Compare commits

..

12 Commits

Author SHA1 Message Date
5303b69c9c check deepspeed multi-gpu 2024-02-23 13:16:32 +08:00
dabe855668 [Mistral, Mixtral] Improve docs (#29084)
* Improve docs

* Improve chat template
2024-02-22 11:48:01 +01:00
2a9b1f80c4 [Gemma] Fix eager attention (#29187)
* fix modelling code

* add tests

* fix tests

* add some logit tests

* style

* fix fix
2024-02-22 01:07:52 +01:00
fc37f38915 Add training version check for AQLM quantizer. (#29142)
* training version check

* warn old aqlm

* aqlm 1.0.2 real

* docs
2024-02-21 17:09:36 +01:00
ae49b218c3 FIX [Gemma] Fix bad rebase with transformers main (#29170)
fix bad rebase
2024-02-21 14:56:34 +01:00
594c1277b2 [ gemma] Adds support for Gemma 💎 (#29167)
* inital commit

* update

* update conversion checkpoint

* update conversion script

* nits

* some fixes

* nits

* merge

* fix permute

* nits

* fix

* nits

* nits

* nits

* fix rope

* fix both rope

* nites

* style

* make sure flax works

* fix flax init code

* fix foward

* nits

* print flax generation out

* current code

* nits

* SIIIIIIIIIIIIIIIIIII

* update

* add new tokenizer

* correct fast tokenizer

* fix conversion

* more comments

* fix modeling and conversion

* nits and nits

* nits testing

* add some tokenization tests

* add some edge cases

* add slow tests and fix them

* fixup

* fix copies for modeling

* fix copies

* add 7B slow tests

* fix

* fix

* fix tests

* make tokenizer cis go green

* styling

* last tokenizer nits

* update jax tests

* fix flax for 7b

* add jit testing 🤗

* cleanups

* isolated nit, inv_freq for rotary_emb.inv_freq

* propagate to jax

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* adjust test

* fix conversion script

* change name

* correct file names

* update conversion script

* Fix bos and eos token ids in the model configuration (#3)

* update modelling

* update conversion script

* add static cache for gemma

* fix sdpa generate

* fix batched

* multiple fixes

* fix FA2

* final fix

* Rename a few missing strings and filenames (#4)

* merge with upstream main

* fix copies

* fix copies

* fix fixup

* fix fixup

* fix

* fix

* final tests

* fix fx gemma tests

* fix fx bf16/fp16 tests

* update slow fx tests

* fx slow tests: one logits, one generation

* move jit test standalone

* Apply suggestions from code review

* nits

* tokenizer updates

* more tokenization updates: custom GemmaSentencepieceExtrator

* style

* Update src/transformers/cache_utils.py

* Update src/transformers/models/gemma/__init__.py

* Update tests/models/gemma/test_modeling_flax_gemma.py

* small nits

* style

* update tokenization test

* fix the rotary embedding

* with style

* fix slow tests

* WARNING this commit might be very important for precisions

* Update tests/models/gemma/test_modeling_flax_gemma.py

* Update src/transformers/models/gemma/configuration_gemma.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Update src/transformers/models/gemma/modeling_flax_gemma.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* small nits here and there!

* forgotten nit

* remove on the fly computation of inv_freq

* revert previous change, let's be safe and for now re-compute freq cis to make sure it's in float

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/transformers/models/gemma/convert_gemma_weights_to_hf.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/transformers/models/gemma/convert_gemma_weights_to_hf.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_flax_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_tokenization_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_tokenization_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_tokenization_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_tokenization_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* nit conversion script link

* fix some tests

* add not doctest and pr doctest

* repo consistency

* fix last CIs 🚀

* update all readmes

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-02-21 14:21:28 +01:00
58245ba6fb [Maskformer] safely get backbone config (#29166)
Safe getattr
2024-02-21 13:51:15 +01:00
1d0ea7abe0 support SDPA Attention in stablelm (#29106)
* support SDPA Attention in stablelm

* add integration test

* add fallback for output_attentions

* Update src/transformers/models/stablelm/modeling_stablelm.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/models/stablelm/test_modeling_stablelm.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/stablelm/modeling_stablelm.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* handle non-contiguous states

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-02-21 13:12:49 +01:00
cc4a664baa torch.compile compatibility with generate + static cache (#29114)
* fix compatibility

* working version

* cleanup

* sanity checks

* more sanity

* working version WITH refactor

* working without API change

* cleanup & tests pass

* more cleaning

* fix test

* fix tests

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* smaller comment

* update comment

* update comment

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-02-21 12:19:30 +01:00
3994fa5baf 🚨 Llama: update rope scaling to match static cache changes (#29143) 2024-02-21 09:47:41 +00:00
1a77f07f65 v4.39.dev.0 2024-02-21 15:23:22 +09:00
e770f0316d [pipeline] Add pool option to image feature extraction pipeline (#28985)
* Add pool option

* PR comments - error message and exact outputs check
2024-02-20 20:22:08 +00:00
104 changed files with 5835 additions and 540 deletions

View File

@ -12,7 +12,7 @@ on:
- cron: "17 2 * * *"
push:
branches:
- run_scheduled_ci*
- check-deepspeed
env:
HF_HOME: /mnt/cache
@ -70,179 +70,12 @@ jobs:
run: |
nvidia-smi
run_tests_gpu:
name: " "
needs: setup
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
uses: ./.github/workflows/model_jobs.yml
with:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
machine_type: ${{ matrix.machine_type }}
slice_id: ${{ matrix.slice_id }}
secrets: inherit
run_examples_gpu:
name: Examples directory
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run examples tests on GPU
working-directory: /transformers
run: |
pip install -r examples/pytorch/_tests_requirements.txt
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_examples_gpu examples/pytorch
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_examples_gpu/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_examples_gpu"
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_examples_gpu
path: /transformers/reports/${{ matrix.machine_type }}_examples_gpu
run_pipelines_torch_gpu:
name: PyTorch pipelines
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
container:
image: huggingface/transformers-pytorch-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_torch_pipeline_gpu tests/pipelines
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu"
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu
run_pipelines_tf_gpu:
name: TensorFlow pipelines
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
container:
image: huggingface/transformers-tensorflow-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_tf_pipeline_gpu tests/pipelines
- name: Failure short reports
if: ${{ always() }}
run: |
cat /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_tf_pipeline_gpu"
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_tests_tf_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu
run_all_tests_torch_cuda_extensions_gpu:
name: Torch CUDA extension tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
machine_type: [multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
needs: setup
container:
@ -265,7 +98,7 @@ jobs:
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed==0.13.1 --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
@ -296,100 +129,3 @@ jobs:
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
run_extract_warnings:
name: Extract warnings in CI artifacts
runs-on: ubuntu-22.04
if: always()
needs: [
setup,
run_tests_gpu,
run_examples_gpu,
run_pipelines_tf_gpu,
run_pipelines_torch_gpu,
run_all_tests_torch_cuda_extensions_gpu
]
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install transformers
run: pip install transformers
- name: Show installed libraries and their versions
run: pip freeze
- name: Create output directory
run: mkdir warnings_in_ci
- uses: actions/download-artifact@v3
with:
path: warnings_in_ci
- name: Show artifacts
run: echo "$(python3 -c 'import os; d = os.listdir(); print(d)')"
working-directory: warnings_in_ci
- name: Extract warnings in CI artifacts
run: |
python3 utils/extract_warnings.py --workflow_run_id ${{ github.run_id }} --output_dir warnings_in_ci --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} --from_gh
echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d) ;print(d)')"
- name: Upload artifact
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: warnings_in_ci
path: warnings_in_ci/selected_warnings.json
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [
setup,
run_tests_gpu,
run_examples_gpu,
run_pipelines_tf_gpu,
run_pipelines_torch_gpu,
run_all_tests_torch_cuda_extensions_gpu,
run_extract_warnings
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v3
- uses: actions/download-artifact@v3
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: scheduled
CI_SHA: ${{ github.sha }}
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
sudo apt-get install -y curl
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.folder_slices }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: prev_ci_results
path: prev_ci_results

View File

@ -345,7 +345,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
@ -374,6 +374,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/main/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
@ -489,7 +490,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/main/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.

View File

@ -318,7 +318,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
@ -347,6 +347,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/main/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
@ -462,7 +463,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/main/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.

View File

@ -339,7 +339,7 @@ Nombre actuel de points de contrôle : ![](https://img.shields.io/endpoint?url=h
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (de SenseTime Research) publié dans l'article [Deformable DETR : Transformateurs déformables pour la détection d'objets de bout en bout](https://arxiv.org/abs/2010.04159) par Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (de Facebook) publié dans l'article [Entraînement d'images efficace et distillation par l'attention](https://arxiv.org/abs/2012.12877) par Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (de Google AI) publié dans l'article [DePlot : Raisonnement visuel en une étape par traduction de l'intrigue en tableau](https://arxiv.org/abs/2212.10505) par Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)** (de l'université d'Hong Kong et TikTok) publié dans l'article [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (de l'université d'Hong Kong et TikTok) publié dans l'article [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (de l'Université du Texas à Austin) publié dans l'article [NMS Strikes Back](https://arxiv.org/abs/2212.06137) par Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (de Facebook) publié dans l'article [Détection d'objets de bout en bout avec des transformateurs](https://arxiv.org/abs/2005.12872) par Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (de Microsoft Research) publié dans l'article [DialoGPT : Pré-entraînement génératif à grande échelle pour la génération de réponses conversationnelles](https://arxiv.org/abs/1911.00536) par Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
@ -368,6 +368,7 @@ Nombre actuel de points de contrôle : ![](https://img.shields.io/endpoint?url=h
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (de Microsoft Research) publié dans l'article [Réseaux de modulation focale](https://arxiv.org/abs/2203.11926) par Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (de l'Université Carnegie Mellon/Google Brain) publié dans l'article [Funnel-Transformer : Filtrer la redondance séquentielle pour un traitement efficace du langage](https://arxiv.org/abs/2006.03236) par Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (de ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Publié dans l'article [billet de blog](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/main/model_doc/gemma)** (de Google) publié dans l'article [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) parthe Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (de Microsoft Research) publié dans l'article [GIT : Un transformateur génératif d'images en texte pour la vision et le langage](https://arxiv.org/abs/2205.14100) par Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (de la KAIST) publié dans l'article [Réseaux de chemins globaux-locaux pour l'estimation de profondeur monoculaire avec Vertical CutDepth](https://arxiv.org/abs/2201.07436) par Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (d'OpenAI) publié dans l'article [Améliorer la compréhension du langage par l'apprentissage préalable génératif](https://openai.com/research/language-unsupervised/) par Alec Radford, Karthik Narasimhan, Tim Salimans et Ilya Sutskever.
@ -483,7 +484,7 @@ Nombre actuel de points de contrôle : ![](https://img.shields.io/endpoint?url=h
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (de Facebook), publié dans l'article [Apprentissage auto-supervisé et semi-supervisé à grande échelle pour la traduction de la parole](https://arxiv.org/abs/2104.06678) par Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (de l'Université de Tel Aviv), publié dans l'article [Réponse à quelques questions avec peu d'exemples par la pré-sélection des spans](https://arxiv.org/abs/2101.00438) par Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (de Berkeley) a été publié dans l'article [SqueezeBERT : Que l'apprentissage automatique peut-il apprendre au traitement du langage naturel sur les réseaux neuronaux efficaces ?](https://arxiv.org/abs/2006.11316) par Forrest N. Iandola, Albert E. Shaw, Ravi Krishna et Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/main/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (de MBZUAI) a été publié dans l'article [SwiftFormer : Attention additive efficace pour les applications de vision mobile en temps réel basées sur des transformateurs](https://arxiv.org/abs/2303.15446) par Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (de Microsoft) a été publié dans l'article [Swin Transformer : Transformateur hiérarchique de la vision utilisant des fenêtres décalées](https://arxiv.org/abs/2103.14030) par Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (de Microsoft) a été publié dans l'article [Swin Transformer V2 : Augmentation de la capacité et de la résolution](https://arxiv.org/abs/2111.09883) par Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.

View File

@ -292,7 +292,7 @@ conda install conda-forge::transformers
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (सेंसटाइम रिसर्च से) साथ में पेपर [डिफॉर्मेबल डीईटीआर: डिफॉर्मेबल ट्रांसफॉर्मर्स फॉर एंड-टू-एंड ऑब्जेक्ट डिटेक्शन](https://arxiv.org/abs/2010.04159) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, जिफेंग दाई द्वारा पोस्ट किया गया।
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (फेसबुक से) साथ में पेपर [ट्रेनिंग डेटा-एफिशिएंट इमेज ट्रांसफॉर्मर और डिस्टिलेशन थ्रू अटेंशन](https://arxiv.org/abs/2012.12877) ह्यूगो टौव्रोन, मैथ्यू कॉर्ड, मैथिज्स डूज़, फ़्रांसिस्को मस्सा, एलेक्ज़ेंडर सबलेरोल्स, हर्वे जेगौ द्वारा।
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI से) Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. द्वाराअनुसंधान पत्र [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) के साथ जारी किया गया
1. **[Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)** (University of Hong Kong and TikTok से) Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao. द्वाराअनुसंधान पत्र [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) के साथ जारी किया गया
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (University of Hong Kong and TikTok से) Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao. द्वाराअनुसंधान पत्र [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) के साथ जारी किया गया
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (फेसबुक से) साथ में कागज [ट्रांसफॉर्मर्स के साथ एंड-टू-एंड ऑब्जेक्ट डिटेक्शन](https://arxiv.org/abs/2005.12872) निकोलस कैरियन, फ़्रांसिस्को मस्सा, गेब्रियल सिनेव, निकोलस उसुनियर, अलेक्जेंडर किरिलोव, सर्गेई ज़ागोरुयको द्वारा।
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [DialoGPT: बड़े पैमाने पर जनरेटिव प्री-ट्रेनिंग फॉर कन्वर्सेशनल रिस्पांस जेनरेशन](https://arxiv.org/abs/1911.00536) यिज़े झांग, सिकी सन, मिशेल गैली, येन-चुन चेन, क्रिस ब्रोकेट, जियांग गाओ, जियानफेंग गाओ, जिंगजिंग लियू, बिल डोलन द्वारा।
@ -321,6 +321,7 @@ conda install conda-forge::transformers
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (Microsoft Research से) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. द्वाराअनुसंधान पत्र [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) के साथ जारी किया गया
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [फ़नल-ट्रांसफॉर्मर: कुशल भाषा प्रसंस्करण के लिए अनुक्रमिक अतिरेक को छानना](https://arxiv.org/abs/2006.03236) जिहांग दाई, गुओकुन लाई, यिमिंग यांग, क्वोक वी. ले द्वारा रिहाई।
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (ADEPT से) रोहन बाविशी, एरिच एलसेन, कर्टिस हॉथोर्न, मैक्सवेल नी, ऑगस्टस ओडेना, अरुशी सोमानी, सागनाक तासिरलार [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/main/model_doc/gemma)** (Google से) the Gemma Google team. द्वाराअनुसंधान पत्र [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) के साथ जारी किया गया
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST से) साथ वाला पेपर [वर्टिकल कटडेप्थ के साथ मोनोकुलर डेप्थ एस्टीमेशन के लिए ग्लोबल-लोकल पाथ नेटवर्क्स](https://arxiv.org/abs/2201.07436) डोयोन किम, वूंगह्युन गा, प्युंगवान आह, डोंगग्यू जू, सेहवान चुन, जुनमो किम द्वारा।
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI से) साथ में दिया गया पेपर [जेनरेटिव प्री-ट्रेनिंग द्वारा भाषा की समझ में सुधार](https://openai.com/research/language-unsupervised/) एलेक रैडफोर्ड, कार्तिक नरसिम्हन, टिम सालिमन्स और इल्या सुत्स्केवर द्वारा।
@ -436,7 +437,7 @@ conda install conda-forge::transformers
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (फेसबुक से) साथ में पेपर [लार्ज-स्केल सेल्फ- एंड सेमी-सुपरवाइज्ड लर्निंग फॉर स्पीच ट्रांसलेशन](https://arxiv.org/abs/2104.06678) चांगहान वांग, ऐनी वू, जुआन पिनो, एलेक्सी बेवस्की, माइकल औली, एलेक्सिस द्वारा Conneau द्वारा पोस्ट किया गया।
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (तेल अवीव यूनिवर्सिटी से) साथ में पेपर [स्पैन सिलेक्शन को प्री-ट्रेनिंग करके कुछ-शॉट क्वेश्चन आंसरिंग](https://arxiv.org/abs/2101.00438) ओरि राम, युवल कर्स्टन, जोनाथन बेरेंट, अमीर ग्लोबर्सन, ओमर लेवी द्वारा।
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (बर्कले से) कागज के साथ [SqueezeBERT: कुशल तंत्रिका नेटवर्क के बारे में NLP को कंप्यूटर विज़न क्या सिखा सकता है?](https://arxiv.org/abs/2006.11316) फॉरेस्ट एन. इनडोला, अल्बर्ट ई. शॉ, रवि कृष्णा, और कर्ट डब्ल्यू. केटज़र द्वारा।
1. **[StableLm](https://huggingface.co/docs/transformers/main/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI से) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. द्वाराअनुसंधान पत्र [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) के साथ जारी किया गया
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (माइक्रोसॉफ्ट से) साथ में कागज [स्वाइन ट्रांसफॉर्मर: शिफ्टेड विंडोज का उपयोग कर पदानुक्रमित विजन ट्रांसफॉर्मर](https://arxiv.org/abs/2103.14030) ज़ी लियू, युटोंग लिन, यू काओ, हान हू, यिक्सुआन वेई, झेंग झांग, स्टीफन लिन, बैनिंग गुओ द्वारा।
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft से) साथ वाला पेपर [Swin Transformer V2: स्केलिंग अप कैपेसिटी एंड रेजोल्यूशन](https://arxiv.org/abs/2111.09883) ज़ी लियू, हान हू, युटोंग लिन, ज़ुलिआंग याओ, ज़ेंडा ज़ी, यिक्सुआन वेई, जिया निंग, यू काओ, झेंग झांग, ली डोंग, फुरु वेई, बैनिंग गुओ द्वारा।

View File

@ -352,7 +352,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (SenseTime Research から) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai から公開された研究論文: [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159)
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (Facebook から) Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou から公開された研究論文: [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877)
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI から) Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. から公開された研究論文 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505)
1. **[Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)** (University of Hong Kong and TikTok から) Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao. から公開された研究論文 [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891)
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (University of Hong Kong and TikTok から) Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao. から公開された研究論文 [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891)
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (The University of Texas at Austin から) Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl. から公開された研究論文 [NMS Strikes Back](https://arxiv.org/abs/2212.06137)
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook から) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko から公開された研究論文: [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research から) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan から公開された研究論文: [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536)
@ -381,6 +381,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (Microsoft Research から) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. から公開された研究論文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926)
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (CMU/Google Brain から) Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le から公開された研究論文: [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236)
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (ADEPT から) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. から公開された研究論文 [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/main/model_doc/gemma)** (Google から) the Gemma Google team. から公開された研究論文 [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/)
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (Microsoft Research から) Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. から公開された研究論文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100)
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST から) Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim から公開された研究論文: [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436)
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI から) Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever から公開された研究論文: [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/)
@ -496,7 +497,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook から), Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau から公開された研究論文: [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678)
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University から), Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy から公開された研究論文: [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438)
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley から) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer から公開された研究論文: [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316)
1. **[StableLm](https://huggingface.co/docs/transformers/main/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI から) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. から公開された研究論文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft から) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo から公開された研究論文: [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft から) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo から公開された研究論文: [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883)

View File

@ -267,7 +267,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (SenseTime Research 에서) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 의 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 논문과 함께 발표했습니다.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (Facebook 에서) Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 의 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 논문과 함께 발표했습니다.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI 에서 제공)은 Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.의 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505)논문과 함께 발표했습니다.
1. **[Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)** (University of Hong Kong and TikTok 에서 제공)은 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.의 [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891)논문과 함께 발표했습니다.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (University of Hong Kong and TikTok 에서 제공)은 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.의 [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891)논문과 함께 발표했습니다.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (The University of Texas at Austin 에서 제공)은 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.의 [NMS Strikes Back](https://arxiv.org/abs/2212.06137)논문과 함께 발표했습니다.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook 에서) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 의 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 논문과 함께 발표했습니다.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research 에서) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 의 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 논문과 함께 발표했습니다.
@ -296,6 +296,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. 논문과 함께 공개 [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/main/model_doc/gemma)** (Google 에서 제공)은 the Gemma Google team.의 [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/)논문과 함께 발표했습니다.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
@ -411,7 +412,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook 에서) Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 의 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 논문과 함께 발표했습니다.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University 에서) Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 의 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 논문과 함께 발표했습니다.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley 에서) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 의 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 논문과 함께 발표했습니다.
1. **[StableLm](https://huggingface.co/docs/transformers/main/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI 에서 제공)은 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.의 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)논문과 함께 발표했습니다.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft 에서) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 의 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 논문과 함께 발표했습니다.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft 에서) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 의 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 논문과 함께 발표했습니다.

