs or underlying models are prone to change.
</Tip>
To learn more about agents and tools make sure to read the [introductory guide](../transformers_agents). This page
contains the API docs for the underlying classes.
## Agents
We provide two types of agents: [`HfAgent`] uses inference endpoints for opensource models and [`OpenAiAgent`] uses OpenAI closed models.
### HfAgent
[[autodoc]] HfAgent
### OpenAiAgent
[[autodoc]] OpenAiAgent
### Agent
[[autodoc]] Agent
- chat
- run
- prepare_for_new_chat
## Tools
### load_tool
[[autodoc]] load_tool
### Tool
[[autodoc]] Tool
### PipelineTool
[[autodoc]] PipelineTool
### RemoteTool
[[autodoc]] RemoteTool
### launch_gradio_demo
[[autodoc]] launch_gradio_demo

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Callbacks
@ -39,6 +43,7 @@ By default a [`Trainer`] will use the following callbacks:
installed.
- [`~integrations.ClearMLCallback`] if [clearml](https://github.com/allegroai/clearml) is installed.
- [`~integrations.DagsHubCallback`] if [dagshub](https://dagshub.com/) is installed.
- [`~integrations.FlyteCallback`] if [flyte](https://flyte.org/) is installed.
The main class that implements callbacks is [`TrainerCallback`]. It gets the
[`TrainingArguments`] used to instantiate the [`Trainer`], can access that
@ -79,6 +84,8 @@ Here is the list of the available [`TrainerCallback`] in the library:
[[autodoc]] integrations.DagsHubCallback
[[autodoc]] integrations.FlyteCallback
## TrainerCallback
[[autodoc]] TrainerCallback

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Configuration

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Data Collator

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DeepSpeed Integration
@ -164,6 +168,8 @@ If after trying everything suggested you still encounter build issues, please, p
To deploy the DeepSpeed integration adjust the [`Trainer`] command line arguments to include a new argument `--deepspeed ds_config.json`, where `ds_config.json` is the DeepSpeed configuration file as
documented [here](https://www.deepspeed.ai/docs/config-json/). The file naming is up to you.
It's recommended to use DeepSpeed's `add_config_arguments` utility to add the necessary command line arguments to your code.
For more information please see [DeepSpeed's Argument Parsing](https://deepspeed.readthedocs.io/en/latest/initialize.html#argument-parsing) doc.
You can use a launcher of your choice here. You can continue using the pytorch launcher:
@ -760,7 +766,7 @@ time. "reuse distance" is a metric we are using to figure out when will a parame
use the `stage3_max_reuse_distance` to decide whether to throw away the parameter or to keep it. If a parameter is
going to be used again in near future (less than `stage3_max_reuse_distance`) then we keep it to reduce communication
overhead. This is super helpful when you have activation checkpointing enabled, where we do a forward recompute and
backward passes a a single layer granularity and want to keep the parameter in the forward recompute till the backward
backward passes a single layer granularity and want to keep the parameter in the forward recompute till the backward
The following configuration values depend on the model's hidden size:
@ -1406,7 +1412,7 @@ the full fp32 mode, by explicitly disabling the otherwise default fp16 mixed pre
```json
{
"fp16": {
"enabled": "false",
"enabled": false,
}
}
```
@ -2059,20 +2065,20 @@ In this case you usually need to raise the value of `initial_scale_power`. Setti
## Non-Trainer Deepspeed Integration
The [`~deepspeed.HfDeepSpeedConfig`] is used to integrate Deepspeed into the 🤗 Transformers core
The [`~integrations.HfDeepSpeedConfig`] is used to integrate Deepspeed into the 🤗 Transformers core
functionality, when [`Trainer`] is not used. The only thing that it does is handling Deepspeed ZeRO-3 param gathering and automatically splitting the model onto multiple gpus during `from_pretrained` call. Everything else you have to do by yourself.
When using [`Trainer`] everything is automatically taken care of.
When not using [`Trainer`], to efficiently deploy DeepSpeed ZeRO-3, you must instantiate the
[`~deepspeed.HfDeepSpeedConfig`] object before instantiating the model and keep that object alive.
[`~integrations.HfDeepSpeedConfig`] object before instantiating the model and keep that object alive.
If you're using Deepspeed ZeRO-1 or ZeRO-2 you don't need to use `HfDeepSpeedConfig` at all.
For example for a pretrained model:
```python
from transformers.deepspeed import HfDeepSpeedConfig
from transformers.integrations import HfDeepSpeedConfig
from transformers import AutoModel
import deepspeed
@ -2086,7 +2092,7 @@ engine = deepspeed.initialize(model=model, config_params=ds_config, ...)
or for non-pretrained model:
```python
from transformers.deepspeed import HfDeepSpeedConfig
from transformers.integrations import HfDeepSpeedConfig
from transformers import AutoModel, AutoConfig
import deepspeed
@ -2102,7 +2108,7 @@ Please note that if you're not using the [`Trainer`] integration, you're complet
## HfDeepSpeedConfig
[[autodoc]] deepspeed.HfDeepSpeedConfig
[[autodoc]] integrations.HfDeepSpeedConfig
- all
### Custom DeepSpeed ZeRO Inference
@ -2155,7 +2161,7 @@ Make sure to:
from transformers import AutoTokenizer, AutoConfig, AutoModelForSeq2SeqLM
from transformers.deepspeed import HfDeepSpeedConfig
from transformers.integrations import HfDeepSpeedConfig
import deepspeed
import os
import torch