View File

@ -291,7 +291,7 @@ conda install conda-forge::transformers
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (来自 SenseTime Research) 伴随论文 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 由 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 发布。
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (来自 Facebook) 伴随论文 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 由 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 发布。
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (来自 Google AI) 伴随论文 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) 由 Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun 发布。
1. **[Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)** (来自 University of Hong Kong and TikTok) 伴随论文 [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) 由 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao 发布。
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (来自 University of Hong Kong and TikTok) 伴随论文 [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) 由 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao 发布。
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (来自 The University of Texas at Austin) 伴随论文 [NMS Strikes Back](https://arxiv.org/abs/2212.06137) 由 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl 发布。
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (来自 Facebook) 伴随论文 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 由 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 发布。
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (来自 Microsoft Research) 伴随论文 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 由 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 发布。
@ -320,6 +320,7 @@ conda install conda-forge::transformers
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (来自 Microsoft Research) 伴随论文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) 由 Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao 发布。
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (来自 CMU/Google Brain) 伴随论文 [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) 由 Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le 发布。
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (来自 ADEPT) 伴随论文 [blog post](https://www.adept.ai/blog/fuyu-8b) 由 Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar 发布。
1. **[Gemma](https://huggingface.co/docs/transformers/main/model_doc/gemma)** (来自 Google) 伴随论文 [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) 由 the Gemma Google team 发布。
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (来自 Microsoft Research) 伴随论文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) 由 Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang 发布。
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (来自 KAIST) 伴随论文 [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) 由 Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim 发布。
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。
@ -435,7 +436,7 @@ conda install conda-forge::transformers
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。
1. **[StableLm](https://huggingface.co/docs/transformers/main/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (来自 MBZUAI) 伴随论文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) 由 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan 发布。
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (来自 Microsoft) 伴随论文 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 由 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 发布。

View File

@ -303,7 +303,7 @@ conda install conda-forge::transformers
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[Depth Anything](https://huggingface.co/docs/transformers/model_doc/depth_anything)** (from University of Hong Kong and TikTok) released with the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
@ -332,6 +332,7 @@ conda install conda-forge::transformers
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[Gemma](https://huggingface.co/docs/transformers/main/model_doc/gemma)** (from Google) released with the paper [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by the Gemma Google team.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
@ -447,7 +448,7 @@ conda install conda-forge::transformers
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook) released with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University) released with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/main/model_doc/stablelm)** released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.

View File

@ -354,6 +354,8 @@
title: Funnel Transformer
- local: model_doc/fuyu
title: Fuyu
- local: model_doc/gemma
title: Gemma
- local: model_doc/openai-gpt
title: GPT
- local: model_doc/gpt_neo

View File

@ -142,6 +142,7 @@ Flax), PyTorch, and/or TensorFlow.
| [FocalNet](model_doc/focalnet) | ✅ | ❌ | ❌ |
| [Funnel Transformer](model_doc/funnel) | ✅ | ✅ | ❌ |
| [Fuyu](model_doc/fuyu) | ✅ | ❌ | ❌ |
| [Gemma](model_doc/gemma) | ✅ | ❌ | ✅ |
| [GIT](model_doc/git) | ✅ | ❌ | ❌ |
| [GLPN](model_doc/glpn) | ✅ | ❌ | ❌ |
| [GPT Neo](model_doc/gpt_neo) | ✅ | ❌ | ✅ |

View File

@ -0,0 +1,71 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Gemma
## Overview
The Gemma model was proposed in [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by Gemma Team, Google.
Gemma models are trained on 6T tokens, and released with 2 versions, 2b and 7b.
The abstract from the paper is the following:
*This work introduces Gemma, a new family of open language models demonstrating strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of our model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations*
Tips:
- The original checkpoints can be converted using the conversion script `src/transformers/models/gemma/convert_gemma_weights_to_hf.py`
This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ), [Younes Belkada](https://huggingface.co/ybelkada), [Sanchit Gandhi](https://huggingface.co/sanchit-gandhi), [Pedro Cuenca](https://huggingface.co/pcuenq).
## GemmaConfig
[[autodoc]] GemmaConfig
## GemmaTokenizer
[[autodoc]] GemmaTokenizer
## GemmaTokenizerFast
[[autodoc]] GemmaTokenizerFast
## GemmaModel
[[autodoc]] GemmaModel
- forward
## GemmaForCausalLM
[[autodoc]] GemmaForCausalLM
- forward
## GemmaForSequenceClassification
[[autodoc]] GemmaForSequenceClassification
- forward
## FlaxGemmaModel
[[autodoc]] FlaxGemmaModel
- __call__
## FlaxGemmaForCausalLM
[[autodoc]] FlaxGemmaForCausalLM
- __call__

View File

@ -18,71 +18,80 @@ rendered properly in your Markdown viewer.
## Overview
Mistral-7B-v0.1 is Mistral AI's first Large Language Model (LLM).
Mistral was introduced in the [this blogpost](https://mistral.ai/news/announcing-mistral-7b/) by Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
### Model Details
The introduction of the blog post says:
Mistral-7B-v0.1 is a decoder-based LM with the following architectural choices:
* Sliding Window Attention - Trained with 8k context length and fixed cache size, with a theoretical attention span of 128K tokens
* GQA (Grouped Query Attention) - allowing faster inference and lower cache size.
* Byte-fallback BPE tokenizer - ensures that characters are never mapped to out of vocabulary tokens.
*Mistral AI team is proud to release Mistral 7B, the most powerful language model for its size to date.*
We also provide an instruction fine-tuned model: `Mistral-7B-Instruct-v0.1` which can be used for chat-based inference.
Mistral-7B is the first large language model (LLM) released by [mistral.ai](https://mistral.ai/).
For more details please read our [release blog post](https://mistral.ai/news/announcing-mistral-7b/)
### Architectural details
Mistral-7B is a decoder-only Transformer with the following architectural choices:
- Sliding Window Attention - Trained with 8k context length and fixed cache size, with a theoretical attention span of 128K tokens
- GQA (Grouped Query Attention) - allowing faster inference and lower cache size.
- Byte-fallback BPE tokenizer - ensures that characters are never mapped to out of vocabulary tokens.
For more details refer to the [release blog post](https://mistral.ai/news/announcing-mistral-7b/).
### License
Both `Mistral-7B-v0.1` and `Mistral-7B-Instruct-v0.1` are released under the Apache 2.0 license.
`Mistral-7B` is released under the Apache 2.0 license.
## Usage tips
`Mistral-7B-v0.1` and `Mistral-7B-Instruct-v0.1` can be found on the [Huggingface Hub](https://huggingface.co/mistralai)
The Mistral team has released 3 checkpoints:
These ready-to-use checkpoints can be downloaded and used via the HuggingFace Hub:
- a base model, [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), which has been pre-trained to predict the next token on internet-scale data.
- an instruction tuned model, [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), which is the base model optimized for chat purposes using supervised fine-tuning (SFT) and direct preference optimization (DPO).
- an improved instruction tuned model, [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), which improves upon v1.
The base model can be used as follows:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
>>> prompt = "My favourite condiment is"
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
>>> model.to(device)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"The expected output"
"My favourite condiment is to ..."
```
Raw weights for `Mistral-7B-v0.1` and `Mistral-7B-Instruct-v0.1` can be downloaded from:
| Model Name | Checkpoint |
|----------------------------|-----------------------------------------------------------------------------------------|
| `Mistral-7B-v0.1` | [Raw Checkpoint](https://files.mistral-7b-v0-1.mistral.ai/mistral-7B-v0.1.tar) |
| `Mistral-7B-Instruct-v0.1` | [Raw Checkpoint](https://files.mistral-7b-v0-1.mistral.ai/mistral-7B-instruct-v0.1.tar) |
To use these raw checkpoints with HuggingFace you can use the `convert_mistral_weights_to_hf.py` script to convert them to the HuggingFace format:
```bash
python src/transformers/models/mistral/convert_mistral_weights_to_hf.py \
--input_dir /path/to/downloaded/mistral/weights --model_size 7B --output_dir /output/path
```
You can then load the converted model from the `output/path`:
The instruction tuned model can be used as follows:
```python
from transformers import MistralForCausalLM, LlamaTokenizer
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
model = MistralForCausalLM.from_pretrained("/output/path")
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
>>> messages = [
... {"role": "user", "content": "What is your favourite condiment?"},
... {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
... {"role": "user", "content": "Do you have mayonnaise recipes?"}
... ]
>>> model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
>>> generated_ids = model.generate(model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"Mayonnaise can be made as follows: (...)"
```
## Combining Mistral and Flash Attention 2
As can be seen, the instruction-tuned model requires a [chat template](../chat_templating) to be applied to make sure the inputs are prepared in the right format.
## Speeding up Mistral by using Flash Attention
The code snippets above showcase inference without any optimization tricks. However, one can drastically speed up the model by leveraging [Flash Attention](../perf_train_gpu_one.md#flash-attention-2), which is a faster implementation of the attention mechanism used inside the model.
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature.
@ -90,26 +99,25 @@ First, make sure to install the latest version of Flash Attention 2 to include t
pip install -U flash-attn --no-build-isolation
```
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of [`flash-attn`](https://github.com/Dao-AILab/flash-attention) repository. Make also sure to load your model in half-precision (e.g. `torch.float16`)
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of the [flash attention repository](https://github.com/Dao-AILab/flash-attention). Make also sure to load your model in half-precision (e.g. `torch.float16`)
To load and run a model using Flash Attention 2, refer to the snippet below:
To load and run a model using Flash Attention-2, refer to the snippet below:
```python
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16, attn_implementation="flash_attention_2")
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
>>> prompt = "My favourite condiment is"
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
>>> model.to(device)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"The expected output"
"My favourite condiment is to (...)"
```
### Expected speedups
@ -127,9 +135,54 @@ To enable sliding window attention, just make sure to have a `flash-attn` versio
The Flash Attention-2 model uses also a more memory efficient cache slicing mechanism - as recommended per the official implementation of Mistral model that use rolling cache mechanism we keep the cache size fixed (`self.config.sliding_window`), support batched generation only for `padding_side="left"` and use the absolute position of the current token to compute the positional embedding.
## The Mistral Team
## Shrinking down Mistral using quantization
Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
As the Mistral model has 7 billion parameters, that would require about 14GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization.md). If the model is quantized to 4 bits (or half a byte per parameter),that requires only about 3.5GB of RAM.
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the BitsAndyBytes quantization (but refer to [this page](../quantization.md) for other quantization methods):
```python
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
>>> # specify how to quantize the model
>>> quantization_config = BitsAndBytesConfig(
... load_in_4bit=True,
... bnb_4bit_quant_type="nf4",
... bnb_4bit_compute_dtype="torch.float16",
... )
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", quantization_config=True, device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
>>> prompt = "My favourite condiment is"
>>> messages = [
... {"role": "user", "content": "What is your favourite condiment?"},
... {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
... {"role": "user", "content": "Do you have mayonnaise recipes?"}
... ]
>>> model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
>>> generated_ids = model.generate(model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"The expected output"
```
This model was contributed by [Younes Belkada](https://huggingface.co/ybelkada) and [Arthur Zucker](https://huggingface.co/ArthurZ) .
The original code can be found [here](https://github.com/mistralai/mistral-src).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Mistral. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-generation"/>
- A demo notebook to perform supervised fine-tuning (SFT) of Mistral-7B can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Mistral/Supervised_fine_tuning_(SFT)_of_an_LLM_using_Hugging_Face_tooling.ipynb). 🌎
- A [blog post](https://www.philschmid.de/fine-tune-llms-in-2024-with-trl) on how to fine-tune LLMs in 2024 using Hugging Face tooling. 🌎
- The [Alignment Handbook](https://github.com/huggingface/alignment-handbook) by Hugging Face includes scripts and recipes to perform supervised fine-tuning (SFT) and direct preference optimization with Mistral-7B. This includes scripts for full fine-tuning, QLoRa on a single GPU as well as multi-GPU fine-tuning.
- [Causal language modeling task guide](../tasks/language_modeling)
## MistralConfig
@ -158,4 +211,4 @@ Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Sin
## FlaxMistralForCausalLM
[[autodoc]] FlaxMistralForCausalLM
- __call__
- __call__

View File

@ -18,38 +18,27 @@ rendered properly in your Markdown viewer.
## Overview
Mixtral-8x7B is Mistral AI's second Large Language Model (LLM).
Mixtral-8x7B was introduced in the [Mixtral of Experts blogpost](https://mistral.ai/news/mixtral-of-experts/) by Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
The Mixtral model was proposed by the [Mistral AI](https://mistral.ai/) team.
It was introduced in the [Mixtral of Experts blogpost](https://mistral.ai/news/mixtral-of-experts/) with the following introduction:
The introduction of the blog post says:
*Today, the team is proud to release Mixtral 8x7B, a high-quality sparse mixture of experts models (SMoE) with open weights. Licensed under Apache 2.0. Mixtral outperforms Llama 2 70B on most benchmarks with 6x faster inference. It is the strongest open-weight model with a permissive license and the best model overall regarding cost/performance trade-offs. In particular, it matches or outperforms GPT3.5 on most standard benchmarks.*
Tips:
Mixtral-8x7B is the second large language model (LLM) released by [mistral.ai](https://mistral.ai/), after [Mistral-7B](mistral).
### Architectural details
- The model needs to be converted using the [conversion script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/mixtral/convert_mixtral_weights_to_hf.py).
- If the model is quantized to 4bits, a single A100 is enough to fit the entire 45B model.
Mixtral-8x7B is a decoder-only Transformer with the following architectural choices:
This model was contributed by [Younes Belkada](https://huggingface.co/ybelkada) and [Arthur Zucker](https://huggingface.co/ArthurZ) .
The original code can be found [here](https://github.com/mistralai/mistral-src).
- Mixtral is a Mixture of Experts (MoE) model with 8 experts per MLP, with a total of 45 billion parameters. To learn more about mixture-of-experts, refer to the [blog post](https://huggingface.co/blog/moe).
- Despite the model having 45 billion parameters,, the compute required for a single forward pass is the same as that of a 14 billion parameter model. This is because even though each of the experts have to be loaded in RAM (70B like ram requirement) each token from the hidden states are dispatched twice (top 2 routing) and thus the compute (the operation required at each forward computation) is just 2 X sequence_length.
The following implementation details are shared with Mistral AI's first model [Mistral-7B](mistral):
- Sliding Window Attention - Trained with 8k context length and fixed cache size, with a theoretical attention span of 128K tokens
- GQA (Grouped Query Attention) - allowing faster inference and lower cache size.
- Byte-fallback BPE tokenizer - ensures that characters are never mapped to out of vocabulary tokens.
### Model Details
Mixtral-45B is a decoder-based LM with the following architectural choices:
* Mixtral is a Mixture of Expert (MOE) model with 8 experts per MLP, with a total of 45B paramateres but the compute required is the same as a 14B model. This is because even though each experts have to be loaded in RAM (70B like ram requirement) each token from the hidden states are dispatched twice (top 2 routing) and thus the compute (the operation required at each forward computation) is just 2 X sequence_length.
The following implementation details are shared with Mistral AI's first model [mistral](mistral):
* Sliding Window Attention - Trained with 8k context length and fixed cache size, with a theoretical attention span of 128K tokens
* GQA (Grouped Query Attention) - allowing faster inference and lower cache size.
* Byte-fallback BPE tokenizer - ensures that characters are never mapped to out of vocabulary tokens.
They also provide an instruction fine-tuned model: `mistralai/Mixtral-8x7B-v0.1` which can be used for chat-based inference.
For more details please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/)
For more details refer to the [release blog post](https://mistral.ai/news/mixtral-of-experts/).
### License
@ -57,44 +46,54 @@ For more details please read our [release blog post](https://mistral.ai/news/mix
## Usage tips
`Mixtral-8x7B` can be found on the [Huggingface Hub](https://huggingface.co/mistralai)
The Mistral team has released 2 checkpoints:
- a base model, [Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1), which has been pre-trained to predict the next token on internet-scale data.
- an instruction tuned model, [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1), which is the base model optimized for chat purposes using supervised fine-tuning (SFT) and direct preference optimization (DPO).
These ready-to-use checkpoints can be downloaded and used via the HuggingFace Hub:
The base model can be used as follows:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
>>> prompt = "My favourite condiment is"
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
>>> model.to(device)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"The expected output"
"My favourite condiment is to ..."
```
To use the raw checkpoints with HuggingFace you can use the `convert_mixtral_weights_to_hf.py` script to convert them to the HuggingFace format:
```bash
python src/transformers/models/mixtral/convert_mixtral_weights_to_hf.py \
--input_dir /path/to/downloaded/mistral/weights --output_dir /output/path
```
You can then load the converted model from the `output/path`:
The instruction tuned model can be used as follows:
```python
from transformers import MixtralForCausalLM, LlamaTokenizer
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
model = MixtralForCausalLM.from_pretrained("/output/path")
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
>>> messages = [
... {"role": "user", "content": "What is your favourite condiment?"},
... {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
... {"role": "user", "content": "Do you have mayonnaise recipes?"}
... ]
>>> model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
>>> generated_ids = model.generate(model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"Mayonnaise can be made as follows: (...)"
```
## Combining Mixtral and Flash Attention 2
As can be seen, the instruction-tuned model requires a [chat template](../chat_templating) to be applied to make sure the inputs are prepared in the right format.
## Speeding up Mixtral by using Flash Attention
The code snippets above showcase inference without any optimization tricks. However, one can drastically speed up the model by leveraging [Flash Attention](../perf_train_gpu_one.md#flash-attention-2), which is a faster implementation of the attention mechanism used inside the model.
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature.
@ -102,21 +101,20 @@ First, make sure to install the latest version of Flash Attention 2 to include t
pip install -U flash-attn --no-build-isolation
```
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of [`flash-attn`](https://github.com/Dao-AILab/flash-attention) repository. Make also sure to load your model in half-precision (e.g. `torch.float16`)
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of the [flash attention repository](https://github.com/Dao-AILab/flash-attention). Make also sure to load your model in half-precision (e.g. `torch.float16`)
To load and run a model using Flash Attention 2, refer to the snippet below:
To load and run a model using Flash Attention-2, refer to the snippet below:
```python
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1", torch_dtype=torch.float16, attn_implementation="flash_attention_2")
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1", torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
>>> prompt = "My favourite condiment is"
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
>>> model.to(device)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
@ -139,9 +137,54 @@ To enable sliding window attention, just make sure to have a `flash-attn` versio
The Flash Attention-2 model uses also a more memory efficient cache slicing mechanism - as recommended per the official implementation of Mistral model that use rolling cache mechanism we keep the cache size fixed (`self.config.sliding_window`), support batched generation only for `padding_side="left"` and use the absolute position of the current token to compute the positional embedding.
## The Mistral Team
## Shrinking down Mixtral using quantization
Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
As the Mixtral model has 45 billion parameters, that would require about 90GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization.md). If the model is quantized to 4 bits (or half a byte per parameter), a single A100 with 40GB of RAM is enough to fit the entire model, as in that case only about 27 GB of RAM is required.
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the BitsAndyBytes quantization (but refer to [this page](../quantization.md) for other quantization methods):
```python
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
>>> # specify how to quantize the model
>>> quantization_config = BitsAndBytesConfig(
... load_in_4bit=True,
... bnb_4bit_quant_type="nf4",
... bnb_4bit_compute_dtype="torch.float16",
... )
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", quantization_config=True, device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
>>> prompt = "My favourite condiment is"
>>> messages = [
... {"role": "user", "content": "What is your favourite condiment?"},
... {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
... {"role": "user", "content": "Do you have mayonnaise recipes?"}
... ]
>>> model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
>>> generated_ids = model.generate(model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"The expected output"
```
This model was contributed by [Younes Belkada](https://huggingface.co/ybelkada) and [Arthur Zucker](https://huggingface.co/ArthurZ) .
The original code can be found [here](https://github.com/mistralai/mistral-src).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Mixtral. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-generation"/>
- A demo notebook to perform supervised fine-tuning (SFT) of Mixtral-8x7B can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Mistral/Supervised_fine_tuning_(SFT)_of_an_LLM_using_Hugging_Face_tooling.ipynb). 🌎
- A [blog post](https://medium.com/@prakharsaxena11111/finetuning-mixtral-7bx8-6071b0ebf114) on fine-tuning Mixtral-8x7B using PEFT. 🌎
- The [Alignment Handbook](https://github.com/huggingface/alignment-handbook) by Hugging Face includes scripts and recipes to perform supervised fine-tuning (SFT) and direct preference optimization with Mistral-7B. This includes scripts for full fine-tuning, QLoRa on a single GPU as well as multi-GPU fine-tuning.
- [Causal language modeling task guide](../tasks/language_modeling)
## MixtralConfig

View File

@ -40,6 +40,7 @@ FlashAttention-2 is currently supported for the following architectures:
* [Bark](https://huggingface.co/docs/transformers/model_doc/bark#transformers.BarkModel)
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
* [DistilBert](https://huggingface.co/docs/transformers/model_doc/distilbert#transformers.DistilBertModel)
* [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel)
* [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel)
* [GPTNeo](https://huggingface.co/docs/transformers/model_doc/gpt_neo#transformers.GPTNeoModel)
* [GPTNeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox#transformers.GPTNeoXModel)
@ -171,12 +172,14 @@ For now, Transformers supports SDPA inference and training for the following arc
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
* [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel)
* [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel)
* [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel)
* [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel)
* [Phi](https://huggingface.co/docs/transformers/model_doc/phi#transformers.PhiModel)
* [Idefics](https://huggingface.co/docs/transformers/model_doc/idefics#transformers.IdeficsModel)
* [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperModel)
* [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel)
* [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral#transformers.MixtralModel)
* [StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm#transformers.StableLmModel)
* [Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2#transformers.Qwen2Model)
<Tip>

View File

@ -39,10 +39,14 @@ Inference support for AQLM is realised in the `aqlm` library. Make sure to insta
pip install aqlm[gpu,cpu]
```
The library provides efficient kernels for both GPU and CPU inference.
The library provides efficient kernels for both GPU and CPU inference and training.
The instructions on how to quantize models yourself, as well as all the relevant code can be found in the corresponding GitHub [repository](https://github.com/Vahe1994/AQLM).
### PEFT
Starting with version `aqlm 1.0.2`, AQLM supports Parameter-Efficient Fine-Tuning in a form of [LoRA](https://huggingface.co/docs/peft/package_reference/lora) integrated into the [PEFT](https://huggingface.co/blog/peft) library.
### AQLM configurations
AQLM quantization setpus vary mainly on the number of codebooks used as well as codebook sizes in bits. The most popular setups, as well as inference kernels they support are:

View File

@ -37,7 +37,7 @@ You can finetune other architectures for causal language modeling following the
Choose one of the following architectures:
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
[BART](../model_doc/bart), [BERT](../model_doc/bert), [Bert Generation](../model_doc/bert-generation), [BigBird](../model_doc/big_bird), [BigBird-Pegasus](../model_doc/bigbird_pegasus), [BioGpt](../model_doc/biogpt), [Blenderbot](../model_doc/blenderbot), [BlenderbotSmall](../model_doc/blenderbot-small), [BLOOM](../model_doc/bloom), [CamemBERT](../model_doc/camembert), [CodeLlama](../model_doc/code_llama), [CodeGen](../model_doc/codegen), [CPM-Ant](../model_doc/cpmant), [CTRL](../model_doc/ctrl), [Data2VecText](../model_doc/data2vec-text), [ELECTRA](../model_doc/electra), [ERNIE](../model_doc/ernie), [Falcon](../model_doc/falcon), [Fuyu](../model_doc/fuyu), [GIT](../model_doc/git), [GPT-Sw3](../model_doc/gpt-sw3), [OpenAI GPT-2](../model_doc/gpt2), [GPTBigCode](../model_doc/gpt_bigcode), [GPT Neo](../model_doc/gpt_neo), [GPT NeoX](../model_doc/gpt_neox), [GPT NeoX Japanese](../model_doc/gpt_neox_japanese), [GPT-J](../model_doc/gptj), [LLaMA](../model_doc/llama), [Marian](../model_doc/marian), [mBART](../model_doc/mbart), [MEGA](../model_doc/mega), [Megatron-BERT](../model_doc/megatron-bert), [Mistral](../model_doc/mistral), [Mixtral](../model_doc/mixtral), [MPT](../model_doc/mpt), [MusicGen](../model_doc/musicgen), [MVP](../model_doc/mvp), [OpenLlama](../model_doc/open-llama), [OpenAI GPT](../model_doc/openai-gpt), [OPT](../model_doc/opt), [Pegasus](../model_doc/pegasus), [Persimmon](../model_doc/persimmon), [Phi](../model_doc/phi), [PLBart](../model_doc/plbart), [ProphetNet](../model_doc/prophetnet), [QDQBert](../model_doc/qdqbert), [Qwen2](../model_doc/qwen2), [Reformer](../model_doc/reformer), [RemBERT](../model_doc/rembert), [RoBERTa](../model_doc/roberta), [RoBERTa-PreLayerNorm](../model_doc/roberta-prelayernorm), [RoCBert](../model_doc/roc_bert), [RoFormer](../model_doc/roformer), [RWKV](../model_doc/rwkv), [Speech2Text2](../model_doc/speech_to_text_2), [StableLm](../model_doc/stablelm), [Transformer-XL](../model_doc/transfo-xl), [TrOCR](../model_doc/trocr), [Whisper](../model_doc/whisper), [XGLM](../model_doc/xglm), [XLM](../model_doc/xlm), [XLM-ProphetNet](../model_doc/xlm-prophetnet), [XLM-RoBERTa](../model_doc/xlm-roberta), [XLM-RoBERTa-XL](../model_doc/xlm-roberta-xl), [XLNet](../model_doc/xlnet), [X-MOD](../model_doc/xmod)
[BART](../model_doc/bart), [BERT](../model_doc/bert), [Bert Generation](../model_doc/bert-generation), [BigBird](../model_doc/big_bird), [BigBird-Pegasus](../model_doc/bigbird_pegasus), [BioGpt](../model_doc/biogpt), [Blenderbot](../model_doc/blenderbot), [BlenderbotSmall](../model_doc/blenderbot-small), [BLOOM](../model_doc/bloom), [CamemBERT](../model_doc/camembert), [CodeLlama](../model_doc/code_llama), [CodeGen](../model_doc/codegen), [CPM-Ant](../model_doc/cpmant), [CTRL](../model_doc/ctrl), [Data2VecText](../model_doc/data2vec-text), [ELECTRA](../model_doc/electra), [ERNIE](../model_doc/ernie), [Falcon](../model_doc/falcon), [Fuyu](../model_doc/fuyu), [Gemma](../model_doc/gemma), [GIT](../model_doc/git), [GPT-Sw3](../model_doc/gpt-sw3), [OpenAI GPT-2](../model_doc/gpt2), [GPTBigCode](../model_doc/gpt_bigcode), [GPT Neo](../model_doc/gpt_neo), [GPT NeoX](../model_doc/gpt_neox), [GPT NeoX Japanese](../model_doc/gpt_neox_japanese), [GPT-J](../model_doc/gptj), [LLaMA](../model_doc/llama), [Marian](../model_doc/marian), [mBART](../model_doc/mbart), [MEGA](../model_doc/mega), [Megatron-BERT](../model_doc/megatron-bert), [Mistral](../model_doc/mistral), [Mixtral](../model_doc/mixtral), [MPT](../model_doc/mpt), [MusicGen](../model_doc/musicgen), [MVP](../model_doc/mvp), [OpenLlama](../model_doc/open-llama), [OpenAI GPT](../model_doc/openai-gpt), [OPT](../model_doc/opt), [Pegasus](../model_doc/pegasus), [Persimmon](../model_doc/persimmon), [Phi](../model_doc/phi), [PLBart](../model_doc/plbart), [ProphetNet](../model_doc/prophetnet), [QDQBert](../model_doc/qdqbert), [Qwen2](../model_doc/qwen2), [Reformer](../model_doc/reformer), [RemBERT](../model_doc/rembert), [RoBERTa](../model_doc/roberta), [RoBERTa-PreLayerNorm](../model_doc/roberta-prelayernorm), [RoCBert](../model_doc/roc_bert), [RoFormer](../model_doc/roformer), [RWKV](../model_doc/rwkv), [Speech2Text2](../model_doc/speech_to_text_2), [StableLm](../model_doc/stablelm), [Transformer-XL](../model_doc/transfo-xl), [TrOCR](../model_doc/trocr), [Whisper](../model_doc/whisper), [XGLM](../model_doc/xglm), [XLM](../model_doc/xlm), [XLM-ProphetNet](../model_doc/xlm-prophetnet), [XLM-RoBERTa](../model_doc/xlm-roberta), [XLM-RoBERTa-XL](../model_doc/xlm-roberta-xl), [XLNet](../model_doc/xlnet), [X-MOD](../model_doc/xmod)

View File

@ -33,7 +33,7 @@ The task illustrated in this tutorial is supported by the following model archit
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
[ALBERT](../model_doc/albert), [BART](../model_doc/bart), [BERT](../model_doc/bert), [BigBird](../model_doc/big_bird), [BigBird-Pegasus](../model_doc/bigbird_pegasus), [BioGpt](../model_doc/biogpt), [BLOOM](../model_doc/bloom), [CamemBERT](../model_doc/camembert), [CANINE](../model_doc/canine), [CodeLlama](../model_doc/code_llama), [ConvBERT](../model_doc/convbert), [CTRL](../model_doc/ctrl), [Data2VecText](../model_doc/data2vec-text), [DeBERTa](../model_doc/deberta), [DeBERTa-v2](../model_doc/deberta-v2), [DistilBERT](../model_doc/distilbert), [ELECTRA](../model_doc/electra), [ERNIE](../model_doc/ernie), [ErnieM](../model_doc/ernie_m), [ESM](../model_doc/esm), [Falcon](../model_doc/falcon), [FlauBERT](../model_doc/flaubert), [FNet](../model_doc/fnet), [Funnel Transformer](../model_doc/funnel), [GPT-Sw3](../model_doc/gpt-sw3), [OpenAI GPT-2](../model_doc/gpt2), [GPTBigCode](../model_doc/gpt_bigcode), [GPT Neo](../model_doc/gpt_neo), [GPT NeoX](../model_doc/gpt_neox), [GPT-J](../model_doc/gptj), [I-BERT](../model_doc/ibert), [LayoutLM](../model_doc/layoutlm), [LayoutLMv2](../model_doc/layoutlmv2), [LayoutLMv3](../model_doc/layoutlmv3), [LED](../model_doc/led), [LiLT](../model_doc/lilt), [LLaMA](../model_doc/llama), [Longformer](../model_doc/longformer), [LUKE](../model_doc/luke), [MarkupLM](../model_doc/markuplm), [mBART](../model_doc/mbart), [MEGA](../model_doc/mega), [Megatron-BERT](../model_doc/megatron-bert), [Mistral](../model_doc/mistral), [Mixtral](../model_doc/mixtral), [MobileBERT](../model_doc/mobilebert), [MPNet](../model_doc/mpnet), [MPT](../model_doc/mpt), [MRA](../model_doc/mra), [MT5](../model_doc/mt5), [MVP](../model_doc/mvp), [Nezha](../model_doc/nezha), [Nyströmformer](../model_doc/nystromformer), [OpenLlama](../model_doc/open-llama), [OpenAI GPT](../model_doc/openai-gpt), [OPT](../model_doc/opt), [Perceiver](../model_doc/perceiver), [Persimmon](../model_doc/persimmon), [Phi](../model_doc/phi), [PLBart](../model_doc/plbart), [QDQBert](../model_doc/qdqbert), [Qwen2](../model_doc/qwen2), [Reformer](../model_doc/reformer), [RemBERT](../model_doc/rembert), [RoBERTa](../model_doc/roberta), [RoBERTa-PreLayerNorm](../model_doc/roberta-prelayernorm), [RoCBert](../model_doc/roc_bert), [RoFormer](../model_doc/roformer), [SqueezeBERT](../model_doc/squeezebert), [StableLm](../model_doc/stablelm), [T5](../model_doc/t5), [TAPAS](../model_doc/tapas), [Transformer-XL](../model_doc/transfo-xl), [UMT5](../model_doc/umt5), [XLM](../model_doc/xlm), [XLM-RoBERTa](../model_doc/xlm-roberta), [XLM-RoBERTa-XL](../model_doc/xlm-roberta-xl), [XLNet](../model_doc/xlnet), [X-MOD](../model_doc/xmod), [YOSO](../model_doc/yoso)
[ALBERT](../model_doc/albert), [BART](../model_doc/bart), [BERT](../model_doc/bert), [BigBird](../model_doc/big_bird), [BigBird-Pegasus](../model_doc/bigbird_pegasus), [BioGpt](../model_doc/biogpt), [BLOOM](../model_doc/bloom), [CamemBERT](../model_doc/camembert), [CANINE](../model_doc/canine), [CodeLlama](../model_doc/code_llama), [ConvBERT](../model_doc/convbert), [CTRL](../model_doc/ctrl), [Data2VecText](../model_doc/data2vec-text), [DeBERTa](../model_doc/deberta), [DeBERTa-v2](../model_doc/deberta-v2), [DistilBERT](../model_doc/distilbert), [ELECTRA](../model_doc/electra), [ERNIE](../model_doc/ernie), [ErnieM](../model_doc/ernie_m), [ESM](../model_doc/esm), [Falcon](../model_doc/falcon), [FlauBERT](../model_doc/flaubert), [FNet](../model_doc/fnet), [Funnel Transformer](../model_doc/funnel), [Gemma](../model_doc/gemma), [GPT-Sw3](../model_doc/gpt-sw3), [OpenAI GPT-2](../model_doc/gpt2), [GPTBigCode](../model_doc/gpt_bigcode), [GPT Neo](../model_doc/gpt_neo), [GPT NeoX](../model_doc/gpt_neox), [GPT-J](../model_doc/gptj), [I-BERT](../model_doc/ibert), [LayoutLM](../model_doc/layoutlm), [LayoutLMv2](../model_doc/layoutlmv2), [LayoutLMv3](../model_doc/layoutlmv3), [LED](../model_doc/led), [LiLT](../model_doc/lilt), [LLaMA](../model_doc/llama), [Longformer](../model_doc/longformer), [LUKE](../model_doc/luke), [MarkupLM](../model_doc/markuplm), [mBART](../model_doc/mbart), [MEGA](../model_doc/mega), [Megatron-BERT](../model_doc/megatron-bert), [Mistral](../model_doc/mistral), [Mixtral](../model_doc/mixtral), [MobileBERT](../model_doc/mobilebert), [MPNet](../model_doc/mpnet), [MPT](../model_doc/mpt), [MRA](../model_doc/mra), [MT5](../model_doc/mt5), [MVP](../model_doc/mvp), [Nezha](../model_doc/nezha), [Nyströmformer](../model_doc/nystromformer), [OpenLlama](../model_doc/open-llama), [OpenAI GPT](../model_doc/openai-gpt), [OPT](../model_doc/opt), [Perceiver](../model_doc/perceiver), [Persimmon](../model_doc/persimmon), [Phi](../model_doc/phi), [PLBart](../model_doc/plbart), [QDQBert](../model_doc/qdqbert), [Qwen2](../model_doc/qwen2), [Reformer](../model_doc/reformer), [RemBERT](../model_doc/rembert), [RoBERTa](../model_doc/roberta), [RoBERTa-PreLayerNorm](../model_doc/roberta-prelayernorm), [RoCBert](../model_doc/roc_bert), [RoFormer](../model_doc/roformer), [SqueezeBERT](../model_doc/squeezebert), [StableLm](../model_doc/stablelm), [T5](../model_doc/t5), [TAPAS](../model_doc/tapas), [Transformer-XL](../model_doc/transfo-xl), [UMT5](../model_doc/umt5), [XLM](../model_doc/xlm), [XLM-RoBERTa](../model_doc/xlm-roberta), [XLM-RoBERTa-XL](../model_doc/xlm-roberta-xl), [XLNet](../model_doc/xlnet), [X-MOD](../model_doc/xmod), [YOSO](../model_doc/yoso)

View File

@ -62,7 +62,7 @@ from transformers.utils import check_min_version, send_example_telemetry
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
Array = Any
Dataset = datasets.arrow_dataset.Dataset

View File

@ -60,7 +60,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risk.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=2.14.0", "To fix: pip install -r examples/flax/speech-recognition/requirements.txt")

View File

@ -55,7 +55,7 @@ from transformers.utils import check_min_version, send_example_telemetry
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
Array = Any
Dataset = datasets.arrow_dataset.Dataset

View File

@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")

View File

@ -45,7 +45,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")

View File

@ -55,7 +55,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/contrastive-image-text/requirements.txt")

View File

@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")

View File

@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
logger = get_logger(__name__)

View File

@ -44,7 +44,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")

View File

@ -49,7 +49,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")

View File

@ -54,7 +54,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")

View File

@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")

View File

@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
logger = get_logger(__name__)

View File

@ -54,7 +54,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")

View File

@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
logger = get_logger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")

View File

@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")

View File

@ -48,7 +48,7 @@ from transformers.utils import PaddingStrategy, check_min_version, send_example_
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
logger = logging.getLogger(__name__)

View File

@ -56,7 +56,7 @@ from transformers.utils import PaddingStrategy, check_min_version, send_example_
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
logger = get_logger(__name__)
# You should update this to your particular problem to have better documentation of `model_type`

View File

@ -50,7 +50,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

View File

@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

View File

@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

View File

@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

View File

@ -47,7 +47,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

View File

@ -52,7 +52,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/semantic-segmentation/requirements.txt")

View File

@ -50,7 +50,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
logger = get_logger(__name__)

View File

@ -51,7 +51,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")

View File

@ -53,7 +53,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")

View File

@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")

View File

@ -53,7 +53,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")

View File

@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
logger = get_logger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")

View File

@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")

View File

@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")

View File

@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
logger = get_logger(__name__)

View File

@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")

View File

@ -50,7 +50,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")

View File

@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
logger = get_logger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")

View File

@ -53,7 +53,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")

View File

@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
logger = get_logger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")

View File

@ -52,7 +52,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version(
"datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/contrastive-image-text/requirements.txt"

View File

@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")

View File

@ -51,7 +51,7 @@ from transformers.utils import PaddingStrategy, check_min_version, send_example_
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
logger = logging.getLogger(__name__)

View File

@ -63,7 +63,7 @@ except (ModuleNotFoundError, ImportError):
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
logger = logging.getLogger(__name__)

View File

@ -54,7 +54,7 @@ from transformers.utils.versions import require_version
# region Checking dependencies
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")

View File

@ -48,7 +48,7 @@ from transformers.utils import check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
task_to_keys = {
"cola": ("sentence", None),

View File

@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
# region Dependencies and constants
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")