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Feature Extractor

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Image Processor

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Keras callbacks

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Logging

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Models
@ -99,7 +103,7 @@ t0pp.hf_device_map
'lm_head': 'cpu'}
```
You can also write your own device map following the same format (a dictionary layer name to device). It should map all parameters of the model to a given device, but you don't have to detail where all the submosules of one layer go if that layer is entirely on the same device. For instance, the following device map would work properly for T0pp (as long as you have the GPU memory):
You can also write your own device map following the same format (a dictionary layer name to device). It should map all parameters of the model to a given device, but you don't have to detail where all the submodules of one layer go if that layer is entirely on the same device. For instance, the following device map would work properly for T0pp (as long as you have the GPU memory):
```python
device_map = {"shared": 0, "encoder": 0, "decoder": 1, "lm_head": 1}

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Exporting 🤗 Transformers models to ONNX

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Optimization

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Model outputs

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Pipelines
@ -314,6 +318,13 @@ Pipelines available for audio tasks include the following.
- __call__
- all
### TextToAudioPipeline
[[autodoc]] TextToAudioPipeline
- __call__
- all
### ZeroShotAudioClassificationPipeline
[[autodoc]] ZeroShotAudioClassificationPipeline

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Processors

View File

@ -0,0 +1,438 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Quantize 🤗 Transformers models
## `AutoGPTQ` Integration
🤗 Transformers has integrated `optimum` API to perform GPTQ quantization on language models. You can load and quantize your model in 8, 4, 3 or even 2 bits without a big drop of performance and faster inference speed! This is supported by most GPU hardwares.
To learn more about the the quantization model, check out:
- the [GPTQ](https://arxiv.org/pdf/2210.17323.pdf) paper
- the `optimum` [guide](https://huggingface.co/docs/optimum/llm_quantization/usage_guides/quantization) on GPTQ quantization
- the [`AutoGPTQ`](https://github.com/PanQiWei/AutoGPTQ) library used as the backend
### Requirements
You need to have the following requirements installed to run the code below:
- Install latest `AutoGPTQ` library
`pip install auto-gptq`
- Install latest `optimum` from source
`pip install git+https://github.com/huggingface/optimum.git`
- Install latest `transformers` from source
`pip install git+https://github.com/huggingface/transformers.git`
- Install latest `accelerate` library
`pip install --upgrade accelerate`
Note that GPTQ integration supports for now only text models and you may encounter unexpected behaviour for vision, speech or multi-modal models.
### Load and quantize a model
GPTQ is a quantization method that requires weights calibration before using the quantized models. If you want to quantize transformers model from scratch, it might take some time before producing the quantized model (~5 min on a Google colab for `facebook/opt-350m` model).
Hence, there are two different scenarios where you want to use GPTQ-quantized models. The first use case would be to load models that has been already quantized by other users that are available on the Hub, the second use case would be to quantize your model from scratch and save it or push it on the Hub so that other users can also use it.
#### GPTQ Configuration
In order to load and quantize a model, you need to create a [`GPTQConfig`]. You need to pass the number of `bits`, a `dataset` in order to calibrate the quantization and the `tokenizer` of the model in order prepare the dataset.
```python
model_id = "facebook/opt-125m"
tokenizer = AutoTokenizer.from_pretrained(model_id)
gptq_config = GPTQConfig(bits=4, dataset = "c4", tokenizer=tokenizer)
```
Note that you can pass your own dataset as a list of string. However, it is highly recommended to use the dataset from the GPTQ paper.
```python
dataset = ["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."]
quantization = GPTQConfig(bits=4, dataset = dataset, tokenizer=tokenizer)
```
#### Quantization
You can quantize a model by using `from_pretrained` and setting the `quantization_config`.