288
installed.txt Normal file
View File

@ -0,0 +1,288 @@
absl-py==2.0.0
accelerate @ git+https://github.com/huggingface/accelerate@68f54720dc9e4e887f8b7e3177798d745913e8ad
aiohttp @ file:///rapids/aiohttp-3.8.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=0fa375b3d34e71ccccf172cab401cd94a72de7a8cc01847a7b3386204093bb47
aiosignal @ file:///rapids/aiosignal-1.3.1-py3-none-any.whl#sha256=f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17
alembic==1.13.1
annotated-types==0.6.0
anyio==4.2.0
argon2-cffi==23.1.0
argon2-cffi-bindings==21.2.0
arrow==1.3.0
asttokens==2.4.1
astunparse==1.6.3
async-timeout @ file:///rapids/async_timeout-4.0.3-py3-none-any.whl#sha256=7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028
attrs==23.1.0
audioread==3.0.1
backoff==2.2.1
beautifulsoup4==4.12.2
binaryornot==0.4.4
bleach==6.1.0
blis==0.7.11
cachetools==5.3.2
catalogue==2.0.10
certifi==2023.11.17
cffi==1.16.0
chardet==5.2.0
charset-normalizer @ file:///rapids/charset_normalizer-3.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=c0e842112fe3f1a4ffcf64b06dc4c61a88441c2f02f373367f7b4c1aa9be2ad5
click==8.1.7
cloudpathlib==0.16.0
cloudpickle @ file:///rapids/cloudpickle-3.0.0-py3-none-any.whl#sha256=246ee7d0c295602a036e86369c77fecda4ab17b506496730f2f576d9016fd9c7
cmake==3.27.7
colorlog==6.8.2
comm==0.2.0
confection==0.1.3
contourpy==1.2.0
cookiecutter==1.7.3
cubinlinker @ file:///rapids/cubinlinker-0.3.0%2B2.g711d153-cp310-cp310-linux_x86_64.whl#sha256=09790c488057d9d98fbc92a40784ccd8fb7f6ed84d2402e91bb591bd5d2ac6f4
cuda-python @ file:///rapids/cuda_python-12.3.0rc4%2B8.ge6f99b5-cp310-cp310-linux_x86_64.whl#sha256=e6e31115e62ec105fd3b3b930fde350d462e152b282d5cf87696463aef03fbb1
cudf @ file:///rapids/cudf-23.10.0-cp310-cp310-linux_x86_64.whl#sha256=4215941cb6a5223338104e17fbe6b3eabd203c58e77fc1336a1d9fe2b2ab1b8f
cugraph @ file:///rapids/cugraph-23.10.0-cp310-cp310-linux_x86_64.whl#sha256=d0a1cf058765f49cee449b2293428347b2543eaa6e7ad33f963531ec87fe5f02
cugraph-dgl @ file:///rapids/cugraph_dgl-23.10.0-py3-none-any.whl#sha256=bcc95cc264b8a78a2b21c661118571cc413af34dac65c903588cf0a178e373ec
cugraph-service-client @ file:///rapids/cugraph_service_client-23.10.0-py3-none-any.whl#sha256=58d1ad8163fe1069d03094a88797c857ae575a744e5b2faeb2ab98b9ab53b6fb
cugraph-service-server @ file:///rapids/cugraph_service_server-23.10.0-py3-none-any.whl#sha256=4b6c76852f5ab41c4c5a02c1d71f4f6540f4cc39d8f9996af179d47de5f4cba0
cuml @ file:///rapids/cuml-23.10.0-cp310-cp310-linux_x86_64.whl#sha256=03903b2559c3183fc055121db5798c7e42af940bae8d95a3bfff4ce7a4c743f7
cupy-cuda12x @ file:///rapids/cupy_cuda12x-12.2.0-cp310-cp310-manylinux2014_x86_64.whl#sha256=bfcea96e5506193ea8672a8c8a3e164d023c4860e58f1165cdd4a946b136aa20
cycler==0.12.1
cymem==2.0.8
Cython==3.0.5
dask @ file:///rapids/dask-2023.9.2-py3-none-any.whl#sha256=5742bc3752a8caad1c8bbb24aa2986424c73c4c819d5ac5a9544c6f373d0094b
dask-cuda @ file:///rapids/dask_cuda-23.10.0-py3-none-any.whl#sha256=736033f1df06aa49f06b7e7ab69ebc6e2375cc32657f40d50936241be463766d
dask-cudf @ file:///rapids/dask_cudf-23.10.0-py3-none-any.whl#sha256=d0b4b864d6b0ee573edeef42f43b4c4dbf3a22edceffbf2bdcf12552a50a30b2
datasets==2.16.1
debugpy==1.8.0
decorator==5.1.1
deepspeed==0.13.2
defusedxml==0.7.1
dill==0.3.4
distributed @ file:///rapids/distributed-2023.9.2-py3-none-any.whl#sha256=c2adf3b803599e8cff40034abf3dcd8470ef0678f6ae5a0d23c2ffd55fc0e0ca
dm-tree==0.1.8
einops==0.7.0
evaluate==0.4.1
exceptiongroup==1.1.3
execnet==2.0.2
executing==2.0.1
expecttest==0.1.3
faiss-cpu==1.7.4
fastjsonschema==2.19.0
fastrlock @ file:///rapids/fastrlock-0.8.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl#sha256=08315bde19d0c2e6b06593d5a418be3dc8f9b1ee721afa96867b9853fceb45cf
filelock==3.13.1
flash-attn==2.0.4
fonttools==4.45.0
frozenlist @ file:///rapids/frozenlist-1.4.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=6918d49b1f90821e93069682c06ffde41829c346c66b721e65a5c62b4bab0300
fsspec==2023.10.0
gast==0.5.4
gitdb==4.0.11
GitPython==3.1.18
google-auth==2.23.4
google-auth-oauthlib==0.4.6
gql==3.5.0
graphql-core==3.2.3
graphsurgeon @ file:///workspace/TensorRT-8.6.1.6/graphsurgeon/graphsurgeon-0.4.6-py2.py3-none-any.whl#sha256=0fbadaefbbe6e9920b9f814ae961c4a279be602812edf3ed7fb9cc6f8f4809fe
greenlet==3.0.3
grpcio==1.59.3
hf-doc-builder==0.4.0
hjson==3.1.0
huggingface-hub==0.20.3
hypothesis==5.35.1
idna==3.4
importlib-metadata @ file:///rapids/importlib_metadata-6.8.0-py3-none-any.whl#sha256=3ebb78df84a805d7698245025b975d9d67053cd94c79245ba4b3eb694abe68bb
iniconfig==2.0.0
intel-openmp==2021.4.0
ipykernel==6.26.0
ipython==8.17.2
ipython-genutils==0.2.0
jedi==0.19.1
Jinja2==3.1.2
jinja2-time==0.2.0
joblib==1.3.2
json5==0.9.14
jsonschema==4.20.0
jsonschema-specifications==2023.11.1
jupyter-tensorboard @ git+https://github.com/cliffwoolley/jupyter_tensorboard.git@ffa7e26138b82549453306e06b535a9ac36db17a
jupyter_client==8.6.0
jupyter_core==5.5.0
jupyterlab==2.3.2
jupyterlab-pygments==0.2.2
jupyterlab-server==1.2.0
jupytext==1.15.2
kiwisolver==1.4.5
langcodes==3.3.0
lazy_loader==0.3
librosa==0.10.1
llvmlite @ file:///rapids/llvmlite-0.40.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=bbd5e82cc990e5a3e343a3bf855c26fdfe3bfae55225f00efd01c05bbda79918
locket @ file:///rapids/locket-1.0.0-py2.py3-none-any.whl#sha256=b6c819a722f7b6bd955b80781788e4a66a55628b858d347536b7e81325a3a5e3
Mako==1.3.2
Markdown==3.5.1
markdown-it-py==3.0.0
MarkupSafe==2.1.3
matplotlib==3.8.2
matplotlib-inline==0.1.6
mdit-py-plugins==0.4.0
mdurl==0.1.2
mistune==3.0.2
mkl==2021.1.1
mkl-devel==2021.1.1
mkl-include==2021.1.1
mock==5.1.0
mpmath==1.3.0
msgpack==1.0.7
multidict @ file:///rapids/multidict-6.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=36c63aaa167f6c6b04ef2c85704e93af16c11d20de1d133e39de6a0e84582a93
multiprocess==0.70.12.2
murmurhash==1.0.10
nbclient==0.9.0
nbconvert==7.11.0
nbformat==5.9.2
nest-asyncio==1.5.8
networkx==2.6.3
ninja==1.11.1.1
nltk==3.8.1
notebook==6.4.10
numba @ file:///rapids/numba-0.57.1%2B1.gc2aae5dd0-cp310-cp310-linux_x86_64.whl#sha256=72421399e94fa30da69913fc9bd656f11a345ca89176e13ee3c5c4000a1c82dd
numpy==1.24.4
nvfuser==0.0.21+gitunknown
nvidia-dali-cuda120==1.31.0
nvidia-pyindex==1.0.9
nvtx @ file:///rapids/nvtx-0.2.5-cp310-cp310-linux_x86_64.whl#sha256=afe853b43d2dd585cc793bd6c35d7b87752e1c5be43b0167929c010a9fb9c682
oauthlib==3.2.2
onnx @ file:///opt/pytorch/pytorch/third_party/onnx
opencv @ file:///opencv-4.7.0/modules/python/package
optree==0.10.0
optuna==3.5.0
packaging==23.2
pandas @ file:///rapids/pandas-1.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=7a0a56cef15fd1586726dace5616db75ebcfec9179a3a55e78f72c5639fa2a23
pandocfilters==1.5.0
parameterized==0.9.0
parso==0.8.3
partd @ file:///rapids/partd-1.4.1-py3-none-any.whl#sha256=27e766663d36c161e2827aa3e28541c992f0b9527d3cca047e13fb3acdb989e6
pexpect==4.8.0
Pillow @ file:///tmp/pillow-simd
platformdirs==4.0.0
pluggy==1.3.0
ply @ file:///rapids/ply-3.11-py2.py3-none-any.whl#sha256=096f9b8350b65ebd2fd1346b12452efe5b9607f7482813ffca50c22722a807ce
polygraphy==0.49.1
pooch==1.8.0
portalocker==2.0.0
poyo==0.5.0
preshed==3.0.9
prettytable==3.9.0
prometheus-client==0.18.0
prompt-toolkit==3.0.41
protobuf==4.24.4
psutil @ file:///rapids/psutil-5.9.4-cp310-abi3-linux_x86_64.whl#sha256=03a0ab8c5f7c6b3daac16e2deb31ab7163030459c3b2dd0279931fb89ca12678
ptxcompiler @ file:///rapids/ptxcompiler-0.8.1%2B2.g4c26c4c-cp310-cp310-linux_x86_64.whl#sha256=ae85fa73a0a8f2e2a42317c04ce40ee67a026af214d531031896c2e4fc995723
ptyprocess==0.7.0
pure-eval==0.2.2
py-cpuinfo==9.0.0
pyarrow @ file:///rapids/pyarrow-12.0.1-cp310-cp310-linux_x86_64.whl#sha256=0312f9a8d24fbd538609932e9021608b7582401a3e8da11c2fbc7f5fd7a2b589
pyarrow-hotfix==0.6
pyasn1==0.5.1
pyasn1-modules==0.3.0
pybind11==2.11.1
pybind11-global==2.11.1
pycocotools @ git+https://github.com/nvidia/cocoapi.git@d99cbf3823588ef09a2721655f46e509ebafb3d7#subdirectory=PythonAPI
pycparser==2.21
pydantic==1.10.14
pydantic_core==2.14.3
Pygments==2.17.1
pylibcugraph @ file:///rapids/pylibcugraph-23.10.0-cp310-cp310-linux_x86_64.whl#sha256=568a17b6e20cc96dbf2c8acb05b766be6db8835d809e77887c0e55fc0f77c312
pylibcugraphops @ file:///rapids/pylibcugraphops-23.10.0-cp310-cp310-linux_x86_64.whl#sha256=12400b2a6ae88cad966c8f09cb6bc880b1fa6a9d4bd60ea3ec84a530a790a6de
pylibraft @ file:///rapids/pylibraft-23.10.0-cp310-cp310-linux_x86_64.whl#sha256=29363049e4256b4703273e6878c8ab2966cabffe68a2e4820b2f65285a450ef6
pynvml @ file:///rapids/pynvml-11.4.1-py3-none-any.whl#sha256=d27be542cd9d06558de18e2deffc8022ccd7355bc7382255d477038e7e424c6c
pyparsing==3.1.1
pytest==7.4.3
pytest-flakefinder==1.1.0
pytest-rerunfailures==12.0
pytest-shard==0.1.2
pytest-timeout==2.2.0
pytest-xdist==3.4.0
python-dateutil==2.8.2
python-hostlist==1.23.0
python-slugify==8.0.3
pytorch-quantization==2.1.2
pytz @ file:///rapids/pytz-2023.3.post1-py2.py3-none-any.whl#sha256=ce42d816b81b68506614c11e8937d3aa9e41007ceb50bfdcb0749b921bf646c7
PyYAML==6.0.1
pyzmq==25.1.1
raft-dask @ file:///rapids/raft_dask-23.10.0-cp310-cp310-linux_x86_64.whl#sha256=7ebf0d4c35c2619a3f4826f2143ed1e1cdf597061ee3f9e8d8a2c87453b12cb9
referencing==0.31.0
regex==2023.10.3
requests==2.31.0
requests-oauthlib==1.3.1
requests-toolbelt==1.0.0
responses==0.18.0
rjieba==0.1.11
rmm @ file:///rapids/rmm-23.10.0-cp310-cp310-linux_x86_64.whl#sha256=ed26b6e127191ff83c7be781ad8beb163478d6a6324875b6f85f8aec6b3d09b4
rouge-score==0.1.2
rpds-py==0.13.1
rsa==4.9
ruff==0.1.5
sacrebleu==1.5.1
sacremoses==0.1.1
safetensors==0.4.2
scikit-learn @ file:///rapids/scikit_learn-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=184a42842a4e698ffa4d849b6019de50a77a0aa24d26afa28fa49c9190bb144b
scipy==1.11.3
Send2Trash==1.8.2
sentencepiece==0.1.99
six==1.16.0
smart-open==6.4.0
smmap==5.0.1
sniffio==1.3.0
sortedcontainers==2.4.0
soundfile==0.12.1
soupsieve==2.5
soxr==0.3.7
spacy==3.7.2
spacy-legacy==3.0.12
spacy-loggers==1.0.5
sphinx-glpi-theme==0.4.1
SQLAlchemy==2.0.25
srsly==2.4.8
stack-data==0.6.3
sympy==1.12
tabulate==0.9.0
tbb==2021.11.0
tblib @ file:///rapids/tblib-3.0.0-py3-none-any.whl#sha256=80a6c77e59b55e83911e1e607c649836a69c103963c5f28a46cbeef44acf8129
tensorboard==2.9.0
tensorboard-data-server==0.6.1
tensorboard-plugin-wit==1.8.1
tensorrt @ file:///workspace/TensorRT-8.6.1.6/python/tensorrt-8.6.1-cp310-none-linux_x86_64.whl#sha256=2684b4772cb16088184266728a0668f5dac14e66f088c4ccff2096ccb222d74c
terminado==0.18.0
text-unidecode==1.3
thinc==8.2.1
threadpoolctl==3.2.0
thriftpy2 @ file:///rapids/thriftpy2-0.4.17-cp310-cp310-linux_x86_64.whl#sha256=6c6b077cfcace6dd3a53d125d69adb9d3121199d7f3489870820bf39c143e9fe
timeout-decorator==0.5.0
tinycss2==1.2.1
tokenizers==0.15.1
toml==0.10.2
tomli==2.0.1
toolz @ file:///rapids/toolz-0.12.0-py3-none-any.whl#sha256=2059bd4148deb1884bb0eb770a3cde70e7f954cfbbdc2285f1f2de01fd21eb6f
torch==2.1.0+cu121
torchaudio==2.1.0+cu121
torchdata @ file:///opt/pytorch/data
torchtext @ file:///opt/pytorch/text
torchvision==0.16.0+cu121
tornado==6.3.3
tqdm==4.66.1
traitlets==5.9.0
-e git+https://github.com/huggingface/transformers@164bdef8cc5143a0766cee448e97166682a722b1#egg=transformers
treelite @ file:///rapids/treelite-3.9.1-cp310-cp310-linux_x86_64.whl#sha256=bdafa07dd34e01247efe2cfebd134e987450d46f41c09a42e9491030da7a1bbe
treelite-runtime @ file:///rapids/treelite_runtime-3.9.1-cp310-cp310-linux_x86_64.whl#sha256=4748710d40462a8cacd06b10a2cff31a9aad80a79d5f8fda0221160b6f8cdbba
triton @ file:///tmp/dist/triton-2.1.0%2B6e4932c-cp310-cp310-linux_x86_64.whl#sha256=afba892ca54a5655b07460089c3ff79061fba878175f1598df87c5511dfcd56b
typer==0.9.0
types-dataclasses==0.6.6
types-python-dateutil==2.8.19.20240106
typing_extensions==4.8.0
ucx-py @ file:///rapids/ucx_py-0.34.0-cp310-cp310-linux_x86_64.whl#sha256=db497fb647f0f825f141eb2c5d3b24bbd6f22cc7334e247c3928e77c6844f6bf
uff @ file:///workspace/TensorRT-8.6.1.6/uff/uff-0.6.9-py2.py3-none-any.whl#sha256=618a3f812d491f0d3c4f2e38b99e03217ca37b206db14cee079f2bf681eb4fe3
urllib3 @ file:///rapids/urllib3-1.26.18-py2.py3-none-any.whl#sha256=34b97092d7e0a3a8cf7cd10e386f401b3737364026c45e622aa02903dffe0f07
wasabi==1.1.2
wcwidth==0.2.10
weasel==0.3.4
webencodings==0.5.1
Werkzeug==3.0.1
xdoctest==1.0.2
xgboost @ file:///rapids/xgboost-1.7.6-cp310-cp310-linux_x86_64.whl#sha256=874a039ae8f2aaea7b2141225521dcb4fe8c2629d98efffe51dbb9462fa9be0a
xxhash==3.4.1
yarl @ file:///rapids/yarl-1.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=891c0e3ec5ec881541f6c5113d8df0315ce5440e244a716b95f2525b7b9f3608
zict @ file:///rapids/zict-3.0.0-py2.py3-none-any.whl#sha256=5796e36bd0e0cc8cf0fbc1ace6a68912611c1dbd74750a3f3026b9b9d6a327ae
zipp @ file:///rapids/zipp-3.17.0-py3-none-any.whl#sha256=0e923e726174922dce09c53c59ad483ff7bbb8e572e00c7f7c46b88556409f31

View File

@ -428,7 +428,7 @@ install_requires = [
setup(
name="transformers",
version="4.38.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
version="4.39.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
author="The Hugging Face team (past and future) with the help of all our contributors (https://github.com/huggingface/transformers/graphs/contributors)",
author_email="transformers@huggingface.co",
description="State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow",

View File

@ -18,7 +18,7 @@
# to defer the actual importing for when the objects are requested. This way `import transformers` provides the names
# in the namespace without actually importing anything (and especially none of the backends).
__version__ = "4.38.0.dev0"
__version__ = "4.39.0.dev0"
from typing import TYPE_CHECKING
@ -456,6 +456,7 @@ _import_structure = {
"FunnelTokenizer",
],
"models.fuyu": ["FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP", "FuyuConfig"],
"models.gemma": ["GEMMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "GemmaConfig"],
"models.git": [
"GIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"GitConfig",
@ -1112,6 +1113,7 @@ else:
_import_structure["models.deberta_v2"].append("DebertaV2Tokenizer")
_import_structure["models.ernie_m"].append("ErnieMTokenizer")
_import_structure["models.fnet"].append("FNetTokenizer")
_import_structure["models.gemma"].append("GemmaTokenizer")
_import_structure["models.gpt_sw3"].append("GPTSw3Tokenizer")
_import_structure["models.layoutxlm"].append("LayoutXLMTokenizer")
_import_structure["models.llama"].append("LlamaTokenizer")
@ -1176,6 +1178,7 @@ else:
_import_structure["models.electra"].append("ElectraTokenizerFast")
_import_structure["models.fnet"].append("FNetTokenizerFast")
_import_structure["models.funnel"].append("FunnelTokenizerFast")
_import_structure["models.gemma"].append("GemmaTokenizerFast")
_import_structure["models.gpt2"].append("GPT2TokenizerFast")
_import_structure["models.gpt_neox"].append("GPTNeoXTokenizerFast")
_import_structure["models.gpt_neox_japanese"].append("GPTNeoXJapaneseTokenizer")
@ -2241,6 +2244,14 @@ else:
]
)
_import_structure["models.fuyu"].extend(["FuyuForCausalLM", "FuyuPreTrainedModel"])
_import_structure["models.gemma"].extend(
[
"GemmaForCausalLM",
"GemmaForSequenceClassification",
"GemmaModel",
"GemmaPreTrainedModel",
]
)
_import_structure["models.git"].extend(
[
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
@ -4672,6 +4683,7 @@ else:
)
_import_structure["models.gptj"].extend(["FlaxGPTJForCausalLM", "FlaxGPTJModel", "FlaxGPTJPreTrainedModel"])
_import_structure["models.llama"].extend(["FlaxLlamaForCausalLM", "FlaxLlamaModel", "FlaxLlamaPreTrainedModel"])
_import_structure["models.gemma"].extend(["FlaxGemmaForCausalLM", "FlaxGemmaModel", "FlaxGemmaPreTrainedModel"])
_import_structure["models.longt5"].extend(
[
"FlaxLongT5ForConditionalGeneration",
@ -5208,6 +5220,7 @@ if TYPE_CHECKING:
FunnelTokenizer,
)
from .models.fuyu import FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP, FuyuConfig
from .models.gemma import GEMMA_PRETRAINED_CONFIG_ARCHIVE_MAP, GemmaConfig
from .models.git import (
GIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GitConfig,
@ -5864,6 +5877,7 @@ if TYPE_CHECKING:
from .models.deberta_v2 import DebertaV2Tokenizer
from .models.ernie_m import ErnieMTokenizer
from .models.fnet import FNetTokenizer
from .models.gemma import GemmaTokenizer
from .models.gpt_sw3 import GPTSw3Tokenizer
from .models.layoutxlm import LayoutXLMTokenizer
from .models.llama import LlamaTokenizer
@ -5920,6 +5934,7 @@ if TYPE_CHECKING:
from .models.electra import ElectraTokenizerFast
from .models.fnet import FNetTokenizerFast
from .models.funnel import FunnelTokenizerFast
from .models.gemma import GemmaTokenizerFast
from .models.gpt2 import GPT2TokenizerFast
from .models.gpt_neox import GPTNeoXTokenizerFast
from .models.gpt_neox_japanese import GPTNeoXJapaneseTokenizer
@ -6848,6 +6863,12 @@ if TYPE_CHECKING:
FuyuForCausalLM,
FuyuPreTrainedModel,
)
from .models.gemma import (
GemmaForCausalLM,
GemmaForSequenceClassification,
GemmaModel,
GemmaPreTrainedModel,
)
from .models.git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
@ -8836,6 +8857,11 @@ if TYPE_CHECKING:
FlaxElectraPreTrainedModel,
)
from .models.encoder_decoder import FlaxEncoderDecoderModel
from .models.gemma import (
FlaxGemmaForCausalLM,
FlaxGemmaModel,
FlaxGemmaPreTrainedModel,
)
from .models.gpt2 import (
FlaxGPT2LMHeadModel,
FlaxGPT2Model,