```python
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=gptq_config)
```
Note that you will need a GPU to quantize a model. We will put the model in the cpu and move the modules back and forth to the gpu in order to quantize them.
If you want to maximize your gpus usage while using cpu offload, you can set `device_map = "auto"`.
```python
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", quantization_config=gptq_config)
```
Note that disk offload is not supported. Furthermore, if you are out of memory because of the dataset, you may have to pass `max_memory` in `from_pretained`. Checkout this [guide](https://huggingface.co/docs/accelerate/usage_guides/big_modeling#designing-a-device-map) to learn more about `device_map` and `max_memory`.
<Tip warning={true}>
GPTQ quantization only works for text model for now. Futhermore, the quantization process can a lot of time depending on one's hardware (175B model = 4 gpu hours using NVIDIA A100). Please check on the hub if there is not a GPTQ quantized version of the model. If not, you can submit a demand on github.
</Tip>
### Push quantized model to 🤗 Hub
You can push the quantized model like any 🤗 model to Hub with `push_to_hub`. The quantization config will be saved and pushed along the model.
```python
quantized_model.push_to_hub("opt-125m-gptq")
tokenizer.push_to_hub("opt-125m-gptq")
```
If you want to save your quantized model on your local machine, you can also do it with `save_pretrained`:
```python
quantized_model.save_pretrained("opt-125m-gptq")
tokenizer.save_pretrained("opt-125m-gptq")
```
Note that if you have quantized your model with a `device_map`, make sure to move the entire model to one of your gpus or the `cpu` before saving it.
```python
quantized_model.to("cpu")
quantized_model.save_pretrained("opt-125m-gptq")
```
### Load a quantized model from the 🤗 Hub
You can load a quantized model from the Hub by using `from_pretrained`.
Make sure that the pushed weights are quantized, by checking that the attribute `quantization_config` is present in the model configuration object.
```python
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("{your_username}/opt-125m-gptq")
```
If you want to load a model faster and without allocating more memory than needed, the `device_map` argument also works with quantized model. Make sure that you have `accelerate` library installed.
```python
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("{your_username}/opt-125m-gptq", device_map="auto")
```
### Exllama kernels for faster inference
For 4-bit model, you can use the exllama kernels in order to a faster inference speed. It is activated by default. You can change that behavior by passing `disable_exllama` in [`GPTQConfig`]. This will overwrite the quantization config stored in the config. Note that you will only be able to overwrite the attributes related to the kernels. Furthermore, you need to have the entire model on gpus if you want to use exllama kernels.
```py
import torch
gptq_config = GPTQConfig(bits=4, disable_exllama=False)
model = AutoModelForCausalLM.from_pretrained("{your_username}/opt-125m-gptq", device_map="auto", quantization_config = gptq_config)
```
Note that only 4-bit models are supported for now. Furthermore, it is recommended to deactivate the exllama kernels if you are finetuning a quantized model with peft.
#### Fine-tune a quantized model
With the official support of adapters in the Hugging Face ecosystem, you can fine-tune models that have been quantized with GPTQ.
Please have a look at [`peft`](https://github.com/huggingface/peft) library for more details.
### Example demo
Check out the Google Colab [notebook](https://colab.research.google.com/drive/1_TIrmuKOFhuRRiTWN94iLKUFu6ZX4ceb?usp=sharing) to learn how to quantize your model with GPTQ and how finetune the quantized model with peft.
### GPTQConfig
[[autodoc]] GPTQConfig
## `bitsandbytes` Integration
🤗 Transformers is closely integrated with most used modules on `bitsandbytes`. You can load your model in 8-bit precision with few lines of code.
This is supported by most of the GPU hardwares since the `0.37.0` release of `bitsandbytes`.
Learn more about the quantization method in the [LLM.int8()](https://arxiv.org/abs/2208.07339) paper, or the [blogpost](https://huggingface.co/blog/hf-bitsandbytes-integration) about the collaboration.
Since its `0.39.0` release, you can load any model that supports `device_map` using 4-bit quantization, leveraging FP4 data type.
If you want to quantize your own pytorch model, check out this [documentation](https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization) from 🤗 Accelerate library.
Here are the things you can do using `bitsandbytes` integration
### General usage
You can quantize a model by using the `load_in_8bit` or `load_in_4bit` argument when calling the [`~PreTrainedModel.from_pretrained`] method as long as your model supports loading with 🤗 Accelerate and contains `torch.nn.Linear` layers. This should work for any modality as well.
```python
from transformers import AutoModelForCausalLM
model_8bit = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", load_in_8bit=True)
model_4bit = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", load_in_4bit=True)
```
By default all other modules (e.g. `torch.nn.LayerNorm`) will be converted in `torch.float16`, but if you want to change their `dtype` you can overwrite the `torch_dtype` argument:
```python
>>> import torch
>>> from transformers import AutoModelForCausalLM
>>> model_8bit = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", load_in_8bit=True, torch_dtype=torch.float32)
>>> model_8bit.model.decoder.layers[-1].final_layer_norm.weight.dtype
torch.float32
```
### FP4 quantization
#### Requirements
Make sure that you have installed the requirements below before running any of the code snippets below.
- Latest `bitsandbytes` library
`pip install bitsandbytes>=0.39.0`
- Install latest `accelerate`
`pip install --upgrade accelerate`
- Install latest `transformers`
`pip install --upgrade transformers`
#### Tips and best practices
- **Advanced usage:** Refer to [this Google Colab notebook](https://colab.research.google.com/drive/1ge2F1QSK8Q7h0hn3YKuBCOAS0bK8E0wf) for advanced usage of 4-bit quantization with all the possible options.
- **Faster inference with `batch_size=1` :** Since the `0.40.0` release of bitsandbytes, for `batch_size=1` you can benefit from fast inference. Check out [these release notes](https://github.com/TimDettmers/bitsandbytes/releases/tag/0.40.0) and make sure to have a version that is greater than `0.40.0` to benefit from this feature out of the box.
- **Training:** According to [QLoRA paper](https://arxiv.org/abs/2305.14314), for training 4-bit base models (e.g. using LoRA adapters) one should use `bnb_4bit_quant_type='nf4'`.
- **Inference:** For inference, `bnb_4bit_quant_type` does not have a huge impact on the performance. However for consistency with the model's weights, make sure you use the same `bnb_4bit_compute_dtype` and `torch_dtype` arguments.
#### Load a large model in 4bit
By using `load_in_4bit=True` when calling the `.from_pretrained` method, you can divide your memory use by 4 (roughly).
```python
# pip install transformers accelerate bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "bigscience/bloom-1b7"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
```
<Tip warning={true}>
Note that once a model has been loaded in 4-bit it is currently not possible to push the quantized weights on the Hub. Note also that you cannot train 4-bit weights as this is not supported yet. However you can use 4-bit models to train extra parameters, this will be covered in the next section.
</Tip>
### Load a large model in 8bit
You can load a model by roughly halving the memory requirements by using `load_in_8bit=True` argument when calling `.from_pretrained` method
```python
# pip install transformers accelerate bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "bigscience/bloom-1b7"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_8bit=True)
```
Then, use your model as you would usually use a [`PreTrainedModel`].
You can check the memory footprint of your model with `get_memory_footprint` method.
```python
print(model.get_memory_footprint())
```
With this integration we were able to load large models on smaller devices and run them without any issue.
<Tip warning={true}>
Note that once a model has been loaded in 8-bit it is currently not possible to push the quantized weights on the Hub except if you use the latest `transformers` and `bitsandbytes`. Note also that you cannot train 8-bit weights as this is not supported yet. However you can use 8-bit models to train extra parameters, this will be covered in the next section.
Note also that `device_map` is optional but setting `device_map = 'auto'` is prefered for inference as it will dispatch efficiently the model on the available ressources.
</Tip>
#### Advanced use cases
Here we will cover some advanced use cases you can perform with FP4 quantization
##### Change the compute dtype
The compute dtype is used to change the dtype that will be used during computation. For example, hidden states could be in `float32` but computation can be set to bf16 for speedups. By default, the compute dtype is set to `float32`.