View File

@ -348,7 +348,11 @@ class StaticCache(Cache):
super().__init__()
self.max_batch_size = max_batch_size
self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
self.head_dim = config.hidden_size // config.num_attention_heads
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
self.head_dim = (
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
)
self.dtype = dtype if dtype is not None else torch.float32
self.num_key_value_heads = (
config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
@ -357,7 +361,6 @@ class StaticCache(Cache):
cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
self.key_cache: torch.Tensor = torch.zeros(cache_shape, dtype=self.dtype, device=device)
self.value_cache: torch.Tensor = torch.zeros(cache_shape, dtype=self.dtype, device=device)
self.seen_tokens = 0
def update(
self,
@ -391,16 +394,20 @@ class StaticCache(Cache):
k_out[:, :, new_cache_positions] = key_states
v_out[:, :, new_cache_positions] = value_states
self.seen_tokens += key_states.shape[2]
return k_out, v_out
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
print("self.seen_tokens in get_seq_length", self.seen_tokens)
"""Returns the sequence length of the cached states that were seen by the model. `layer_idx` kept for BC"""
return self.seen_tokens
# TODO: Fix once the stateful `int` bug in PyTorch is fixed.
raise ValueError(
"get_seq_length is not implemented for StaticCache. Please refer to https://github.com/huggingface/transformers/pull/29114."
)
def get_usable_length(self, new_sequence_length=None, layer_idx: Optional[int] = 0) -> int:
return self.seen_tokens
# TODO: Fix once the stateful `int` bug in PyTorch is fixed.
raise ValueError(
"get_seq_length is not implemented for StaticCache. Please refer to https://github.com/huggingface/transformers/pull/29114."
)
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""

View File

@ -62,6 +62,41 @@ class SentencePieceExtractor:
"""
sp = self.sp
vocab = {sp.id_to_piece(index): index for index in range(sp.GetPieceSize())}
if vocab_scores is not None:
vocab_scores, reverse = dict(vocab_scores), True
else:
vocab_scores, reverse = vocab, False
# Merges
merges = []
for merge, piece_score in vocab_scores.items():
local = []
for index in range(1, len(merge)):
piece_l, piece_r = merge[:index], merge[index:]
if piece_l in vocab and piece_r in vocab:
local.append((piece_l, piece_r, piece_score))
local = sorted(local, key=lambda x: (vocab[x[0]], vocab[x[1]]))
merges.extend(local)
merges = sorted(merges, key=lambda val: val[2], reverse=reverse)
merges = [(val[0], val[1]) for val in merges]
return vocab, merges
class GemmaSentencePieceExtractor(SentencePieceExtractor):
def extract(self, vocab_scores=None) -> Tuple[Dict[str, int], List[Tuple]]:
"""
By default will return vocab and merges with respect to their order, by sending `vocab_scores` we're going to
order the merges with respect to the piece scores instead.
"""
sp = self.sp
vocab = {sp.id_to_piece(index): index for index in range(sp.GetPieceSize())}
# there is a missing token in the vocab. We have to do this to support merges
# "<0x09>" is the bytefallback for `\t`
vocab["\t"] = vocab.pop("<0x09>")
if vocab_scores is not None:
vocab_scores, reverse = dict(vocab_scores), True
else:
@ -1190,6 +1225,93 @@ class XGLMConverter(SpmConverter):
)
class GemmaConvert(SpmConverter):
handle_byte_fallback = True
""""
split_by_unicode_script: true
split_by_number: true
split_by_whitespace: true
treat_whitespace_as_suffix: false
allow_whitespace_only_pieces: true
split_digits: true
byte_fallback: true
"""
def normalizer(self, proto):
return normalizers.Replace(" ", "")
def vocab(self, proto):
vocab = [
(self.original_tokenizer.pad_token, 0.0),
(self.original_tokenizer.eos_token, 0.0),
(self.original_tokenizer.bos_token, 0.0),
]
for piece in proto.pieces[3:]:
if piece.piece == "<0x09>":
vocab += [("\t", piece.score)]
else:
vocab += [(piece.piece, piece.score)]
# vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
return vocab
def pre_tokenizer(self, replacement, add_prefix_space):
return None
def unk_id(self, proto):
unk_id = 3
return unk_id
def decoder(self, replacement, add_prefix_space):
return decoders.Sequence(
[
decoders.Replace("", " "),
decoders.ByteFallback(),
decoders.Fuse(),
]
)
def tokenizer(self, proto):
model_type = proto.trainer_spec.model_type
vocab_scores = self.vocab(proto)
if model_type == 1:
import tokenizers
if version.parse(tokenizers.__version__) < version.parse("0.14.0"):
tokenizer = Tokenizer(Unigram(vocab_scores, 0))
else:
tokenizer = Tokenizer(Unigram(vocab_scores, 0, byte_fallback=True))
elif model_type == 2:
_, merges = GemmaSentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
tokenizer = Tokenizer(
BPE(
bpe_vocab,
merges,
unk_token=proto.trainer_spec.unk_piece,
fuse_unk=True,
byte_fallback=True,
dropout=None,
)
)
tokenizer.add_special_tokens(
[
AddedToken("<pad>", normalized=False, special=True),
AddedToken("<eos>", normalized=False, special=True),
AddedToken("<bos>", normalized=False, special=True),
AddedToken("<unk>", normalized=False, special=True),
]
)
else:
raise Exception(
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
)
return tokenizer
class LlamaConverter(SpmConverter):
handle_byte_fallback = True
@ -1356,6 +1478,7 @@ SLOW_TO_FAST_CONVERTERS = {
"XGLMTokenizer": XGLMConverter,
"LlamaTokenizer": LlamaConverter,
"CodeLlamaTokenizer": LlamaConverter,
"GemmaTokenizer": GemmaConvert,
}

View File

@ -648,6 +648,7 @@ class GenerationMixin:
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
standardize_cache_format: bool = False,
model_inputs: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
# update past_key_values
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
@ -677,6 +678,8 @@ class GenerationMixin:
dim=-1,
)
model_kwargs["cache_position"] = model_inputs.get("cache_position", None)
return model_kwargs
def _reorder_cache(self, past_key_values, beam_idx):
@ -1451,17 +1454,19 @@ class GenerationMixin:
):
generation_config.max_length -= inputs_tensor.shape[1]
# if we don't pass `past_key_values` and a cache_implementation is specified
if generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING and not model_kwargs.get(
"past_key_values", False
):
cache_cls = NEED_SETUP_CACHE_CLASSES_MAPPING[generation_config.cache_implementation]
if not callable(getattr(self, "_setup_cache", None)):
raise ValueError(
"The `generation_config` defines a `cache_implementation` that is not compatible with this model."
" Make sure it has a `_setup_cache` function."
)
self._setup_cache(cache_cls, max_batch_size=batch_size, max_cache_len=generation_config.max_length)
if generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING:
if generation_config.cache_implementation == "static":
if model_kwargs.get("past_key_values", False) is not False:
raise ValueError(
"Using `past_key_values` argument with `generate()` when using a static KV cache is not supported. Please open an issue in Transformers GitHub repository."
)
cache_cls = NEED_SETUP_CACHE_CLASSES_MAPPING["static"]
if not callable(getattr(self, "_setup_cache", None)):
raise ValueError(
"The `generation_config` defines a `cache_implementation` that is not compatible with this model."
" Make sure it has a `_setup_cache` function."
)
self._setup_cache(cache_cls, max_batch_size=batch_size, max_cache_len=generation_config.max_length)
self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
@ -1523,7 +1528,7 @@ class GenerationMixin:
)
# 12. run assisted generate
return self.assisted_decoding(
result = self.assisted_decoding(
input_ids,
candidate_generator=candidate_generator,
do_sample=generation_config.do_sample,
@ -1541,7 +1546,7 @@ class GenerationMixin:
)
if generation_mode == GenerationMode.GREEDY_SEARCH:
# 11. run greedy search
return self.greedy_search(
result = self.greedy_search(
input_ids,
logits_processor=prepared_logits_processor,
stopping_criteria=prepared_stopping_criteria,
@ -1559,7 +1564,7 @@ class GenerationMixin:
if not model_kwargs["use_cache"]:
raise ValueError("Contrastive search requires `use_cache=True`")
return self.contrastive_search(
result = self.contrastive_search(
input_ids,
top_k=generation_config.top_k,
penalty_alpha=generation_config.penalty_alpha,
@ -1589,7 +1594,7 @@ class GenerationMixin:
)
# 13. run sample
return self.sample(
result = self.sample(
input_ids,
logits_processor=prepared_logits_processor,
logits_warper=logits_warper,
@ -1623,7 +1628,7 @@ class GenerationMixin:
**model_kwargs,
)
# 13. run beam search
return self.beam_search(
result = self.beam_search(
input_ids,
beam_scorer,
logits_processor=prepared_logits_processor,
@ -1662,7 +1667,7 @@ class GenerationMixin:
)
# 14. run beam sample
return self.beam_sample(
result = self.beam_sample(
input_ids,
beam_scorer,
logits_processor=prepared_logits_processor,
@ -1697,7 +1702,7 @@ class GenerationMixin:
**model_kwargs,
)
# 13. run beam search
return self.group_beam_search(
result = self.group_beam_search(
input_ids,
beam_scorer,
logits_processor=prepared_logits_processor,
@ -1771,7 +1776,7 @@ class GenerationMixin:
**model_kwargs,
)
# 13. run beam search
return self.constrained_beam_search(
result = self.constrained_beam_search(
input_ids,
constrained_beam_scorer=constrained_beam_scorer,
logits_processor=prepared_logits_processor,
@ -1785,6 +1790,16 @@ class GenerationMixin:
**model_kwargs,
)
if generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING:
if not callable(getattr(self, "_reset_cache", None)):
raise ValueError(
"A `static_cache` was used to generate but there was a failure when trying to release the cache. "
" Make sure this model implements a `_reset_cache` function."
)
self._reset_cache()
return result
@torch.no_grad()
def contrastive_search(
self,
@ -1975,6 +1990,7 @@ class GenerationMixin:
model_kwargs,
is_encoder_decoder=self.config.is_encoder_decoder,
standardize_cache_format=True,
model_inputs=model_inputs,
)
if not sequential:
# Expands model inputs top_k times, for batched forward passes (akin to beam search).
@ -2169,7 +2185,7 @@ class GenerationMixin:
if streamer is not None:
streamer.put(next_tokens.cpu())
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, model_inputs=model_inputs
)
# if eos_token was found in one sentence, set sentence to finished
@ -2386,10 +2402,7 @@ class GenerationMixin:
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
this_peer_finished = False # used by synced_gpus only
count = 0
while True:
print("------- forward in generate", count)
count += 1
if synced_gpus:
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
# The following logic allows an early break if all peers finished generating their sequence
@ -2453,7 +2466,10 @@ class GenerationMixin:
if streamer is not None:
streamer.put(next_tokens.cpu())
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
outputs,
model_kwargs,
is_encoder_decoder=self.config.is_encoder_decoder,
model_inputs=model_inputs,
)
# if eos_token was found in one sentence, set sentence to finished
@ -2747,7 +2763,7 @@ class GenerationMixin:
if streamer is not None:
streamer.put(next_tokens.cpu())
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, model_inputs=model_inputs
)
# if eos_token was found in one sentence, set sentence to finished
@ -3140,7 +3156,7 @@ class GenerationMixin:
input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, model_inputs=model_inputs
)
if model_kwargs["past_key_values"] is not None:
model_kwargs["past_key_values"] = self._temporary_reorder_cache(
@ -3487,7 +3503,7 @@ class GenerationMixin:
input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, model_inputs=model_inputs
)
if model_kwargs["past_key_values"] is not None:
model_kwargs["past_key_values"] = self._temporary_reorder_cache(
@ -3886,7 +3902,7 @@ class GenerationMixin:
input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, model_inputs=model_inputs
)
if model_kwargs["past_key_values"] is not None:
model_kwargs["past_key_values"] = self._temporary_reorder_cache(
@ -4238,7 +4254,7 @@ class GenerationMixin:
input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, model_inputs=model_inputs
)
if model_kwargs["past_key_values"] is not None:
model_kwargs["past_key_values"] = self._temporary_reorder_cache(
@ -4645,7 +4661,7 @@ class GenerationMixin:
)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, model_inputs=model_inputs
)
# if eos_token was found in one sentence, set sentence to finished

View File

@ -319,10 +319,9 @@ class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin):
flat_params = flatten_dict(params)
flat_mask, _ = jax.tree_util.tree_flatten(mask)
for masked, key in zip(flat_mask, flat_params.keys()):
for masked, key in zip(flat_mask, sorted(flat_params.keys())):
if masked:
param = flat_params[key]
flat_params[key] = conditional_cast(param)
flat_params[key] = conditional_cast(flat_params[key])
return unflatten_dict(flat_params)

View File

@ -92,6 +92,7 @@ from . import (
fsmt,
funnel,
fuyu,
gemma,
git,
glpn,
gpt2,

View File

@ -103,6 +103,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
("fsmt", "FSMTConfig"),
("funnel", "FunnelConfig"),
("fuyu", "FuyuConfig"),
("gemma", "GemmaConfig"),
("git", "GitConfig"),
("glpn", "GLPNConfig"),
("gpt-sw3", "GPT2Config"),
@ -336,6 +337,7 @@ CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
("fsmt", "FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("funnel", "FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("fuyu", "FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("gemma", "GEMMA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("git", "GIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("glpn", "GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("gpt2", "GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
@ -568,6 +570,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("fsmt", "FairSeq Machine-Translation"),
("funnel", "Funnel Transformer"),
("fuyu", "Fuyu"),
("gemma", "Gemma"),
("git", "GIT"),
("glpn", "GLPN"),
("gpt-sw3", "GPT-Sw3"),

View File

@ -103,6 +103,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
("focalnet", "FocalNetModel"),
("fsmt", "FSMTModel"),
("funnel", ("FunnelModel", "FunnelBaseModel")),
("gemma", "GemmaModel"),
("git", "GitModel"),
("glpn", "GLPNModel"),
("gpt-sw3", "GPT2Model"),
@ -426,6 +427,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
("ernie", "ErnieForCausalLM"),
("falcon", "FalconForCausalLM"),
("fuyu", "FuyuForCausalLM"),
("gemma", "GemmaForCausalLM"),
("git", "GitForCausalLM"),
("gpt-sw3", "GPT2LMHeadModel"),
("gpt2", "GPT2LMHeadModel"),
@ -764,6 +766,7 @@ MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("flaubert", "FlaubertForSequenceClassification"),
("fnet", "FNetForSequenceClassification"),
("funnel", "FunnelForSequenceClassification"),
("gemma", "GemmaForSequenceClassification"),
("gpt-sw3", "GPT2ForSequenceClassification"),
("gpt2", "GPT2ForSequenceClassification"),
("gpt_bigcode", "GPTBigCodeForSequenceClassification"),

View File

@ -39,6 +39,7 @@ FLAX_MODEL_MAPPING_NAMES = OrderedDict(
("clip", "FlaxCLIPModel"),
("distilbert", "FlaxDistilBertModel"),
("electra", "FlaxElectraModel"),
("gemma", "FlaxGemmaModel"),
("gpt-sw3", "FlaxGPT2Model"),
("gpt2", "FlaxGPT2Model"),
("gpt_neo", "FlaxGPTNeoModel"),
@ -144,6 +145,7 @@ FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
("big_bird", "FlaxBigBirdForCausalLM"),
("bloom", "FlaxBloomForCausalLM"),
("electra", "FlaxElectraForCausalLM"),
("gemma", "FlaxGemmaForCausalLM"),
("gpt-sw3", "FlaxGPT2LMHeadModel"),
("gpt2", "FlaxGPT2LMHeadModel"),
("gpt_neo", "FlaxGPTNeoForCausalLM"),

View File

@ -178,6 +178,13 @@ else:
("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)),
("fsmt", ("FSMTTokenizer", None)),
("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)),
(
"gemma",
(
"GemmaTokenizer" if is_sentencepiece_available() else None,
"GemmaTokenizerFast" if is_tokenizers_available() else None,
),
),
("git", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("gpt-sw3", ("GPTSw3Tokenizer" if is_sentencepiece_available() else None, None)),
("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),

View File

@ -100,7 +100,7 @@ class OpenLlamaRotaryEmbedding(nn.Module):
)
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->OpenLlama
# Copied from transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding with Falcon->OpenLlama
class OpenLlamaLinearScalingRotaryEmbedding(OpenLlamaRotaryEmbedding):
"""OpenLlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
@ -120,7 +120,7 @@ class OpenLlamaLinearScalingRotaryEmbedding(OpenLlamaRotaryEmbedding):
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->OpenLlama
# Copied from transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding with Falcon->OpenLlama
class OpenLlamaDynamicNTKScalingRotaryEmbedding(OpenLlamaRotaryEmbedding):
"""OpenLlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""

View File

@ -167,7 +167,8 @@ class FalconRotaryEmbedding(nn.Module):
)
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Falcon
# copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Falcon
# TODO @joao no longer copied from LLama after static cache, fix me (copied -> Copied)
class FalconLinearScalingRotaryEmbedding(FalconRotaryEmbedding):
"""FalconRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
@ -187,7 +188,8 @@ class FalconLinearScalingRotaryEmbedding(FalconRotaryEmbedding):
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Falcon
# copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Falcon
# TODO @joao no longer copied from LLama after static cache, fix me (copied -> Copied)
class FalconDynamicNTKScalingRotaryEmbedding(FalconRotaryEmbedding):
"""FalconRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""

View File

@ -0,0 +1,121 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_gemma": ["GEMMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "GemmaConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_gemma"] = ["GemmaTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_gemma_fast"] = ["GemmaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_gemma"] = [
"GemmaForCausalLM",
"GemmaModel",
"GemmaPreTrainedModel",
"GemmaForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_gemma"] = [
"FlaxGemmaForCausalLM",
"FlaxGemmaModel",
"FlaxGemmaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gemma import GEMMA_PRETRAINED_CONFIG_ARCHIVE_MAP, GemmaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gemma import GemmaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gemma_fast import GemmaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gemma import (
GemmaForCausalLM,
GemmaForSequenceClassification,
GemmaModel,
GemmaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gemma import (
FlaxGemmaForCausalLM,
FlaxGemmaModel,
FlaxGemmaPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)

View File

@ -0,0 +1,147 @@
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Gemma model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
GEMMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class GemmaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GemmaModel`]. It is used to instantiate an Gemma
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gemma-7B.
e.g. [google/gemma-7b](https://huggingface.co/google/gemma-7b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the Gemma model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GemmaModel`]
hidden_size (`int`, *optional*, defaults to 3072):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 24576):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 28):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 16):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import GemmaModel, GemmaConfig
>>> # Initializing a Gemma gemma-7b style configuration
>>> configuration = GemmaConfig()
>>> # Initializing a model from the gemma-7b style configuration
>>> model = GemmaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=256000,
hidden_size=3072,
intermediate_size=24576,
num_hidden_layers=28,
num_attention_heads=16,
num_key_value_heads=16,
head_dim=256,
hidden_act="gelu",
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
bos_token_id=2,
tie_word_embeddings=True,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@ -0,0 +1,197 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import warnings
import torch
from accelerate import init_empty_weights
from transformers import GemmaConfig, GemmaForCausalLM, GemmaTokenizer
try:
from transformers import GemmaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
)
GemmaTokenizerFast = None
"""
Sample usage:
```
python src/transformers/models/gemma/convert_gemma_weights_to_hf.py \
--input_dir /path/to/downloaded/gemma/weights --model_size 7B --output_dir /output/path
```
Thereafter, models can be loaded via:
```py
from transformers import GemmaForCausalLM, GemmaTokenizerFast
model = GemmaForCausalLM.from_pretrained("/output/path")
tokenizer = GemmaTokenizerFast.from_pretrained("/output/path")
```
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
"""
gemma_2b_config = GemmaConfig(
num_hidden_layers=18,
num_attention_heads=8,
num_key_value_heads=1,
hidden_size=2048,
intermediate_size=16384,
)
gemma_7b_config = GemmaConfig()
CONFIG_MAPPING = {"2B": gemma_2b_config, "7B": gemma_7b_config}
LAYER_NAME_MAPPING = {"embedder.weight": "model.embed_tokens.weight"}
def write_model(save_path, input_base_path, config, safe_serialization=True, push_to_hub=False):
num_attn_heads = config.num_attention_heads
hidden_size = config.hidden_size
num_kv_heads = config.num_key_value_heads
head_dim = config.head_dim
print(f"Fetching all parameters from the checkpoint at '{input_base_path}'")
model_state_dict = torch.load(input_base_path, map_location="cpu")["model_state_dict"]
model_state_dict.pop("freqs_cis")
state_dict = {}
for k, v in model_state_dict.items():
if "qkv_proj" in k:
if num_kv_heads == 1:
v = v.reshape(num_attn_heads + num_kv_heads * 2, head_dim, hidden_size)
q_proj = v[:num_attn_heads, ...]
k_proj = v[num_attn_heads : num_attn_heads + num_kv_heads, ...].repeat(num_kv_heads, 1, 1)
v_proj = v[-num_kv_heads:, ...].repeat(num_kv_heads, 1, 1)
state_dict[k.replace("qkv_proj", "q_proj")] = q_proj.reshape(
num_attn_heads * head_dim, hidden_size
).clone()
state_dict[k.replace("qkv_proj", "k_proj")] = k_proj.reshape(
num_kv_heads * head_dim, hidden_size
).clone()
state_dict[k.replace("qkv_proj", "v_proj")] = v_proj[0].clone()
else:
q_proj, k_proj, v_proj = torch.split(v, v.shape[0] // 3, 0)
state_dict[k.replace("qkv_proj", "q_proj")] = q_proj.reshape(
num_attn_heads * head_dim, hidden_size
).clone()
state_dict[k.replace("qkv_proj", "k_proj")] = k_proj.reshape(
num_kv_heads * head_dim, hidden_size
).clone()
state_dict[k.replace("qkv_proj", "v_proj")] = v_proj.clone()
elif k == "embedder.weight":
state_dict[LAYER_NAME_MAPPING[k]] = v
state_dict["lm_head.weight"] = v
else:
state_dict[k] = v
print("Loading the checkpoint in a Gemma model.")
with init_empty_weights():
model = GemmaForCausalLM(config)
model.load_state_dict(state_dict, assign=True, strict=False)
model.config.torch_dtype = torch.float32
del model.config._name_or_path
print("Saving in the Transformers format.")
if push_to_hub:
print(f"pushing the model to {save_path}")
model.push_to_hub(save_path, safe_serialization=safe_serialization, private=True)
else:
model.save_pretrained(save_path, safe_serialization=safe_serialization)
def write_tokenizer(input_tokenizer_path, save_path, push_to_hub=False):
# Initialize the tokenizer based on the `spm` model
tokenizer_class = GemmaTokenizer if GemmaTokenizerFast is None else GemmaTokenizerFast
print(f"Saving a {tokenizer_class.__name__} to {save_path}.")
tokenizer = tokenizer_class(input_tokenizer_path)
if push_to_hub:
tokenizer.push_to_hub(save_path)
else:
tokenizer.save_pretrained(save_path)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_checkpoint",
help="Absolute path to the target Gemma weights.",
required=True,
)
parser.add_argument(
"--tokenizer_checkpoint",
help="Location of Gemma tokenizer model",
)
parser.add_argument(
"--model_size",
default="7B",
choices=["2B", "7B", "tokenizer_only"],
help="'f' models correspond to the finetuned versions, and are specific to the Gemma2 official release. For more details on Gemma2, checkout the original repo: https://huggingface.co/google/gemma-7b",
)
parser.add_argument(
"--output_dir",
default="google/gemma-7b",
help="Location to write HF model and tokenizer",
)
parser.add_argument(
"--pickle_serialization",
help="Whether or not to save using `safetensors`.",
action="store_true",
default=False,
)
parser.add_argument(
"--convert_tokenizer",
help="Whether or not to convert the tokenizer as well.",
action="store_true",
default=False,
)
parser.add_argument(
"--push_to_hub",
help="Whether or not to push the model to the hub at `output_dir` instead of saving it locally.",
action="store_true",
default=False,
)
args = parser.parse_args()
if args.convert_tokenizer:
if args.tokenizer_checkpoint is None:
raise ValueError("Path to the tokenizer is required when passing --convert_tokenizer")
spm_path = os.path.join(args.tokenizer_checkpoint)
write_tokenizer(spm_path, args.output_dir, args.push_to_hub)
config = CONFIG_MAPPING[args.model_size]
write_model(
config=config,
input_base_path=args.input_checkpoint,
save_path=args.output_dir,
safe_serialization=not args.pickle_serialization,
push_to_hub=args.push_to_hub,
)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,763 @@
# coding=utf-8
# Copyright 2024 Google Inc., and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flax Gemma model."""
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_gemma import GemmaConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "GemmaConfig"
_CHECKPOINT_FOR_DOC = "google/gemma-2b"
_REAL_CHECKPOINT_FOR_DOC = "openlm-research/open_llama_3b_v2"
GEMMA_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`GemmaConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16`, or
`jax.numpy.bfloat16`.
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
GEMMA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def create_sinusoidal_positions(num_pos, dim):
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2)[: (dim // 2)] / dim))
freqs = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32")
emb = np.concatenate((freqs, freqs), axis=-1)
out = np.concatenate((np.sin(emb)[:, None, :], np.cos(emb)[:, None, :]), axis=-1)
return jnp.array(out[:, :, :num_pos])
# Copied from transformers.models.llama.modeling_flax_llama.rotate_half
def rotate_half(tensor):
"""Rotates half the hidden dims of the input."""
rotate_half_tensor = jnp.concatenate(
(-tensor[..., tensor.shape[-1] // 2 :], tensor[..., : tensor.shape[-1] // 2]), axis=-1
)
return rotate_half_tensor
# Copied from transformers.models.llama.modeling_flax_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(tensor, sin_pos, cos_pos):
return (tensor * cos_pos) + (rotate_half(tensor) * sin_pos)
class FlaxGemmaRMSNorm(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.epsilon = self.config.rms_norm_eps
self.weight = self.param("weight", lambda _, shape: jnp.ones(shape), self.config.hidden_size)
def __call__(self, hidden_states):
variance = jnp.asarray(hidden_states, dtype=jnp.float32)
variance = jnp.power(variance, 2)
variance = variance.mean(-1, keepdims=True)
# use `jax.numpy.sqrt` as `jax.lax.rsqrt` does not match `torch.rsqrt`
hidden_states = hidden_states / jnp.sqrt(variance + self.epsilon)
return (1 + self.weight) * jnp.asarray(hidden_states, dtype=self.dtype)
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaRotaryEmbedding with Llama->Gemma
class FlaxGemmaRotaryEmbedding(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
# Ignore copy
def setup(self):
head_dim = self.config.head_dim
self.sincos = create_sinusoidal_positions(self.config.max_position_embeddings, head_dim)
def __call__(self, key, query, position_ids):
sincos = self.sincos[position_ids]
sin_pos, cos_pos = jnp.split(sincos, 2, axis=-1)
key = apply_rotary_pos_emb(key, sin_pos, cos_pos)
query = apply_rotary_pos_emb(query, sin_pos, cos_pos)
key = jnp.asarray(key, dtype=self.dtype)
query = jnp.asarray(query, dtype=self.dtype)
return key, query
class FlaxGemmaAttention(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
causal: bool = True
is_cross_attention: bool = False
def setup(self):
config = self.config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.head_dim
self.attention_softmax_in_fp32 = self.dtype is not jnp.float32
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
kernel = jax.nn.initializers.normal(self.config.initializer_range)
self.q_proj = nn.Dense(
self.num_heads * self.head_dim, use_bias=config.attention_bias, dtype=self.dtype, kernel_init=kernel
)
self.k_proj = nn.Dense(
self.num_key_value_heads * self.head_dim,
use_bias=config.attention_bias,
dtype=self.dtype,
kernel_init=kernel,
)
self.v_proj = nn.Dense(
self.num_key_value_heads * self.head_dim,
use_bias=config.attention_bias,
dtype=self.dtype,
kernel_init=kernel,
)
self.o_proj = nn.Dense(self.embed_dim, use_bias=config.attention_bias, dtype=self.dtype, kernel_init=kernel)
self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool")
self.rotary_emb = FlaxGemmaRotaryEmbedding(config, dtype=self.dtype)
def _split_heads(self, hidden_states, num_heads):
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads * self.head_dim,))
@nn.compact
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoSelfAttention._concatenate_to_cache
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
attention_mask,
position_ids,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
query = self.q_proj(hidden_states)
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = self._split_heads(query, self.num_heads)
key = self._split_heads(key, self.num_key_value_heads)
value = self._split_heads(value, self.num_key_value_heads)
key, query = self.rotary_emb(key, query, position_ids)
query_length, key_length = query.shape[1], key.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
batch_size = hidden_states.shape[0]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
dropout_rng = None
if not deterministic and self.config.attention_dropout > 0.0:
dropout_rng = self.make_rng("dropout")
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.has_variable("cache", "cached_key") or init_cache:
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
# transform boolean mask into float mask
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
key = jnp.repeat(key, repeats=self.num_key_value_groups, axis=2)
value = jnp.repeat(value, repeats=self.num_key_value_groups, axis=2)
# usual dot product attention
attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype
attn_weights = dot_product_attention_weights(
query,
key,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_dropout,
deterministic=deterministic,
dtype=attention_dtype,
)
if self.attention_softmax_in_fp32:
attn_weights = attn_weights.astype(self.dtype)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
attn_output = self._merge_heads(attn_output)
attn_output = self.o_proj(attn_output)
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaMLP with Llama->Gemma
class FlaxGemmaMLP(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
embed_dim = self.config.hidden_size
inner_dim = self.config.intermediate_size if self.config.intermediate_size is not None else 4 * embed_dim
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
self.act = ACT2FN[self.config.hidden_act]
self.gate_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
self.down_proj = nn.Dense(embed_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
self.up_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
def __call__(self, hidden_states):
up_proj_states = self.up_proj(hidden_states)
gate_states = self.act(self.gate_proj(hidden_states))
hidden_states = self.down_proj(up_proj_states * gate_states)
return hidden_states
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaDecoderLayer with Llama->Gemma
class FlaxGemmaDecoderLayer(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.input_layernorm = FlaxGemmaRMSNorm(self.config, dtype=self.dtype)
self.self_attn = FlaxGemmaAttention(self.config, dtype=self.dtype)
self.post_attention_layernorm = FlaxGemmaRMSNorm(self.config, dtype=self.dtype)
self.mlp = FlaxGemmaMLP(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
outputs = self.self_attn(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
# residual connection
attn_output = outputs[0]
hidden_states = residual + attn_output
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + hidden_states
return (hidden_states,) + outputs[1:]
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoPreTrainedModel with GPTNeo->Gemma, GPT_NEO->GEMMA, transformer->model
class FlaxGemmaPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GemmaConfig
base_model_prefix = "model"
module_class: nn.Module = None
def __init__(
self,
config: GemmaConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length))
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
params: dict = None,
past_key_values: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
batch_size, sequence_length = input_ids.shape
if position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGemmaAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
not train,
False,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaLayerCollection with Llama->Gemma
class FlaxGemmaLayerCollection(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.blocks = [
FlaxGemmaDecoderLayer(self.config, dtype=self.dtype, name=str(i))
for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = False,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for block in self.blocks:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = block(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
# this contains possible `None` values - `FlaxGemmaModule` will filter them out
outputs = (hidden_states, all_hidden_states, all_attentions)
return outputs
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaModule with Llama->Gemma
class FlaxGemmaModule(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.hidden_size = self.config.hidden_size
embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range)
self.embed_tokens = nn.Embed(
self.config.vocab_size,
self.hidden_size,
embedding_init=embedding_init,
dtype=self.dtype,
)
self.layers = FlaxGemmaLayerCollection(self.config, dtype=self.dtype)
self.norm = FlaxGemmaRMSNorm(self.config, dtype=self.dtype)
# Ignore copy
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
deterministic=True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
input_embeds = self.embed_tokens(input_ids.astype("i4"))
input_embeds = input_embeds * (self.config.hidden_size**0.5)
outputs = self.layers(
input_embeds,
position_ids=position_ids,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states = outputs[1] + (hidden_states,)
outputs = (hidden_states, all_hidden_states) + outputs[2:]
else:
outputs = (hidden_states,) + outputs[1:]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=outputs[1],
attentions=outputs[-1],
)
@add_start_docstrings(
"The bare Gemma Model transformer outputting raw hidden-states without any specific head on top.",
GEMMA_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaModel with Llama->Gemma
class FlaxGemmaModel(FlaxGemmaPreTrainedModel):
module_class = FlaxGemmaModule
append_call_sample_docstring(
FlaxGemmaModel,
_CHECKPOINT_FOR_DOC,
FlaxBaseModelOutput,
_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaForCausalLMModule with Llama->Gemma
class FlaxGemmaForCausalLMModule(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.model = FlaxGemmaModule(self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
# Ignore copy
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.model(
input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_kernel = self.model.variables["params"]["embed_tokens"]["embedding"].T
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
@add_start_docstrings(
"""
The Gemma Model transformer with a language modeling head (linear layer) on top.
""",
GEMMA_START_DOCSTRING,
)
# Copied from transformers.models.gptj.modeling_flax_gptj.FlaxGPTJForCausalLM with GPTJ->Gemma
class FlaxGemmaForCausalLM(FlaxGemmaPreTrainedModel):
module_class = FlaxGemmaForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since Gemma uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxGemmaForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutput,
_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,326 @@
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Gemma."""
import os
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
pass
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
SPIECE_UNDERLINE = ""
class GemmaTokenizer(PreTrainedTokenizer):
"""
Construct a Gemma tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
no padding token in the original model.
Args:
vocab_file (`str`):
Path to the vocabulary file.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`):
The end of sequence token.
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<pad>"`):
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation.
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether or not to add an `bos_token` at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of sequences.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
Whether or not the default system prompt for Gemma should be used.
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to add spaces between special tokens.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<bos>",
eos_token="<eos>",
pad_token="<pad>",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
clean_up_tokenization_spaces=False,
use_default_system_prompt=False,
spaces_between_special_tokens=False,
**kwargs,
):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.use_default_system_prompt = use_default_system_prompt
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
sp_model_kwargs=self.sp_model_kwargs,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
use_default_system_prompt=use_default_system_prompt,
spaces_between_special_tokens=spaces_between_special_tokens,
**kwargs,
)
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.__getstate__
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
return state
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.__setstate__
def __setstate__(self, d):
self.__dict__ = d
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
@property
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.vocab_size
def vocab_size(self):
"""Returns vocab size"""
return self.sp_model.get_piece_size()
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_vocab
def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text, **kwargs):
"""
Returns a tokenized string. The Gemma tokenizer never adds a prefix space.
"""
return self.sp_model.encode(text, out_type=str)
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer._convert_token_to_id
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer._convert_id_to_token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
def _decode(
self,
token_ids: List[int],
skip_special_tokens: bool = False,
spaces_between_special_tokens: bool = False,
**kwargs,
) -> str:
sub_texts = []
current_sub_text = []
for ids in token_ids:
if skip_special_tokens and ids in self.all_special_ids:
continue
if ids in self._added_tokens_decoder:
if current_sub_text:
sub_texts.append(self.sp_model.decode(current_sub_text))
sub_texts.append(self._added_tokens_decoder[ids].content)
current_sub_text = []
else:
current_sub_text.append(ids)
if current_sub_text:
sub_texts.append(self.sp_model.decode(current_sub_text))
if spaces_between_special_tokens:
sub_texts = " ".join(sub_texts)
else:
sub_texts = "".join(sub_texts)
return sub_texts
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self._added_tokens_encoder:
out_string += self.sp_model.decode(current_sub_tokens) + token
current_sub_tokens = []
else:
current_sub_tokens.append(token)
out_string += self.sp_model.decode(current_sub_tokens)
return out_string
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.save_vocabulary
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return (
bos_token_id
+ ([0] * len(token_ids_0))
+ eos_token_id
+ bos_token_id
+ ([0] * len(token_ids_1))
+ eos_token_id
)
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
if token_ids_1 is not None:
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
return output

View File

@ -0,0 +1,199 @@
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from shutil import copyfile
from typing import Optional, Tuple
from tokenizers import processors
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
from ...utils.versions import require_version
require_version("tokenizers>=0.13.3")
if is_sentencepiece_available():
from .tokenization_gemma import GemmaTokenizer
else:
GemmaTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
class GemmaTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a Gemma tokenizer fast. Based on byte-level Byte-Pair-Encoding.
This uses notably ByteFallback and no prefix space. Normalization is applied to replace `" "` with `""`
```python
>>> from transformers import GemmaTokenizerFast
>>> tokenizer = GemmaTokenizerFast.from_pretrained("hf-internal-testing/dummy-gemma")
>>> tokenizer.encode("Hello this is a test")
[2, 4521, 736, 603, 476, 2121]
```
If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or
call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
[post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`, *optional*):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
contains the vocabulary necessary to instantiate a tokenizer.
tokenizer_file (`str`, *optional*):
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The padding token
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether or not to add an `bos_token` at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of sequences.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = GemmaTokenizer
padding_side = "left"
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
clean_up_tokenization_spaces=False,
unk_token="<unk>",
bos_token="<bos>",
eos_token="<eos>",
pad_token="<pad>",
add_bos_token=True,
add_eos_token=False,
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
**kwargs,
)
self._add_bos_token = add_bos_token
self._add_eos_token = add_eos_token
self.update_post_processor()
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.update_post_processor
def update_post_processor(self):
"""
Updates the underlying post processor with the current `bos_token` and `eos_token`.
"""
bos = self.bos_token
bos_token_id = self.bos_token_id
if bos is None and self.add_bos_token:
raise ValueError("add_bos_token = True but bos_token = None")
eos = self.eos_token
eos_token_id = self.eos_token_id
if eos is None and self.add_eos_token:
raise ValueError("add_eos_token = True but eos_token = None")
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
special_tokens = []
if self.add_bos_token:
special_tokens.append((bos, bos_token_id))
if self.add_eos_token:
special_tokens.append((eos, eos_token_id))
self._tokenizer.post_processor = processors.TemplateProcessing(
single=single, pair=pair, special_tokens=special_tokens
)
@property
def add_eos_token(self):
return self._add_eos_token
@property
def add_bos_token(self):
return self._add_bos_token
@add_eos_token.setter
def add_eos_token(self, value):
self._add_eos_token = value
self.update_post_processor()
@add_bos_token.setter
def add_bos_token(self, value):
self._add_bos_token = value
self.update_post_processor()
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output

View File

@ -94,7 +94,6 @@ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
class LlamaRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
@ -118,6 +117,9 @@ class LlamaRotaryEmbedding(nn.Module):
return self._cos_cached
def forward(self, x, position_ids, seq_len=None):
if seq_len is not None:
logger.warning_once("The `seq_len` argument is deprecated and unused. It will be removed in v4.40.")
# x: [bs, num_attention_heads, seq_len, head_size]
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
@ -138,16 +140,11 @@ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
t = t / self.scaling_factor
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, position_ids, seq_len=None):
# difference to the original RoPE: a scaling factor is aplied to the position ids
position_ids = position_ids.float() / self.scaling_factor
cos, sin = super().forward(x, position_ids, seq_len)
return cos, sin
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
@ -157,23 +154,20 @@ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
def forward(self, x, position_ids, seq_len=None):
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
inv_freq = 1.0 / (
base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
cos, sin = super().forward(x, position_ids, seq_len)
return cos, sin
def rotate_half(x):
@ -183,7 +177,7 @@ def rotate_half(x):
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
@ -191,9 +185,8 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
@ -360,8 +353,8 @@ class LlamaAttention(nn.Module):
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
past_key_value = getattr(self, "past_key_value", past_key_value)
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; position_ids needed for the static cache
@ -447,8 +440,8 @@ class LlamaFlashAttention2(LlamaAttention):
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
past_key_value = getattr(self, "past_key_value", past_key_value)
@ -645,9 +638,10 @@ class LlamaSdpaAttention(LlamaAttention):
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
# In case static cache is used, it is an instance attribute.
past_key_value = getattr(self, "past_key_value", past_key_value)
if past_key_value is not None:
@ -976,9 +970,11 @@ class LlamaModel(LlamaPreTrainedModel):
if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_seen_tokens = past_key_values.get_seq_length()
past_seen_tokens = past_key_values.get_seq_length()
if cache_position is None:
if isinstance(past_key_values, StaticCache):
raise ValueError("cache_position is a required argument when using StaticCache.")
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
@ -1050,6 +1046,10 @@ class LlamaModel(LlamaPreTrainedModel):
attentions=all_self_attns,
)
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
def _update_causal_mask(self, attention_mask, input_tensor):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
@ -1065,16 +1065,8 @@ class LlamaModel(LlamaPreTrainedModel):
causal_mask = torch.full((2 * self.causal_mask.shape[-1], 2 * self.causal_mask.shape[-1]), fill_value=1)
self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)
if hasattr(self, "causal_mask"): # we use the current dtype to avoid any overflows
causal_mask = (
self.causal_mask[None, None, :, :].repeat(batch_size, 1, 1, 1).to(dtype) * torch.finfo(dtype).min
)
else:
mask = torch.full(
(self.config.max_position_embeddings, self.config.max_position_embeddings),
fill_value=torch.finfo(dtype).min,
)
causal_mask = torch.triu(mask, diagonal=1)
# We use the current dtype to avoid any overflows
causal_mask = self.causal_mask[None, None, :, :].repeat(batch_size, 1, 1, 1).to(dtype) * torch.finfo(dtype).min
causal_mask = causal_mask.to(dtype=dtype, device=device)
if attention_mask is not None and attention_mask.dim() == 2:
@ -1260,30 +1252,32 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
if past_key_value := getattr(self.model.layers[0].self_attn, "past_key_value", None):
if getattr(self.model.layers[0].self_attn, "past_key_value", None) is not None:
# generation with static cache
past_length = past_key_value.get_seq_length()
print("past_length here", past_length)
cache_position = kwargs.get("cache_position", None)
if cache_position is None:
past_length = 0
else:
past_length = cache_position[-1] + 1
input_ids = input_ids[:, past_length:]
position_ids = position_ids[:, past_length:]
# TODO @gante we should only keep a `cache_position` in generate, and do +=1.
# same goes for position ids. Could also help with continued generation.
cache_position = kwargs.get("cache_position", None)
if cache_position is None:
cache_position = torch.arange(
past_length, past_length + position_ids.shape[-1], device=position_ids.device
)
cache_position = torch.arange(past_length, past_length + position_ids.shape[-1], device=position_ids.device)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {"input_ids": input_ids.contiguous()}
model_inputs.update(
{
"position_ids": position_ids,
"position_ids": position_ids.contiguous(),
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),