```python
import torch
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16)
```
##### Using NF4 (Normal Float 4) data type
You can also use the NF4 data type, which is a new 4bit datatype adapted for weights that have been initialized using a normal distribution. For that run:
```python
from transformers import BitsAndBytesConfig
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
)
model_nf4 = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=nf4_config)
```
##### Use nested quantization for more memory efficient inference
We also advise users to use the nested quantization technique. This saves more memory at no additional performance - from our empirical observations, this enables fine-tuning llama-13b model on an NVIDIA-T4 16GB with a sequence length of 1024, batch size of 1 and gradient accumulation steps of 4.
```python
from transformers import BitsAndBytesConfig
double_quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
)
model_double_quant = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=double_quant_config)
```
### Push quantized models on the 🤗 Hub
You can push a quantized model on the Hub by naively using `push_to_hub` method. This will first push the quantization configuration file, then push the quantized model weights.
Make sure to use `bitsandbytes>0.37.2` (at this time of writing, we tested it on `bitsandbytes==0.38.0.post1`) to be able to use this feature.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-560m", device_map="auto", load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
model.push_to_hub("bloom-560m-8bit")
```
<Tip warning={true}>
Pushing 8bit models on the Hub is strongely encouraged for large models. This will allow the community to benefit from the memory footprint reduction and loading for example large models on a Google Colab.
</Tip>
### Load a quantized model from the 🤗 Hub
You can load a quantized model from the Hub by using `from_pretrained` method. Make sure that the pushed weights are quantized, by checking that the attribute `quantization_config` is present in the model configuration object.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("{your_username}/bloom-560m-8bit", device_map="auto")
```
Note that in this case, you don't need to specify the arguments `load_in_8bit=True`, but you need to make sure that `bitsandbytes` and `accelerate` are installed.
Note also that `device_map` is optional but setting `device_map = 'auto'` is prefered for inference as it will dispatch efficiently the model on the available ressources.
### Advanced use cases
This section is intended to advanced users, that want to explore what it is possible to do beyond loading and running 8-bit models.
#### Offload between `cpu` and `gpu`
One of the advanced use case of this is being able to load a model and dispatch the weights between `CPU` and `GPU`. Note that the weights that will be dispatched on CPU **will not** be converted in 8-bit, thus kept in `float32`. This feature is intended for users that want to fit a very large model and dispatch the model between GPU and CPU.
First, load a [`BitsAndBytesConfig`] from `transformers` and set the attribute `llm_int8_enable_fp32_cpu_offload` to `True`:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)
```
Let's say you want to load `bigscience/bloom-1b7` model, and you have just enough GPU RAM to fit the entire model except the `lm_head`. Therefore write a custom device_map as follows:
```python
device_map = {
"transformer.word_embeddings": 0,
"transformer.word_embeddings_layernorm": 0,
"lm_head": "cpu",
"transformer.h": 0,
"transformer.ln_f": 0,
}
```
And load your model as follows:
```python
model_8bit = AutoModelForCausalLM.from_pretrained(
"bigscience/bloom-1b7",
device_map=device_map,
quantization_config=quantization_config,
)
```
And that's it! Enjoy your model!
#### Play with `llm_int8_threshold`
You can play with the `llm_int8_threshold` argument to change the threshold of the outliers. An "outlier" is a hidden state value that is greater than a certain threshold.
This corresponds to the outlier threshold for outlier detection as described in `LLM.int8()` paper. Any hidden states value that is above this threshold will be considered an outlier and the operation on those values will be done in fp16. Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but there are some exceptional systematic outliers that are very differently distributed for large models. These outliers are often in the interval [-60, -6] or [6, 60]. Int8 quantization works well for values of magnitude ~5, but beyond that, there is a significant performance penalty. A good default threshold is 6, but a lower threshold might be needed for more unstable models (small models, fine-tuning).
This argument can impact the inference speed of the model. We suggest to play with this parameter to find which one is the best for your use case.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
model_id = "bigscience/bloom-1b7"
quantization_config = BitsAndBytesConfig(
llm_int8_threshold=10,
)
model_8bit = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=device_map,
quantization_config=quantization_config,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
```
#### Skip the conversion of some modules
Some models has several modules that needs to be not converted in 8-bit to ensure stability. For example Jukebox model has several `lm_head` modules that should be skipped. Play with `llm_int8_skip_modules`
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
model_id = "bigscience/bloom-1b7"
quantization_config = BitsAndBytesConfig(
llm_int8_skip_modules=["lm_head"],
)
model_8bit = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=device_map,
quantization_config=quantization_config,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
```
#### Fine-tune a model that has been loaded in 8-bit
With the official support of adapters in the Hugging Face ecosystem, you can fine-tune models that have been loaded in 8-bit.
This enables fine-tuning large models such as `flan-t5-large` or `facebook/opt-6.7b` in a single google Colab. Please have a look at [`peft`](https://github.com/huggingface/peft) library for more details.
Note that you don't need to pass `device_map` when loading the model for training. It will automatically load your model on your GPU. You can also set the device map to a specific device if needed (e.g. `cuda:0`, `0`, `torch.device('cuda:0')`). Please note that `device_map=auto` should be used for inference only.
### BitsAndBytesConfig
[[autodoc]] BitsAndBytesConfig
## Quantization with 🤗 `optimum`
Please have a look at [Optimum documentation](https://huggingface.co/docs/optimum/index) to learn more about quantization methods that are supported by `optimum` and see if these are applicable for your use case.

View File

@ -1,181 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Quantize 🤗 Transformers models
## `bitsandbytes` Integration
🤗 Transformers is closely integrated with most used modules on `bitsandbytes`. You can load your model in 8-bit precision with few lines of code.
This is supported by most of the GPU hardwares since the `0.37.0` release of `bitsandbytes`.
Learn more about the quantization method in the [LLM.int8()](https://arxiv.org/abs/2208.07339) paper, or the [blogpost](https://huggingface.co/blog/hf-bitsandbytes-integration) about the collaboration.
Here are the things you can do using `bitsandbytes` integration
### Load a large model in 8bit
You can load a model by roughly halving the memory requirements by using `load_in_8bit=True` argument when calling `.from_pretrained` method
```python
# pip install transformers accelerate bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "bigscience/bloom-1b7"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_8bit=True)
```
Then, use your model as you would usually use a [`PreTrainedModel`].
You can check the memory footprint of your model with `get_memory_footprint` method.
```python
print(model.get_memory_footprint())
```
With this integration we were able to load large models on smaller devices and run them without any issue.
<Tip warning={true}>
Note that once a model has been loaded in 8-bit it is currently not possible to push the quantized weights on the Hub. Note also that you cannot train 8-bit weights as this is not supported yet. However you can use 8-bit models to train extra parameters, this will be covered in the next section.
</Tip>
### Push quantized models on the 🤗 Hub
You can push a quantized model on the Hub by naively using `push_to_hub` method. This will first push the quantization configuration file, then push the quantized model weights.
Make sure to use `bitsandbytes>0.37.2` (at this time of writing, we tested it on `bitsandbytes==0.38.0.post1`) to be able to use this feature.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-560m", device_map="auto", load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
model.push_to_hub("bloom-560m-8bit")
```
<Tip warning={true}>
Pushing 8bit models on the Hub is strongely encouraged for large models. This will allow the community to benefit from the memory footprint reduction and loading for example large models on a Google Colab.