View File

@ -1439,7 +1439,7 @@ class MaskFormerPixelLevelModule(nn.Module):
The configuration used to instantiate this model.
"""
super().__init__()
if hasattr(config, "backbone_config") and config.backbone_config.model_type == "swin":
if getattr(config, "backbone_config") is not None and config.backbone_config.model_type == "swin":
# for backwards compatibility
backbone_config = config.backbone_config
backbone_config = MaskFormerSwinConfig.from_dict(backbone_config.to_dict())

View File

@ -77,7 +77,7 @@ class PersimmonRotaryEmbedding(nn.Module):
)
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Persimmon
# Copied from transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding with Falcon->Persimmon
class PersimmonLinearScalingRotaryEmbedding(PersimmonRotaryEmbedding):
"""PersimmonRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
@ -97,7 +97,7 @@ class PersimmonLinearScalingRotaryEmbedding(PersimmonRotaryEmbedding):
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Persimmon
# Copied from transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding with Falcon->Persimmon
class PersimmonDynamicNTKScalingRotaryEmbedding(PersimmonRotaryEmbedding):
"""PersimmonRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""

View File

@ -120,7 +120,7 @@ class PhiRotaryEmbedding(nn.Module):
)
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Phi
# Copied from transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding with Falcon->Phi
class PhiLinearScalingRotaryEmbedding(PhiRotaryEmbedding):
"""PhiRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
@ -140,7 +140,7 @@ class PhiLinearScalingRotaryEmbedding(PhiRotaryEmbedding):
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Phi
# Copied from transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding with Falcon->Phi
class PhiDynamicNTKScalingRotaryEmbedding(PhiRotaryEmbedding):
"""PhiRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""

View File

@ -29,7 +29,7 @@ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from ...modeling_utils import PreTrainedModel
from ...utils import (
@ -103,7 +103,7 @@ class StableLmRotaryEmbedding(nn.Module):
)
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->StableLm
# Copied from transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding with Falcon->StableLm
class StableLmLinearScalingRotaryEmbedding(StableLmRotaryEmbedding):
"""StableLmRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
@ -123,7 +123,7 @@ class StableLmLinearScalingRotaryEmbedding(StableLmRotaryEmbedding):
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->StableLm
# Copied from transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding with Falcon->StableLm
class StableLmDynamicNTKScalingRotaryEmbedding(StableLmRotaryEmbedding):
"""StableLmRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
@ -374,6 +374,102 @@ class StableLmAttention(nn.Module):
return attn_output, attn_weights, past_key_value
class StableLmSdpaAttention(StableLmAttention):
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"StableLmModel is using StableLmSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
# Partial rotary embedding
query_rot, query_pass = (
query_states[..., : self.rotary_emb.dim],
query_states[..., self.rotary_emb.dim :],
)
key_rot, key_pass = (
key_states[..., : self.rotary_emb.dim],
key_states[..., self.rotary_emb.dim :],
)
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
# [batch_size, seq_length, num_heads, head_dim]
query_states = torch.cat((query_rot, query_pass), dim=-1)
key_states = torch.cat((key_rot, key_pass), dim=-1)
if past_key_value is not None:
# Specific to RoPE models with partial rotation
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# Repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout.p if self.training else 0.0,
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal=self.is_causal and attention_mask is None and q_len > 1,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
class StableLmFlashAttention2(StableLmAttention):
"""
StableLM flash attention module. This module inherits from `StableLmAttention` as the weights of the module stays
@ -574,6 +670,7 @@ class StableLmFlashAttention2(StableLmAttention):
ATTENTION_CLASSES = {
"eager": StableLmAttention,
"sdpa": StableLmSdpaAttention,
"flash_attention_2": StableLmFlashAttention2,
}
@ -680,6 +777,7 @@ class StableLmPreTrainedModel(PreTrainedModel):
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_cache_class = True
_supports_sdpa = True
def _init_weights(self, module):
std = self.config.initializer_range
@ -858,6 +956,11 @@ class StableLmModel(StableLmPreTrainedModel):
if self._attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
# for output_attentions case used fallback to eager attention realization
elif self._attn_implementation == "sdpa" and not output_attentions:
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(

View File

@ -14,6 +14,8 @@ if is_vision_available():
image_processor_kwargs (`dict`, *optional*):
Additional dictionary of keyword arguments passed along to the image processor e.g.
{"size": {"height": 100, "width": 100}}
pool (`bool`, *optional*, defaults to `False`):
Whether or not to return the pooled output. If `False`, the model will return the raw hidden states.
""",
)
class ImageFeatureExtractionPipeline(Pipeline):
@ -41,9 +43,14 @@ class ImageFeatureExtractionPipeline(Pipeline):
[huggingface.co/models](https://huggingface.co/models).
"""
def _sanitize_parameters(self, image_processor_kwargs=None, return_tensors=None, **kwargs):
def _sanitize_parameters(self, image_processor_kwargs=None, return_tensors=None, pool=None, **kwargs):
preprocess_params = {} if image_processor_kwargs is None else image_processor_kwargs
postprocess_params = {"return_tensors": return_tensors} if return_tensors is not None else {}
postprocess_params = {}
if pool is not None:
postprocess_params["pool"] = pool
if return_tensors is not None:
postprocess_params["return_tensors"] = return_tensors
if "timeout" in kwargs:
preprocess_params["timeout"] = kwargs["timeout"]
@ -59,14 +66,25 @@ class ImageFeatureExtractionPipeline(Pipeline):
model_outputs = self.model(**model_inputs)
return model_outputs
def postprocess(self, model_outputs, return_tensors=False):
# [0] is the first available tensor, logits or last_hidden_state.
def postprocess(self, model_outputs, pool=None, return_tensors=False):
pool = pool if pool is not None else False
if pool:
if "pooler_output" not in model_outputs:
raise ValueError(
"No pooled output was returned. Make sure the model has a `pooler` layer when using the `pool` option."
)
outputs = model_outputs["pooler_output"]
else:
# [0] is the first available tensor, logits or last_hidden_state.
outputs = model_outputs[0]
if return_tensors:
return model_outputs[0]
return outputs
if self.framework == "pt":
return model_outputs[0].tolist()
return outputs.tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
return outputs.numpy().tolist()
def __call__(self, *args, **kwargs):
"""

View File

@ -11,8 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
from typing import TYPE_CHECKING, Optional
from packaging import version
from .base import HfQuantizer
@ -81,7 +84,14 @@ class AqlmHfQuantizer(HfQuantizer):
@property
def is_trainable(self, model: Optional["PreTrainedModel"] = None):
return False
aqlm_supports_training = version.parse(importlib.metadata.version("aqlm")) >= version.parse("1.0.2")
if aqlm_supports_training:
return True
else:
logger.warn(
f"Currently installed `aqlm` version ({importlib.metadata.version('aqlm')}) doesn't support training. If you wish to train a quantized model, please update `aqlm` with `pip install aqlm>=1.0.2`"
)
return False
@property
def is_serializable(self):

View File

@ -737,6 +737,27 @@ class FlaxEncoderDecoderModel(metaclass=DummyObject):
requires_backends(self, ["flax"])
class FlaxGemmaForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGemmaModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGemmaPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGPT2LMHeadModel(metaclass=DummyObject):
_backends = ["flax"]

View File

@ -3811,6 +3811,34 @@ class FuyuPreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["torch"])
class GemmaForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GemmaForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GemmaModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GemmaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
GIT_PRETRAINED_MODEL_ARCHIVE_LIST = None

View File

@ -79,6 +79,13 @@ class FNetTokenizer(metaclass=DummyObject):
requires_backends(self, ["sentencepiece"])
class GemmaTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
class GPTSw3Tokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]

View File

@ -170,6 +170,13 @@ class FunnelTokenizerFast(metaclass=DummyObject):
requires_backends(self, ["tokenizers"])
class GemmaTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
class GPT2TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]

View File

View File

@ -0,0 +1,267 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import AutoTokenizer, GemmaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.gemma.modeling_flax_gemma import (
FlaxGemmaForCausalLM,
FlaxGemmaModel,
)
class FlaxGemmaModelTester:
def __init__(
self,
parent,
batch_size=2,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
num_key_value_heads=2,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
initializer_range=0.02,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = None
self.bos_token_id = vocab_size - 1
self.eos_token_id = vocab_size - 1
self.pad_token_id = vocab_size - 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = np.tril(np.ones((self.batch_size, self.seq_length)))
config = GemmaConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
head_dim=self.hidden_size // self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
use_cache=True,
is_decoder=False,
initializer_range=self.initializer_range,
)
return config, input_ids, input_mask
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
def check_use_cache_forward(self, model_class_name, config, input_ids, attention_mask):
max_decoder_length = 20
model = model_class_name(config)
past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length)
attention_mask = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="i4")
position_ids = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1)
)
outputs_cache = model(
input_ids[:, :-1],
attention_mask=attention_mask,
past_key_values=past_key_values,
position_ids=position_ids,
)
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model(
input_ids[:, -1:],
attention_mask=attention_mask,
past_key_values=outputs_cache.past_key_values,
position_ids=position_ids,
)
outputs = model(input_ids)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, input_ids, attention_mask):
max_decoder_length = 20
model = model_class_name(config)
attention_mask_cache = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))],
axis=-1,
)
past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length)
position_ids = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1)
)
outputs_cache = model(
input_ids[:, :-1],
attention_mask=attention_mask_cache,
past_key_values=past_key_values,
position_ids=position_ids,
)
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model(
input_ids[:, -1:],
past_key_values=outputs_cache.past_key_values,
attention_mask=attention_mask_cache,
position_ids=position_ids,
)
outputs = model(input_ids, attention_mask=attention_mask)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
@require_flax
class FlaxGemmaModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase):
all_model_classes = (FlaxGemmaModel, FlaxGemmaForCausalLM) if is_flax_available() else ()
all_generative_model_classes = (FlaxGemmaForCausalLM,) if is_flax_available() else ()
def setUp(self):
self.model_tester = FlaxGemmaModelTester(self)
def test_use_cache_forward(self):
for model_class_name in self.all_model_classes:
config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(model_class_name, config, input_ids, attention_mask)
def test_use_cache_forward_with_attn_mask(self):
for model_class_name in self.all_model_classes:
config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
model_class_name, config, input_ids, attention_mask
)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("google/gemma-2b", from_pt=True)
outputs = model(np.ones((1, 1)))
self.assertIsNotNone(outputs)
@slow
@require_flax
class FlaxGemmaIntegrationTest(unittest.TestCase):
input_text = ["The capital of France is", "To play the perfect cover drive"]
model_id = "google/gemma-2b"
revision = "flax"
def setUp(self):
self.model, self.params = FlaxGemmaForCausalLM.from_pretrained(
self.model_id, revision=self.revision, _do_init=False
)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
self.tokenizer.padding_side = "left"
def test_logits(self):
inputs = self.tokenizer(self.input_text, return_tensors="np", padding=True)
# fmt: off
EXPECTED_MEAN = [
[-16.427, -21.386, -35.491, -36.258, -31.401, -36.370, -37.598],
[-21.386, -32.150, -33.155, -34.344, -34.706, -34.678, -38.495],
]
EXPECTED_SLICE = [-33.462, -16.481, -30.837, -32.195, -33.113]
# fmt: on
logits = self.model(**inputs, params=self.params).logits
diff_mean = jnp.abs(logits.mean(-1) - np.array(EXPECTED_MEAN)).max()
diff_slice = jnp.abs(logits[0, -1, 475:480] - np.array(EXPECTED_SLICE)).max()
self.assertAlmostEqual(diff_mean, 0, places=3)
self.assertAlmostEqual(diff_slice, 0, places=3)
def test_generation(self):
EXPECTED_TEXTS = [
"The capital of France is a city of contrasts. It is a city of history, of art, of culture, of fashion",
"To play the perfect cover drive, you need to have a good technique and a good mindset.\n\nThe cover drive is a shot",
]
inputs = self.tokenizer(self.input_text, return_tensors="np", padding=True)
output = self.model.generate(**inputs, params=self.params, max_new_tokens=20, do_sample=False)
output_text = self.tokenizer.batch_decode(output.sequences, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_jit_generation(self):
EXPECTED_TEXTS = [
"The capital of France is a city of contrasts. It is a city of history, culture, and art, but it is",
"To play the perfect cover drive, you need to have a good technique and a good mindset.\n\nThe cover drive is a shot",
]
inputs = self.tokenizer(self.input_text, return_tensors="np", padding=True)
def generate(input_ids, attention_mask):
outputs = self.model.generate(
input_ids, attention_mask=attention_mask, params=self.params, max_new_tokens=20, do_sample=False
)
return outputs
jit_generate = jax.jit(generate)
output_sequences = jit_generate(**inputs).sequences
output_text = self.tokenizer.batch_decode(output_sequences, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)

View File

@ -0,0 +1,785 @@
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Gemma model. """
import tempfile
import unittest
import pytest
from parameterized import parameterized
from transformers import AutoModelForCausalLM, AutoTokenizer, GemmaConfig, is_torch_available
from transformers.testing_utils import (
require_bitsandbytes,
require_flash_attn,
require_torch,
require_torch_gpu,
require_torch_sdpa,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import GemmaForCausalLM, GemmaForSequenceClassification, GemmaModel
class GemmaModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
num_key_value_heads=2,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
self.head_dim = self.hidden_size // self.num_attention_heads
# Copied from tests.models.mistral.test_modeling_mistral.MistralModelTester.prepare_config_and_inputs
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
# Ignore copy
def get_config(self):
return GemmaConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
head_dim=self.head_dim,
)
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->Gemma
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = GemmaModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Gemma
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = GemmaModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Gemma
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = GemmaForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Gemma
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = GemmaForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Gemma
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class GemmaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (GemmaModel, GemmaForCausalLM, GemmaForSequenceClassification) if is_torch_available() else ()
all_generative_model_classes = (GemmaForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": GemmaModel,
"text-classification": GemmaForSequenceClassification,
"text-generation": GemmaForCausalLM,
"zero-shot": GemmaForSequenceClassification,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
# TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
return True
def setUp(self):
self.model_tester = GemmaModelTester(self)
self.config_tester = ConfigTester(self, config_class=GemmaConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_Gemma_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
print(config)
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = GemmaForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_Gemma_sequence_classification_model_for_single_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "single_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = GemmaForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_Gemma_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = GemmaForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
@unittest.skip("TODO @gante fix this for Llama")
@parameterized.expand([(1, False), (1, True), (4, False)])
def test_new_cache_format(self, num_beams, do_sample):
pass
@unittest.skip("Gemma buffers include complex numbers, which breaks this test")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip("Gemma uses GQA on all models so the KV cache is a non standard format")
def test_past_key_values_format(self):
pass
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_generate_padding_right(self):
import torch
for model_class in self.all_generative_model_classes:
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
torch_device
)
dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [1, 1, 1, 0]]).to(torch_device)
model.generate(dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False)
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
).to(torch_device)
with self.assertRaises(ValueError):
_ = model.generate(
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
)
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_generate_use_cache(self):
import torch
max_new_tokens = 30
for model_class in self.all_generative_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
dummy_input = inputs_dict[model_class.main_input_name]
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
dummy_input = dummy_input.to(torch.float16)
# make sure that all models have enough positions for generation
if hasattr(config, "max_position_embeddings"):
config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
# NOTE: Gemma apparently does not support right padding + use_cache with FA2.
dummy_attention_mask[:, -1] = 1
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
).to(torch_device)
# Just test that a large cache works as expected
_ = model.generate(
dummy_input,
attention_mask=dummy_attention_mask,
max_new_tokens=max_new_tokens,
do_sample=False,
use_cache=True,
)
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_inference_padding_right(self):
self.skipTest("Gemma flash attention does not support right padding")
@require_torch_sdpa
@require_torch_gpu
@slow
def test_sdpa_equivalence(self):
for model_class in self.all_model_classes:
if not model_class._supports_sdpa:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_sdpa = model_class.from_pretrained(
tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa"
)
model_sdpa.to(torch_device)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="eager")
model.to(torch_device)
dummy_input = inputs_dict[model_class.main_input_name]
dummy_input = dummy_input.to(torch_device)
outputs = model(dummy_input, output_hidden_states=True)
outputs_sdpa = model_sdpa(dummy_input, output_hidden_states=True)
logits = outputs.hidden_states[-1]
logits_sdpa = outputs_sdpa.hidden_states[-1]
# gemma sdpa needs a high tolerance
assert torch.allclose(logits_sdpa, logits, atol=3e-3)
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_equivalence(self):
for model_class in self.all_model_classes:
if not model_class._supports_flash_attn_2:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_fa = model_class.from_pretrained(
tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2"
)
model_fa.to(torch_device)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="eager")
model.to(torch_device)
dummy_input = inputs_dict[model_class.main_input_name]
dummy_input = dummy_input.to(torch_device)
outputs = model(dummy_input, output_hidden_states=True)
outputs_fa = model_fa(dummy_input, output_hidden_states=True)
logits = outputs.hidden_states[-1]
logits_fa = outputs_fa.hidden_states[-1]
# gemma flash attention 2 needs a high tolerance
assert torch.allclose(logits_fa, logits, atol=3e-3)
@require_torch_gpu
@slow
class GemmaIntegrationTest(unittest.TestCase):
input_text = ["Hello I am doing", "Hi today"]
def test_model_2b_fp32(self):
model_id = "google/gemma-2b"
EXPECTED_TEXTS = [
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
]
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_2b_fp16(self):
model_id = "google/gemma-2b"
EXPECTED_TEXTS = [
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
]
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
torch_device
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_2b_fp16_static_cache(self):
model_id = "google/gemma-2b"
EXPECTED_TEXTS = [
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
]
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
torch_device
)
model.generation_config.cache_implementation = "static"
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_2b_bf16(self):
model_id = "google/gemma-2b"
EXPECTED_TEXTS = [
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Khichdi",
]
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
torch_device
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_2b_eager(self):
model_id = "google/gemma-2b"
EXPECTED_TEXTS = [
"Hello I am doing a project on the 1990s and I am looking for some information on the ",
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
]
model = AutoModelForCausalLM.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="eager"
)
model.to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
@require_torch_sdpa
def test_model_2b_sdpa(self):
model_id = "google/gemma-2b"
EXPECTED_TEXTS = [
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Khichdi",
]
model = AutoModelForCausalLM.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="sdpa"
)
model.to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
@pytest.mark.flash_attn_test
@require_flash_attn
def test_model_2b_flash_attn(self):
model_id = "google/gemma-2b"
EXPECTED_TEXTS = [
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
]
model = AutoModelForCausalLM.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
)
model.to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
@require_bitsandbytes
def test_model_2b_4bit(self):
model_id = "google/gemma-2b"
EXPECTED_TEXTS = [
"Hello I am doing a project and I need to make a 3d model of a house. I have been using",
"Hi today I'd like to share with you my experience with the new wattpad wattpad wattpad wattpad wattpad wattpad wattpad",
]
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
@unittest.skip("The test will not fit our CI runners")
def test_model_7b_fp32(self):
model_id = "google/gemma-7b"
EXPECTED_TEXTS = [
"Hello my name is ***** ***** I will be assisting you today. I am sorry to hear about your issue. I will",
"Hi,\n\nI have a problem with my 2005 1.6 16",
]
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_7b_fp16(self):
model_id = "google/gemma-7b"
EXPECTED_TEXTS = [
"""Hello I am doing a project on a 1999 4.0L 4x4. I""",
"Hi today I am going to show you how to make a simple and easy to make a DIY 3D",
]
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
torch_device
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_7b_bf16(self):
model_id = "google/gemma-7b"
EXPECTED_TEXTS = [
"""Hello I am doing a project on a 1991 240sx and I am trying to find""",
"Hi today I am going to show you how to make a very simple and easy to make a very simple and",
]
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
torch_device
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_7b_fp16_static_cache(self):
model_id = "google/gemma-7b"
EXPECTED_TEXTS = [
"""Hello I am doing a project on a 1999 4.0L 4x4. I""",
"Hi today I am going to show you how to make a simple and easy to make a DIY 3D",
]
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
torch_device
)
model.generation_config.cache_implementation = "static"
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
@require_bitsandbytes
def test_model_7b_4bit(self):
model_id = "google/gemma-7b"
EXPECTED_TEXTS = [
"Hello I am doing a project for my school and I am trying to make a program that will take a number and then",
"""Hi today I am going to talk about the new update for the game called "The new update" and I""",
]
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)

View File

@ -0,0 +1,497 @@
# coding=utf-8
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
from datasets import load_dataset
from transformers import (
AddedToken,
GemmaTokenizer,
GemmaTokenizerFast,
is_torch_available,
)
from transformers.convert_slow_tokenizer import convert_slow_tokenizer
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_jinja,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
pass
@require_sentencepiece
@require_tokenizers
class GemmaTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = GemmaTokenizer
rust_tokenizer_class = GemmaTokenizerFast
test_rust_tokenizer = False
test_sentencepiece = True
from_pretrained_kwargs = {}
def setUp(self):
super().setUp()
# We have a SentencePiece fixture for testing
tokenizer = GemmaTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.save_pretrained(self.tmpdirname)
@require_torch
def test_batch_tokenization(self):
if not self.test_seq2seq:
return
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Longer text that will definitely require truncation.
text = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for"
" Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons"
" will only worsen the violence and misery for millions of people.",
]
try:
batch = tokenizer(
text=text,
max_length=3,
max_target_length=10,
return_tensors="pt",
)
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1], 3)
# max_target_length will default to max_length if not specified
batch = tokenizer(text, max_length=3, return_tensors="pt")
self.assertEqual(batch.input_ids.shape[1], 3)
batch_encoder_only = tokenizer(text=text, max_length=3, max_target_length=10, return_tensors="pt")
self.assertEqual(batch_encoder_only.input_ids.shape[1], 3)
self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3)
self.assertNotIn("decoder_input_ids", batch_encoder_only)
@unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece.")
def test_save_slow_from_fast_and_reload_fast(self):
pass
def test_special_tokens_initialization(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
added_tokens = [AddedToken("<special>", lstrip=True)]
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
r_output = tokenizer_r.encode("Hey this is a <special> token")
special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]
self.assertTrue(special_token_id in r_output)
if self.test_slow_tokenizer:
tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
pretrained_name,
additional_special_tokens=added_tokens,
**kwargs, # , from_slow=True <- unfortunately too slow to convert
)
tokenizer_p = self.tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
p_output = tokenizer_p.encode("Hey this is a <special> token")
cr_output = tokenizer_cr.encode("Hey this is a <special> token")
self.assertEqual(p_output, r_output)
self.assertEqual(cr_output, r_output)
self.assertTrue(special_token_id in p_output)
self.assertTrue(special_token_id in cr_output)
@slow
def test_tokenizer_integration(self):
expected_encoding = {'input_ids': [[2, 158434, 591, 84193, 3836, 685, 6599, 31223, 235290, 140247, 578, 6599, 31223, 235290, 145139, 235290, 3491, 235275, 6572, 3311, 235290, 38197, 109959, 591, 25894, 235269, 162174, 235290, 235284, 235269, 1791, 6362, 12481, 235269, 1576, 18622, 235269, 2900, 1136, 86684, 235269, 29092, 4632, 16994, 604, 13146, 14944, 40371, 591, 19700, 235327, 235275, 578, 13146, 14944, 25511, 591, 235300, 12474, 235275, 675, 1163, 235248, 235304, 235284, 235340, 229903, 5377, 575, 235248, 235274, 235276, 235276, 235340, 17044, 578, 5271, 1061, 118345, 1865, 125247, 235269, 8745, 111226, 578, 176888, 235265], [2, 25894, 603, 6869, 577, 953, 235290, 8297, 5271, 209099, 41642, 774, 748, 78253, 2793, 731, 51506, 34346, 611, 2145, 2731, 578, 1833, 4807, 575, 832, 16630, 235265], [2, 651, 4320, 8426, 25341, 36271, 1163, 573, 27894, 5929, 235265]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # fmt: skip
self.tokenizer_integration_test_util(
expected_encoding=expected_encoding,
model_name="hf-internal-testing/dummy-gemma",
revision="",
padding=False,
)
@unittest.skip("worker 'gw4' crashed on CI, passing locally.")
def test_pickle_subword_regularization_tokenizer(self):
pass
@unittest.skip("worker 'gw4' crashed on CI, passing locally.")
def test_subword_regularization_tokenizer(self):
pass
@unittest.skip("This test will be removed from main @LysandreJik")
def test_pretrained_model_lists(self):
pass
@unittest.skip("Skipping")
def test_torch_encode_plus_sent_to_model(self):
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class GemmaIntegrationTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
checkpoint_name = "hf-internal-testing/dummy-gemma"
cls.tokenizer: GemmaTokenizer = GemmaTokenizer.from_pretrained(
checkpoint_name, eos_token="<s>"
) # add this token
cls.rust_tokenizer = GemmaTokenizerFast.from_pretrained(
checkpoint_name, eos_token="<s>", from_slow=True
) # add this token
return cls
@require_torch
def integration_tests(self):
inputs = self.tokenizer(
["The following string should be properly encoded: Hello.", "But ird and ปี ird ด"],
return_tensors="pt",
)
self.assertEqual(
nested_simplify(inputs),
{
"input_ids": [
[2, 450, 1494, 1347, 881, 367, 6284, 18511, 29901, 15043, 29889],
[2, 1205, 29871, 1823, 322, 29871, 31010, 30691, 1678, 1823, 1678, 30718],
],
"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
},
)
def test_fast_special_tokens(self):
slow_tokenizer = self.tokenizer
fast_tokenizer = self.rust_tokenizer
slow = slow_tokenizer.encode("A sample test", add_special_tokens=True)
assert slow == [2, 235280, 6453, 2121]
fast_tokenizer.add_eos_token = False
fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
assert fast == [2, 235280, 6453, 2121]
fast_tokenizer.add_eos_token = True
fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
assert fast == [2, 235280, 6453, 2121, 204]
slow_tokenizer.add_eos_token = True
slow = slow_tokenizer.encode("A sample test", add_special_tokens=True)
assert slow == [2, 235280, 6453, 2121, 204]
self.tokenizer.add_eos_token = False
self.rust_tokenizer.add_eos_token = False
@unittest.skip("Not super important and always failing. Let's skip it")
@slow
def test_conversion(self):
# This is excruciatingly slow since it has to recreate the entire merge
# list from the original vocabulary in spm
self.rust_tokenizer.save_pretrained("./out")
with tempfile.TemporaryDirectory() as dirname:
self.rust_tokenizer.save_pretrained(dirname)
with open(os.path.join(dirname, "tokenizer.json"), "r") as f:
old_serialized = f.read()
new_tokenizer = convert_slow_tokenizer(self.tokenizer)
with tempfile.NamedTemporaryFile() as f:
new_tokenizer.save(f.name)
# Re-opening since `f` is in bytes.
new_serialized = open(f.name, "r").read()
with open("out_tokenizer.json", "w") as g:
g.write(new_serialized)
self.assertEqual(old_serialized, new_serialized)
def test_simple_encode_decode(self):
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
self.tokenizer.add_eos_token = False
self.rust_tokenizer.add_eos_token = False
self.assertEqual(pyth_tokenizer.encode("This is a test"), [2, 1596, 603, 476, 2121])
self.assertEqual(rust_tokenizer.encode("This is a test"), [2, 1596, 603, 476, 2121])
self.assertEqual(pyth_tokenizer.decode([2, 1596, 603, 476, 2121], skip_special_tokens=True), "This is a test")
self.assertEqual(rust_tokenizer.decode([2, 1596, 603, 476, 2121], skip_special_tokens=True), "This is a test")
# bytefallback showcase
self.assertEqual(pyth_tokenizer.encode("生活的真谛是"), [2, 122182, 235710, 245467, 235427] ) # fmt: skip
self.assertEqual(rust_tokenizer.encode("生活的真谛是"), [2, 122182, 235710, 245467, 235427] ) # fmt: skip
self.assertEqual(
pyth_tokenizer.decode([2, 122182, 235710, 245467, 235427], skip_special_tokens=True),
"生活的真谛是",
)
self.assertEqual(
rust_tokenizer.decode([2, 122182, 235710, 245467, 235427], skip_special_tokens=True),
"生活的真谛是",
)
# Inner spaces showcase
self.assertEqual(pyth_tokenizer.encode("Hi Hello"), [2, 2151, 139, 4521])
self.assertEqual(rust_tokenizer.encode("Hi Hello"), [2, 2151, 139, 4521])
self.assertEqual(pyth_tokenizer.decode([2, 2151, 139, 4521], skip_special_tokens=True), "Hi Hello")
self.assertEqual(rust_tokenizer.decode([2, 2151, 139, 4521], skip_special_tokens=True), "Hi Hello")
self.assertEqual(pyth_tokenizer.encode("Hi Hello"), [2, 2151, 140, 4521])
self.assertEqual(rust_tokenizer.encode("Hi Hello"), [2, 2151, 140, 4521])
self.assertEqual(pyth_tokenizer.decode([2, 2151, 140, 4521], skip_special_tokens=True), "Hi Hello")
self.assertEqual(rust_tokenizer.decode([2, 2151, 140, 4521], skip_special_tokens=True), "Hi Hello")
self.assertEqual(pyth_tokenizer.encode(""), [2])
self.assertEqual(rust_tokenizer.encode(""), [2])
self.assertEqual(pyth_tokenizer.encode(" "), [2, 235248])
self.assertEqual(rust_tokenizer.encode(" "), [2, 235248])
self.assertEqual(pyth_tokenizer.encode(" "), [2, 139])
self.assertEqual(rust_tokenizer.encode(" "), [2, 139])
self.assertEqual(pyth_tokenizer.encode(" Hello"), [2, 25957])
self.assertEqual(rust_tokenizer.encode(" Hello"), [2, 25957])
def test_no_differences_decode(self):
self.tokenizer.add_eos_token = False
self.rust_tokenizer.add_eos_token = False
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
self.assertEqual(pyth_tokenizer.decode([869]), "og")
self.assertEqual(rust_tokenizer.decode([869]), "og")
self.assertEqual(pyth_tokenizer.decode([30112, 869]), " expenditureog")
self.assertEqual(rust_tokenizer.decode([30112, 869]), " expenditureog")
def test_no_differences_special_tokens(self):
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
self.assertEqual(pyth_tokenizer.encode(""), [2])
self.assertEqual(rust_tokenizer.encode(""), [2])
self.assertEqual(pyth_tokenizer.encode("<s>"), [2, 204])
self.assertEqual(rust_tokenizer.encode("<s>"), [2, 204])
@unittest.skipIf(
os.getenv("RUN_TOKENIZER_INTEGRATION", "0") == "0",
"RUN_TOKENIZER_INTEGRATION=1 to run tokenizer integration tests",
)
def test_integration_test_xnli(self):
import tqdm
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
dataset = load_dataset("code_x_glue_ct_code_to_text", "go")
for item in tqdm.tqdm(dataset["validation"]):
string = item["code"]
encoded1 = pyth_tokenizer.encode(string)
encoded2 = rust_tokenizer.encode(string)
self.assertEqual(encoded1, encoded2)
decoded1 = pyth_tokenizer.decode(encoded1, skip_special_tokens=True)
decoded2 = rust_tokenizer.decode(encoded1, skip_special_tokens=True)
self.assertEqual(decoded1, decoded2)
dataset = load_dataset("xnli", "all_languages")
for item in tqdm.tqdm(dataset["train"]):
for string in item["premise"].values():
encoded1 = pyth_tokenizer.encode(string)
encoded2 = rust_tokenizer.encode(string)
self.assertEqual(encoded1, encoded2)
decoded1 = pyth_tokenizer.decode(encoded1, skip_special_tokens=True)
decoded2 = rust_tokenizer.decode(encoded2, skip_special_tokens=True)
self.assertEqual(decoded1, decoded2)
def test_special_token_special_word(self):
# the word inform should be split as ['in', 'form']
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
tokenizer.add_tokens([AddedToken("<REPR_END>", rstrip=True, lstrip=True)], special_tokens=False)
out1 = tokenizer.decode(
tokenizer.encode("<REPR_END>inform", add_special_tokens=False), spaces_between_special_tokens=False
)
self.assertEqual(out1, "<REPR_END>inform")
out2 = tokenizer.decode(
tokenizer.encode("<REPR_END>inform", add_special_tokens=False), spaces_between_special_tokens=True
)
# decoding strips the added prefix space.
self.assertEqual(out2, "<REPR_END> inform")
input_ids = tokenizer.encode("<REPR_END>inform", add_special_tokens=False)
self.assertEqual(input_ids, [256000, 43910])
out2 = tokenizer.decode(
tokenizer.encode(" <REPR_END> inform", add_special_tokens=False), spaces_between_special_tokens=False
)
# TODO @ArthurZ currently we strip left and right, so this will not keep the spaces
self.assertEqual(out2, "<REPR_END>inform")
### Let's make sure decoding does not add extra spaces here and there
# TODO @ArthurZ this should be affected by the lstrip/rstrip/single word /normalize refactoring
# Since currently we always strip left and right of the token, results are as such
input_ids = tokenizer.encode("<s> Hello<s>how", add_special_tokens=False)
self.assertEqual(input_ids, [204, 25957, 204, 1139])
tokens = tokenizer.tokenize("<s> Hello<s>how", add_special_tokens=False)
self.assertEqual(tokens, ["<s>", "▁Hello", "<s>", "how"])
decoded_tokens = tokenizer.decode(input_ids)
self.assertEqual(decoded_tokens, "<s> Hello<s>how")
# Let's make sure that if there are any spaces, we don't remove them!
input_ids = tokenizer.encode(" <s> Hello<s> how", add_special_tokens=False)
self.assertEqual(input_ids, [235248, 204, 25957, 204, 1368])
tokens = tokenizer.tokenize(" <s> Hello<s> how", add_special_tokens=False)
self.assertEqual(tokens, ["", "<s>", "▁Hello", "<s>", "▁how"])
decoded_tokens = tokenizer.decode(input_ids)
self.assertEqual(decoded_tokens, " <s> Hello<s> how")
def test_some_edge_cases(self):
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
sp_tokens = tokenizer.sp_model.encode("<s>>", out_type=str)
self.assertEqual(sp_tokens, ["<s>", ">"])
tokens = tokenizer.tokenize("<s>>")
self.assertEqual(sp_tokens, tokens)
self.assertEqual(tokens, ["<s>", ">"])
tokens = tokenizer.tokenize("")
self.assertEqual(tokens, [])
self.assertEqual(tokens, tokenizer.sp_model.encode("", out_type=str))
tokens = tokenizer.tokenize(" ")
self.assertEqual(tokens, [""])
# a dummy prefix space is not added by the sp_model as it was de-activated
self.assertEqual(tokens, tokenizer.sp_model.encode(" ", out_type=str))
tokens = tokenizer.tokenize("")
self.assertEqual(tokens, [""])
# a dummy prefix space is not added by the sp_model as it was de-activated
self.assertEqual(tokens, tokenizer.sp_model.encode("", out_type=str))
tokens = tokenizer.tokenize("")
self.assertEqual(tokens, ["▁▁"])
# a dummy prefix space is not added by the sp_model as it was de-activated
self.assertEqual(tokens, tokenizer.sp_model.encode("▁▁", out_type=str))
@require_jinja
def test_tokenization_for_chat(self):
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
test_chats = [
[{"role": "user", "content": "Hello!"}],
[
{"role": "user", "content": "Hello!"},
{"role": "assistant", "content": "Nice to meet you."},
],
[{"role": "user", "content": "Hello!"}],
]
# Matt: The third test case tests the default system message, but if this is ever changed in the
# class/repo code then that test will fail, and the case will need to be updated.
tokenized_chats = [tokenizer.apply_chat_template(test_chat) for test_chat in test_chats]
expected_tokens = [[235322, 235371, 571, 235298, 2997, 73786, 1645, 108, 4521, 149907, 235371, 571, 235298, 615, 73786, 108], [235322, 235371, 571, 235298, 2997, 73786, 1645, 108, 4521, 149907, 235371, 571, 235298, 615, 73786, 108, 235322, 235371, 571, 235298, 2997, 73786, 105776, 108, 7731, 577, 4664, 692, 35606, 235371, 571, 235298, 615, 73786, 108], [235322, 235371, 571, 235298, 2997, 73786, 1645, 108, 4521, 149907, 235371, 571, 235298, 615, 73786, 108]] # fmt: skip
for tokenized_chat, expected_tokens in zip(tokenized_chats, expected_tokens):
self.assertListEqual(tokenized_chat, expected_tokens)
@require_sentencepiece
@require_tokenizers
class CommonSpmIntegrationTests(unittest.TestCase):
"""
A class that regroups important test to make sure that we properly handle the special tokens.
"""
def test_edge_case_tabulation(self):
fast_tokenizer = GemmaTokenizerFast.from_pretrained("hf-internal-testing/dummy-gemma")
slow_tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
input_text = "Hey<eos>. \t\t \n\nyou é @#😈 🤗! , 1234 15 5,61"
EXPECTED_IDS = [ 2, 6750, 1, 235265, 235248, 255969, 235248, 109, 4747, 139, 235335, 139, 216311, 241316, 139, 239880, 235341, 144, 235269, 235248, 235274, 235284, 235304, 235310, 235248, 235274, 235308, 235248, 235308, 235269, 235318, 235274] # fmt: skip
EXPECTED_TOKENS = [ "Hey", "<eos>", ".", "", "\t\t", "", "\n\n", "you", "▁▁", "é", "▁▁", "@#", "😈", "▁▁", "🤗", "!", "▁▁▁▁▁▁▁", ",", "", "1", "2", "3", "4", "", "1", "5", "", "5", ",", "6", "1"] # fmt: skip
tokens = fast_tokenizer.tokenize(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(tokens, EXPECTED_TOKENS)
tokens = slow_tokenizer.tokenize(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(tokens, EXPECTED_TOKENS)
input_ids = fast_tokenizer.encode(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(input_ids, EXPECTED_IDS)
input_ids = slow_tokenizer.encode(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(input_ids, EXPECTED_IDS)
text = fast_tokenizer.decode(EXPECTED_IDS)
with self.subTest("test fast edge case fast"):
self.assertEqual(text, "<bos>Hey<eos>. \t\t \n\nyou é @#😈 🤗! , 1234 15 5,61")
text = slow_tokenizer.decode(EXPECTED_IDS)
with self.subTest("test fast edge case fast"):
self.assertEqual(text, "<bos>Hey<eos>. \t\t \n\nyou é @#😈 🤗! , 1234 15 5,61")
input_text = "\t\t\t\t \n\n61"
EXPECTED_IDS = [2, 255971, 235248, 109, 235318, 235274]
EXPECTED_TOKENS = ["\t\t\t\t", "", "\n\n", "6", "1"]
tokens = fast_tokenizer.tokenize(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(tokens, EXPECTED_TOKENS)
tokens = slow_tokenizer.tokenize(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(tokens, EXPECTED_TOKENS)
input_ids = fast_tokenizer.encode(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(input_ids, EXPECTED_IDS)
input_ids = slow_tokenizer.encode(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(input_ids, EXPECTED_IDS)
text = fast_tokenizer.decode(EXPECTED_IDS)
with self.subTest("test fast edge case fast"):
self.assertEqual(text, "<bos>\t\t\t\t \n\n61")
text = slow_tokenizer.decode(EXPECTED_IDS)
with self.subTest("test fast edge case fast"):
self.assertEqual(text, "<bos>\t\t\t\t \n\n61")

View File

@ -362,7 +362,6 @@ class LlamaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixi
pass
@parameterized.expand([("linear",), ("dynamic",)])
@unittest.skip("TODO @gante fix this for Llama")
def test_model_rope_scaling(self, scaling_type):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
short_input = ids_tensor([1, 10], config.vocab_size)

Some files were not shown because too many files have changed in this diff Show More