</Tip>
### Load a quantized model from the 🤗 Hub
You can load a quantized model from the Hub by using `from_pretrained` method. Make sure that the pushed weights are quantized, by checking that the attribute `quantization_config` is present in the model configuration object.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("{your_username}/bloom-560m-8bit")
```
Note that in this case, you don't need to specify the arguments `load_in_8bit=True` and `device_map="auto"`, but you need to make sure that `bitsandbytes` and `accelerate` are installed.
### Advanced usecases
This section is intended to advanced users, that want to explore what it is possible to do beyond loading and running 8-bit models.
#### Offload between `cpu` and `gpu`
One of the advanced usecase of this is being able to load a model and dispatch the weights between `CPU` and `GPU`. Note that the weights that will be dispatched on CPU **will not** be converted in 8-bit, thus kept in `float32`. This feature is intended for users that want to fit a very large model and dispatch the model between GPU and CPU.
First, load a `BitsAndBytesConfig` from `transformers` and set the attribute `llm_int8_enable_fp32_cpu_offload` to `True`:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)
```
Let's say you want to load `bigscience/bloom-1b7` model, and you have just enough GPU RAM to fit the entire model except the `lm_head`. Therefore write a custom device_map as follows:
```python
device_map = {
"transformer.word_embeddings": 0,
"transformer.word_embeddings_layernorm": 0,
"lm_head": "cpu",
"transformer.h": 0,
"transformer.ln_f": 0,
}
```
And load your model as follows:
```python
model_8bit = AutoModelForCausalLM.from_pretrained(
"bigscience/bloom-1b7",
device_map=device_map,
quantization_config=quantization_config,
)
```
And that's it! Enjoy your model!
#### Play with `llm_int8_threshold`
You can play with the `llm_int8_threshold` argument to change the threshold of the outliers. An "outlier" is a hidden state value that is greater than a certain threshold.
This corresponds to the outlier threshold for outlier detection as described in `LLM.int8()` paper. Any hidden states value that is above this threshold will be considered an outlier and the operation on those values will be done in fp16. Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but there are some exceptional systematic outliers that are very differently distributed for large models. These outliers are often in the interval [-60, -6] or [6, 60]. Int8 quantization works well for values of magnitude ~5, but beyond that, there is a significant performance penalty. A good default threshold is 6, but a lower threshold might be needed for more unstable models (small models, fine-tuning).
This argument can impact the inference speed of the model. We suggest to play with this parameter to find which one is the best for your usecase.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
model_id = "bigscience/bloom-1b7"
quantization_config = BitsAndBytesConfig(
llm_int8_threshold=10,
)
model_8bit = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=device_map,
quantization_config=quantization_config,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
```
#### Skip the conversion of some modules
Some models has several modules that needs to be not converted in 8-bit to ensure stability. For example Jukebox model has several `lm_head` modules that should be skipped. Play with `llm_int8_skip_modules`
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
model_id = "bigscience/bloom-1b7"
quantization_config = BitsAndBytesConfig(
llm_int8_skip_modules=["lm_head"],
)
model_8bit = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=device_map,
quantization_config=quantization_config,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
```
#### Fine-tune a model that has been loaded in 8-bit
With the official support of adapters in the Hugging Face ecosystem, you can fine-tune models that have been loaded in 8-bit.
This enables fine-tuning large models such as `flan-t5-large` or `facebook/opt-6.7b` in a single google Colab. Please have a look at [`peft`](https://github.com/huggingface/peft) library for more details.
### BitsAndBytesConfig
[[autodoc]] BitsAndBytesConfig
## Quantization with 🤗 `optimum`
Please have a look at [Optimum documentation](https://huggingface.co/docs/optimum/index) to learn more about quantization methods that are supported by `optimum` and see if these are applicable for your usecase.

Some files were not shown because too many files have changed in this diff Show More